Non-Archimedian integrals and stringy Euler numbers of log terminal pairs
Victor V. Batyrev
1998-03-16T23:59:59.000Z
Using non-Archimedian integration over spaces of arcs of algebraic varieties, we define stringy Euler numbers associated with arbitrary Kawamata log terminal pairs. There is a natural Kawamata log terminal pair corresponding to an algebraic variety V having a regular action of a finite group G. In this situation we show that the stringy Euler number of this pair coincides with the physicists' orbifold Euler number defined by the Dixon-Harvey-Vafa-Witten formula. As an application, we prove a conjecture of Miles Reid on the Euler numbers of crepant desingularizations of Gorenstein quotient singularities.
Thomas Garrity
2012-05-25T23:59:59.000Z
A new classification scheme for pairs of real numbers is given, generalizing earlier work of the author that used continued fraction, which in turn was motivated by ideas from statistical mechanics in general and work of Knauf and Fiala and Kleban in particular. Critical for this classification are the number theoretic and geometric properties of the triangle map, a type of multi-dimensional continued fraction.
Colle, C; Cosyn, W; Korover, I; Piasetzky, E; Ryckebusch, J; Weinstein, L B
2015-01-01T23:59:59.000Z
The nuclear mass dependence of the number of short-range correlated (SRC) proton-proton (pp) and proton-neutron (pn) pairs in nuclei is a sensitive probe of the dynamics of short-range pairs in the ground state of atomic nuclei. This work presents an analysis of electroinduced single-proton and two-proton knockout measurements off 12C, 27Al, 56Fe, and 208Pb in kinematics dominated by scattering off SRC pairs. The nuclear mass dependence of the observed A(e,e'pp)/12C(e,e'pp) cross-section ratios and the extracted number of pp- and pn-SRC pairs are much softer than the mass dependence of the total number of possible pairs. This is in agreement with a physical picture of SRC affecting predominantly nucleon-nucleon pairs in a nodeless relative-S state of the mean-field basis.
Douici, M.; Allal, N. H.; Fellah, M.; Benhamouda, N.; Oudih, M. R. [Laboratoire de Physique Theorique, Faculte de Physique, USTHB BP 32 El-Alia, 16111 Bab-Ezzouar, Alger (Algeria) and Institut des Sciences et Technologie, Centre Universitaire de Khemis Miliana, Route de Theniet-El-Had, 44225 Khemis-Milia (Algeria); Laboratoire de Physique Theorique, Faculte de Physique, USTHB BP 32 El-Alia, 16111 Bab-Ezzouar, Alger (Algeria) and Centre de Recherche Nucleaire d'Alger, COMENA, BP399 Alger-Gare, Alger (Algeria); Laboratoire de Physique Theorique, Faculte de Physique, USTHB BP 32 El-Alia, 16111 Bab-Ezzouar, Alger (Algeria)
2012-10-20T23:59:59.000Z
The particle-number fluctuation effect on the root-mean-square (rms) proton and neutron radii of even-even N Almost-Equal-To Z nuclei is studied in the isovector neutron-proton (np) pairing case using an exact particle-number projection method and the Woods-Saxon model.
May, J. Peter
MENTORING PAIRINGS APPRENTICE Graduate Undergraduate students, e-mails, and mentors. ________________________________________________________ |_Name;2 MENTORING PAIRINGS YSP Graduate students and e
The ion pairs and superconducting bosons
V. N. Minasyan
2009-02-11T23:59:59.000Z
First, it is shown that the creation of the spinless ion pairs in the lattice, which are hold by the binding with neighbor ion pairs together regarded as covalent. These ion pairs are created by the repulsive potential interaction of two ions which is bound as linear oscillator. The repulsive S-wave scattering between ion pairs and electrons is transformed to the attractive effective interaction between electrons which leads to a creation of electron pairs by a binding energy depending on the condensate fraction of ion pairs $\\frac{N_0}{N}$. In this respect, the absence of ion pairs in the condensate destroys a binding energy of electron pairs and in turn so-called superconductimg phase. As new result presented theory is that the number of the superconducting bosons is not changed in the superconducting phase.
Pairings on hyperelliptic curves
Balakrishnan, Jennifer; Chisholm, Sarah; Eisentraeger, Kirsten; Stange, Katherine; Teske, Edlyn
2009-01-01T23:59:59.000Z
We assemble and reorganize the recent work in the area of hyperelliptic pairings: We survey the research on constructing hyperelliptic curves suitable for pairing-based cryptography. We also showcase the hyperelliptic pairings proposed to date, and develop a unifying framework. We discuss the techniques used to optimize the pairing computation on hyperelliptic curves, and present many directions for further research.
May, J. Peter
MENTORING PAIRINGS APPRENTICE Undergraduate students, e-mails, and mentors. ________________________________________________________________________________ |_Name_(18)____________|@uchicago.edu_|_______________mentor(s)________________* *_ | | Padraic James
Density-matrix functionals for pairing in mesoscopic superconductors
Denis Lacroix; Guillaume Hupin
2010-09-03T23:59:59.000Z
A functional theory based on single-particle occupation numbers is developed for pairing. This functional, that generalizes the BCS approach, directly incorporates corrections due to particle number conservation. The functional is benchmarked with the pairing Hamiltonian and reproduces perfectly the energy for any particle number and coupling.
