National Library of Energy BETA

Sample records for halide mercury vapor

  1. Category:Mercury Vapor | Open Energy Information

    Open Energy Info (EERE)

    Mercury Vapor Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Mercury Vapor page? For detailed information on Mercury Vapor as...

  2. Mercury Vapor | Open Energy Information

    Open Energy Info (EERE)

    hydrothermal system. Other definitions:Wikipedia Reegle Introduction Mercury is a natural byproduct of mantle or deep-crustal derived fluids, high concentrations can be...

  3. Mercury Vapor At Mccoy Geothermal Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Mccoy Geothermal Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Mccoy Geothermal Area (DOE GTP) Exploration...

  4. Mercury Vapor At Medicine Lake Area (Kooten, 1987) | Open Energy...

    Open Energy Info (EERE)

    Medicine Lake Area (Kooten, 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Medicine Lake Area (Kooten, 1987) Exploration...

  5. Mercury Vapor At Mokapu Penninsula Area (Thomas, 1986) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details Location...

  6. Mercury Vapor At Lualualei Valley Area (Thomas, 1986) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location...

  7. Mercury Vapor At Kawaihae Area (Thomas, 1986) | Open Energy Informatio...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Kawaihae Area (Thomas, 1986) Exploration Activity Details Location Kawaihae...

  8. Mercury Vapor At Mauna Loa Northeast Rift Area (Thomas, 1986...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Mauna Loa Northeast Rift Area (Thomas, 1986) Exploration Activity Details...

  9. Mercury Vapor At Socorro Mountain Area (Kooten, 1987) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Socorro Mountain Area (Kooten, 1987) Exploration Activity Details Location...

  10. Catalytic Reactor For Oxidizing Mercury Vapor

    DOE Patents [OSTI]

    Helfritch, Dennis J.

    1998-07-28

    A catalytic reactor (10) for oxidizing elemental mercury contained in flue gas is provided. The catalyst reactor (10) comprises within a flue gas conduit a perforated corona discharge plate (30a, b) having a plurality of through openings (33) and a plurality of projecting corona discharge electrodes (31); a perforated electrode plate (40a, b, c) having a plurality of through openings (43) axially aligned with the through openings (33) of the perforated corona discharge plate (30a, b) displaced from and opposing the tips of the corona discharge electrodes (31); and a catalyst member (60a, b, c, d) overlaying that face of the perforated electrode plate (40a, b, c) opposing the tips of the corona discharge electrodes (31). A uniformly distributed corona discharge plasma (1000) is intermittently generated between the plurality of corona discharge electrode tips (31) and the catalyst member (60a, b, c, d) when a stream of flue gas is passed through the conduit. During those periods when corona discharge (1000) is not being generated, the catalyst molecules of the catalyst member (60a, b, c, d) adsorb mercury vapor contained in the passing flue gas. During those periods when corona discharge (1000) is being generated, ions and active radicals contained in the generated corona discharge plasma (1000) desorb the mercury from the catalyst molecules of the catalyst member (60a, b, c, d), oxidizing the mercury in virtually simultaneous manner. The desorption process regenerates and activates the catalyst member molecules.

  11. Mercury Vapor (Kooten, 1987) | Open Energy Information

    Open Energy Info (EERE)

    DOE-funding Unknown Notes Surface soil-mercury surveys are an inexpensive and useful exploration tool for geothermal resources. ---- Surface geochemical surveys for mercury...

  12. Apparatus for isotopic alteration of mercury vapor

    DOE Patents [OSTI]

    Grossman, Mark W.; George, William A.; Marcucci, Rudolph V.

    1988-01-01

    An apparatus for enriching the isotopic Hg content of mercury is provided. The apparatus includes a reactor, a low pressure electric discharge lamp containing a fill including mercury and an inert gas. A filter is arranged concentrically around the lamp. In a preferred embodiment, constant mercury pressure is maintained in the filter by means of a water-cooled tube that depends from it, the tube having a drop of mercury disposed in it. The reactor is arranged around the filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of a material which is transparent to ultraviolet light.

  13. Apparatus and method for removing mercury vapor from a gas stream

    DOE Patents [OSTI]

    Ganesan, Kumar

    2008-01-01

    A metallic filter effectively removes mercury vapor from gas streams. The filter captures the mercury which then can be released and collected as product. The metallic filter is a copper mesh sponge plated with a six micrometer thickness of gold. The filter removes up to 90% of mercury vapor from a mercury contaminated gas stream.

  14. Filter for isotopic alteration of mercury vapor

    DOE Patents [OSTI]

    Grossman, Mark W.; George, William A.

    1989-01-01

    A filter for enriching the .sup.196 Hg content of mercury, including a reactor, a low pressure electric discharge lamp containing a fill of mercury and an inert gas. A filter is arranged concentrically around the lamp. The reactor is arranged around said filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of quartz, and are transparent to ultraviolet light. The .sup.196 Hg concentration in the mercury fill is less than that which is present in naturally occurring mercury, that is less than about 0.146 atomic weight percent. Hydrogen is also included in the fill and serves as a quenching gas in the filter, the hydrogen also serving to prevent disposition of a dark coating on the interior of the filter.

  15. Filter for isotopic alteration of mercury vapor

    DOE Patents [OSTI]

    Grossman, M.W.; George, W.A.

    1989-06-13

    A filter is described for enriching the [sup 196]Hg content of mercury, including a reactor, a low pressure electric discharge lamp containing a fill of mercury and an inert gas. A filter is arranged concentrically around the lamp. The reactor is arranged around said filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of quartz, and are transparent to ultraviolet light. The [sup 196]Hg concentration in the mercury fill is less than that which is present in naturally occurring mercury, that is, less than about 0.146 atomic weight percent. Hydrogen is also included in the fill and serves as a quenching gas in the filter, the hydrogen also serving to prevent disposition of a dark coating on the interior of the filter. 9 figs.

  16. Vapor phase elemental sulfur amendment for sequestering mercury in contaminated soil

    SciTech Connect (OSTI)

    Looney, Brian B.; Denham, Miles E.; Jackson, Dennis G.

    2014-07-08

    The process of treating elemental mercury within the soil is provided by introducing into the soil a heated vapor phase of elemental sulfur. As the vapor phase of elemental sulfur cools, sulfur is precipitated within the soil and then reacts with any elemental mercury thereby producing a reaction product that is less hazardous than elemental mercury.

  17. Mercury Vapor At Silver Peak Area (Henkle, Et Al., 2005) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Silver Peak Area (Henkle, Et Al., 2005) Exploration Activity Details...

  18. Radiation-induced defects in GaN bulk grown by halide vapor phase epitaxy

    SciTech Connect (OSTI)

    Duc, Tran Thien; Pozina, Galia; Son, Nguyen Tien; Janzén, Erik; Hemmingsson, Carl; Ohshima, Takeshi

    2014-09-08

    Defects induced by electron irradiation in thick free-standing GaN layers grown by halide vapor phase epitaxy were studied by deep level transient spectroscopy. In as-grown materials, six electron traps, labeled D2 (E{sub C}–0.24?eV), D3 (E{sub C}–0.60?eV), D4 (E{sub C}–0.69?eV), D5 (E{sub C}–0.96?eV), D7 (E{sub C}–1.19?eV), and D8, were observed. After 2?MeV electron irradiation at a fluence of 1?×?10{sup 14?}cm{sup ?2}, three deep electron traps, labeled D1 (E{sub C}–0.12?eV), D5I (E{sub C}–0.89?eV), and D6 (E{sub C}–1.14?eV), were detected. The trap D1 has previously been reported and considered as being related to the nitrogen vacancy. From the annealing behavior and a high introduction rate, the D5I and D6 centers are suggested to be related to primary intrinsic defects.

  19. Mercury Vapor At Hualalai Northwest Rift Area (Thomas, 1986)...

    Open Energy Info (EERE)

    The Hualalai lower northwest rift and southern flank were sampled for soil mercury concentration and radon emanation rates (Cox and Cuff, 1981d). The data generated by these...

  20. Mercury Vapor At Olowalu-Ukumehame Canyon Area (Thomas, 1986...

    Open Energy Info (EERE)

    could be useful with more improvements DOE-funding Unknown Notes Soil mercury concentration and radon emanometry surveys were conducted along the stream beds in both Olowalu...

  1. Mercury Vapor At Lahaina-Kaanapali Area (Thomas, 1986) | Open...

    Open Energy Info (EERE)

    Activity Date Usefulness not indicated DOE-funding Unknown Notes The soil mercury concentration and radon emanometry patterns observed for the Lahaina prospect were similar to...

  2. Application of atomic vapor laser isotope separation to the enrichment of mercury

    SciTech Connect (OSTI)

    Crane, J.K.; Erbert, G.V.; Paisner, J.A.; Chen, H.L.; Chiba, Z.; Beeler, R.G.; Combs, R.; Mostek, S.D.

    1986-09-01

    Workers at GTE/Sylvania have shown that the efficiency of fluorescent lighting may be markedly improved using mercury that has been enriched in the /sup 196/Hg isotope. A 5% improvement in the efficiency of fluorescent lighting in the United States could provide a savings of approx. 1 billion dollars in the corresponding reduction of electrical power consumption. We will discuss the results of recent work done at our laboratory to develop a process for enriching mercury. The discussion will center around the results of spectroscopic measurements of excited state lifetimes, photoionization cross sections and isotope shifts. In addition, we will discuss the mercury separator and supporting laser mesurements of the flow properties of mercury vapor. We will describe the laser system which will provide the photoionization and finally discuss the economic details of producing enriched mercury at a cost that would be attractive to the lighting industry.

  3. Mercury Vapor At Kilauea East Rift Area (Thomas, 1986) | Open...

    Open Energy Info (EERE)

    located within the rift zone, but an analysis of the data showed that soil type and soil pH also had a marked impact on mercury concentration. Making corrections for these effects...

  4. Controlling the vapor pressure of a mercury lamp

    DOE Patents [OSTI]

    Grossman, Mark W.; George, William A.

    1988-01-01

    The invention described herein discloses a method and apparatus for controlling the Hg vapor pressure within a lamp. This is done by establishing and controlling two temperature zones within the lamp. One zone is colder than the other zone. The first zone is called the cold spot. By controlling the temperature of the cold spot, the Hg vapor pressure within the lamp is controlled. Likewise, by controlling the Hg vapor pressure of the lamp, the intensity and linewidth of the radiation emitted from the lamp is controlled.

  5. Controlling the vapor pressure of a mercury lamp

    DOE Patents [OSTI]

    Grossman, M.W.; George, W.A.

    1988-05-24

    The invention described herein discloses a method and apparatus for controlling the Hg vapor pressure within a lamp. This is done by establishing and controlling two temperature zones within the lamp. One zone is colder than the other zone. The first zone is called the cold spot. By controlling the temperature of the cold spot, the Hg vapor pressure within the lamp is controlled. Likewise, by controlling the Hg vapor pressure of the lamp, the intensity and linewidth of the radiation emitted from the lamp is controlled. 2 figs.

  6. The gas phase emitter effect of lanthanum within ceramic metal halide lamps and its dependence on the La vapor pressure and operating frequency

    SciTech Connect (OSTI)

    Ruhrmann, C.; Hoebing, T.; Bergner, A.; Groeger, S.; Awakowicz, P.; Mentel, J.; Denissen, C.; Suijker, J.

    2015-08-07

    The gas phase emitter effect increases the lamp lifetime by lowering the work function and, with it, the temperature of the tungsten electrodes of metal halide lamps especially for lamps in ceramic vessels due to their high rare earth pressures. It is generated by a monolayer on the electrode surface of electropositive atoms of certain emitter elements, which are inserted into the lamp bulb by metal iodide salts. They are vaporized, dissociated, ionized, and deposited by an emitter ion current onto the electrode surface within the cathodic phase of lamp operation with a switched-dc or ac-current. The gas phase emitter effect of La and the influence of Na on the emitter effect of La are studied by spatially and phase-resolved pyrometric measurements of the electrode tip temperature, La atom, and ion densities by optical emission spectroscopy as well as optical broadband absorption spectroscopy and arc attachment images by short time photography. An addition of Na to the lamp filling increases the La vapor pressure within the lamp considerably, resulting in an improved gas phase emitter effect of La. Furthermore, the La vapor pressure is raised by a heating of the cold spot. In this way, conditions depending on the La vapor pressure and operating frequency are identified, at which the temperature of the electrodes becomes a minimum.

  7. Preparation of cerium halide solvate complexes

    DOE Patents [OSTI]

    Vasudevan, Kalyan V; Smith, Nickolaus A; Gordon, John C; McKigney, Edward A; Muenchaussen, Ross E

    2013-08-06

    Crystals of a solvated cerium(III) halide solvate complex resulted from a process of forming a paste of a cerium(III) halide in an ionic liquid, adding a solvent to the paste, removing any undissolved solid, and then cooling the liquid phase. Diffusing a solvent vapor into the liquid phase also resulted in crystals of a solvated cerium(III) halide complex.

  8. Mercury Vapor At Salt Wells Area (Henkle, Et Al., 2005) | Open...

    Open Energy Info (EERE)

    19811025; Houston, TX. Davis, CA: Geothermal Resources Council; p. 95-98 S.C. Smith. 2003. Thermally Speciated Mercury in Mineral Exploration. In: Programs & Abstracts:...

  9. Mercury Vapor At Valley Of Ten Thousand Smokes Region Area (Kodosky...

    Open Energy Info (EERE)

    on air-dried ( < 80 mesh fraction) samples using the Jerome Instrument 301 Au-film Hg degrees detector. References Lawrence G. Kodosky (1989) Surface Mercury Geochemistry As...

  10. Method and apparatus for sampling atmospheric mercury

    DOE Patents [OSTI]

    Trujillo, Patricio E.; Campbell, Evan E.; Eutsler, Bernard C.

    1976-01-20

    A method of simultaneously sampling particulate mercury, organic mercurial vapors, and metallic mercury vapor in the working and occupational environment and determining the amount of mercury derived from each such source in the sampled air. A known volume of air is passed through a sampling tube containing a filter for particulate mercury collection, a first adsorber for the selective adsorption of organic mercurial vapors, and a second adsorber for the adsorption of metallic mercury vapor. Carbon black molecular sieves are particularly useful as the selective adsorber for organic mercurial vapors. The amount of mercury adsorbed or collected in each section of the sampling tube is readily quantitatively determined by flameless atomic absorption spectrophotometry.

  11. Regeneration of zinc halide catalyst used in the hydrocracking of polynuclear hydrocarbons

    DOE Patents [OSTI]

    Gorin, Everett

    1978-01-01

    Improved recovery of spent molten zinc halide hydro-cracking catalyst is achieved in the oxidative vapor phase regeneration thereof by selective treatment of the zinc oxide carried over by the effluent vapors from the regeneration zone with hydrogen halide gas under conditions favoring the reaction of the zinc oxide with the hydrogen halide, whereby regenerated zinc halide is recovered in a solids-free state with little loss of zinc values.

  12. NOVEL PROCESS FOR REMOVAL AND RECOVERY OF VAPOR-PHASE MERCURY

    SciTech Connect (OSTI)

    Craig S. Turchi

    2000-09-29

    The goal of this project is to investigate the use of a regenerable sorbent for removing and recovering mercury from the flue gas of coal-fired power plants. The process is based on the sorption of mercury by noble metals and the thermal regeneration of the sorbent, recovering the desorbed mercury in a small volume for recycling or disposal. The project was carried out in two phases, covering five years. Phase I ran from September 1995 through September 1997 and involved development and testing of sorbent materials and field tests at a pilot coal-combustor. Phase II began in January 1998 and ended September 2000. Phase II culminated with pilot-scale testing at a coal-fired power plant. The use of regenerable sorbents holds the promise of capturing mercury in a small volume, suitable for either stable disposal or recycling. Unlike single-use injected sorbents such as activated carbon, there is no impact on the quality of the fly ash. During Phase II, tests were run with a 20-acfm pilot unit on coal-combustion flue gas at a 100 lb/hr pilot combustor and a utility boiler for four months and six months respectively. These studies, and subsequent laboratory comparisons, indicated that the sorbent capacity and life were detrimentally affected by the flue gas constituents. Sorbent capacity dropped by a factor of 20 to 35 during operations in flue gas versus air. Thus, a sorbent designed to last 24 hours between recycling lasted less than one hour. The effect resulted from an interaction between SO{sub 2} and either NO{sub 2} or HCl. When SO{sub 2} was combined with either of these two gases, total breakthrough was seen within one hour in flue gas. This behavior is similar to that reported by others with carbon adsorbents (Miller et al., 1998).

  13. Direct vapor/solid synthesis of mercuric iodide using compounds of mercury and iodine

    DOE Patents [OSTI]

    Skinner, Nathan L.

    1990-01-01

    A process is disclosed for producing high purity mercuric iodide by passing a gaseous source of a mercuric compound through a particulate bed of a low vapor pressure iodide compound which is maintained at an elevated temperature which is the lower of either: (a) just below the melting or volatilization temperature of the iodide compound (which ever is lower); or (b) just below the volatilization point of the other reaction product formed during the reaction; to cause the mercuric compound to react with the iodide compound to form mercuric iodide which then passes as a vapor out of the bed into a cooler condensation region.

  14. Lutetium gadolinium halide scintillators

    DOE Patents [OSTI]

    Shah, Kanai S.; Higgins, William M; Van Loef, Edgar V; Glodo, Jaroslaw

    2010-07-13

    Lutetium gadolinium halide scintillators, devices and methods, including a composition having the formula Lu.sub.xGd.sub.(1-x)Halide and a dopant.

  15. Method of controlling the mercury vapor pressure in a photo-chemical lamp or vapor filter used for Hg.sup.196 enrichment

    DOE Patents [OSTI]

    Grossman, Mark W.

    1993-01-01

    The present invention is directed to a method of eliminating the cold spot zones presently used on Hg.sup.196 isotope separation lamps and filters by the use of a mercury amalgams, preferably mercury - indium amalgams. The use of an amalgam affords optimization of the mercury density in the lamp and filter of a mercury enrichment reactor, particularly multilamp enrichment reactors. Moreover, the use of an amalgam in such lamps and/or filters affords the ability to control the spectral line width of radiation emitted from lamps, a requirement for mercury enrichment.

  16. Method of controlling the mercury vapor pressure in a photo-chemical lamp or vapor filter used for Hg[sup 196] enrichment

    DOE Patents [OSTI]

    Grossman, M.W.

    1993-02-16

    The present invention is directed to a method of eliminating the cold spot zones presently used on Hg[sup 196] isotope separation lamps and filters by the use of a mercury amalgams, preferably mercury - indium amalgams. The use of an amalgam affords optimization of the mercury density in the lamp and filter of a mercury enrichment reactor, particularly multilamp enrichment reactors. Moreover, the use of an amalgam in such lamps and/or filters affords the ability to control the spectral line width of radiation emitted from lamps, a requirement for mercury enrichment.

  17. Sorbents for the oxidation and removal of mercury (Patent) |...

    Office of Scientific and Technical Information (OSTI)

    The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. ...

  18. Argonne/EPA system captures mercury from air in gold shops |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Typical gold shop hood used to purify gold by superheating the goldmercury amalgam until the mercury vaporizes. The vaporized mercury is directed outside the shop into the open...

  19. Halide and Oxy-halide Eutectic Systems for High Performance High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Halide and Oxy-halide Eutectic Systems for High Performance High Temperature Heat Transfer Fluids Halide and Oxy-halide Eutectic Systems for High Performance High Temperature Heat ...

  20. Method for the removal and recovery of mercury

    DOE Patents [OSTI]

    Easterly, C.E.; Vass, A.A.; Tyndall, R.L.

    1997-01-28

    The present invention is an enhanced method for the removal and recovery of mercury from mercury-contaminated matrices. The method involves contacting a mercury-contaminated matrix with an aqueous dispersant solution derived from specific intra-amoebic isolates to release the mercury from the mercury-contaminated matrix and emulsify the mercury; then, contacting the matrix with an amalgamating metal from a metal source to amalgamate the mercury to the amalgamating metal; removing the metallic source from the mercury-contaminated matrix; and heating the metallic source to vaporize the mercury in a closed system to capture the mercury vapors.

  1. Method for the removal and recovery of mercury

    DOE Patents [OSTI]

    Easterly, Clay E.; Vass, Arpad A.; Tyndall, Richard L.

    1997-01-01

    The present invention is an enhanced method for the removal and recovery of mercury from mercury-contaminated matrices. The method involves contacting a mercury-contaminated matrix with an aqueous dispersant solution derived from specific intra-amoebic isolates to release the mercury from the mercury-contaminated matrix and emulsify the mercury; then, contacting the matrix with an amalgamating metal from a metal source to amalgamate the mercury to the amalgamating metal; removing the metallic source from the mercury-contaminated matrix; and heating the metallic source to vaporize the mercury in a closed system to capture the mercury vapors.