Dense QCD: Overhauser or BCS pairing?
Park, Byung-Yoon [School of Physics, Korea Institute for Advanced Study, Seoul 130-012, Korea (Korea, Republic of) [School of Physics, Korea Institute for Advanced Study, Seoul 130-012, Korea (Korea, Republic of); Department of Physics, Chungnam National University, Taejon 305-764, Korea (Korea, Republic of); Rho, Mannque [School of Physics, Korea Institute for Advanced Study, Seoul 130-012, Korea (Korea, Republic of) [School of Physics, Korea Institute for Advanced Study, Seoul 130-012, Korea (Korea, Republic of); Service de Physique Theorique, CE Saclay, 91191 Gif-sur-Yvette, (France); Wirzba, Andreas [Department of Physics and Astronomy, SUNY-Stony Brook, New York 11794 (United States) [Department of Physics and Astronomy, SUNY-Stony Brook, New York 11794 (United States); FZ Juelich, Institut fuer Kernphysik (Theorie), D-52425 Juelich, (Germany); Zahed, Ismail [School of Physics, Korea Institute for Advanced Study, Seoul 130-012, Korea (Korea, Republic of) [School of Physics, Korea Institute for Advanced Study, Seoul 130-012, Korea (Korea, Republic of); Department of Physics and Astronomy, SUNY-Stony Brook, New York 11794 (United States)
2000-08-01T23:59:59.000Z
We discuss the Overhauser effect (particle-hole pairing) versus the BCS effect (particle-particle or hole-hole pairing) in QCD at large quark density. In weak coupling and to leading logarithm accuracy, the pairing energies can be estimated exactly. For a small number of colors, the BCS effect overtakes the Overhauser effect, while for a large number of colors the opposite takes place, in agreement with a recent renormalization group argument. In strong coupling with large pairing energies, the Overhauser effect may be dominant for any number of colors, suggesting that QCD may crystallize into an insulator at a few times nuclear matter density, a situation reminiscent of dense Skyrmions. The Overhauser effect is dominant in QCD in 1+1 dimensions, although susceptible to quantum effects. It is sensitive to temperature in all dimensions. (c) 2000 The American Physical Society.
Chasman, R.R. [Argonne National Lab., IL (United States). Physics Div.
1996-12-31T23:59:59.000Z
In this contribution, the author mentions some features of pairing forces that are unique to nuclei and cover some areas of major interest in nuclear structure research, that involve pairing. At the level of most nuclear structure studies, nuclei are treated as consisting of two kinds of fermions (protons and neutrons) in a valence space with rather few levels. These features give rise to unique aspects of pairing forces in nuclei: (1) n-p pairing in T = 0 as well as the usual T = 1 pairing that is characteristic of like fermions; (2) a need to correct pairing calculations for the (1/N) effects that can typically be neglected in superconducting solids. An issue of current concern is the nature of the pairing interaction: several recent studies suggest a need for a density dependent form of the pairing interaction. There is a good deal of feedback between the questions of accurate calculations of pairing interactions and the form and magnitude of the pairing interaction. Finally, the authors discuss some many-body wave functions that are a generalization of the BCS wave function form, and apply them to a calculation of energy level spacings in superdeformed rotational bands.
Theiler, James P [Los Alamos National Laboratory
2009-01-01T23:59:59.000Z
Following an analogous distinction in statistical hypothesis testing, we investigate variants of machine learning where the training set comes in matched pairs. We demonstrate that even conventional classifiers can exhibit improved performance when the input data has a matched-pair structure. Online algorithms, in particular, converge quicker when the data is presented in pairs. In some scenarios (such as the weak signal detection problem), matched pairs can be generated from independent samples, with the effect not only doubling the nominal size of the training set, but of providing the structure that leads to better learning. A family of 'dipole' algorithms is introduced that explicitly takes advantage of matched-pair structure in the input data and leads to further performance gains. Finally, we illustrate the application of matched-pair learning to chemical plume detection in hyperspectral imagery.
Tridiagonal pairs of Krawtchouk type
Ito, Tatsuro
2007-01-01T23:59:59.000Z
Let $K$ denote an algebraically closed field with characteristic 0 and let $V$ denote a vector space over $K$ with finite positive dimension. Let $A,A^*$ denote a tridiagonal pair on $V$ with diameter $d$. We say that $A,A^*$ has Krawtchouk type whenever the sequence $\\lbrace d-2i\\rbrace_{i=0}^d$ is a standard ordering of the eigenvalues of $A$ and a standard ordering of the eigenvalues of $A^*$. Assume $A,A^*$ has Krawtchouk type. We show that there exists a nondegenerate symmetric bilinear form $$ on $V$ such that $= $ and $= $ for $u,v\\in V$. We show that the following tridiagonal pairs are isomorphic: (i) $A,A^*$; (ii) $-A,-A^*$; (iii) $A^*,A$; (iv) $-A^*,-A$. We give a number of related results and conjectures.
James Valles
2010-01-08T23:59:59.000Z
Nearly 50 years elapsed between the discovery of superconductivity and the emergence of the microscopic theory describing this zero resistance state. The explanation required a novel phase of matter in which conduction electrons joined in weakly bound pairs and condensed with other pairs into a single quantum state. Surprisingly, this Cooper pair formation has also been invoked to account for recently uncovered high-resistance or insulating phases of matter. To address this possibility, we have used nanotechnology to create an insulating system that we can probe directly for Cooper pairs. I will present the evidence that Cooper pairs exist and dominate the electrical transport in these insulators and I will discuss how these findings provide new insight into superconductor to insulator quantum phase transitions.
Thermodynamics of pairing transition in hot nuclei
Lang Liu; Zhen-Hua Zhang; Peng-Wei Zhao
2014-12-16T23:59:59.000Z
The pairing correlations in hot nuclei $^{162}$Dy are investigated in terms of the thermodynamical properties by covariant density functional theory. The heat capacities $C_V$ are evaluated in the canonical ensemble theory and the paring correlations are treated by a shell-model-like approach, in which the particle number is conserved exactly. A S-shaped heat capacity curve, which agrees qualitatively with the experimental data, has been obtained and analyzed in details. It is found that the one-pair-broken states play crucial roles in the appearance of the S shape of the heat capacity curve. Moreover, due to the effect of the particle-number conservation, the pairing gap varies smoothly with the temperature, which indicates a gradual transition from the superfluid to the normal state.
Schwinger Pair Production in Pulsed Electric Fields
Sang Pyo Kim; Hyung Won Lee; Remo Ruffini
2012-07-22T23:59:59.000Z
We numerically investigate the temporal behavior and the structure of longitudinal momentum spectrum and the field polarity effect on pair production in pulsed electric fields in scalar quantum electrodynamics (QED). Using the evolution operator expressed in terms of the particle and antiparticle operators, we find the exact quantum states under the influence of electric pulses and measure the number of pairs of the Minkowski particle and antiparticle. The number of pairs, depending on the configuration of electric pulses, exhibits rich structures in the longitudinal momentum spectrum and undergoes diverse dynamical behaviors at the onset of the interaction but always either converges to a momentum-dependent constant or oscillates around a momentum-dependent time average after the completion of fields.
First quantized pair interactions
A. F. Bennett
2014-07-01T23:59:59.000Z
The annihilation and creation operators of Quantum Field Theory presuppose a causality condition and so the theory cannot represent macroscopic entanglement. The multiple-particle parametrized Dirac wave equation can represent entanglement without recourse to a causality condition. It is shown here that the parametrized formalism can also represent pair annihilation and creation.
Pairing, pseudogap and Fermi arcs in cuprates
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Kaminski, Adam; Gu, Genda; Kondo, Takeshi; Takeuchi, Tsunehiro
2014-10-31T23:59:59.000Z
We use Angle Resolved Photoemission Spectroscopy (ARPES) to study the relationship between the pseudogap, pairing and Fermi arcs in cuprates. High quality data measured over a wide range of dopings reveals a consistent picture of Fermiology and pairing in these materials. The pseudogap is due to an ordered state that competes with superconductivity rather than preformed pairs. Pairing does occur below Tpair ~ 150K and significantly above Tc, but well below T* and the doping dependence of this temperature scale is distinct from that of the pseudogap. The d-wave gap is present below Tpair, and its interplay with strong scatteringmorecreates artificial Fermi arcs for Tc pair. However, above Tpair, the pseudogap exists only at the antipodal region. This leads to presence of real, gapless Fermi arcs close to the node. The length of these arcs remains constant up to T*, where the full Fermi surface is recovered. We demonstrate that these findings resolve a number of seemingly contradictory scenarios.less
Multiprocessor switch with selective pairing
Gara, Alan; Gschwind, Michael K; Salapura, Valentina
2014-03-11T23:59:59.000Z
System, method and computer program product for a multiprocessing system to offer selective pairing of processor cores for increased processing reliability. A selective pairing facility is provided that selectively connects, i.e., pairs, multiple microprocessor or processor cores to provide one highly reliable thread (or thread group). Each paired microprocessor or processor cores that provide one highly reliable thread for high-reliability connect with a system components such as a memory "nest" (or memory hierarchy), an optional system controller, and optional interrupt controller, optional I/O or peripheral devices, etc. The memory nest is attached to a selective pairing facility via a switch or a bus
Semiclassical pair production rate for rotating electric fields
Eckhard Strobel; She-Sheng Xue
2015-02-09T23:59:59.000Z
We semiclassically investigate Schwinger pair production for pulsed rotating electric fields depending on time. To do so we solve the Dirac equation for two-component fields in a WKB-like approximation. The result shows that for two-component fields the spin distribution of produced pairs is generally not $1:1$. As a result the pair creation rates of spinor and scalar quantum electro dynamics (QED) are different even for one pair of turning points. For rotating electric fields the pair creation rate is dominated by particles with a specific spin depending on the sense of rotation for a certain range of pulse lengths and frequencies. We present an analytical solution for the momentum spectrum of the constant rotating field. We find interference effects not only in the momentum spectrum but also in the total particle number of rotating electric fields.