  2. COMBINED THEORETICAL AND EXPERIMENTAL INVESTIGATION OF MECHANISMS AND KINETICS OF VAPOR-PHASE MERCURY UPTAKE BY CARBONACOUES SURFACES

    SciTech Connect (OSTI)

    Radisav D. Vidic

    2002-05-01

    The first part of this study evaluated the application of a versatile optical technique to study the adsorption and desorption of model adsorbates representative of volatile polar (acetone) and non-polar (propane) organic compounds on a model carbonaceous surface under ultra high vacuum (UHV) conditions. The results showed the strong correlation between optical differential reflectance (ODR) and adsorbate coverage determined by temperature programmed desorption (TPD). ODR technique was proved to be a powerful tool to investigate surface adsorption and desorption from UHV to high pressure conditions. The effects of chemical functionality and surface morphology on the adsorption/desorption behavior of acetone, propane and mercury were investigated for two model carbonaceous surfaces, namely air-cleaved highly oriented pyrolytic graphite (HOPG) and plasma-oxidized HOPG. They can be removed by thermal treatment (> 500 K). The presence of these groups almost completely suppresses propane adsorption at 90K and removal of these groups leads to dramatic increase in adsorption capacity. The amount of acetone adsorbed is independent of surface heat treatment and depends only on total exposure. The effects of morphological heterogeneity is evident for plasma-oxidized HOPG as this substrate provides greater surface area, as well as higher energy binding sites. Mercury adsorption at 100 K on HOPG surfaces with and without chemical functionalities and topological heterogeneity created by plasma oxidation occurs through physisorption. The removal of chemical functionalities from HOPG surface enhances mercury physisorption. Plasma oxidation of HOPG provides additional surface area for mercury adsorption. Mercury adsorption by activated carbon at atmospheric pressure occurs through two distinct mechanisms, physisorption below 348 K and chemisorption above 348 K. No significant impact of oxygen functionalities was observed in the chemisorption region. The key findings of this study

  3. Method for removal and stabilization of mercury in mercury-containing gas streams

    DOE Patents [OSTI]

    Broderick, Thomas E.

    2005-09-13

    The present invention is directed to a process and apparatus for removing and stabilizing mercury from mercury-containing gas streams. A gas stream containing vapor phase elemental and/or speciated mercury is contacted with reagent, such as an oxygen-containing oxidant, in a liquid environment to form a mercury-containing precipitate. The mercury-containing precipitate is kept or placed in solution and reacts with one or more additional reagents to form a solid, stable mercury-containing compound.

  4. Project Profile: Halide and Oxy-Halide Eutectic Systems for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Performance, High-Temperature Heat Transfer Fluids | Department of Energy Halide and Oxy-Halide Eutectic Systems for High-Performance, High-Temperature Heat Transfer Fluids Project Profile: Halide and Oxy-Halide Eutectic Systems for High-Performance, High-Temperature Heat Transfer Fluids Logos from The University of Arizona, Arizona State University, and Georgia Institute of Technology, and Three side-by-side graphics showing the experimental design, a photomultiplier tube, and a graph

  5. Lanthanide-halide based humidity indicators

    DOE Patents [OSTI]

    Beitz, James V.; Williams, Clayton W.

    2008-01-01

    The present invention discloses a lanthanide-halide based humidity indicator and method of producing such indicator. The color of the present invention indicates the humidity of an atmosphere to which it is exposed. For example, impregnating an adsorbent support such as silica gel with an aqueous solution of the europium-containing reagent solution described herein, and dehydrating the support to dryness forms a substance with a yellow color. When this substance is exposed to a humid atmosphere the water vapor from the air is adsorbed into the coating on the pore surface of the silica gel. As the water content of the coating increases, the visual color of the coated silica gel changes from yellow to white. The color change is due to the water combining with the lanthanide-halide complex on the pores of the gel.

  6. Method for producing hydrocarbon fuels and fuel gas from heavy polynuclear hydrocarbons by the use of molten metal halide catalysts

    DOE Patents [OSTI]

    Gorin, Everett

    1979-01-01

    In a process for hydrocracking heavy polynuclear carbonaceous feedstocks to produce lighter hydrocarbon fuels by contacting the heavy feedstocks with hydrogen in the presence of a molten metal halide catalyst in a hydrocracking zone, thereafter separating at least a major portion of the lighter hydrocarbon fuels from the spent molten metal halide and thereafter regenerating the spent molten metal halide by incinerating the spent molten metal halide by combustion of carbon and sulfur compounds in the spent molten metal halide in an incineration zone, the improvement comprising: (a) contacting the heavy feedstocks and hydrogen in the presence of the molten metal halide in the hydrocracking zone at reaction conditions effective to convert from about 60 to about 90 weight percent of the feedstock to lighter hydrocarbon fuels; (b) separating at least a major portion of the lighter hydrocarbon fuels from the spent molten metal halide; (c) contacting the spent molten metal halide with oxygen in a liquid phase gasification zone at a temperature and pressure sufficient to vaporize from about 25 to about 75 weight percent of the spent metal halide, the oxygen being introduced in an amount sufficient to remove from about 60 to about 90 weight percent of the carbon contained in the spent molten metal halide to produce a fuel gas and regenerated metal halide; and (d) incinerating the spent molten metal halide by combusting carbon and sulfur compounds contained therein.

  7. Sorbents for mercury removal from flue gas

    SciTech Connect (OSTI)

    Granite, Evan J.; Hargis, Richard A.; Pennline, Henry W.

    1998-01-01

    A review of the various promoters and sorbents examined for the removal of mercury from flue gas is presented. Commercial sorbent processes are described along with the chemistry of the various sorbent-mercury interactions. Novel sorbents for removing mercury from flue gas are suggested. Since activated carbons are expensive, alternate sorbents and/or improved activated carbons are needed. Because of their lower cost, sorbent development work can focus on base metal oxides and halides. Additionally, the long-term sequestration of the mercury on the sorbent needs to be addressed. Contacting methods between the flue gas and the sorbent also merit investigation.

  8. Halide and Oxy-Halide Eutectic Systems for High-Performance,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Halide and Oxy-Halide Eutectic Systems for High-Performance, High-Temperature Heat Transfer Fluids Halide and Oxy-Halide Eutectic Systems for High-Performance, High-Temperature...

  9. Project Profile: Halide and Oxy-Halide Eutectic Systems forHigh...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Halide and Oxy-Halide Eutectic Systems for High-Performance, High-Temperature Heat Transfer Fluids Project Profile: Halide and Oxy-Halide Eutectic Systems for High-Performance, ...

  10. Sorbents for the oxidation and removal of mercury

    DOE Patents [OSTI]

    Olson, Edwin S.; Holmes, Michael J.; Pavlish, John H.

    2008-10-14

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  11. Sorbents for the oxidation and removal of mercury

    DOE Patents [OSTI]

    Olson, Edwin S.; Holmes, Michael J.; Pavlish, John Henry

    2014-09-02

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  12. Sorbents for the oxidation and removal of mercury

    DOE Patents [OSTI]

    Olson, Edwin S.; Holmes, Michael J.; Pavlish, John H.

    2012-05-01

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  13. PREPARATION OF HALIDES OF PLUTONIUM

    DOE Patents [OSTI]

    Garner, C.S.; Johns, I.B.

    1958-09-01

    A dry chemical method is described for preparing plutonium halides, which consists in contacting plutonyl nitrate with dry gaseous HCl or HF at an elevated temperature. The addition to the reaction gas of a small quantity of an oxidizing gas or a reducing gas will cause formation of the tetra- or tri-halide of plutonium as desired.

  14. Actinide halide complexes

    DOE Patents [OSTI]

    Avens, L.R.; Zwick, B.D.; Sattelberger, A.P.; Clark, D.L.; Watkin, J.G.

    1992-11-24

    A compound is described of the formula MX[sub n]L[sub m] wherein M is a metal atom selected from the group consisting of thorium, plutonium, neptunium or americium, X is a halide atom, n is an integer selected from the group of three or four, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is an integer selected from the group of three or four for monodentate ligands or is the integer two for bidentate ligands, where the sum of n+m equals seven or eight for monodentate ligands or five or six for bidentate ligands. A compound of the formula MX[sub n] wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds are described including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant.

  15. Actinide halide complexes

    DOE Patents [OSTI]

    Avens, Larry R.; Zwick, Bill D.; Sattelberger, Alfred P.; Clark, David L.; Watkin, John G.

    1992-01-01

    A compound of the formula MX.sub.n L.sub.m wherein M is a metal atom selected from the group consisting of thorium, plutonium, neptunium or americium, X is a halide atom, n is an integer selected from the group of three or four, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is an integer selected from the group of three or four for monodentate ligands or is the integer two for bidentate ligands, where the sum of n+m equals seven or eight for monodentate ligands or five or six for bidentate ligands, a compound of the formula MX.sub.n wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant, are provided.

  16. Method and apparatus for controlling the flow rate of mercury in a flow system

    DOE Patents [OSTI]

    Grossman, Mark W.; Speer, Richard

    1991-01-01

    A method for increasing the mercury flow rate to a photochemical mercury enrichment utilizing an entrainment system comprises the steps of passing a carrier gas over a pool of mercury maintained at a first temperature T1, wherein the carrier gas entrains mercury vapor; passing said mercury vapor entrained carrier gas to a second temperature zone T2 having temperature less than T1 to condense said entrained mercury vapor, thereby producing a saturated Hg condition in the carrier gas; and passing said saturated Hg carrier gas to said photochemical enrichment reactor.

  17. Development of Halide and Oxy-Halides for Isotopic Separations

    SciTech Connect (OSTI)

    Leigh R. Martin; Aaron T. Johnson; Jana Pfeiffer; Martha R. Finck

    2014-10-01

    The goal of this project was to synthesize a volatile form of Np for introduction into mass spectrometers at INL. Volatile solids of the 5f elements are typically those of the halides (e.g. UF6), however fluorine is highly corrosive to the sensitive internal components of the mass separator, and the other volatile halides exist as several different stable isotopes in nature. However, iodide is both mono-isotopic and volatile, and as such presents an avenue for creation of a form of Np suitable for introduction into the mass separator. To accomplish this goal, the technical work in the project sought to establish a novel synthetic route for the conversion NpO2+ (dissolved in nitric acid) to NpI3 and NpI4.

  18. Diamond films treated with alkali-halides

    DOE Patents [OSTI]

    Anderson, D.F.; Kwan, S.W.

    1997-04-08

    A secondary electron emitter is provided and includes a substrate with a diamond film, the diamond film is treated or coated with an alkali-halide. 5 figs.

  19. Diamond films treated with alkali-halides

    DOE Patents [OSTI]

    Anderson, David F.; Kwan, Simon W.

    1997-01-01

    A secondary electron emitter is provided and includes a substrate with a diamond film, the diamond film is treated or coated with an alkali-halide.

  20. Lanthanide doped strontium barium mixed halide scintillators

    DOE Patents [OSTI]

    Gundiah, Gautam; Bizarri, Gregory A.; Hanrahan, Stephen M.; Bourret-Courchesne, Edith D.; Derenzo, Stephen E.

    2016-03-15

    The present invention provides for a composition comprising an inorganic scintillator comprising a lanthanide-doped strontium barium mixed halide useful for detecting nuclear material.

  1. Lanthanide doped strontium barium mixed halide scintillators

    DOE Patents [OSTI]

    Gundiah, Gautam; Bizarri, Gregory; Hanrahan, Stephen M; Bourret-Courchesne, Edith; Derenzo, Stephen E

    2013-07-16

    The present invention provides for a composition comprising an inorganic scintillator comprising a lanthanide-doped strontium barium mixed halide useful for detecting nuclear material.

  2. Hygroscopicity Evaluation of Halide Scintillators

    SciTech Connect (OSTI)

    Zhuravleva, M; Stand, L; Wei, H; Hobbs, C. L.; Boatner, Lynn A; Ramey, Joanne Oxendine; Burger, Arnold; Rowe, E; Bhattacharya, P.; Tupitsyn, E; Melcher, Charles L

    2014-01-01

    A collaborative study of relative hygroscopicity of anhydrous halide scintillators grown at various laboratories is presented. We have developed a technique to evaluate moisture sensitivity of both raw materials and grown crystals, in which the moisture absorption rate is measured using a gravimetric analysis. Degradation of the scintillation performance was investigated by recording gamma-ray spectra and monitoring the photopeak position, count rate and energy resolution. The accompanying physical degradation of the samples exposed to ambient atmosphere was photographically recorded as well. The results were compared with ben

  3. Apparatus for control of mercury

    SciTech Connect (OSTI)

    Downs, William; Bailey, Ralph T.

    2001-01-01

    A method and apparatus for reducing mercury in industrial gases such as the flue gas produced by the combustion of fossil fuels such as coal adds hydrogen sulfide to the flue gas in or just before a scrubber of the industrial process which contains the wet scrubber. The method and apparatus of the present invention is applicable to installations employing either wet or dry scrubber flue gas desulfurization systems. The present invention uses kraft green liquor as a source for hydrogen sulfide and/or the injection of mineral acids into the green liquor to release vaporous hydrogen sulfide in order to form mercury sulfide solids.

  4. Method and apparatus to measure vapor pressure in a flow system

    DOE Patents [OSTI]

    Grossman, Mark W.; Biblarz, Oscar

    1991-01-01

    The present invention is directed to a method for determining, by a condensation method, the vapor pressure of a material with a known vapor pressure versus temperature characteristic, in a flow system particularly in a mercury isotope enrichment process.

  5. PROJECT PROFILE: Stable Perovskite Solar Cells via Chemical Vapor Deposition

    Broader source: Energy.gov [DOE]

    This project is focused on novel approaches to remove risk related to the development of hybrid perovskite solar cells (HPSCs). Researchers will synthesize a new and chemically stable hybrid organic-inorganic perovskite that eliminates decomposition of the absorber layer upon exposure to water vapor, which is a chief obstacle to widespread use of HPSC technology. They will also demonstrate a unique and industrially-scalable chemical vapor deposition method without halides or iodine, which are the main contributors to perovskite degradation.

  6. Oxidation of hydrogen halides to elemental halogens

    DOE Patents [OSTI]

    Rohrmann, Charles A. (Kennewick, WA); Fullam, Harold T. (Richland, WA)

    1985-01-01

    A process for oxidizing hydrogen halides having substantially no sulfur impurities by means of a catalytically active molten salt is disclosed. A mixture of the subject hydrogen halide and an oxygen bearing gas is contacted with a molten salt containing an oxidizing catalyst and alkali metal normal sulfates and pyrosulfates to produce an effluent gas stream rich in the elemental halogen and substantially free of sulfur oxide gases.

  7. Mercury Continuous Emmission Monitor Calibration

    SciTech Connect (OSTI)

    John Schabron; Eric Kalberer; Ryan Boysen; William Schuster; Joseph Rovani

    2009-03-12

    Mercury continuous emissions monitoring systems (CEMs) are being implemented in over 800 coal-fired power plant stacks throughput the U.S. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor calibrators/generators. These devices are used to calibrate mercury CEMs at power plant sites. The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005 and vacated by a Federal appeals court in early 2008 required that calibration be performed with NIST-traceable standards. Despite the vacature, mercury emissions regulations in the future will require NIST traceable calibration standards, and EPA does not want to interrupt the effort towards developing NIST traceability protocols. The traceability procedures will be defined by EPA. An initial draft traceability protocol was issued by EPA in May 2007 for comment. In August 2007, EPA issued a conceptual interim traceability protocol for elemental mercury calibrators. The protocol is based on the actual analysis of the output of each calibration unit at several concentration levels ranging initially from about 2-40 {micro}g/m{sup 3} elemental mercury, and in the future down to 0.2 {micro}g/m{sup 3}, and this analysis will be directly traceable to analyses by NIST. The EPA traceability protocol document is divided into two separate sections. The first deals with the qualification of calibrator models by the vendors for use in mercury CEM calibration. The second describes the procedure that the vendors must use to certify the calibrators that meet the qualification specifications. The NIST traceable certification is performance based, traceable to analysis using isotope dilution inductively coupled plasma

  8. Mercury contamination extraction

    DOE Patents [OSTI]

    Fuhrmann, Mark; Heiser, John; Kalb, Paul

    2009-09-15

    Mercury is removed from contaminated waste by firstly applying a sulfur reagent to the waste. Mercury in the waste is then permitted to migrate to the reagent and is stabilized in a mercury sulfide compound. The stable compound may then be removed from the waste which itself remains in situ following mercury removal therefrom.

  9. Removal of Mercury from Coal-Derived Synthesis Gas

    SciTech Connect (OSTI)

    2005-09-29

    A paper study was completed to survey literature, patents, and companies for mercury removal technologies applicable to gasification technologies. The objective was to determine if mercury emissions from gasification of coal are more or less difficult to manage than those from a combustion system. The purpose of the study was to define the extent of the mercury problem for gasification-based coal utilization and conversion systems. It is clear that in coal combustion systems, the speciation of mercury between elemental vapor and oxidized forms depends on a number of factors. The most important speciation factors are the concentration of chlorides in the coal, the temperatures in the ducting, and residence times. The collection of all the mercury was most dependent upon the extent of carbon in the fly ash, and the presence of a wet gas desulfurization system. In combustion, high chloride content plus long residence times at intermediate temperatures leads to oxidation of the mercury. The mercury is then captured in the wet gas desulfurization system and in the fly ash as HgCl{sub 2}. Without chloride, the mercury oxidizes much slower, but still may be trapped on thick bag house deposits. Addition of limestone to remove sulfur may trap additional mercury in the slag. In gasification where the mercury is expected to be elemental, activated carbon injection has been the most effective method of mercury removal. The carbon is best injected downstream where temperatures have moderated and an independent collector can be established. Concentrations of mercury sorbent need to be 10,000 to 20,000 the concentrations of the mercury. Pretreatment of the activated carbon may include acidification or promotion by sulfur.

  10. DMPS (DIMAVAL) as a challenge test to assess the mercury and arsenic body/kidney load in humans and as a treatment of mercury toxicity

    SciTech Connect (OSTI)

    Aposhian, H.V.; Maiorino, R.M.; Aposhian, M.M.; Hurlbut, K.M.

    1996-12-31

    Mercury is an element which, with its compounds, is hazardous and is found in hazardous wastes. In Order to develop suitable diagnostic and therapeutic agents for mercury exposure, we have sought alternative test systems. We have used the chelating agent 2,3-dimercaptopropane-1-sulfonate (DMPS, DIMAVAL{reg_sign}) for estimating the body burden of mercury in normal humans and in dental personnel in a developing country, and for detoxifying humans with mercurous chloride exposure. Use of the DMPS-mercury challenge test has shown that two-thirds of the mercury excreted in the urine of volunteers with dental amalgams appears to be derived from the mercury vapor released from their amalgams. The DMPS challenge test (300 mg, by mouth, after an 11 hr fast) was useful for monitoring dental personnel for mercury vapor exposure. The DMPS challenge test was given to 11 factory workers who make a skin lotion that contains mercurous chloride, 8 users of the skin lotion, and 9 controls. The increases in urinary Hg resulting from the DMPS challenge were 45, 87, and 38-fold, respectively. The results demonstrate that in humans exposed to mercurous chloride, the DMPS-mercury challenge test is of value for a more realistic estimation of mobilizable Hg. DMPS should be considered for use to determine mercury body burdens and to treat humans exposed to mercury and its compounds via exposure to hazardous wastes. 42 refs., 2 figs., 5 tabs.

  11. Process and composition for drying of gaseous hydrogen halides

    DOE Patents [OSTI]

    Tom, Glenn M.; Brown, Duncan W.

    1989-08-01

    A process for drying a gaseous hydrogen halide of the formula HX, wherein X is selected from the group consisting of bromine, chlorine, fluorine, and iodine, to remove water impurity therefrom, comprising: contacting the water impurity-containing gaseous hydrogen halide with a scavenger including a support having associated therewith one or more members of the group consisting of: (a) an active scavenging moiety selected from one or more members of the group consisting of: (i) metal halide compounds dispersed in the support, of the formula MX.sub.y ; and (ii) metal halide pendant functional groups of the formula -MX.sub.y-1 covalently bonded to the support, wherein M is a y-valent metal, and y is an integer whose value is from 1 to 3; (b) corresponding partially or fully alkylated compounds and/or pendant functional groups, of the metal halide compounds and/or pendant functional groups of (a); wherein the alkylated compounds and/or pendant functional groups, when present, are reactive with the gaseous hydrogen halide to form the corresponding halide compounds and/or pendant functional groups of (a); and M being selected such that the heat of formation, .DELTA.H.sub.f of its hydrated halide, MX.sub.y.(H.sub.2 O).sub.n, is governed by the relationship: .DELTA.H.sub.f .gtoreq.n.times.10.1 kilocalories/mole of such hydrated halide compound wherein n is the number of water molecules bound to the metal halide in the metal halide hydrate. Also disclosed is an appertaining scavenger composition and a contacting apparatus wherein the scavenger is deployed in a bed for contacting with the water impurity-containing gaseous hydrogen halide.

  12. Lanthanide doped strontium-barium cesium halide scintillators

    DOE Patents [OSTI]

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  13. Lasing in robust cesium lead halide perovskite nanowires (Journal...

    Office of Scientific and Technical Information (OSTI)

    Title: Lasing in robust cesium lead halide perovskite nanowires Authors: Eaton, Samuel W. ; Lai, Minliang ; Gibson, Natalie A. ; Wong, Andrew B. ; Dou, Letian ; Ma, Jie ; Wang, ...

  14. Retention of elemental mercury in fly ashes in different atmospheres

    SciTech Connect (OSTI)

    M.A. Lopez-Anton; M. Diaz-Somoano; M.R. Martinez-Tarazona

    2007-01-15

    Mercury is an extremely volatile element, which is emitted from coal combustion to the environment mostly in the vapor phase. To avoid the environmental problems that the toxic species of this element may cause, control technologies for the removal of mercury are necessary. Recent research has shown that certain fly ash materials have an affinity for mercury. Moreover, it has been observed that fly ashes may catalyze the oxidation of elemental mercury and facilitate its capture. However, the exact nature of Hg-fly ash interactions is still unknown, and mercury oxidation through fly ash needs to be investigated more thoroughly. In this work, the influence of a gas atmosphere on the retention of elemental mercury on fly ashes of different characteristics was evaluated. The retention capacity was estimated comparatively in inert and two gas atmospheres containing species present in coal gasification and coal combustion. Fly ashes produced in two pulverized coal combustion (PCC) plants, produced from coals of different rank (CTA and CTSR), and a fly ash (CTP) produced in a fluidized bed combustion (FBC) plant were used as raw materials. The mercury retention capacity of these fly ashes was compared to the retention obtained in different activated carbons. Although the capture of mercury is very similar in the gasification atmosphere and N{sub 2}, it is much more efficient in a coal combustion retention, being greater in fly ashes from PCC than those from FBC plants. 22 refs., 6 figs., 3 tabs.

  15. Finding new perovskite halides via machine learning

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pilania, Ghanshyam; Balachandran, Prasanna V.; Kim, Chiho; Lookman, Turab

    2016-04-26

    Advanced materials with improved properties have the potential to fuel future technological advancements. However, identification and discovery of these optimal materials for a specific application is a non-trivial task, because of the vastness of the chemical search space with enormous compositional and configurational degrees of freedom. Materials informatics provides an efficient approach toward rational design of new materials, via learning from known data to make decisions on new and previously unexplored compounds in an accelerated manner. Here, we demonstrate the power and utility of such statistical learning (or machine learning, henceforth referred to as ML) via building a support vectormore » machine (SVM) based classifier that uses elemental features (or descriptors) to predict the formability of a given ABX3 halide composition (where A and B represent monovalent and divalent cations, respectively, and X is F, Cl, Br, or I anion) in the perovskite crystal structure. The classification model is built by learning from a dataset of 185 experimentally known ABX3 compounds. After exploring a wide range of features, we identify ionic radii, tolerance factor, and octahedral factor to be the most important factors for the classification, suggesting that steric and geometric packing effects govern the stability of these halides. As a result, the trained and validated models then predict, with a high degree of confidence, several novel ABX3 compositions with perovskite crystal structure.« less

  16. Removal of Elemental Mercury from a Gas Stream Facilitated by a Non-Thermal Plasma Device

    SciTech Connect (OSTI)

    Charles Mones

    2006-12-01

    Mercury generated from anthropogenic sources presents a difficult environmental problem. In comparison to other toxic metals, mercury has a low vaporization temperature. Mercury and mercury compounds are highly toxic, and organic forms such as methyl mercury can be bio-accumulated. Exposure pathways include inhalation and transport to surface waters. Mercury poisoning can result in both acute and chronic effects. Most commonly, chronic exposure to mercury vapor affects the central nervous system and brain, resulting in neurological damage. The CRE technology employs a series of non-thermal, plasma-jet devices to provide a method for elemental mercury removal from a gas phase by targeting relevant chemical reactions. The technology couples the known chemistry of converting elemental mercury to ionic compounds by mercury-chlorine-oxygen reactions with the generation of highly reactive species in a non-thermal, atmospheric, plasma device. The generation of highly reactive metastable species in a non-thermal plasma device is well known. The introduction of plasma using a jet-injection device provides a means to contact highly reactive species with elemental mercury in a manner to overcome the kinetic and mass-transfer limitations encountered by previous researchers. To demonstrate this technology, WRI has constructed a plasma test facility that includes plasma reactors capable of using up to four plasma jets, flow control instrumentation, an integrated control panel to operate the facility, a mercury generation system that employs a temperature controlled oven and permeation tube, combustible and mercury gas analyzers, and a ductless fume hood designed to capture fugitive mercury emissions. Continental Research and Engineering (CR&E) and Western Research Institute (WRI) successfully demonstrated that non-thermal plasma containing oxygen and chlorine-oxygen reagents could completely convert elemental mercury to an ionic form. These results demonstrate potential the

  17. Method and apparatus to measure vapor pressure in a flow system

    DOE Patents [OSTI]

    Grossman, M.W.; Biblarz, O.

    1991-10-15

    The present invention is directed to a method for determining, by a condensation method, the vapor pressure of a material with a known vapor pressure versus temperature characteristic, in a flow system particularly in a mercury isotope enrichment process. 2 figures.

  18. Vapor Barriers or Vapor Diffusion Retarders | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Moisture Control Vapor Barriers or Vapor Diffusion Retarders Vapor Barriers or Vapor ... can be part of an overall moisture control strategy for your home. | Photo courtesy ...

  19. VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS Citation Details In-Document Search Title: VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY ...

  20. Process for low mercury coal

    DOE Patents [OSTI]

    Merriam, Norman W.; Grimes, R. William; Tweed, Robert E.

    1995-01-01

    A process for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal.

  1. Process for low mercury coal

    DOE Patents [OSTI]

    Merriam, N.W.; Grimes, R.W.; Tweed, R.E.

    1995-04-04

    A process is described for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal. 4 figures.

  2. Mercury Reduction and Removal from High Level Waste at the Defense Waste Processing Facility - 12511

    SciTech Connect (OSTI)

    Behrouzi, Aria; Zamecnik, Jack

    2012-07-01

    The Defense Waste Processing Facility processes legacy nuclear waste generated at the Savannah River Site during production of enriched uranium and plutonium required by the Cold War. The nuclear waste is first treated via a complex sequence of controlled chemical reactions and then vitrified into a borosilicate glass form and poured into stainless steel canisters. Converting the nuclear waste into borosilicate glass is a safe, effective way to reduce the volume of the waste and stabilize the radionuclides. One of the constituents in the nuclear waste is mercury, which is present because it served as a catalyst in the dissolution of uranium-aluminum alloy fuel rods. At high temperatures mercury is corrosive to off-gas equipment, this poses a major challenge to the overall vitrification process in separating mercury from the waste stream prior to feeding the high temperature melter. Mercury is currently removed during the chemical process via formic acid reduction followed by steam stripping, which allows elemental mercury to be evaporated with the water vapor generated during boiling. The vapors are then condensed and sent to a hold tank where mercury coalesces and is recovered in the tank's sump via gravity settling. Next, mercury is transferred from the tank sump to a purification cell where it is washed with water and nitric acid and removed from the facility. Throughout the chemical processing cell, compounds of mercury exist in the sludge, condensate, and off-gas; all of which present unique challenges. Mercury removal from sludge waste being fed to the DWPF melter is required to avoid exhausting it to the environment or any negative impacts to the Melter Off-Gas system. The mercury concentration must be reduced to a level of 0.8 wt% or less before being introduced to the melter. Even though this is being successfully accomplished, the material balances accounting for incoming and collected mercury are not equal. In addition, mercury has not been effectively

  3. Reversible and irreversible ion migration processes in lead halide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    perovskites for photovoltaics | MIT-Harvard Center for Excitonics Reversible and irreversible ion migration processes in lead halide perovskites for photovoltaics March 9, 2016 at 4:30 PM/36-462 Eric Hoke Stanford University, Draper Laboratory hoke-eric Lead hybrid perovskites are a promising family of photovoltaic absorber materials that have achieved power conversion efficiencies of over 20%. Lead halide perovskites are ionic materials with a low lattice energy which are unusual properties

  4. EM Mercury Challenge

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Plan to Address the EM Mercury Challenge FEBRUARY 2016 Table of Contents SUMMARY 1 1. BACKGROUND 2 1.1 OAK RIDGE RESERVATION'S MERCURY CHALLENGE 2 1.2 SAVANNAH RIVER SITE'S MERCURY CHALLENGE 3 2. APPROACH 4 3. OREM'S 2014 TECHNOLOGY DEVELOPMENT PLAN 5 4. RESEARCH AND TECHNOLOGY DEVELOPMENT AREAS FOR OAK RIDGE 6 4.1 MERCURY DETECTION AND MEASUREMENT 6 4.2 Y-12 SITE CLEANUP 7 4.3 EAST FORK POPLAR CREEK REMEDIATION 9 4.4 MODELING 10 5. RESEARCH AND TECHNOLOGY DEVELOPMENT AREAS FOR THE

  5. Water Vapor Experiment Concludes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Water Vapor Experiment Concludes The AIRS (atmospheric infrared sounder) Water Vapor Experiment - Ground (AWEX-G) intensive operations period (IOP) at the SGP central facility ...

  6. Mercury in the environment

    ScienceCinema (OSTI)

    Idaho National Laboratory - Mike Abbott

    2010-01-08

    Abbott works for Idaho National Laboratory as an environmental scientist. Using state-of-thescienceequipment, he continuously samples the air, looking for mercury. In turn, he'll analyzethis long-term data and try to figure out the mercury's point of or

  7. Calibrated vapor generator source

    DOE Patents [OSTI]

    Davies, John P.; Larson, Ronald A.; Goodrich, Lorenzo D.; Hall, Harold J.; Stoddard, Billy D.; Davis, Sean G.; Kaser, Timothy G.; Conrad, Frank J.

    1995-01-01

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet.

  8. Calibrated vapor generator source

    DOE Patents [OSTI]

    Davies, J.P.; Larson, R.A.; Goodrich, L.D.; Hall, H.J.; Stoddard, B.D.; Davis, S.G.; Kaser, T.G.; Conrad, F.J.

    1995-09-26

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet. 10 figs.

  9. Lattice dynamics in perovskite halides CsSn X 3 with X = I ,...

    Office of Scientific and Technical Information (OSTI)

    Lattice dynamics in perovskite halides CsSn X 3 with X I , Br , Cl Prev Next Title: Lattice dynamics in perovskite halides CsSn X 3 with X I , Br , Cl Authors: Huang, ...

  10. Lattice dynamics in perovskite halides CsSn X 3 with X = I ,...

    Office of Scientific and Technical Information (OSTI)

    Lattice dynamics in perovskite halides CsSn X 3 with X I , Br , Cl Citation Details In-Document Search Title: Lattice dynamics in perovskite halides CsSn X 3 with X I , Br , Cl ...

  11. Process for oxidation of hydrogen halides to elemental halogens

    DOE Patents [OSTI]

    Lyke, Stephen E.

    1992-01-01

    An improved process for generating an elemental halogen selected from chlorine, bromine or iodine, from a corresponding hydrogen halide by absorbing a molten salt mixture, which includes sulfur, alkali metals and oxygen with a sulfur to metal molar ratio between 0.9 and 1.1 and includes a dissolved oxygen compound capable of reacting with hydrogen halide to produce elemental halogen, into a porous, relatively inert substrate to produce a substrate-supported salt mixture. Thereafter, the substrate-supported salt mixture is contacted (stage 1) with a hydrogen halide while maintaining the substrate-supported salt mixture during the contacting at an elevated temperature sufficient to sustain a reaction between the oxygen compound and the hydrogen halide to produce a gaseous elemental halogen product. This is followed by purging the substrate-supported salt mixture with steam (stage 2) thereby recovering any unreacted hydrogen halide and additional elemental halogen for recycle to stage 1. The dissolved oxygen compound is regenerated in a high temperature (stage 3) and an optical intermediate temperature stage (stage 4) by contacting the substrate-supported salt mixture with a gas containing oxygen whereby the dissolved oxygen compound in the substrate-supported salt mixture is regenerated by being oxidized to a higher valence state.

  12. Vitrification of IFR and MSBR halide salt reprocessing wastes

    SciTech Connect (OSTI)

    Siemer, D.D.

    2013-07-01

    Both of the genuinely sustainable (breeder) nuclear fuel cycles (IFR - Integral Fast Reactor - and MSBR - Molten Salt Breeder Reactor -) studied by the USA's national laboratories would generate high level reprocessing waste (HLRW) streams consisting of a relatively small amount ( about 4 mole %) of fission product halide (chloride or fluoride) salts in a matrix comprised primarily (about 95 mole %) of non radioactive alkali metal halide salts. Because leach resistant glasses cannot accommodate much of any of the halides, most of the treatment scenarios previously envisioned for such HLRW have assumed a monolithic waste form comprised of a synthetic analog of an insoluble crystalline halide mineral. In practice, this translates to making a 'substituted' sodalite ('Ceramic Waste Form') of the IFR's chloride salt-based wastes and fluoroapatite of the MSBR's fluoride salt-based wastes. This paper discusses my experimental studies of an alternative waste management scenario for both fuel cycles that would separate/recycle the waste's halide and immobilize everything else in iron phosphate (Fe-P) glass. It will describe both how the work was done and what its results indicate about how a treatment process for both of those wastes should be implemented (fluoride and chloride behave differently). In either case, this scenario's primary advantages include much higher waste loadings, much lower overall cost, and the generation of a product (glass) that is more consistent with current waste management practices. (author)

  13. Mercury Metadata Toolset

    Energy Science and Technology Software Center (OSTI)

    2009-09-08

    Mercury is a federated metadata harvesting, search and retrieval tool based on both open source software and software developed at Oak Ridge National Laboratory. It was originally developed for NASA, and the Mercury development consortium now includes funding from NASA, USGS, and DOE. A major new version of Mercury (version 3.0) was developed during 2007 and released in early 2008. This Mercury 3.0 version provides orders of magnitude improvements in search speed, support for additionalmore » metadata formats, integration with Google Maps for spatial queries, facetted type search, support for RSS delivery of search results, and ready customization to meet the needs of the multiple projects which use Mercury. For the end users, Mercury provides a single portal to very quickly search for data and information contained in disparate data management systems. It collects metadata and key data from contributing project servers distributed around the world and builds a centralized index. The Mercury search interfaces then allow the users to perform simple, fielded, spatial, and temporal searches across these metadata sources. This centralized repository of metadata with distributed data sources provides extremely fast search results to the user, while allowing data providers to advertise the availability of their data and maintain complete control and ownership of that data.« less

  14. Mercury reduction studies to facilitate the thermal decontamination of phosphor powder residues from spent fluorescent lamps

    SciTech Connect (OSTI)

    Alves Durao, Walter; Andreva de Castro, Camila; Carvalhinho Windmoeller, Claudia

    2008-11-15

    This work investigates the thermal release of mercury from phosphor powder of spent fluorescent lamps. The treatment conditions and the ability of various reducing agents (primarily sodium borohydride) to lower the overall heating temperature required to improve the release of Hg have been evaluated. Hg species in samples were monitored in a thermal desorption atomic absorption spectrometer system, and total mercury was analyzed in a cold vapor atomic absorption spectrometer. Sodium borohydride was the best reducing agent among the ones studied. However, citric acid presented a high capacity to weaken mercury bonds with the matrix. When the sample was crushed with sodium borohydride for 40 min in a mass ratio of 10:1 (sample:reducing agent) and submitted to thermal treatment at 300 deg. C for 2 h, the concentration of mercury in a phosphor powder sample with 103 mg kg{sup -1} of mercury reached 6.6 mg kg{sup -1}.

  15. Recovery of mercury from mercury compounds via electrolytic methods

    DOE Patents [OSTI]

    Grossman, Mark W.; George, William A.

    1988-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  16. Recovery of mercury from mercury compounds via electrolytic methods

    DOE Patents [OSTI]

    Grossman, Mark W.; George, William A.

    1991-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  17. Recovery of mercury from mercury compounds via electrolytic methods

    DOE Patents [OSTI]

    Grossman, Mark W.; George, William A.

    1989-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  18. Recovery of mercury from mercury compounds via electrolytic methods

    DOE Patents [OSTI]

    Grossman, M.W.; George, W.A.

    1989-11-07

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figs.

  19. Recovery of mercury from mercury compounds via electrolytic methods

    DOE Patents [OSTI]

    Grossman, M.W.; George, W.A.

    1991-06-18

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figures.

  20. Method and apparatus for monitoring mercury emissions

    DOE Patents [OSTI]

    Durham, M.D.; Schlager, R.J.; Sappey, A.D.; Sagan, F.J.; Marmaro, R.W.; Wilson, K.G.

    1997-10-21

    A mercury monitoring device that continuously monitors the total mercury concentration in a gas. The device uses the same chamber for converting speciated mercury into elemental mercury and for measurement of the mercury in the chamber by radiation absorption techniques. The interior of the chamber is resistant to the absorption of speciated and elemental mercury at the operating temperature of the chamber. 15 figs.

  1. Method and apparatus for monitoring mercury emissions

    DOE Patents [OSTI]

    Durham, Michael D.; Schlager, Richard J.; Sappey, Andrew D.; Sagan, Francis J.; Marmaro, Roger W.; Wilson, Kevin G.

    1997-01-01

    A mercury monitoring device that continuously monitors the total mercury concentration in a gas. The device uses the same chamber for converting speciated mercury into elemental mercury and for measurement of the mercury in the chamber by radiation absorption techniques. The interior of the chamber is resistant to the absorption of speciated and elemental mercury at the operating temperature of the chamber.

  2. Mercury and Air Toxic Element Impacts of Coal Combustion By-Product Disposal and Utilizaton

    SciTech Connect (OSTI)

    David Hassett; Loreal Heebink; Debra Pflughoeft-Hassett; Tera Buckley; Erick Zacher; Mei Xin; Mae Sexauer Gustin; Rob Jung

    2007-03-31

    The University of North Dakota Energy & Environmental Research Center (EERC) conducted a multiyear study to evaluate the impact of mercury and other air toxic elements (ATEs) on the management of coal combustion by-products (CCBs). The ATEs evaluated in this project were arsenic, cadmium, chromium, lead, nickel, and selenium. The study included laboratory tasks to develop measurement techniques for mercury and ATE releases, sample characterization, and release experiments. A field task was also performed to measure mercury releases at a field site. Samples of fly ash and flue gas desulfurization (FGD) materials were collected preferentially from full-scale coal-fired power plants operating both without and with mercury control technologies in place. In some cases, samples from pilot- and bench-scale emission control tests were included in the laboratory studies. Several sets of 'paired' baseline and test fly ash and FGD materials collected during full-scale mercury emission control tests were also included in laboratory evaluations. Samples from mercury emission control tests all contained activated carbon (AC) and some also incorporated a sorbent-enhancing agent (EA). Laboratory release experiments focused on measuring releases of mercury under conditions designed to simulate CCB exposure to water, ambient-temperature air, elevated temperatures, and microbes in both wet and dry conditions. Results of laboratory evaluations indicated that: (1) Mercury and sometimes selenium are collected with AC used for mercury emission control and, therefore, present at higher concentrations than samples collected without mercury emission controls present. (2) Mercury is stable on CCBs collected from systems both without and with mercury emission controls present under most conditions tested, with the exception of vapor-phase releases of mercury exposed to elevated temperatures. (3) The presence of carbon either from added AC or from unburned coal can result in mercury being

  3. Mercury Strategic Plan Outfall 200 Mercury Treatment Facility

    Office of Environmental Management (EM)

    more than 20 million pounds of mercury were used at Y-12 in a process that separated lithium isotopes for weapons production *Approximately 2 million pounds of mercury were ...

  4. ARM Water Vapor IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Water Vapor IOP The SGP CART site will host the third ARM water vapor IOP on September 18-October 8, 2000. The CART site is home to a powerful array of instruments capable of ...

  5. G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) Value...

    Office of Scientific and Technical Information (OSTI)

    G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) Value-Added Product Citation Details In-Document Search Title: G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) ...

  6. VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS Citation Details In-Document Search Title: VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS You are ...

  7. Mercury Specie and Multi-Pollutant Control

    SciTech Connect (OSTI)

    Rob James; Virgil Joffrion; John McDermott; Steve Piche

    2010-05-31

    This project was awarded to demonstrate the ability to affect and optimize mercury speciation and multi-pollutant control using non-intrusive advanced sensor and optimization technologies. The intent was to demonstrate plant-wide optimization systems on a large coal fired steam electric power plant in order to minimize emissions, including mercury (Hg), while maximizing efficiency and maintaining saleable byproducts. Advanced solutions utilizing state-of-the-art sensors and neural network-based optimization and control technologies were proposed to maximize the removal of mercury vapor from the boiler flue gas thereby resulting in lower uncontrolled releases of mercury into the atmosphere. Budget Period 1 (Phase I) - Included the installation of sensors, software system design and establishment of the as-found baseline operating metrics for pre-project and post-project data comparison. Budget Period 2 (Phase II) - Software was installed, data communications links from the sensors were verified, and modifications required to integrate the software system to the DCS were performed. Budget Period 3 (Phase III) - Included the validation and demonstration of all control systems and software, and the comparison of the optimized test results with the targets established for the project site. This report represents the final technical report for the project, covering the entire award period and representing the final results compared to project goals. NeuCo shouldered 61% of the total project cost; while DOE shouldered the remaining 39%. The DOE requires repayment of its investment. This repayment will result from commercial sales of the products developed under the project. NRG's Limestone power plant (formerly owned by Texas Genco) contributed the host site, human resources, and engineering support to ensure the project's success.