Nomura, Kazumasa
2007-01-01T23:59:59.000Z
Let $K$ denote a field and let $V$ denote a vector space over $K$ with finite positive dimension. We consider a pair of $K$-linear transformations $A:V \\to V$ and $A^*:V \\to V$ that satisfies the following conditions: (i) each of $A,A^*$ is diagonalizable; (ii) there exists an ordering ${V_i}_{i=0}^d$ of the eigenspaces of $A$ such that $A^* V_i \\subseteq V_{i-1} + V_{i} + V_{i+1}$ for $0 \\leq i \\leq d$, where $V_{-1}=0$ and $V_{d+1}=0$; (iii) there exists an ordering ${V^*_i}_{i=0}^\\delta$ of the eigenspaces of $A^*$ such that $A V^*_i \\subseteq V^*_{i-1} + V^*_{i} + V^*_{i+1}$ for $0 \\leq i \\leq \\delta$, where $V^*_{-1}=0$ and $V^*_{\\delta+1}=0$; (iv) there is no subspace $W$ of $V$ such that $AW \\subseteq W$, $A^* W \\subseteq W$, $W \
Validity of pair truncations with effective interaction in Ca isotopes
Lei, Y.; Xu, Z. Y. [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhao, Y. M. [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 730000 (China); Arima, A. [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Science Museum, Japan Science Foundation, 2-1 Kitanomaru-koen, Chiyoda ku, Tokyo 102-0091 (Japan)
2010-09-15T23:59:59.000Z
Using the GXPF1A interaction for the pf shell nuclei, we calculate energy levels and E2 transition rates for the semimagic nuclei {sup 43-46}Ca within both the exact shell-model space and a number of subspaces constructed using collective nucleon pairs. We present explicitly the overlaps between wave functions of low-lying states obtained from shell-model calculations and those obtained using truncated nucleon-pair subspaces. These examples are used as touchstones of pair approximations.
Pairs Emission in a Uniform Background Field: an Algebraic Approach
Roberto Soldati
2011-06-23T23:59:59.000Z
A fully algebraic general approach is developed to treat the pairs emission and absorption in the presence of some uniform external background field. In particular, it is shown that the pairs production and annihilation operators, together with the pairs number operator, do actually fulfill the SU(2) functional Lie algebra. As an example of application, the celebrated Schwinger formula is consistently and nicely recovered, within this novel approach, for a Dirac spinor field in the presence of a constant and homogeneous electric field in four spacetime dimensions.
Nuclear pairing: basic phenomena revisited
G. F. Bertsch
2012-03-25T23:59:59.000Z
I review the phenomena associated with pairing in nuclear physics, most prominently the ubiquitous presence of odd-even mass differences and the properties of the excitation spectra, very different for even-even and odd-A nuclei. There are also significant dynamical effects of pairing, visible in the inertias associated with nuclear rotation and large-amplitude shape deformation.
Pair densities in density functional theory
Chen, Huajie
2015-01-01T23:59:59.000Z
The exact interaction energy of a many-electron system is determined by the electron pair density, which is not well-approximated in standard Kohn-Sham density functional models. Here we study the (complicated but well-defined) exact universal map from density to pair density. We show that many common functionals, including the most basic version of the LDA (Dirac exchange with no correlation contribution), arise from particular approximations of this map. We develop an algorithm to compute the map numerically, and apply it to one-parameter families {a*rho(a*x)} of one-dimensional homogeneous and inhomogeneous single-particle densities. We observe that the pair density develops remarkable multiscale patterns which strongly depend on both the particle number and the "width" 1/a of the single-particle density. The simulation results are confirmed by rigorous asymptotic results in the limiting regimes a>>1 and a<<1. For one-dimensional homogeneous systems, we show that the whole spectrum of patterns is rep...
Macro-coherent two photon and radiative neutrino pair emission
M. Yoshimura; C. Ohae; A. Fukumi; K. Nakajima; I. Nakano; H. Nanjo; N. Sasao
2008-05-14T23:59:59.000Z
We discuss a possibility of detecting a coherent photon pair emission and related radiative neutrino pair emission from excited atoms. It is shown that atoms of lambda- and ladder-type three level system placed in a pencil-like cylinder give a back to back emission of two photons of equal energy $\\Delta/2$, sharply peaked with a width $\\propto $ 1/(target size) and well collimated along the cylinder axis. This process has a measurable rate $\\propto$ (target number density) $^2 \\times$ target volume, while a broader spectral feature of one-photon distribution separated by (mass sum of a neutrino pair)$^2/(2\\Delta)$ from the two photon peak may arise from radiative neutrino pair emission, with a much smaller rate.
Pair extended coupled cluster doubles
Henderson, Thomas M; Scuseria, Gustavo E
2015-01-01T23:59:59.000Z
The accurate and efficient description of strongly correlated systems remains an important challenge for computational methods. Doubly occupied configuration interaction (DOCI), in which all electrons are paired and no correlations which break these pairs are permitted, can in many cases provide an accurate account of strong correlations, albeit at combinatorial computational cost. Recently, there has been significant interest in a method we refer to as pair coupled cluster doubles (pCCD), a variant of coupled cluster doubles in which the electrons are paired. This is simply because pCCD provides energies nearly identical to those of DOCI, but at mean-field computational cost (disregarding the cost of the two-electron integral transformation). Here, we introduce the more complete pair extended coupled cluster doubles (pECCD) approach which, like pCCD, has mean-field cost and reproduces DOCI energetically. We show that unlike pCCD, pECCD also reproduces the DOCI wave function with high accuracy. Moreoever, pEC...