  8. Mercury Vapor At Akutan Fumaroles Area (Kolker, Et Al., 2010...

    Open Energy Info (EERE)

    loss, probably northwest of the junction, or erosion has carried these elements in sediment from the higher elevation manifestations. The presence of such volatiles in sediments...

  9. Mercury Vapor At Long Valley Caldera Geothermal Area (Klusman...

    Open Energy Info (EERE)

    importance of aspect. The samples were analyzed for their Hg contents, as well as for pH, hydrous Fe and Mn, and organic carbon, all of which are known to have influence on Hg...

  10. Mercury Vapor At Haleakala Volcano Area (Thomas, 1986) | Open...

    Open Energy Info (EERE)

    deviations from expected ratios. One well was also found to have an abnormally high sulfate concentration. All three wells are located in the same general area and are sampling...

  11. Mercury Vapor At Lassen Volcanic National Park Area (Varekamp...

    Open Energy Info (EERE)

    Usefulness useful DOE-funding Unknown References J. C. Varekamp, P. R. Buseck (1983) Hg Anomalies In Soils- A Geochemical Exploration Method For Geothermal Areas Additional...

  12. Mercury Vapor At Vale Hot Springs Area (Varekamp & Buseck, 1983...

    Open Energy Info (EERE)

    Usefulness useful DOE-funding Unknown References J. C. Varekamp, P. R. Buseck (1983) Hg Anomalies In Soils- A Geochemical Exploration Method For Geothermal Areas Additional...

  13. Mercury Vapor At Breitenbush Hot Springs Area (Varekamp & Buseck...

    Open Energy Info (EERE)

    Usefulness useful DOE-funding Unknown References J. C. Varekamp, P. R. Buseck (1983) Hg Anomalies In Soils- A Geochemical Exploration Method For Geothermal Areas Additional...

  14. Mercury Vapor At Mickey Hot Springs Area (Varekamp & Buseck,...

    Open Energy Info (EERE)

    Usefulness useful DOE-funding Unknown References J. C. Varekamp, P. R. Buseck (1983) Hg Anomalies In Soils- A Geochemical Exploration Method For Geothermal Areas Additional...

  15. Mercury Vapor At Desert Peak Area (Varekamp & Buseck, 1983) ...

    Open Energy Info (EERE)

    Usefulness useful DOE-funding Unknown References J. C. Varekamp, P. R. Buseck (1983) Hg Anomalies In Soils- A Geochemical Exploration Method For Geothermal Areas Additional...

  16. Mercury Oxidation via Catalytic Barrier Filters Phase II

    SciTech Connect (OSTI)

    Wayne Seames; Michael Mann; Darrin Muggli; Jason Hrdlicka; Carol Horabik

    2007-09-30

    In 2004, the Department of Energy National Energy Technology Laboratory awarded the University of North Dakota a Phase II University Coal Research grant to explore the feasibility of using barrier filters coated with a catalyst to oxidize elemental mercury in coal combustion flue gas streams. Oxidized mercury is substantially easier to remove than elemental mercury. If successful, this technique has the potential to substantially reduce mercury control costs for those installations that already utilize baghouse barrier filters for particulate removal. Completed in 2004, Phase I of this project successfully met its objectives of screening and assessing the possible feasibility of using catalyst coated barrier filters for the oxidation of vapor phase elemental mercury in coal combustion generated flue gas streams. Completed in September 2007, Phase II of this project successfully met its three objectives. First, an effective coating method for a catalytic barrier filter was found. Second, the effects of a simulated flue gas on the catalysts in a bench-scale reactor were determined. Finally, the performance of the best catalyst was assessed using real flue gas generated by a 19 kW research combustor firing each of three separate coal types.

  17. ALTERNATIVE FIELD METHODS TO TREAT MERCURY IN SOIL

    SciTech Connect (OSTI)

    Ernest F. Stine Jr; Steven T. Downey

    2002-08-14

    U.S. Department of Energy (DOE) used large quantities of mercury in the uranium separating process from the 1950s until the late 1980s in support of national defense. Some of this mercury, as well as other hazardous metals and radionuclides, found its way into, and under, several buildings, soil and subsurface soils and into some of the surface waters. Several of these areas may pose potential health or environmental risks and must be dealt with under current environmental regulations. DOE's National Energy Technology Laboratory (NETL) awarded a contract ''Alternative Field Methods to Treat Mercury in Soil'' to IT Group, Knoxville TN (IT) and its subcontractor NFS, Erwin, TN to identify remedial methods to clean up mercury-contaminated high-clay content soils using proven treatment chemistries. The sites of interest were the Y-12 National Security Complex located in Oak Ridge, Tennessee, the David Witherspoon properties located in Knoxville, Tennessee, and at other similarly contaminated sites. The primary laboratory-scale contract objectives were (1) to safely retrieve and test samples of contaminated soil in an approved laboratory and (2) to determine an acceptable treatment method to ensure that the mercury does not leach from the soil above regulatory levels. The leaching requirements were to meet the TC (0.2 mg/l) and UTS (0.025 mg/l) TCLP criteria. In-situ treatments were preferred to control potential mercury vapors emissions and liquid mercury spills associated with ex-situ treatments. All laboratory work was conducted in IT's and NFS laboratories. Mercury contaminated nonradioactive soil from under the Alpha 2 building in the Y-12 complex was used. This soils contained insufficient levels of leachable mercury and resulted in TCLP mercury concentrations that were similar to the applicable LDR limits. The soil was spiked at multiple levels with metallic (up to 6000 mg/l) and soluble mercury compounds (up to 500 mg/kg) to simulate expected ranges of mercury

  18. Bench-scale vitrification studies with Savannah River Site mercury contaminated soil

    SciTech Connect (OSTI)

    Cicero, C.A.; Bickford, D.F.

    1995-12-31

    The Savannah River Technology Center (SRTC) has been charted by the Department of Energy (DOE)--Office of Technology Development (OTD) to investigate vitrification technology for the treatment of Low Level Mixed Wastes (LLMW). In fiscal year 1995, mercury containing LLMW streams were targeted. In order to successfully apply vitrification technology to mercury containing LLMW, the types and quantities of glass forming additives necessary for producing homogeneous glasses from the wastes have to be determined and the treatment for the mercury portion must also be determined. Selected additives should ensure that a durable and leach resistant waste form is produced, while the mercury treatment should ensure that hazardous amounts of mercury are not released into the environment. The mercury containing LLMW selected for vitrification studies at the SRTC was mercury contaminated soil from the TNX pilot-plant facility at the Savannah River Site (SRS). Samples of this soil were obtained so bench-scale vitrification studies could be performed at the SRTC to determine the optimum waste loading obtainable in the glass product without sacrificing durability and leach resistance. Vitrifying this waste stream also required offgas treatment for the capture of the vaporized mercury.

  19. Avoiding exposure to mercury during inspection and maintenance operations in oil and gas processing

    SciTech Connect (OSTI)

    Wilhelm, S.M.

    1999-11-01

    Exposure to mercury and its compounds poses a potential health risk to workers involved with inspection and maintenance activities in facilities that process hydrocarbons containing significant amounts. The risks of exposure to mercury are often underestimated for a variety of reasons. Foremost is the fact that the exact amount of mercury present in processed petroleum often is not known with certainty. Secondly, the specific quantities of mercury compounds that may be present in hydrocarbon liquids seldom are known at all. Thirdly, monitoring for mercury vapor in work environments is not a routine procedure for many processing facilities. Lastly, mercury toxicity is gradual and produces no immediately apparent impairment that can easily be associated with occupational exposure. Superimposed on the risk issues are several aspects of the chemistry of mercury that make it illusive both to quantitative analysis and to detection in work environments. The combination of the cited factors increases the likelihood that workers who are inadvertently exposed to occupational environments that contain mercury will be adversely affected.

  20. Water displacement mercury pump

    DOE Patents [OSTI]

    Nielsen, Marshall G.

    1985-01-01

    A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

  1. Follow that mercury!

    SciTech Connect (OSTI)

    Linero, A.A.

    2008-07-01

    The article discusses one technology option for avoiding release of mercury captured by power plant pollution control equipment in order to render it usable in concrete. This is the use of selective catalytic reduction for NOx control and lime spray dryer absorbers (SDA) for SO{sub 2} control prior to particulate collection by fabric filters. In this scenario all mercury removed is trapped in the fabric filter baghouse. The US EPA did not establish mercury emission limits for existing cement plants in the latest regulation 40 CFR 63, Subpart LLL (December 2006) and was sued by the Portland Cement Association because of the Hg limits established for new kilns and by several states and environmental groups for the lack of limits on existing ones. A full version of this article is available on www.acaa-usa.org/AshatWork.htm. 2 figs.

  2. Water displacement mercury pump

    DOE Patents [OSTI]

    Nielsen, M.G.

    1984-04-20

    A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

  3. Mercury Emission Control Technologies for PPL Montana-Colstrip Testing

    SciTech Connect (OSTI)

    John P. Kay; Michael L. Jones; Steven A. Benson

    2007-04-01

    technique at Colstrip is not seen. All the additives injected resulted in some reduction in mercury emissions. However, the target reduction of 55% was not achieved. The primary reason for the lower removal rates is because of the lower levels of mercury in the flue gas stream and the lower capture level of fine particles by the scrubbers (relative to that for larger particles). The reaction and interaction of the SEA materials is with the finer fraction of the fly ash, because the SEA materials are vaporized during the combustion or reaction process and condense on the surfaces of entrained particles or form very small particles. Mercury will have a tendency to react and interact with the finer fraction of entrained ash and sorbent as a result of the higher surface areas of the finer particles. The ability to capture the finer fraction of fly ash is the key to controlling mercury. Cost estimates for mercury removal based on the performance of each sorbent during this project are projected to be extremely high. When viewed on a dollar-per-pound-of-mercury removed basis activated carbon was projected to cost nearly $1.2 million per pound of mercury removed. This value is roughly six times the cost of other sorbent-enhancing agents, which were projected to be closer to $200,000 per pound of mercury removed.

  4. Vapor Barriers or Vapor Diffusion Retarders | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weatherize » Moisture Control » Vapor Barriers or Vapor Diffusion Retarders Vapor Barriers or Vapor Diffusion Retarders Vapor diffusion retarders installed in a crawlspace can be part of an overall moisture control strategy for your home. | Photo courtesy of Dennis Schroeder, NREL. Vapor diffusion retarders installed in a crawlspace can be part of an overall moisture control strategy for your home. | Photo courtesy of Dennis Schroeder, NREL. In most U.S. climates, vapor barriers, or -- more

  5. Vapor spill monitoring method

    DOE Patents [OSTI]

    Bianchini, Gregory M.; McRae, Thomas G.

    1985-01-01

    Method for continuous sampling of liquified natural gas effluent from a spill pipe, vaporizing the cold liquified natural gas, and feeding the vaporized gas into an infrared detector to measure the gas composition. The apparatus utilizes a probe having an inner channel for receiving samples of liquified natural gas and a surrounding water jacket through which warm water is flowed to flash vaporize the liquified natural gas.

  6. Electrolytic systems and methods for making metal halides and refining metals

    SciTech Connect (OSTI)

    Holland, Justin M.; Cecala, David M.

    2015-05-26

    Disclosed are electrochemical cells and methods for producing a halide of a non-alkali metal and for electrorefining the halide. The systems typically involve an electrochemical cell having a cathode structure configured for dissolving a hydrogen halide that forms the halide into a molten salt of the halogen and an alkali metal. Typically a direct current voltage is applied across the cathode and an anode that is fabricated with the non-alkali metal such that the halide of the non-alkali metal is formed adjacent the anode. Electrorefining cells and methods involve applying a direct current voltage across the anode where the halide of the non-alkali metal is formed and the cathode where the non-alkali metal is electro-deposited. In a representative embodiment the halogen is chlorine, the alkali metal is lithium and the non-alkali metal is uranium.

  7. Mercury Information Clearinghouse

    SciTech Connect (OSTI)

    Chad A. Wocken; Michael J. Holmes; Dennis L. Laudal; Debra F. Pflughoeft-Hassett; Greg F. Weber; Nicholas V. C. Ralston; Stanley J. Miller; Grant E. Dunham; Edwin S. Olson; Laura J. Raymond; John H. Pavlish; Everett A. Sondreal; Steven A. Benson

    2006-03-31

    The Canadian Electricity Association (CEA) identified a need and contracted the Energy & Environmental Research Center (EERC) to create and maintain an information clearinghouse on global research and development activities related to mercury emissions from coal-fired electric utilities. With the support of CEA, the Center for Air Toxic Metals{reg_sign} (CATM{reg_sign}) Affiliates, and the U.S. Department of Energy (DOE), the EERC developed comprehensive quarterly information updates that provide a detailed assessment of developments in the various areas of mercury monitoring, control, policy, and research. A total of eight topical reports were completed and are summarized and updated in this final CEA quarterly report. The original quarterly reports can be viewed at the CEA Web site (www.ceamercuryprogram.ca). In addition to a comprehensive update of previous mercury-related topics, a review of results from the CEA Mercury Program is provided. Members of Canada's coal-fired electricity generation sector (ATCO Power, EPCOR, Manitoba Hydro, New Brunswick Power, Nova Scotia Power Inc., Ontario Power Generation, SaskPower, and TransAlta) and CEA, have compiled an extensive database of information from stack-, coal-, and ash-sampling activities. Data from this effort are also available at the CEA Web site and have provided critical information for establishing and reviewing a mercury standard for Canada that is protective of environment and public health and is cost-effective. Specific goals outlined for the CEA mercury program included the following: (1) Improve emission inventories and develop management options through an intensive 2-year coal-, ash-, and stack-sampling program; (2) Promote effective stack testing through the development of guidance material and the support of on-site training on the Ontario Hydro method for employees, government representatives, and contractors on an as-needed basis; (3) Strengthen laboratory analytical capabilities through

  8. ARM - Water Vapor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Vapor Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, ... FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Water ...

  9. Mercury control in 2009

    SciTech Connect (OSTI)

    Sjostrom, S.; Durham, M.; Bustard, J.; Martin, C.

    2009-07-15

    Although activated carbon injection (ACI) has been proven to be effective for many configurations and is a preferred option at many plants sufficient quantities of powdered activated coking (PAC) must be available to meet future needs. The authors estimate that upcoming federal and state regulations will result in tripling the annual US demand for activated carbon to nearly 1.5 billion lb from approximately 450 million lb. Rapid expansion of US production capacity is required. Many PAC manufacturers are discussing expansion of their existing production capabilities. One company, ADA Carbon Solutions, is in the process of constructing the largest activated carbon facility in North America to meet the future demand for PAC as a sorbent for mercury control. Emission control technology development and commercialization is driven by regulation and legislation. Although ACI will not achieve > 90% mercury control at every plant, the expected required MACT legislation level, it offers promise as a low-cost primary mercury control technology option for many configurations and an important trim technology for others. ACI has emerged as the clear mercury-specific control option of choice, representing over 98% of the commercial mercury control system orders to date. As state regulations are implemented and the potential for a federal rule becomes more imminent, suppliers are continuing to develop technologies to improve the cost effectiveness and limit the balance of plant impacts associated with ACI and are developing additional PAC production capabilities to ensure that the industry's needs are met. The commercialisation of ACI is a clear example of industry, through the dedication of many individuals and companies with support from the DOE and EPRI, meeting the challenge of developing cost-effectively reducing emissions from coal-fired power plants. 7 refs., 1 fig.

  10. Deciphering Halogen Competition in Organometallic Halide Perovskite Growth

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Keum, Jong Kahk; Ovchinnikova, Olga S.; Chen, Shiyou; Du, Mao-Hua; Ivanov, Ilia N; Rouleau, Christopher; Geohegan, David B.; Xiao, Kai

    2016-03-01

    Organometallic halide perovskites (OHPs) hold great promise for next-generation, low-cost optoelectronic devices. During the chemical synthesis and crystallization of OHP thin films a major unresolved question is the competition between multiple halide species (e.g. I-, Cl-, Br-) in the formation of the mixed halide perovskite crystals. Whether Cl- ions are successfully incorporated into the perovskite crystal structure or alternatively, where they are located, is not yet fully understood. Here, in situ X-ray diffraction measurements of crystallization dynamics are combined with ex situ TOF-SIMS chemical analysis to reveal that Br- or Cl- ions can promote crystal growth, yet reactive I- ionsmore » prevent them from incorporating into the lattice of the final perovskite crystal structure. The Cl- ions are located in the grain boundaries of the perovskite films. These findings significantly advance our understanding of the role of halogens during synthesis of hybrid perovskites, and provide an insightful guidance to the engineering of high-quality perovskite films, essential for exploring superior-performance and cost-effective optoelectronic devices.« less

  11. Dissecting ion-specific dielectric spectra of sodium-halide solutions...

    Office of Scientific and Technical Information (OSTI)

    water and ionic contributions Citation Details In-Document Search Title: Dissecting ion-specific dielectric spectra of sodium-halide solutions into solvation water and ...

  12. Method for producing hydrocarbon fuels from heavy polynuclear hydrocarbons by use of molten metal halide catalyst

    DOE Patents [OSTI]

    Gorin, Everett

    1979-01-01

    In a process for hydrocracking heavy polynuclear carbonaceous feedstocks to produce lighter hydrocarbon fuels by contacting the heavy feedstocks with hydrogen in the presence of a molten metal halide catalyst, thereafter separating at least a substantial portion of the carbonaceous material associated with the reaction mixture from the spent molten metal halide and thereafter regenerating the metal halide catalyst, an improvement comprising contacting the spent molten metal halide catalyst after removal of a major portion of the carbonaceous material therefrom with an additional quantity of hydrogen is disclosed.

  13. Method and apparatus for monitoring the flow of mercury in a system

    DOE Patents [OSTI]

    Grossman, Mark W.

    1987-01-01

    An apparatus and method for monitoring the flow of mercury in a system. The equipment enables the entrainment of the mercury in a carrier gas e.g., an inert gas, which passes as mercury vapor between a pair of optically transparent windows. The attenuation of the emission is indicative of the quantity of mercury (and its isotopes) in the system. A 253.7 nm light is shone through one of the windows and the unabsorbed light is detected through the other window. The absorption of the 253.7 nm light is thereby measured whereby the quantity of mercury passing between the windows can be determined. The apparatus includes an in-line sensor for measuring the quantity of mercury. It includes a conduit together with a pair of apertures disposed in a face to face relationship and arranged on opposite sides of the conduit. A pair of optically transparent windows are disposed upon a pair of viewing tubes. A portion of each of the tubes is disposed inside of the conduit and within each of the apertures. The two windows are disposed in a face to face relationship on the ends of the viewing tubes and the entire assembly is hermetically sealed from the atmosphere whereby when 253.7 nm ultraviolet light is shone through one of the windows and detected through the other, the quantity of mercury which is passing by can be continuously monitored due to absorption which is indicated by attenuation of the amplitude of the observed emission.

  14. Recovery of mercury from acid waste residues

    DOE Patents [OSTI]

    Greenhalgh, Wilbur O.

    1989-12-05

    Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and then quenching the reactivity of the nitric acid prior to nitration of the mercury metal.

  15. Recovery of mercury from acid waste residues

    DOE Patents [OSTI]

    Greenhalgh, W.O.

    1987-02-27

    Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and thence quenching the reactivity of the nitric acid prior to nitration of the mercury metal. 1 fig.

  16. Recovery of mercury from acid waste residues

    DOE Patents [OSTI]

    Greenhalgh, Wilbur O.

    1989-01-01

    Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and then quenching the reactivity of the nitric acid prior to nitration of the mercury metal.

  17. Halide and Oxy-Halide Eutectic Systems for High-Performance, High-Temperature Heat Transfer Fluids

    Broader source: Energy.gov [DOE]

    This fact sheet details a SunShot-funded solar project led by the University of Arizona to using ab initio computational modeling along with rapid material screening methods to identify halide salt mixtures with a melting point below 250°C that are stable at temperatures well above 800°C. This research has the potential to help concentrating solar power systems achieve greater efficiencies and reduce overall costs.

  18. Vapor Pressures and Heats of Vaporization of Primary Coal Tars

    Office of Scientific and Technical Information (OSTI)

    ... Therefore, future research could be directed at measuring the vapor pressures for the ... The results from the current work show that measuring the vapor pressures of complicated ...

  19. Geothermal Exploration Using Surface Mercury Geochemistry | Open...

    Open Energy Info (EERE)

    Surface Mercury Geochemistry Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geothermal Exploration Using Surface Mercury Geochemistry Abstract...

  20. ALTERNATIVE FIELD METHODS TO TREAT MERCURY IN SOIL

    SciTech Connect (OSTI)

    Ernie F. Stine

    2002-08-14

    The Department of Energy (DOE) currently has mercury (Hg) contaminated materials and soils at the various sites. Figure 1-1 (from http://www.ct.ornl.gov/stcg.hg/) shows the estimated distribution of mercury contaminated waste at the various DOE sites. Oak Ridge and Idaho sites have the largest deposits of contaminated materials. The majorities of these contaminated materials are soils, sludges, debris, and waste waters. This project concerns treatment of mercury contaminated soils. The technology is applicable to many DOE sites, in-particular, the Y-12 National Security Complex in Oak Ridge Tennessee and Idaho National Engineering and Environmental Laboratory (INEEL). These sites have the majority of the soils and sediments contaminated with mercury. The soils may also be contaminated with other hazardous metals and radionuclides. At the Y12 plant, the baseline treatment method for mercury contaminated soil is low temperature thermal desorption (LTTD), followed by on-site landfill disposal. LTTD is relatively expensive (estimated cost of treatment which exclude disposal cost for the collect mercury is greater than $740/per cubic yard [cy] at Y-12), does not treat any of the metal or radionuclides. DOE is seeking a less costly alternative to the baseline technology. As described in the solicitation (DE-RA-01NT41030), this project initially focused on evaluating cost-effective in-situ alternatives to stabilize or remove the mercury (Hg) contamination from high-clay content soil. It was believed that ex-situ treatment of soil contaminated with significant quantities of free-liquid mercury might pose challenges during excavation and handling. Such challenges may include controlling potential mercury vapors and containing liquid mercury beads. As described below, the focus of this project was expanded to include consideration of ex-situ treatment after award of the contract to International Technology Corporation (IT). After award of the contract, IT became part of Shaw

  1. Method for scavenging mercury

    DOE Patents [OSTI]

    Chang, Shih-ger; Liu, Shou-heng; Liu, Zhao-rong; Yan, Naiqiang

    2009-01-20

    Disclosed herein is a method for removing mercury from a gas stream comprising contacting the gas stream with a getter composition comprising bromine, bromochloride, sulphur bromide, sulphur dichloride or sulphur monochloride and mixtures thereof. In one preferred embodiment the getter composition is adsorbed onto a sorbent. The sorbent may be selected from the group consisting of flyash, limestone, lime, calcium sulphate, calcium sulfite, activated carbon, charcoal, silicate, alumina and mixtures thereof. Preferred is flyash, activated carbon and silica.

  2. Method for scavenging mercury

    DOE Patents [OSTI]

    Chang, Shih-Ger; Liu, Shou-Heng; Liu, Zhao-Rong; Yan, Naiqiang

    2011-08-30

    Disclosed herein is a method for removing mercury from a gas stream comprising contacting the gas stream with a getter composition comprising bromine, bromochloride, sulphur bromide, sulphur dichloride or sulphur monochloride and mixtures thereof. In one preferred embodiment the getter composition is adsorbed onto a sorbent. The sorbent may be selected from the group consisting of flyash, limestone, lime, calcium sulphate, calcium sulfite, activated carbon, charcoal, silicate, alumina and mixtures thereof. Preferred is flyash, activated carbon and silica.

  3. Apparatus for mercury refinement

    DOE Patents [OSTI]

    Grossman, M.W.; Speer, R.; George, W.A.

    1991-07-16

    The effluent from mercury collected during the photochemical separation of the [sup 196]Hg isotope is often contaminated with particulate mercurous chloride, Hg[sub 2]Cl[sub 2]. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg[sub 2]Cl[sub 2] contaminant. The present invention is particularly directed to such filtering. 5 figures.

  4. Method for mercury refinement

    DOE Patents [OSTI]

    Grossman, Mark W.; Speer, Richard; George, William A.

    1991-01-01

    The effluent from mercury collected during the photochemical separation of the .sup.196 Hg isotope is often contaminated with particulate mercurous chloride, Hg.sub.2 Cl.sub.2. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg.sub.2 Cl.sub.2 contaminant. The present invention is particularly directed to such filtering.

  5. Apparatus for mercury refinement

    DOE Patents [OSTI]

    Grossman, Mark W.; Speer, Richard; George, William A.

    1991-01-01

    The effluent from mercury collected during the photochemical separation of the .sup.196 Hg isotope is often contaminated with particulate mercurous chloride, Hg.sub.2 Cl.sub.2. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg.sub.2 Cl.sub.2 contaminant. The present invention is particularly directed to such filtering.

  6. Method for mercury refinement

    DOE Patents [OSTI]

    Grossman, M.W.; Speer, R.; George, W.A.

    1991-04-09

    The effluent from mercury collected during the photochemical separation of the [sup 196]Hg isotope is often contaminated with particulate mercurous chloride, Hg[sub 2]Cl[sub 2]. The use of mechanical filtering via thin glass tubes, ultrasonic rinsing with acetone (dimethyl ketone) and a specially designed cold trap have been found effective in removing the particulate (i.e., solid) Hg[sub 2]Cl[sub 2] contaminant. The present invention is particularly directed to such filtering. 5 figures.

  7. Method for scavenging mercury

    DOE Patents [OSTI]

    Chang, Shih-ger; Liu, Shou-heng; Liu, Zhao-rong; Yan, Naiqiang

    2010-07-13

    Disclosed herein is a method for removing mercury from a gas stream comprising contacting the gas stream with a getter composition comprising bromine, bromochloride, sulphur bromide, sulphur dichloride or sulphur monochloride and mixtures thereof. In one preferred embodiment the getter composition is adsorbed onto a sorbent. The sorbent may be selected from the group consisting flyash, limestone, lime, calcium sulphate, calcium sulfite, activated carbon, charcoal, silicate, alumina and mixtures thereof. Preferred is flyash, activated carbon and silica.

  8. Mercury removal sorbents

    DOE Patents [OSTI]

    Alptekin, Gokhan

    2016-03-29

    Sorbents and methods of using them for removing mercury from flue gases over a wide range of temperatures are disclosed. Sorbent materials of this invention comprise oxy- or hydroxyl-halogen (chlorides and bromides) of manganese, copper and calcium as the active phase for Hg.sup.0 oxidation, and are dispersed on a high surface porous supports. In addition to the powder activated carbons (PACs), this support material can be comprised of commercial ceramic supports such as silica (SiO.sub.2), alumina (Al.sub.2O.sub.3), zeolites and clays. The support material may also comprise of oxides of various metals such as iron, manganese, and calcium. The non-carbon sorbents of the invention can be easily injected into the flue gas and recovered in the Particulate Control Device (PCD) along with the fly ash without altering the properties of the by-product fly ash enabling its use as a cement additive. Sorbent materials of this invention effectively remove both elemental and oxidized forms of mercury from flue gases and can be used at elevated temperatures. The sorbent combines an oxidation catalyst and a sorbent in the same particle to both oxidize the mercury and then immobilize it.

  9. Temperature, Water Vapor, and Clouds"

    Office of Scientific and Technical Information (OSTI)

    Radiometric Studies of Temperature, Water Vapor, and Clouds" Project ID: 0011106 ... measurements of column amounts of water vapor and cloud liquid has been well ...

  10. Thermal battery. [solid metal halide electrolytes with enhanced electrical conductance after a phase transition

    DOE Patents [OSTI]

    Carlsten, R.W.; Nissen, D.A.

    1973-03-06

    The patent describes an improved thermal battery whose novel design eliminates various disadvantages of previous such devices. Its major features include a halide cathode, a solid metal halide electrolyte which has a substantially greater electrical conductance after a phase transition at some temperature, and a means for heating its electrochemical cells to activation temperature.

  11. Impact of the organic halide salt on final perovskite composition for photovoltaic applications

    SciTech Connect (OSTI)

    Moore, David T.; Sai, Hiroaki; Wee Tan, Kwan; Estroff, Lara A.; Wiesner, Ulrich

    2014-08-01

    The methylammonium lead halide perovskites have shown significant promise as a low-cost, second generation, photovoltaic material. Despite recent advances, however, there are still a number of fundamental aspects of their formation as well as their physical and electronic behavior that are not well understood. In this letter we explore the mechanism by which these materials crystallize by testing the outcome of each of the reagent halide salts. We find that components of both salts, lead halide and methylammonium halide, are relatively mobile and can be readily exchanged during the crystallization process when the reaction is carried out in solution or in the solid state. We exploit this fact by showing that the perovskite structure is formed even when the lead salt's anion is a non-halide, leading to lower annealing temperature and time requirements for film formation. Studies into these behaviors may ultimately lead to improved processing conditions for photovoltaic films.

  12. The Clean Air Mercury Rule

    SciTech Connect (OSTI)

    Michael Rossler

    2005-07-01

    Coming into force on July 15, 2005, the US Clean Air Mercury Rule will use a market-based cap-and-trade approach under Section 111 of the Clean Air Act to reduce mercury emissions from the electric power sector. This article provides a comprehensive summary of the new rule. 14 refs., 2 tabs.

  13. Fundamental studies and new applications of hybrid lead halide perovskites*

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | MIT-Harvard Center for Excitonics Fundamental studies and new applications of hybrid lead halide perovskites* November 10, 2015 at 4:30pm/Duboc Room: 4-331 Riccardo Comin University of Toronto comin-1 In recent years light-harvesting devices based on a new class of organometallic lead iodide perovskites (CH3NH3PbI3) were demonstrated to exhibit power conversion efficiencies beyond 20%, rapidly approaching the performance of commercial silicon-based modules. Besides photovoltaics, important

  14. Methods for dispensing mercury into devices

    DOE Patents [OSTI]

    Grossman, Mark W.; George, William A.

    1987-04-28

    A process for dispensing mercury into devices which requires mercury. Mercury is first electrolytically separated from either HgO or Hg.sub.2 Cl.sub.2 and plated onto a cathode wire. The cathode wire is then placed into a device requiring mercury.

  15. Methods for dispensing mercury into devices

    DOE Patents [OSTI]

    Grossman, M.W.; George, W.A.

    1987-04-28

    A process is described for dispensing mercury into devices which requires mercury. Mercury is first electrolytically separated from either HgO or Hg[sub 2]Cl[sub 2] and plated onto a cathode wire. The cathode wire is then placed into a device requiring mercury. 2 figs.

  16. Atomic vapor laser isotope separation

    SciTech Connect (OSTI)

    Stern, R.C.; Paisner, J.A.

    1986-08-15

    The atomic vapor laser isotope separation (AVLIS) process for the enrichment of uranium is evaluated. (AIP)

  17. High rate chemical vapor deposition of carbon films using fluorinated gases

    DOE Patents [OSTI]

    Stafford, Byron L.; Tracy, C. Edwin; Benson, David K.; Nelson, Arthur J.

    1993-01-01

    A high rate, low-temperature deposition of amorphous carbon films is produced by PE-CVD in the presence of a fluorinated or other halide gas. The deposition can be performed at less than 100.degree. C., including ambient room temperature, with a radio frequency plasma assisted chemical vapor deposition process. With less than 6.5 atomic percent fluorine incorporated into the amorphous carbon film, the characteristics of the carbon film, including index of refraction, mass density, optical clarity, and chemical resistance are within fifteen percent (15%) of those characteristics for pure amorphous carbon films, but the deposition rates are high.

  18. Fluorescent sensor for mercury

    DOE Patents [OSTI]

    Wang, Zidong; Lee, Jung Heon; Lu, Yi

    2011-11-22

    The present invention provides a sensor for detecting mercury, comprising: a first polynucleotide, comprising a first region, and a second region, a second polynucleotide, a third polynucleotide, a fluorophore, and a quencher, wherein the third polynucleotide is optionally linked to the second region; the fluorophore is linked to the first polynucleotide and the quencher is linked to the second polynucleotide, or the fluorophore is linked to the second polynucleotide and the quencher is linked to the first polynucleotide; the first region and the second region hybridize to the second polynucleotide; and the second region binds to the third polynucleotide in the presence of Hg.sup.2+ ions.

  19. Oxide Film Aging on Alloy 22 in Halide Containing Solutions

    SciTech Connect (OSTI)

    Rodriguez, Martin A.; Carranza, Ricardo M.; Rebak, Raul B.

    2007-07-01

    Passive and corrosion behaviors of Alloy 22 in chloride and fluoride containing solutions, changing the heat treatment of the alloy, the halide concentration and the pH of the solutions at 90 deg. C, was investigated. The study was implemented using electrochemical techniques, which included open circuit potential monitoring over time, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements carried out at open circuit and at passivity potentials. Corrosion rates obtained by EIS measurements after 24 h immersion in naturally aerated solutions were below 0.5 {mu}m/year. The corrosion rates were practically independent of solution pH, alloy heat treatment and halide ion nature and concentration. EIS low frequency resistance values increased with applied potential in the passive domain and with polarization time in pH 6 - 1 M NaCl at 90 deg. C. This effect was attributed to an increase in the oxide film thickness and oxide film aging. High frequency capacitance measurements indicated that passive oxide on Alloy 22 presented a double n-type/p-type semiconductor behavior in the passive potential range. (authors)

  20. sup 3 P Hg, Cd, and Zn photosensitized chemistry of vinyl halides in krypton matrix

    SciTech Connect (OSTI)

    Cartland, H.E.; Pimentel, G.C. )

    1990-01-25

    The reaction of group IIB metals in the {sup 3}P state with vinyl fluoride, chloride, and bromide is studied in krypton matrix. The primary process in all cases is hydrogen halide elimination to form a hydrogen halide/acetylene hydrogen-bonded complex. Insertion of metal atoms into C-Cl and C-Br bonds, but not into C-H and C-F bonds, is also observed. The insertion photochemistry can be explained by a mechanism which requires that the process occur on a triplet surface with the vinyl halide in the planar ground-state conformation.

  1. Vapor concentration monitor

    DOE Patents [OSTI]

    Bayly, John G.; Booth, Ronald J.

    1977-01-01

    An apparatus for monitoring the concentration of a vapor, such as heavy water, having at least one narrow bandwidth in its absorption spectrum, in a sample gas such as air. The air is drawn into a chamber in which the vapor content is measured by means of its radiation absorption spectrum. High sensitivity is obtained by modulating the wavelength at a relatively high frequency without changing its optical path, while high stability against zero drift is obtained by the low frequency interchange of the sample gas to be monitored and of a reference sample. The variable HDO background due to natural humidity is automatically corrected.

  2. Electrolyte vapor condenser

    DOE Patents [OSTI]

    Sederquist, R.A.; Szydlowski, D.F.; Sawyer, R.D.

    1983-02-08

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well. 3 figs.

  3. Localized surface plasmon resonance mercury detection system and methods

    DOE Patents [OSTI]

    James, Jay; Lucas, Donald; Crosby, Jeffrey Scott; Koshland, Catherine P.

    2016-03-22

    A mercury detection system that includes a flow cell having a mercury sensor, a light source and a light detector is provided. The mercury sensor includes a transparent substrate and a submonolayer of mercury absorbing nanoparticles, e.g., gold nanoparticles, on a surface of the substrate. Methods of determining whether mercury is present in a sample using the mercury sensors are also provided. The subject mercury detection systems and methods find use in a variety of different applications, including mercury detecting applications.

  4. Enhanced Quantum Efficiency From Hybrid Cesium Halide/Copper Photocathode

    SciTech Connect (OSTI)

    Kong, Lingmei; Joly, Alan G.; Droubay, Timothy C.; Gong, Yu; Hess, Wayne P.

    2014-04-28

    The quantum efficiency of Cu is found to increase dramatically when coated by a CsI film and then irradiated by a UV laser. Over three orders of magnitude quantum efficiency enhancement at 266 nm is observed in CsI/Cu(100), indicating potential application in future photocathode devices. Upon laser irradiation, a large work function reduction to a value less than 2 eV is also observed, significantly greater than for similarly treated CsBr/Cu(100). The initial QE enhancement, prior to laser irradiation, is attributed to interface interaction, surface cleanliness and the intrinsic properties of the Cs halide film. Further QE enhancement following activation is attributed to formation of inter-band states and Cs metal accumulation at the interface induced by laser irradiation.

  5. Heavy oil upgrading using halide catalysts in a bubbling microautoclave

    SciTech Connect (OSTI)

    Chakma, A.; Chornet, E.; Overend, R.P.; Dawson, W. )

    1988-01-01

    Athabasca bitumen has been treated with halide catalysts under a continuous flow of H{sub 2} in a 15 ml microautoclave. The H{sub 2} was bubbled through the liquid using a microporous steel grid. ZnCl{sub 2}, CuCl and ZnCl{sub 2}/CuCl mixtures, with and without tetralin, were used as catalysts. The experimental conditions were: 13.8 MPa operating pressure, 1 liter STP/min as H{sub 2} flow rate, 425-450 C and 30 min as reaction temperature and time, respectively. ZnCl{sub 2} has been found effective for converting asphaltenes into maltenes while lowering the coke formation with respect to the uncatalyzed reaction. The addition of tetralin to the reaction mixture minimized coke and gas formation.

  6. Heavy oil upgrading using halide catalysts in a bubbling microautoclave

    SciTech Connect (OSTI)

    Chakma, A.; Chornet, E.; Overend, R.P. ); Dawson, W. )

    1988-06-01

    Athabasca bitumen with halide catalysts has been treated under a continuous flow of H/sub 2/ in a 15 mL microautoclave. The H/sub 2/ was bubbled through the liquid using a microporous steel grid. ZnCl/sub 2/, CuCl and ZnCl/sub 2//CuCl mixtures, with and without tetralin, were used as catalysts. The experimental conditions were: 13.8 MPa operating pressure, 1 L/sub STP/min/ as H/sub 2/ flowrate, 425 - 450/sup 0/C and 30 min as reaction temperature and time respectively. ZnCl/sub 2/ has been found effective for converting asphaltenes into maltenes while lowering the coke formation with respect to the uncatalyzed reaction. The addition of tetralin to the reaction mixture minimized coke and gas formation.

  7. Solvent vapor collector

    DOE Patents [OSTI]

    Ellison, Kenneth; Whike, Alan S.

    1979-01-30

    A solvent vapor collector is mounted on the upstream inlet end of an oven having a gas-circulating means and intended for curing a coating applied to a strip sheet metal at a coating station. The strip sheet metal may be hot and solvent vapors are evaporated at the coating station and from the strip as it passes from the coating station to the oven. Upper and lower plenums within a housing of the collector are supplied with oven gases or air from the gas-circulating means and such gases or air are discharged within the collector obliquely in a downstream direction against the strip passing through that collector to establish downstream gas flows along the top and under surfaces of the strip so as, in turn, to induct solvent vapors into the collector at the coating station. A telescopic multi-piece shroud is usefully provided on the housing for movement between an extended position in which it overlies the coating station to collect solvent vapors released thereat and a retracted position permitting ready cleaning and adjustment of that coating station.

  8. Methods for synthesizing alane without the formation of adducts and free of halides

    DOE Patents [OSTI]

    Zidan, Ragaiy; Knight, Douglas A; Dinh, Long V

    2013-02-19

    A process is provided to synthesize an alane without the formation of alane adducts as a precursor. The resulting product is a crystallized .alpha.-alane and is a highly stable product and is free of halides.

  9. Study on the reduction of atmospheric mercury emissions from mine waste enriched soils through native grass cover in the Mt. Amiata region of Italy

    SciTech Connect (OSTI)

    Fantozzi, L.; Dini, F.; Tamburello, L.; Pirrone, N.; Sprovieri, F.

    2013-08-15

    Atmospheric mercury emissions from mine-waste enriched soils were measured in order to compare the mercury fluxes of bare soils with those from other soils covered by native grasses. Our research was conducted near Mt. Amiata in central Italy, an area that was one of the largest and most productive mining centers in Europe up into the 1980s. To determine in situ mercury emissions, we used a Plexiglas flux chamber connected to a portable mercury analyzer (Lumex RA-915+). This allowed us to detect, in real time, the mercury vapor in the air, and to correlate this with the meteorological parameters that we examined (solar radiation, soil temperature, and humidity). The highest mercury flux values (8000 ng m{sup −2} h{sup −1}) were observed on bare soils during the hours of maximum insulation, while lower values (250 ng m{sup −2} h{sup −1}) were observed on soils covered by native grasses. Our results indicate that two main environmental variables affect mercury emission: solar radiation intensity and soil temperature. The presence of native vegetation, which can shield soil surfaces from incident light, reduced mercury emissions, a result that we attribute to a drop in the efficiency of mercury photoreduction processes rather than to decreases in soil temperature. This finding is consistent with decreases in mercury flux values down to 3500 ng m{sup −2} h{sup −1}, which occurred under cloudy conditions despite high soil temperatures. Moreover, when the soil temperature was 28 °C and the vegetation was removed from the experimental site, mercury emissions increased almost four-fold. This increase occurred almost immediately after the grasses were cut, and was approximately eight-fold after 20 h. Thus, this study demonstrates that enhancing wild vegetation cover could be an inexpensive and effective approach in fostering a natural, self-renewing reduction of mercury emissions from mercury-contaminated soils. -- Highlights: ► Mercury air/surface exchange

  10. Organic vapor jet printing system

    DOE Patents [OSTI]

    Forrest, Stephen R

    2012-10-23

    An organic vapor jet printing system includes a pump for increasing the pressure of an organic flux.

  11. Organic vapor jet printing system

    DOE Patents [OSTI]

    Forrest, Stephen R.

    2016-05-03

    An organic vapor jet printing system includes a pump for increasing the pressure of an organic flux.