Permanent Home Number: Residential Number
Viglas, Anastasios
Permanent Home Number: Residential Number: Mobile: Please update my contact details. Signature nominated correspondence address as indicated below. Permanent Home Adress Residential Address Other Address (Must not be a PO Box) Residential Address (Must not be a PO Box) Other - Postal/Optional Address
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
193 UNIT NUMBER: 197 UNIT NAME: CONCRETE RUBBLE PILE (30) REGULATORY STATUS: AOC LOCATION: Outside plant security fence, north of the plant on Big Bayou Creek on private property....
Some Special Fourier Transform Pairs
Vickers, James
Some Special Fourier Transform Pairs 24.3 Introduction ' & $ % Prerequisites Before starting to . . . #12;1. Parseval's Theorem Recall from Unit 2 on Fourier Series that for a periodic signal fT (t) with complex Fourier coefficients cn(n = 0, ±1, ±2, . . .) Parseval's Theorem holds: 1 T + T 2 - T 2 f2 T (t
Solving for the Particle-Number-Projected HFB Wavefunction
L. Y. Jia
2015-01-15T23:59:59.000Z
Recently we proposed a particle-number-conserving theory for nuclear pairing [Jia, Phys. Rev. C 88, 044303 (2013)] through the generalized density matrix formalism. The relevant equations were solved for the case when each single-particle level has a distinct set of quantum numbers and could only pair with its time-reversed partner (BCS-type Hamiltonian). In this work we consider the more general situation when several single-particle levels could have the same set of quantum numbers and pairing among these levels is allowed (HFB-type Hamiltonian). The pair condensate wavefunction (the HFB wavefunction projected onto good particle number) is determined by the equations of motion for density matrix operators instead of the variation principle. The theory is tested in the simple two-level model with factorizable pairing interactions and the semi-realistic model with the zero-range delta interaction.
Isovector pairing collective motion: Generator-coordinate-method approach
Kyotoku, M.; Chen, H.
1987-09-01T23:59:59.000Z
Isovector pairing collective motion is treated by means of the generator coordinate method. In this scheme, the isospin and number projection is performed analytically by the recognition of symmetry properties in the generalized Bardeen-Cooper-Schrieffer wave functions. Among the results obtained, our generator-coordinate-method values of energy and spectroscopic amplitude are shown to be comparable to those of shell model calculations. This is indeed encouraging, especially in view of the fact that they were reached using a simple approximation. The great simplicity of the present method, as compared with earlier complicated versions, suggests that they might prove useful in the study of isovector pairing collective states which are strongly populated by pair transfer reactions in medium weight nuclei.
Rotation Rate of Particle Pairs in Homogeneous Isotropic Turbulence
Daddi-Moussa-Ider, Abdallah
2015-01-01T23:59:59.000Z
Understanding the dynamics of particles in turbulent flow is important in many environmental and industrial applications. In this paper, the statistics of particle pair orientation is numerically studied in homogeneous isotropic turbulent flow, with Taylor microscale Rynolds number of 300. It is shown that the Kolmogorov scaling fails to predict the observed probability density functions (PDFs) of the pair rotation rate and the higher order moments accurately. Therefore, a multifractal formalism is derived in order to include the intermittent behavior that is neglected in the Kolmogorov picture. The PDFs of finding the pairs at a given angular velocity for small relative separations, reveals extreme events with stretched tails and high kurtosis values. Additionally, The PDFs are found to be less intermittent and follow a complementary error function distribution for larger separations.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamos LaboratoryCertified Reference6-02-01Change Number
Electron and positron pair production of compact stars
Wen-Biao Han; Remo Ruffini; She-Sheng Xue
2012-09-15T23:59:59.000Z
Neutral stellar core at or over nuclear densities is described by a positive charged baryon core and negative charged electron fluid since they possess different masses and interactions. Based on a simplified model of a gravitationally collapsing or pulsating baryon core, we approximately integrate the Einstein-Maxwell equations and the equations for the number and energy-momentum conservation of complete degenerate electron fluid. We show possible electric processes that lead to the production of electron-positron pairs in the boundary of a baryon core and calculate the number and energy of electron-positron pairs. This can be relevant for understanding the energetic sources of supernovae and gamma-ray bursts.