  12. Metal-halide perovskites for photovoltaic and light-emitting devices* |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MIT-Harvard Center for Excitonics Metal-halide perovskites for photovoltaic and light-emitting devices* September 15, 2015 at 4:30 pm/36-428 Sam Stranks Massachusetts Institute of Technology stranks.02 Metal halide perovskites are exotic hybrid crystalline materials developed out of curiosity. Unexpectedly, solar cells incorporating these perovskites are rapidly emerging as serious contenders to rival the leading photovoltaic technologies. Power conversion efficiencies have jumped from 3% to

  13. Mercury switch with non-wettable electrodes

    DOE Patents [OSTI]

    Karnowsky, Maurice M.; Yost, Frederick G.

    1987-01-01

    A mercury switch device comprising a pool of mercury and a plurality of electrical contacts made of or coated with a non-wettable material such as titanium diboride.

  14. JV Task 124 - Understanding Multi-Interactions of SO3, Mercury, Selenium, and Arsenic in Illinois Coal Flue Gas

    SciTech Connect (OSTI)

    Ye Zhuang; Christopher Martin; John Pavlish

    2009-03-31

    This project consisted of pilot-scale combustion testing with a representative Illinois basin coal to explore the multi-interactions of SO{sub 3}, mercury, selenium and arsenic. The parameters investigated for SO{sub 3} and mercury interactions included different flue gas conditions, i.e., temperature, moisture content, and particulate alkali content, both with and without activated carbon injection for mercury control. Measurements were also made to track the transformation of selenium and arsenic partitioning as a function of flue gas temperature through the system. The results from the mercury-SO{sub 3} testing support the concept that SO{sub 3} vapor is the predominant factor that impedes efficient mercury removal with activated carbon in an Illinois coal flue gas, while H{sub 2}SO{sub 4} aerosol has less impact on activated carbon injection performance. Injection of a suitably mobile and reactive additives such as sodium- or calcium-based sorbents was the most effective strategy tested to mitigate the effect of SO{sub 3}. Transformation measurements indicate a significant fraction of selenium was associated with the vapor phase at the electrostatic precipitator inlet temperature. Arsenic was primarily particulate-bound and should be captured effectively with existing particulate control technology.

  15. Stratified vapor generator

    DOE Patents [OSTI]

    Bharathan, Desikan; Hassani, Vahab

    2008-05-20

    A stratified vapor generator (110) comprises a first heating section (H.sub.1) and a second heating section (H.sub.2). The first and second heating sections (H.sub.1, H.sub.2) are arranged so that the inlet of the second heating section (H.sub.2) is operatively associated with the outlet of the first heating section (H.sub.1). A moisture separator (126) having a vapor outlet (164) and a liquid outlet (144) is operatively associated with the outlet (124) of the second heating section (H.sub.2). A cooling section (C.sub.1) is operatively associated with the liquid outlet (144) of the moisture separator (126) and includes an outlet that is operatively associated with the inlet of the second heating section (H.sub.2).

  16. Assessment of mercury emissions from the Afton copper smelter, British Columbia, Canada

    SciTech Connect (OSTI)

    Robertson, J.D.; Price, C.J.

    1986-07-01

    The afton Copper Smelter adjacent to Kamloops, British Columbia, Canada commenced operation in 1978 and employed a mercury scrubbing system. Two years of preproduction studies, which included monitoring for mercury in ambient air, water, soil, and vegetation were performed. The results from similar studies conducted during four full years (1978-81) and two partial years (1982-83) of production are presented in the data analysis. These programs illustrated that the most frequent ground impingement occurred within a 1.6-3.2-km radius of the source, and that the levels decreased with increasing distance from the source to a maximum radius of 8 km. The results of a comprehensive source monitoring program illustrated that the average mercury emission levels ranged from 3.2 to 6.8 kg/calendar day during 1979-81, and that the majority of the emissions were in a vapor form. The ambient monitoring data acquired when smelter operations were significantly reduced indicate a quick recovery to preproduction levels in virtually all monitored parameters and at most monitored sites. The integrated results from all mercury monitoring programs illustrate the environmental impact from mercury emissions which were two to four times the permit standard of 1.8 kg/day.

  17. Filter vapor trap

    DOE Patents [OSTI]

    Guon, Jerold

    1976-04-13

    A sintered filter trap is adapted for insertion in a gas stream of sodium vapor to condense and deposit sodium thereon. The filter is heated and operated above the melting temperature of sodium, resulting in a more efficient means to remove sodium particulates from the effluent inert gas emanating from the surface of a liquid sodium pool. Preferably the filter leaves are precoated with a natrophobic coating such as tetracosane.

  18. Method and apparatus for monitoring the flow of mercury in a system

    DOE Patents [OSTI]

    Grossman, M.W.

    1987-12-15

    An apparatus and method for monitoring the flow of mercury in a system are disclosed. The equipment enables the entrainment of the mercury in a carrier gas e.g., an inert gas, which passes as mercury vapor between a pair of optically transparent windows. The attenuation of the emission is indicative of the quantity of mercury (and its isotopes) in the system. A 253.7 nm light is shone through one of the windows and the unabsorbed light is detected through the other window. The absorption of the 253.7 nm light is thereby measured whereby the quantity of mercury passing between the windows can be determined. The apparatus includes an in-line sensor for measuring the quantity of mercury. It includes a conduit together with a pair of apertures disposed in a face to face relationship and arranged on opposite sides of the conduit. A pair of optically transparent windows are disposed upon a pair of viewing tubes. A portion of each of the tubes is disposed inside of the conduit and within each of the apertures. The two windows are disposed in a face to face relationship on the ends of the viewing tubes and the entire assembly is hermetically sealed from the atmosphere whereby when 253.7 nm ultraviolet light is shone through one of the windows and detected through the other, the quantity of mercury which is passing by can be continuously monitored due to absorption which is indicated by attenuation of the amplitude of the observed emission. 4 figs.

  19. FULL-SCALE TESTING OF ENHANCED MERCURY CONTROL TECHNOLOGIES FOR WET FGD SYSTEMS

    SciTech Connect (OSTI)

    D.K. McDonald; G.T. Amrhein; G.A. Kudlac; D. Madden Yurchison

    2003-05-07

    Wet flue gas desulfurization (wet FGD) systems are currently installed on about 25% of the coal-fired utility generating capacity in the U.S., representing about 15% of the number of coal-fired units. Depending on the effect of operating parameters such as mercury content of the coal, form of mercury (elemental or oxidized) in the flue gas, scrubber spray tower configuration, liquid-to-gas ratio, and slurry chemistry, FGD systems can provide cost-effective, near-term mercury emissions control options with a proven history of commercial operation. For boilers already equipped with FGD systems, the incremental cost of any vapor phase mercury removal achieved is minimal. To be widely accepted and implemented, technical approaches that improve mercury removal performance for wet FGD systems should also have low incremental costs and have little or no impact on operation and SO{sub 2} removal performance. The ultimate goal of the Full-scale Testing of Enhanced Mercury Control for Wet FGD Systems Program was to commercialize methods for the control of mercury in coal-fired electric utility systems equipped with wet flue gas desulfurization (wet FGD). The program was funded by the U.S. Department of Energy's National Energy Technology Laboratory, the Ohio Coal Development Office within the Ohio Department of Development, and Babcock & Wilcox. Host sites and associated support were provided by Michigan South Central Power Agency (MSCPA) and Cinergy. Field-testing was completed at two commercial coal-fired utilities with wet FGD systems: (1) MSCPA's 55 MW{sub e} Endicott Station and (2) Cinergy's 1300 MW{sub e} Zimmer Station. Testing was conducted at these two locations because of the large differences in size and wet scrubber chemistry. Endicott employs a limestone, forced oxidation (LSFO) wet FGD system, whereas Zimmer uses Thiosorbic{reg_sign} Lime (magnesium enhanced lime) and ex situ oxidation. Both locations burn Ohio bituminous coal.

  20. Emissions, Monitoring and Control of Mercury from Subbituminous Coal-Fired Power Plants

    SciTech Connect (OSTI)

    Alan Bland; Kumar Sellakumar; Craig Cormylo

    2007-08-01

    across the APCDs are 2.1% and 39.4% with standard deviations (STDs) of 1990 and 75%, respectively for the ICR and SEC tests. This clearly demonstrates that variability is an issue irrespective of using 'similar' fuels at the plants and the same source sampling team measuring the species. The study also concluded that elemental mercury is the main Hg specie that needs to be controlled. 2004 technologies such as activated carbon injection (ACI) may capture up to 60% with double digit lb/MMacf addition of sorbent. PRB coal-fired units have an Hg input of 7-15 lb/TBtu; hence, these units must operate at over 60% mercury efficiency in order to bring the emission level below 5.8 lb/TBtu. This was non-achievable with the best technology available as of 2004. Other key findings include: (1) Conventional particulate collectors, such as Cold-side Electro-Static Precipitators (CESPs), Hot-side Electro-Static Precipitator (HESP), and Fabric Filter (FF) remove nearly all of the particulate bound mercury; (2) CESPs perform better highlighting the flue gas temperature effect on the mercury removal. Impact of speciation with flue gas cooling is apparent; (3) SDA's do not help in enhancing adsorption of mercury vapor species; and (4) Due to consistently low chlorine values in fuels, it was not possible to analyze the impact of chlorine. In summary, it is difficult to predict the speciation at two plants that burn the same fuel. Non-fuel issues, such as flue gas cooling, impact the speciation and consequently mercury capture potential.

  1. The vapor pressures of explosives

    SciTech Connect (OSTI)

    Ewing, Robert G.; Waltman, Melanie J.; Atkinson, David A.; Grate, Jay W.; Hotchkiss, Peter

    2013-01-05

    The vapor pressures of many explosive compounds are extremely low and thus determining accurate values proves difficult. Many researchers, using a variety of methods, have measured and reported the vapor pressures of explosives compounds at single temperatures, or as a function of temperature using vapor pressure equations. There are large variations in reported vapor pressures for many of these compounds, and some errors exist within individual papers. This article provides a review of explosive vapor pressures and describes the methods used to determine them. We have compiled primary vapor pressure relationships traceable to the original citations and include the temperature ranges for which they have been determined. Corrected values are reported as needed and described in the text. In addition, after critically examining the available data, we calculate and tabulate vapor pressures at 25 °C.

  2. Coping with uncertainties of mercury regulation

    SciTech Connect (OSTI)

    Reich, K.

    2006-09-15

    The thermometer is rising as coal-fired plants cope with the uncertainties of mercury regulation. The paper deals with a diagnosis and a suggested cure. It describes the state of mercury emission rules in the different US states, many of which had laws or rules in place before the Clean Air Mercury Rule (CAMR) was promulgated.

  3. THERMAL DECOMPOSITION OF URANIUM COMPOUNDS

    DOE Patents [OSTI]

    Magel, T.T.; Brewer, L.

    1959-02-10

    A method is presented of preparing uranium metal of high purity consisting contacting impure U metal with halogen vapor at between 450 and 550 C to form uranium halide vapor, contacting the uranium halide vapor in the presence of H/sub 2/ with a refractory surface at about 1400 C to thermally decompose the uranium halides and deposit molten U on the refractory surface and collecting the molten U dripping from the surface. The entire operation is carried on at a sub-atmospheric pressure of below 1 mm mercury.

  4. Vapor spill pipe monitor

    DOE Patents [OSTI]

    Bianchini, G.M.; McRae, T.G.

    1983-06-23

    The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote ir gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote ir sensor which measures the gas composition.

  5. Vaporization of zinc from scrap

    SciTech Connect (OSTI)

    Ozturk, B.; Fruehan, R.J.

    1996-12-31

    The rate of zinc vaporization from galvanized scrap was measured using a thermogravimetric apparatus along with chemical analysis. It is found that the rate of zinc vaporization is very fast in nitrogen and carbon monoxide atmospheres at temperatures higher than 950 C. At lower temperature rate decreases with decreasing temperature and is controlled by the gas phase mass transport. The simultaneous oxidation and vaporization of zinc occurs when the samples were heated in carbon dioxide and air. The current experimental results indicate that almost all of the zinc from scrap vaporizes during the heating process in a very short period of time after the temperature reaches above 850 C.

  6. Investigation and demonstration of dry carbon-based sorbent injection for mercury control. Quarterly technical report, October 1--December 31, 1996

    SciTech Connect (OSTI)

    Hunt, T.; Sjostrom, S.; Ruhl, J.; Smith, J.

    1997-01-01

    The U.S. Department of Energy (DOE) has issued Public Service Company of Colorado (PSCo) a cost sharing contract to evaluate carbon-based sorbents for mercury control on a 600 acfm laboratory scale particulate control module (PCM). The PCM can simulate an electrostatic precipitator, a pulse-jet fabric filter, and a reverse air fabric filter and uses actual flue gas from an operating coal-fired power plant. Up to 3 different dry carbon-based sorbents will be tested to determine the mercury removal capability in the different configurations. The project is currently in the fifth quarter of an eight quarter Phase I project. The PCM has been fabricated and mercury removal testing with the ESP configuration has been completed. Original plans included the use on an on-line meercury analyzer to collect the test data. However, due to very low baseline mercury concentration, on-line measurement did not provide accurate data. The project has continued using a modified MESA method grab sample technique to determine inlet and outlet mercury concentrations. A major concern during sorbent evaluations has been the natural ability of the flyash at the test site to remove mercury. This has made determination of sorbent only mercury removal difficult. Overall vapor-phase mercury removals of 15 to 70% have been obtained but this includes mercury removals in the range of 30% by the flyash. It is believed that a maximum of approximately 40% removal due to the sorbent only has been obtained. A number of test and sampling modifications are in progress to increase the data confidence and many questions remain. Startup of the pulse jet configuration began in early November but results of this testing are not available at this time. The project team has decided to proceed with pulse jet testing using flue gas that does not contain significant flyash quantities to further investigate the sorbent only mercury removal.

  7. Mercury exposure from interior latex paint

    SciTech Connect (OSTI)

    Agocs, M.M.; Etzel, R.A.; Parrish, R.G.; Paschal, D.C.; Campagna, P.R.; Cohen, D.S.; Kilbourne, E.M.; Hesse, J.L. )

    1990-10-18

    Many paint companies have used phenylmercuric acetate as a preservative to prolong the shelf life of interior latex paint. In August 1989, acrodynia, a form of mercury poisoning, occurred in a child exposed to paint fumes in a home recently painted with a brand containing 4.7 mmol of mercury per liter (at that time the Environmental Protection Agency's recommended limit was 1.5 mmol or less per liter). To determine whether the recent use of that brand of paint containing phenylmercuric acetate was associated with elevated indoor-air and urinary mercury concentrations, we studied 74 exposed persons living in 19 homes recently painted with the brand and 28 unexposed persons living in 10 homes not recently painted with paint containing mercury. The paint samples from the homes of exposed persons contained a median of 3.8 mmol of mercury per liter, and air samples from the homes had a median mercury content of 10.0 nmol per cubic meter (range, less than 0.5 to 49.9). No mercury was detected in paint or air samples from the homes of unexposed persons. The median urinary mercury concentration was higher in the exposed persons (4.7 nmol of mercury per millimole of creatinine; range, 1.4 to 66.5) than in the unexposed persons (1.1 nmol per millimole; range, 0.02 to 3.9; P less than 0.001). Urinary mercury concentrations within the range that we found in exposed persons have been associated with symptomatic mercury poisoning. We found that potentially hazardous exposure to mercury had occurred among persons whose homes were painted with a brand of paint containing mercury at concentrations approximately 2 1/2 times the Environmental Protection Agency's recommended limit.

  8. Mercury emissions from municipal solid waste combustors

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    This report examines emissions of mercury (Hg) from municipal solid waste (MSW) combustion in the United States (US). It is projected that total annual nationwide MSW combustor emissions of mercury could decrease from about 97 tonnes (1989 baseline uncontrolled emissions) to less than about 4 tonnes in the year 2000. This represents approximately a 95 percent reduction in the amount of mercury emitted from combusted MSW compared to the 1989 mercury emissions baseline. The likelihood that routinely achievable mercury emissions removal efficiencies of about 80 percent or more can be assured; it is estimated that MSW combustors in the US could prove to be a comparatively minor source of mercury emissions after about 1995. This forecast assumes that diligent measures to control mercury emissions, such as via use of supplemental control technologies (e.g., carbon adsorption), are generally employed at that time. However, no present consensus was found that such emissions control measures can be implemented industry-wide in the US within this time frame. Although the availability of technology is apparently not a limiting factor, practical implementation of necessary control technology may be limited by administrative constraints and other considerations (e.g., planning, budgeting, regulatory compliance requirements, etc.). These projections assume that: (a) about 80 percent mercury emissions reduction control efficiency is achieved with air pollution control equipment likely to be employed by that time; (b) most cylinder-shaped mercury-zinc (CSMZ) batteries used in hospital applications can be prevented from being disposed into the MSW stream or are replaced with alternative batteries that do not contain mercury; and (c) either the amount of mercury used in fluorescent lamps is decreased to an industry-wide average of about 27 milligrams of mercury per lamp or extensive diversion from the MSW stream of fluorescent lamps that contain mercury is accomplished.

  9. THERMALLY OPERATED VAPOR VALVE

    DOE Patents [OSTI]

    Dorward, J.G. Jr.

    1959-02-10

    A valve is presented for use in a calutron to supply and control the vapor to be ionized. The invention provides a means readily operable from the exterior of the vacuum tank of the apparatuss without mechanical transmission of forces for the quick and accurate control of the ionizing arc by a corresponding control of gas flow theretos thereby producing an effective way of carefully regulating the operation of the calutron. The invention consists essentially of a tube member extending into the charge bottle of a calutron devices having a poppet type valve closing the lower end of the tube. An electrical heating means is provided in the valve stem to thermally vary the length of the stem to regulate the valve opening to control the flow of material from the charge bottle.

  10. New Energy Efficiency Standards for Metal Halide Lamp Fixtures to Save on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Bills and Reduce Carbon Pollution | Department of Energy Metal Halide Lamp Fixtures to Save on Energy Bills and Reduce Carbon Pollution New Energy Efficiency Standards for Metal Halide Lamp Fixtures to Save on Energy Bills and Reduce Carbon Pollution January 30, 2014 - 9:30am Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Energy Department's efforts to develop efficiency standards that cut carbon pollution and save money by saving energy, U.S. Energy Secretary

  11. Improved Ex-Situ Mercury Remediation - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Find More Like This Return to Search Improved Ex-Situ Mercury Remediation Brookhaven National Laboratory Contact BNL About This Technology Technology Marketing Summary The present invention provides a process for the treatment of mercury containing waste in a single reaction vessel. The process is effective in treating various types of mercury contaminated waste; such as elemental mercury or mercury compounds, mercury contaminated bulk material, or

  12. In-Situ Mercury Remediation - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In-Situ Mercury Remediation Brookhaven National Laboratory Contact BNL About This Technology Technology Marketing Summary In Situ Mercury Stabilization (ISMS) is a method that can remove toxic mercury from soil, sediment, sludge, and other industrial waste. Description ISMS includes a device and method for remediation of mercury contamination in which mercury is first concentrated by inserting rods of sulfur reagent into the waste. Mercury is drawn to specially designed treatment rods, which

  13. Process for removing mercury from aqueous solutions

    DOE Patents [OSTI]

    Googin, J.M.; Napier, J.M.; Makarewicz, M.A.; Meredith, P.F.

    1985-03-04

    A process for removing mercury from water to a level not greater than two parts per billion wherein an anion exchange material that is insoluble in water is contacted first with a sulfide containing compound and second with a compound containing a bivalent metal ion forming an insoluble metal sulfide. To this treated exchange material is contacted water containing mercury. The water containing not more than two parts per billion of mercury is separated from the exchange material.

  14. Process for removing mercury from aqueous solutions

    DOE Patents [OSTI]

    Googin, John M.; Napier, John M.; Makarewicz, Mark A.; Meredith, Paul F.

    1986-01-01

    A process for removing mercury from water to a level not greater than two parts per billion wherein an anion exchange material that is insoluble in water is contacted first with a sulfide containing compound and second with a compound containing a bivalent metal ion forming an insoluble metal sulfide. To this treated exchange material is contacted water containing mercury. The water containing not more than two parts per billion of mercury is separated from the exchange material.

  15. CARBON BED MERCURY EMISSIONS CONTROL FOR MIXED WASTE TREATMENT...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: CARBON BED MERCURY EMISSIONS CONTROL FOR MIXED WASTE TREATMENT Citation Details In-Document Search Title: CARBON BED MERCURY EMISSIONS CONTROL FOR MIXED WASTE ...

  16. Sorbents for the oxidation and removal of mercury (Patent) |...

    Office of Scientific and Technical Information (OSTI)

    Title: Sorbents for the oxidation and removal of mercury A promoted activated carbon ... the sorbent, or to the flue gas to enhance sorbent performance andor mercury capture. ...

  17. Evaluation of the Mercury Soil Mapping Geothermal Exploration...

    Open Energy Info (EERE)

    the Mercury Soil Mapping Geothermal Exploration Techniques Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Evaluation of the Mercury Soil...

  18. Sorbents for mercury removal from flue gas (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE Office of Fossil Energy Country of Publication: United States Language: English Subject: 01 COAL, LIGNITE, AND PEAT; Flue Gas; Flue Gas; Mercury; Mercury; ...

  19. The Homogeneus Forcing of Mercury Oxidation to provide Low-Cost Capture

    SciTech Connect (OSTI)

    John Kramlich; Linda Castiglone

    2007-06-30

    Trace amounts of mercury are found in all coals. During combustion, or during thermal treatment in advanced coal processes, this mercury is vaporized and can be released to the atmosphere with the ultimate combustion products. This has been a cause for concern for a number of years, and has resulted in a determination by the EPA to regulate and control these emissions. Present technology does not, however, provide inexpensive ways to capture or remove mercury. Mercury that exits the furnace in the oxidized form (HgCl{sub 2}) is known to much more easily captured in existing pollution control equipment (e.g., wet scrubbers for SO{sub 2}), principally due to its high solubility in water. Work funded by DOE has helped understand the chemical kinetic processes that lead to mercury oxidation in furnaces. The scenario is as follows. In the flame the mercury is quantitatively vaporized as elemental mercury. Also, the chlorine in the fuel is released as HCl. The direct reaction Hg+HCl is, however, far too slow to be of practical consequence in oxidation. The high temperature region does supports a small concentration of atomic chlorine. As the gases cool (either in the furnace convective passes, in the quench prior to cold gas cleanup, or within a sample probe), the decay in Cl atom is constrained by the slowness of the principal recombination reaction, Cl+Cl+M{yields}Cl{sub 2}+M. This allows chlorine atom to hold a temporary, local superequilibrium concentration . Once the gases drop below about 550 C, the mercury equilibrium shifts to favor HgCl{sub 2} over Hg, and this superequilibrium chlorine atom promotes oxidation via the fast reactions Hg+Cl+M{yields}HgCl+M, HgCl+Cl+M{yields}HgCl{sub 2}+M, and HgCl+Cl{sub 2}{yields}HgCl{sub 2}+Cl. Thus, the high temperature region provides the Cl needed for the reaction, while the quench region allows the Cl to persist and oxidize the mercury in the absence of decomposition reactions that would destroy the HgCl{sub 2}. Promoting

  20. Alkaline sorbent injection for mercury control

    DOE Patents [OSTI]

    Madden, Deborah A.; Holmes, Michael J.

    2002-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  1. Alkaline sorbent injection for mercury control

    DOE Patents [OSTI]

    Madden, Deborah A.; Holmes, Michael J.

    2003-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  2. Identification of elemental mercury in the subsurface

    DOE Patents [OSTI]

    Jackson, Dennis G

    2015-01-06

    An apparatus and process is provided for detecting elemental mercury in soil. A sacrificial electrode of aluminum is inserted below ground to a desired location using direct-push/cone-penetrometer based equipment. The insertion process removes any oxides or previously found mercury from the electrode surface. Any mercury present adjacent the electrode can be detected using a voltmeter which indicates the presence or absence of mercury. Upon repositioning the electrode within the soil, a fresh surface of the aluminum electrode is created allowing additional new measurements.

  3. Mercury Emission Measurement at a CFB Plant

    SciTech Connect (OSTI)

    John Pavlish; Jeffrey Thompson; Lucinda Hamre

    2009-02-28

    In response to pending regulation to control mercury emissions in the United States and Canada, several projects have been conducted to perform accurate mass balances at pulverized coal (pc)-fired utilities. Part of the mercury mass balance always includes total gaseous mercury as well as a determination of the speciation of the mercury emissions and a concentration bound to the particulate matter. This information then becomes useful in applying mercury control strategies, since the elemental mercury has traditionally been difficult to control by most technologies. In this instance, oxidation technologies have proven most beneficial for increased capture. Despite many years of mercury measurement and control projects at pc-fired units, far less work has been done on circulating fluidized-bed (CFB) units, which are able to combust a variety of feedstocks, including cofiring coal with biomass. Indeed, these units have proven to be more problematic because it is very difficult to obtain a reliable mercury mass balance. These units tend to have very different temperature profiles than pc-fired utility boilers. The flexibility of CFB units also tends to be an issue when a mercury balance is determined, since the mercury inputs to the system come from the bed material and a variety of fuels, which can have quite variable chemistry, especially for mercury. In addition, as an integral part of the CFB operation, the system employs a feedback loop to circulate the bed material through the combustor and the solids collection system (the primary cyclone), thereby subjecting particulate-bound metals to higher temperatures again. Despite these issues, CFB boilers generally emit very little mercury and show good native capture. The Energy & Environmental Research Center is carrying out this project for Metso Power in order to characterize the fate of mercury across the unit at Rosebud Plant, an industrial user of CFB technology from Metso. Appropriate solids were collected, and

  4. Environmental Remediation program completes legacy mercury cleanup...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stories Legacy slope-side cleanup Environmental Remediation program completes legacy mercury cleanup near Smith's Marketplace Los Alamos National Laboratory performed a ...

  5. Atomic vapor laser isotope separation process

    DOE Patents [OSTI]

    Wyeth, Richard W.; Paisner, Jeffrey A.; Story, Thomas

    1990-01-01

    A laser spectroscopy system is utilized in an atomic vapor laser isotope separation process. The system determines spectral components of an atomic vapor utilizing a laser heterodyne technique.

  6. Shape Evolution and Single Particle Luminescence of Organometal Halide Perovskite Nanocrystals

    SciTech Connect (OSTI)

    Zhu, Feng; Men, Long; Guo, Yijun; Zhu, Qiaochu; Bhattacharjee, Ujjal; Goodwin, Peter M.; Petrich, Jacob W.; Smith, Emily A.; Vela, Javier

    2015-02-09

    Organometallic halide perovskites CH3NH3PbX3 (X = I, Br, Cl) have quickly become one of the most promising semiconductors for solar cells, with photovoltaics made of these materials reaching power conversion efficiencies of near 20%. Improving our ability to harness the full potential of organometal halide perovskites will require more controllable syntheses that permit a detailed understanding of their fundamental chemistry and photophysics. In our manuscript, we systematically synthesize CH3NH3PbX3 (X = I, Br) nanocrystals with different morphologies (dots, rods, plates or sheets) by using different solvents and capping ligands. CH3NH3PbX3 nanowires and nanorods capped with octylammonium halides show relatively higher photoluminescence (PL) quantum yields and long PL lifetimes. CH3NH3PbI3 nanowires monitored at the single particle level show shape-correlated PL emission across whole particles, with little photobleaching observed and very few off periods. Our work highlights the potential of low-dimensional organometal halide perovskite semiconductors in constructing new porous and nanostructured solar cell architectures, as well as in applying these materials to other fields such as light-emitting devices and single particle imaging and tracking.

  7. Shape Evolution and Single Particle Luminescence of Organometal Halide Perovskite Nanocrystals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhu, Feng; Men, Long; Guo, Yijun; Zhu, Qiaochu; Bhattacharjee, Ujjal; Goodwin, Peter M.; Petrich, Jacob W.; Smith, Emily A.; Vela, Javier

    2015-02-09

    Organometallic halide perovskites CH3NH3PbX3 (X = I, Br, Cl) have quickly become one of the most promising semiconductors for solar cells, with photovoltaics made of these materials reaching power conversion efficiencies of near 20%. Improving our ability to harness the full potential of organometal halide perovskites will require more controllable syntheses that permit a detailed understanding of their fundamental chemistry and photophysics. In our manuscript, we systematically synthesize CH3NH3PbX3 (X = I, Br) nanocrystals with different morphologies (dots, rods, plates or sheets) by using different solvents and capping ligands. CH3NH3PbX3 nanowires and nanorods capped with octylammonium halides show relatively highermore » photoluminescence (PL) quantum yields and long PL lifetimes. CH3NH3PbI3 nanowires monitored at the single particle level show shape-correlated PL emission across whole particles, with little photobleaching observed and very few off periods. Our work highlights the potential of low-dimensional organometal halide perovskite semiconductors in constructing new porous and nanostructured solar cell architectures, as well as in applying these materials to other fields such as light-emitting devices and single particle imaging and tracking.« less

  8. Technology demonstration for reducing mercury emissions from small-scale gold refining facilities.

    SciTech Connect (OSTI)

    Habegger, L. J.; Fernandez, L. E.; Engle, M.; Bailey, J. L.; Peterson, D. P.; MacDonell, M. M.; U.S. Environmental Protection Agency

    2008-06-30

    Gold that is brought from artisanal and small-scale gold mining areas to gold shops for processing and sale typically contains 5-40% mercury. The uncontrolled removal of the residual mercury in gold shops by using high-temperature evaporation can be a significant source of mercury emissions in urban areas where the shops are located. Emissions from gold shop hoods during a burn can exceed 1,000 mg/m{sup 3}. Because the saturation concentration of mercury vapor at operating temperatures at the hood exhaust is less than 100 mg/m{sup 3}, the dominant component of the exhaust is in the form of aerosol or liquid particles. The U.S. Environmental Protection Agency (EPA), with technical support from Argonne National Laboratory (Argonne), has completed a project to design and test a technology to remove the dominant aerosol component in the emissions from gold shops. The objective was to demonstrate a technology that could be manufactured at low cost and by using locally available materials and manufacturing capabilities. Six prototypes designed by Argonne were locally manufactured, installed, and tested in gold shops in Itaituba and Creporizao, Brazil. The initial prototype design incorporated a pebble bed as the media for collecting the mercury aerosols, and a mercury collection efficiency of over 90% was demonstrated. Though achieving high efficiencies, the initial prototype was determined to have practical disadvantages such as excessive weight, a somewhat complex construction, and high costs (>US$1,000). To further simplify the construction, operation, and associated costs, a second prototype design was developed in which the pebble bed was replaced with slotted steel baffle plates. The system was designed to have flexibility for installation in various hood configurations. The second prototype with the baffle plate design was installed and tested in several different hood/exhaust systems to determine the optimal installation configuration. The significance of

  9. Fly ash properties and mercury sorbent affect mercury release from curing concrete

    SciTech Connect (OSTI)

    Danold W. Golightly; Chin-Min Cheng; Linda K. Weavers; Harold W. Walker; William E. Wolfe

    2009-04-15

    The release of mercury from concrete containing fly ashes from various generator boilers and powdered activated carbon sorbent used to capture mercury was measured in laboratory experiments. Release of gaseous mercury from these concretes was less than 0.31% of the total quantity of mercury present. The observed gaseous emissions of mercury during the curing process demonstrated a dependency on the organic carbon content of the fly ash, with mercury release decreasing with increasing carbon content. Further, lower gaseous emissions of mercury were observed for concretes incorporating ash containing activated carbon sorbent than would be expected based on the observed association with organic carbon, suggesting that the powdered activated carbon more tightly binds the mercury as compared to unburned carbon in the ash. Following the initial 28-day curing interval, mercury release diminished with time. In separate leaching experiments, average mercury concentrations leached from fly ash concretes were less than 4.1 ng/L after 18 h and 7 days, demonstrating that less than 0.02% of the mercury was released during leaching. 25 refs., 4 figs., 5 tabs.

  10. Investigating the Effect of Pyridine Vapor Treatment on Perovskite Solar Cells - Oral Presentation

    SciTech Connect (OSTI)

    Ong, Alison J.

    2015-08-25

    Perovskite photovoltaics have recently come to prominence as a viable alternative to crystalline silicon based solar cells. In an effort to create consistent and high-quality films, we studied the effect of various annealing conditions as well as the effect of pyridine vapor treatment on mixed halide methylammonium lead perovskite films. Of six conditions tested, we found that annealing at 100 degree Celsius for 90 minutes followed by 120 degree Celsius for 15 minutes resulted in the purest perovskite. Perovskite films made using that condition were treated with pyridine for various amounts of time, and the effects on perovskite microstructure were studied using x-ray diffraction, UV-Vis spectroscopy, and time-resolved photoluminescence lifetime analysis (TRPL). A previous study found that pyridine vapor caused perovskite films to have higher photoluminescence intensity and become more homogenous. In this study we found that the effects of pyridine are more complex: while films appeared to become more homogenous, a decrease in bulkphotoluminescence lifetime was observed. In addition, the perovskite bandgap appeared to decrease with increased pyridine treatment time. Finally, X-ray diffraction showed that pyridine vapor treatment increased the perovskite (110) peak intensity but also often gave rise to new unidentified peaks, suggesting the formation of a foreign species. It was observed that the intensity of this unknown species had an inverse correlation with the increase in perovskite peak intensity, and also seemed to be correlated with the decrease in TRPL lifetime.

  11. Investigating the Effect of Pyridine Vapor Treatment on Perovskite Solar Cells

    SciTech Connect (OSTI)

    Ong, Alison

    2015-08-20

    Perovskite photovoltaics have recently come to prominence as a viable alternative to crystalline silicon based solar cells. In an effort to create consistent and high-quality films, we studied the effect of various annealing conditions as well as the effect of pyridine vapor treatment on mixed halide methylammonium lead perovskite films. Of six conditions tested, we found that annealing at 100°C for 90 minutes followed by 120°C for 15 minutes resulted in the purest perovskite. Perovskite films made using that condition were treated with pyridine for various amounts of time, and the effects on perovskite microstructure were studied using x-ray diffraction, UV-Vis spectroscopy, and time-resolved photoluminescence lifetime analysis (TRPL). A previous study found that pyridine vapor caused perovskite films to have higher photoluminescence intensity and become more homogenous. In this study we found that the effects of pyridine are more complex: while films appeared to become more homogenous, a decrease in bulk photoluminescence lifetime was observed. In addition, the perovskite bandgap appeared to decrease with increased pyridine treatment time. Finally, X-ray diffraction showed that pyridine vapor treatment increased the perovskite (110) peak intensity but also often gave rise to new unidentified peaks, suggesting the formation of a foreign species. It was observed that the intensity of this unknown species had an inverse correlation with the increase in perovskite peak intensity, and also seemed to be correlated with the decrease in TRPL lifetime.

  12. Portable vapor diffusion coefficient meter

    DOE Patents [OSTI]

    Ho, Clifford K.

    2007-06-12

    An apparatus for measuring the effective vapor diffusion coefficient of a test vapor diffusing through a sample of porous media contained within a test chamber. A chemical sensor measures the time-varying concentration of vapor that has diffused a known distance through the porous media. A data processor contained within the apparatus compares the measured sensor data with analytical predictions of the response curve based on the transient diffusion equation using Fick's Law, iterating on the choice of an effective vapor diffusion coefficient until the difference between the predicted and measured curves is minimized. Optionally, a purge fluid can forced through the porous media, permitting the apparatus to also measure a gas-phase permeability. The apparatus can be made lightweight, self-powered, and portable for use in the field.

  13. Vapor deposition of hardened niobium

    DOE Patents [OSTI]

    Blocher, Jr., John M.; Veigel, Neil D.; Landrigan, Richard B.

    1983-04-19

    A method of coating ceramic nuclear fuel particles containing a major amount of an actinide ceramic in which the particles are placed in a fluidized bed maintained at ca. 800.degree. to ca. 900.degree. C., and niobium pentachloride vapor and carbon tetrachloride vapor are led into the bed, whereby niobium metal is deposited on the particles and carbon is deposited interstitially within the niobium. Coating apparatus used in the method is also disclosed.

  14. Preparation, characterization, and application of modified chitosan sorbents for elemental mercury removal

    SciTech Connect (OSTI)

    Zhang, A.C.; Xiang, J.; Sun, L.S.; Hu, S.; Li, P.S.; Shi, J.M.; Fu, P.; Su, S.

    2009-05-15

    A series of raw, iodine (bromide) or/and sulfuric acid-modified chitosan sorbents were synthesized and comprehensively characterized by N{sub 2} isotherm adsorption/desorption method, TGA, FTIR, XRD, and XPS et al. Adsorption experiments of vapor-phase elemental mercury (Hg{sup 0}) were studied using the sorbents in a laboratory-scale fixed-bed reactor. The results revealed that porosities and specific surface areas of the sorbents decreased after modification. The sorbents operated stably at flue-gas temperature below 140{sup o}C. The chemical reactions of iodine and sulfate ion with the amide of chitosan occurred, and the I{sub 2} was found in the sorbents due to the presence of H{sub 2}SO{sub 4}. Fixed-bed adsorber tests showed that compared to raw chitosan, the bromide or iodine-modified chitosan could promote the efficiency of Hg{sub 0} capture more or less. Mercury removal efficiency could be significantly promoted when an appropriate content of H{sub 2}SO{sub 4} was added, and the iodine and H{sub 2}SO{sub 4} modified sorbents almost had a mercury removal efficiency of 100% for 3 h. The presence of moisture can increase the sorbent's capacity for mercury uptake due to the existence of active sites, such as sulfonate and amino group. The mercury breakthrough of modified chitosan sorbents decreased with increasing temperature. A reaction scheme that could explain the experimental results was presumed based on the characterizations and adsorption study.

  15. Phytoremediation of ionic and methyl mercury pollution. 1997 annual progress report

    SciTech Connect (OSTI)

    Meagher, R.B.

    1997-01-01

    'The long-term goal of this research is to manipulate single-gene traits into plants, enabling them to process heavy metals and remediate heavy-metal pollution by resistance, sequestration, removal, and management of these contaminants (Meagher and Rugh, 1996; Meagher et al., 1997). The working hypothesis behind this proposal was that transgenic plants expressing both the bacterial organo mercury lyase (merB) and the mercuric ion reductase gene (merA) will (A) remove the mercury from polluted sites and (B) prevent methyl mercury from entering the food chain. The authors have had a very successful first year either testing aspects of this hypothesis directly or preparing material needed for future experiments. The results are outlined below under goals A and B, which are explicit in this hypothesis. There were less than 10% of the funds remaining in any category as projected in the first 12 month budget at the end of the first year, with the exception of the equipment category which had 25% of the funds remaining ({approximately} $8,000). Much of this remaining equipment money is being spent this week on a mercury vapor analyzer. It might be useful to remember that at the time this grant was awarded, the authors had successfully engineered a small model plant, Arabidopsis thalianat to use a highly modified bacterial mercuric ion reductase gene, merA9, to detoxify ionic mercury (Hg(II)), reducing it to Hg(0) (Rugh et al., 1996). Seeds from these plants germinate, grow, and set seed at normal growth rates on levels of Hg(II) that are lethal to normal plants. In assays on transgenic seedlings suspended in a solution of Hg(II), 10 ng of Hg(0) was evolved per min per mg wet weight of plant tissue. However, at that time, they had no information on expression of merA in any other plant species, nor had they expressed merB in any plant.'

  16. Oak Ridge Moves Forward in Mercury Cleanup | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ridge Moves Forward in Mercury Cleanup Oak Ridge Moves Forward in Mercury Cleanup March 28, 2013 - 12:00pm Addthis Workers recently removed five large mercury-contaminated tanks from Y-12. Workers recently removed five large mercury-contaminated tanks from Y-12. Removing these tanks is part of the steps to reduce potential risk from mercury at Y-12. Removing these tanks is part of the steps to reduce potential risk from mercury at Y-12. Workers recently removed five large mercury-contaminated

  17. MODELING THE IMPACT OF ELEVATED MERCURY IN DEFENSE WASTE PROCESSING FACILITY MELTER FEED ON THE MELTER OFF-GAS SYSTEM-PRELIMINARY REPORT

    SciTech Connect (OSTI)

    Zamecnik, J.; Choi, A.

    2010-08-18

    The Defense Waste Processing Facility (DWPF) is currently evaluating an alternative Chemical Process Cell (CPC) flowsheet to increase throughput. It includes removal of the steam-stripping step, which would significantly reduce the CPC processing time and lessen the sampling needs. However, its downside would be to send 100% of the mercury that comes in with the sludge straight to the melter. For example, the new mercury content in the Sludge Batch 5 (SB5) melter feed is projected to be 25 times higher than that in the SB4 with nominal steam stripping of mercury. This task was initiated to study the impact of the worst-case scenario of zero-mercury-removal in the CPC on the DWPF melter offgas system. It is stressed that this study is intended to be scoping in nature, so the results presented in this report are preliminary. In order to study the impact of elevated mercury levels in the feed, it is necessary to be able to predict how mercury would speciate in the melter exhaust under varying melter operating conditions. A homogeneous gas-phase oxidation model of mercury by chloride was developed to do just that. The model contains two critical parameters pertaining to the partitioning of chloride among HCl, Cl, Cl{sub 2}, and chloride salts in the melter vapor space. The values for these parameters were determined at two different melter vapor space temperatures by matching the calculated molar ratio of HgCl (or Hg{sub 2}Cl{sub 2}) to HgCl{sub 2} with those measured during the Experimental-Scale Ceramic Melter (ESCM) tests run at the Pacific Northwest National Laboratory (PNNL). The calibrated model was then applied to the SB5 simulant used in the earlier flowsheet study with an assumed mercury stripping efficiency of zero; the molar ratio of Cl-to-Hg in the resulting melter feed was only 0.4, compared to 12 for the ESCM feeds. The results of the model run at the indicated melter vapor space temperature of 650 C (TI4085D) showed that due to excessive shortage of

  18. Treatment of mercury containing waste

    DOE Patents [OSTI]

    Kalb, Paul D.; Melamed, Dan; Patel, Bhavesh R; Fuhrmann, Mark

    2002-01-01

    A process is provided for the treatment of mercury containing waste in a single reaction vessel which includes a) stabilizing the waste with sulfur polymer cement under an inert atmosphere to form a resulting mixture and b) encapsulating the resulting mixture by heating the mixture to form a molten product and casting the molten product as a monolithic final waste form. Additional sulfur polymer cement can be added in the encapsulation step if needed, and a stabilizing additive can be added in the process to improve the leaching properties of the waste form.