Constraining the nuclear pairing gap with pairing vibrations M. Grasso,1
Boyer, Edmond
Constraining the nuclear pairing gap with pairing vibrations E. Khan,1 M. Grasso,1 and J. Margueron. Using the same pairing interaction in nuclear matter and in Tin nuclei, the range of densities where I. INTRODUCTION Studies on pairing effects in both nuclear matter and fi- nite nuclei have known
Galaxy pairs align with galactic filaments
Tempel, Elmo
2015-01-01T23:59:59.000Z
Context. Gravitational collapse theory and numerical simulations suggest that the velocity field within large-scale galaxy filaments is dominated by motions along the filaments. Aims. Our aim is to check whether observational data reveal any preferred orientation of galaxy pairs with respect to the underlying filaments as a result of the expectedly anisotropic velocity field. Methods. We use galaxy pairs and galaxy filaments identified from the Sloan Digital Sky Survey data. For filament extraction, we use the Bisous model that is based the marked point process technique. During the filament detection, we use the centre point of each pair instead of the positions of galaxies to avoid a built-in influence of pair orientation on the filament construction. For pairs lying within filaments (3012 cases), we calculate the angle between the line connecting galaxies of each pair and their host filament. To avoid redshift-space distortions, the angle is measured in the plain of the sky. Results. The alignment analysis...
Pairing Effects in Nuclear Fusion Reaction
Shuichiro Ebata; Takashi Nakatsukasa
2013-09-29T23:59:59.000Z
We simulate a heavy-ion collision using the canonical-basis time-dependent Hartree-Fock-Bogoliubov theory (Cb-TDHFB) treating pairing correlation in the three-dimensional coordinate space. We apply the Cb-TDHFB to 22O+22O collision with a contact-type pairing energy functional, and compare results of Cb-TDHFB and TDHF to investigate the effects of pairing correlations in nuclear fusion. Our results seem to indicate that pairing effects do not increase the fusion cross section in this system.
Pair Creation and an X-ray Free Electron Laser
R. Alkofer; M. B. Hecht; C. D. Roberts; S. M. Schmidt; D. V. Vinnik
2001-08-17T23:59:59.000Z
Using a quantum kinetic equation coupled to Maxwell's equation we study the possibility that focused beams at proposed X-ray free electron laser facilities can generate electric field strengths large enough to cause spontaneous electron-positron pair production from the QED vacuum. Our approach yields the time and momentum dependence of the single particle distribution function. Under conditions reckoned achievable at planned facilities, repeated cycles of particle creation and annihilation take place in tune with the laser frequency. However, the peak particle number density is insensitive to this frequency and one can anticipate the production of a few hundred particle pairs per laser period. Field-current feedback and quantum statistical effects are small and can be neglected in this application of non-equilibrium quantum mean field theory.
MENTORING PAIRINGS APPRENTICE and SIT-INS
May, J. Peter
MENTORING PAIRINGS APPRENTICE and SIT-INS Graduate students and e-mails Name (weeks) @math Undergraduate students, e-mails, and mentors. Name (32) @uchicago.edu mentor(s) William Cole Abram abramwc serapuff Kerr, Thiyagarajan Tengren Zhang tengren85 Bou-Rabee, Putman #12;2 MENTORING PAIRINGS SESAME
Modularity of Termination Using Dependency Pairs ?
Ábrahám, Erika
Modularity of Termination Using Dependency Pairs ? Thomas Arts 1 and J¨urgen Giesl 2 1 Computer@informatik.thdarmstadt.de Abstract. The framework of dependency pairs allows automated ter mination and innermost termination proofs of this framework in order to prove termination in a modular way. Our mod ularity results significantly increase
Exact solution of the nuclear pairing problem
Alexander Volya; B. Alex Brown; Vladimir Zelevinsky
2001-02-20T23:59:59.000Z
In many applications to finite Fermi-systems, the pairing problem has to be treated exactly. We suggest a numerical method of exact solution based on SU(2) quasispin algebras and demonstrate its simplicity and practicality. We show that the treatment of binding energies with the use of the exact pairing and uncorrelated monopole contribution of other residual interactions can serve as an effective alternative to the full shell-model diagonalization in spherical nuclei. A self-consistent combination of the exactly treated pairing and Hartree-Fock method is discussed. Results for Sn isotopes indicate a good agreement with experimental data.
Infinitely many pairs of primes $p$ and $p+2$
Guangchang Dong
2015-03-20T23:59:59.000Z
When $p$ and $p+2$ are primes, such as $3,5; 5,7; 11,13; 17,19; ...$. We call them pairs of prime twins. In this paper we use sieve method (Liu sieve) to construct the weak solution (i.e. formal solution) of prime twins. Then we use auxiliary special 4 sieve problem and its biological model to prove that weak equals classical, i.e. the weak solution is a classical one, hence the numbers of prime twins are infinite.
MENTORING PAIRINGS APPRENTICE and SIT-INS
May, J. Peter
MENTORING PAIRINGS APPRENTICE and SIT_Thiyagarajan______|____avan________| Coordinator: Michael Geline _________Undergraduate_students,_e-mails,_and_mentors.___ |_Name_(32)_____________|@uchicago.edu_|___mentor(s)_____ | | William Cole Abram | abramwc | Guillou, Morris | | Dylan
Leonard pairs from 24 points of view
Paul Terwilliger
2004-06-28T23:59:59.000Z
Let $K$ denote a field and let $V$ denote a vector space over $K$ with finite positive dimension. We consider a pair of linear transformations $A:V\\to V$ and $A^*:V\\to V$ that satisfy both conditions below: (i) There exists a basis for $V$ with respect to which the matrix representing $A$ is diagonal and the matrix representing $A^*$ is irreducible tridiagonal. (ii) There exists a basis for $V$ with respect to which the matrix representing $A^*$ is diagonal and the matrix representing $A$ is irreducible tridiagonal. We call such a pair a {\\it Leonard pair} on $V$. Referring to the above Leonard pair, we investigate 24 bases for $V$ on which the action of $A$ and $A^*$ takes an attractive form. With respect to each of these bases, the matrices representing $A$ and $A^*$ are either diagonal, lower bidiagonal, upper bidiagonal, or tridiagonal.