  19. Method for hydrocracking a heavy polynuclear hydrocarbonaceous feedstock in the presence of a molten metal halide catalyst

    DOE Patents [OSTI]

    Gorin, Everett

    1981-01-01

    A method for hydrocracking a heavy polynuclear hydrocarbonaceous feedstock to produce lighter hydrocarbon fuels by contacting the feedstock with hydrogen in the presence of a molten metal halide catalyst, the method comprising: mixing the feedstock with a heavy naphtha fraction which has an initial boiling point from about 100.degree. to about 160.degree. C. with a boiling point difference between the initial boiling point and the final boiling point of no more than about 50.degree. C. to produce a mixture; thereafter contacting the mixture with partially spent molten metal halide and hydrogen under temperature and pressure conditions so that the temperature is near the critical temperature of the heavy naphtha fraction; separating at least a portion of the heavy naphtha fraction and lighter hydrocarbon fuels from the partially spent molten metal halide, unreacted feedstock and reaction products; thereafter contacting the partially spent molten metal halide, unreacted feedstock and reaction products with hydrogen and fresh molten metal halide in a hydrocracking zone to produce additional lighter hydrocarbon fuels and separating at least a major portion of the lighter hydrocarbon fuels from the spent molten metal halide.

  20. ccpi_mercury | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mercury Specie and Multi-Pollutant Control Project - Project Brief [PDF-131KB] NeuCo, Inc., Boston, MA (acquired original participant, Pegasus Technologies) PROJECT FACT SHEET Mercury Specie and Multi-Pollutant Control Project (Completed May 31, 2010) [PDF-815KB] (June 2011) PROGRAM PUBLICATIONS Final Report Mercury Specie and Multi-Pollutant Control [PDF-14MB] (May 2011) Quarterly Progress Reports April - June 2007 [PDF- 6.1MB] (July 2007) January - March 2007 [PDF-6.1MB] (Apr 2007) October -

  1. Vapor deposition of thin films

    SciTech Connect (OSTI)

    Smith, D.C.; Pattillo, S.G.; Laia, J.R. Jr.; Sattelberger, A.P.

    1990-10-05

    A highly pure thin metal film having a nanocrystalline structure and a process of preparing such highly pure thin metal films of, e.g., rhodium, iridium, molybdenum, tungsten, rhenium, platinum, or palladium by plasma assisted chemical vapor deposition of, e.g., rhodium(allyl){sub 3}, iridium(allyl){sub 3}, molybdenum(allyl){sub 4}, tungsten(allyl){sub 4}, rhenium (allyl){sub 4}, platinum(allyl){sub 2}, or palladium(allyl){sub 2} are disclosed. Additionally, a general process of reducing the carbon content of a metallic film prepared from one or more organometallic precursor compounds by plasma assisted chemical vapor deposition is disclosed.

  2. Vapor deposition of thin films

    DOE Patents [OSTI]

    Smith, David C. (Los Alamos, NM); Pattillo, Stevan G. (Los Alamos, NM); Laia, Jr., Joseph R. (Los Alamos, NM); Sattelberger, Alfred P. (Los Alamos, NM)

    1992-01-01

    A highly pure thin metal film having a nanocrystalline structure and a process of preparing such highly pure thin metal films of, e.g., rhodium, iridium, molybdenum, tungsten, rhenium, platinum, or palladium by plasma assisted chemical vapor deposition of, e.g., rhodium(allyl).sub.3, iridium(allyl).sub.3, molybdenum(allyl).sub.4, tungsten(allyl).sub.4, rhenium(allyl).sub.4, platinum(allyl).sub.2, or palladium(allyl).sub.2 are disclosed. Additionally, a general process of reducing the carbon content of a metallic film prepared from one or more organometallic precursor compounds by plasma assisted chemical vapor deposition is disclosed.

  3. Investigation into Nanostructured Lanthanum Halides and CeBr{sub 3} for Nuclear Radiation Detection

    SciTech Connect (OSTI)

    Guss, P., Guise, R., Mukhopadhyay, S., Yuan, D.

    2011-06-22

    This slide-show presents work on radiation detection with nanostructured lanthanum halides and CeBr{sub 3}. The goal is to extend the gamma energy response on both low and high-energy regimes by demonstrating the ability to detect low-energy x-rays and relatively high-energy activation prompt gamma rays simultaneously using the nano-structured lanthanum bromide, lanthanum fluoride, cerium bromide, or other nanocrystal material. Homogeneous and nano structure cases are compared.

  4. Lanthanum halide scintillators for time-of-flight 3-D pet

    DOE Patents [OSTI]

    Karp, Joel S.; Surti, Suleman

    2008-06-03

    A Lanthanum Halide scintillator (for example LaCl.sub.3 and LaBr.sub.3) with fast decay time and good timing resolution, as well as high light output and good energy resolution, is used in the design of a PET scanner. The PET scanner includes a cavity for accepting a patient and a plurality of PET detector modules arranged in an approximately cylindrical configuration about the cavity. Each PET detector includes a Lanthanum Halide scintillator having a plurality of Lanthanum Halide crystals, a light guide, and a plurality of photomultiplier tubes arranged respectively peripherally around the cavity. The good timing resolution enables a time-of-flight (TOF) PET scanner to be developed that exhibits a reduction in noise propagation during image reconstruction and a gain in the signal-to-noise ratio. Such a PET scanner includes a time stamp circuit that records the time of receipt of gamma rays by respective PET detectors and provides timing data outputs that are provided to a processor that, in turn, calculates time-of-flight (TOF) of gamma rays through a patient in the cavity and uses the TOF of gamma rays in the reconstruction of images of the patient.

  5. Effect of morphology of sulfurized materials in the retention of mercury from gas streams

    SciTech Connect (OSTI)

    Guijarro, M.I.; Mendioroz, S.; Munoz, V.

    1998-03-01

    Mercury pollution sources are chloralkali industries, metal sulfide ore smelting, gold refining, cement production, industrial applications of metals, and, especially, fossil fuel combustion and incineration of sewage sludge or municipal garbage. The retention of mercury vapor by sulfur supported on sepiolite has been studied, and the utility of sepiolite as a dispersant for the active phase, sulfur, has been thoroughly ascertained. Samples with 10% S supported on sepiolite of varying size and shape have been prepared from powders sulfurized by reaction/deposit, and their efficiency in depurating air streams with 95 ppm mercury has been tested in a dynamic system using a fixed-bed glass reactor and fluid velocities ranging from 3.1 to 18.9 cm/s. From breakthrough curves under various sets of conditions, the importance of mass transfer under the process conditions has been proven. The progress of the reaction is limited by the resistance to reactant diffusion inside the solid through the layer of product formed. Sulfur reaction to HgS is reduced to an external zone of the solid, giving rise to an egg-shell deposit whose extension is related to sulfur dispersion and porosity of the adsorbent. Then, conversion and capacity of the samples are related to their porosity and S/V ratio. The use of SEM helps to confirm those statements. The 10% S samples compare well with the more conventional S/activated carbon, with their use being advantageous for the low price and abundance of the substrate.

  6. Mercury Solar Systems | Open Energy Information

    Open Energy Info (EERE)

    of PV products and systems for commercial and residential clients in the New York metrotri-state area. References: Mercury Solar Systems1 This article is a stub. You can...

  7. Removal of mercury from waste gases

    SciTech Connect (OSTI)

    Muster, U.; Marr, R.; Pichler, G.; Kremshofer, S.; Wilferl, R.; Draxler, J.

    1996-12-31

    Waste and process gases from thermal power, incineration and metallurgical plants or those from cement and alkali chloride industries contain metallic, inorganic and organic mercury. Widespread processes to remove the major amount of mercury are absorption and adsorption. Caused by the lowering of the emission limit from 200 to 50 {mu}g/m{sup 3} [STP] by national and European legislators, considerable efforts were made to enhance the efficiency of the main separation units of flue gas cleaning plants. Specially impregnated ceramic carriers can be used for the selective separation of metallic, inorganic and organic mercury. Using the ceramic reactor removal rates lower than 5 {mu}g/m{sup 3} [STP] of gaseous mercury and its compounds can be achieved. The ceramic reactor is active, regenerable and stable for a long term operation. 4 refs., 7 figs.

  8. Mercury sorbent delivery system for flue gas

    DOE Patents [OSTI]

    Klunder; ,Edgar B.

    2009-02-24

    The invention presents a device for the removal of elemental mercury from flue gas streams utilizing a layer of activated carbon particles contained within the filter fabric of a filter bag for use in a flue gas scrubbing system.

  9. Summary - Mitigation and Remediation of Mercury Contamination...

    Office of Environmental Management (EM)

    for adequacy in reducing Hg levels in the fish and to indentify opportunities to achieve ... contamination in the East Fork Popular Creek and how to reduce mercury levels in the fish. ...

  10. Remediation of Mercury and Industrial Contaminants

    Office of Energy Efficiency and Renewable Energy (EERE)

    The mission of the Remediation of Mercury and Industrial Contaminants Applied Field Research Initiative is to control the flux of contaminants in soil and water environments for the purpose of...

  11. Analysis of Alternative Mercury Control Strategies

    Reports and Publications (EIA)

    2005-01-01

    This analysis responds to a September 14, 2004, request from Chairmen James M. Inhofe and George V. Voinovich asking the Energy Information Administration (EIA) to analyze the impacts of different approaches for removing mercury from coal-fired power plants.

  12. The Mercury Export Ban Act of 2008...

    Office of Environmental Management (EM)

    Statement (Mercury Storage EIS) DOE Grand Junction Disposal Site, CO The Grand Junction Disposal Site is located on DOE-owned land, 18 miles southeast of Grand Junction, Colorado. ...

  13. Innovative Mercury Treatment Benefits Stream, Fish

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – A team of scientists is working at the Savannah River Site (SRS) to evaluate the impact of an innovative, inexpensive treatment system that removes mercury from water.

  14. Vapor generation methods for explosives detection research

    SciTech Connect (OSTI)

    Grate, Jay W.; Ewing, Robert G.; Atkinson, David A.

    2012-12-01

    The generation of calibrated vapor samples of explosives compounds remains a challenge due to the low vapor pressures of the explosives, adsorption of explosives on container and tubing walls, and the requirement to manage (typically) multiple temperature zones as the vapor is generated, diluted, and delivered. Methods that have been described to generate vapors can be classified as continuous or pulsed flow vapor generators. Vapor sources for continuous flow generators are typically explosives compounds supported on a solid support, or compounds contained in a permeation or diffusion device. Sources are held at elevated isothermal temperatures. Similar sources can be used for pulsed vapor generators; however, pulsed systems may also use injection of solutions onto heated surfaces with generation of both solvent and explosives vapors, transient peaks from a gas chromatograph, or vapors generated by s programmed thermal desorption. This article reviews vapor generator approaches with emphasis on the method of generating the vapors and on practical aspects of vapor dilution and handling. In addition, a gas chromatographic system with two ovens that is configurable with up to four heating ropes is proposed that could serve as a single integrated platform for explosives vapor generation and device testing. Issues related to standards, calibration, and safety are also discussed.

  15. Vacuum vapor deposition gun assembly

    DOE Patents [OSTI]

    Zeren, Joseph D.

    1985-01-01

    A vapor deposition gun assembly includes a hollow body having a cylindrical outer surface and an end plate for holding an adjustable heat sink, a hot hollow cathode gun, two magnets for steering the plasma from the gun into a crucible on the heat sink, and a shutter for selectively covering and uncovering the crucible.

  16. An optical water vapor sensor for unmanned aerial vehicles (Technical...

    Office of Scientific and Technical Information (OSTI)

    An optical water vapor sensor for unmanned aerial vehicles Citation Details In-Document Search Title: An optical water vapor sensor for unmanned aerial vehicles The water vapor ...

  17. Mercury-metadata data management system

    Energy Science and Technology Software Center (OSTI)

    2008-01-03

    Mercury is a federated metadata harvesting, search and retrieval tool based on both open source software and software developed at Oak Ridge National Laboratory. It was originally developed for NASA, USGS, and DOE. A major new version of Mercury (version 3.0) was developed during 2007 and released in early 2008. This Mercury 3.0 version provides orders of magnitude improvements in search speed, support for additional metadata formats, integration with Google Maps for spatial queries, facettedmore » type search, support for RSS delivery of search results, and ready customization to meet the needs of the multiple projects which use Mercury. For the end users, Mercury provides a single portal to very quickly search for data and information contained in disparate data management systems. It collects metadata and key data from contributing project servers distributed around the world and builds a centralized index. The Mercury search interfaces then allow the users to perform simple, fielded, spatial, and temporal searches across these metadata sources. This centralized repository of metadata with distributed data sources provides extremely fast search results to the user, while allowing data providers to advertise the availability of their data and maintain complete control and ownership of that data.« less

  18. Mercury cleanup efforts intensify | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mercury cleanup efforts ... Mercury cleanup efforts intensify Posted: February 11, 2013 - 3:31pm | Y-12 Report | Volume 9, Issue 2 | 2013 Millions of pounds of mercury were required to support Y-12's post-World War II mission of separating lithium isotopes. Cleaning up the toxic heavy metal poses many challenges, but what Y-12 is learning could help conquer mercury pollution worldwide. There's a reason you won't find mercury in many thermometers these days. Mercury is a heavy metal that occurs

  19. Statute - Mercury Export Ban Act of 2008 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services » Waste Management » Waste Disposition » Long-Term Management and Storage of Elemental Mercury is in the Planning Stages » Statute - Mercury Export Ban Act of 2008 Statute - Mercury Export Ban Act of 2008 Public Law 110-414, 110th Congress - Mercury Export Ban Act of 2008 to prohibit the sale, distribution, transfer, and export of elemental mercury, and for other purposes. Mercury Export Ban Act of 2008 (166.11 KB) More Documents & Publications Section 129 of the Consolidated

  20. Atomic vapor laser isotope separation process

    DOE Patents [OSTI]

    Wyeth, R.W.; Paisner, J.A.; Story, T.

    1990-08-21

    A laser spectroscopy system is utilized in an atomic vapor laser isotope separation process. The system determines spectral components of an atomic vapor utilizing a laser heterodyne technique. 23 figs.

  1. ARM - Field Campaign - Water Vapor IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Water Vapor IOP ... Responses to Site Operations Questionnaires for Water Vapor IOP Instrument Name Instrument ...

  2. Vapor Retarder Classification - Building America Top Innovation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Vapor Retarder Classification - Building America Top Innovation Vapor Retarder Classification - Building America Top Innovation Photo of a vapor retarder classification. Air-tight and well-insulated homes have little or no tolerance for drying if they get wet; moisture control is critical. This Top Innovation profile describes Building America research that established vapor retarder classifications and appropriate applications that has been instrumental in the market

  3. Vapor phase modifiers for oxidative coupling

    DOE Patents [OSTI]

    Warren, Barbara K.

    1991-01-01

    Volatilized metal compounds retard vapor phase alkane conversion reactions in oxidative coupling processes that convert lower alkanes to higher hydrocarbons.

  4. Formation of soluble mercury oxide coatings: Transformation of elemental mercury in soils

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miller, Carrie L.; Watson, David B.; Lester, Brian P.; Howe, Jane Y.; Phillips, Debra H.; He, Feng; Liang, Liyuan; Pierce, Eric M.

    2015-09-21

    In this study, the impact of mercury (Hg) on human and ecological health has been known for decades. Although a treaty signed in 2013 by 147 nations regulates future large-scale mercury emissions, legacy Hg contamination exists worldwide and small-scale releases will continue. The fate of elemental mercury, Hg(0), lost to the subsurface and its potential chemical transformation that can lead to changes in speciation and mobility are poorly understood. Here, we show that Hg(0) beads interact with soil or manganese oxide solids and X-ray spectroscopic analysis indicates that the soluble mercury coatings are HgO. Dissolution studies show that, after reactingmore » with a composite soil, >20 times more Hg is released into water from the coated beads than from a pure liquid mercury bead. An even larger, >700 times, release occurs from coated Hg(0) beads that have been reacted with manganese oxide, suggesting that manganese oxides are involved in the transformation of the Hg(0) beads and creation of the soluble mercury coatings. Although the coatings may inhibit Hg(0) evaporation, the high solubility of the coatings can enhance Hg(II) migration away from the Hg(0)-spill site and result in potential changes in mercury speciation in the soil and increased mercury mobility.« less

  5. Evaluation of Metal Halide, Plasma, and LED Lighting Technologies for a Hydrogen Fuel Cell Mobile Light (H 2 LT)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miller, L. B.; Donohoe, S. P.; Jones, M. H.; White, W. A.; Klebanoff, L. E.; Velinsky, S. A.

    2015-04-22

    This article reports on the testing and comparison of a prototype hydrogen fuel cell light tower (H2LT) and a conventional diesel-powered metal halide light trailer for use in road maintenance and construction activities. The prototype was originally outfitted with plasma lights and then with light-emitting diode (LED) luminaires. Light output and distribution, lighting energy efficiency (i.e., efficacy), power source thermal efficiency, and fuel costs are compared. The metal halide luminaires have 2.2 and 3.1 times more light output than the plasma and LED luminaires, respectively, but they require more power/lumen to provide that output. The LED luminaires have 1.6 timesmore » better light efficacy than either the metal halide or plasma luminaires. The light uniformity ratios produced by the plasma and LED towers are acceptable. The fuel cell thermal efficiency at the power required to operate the plasma lights is 48%, significantly higher than the diesel generator efficiency of 23% when operating the metal halide lights. Due to the increased efficiency of the fuel cell and the LED lighting, the fuel cost per lumen-hour of the H2LT is 62% of the metal halide diesel light tower assuming a kilogram of hydrogen is twice the cost of a gallon of diesel fuel.« less

  6. Evaluation of Sorbent Injection for Mercury Control

    SciTech Connect (OSTI)

    Sharon Sjostrom

    2005-12-30

    The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. This is the final site report for tests conducted at Laramie River Station Unit 3, one of five sites evaluated in this DOE/NETL program. The overall objective of the test program is to evaluate the capabilities of activated carbon injection at five plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, and AEP's Conesville Station Unit 6. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The goals for the program established by DOE/NETL are to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the benchmark established by DOE of $60,000/lb mercury removed. The goals of the program were exceeded at Laramie River Station by achieving over 90% mercury removal at a sorbent cost of $3,980/lb ($660/oz) mercury removed for a coal mercury content of 7.9 lb/TBtu.

  7. Nucleotide sequence of a chromosomal mercury resistance determinant from a Bacillus sp. with broad-spectrum mercury resistance. [Mercury reductase

    SciTech Connect (OSTI)

    Wang, Y.; Levinson, H.S.; Mahler, I. ); Moore, M.; Walsh, C. ); Silver, S. )

    1989-01-01

    A 13.5-kilobase HindIII fragment, bearing an intact mercury resistance (mer) operon, was isolated from chromosomal DNA of broad-spectrum mercury-resistant Bacillus sp. strain RC607 by using as a probe a clone containing the mercury reductase (merA) gene. The new clone, pYW33, expressed broad-spectrum mercury resistance both in Escherichia coli and in Bacillus subtilis, but only in B. subtilis was the mercuric reductase activity inducible. Sequencing of a 1.8-kilobase mercury hypersensitivity-producing fragment revealed four open reading frames (ORFs). ORF1 may code for a regulatory protein (MerR). ORF2 and ORF4 were associated with cellular transport function and the hypersensitivity phenotype. DNA fragments encompassing the merA and the merB genes were sequenced. The predicted Bacillus sp. strain RC607 MerA (mercuric reductase) and MerB (organomercurial lyase) were similar to those predicted from Staphylococcus aureus plasmid pI258 (67 and 73% amino acid identities, respectively); however, only 40% of the amino acid residues of RC607 MerA were identical to those of the mercuric reductase from gram-negative bacteria. A 69-kilodalton polypeptide was isolated and identified as the merA gene product by examination of its amino-terminal sequence.

  8. Long-Term Management and Storage of Elemental Mercury | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from the United States as of January 1, 2013, the Mercury Export Ban Act of 2008 (MEBA) ... and 2 it will not sell, or otherwise place the elemental mercury into commerce. ...

  9. Mitigation and Remediation of Mercury Contamination at the Y...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigation and Remediation of Mercury Contamination at the Y-12 Plant Oak Ridge Mitigation and Remediation of Mercury Contamination at the Y-12 Plant Oak Ridge Full Document and ...

  10. VEE-0020- In the Matter of Mercury Fuel Service, Inc.

    Broader source: Energy.gov [DOE]

    On April 9, 1996, Mercury Fuel Service, Inc. (Mercury) of Waterbury, Connecticut, filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE)....