Schwinger pair creation in multilayer graphene
M. A. Zubkov
2012-04-05T23:59:59.000Z
The low energy effective field model for the multilayer graphene (at ABC stacking) in external Electric field is considered. The Schwinger pair creation rate and the vacuum persistence probability are calculated using the semi - classical approach.
90 Seconds of Discovery: Frustrated Lewis Pairs
Kathmann, Shawn; Schenter, Greg; Autrey, Tom
2014-02-14T23:59:59.000Z
Hydrogen activating catalysts play an important role in producing valuable chemicals, such as biofuels and ammonia. As a part of efforts to develop the next generation of these catalysts, PNNL researchers have found potential in Frustrated Lewis Pairs.
90 Seconds of Discovery: Frustrated Lewis Pairs
Kathmann, Shawn; Schenter, Greg; Autrey, Tom
2014-07-21T23:59:59.000Z
Hydrogen activating catalysts play an important role in producing valuable chemicals, such as biofuels and ammonia. As a part of efforts to develop the next generation of these catalysts, PNNL researchers have found potential in Frustrated Lewis Pairs.
NONSMOOTH LYAPUNOV PAIRS FOR INFINITE-DIMENSIONAL ...
2010-05-27T23:59:59.000Z
Lyapunov pairs have been considered in [14,15,17,25,30] among many ... The criteria in [14,15,24,25] are given by means of the semigroup generated by.
Optical Flashes from Internal Pairs Formed in Gamma-Ray Burst Afterglows
Panaitescu, A
2015-01-01T23:59:59.000Z
We develop a numerical formalism for calculating the distribution with energy of the (internal) pairs formed in a relativistic source from unscattered MeV--TeV photons. For GRB afterglows, this formalism is more suitable if the relativistic reverse-shock that energizes the ejecta is the source of the GeV photons. The number of pairs formed is set by the source GeV output (calculated from the Fermi-LAT fluence), the unknown source Lorentz factor, and the unmeasured peak energy of the LAT spectral component. We show synchrotron and inverse-Compton light-curves expected from pairs formed in the shocked medium and identify some criteria for testing a pair origin of GRB optical counterparts. Pairs formed in bright LAT afterglows with a Lorentz factor in the few hundreds may produce bright optical counterparts (R < 10) lasting for up to one hundred seconds. The number of internal pairs formed from unscattered seed photons decreases very strongly with the source Lorentz factor, thus bright GRB optical counterpart...
Dual Origin of Pairing in Nuclei
A. Idini; G. Potel; F. Barranco; E. Vigezzi; R. A. Broglia
2014-04-29T23:59:59.000Z
An essentially "complete" description of the low-energy nuclear structure of the superfluid nucleus $^{120}$Sn and of its odd-$A$ neighbors is provided by the observations carried out with the help of Coulomb excitation and of one-- and of two-- particle transfer reactions, specific probes of vibrations, quasiparticle and pairing degrees of freedom respectively, and of their mutual couplings. These experimental findings are used to stringently test the predictions of a similarly "complete" description of $^{119,120,121}$Sn carried out in terms of elementary modes of excitation which, through their interweaving, melt together into effective fields, each displaying properties reflecting that of all others, there individuality resulting from the actual relative importance of each one. Its implementation is done by solving the Nambu-Gor'kov equations including, for the first time, all medium polarization effects resulting from the interweaving of quasiparticles, spin and surface vibrations, taking into account, within the framework of nuclear field theory (NFT), the variety of processes leading to self-energy, vertex and Pauli principle corrections, and to the induced pairing interaction. Theory provides an overall quantitative account of the experimental findings. From these results one can, not only obtain strong circumstantial evidence for the inevitability for the dual origin of pairing in nuclei but also, extract information which can be used at profit to quantitatively disentangle the contributions to pairing correlations in general and to the pairing gap in particular, arising from the bare and from the induced pairing interactions.
Fandomized Algorithms and Fandom Number Generation Lindsey Kuper Alex Rudnick
Menczer, Filippo
Fandomized Algorithms and Fandom Number Generation Lindsey Kuper Alex Rudnick School of fandomness and fandomized algo- rithms, discuss some of their applications, and demonstrate a prac- tical fandom number generator. Categories and Subject Descriptors Pairing [fandom/CS]; Rat- ing [PG-13] 1
Nuclear elements in Banach Jordan pairs Ottmar Loos
Nuclear elements in Banach Jordan pairs Ottmar Loos Abstract We introduce nuclear elements in Banach Jordan pairs, generalizing the nuclear elements Jordan pairs and show that the trace form Trintroduced in [3] may be extended to the nuclear
Nonzero angular momentum pairing correlation in shell model
S. Haq; Y. Sadeq; I. M. Hamammu
2008-10-07T23:59:59.000Z
A simple approximation to shell model is proposed in which the low energy excitation spectra corresponds to the identical nucleons occupying the same single particle states where they preferred to form pairs for the ground states. We call this approximation as nonzero angular momentum pairing shell model. It not only reduces the dimensionality of the shell model but also matches the number of low energy levels in experimental spectra for few cases where exact shell model predicts many more states. The special focus has been done to consider the realistic interaction derived from free nucleon-nucleon scattering data to cope with the experimental spectra. The proposed approximation to shell model has been applied to calculate the energy spectra of O18 and Ni58 nuclei where only two neutrons occupy the valence states outside the core. When compared with the experimental data, the results are found to be encouraging. It is expected that results will be more pronounced if the even-even nuclei with higher number of valence nucleons are considered.
Isominkowskian theory of Cooper Pairs in superconductors
Animalu, A.O.E. [Univ. of Nigeria, Nsukka (Nigeria)
1993-10-01T23:59:59.000Z
Via the use of Santilli`s isominkowskian space, the author presents a relativistic extension of the author`s recent treatment of the Cooper Pair in superconductivity based on the Lie-isotopic lifting of quantum mechanics known as Hadronic Mechanics. The isominkowskian treatment reduces the solution of the eiganvalue problem for the quasiparticle energy spectrum to a geometric problem of specifying the metric of the isominkowskian space inside the pair in various models of ordinary high T{sub c} superconductors. The use of an intriguing realization of the metric due to Dirac reduces the dimensionality of the interior space to two yielding a spin mutation from 1/2 to zero inside a Cooper pair in two-band BCS and Hubbard models. 12 refs.
Thermodynamics of pairing in mesoscopic systems
Tony Sumaryada; Alexander Volya
2007-06-12T23:59:59.000Z
Using numerical and analytical methods implemented for different models we conduct a systematic study of thermodynamic properties of pairing correlation in mesoscopic nuclear systems. Various quantities are calculated and analyzed using the exact solution of pairing. An in-depth comparison of canonical, grand canonical, and microcanonical ensemble is conducted. The nature of the pairing phase transition in a small system is of a particular interest. We discuss the onset of discontinuity in the thermodynamic variables, fluctuations, and evolution of zeros of the canonical and grand canonical partition functions in the complex plane. The behavior of the Invariant Correlational Entropy is also studied in the transitional region of interest. The change in the character of the phase transition due to the presence of magnetic field is discussed along with studies of superconducting thermodynamics.
PHYSICAL REVIEW C 85, 034328 (2012) Pairing dynamics in particle transport
Bertsch George F.
2012-01-01T23:59:59.000Z
PHYSICAL REVIEW C 85, 034328 (2012) Pairing dynamics in particle transport Guillaume Scamps on particle transport in time-dependent theories based on the Hartree-Fock- Bogoliubov (HFB) or BCS in particle densities. This can be ameliorated by freezing the occupation numbers during the evolution in TDHF
Management and Conservation Article Estimation of Successful Breeding Pairs for Wolves in the
Mitchell, Mike
successful breeding pairs will become more difficult following proposed delisting of NRM wolves; alternatives delisting, are required. Because pack size is easier to monitor than pack composition, we estimated where number of packs and their sizes are known. Following delisting of NRM wolves, human
Yoshiaki Tsujimoto; Yukihiro Sugiura; Makoto Ando; Daisuke Katsuse; Rikizo Ikuta; Takashi Yamamoto; Masato Koashi; Nobuyuki Imoto
2015-03-10T23:59:59.000Z
We experimentally demonstrated entanglement extraction scheme by using photons at the telecommunication band for optical-fiber-based quantum communications. We generated two pairs of non-degenerate polarization entangled photons at 780~nm and 1551~nm by spontaneous parametric down-conversion and distributed the two photons at 1551~nm through a collective phase damping channel which gives the same amount of random phase shift on the two photons. Through local operation and classical communication, we extracted an entangled photon pair from two phase-disturbed photon pairs. An observed fidelity of the extracted photon pair to a maximally entangled photon pair was 0.73 $\\pm$ 0.07 which clearly shows the recovery of entanglement.
Subthreshold pair production in short laser pulses
T. Nousch; D. Seipt; B. Kampfer; A. I. Titov
2012-06-01T23:59:59.000Z
The $e^+e^-$ pair production by a probe photon traversing a linearly polarized laser pulse is treated as generalized nonlinear Breit-Wheeler process. For short laser pulses with very few oscillations of the electromagnetic field we find below the perturbative weak-field threshold $\\sqrt{s} = 2m$ a similar enhancement of the pair production rate as for circular polarization. The strong subthreshold enhancement is traced back to the finite bandwidth of the laser pulse. A folding model is developed which accounts for the interplay of the frequency spectrum and the intensity distribution in the course of the pulse.
Photon pair generation in birefringent optical fibers
Brian J. Smith; P. Mahou; Offir Cohen; J. S. Lundeen; I. A. Walmsley
2010-02-09T23:59:59.000Z
We study both experimentally and theoretically the generation of photon pairs by spontaneous four-wave mixing (SFWM) in standard birefringent optical fibers. The ability to produce a range of two-photon spectral states, from highly correlated (entangled) to completely factorable, by means of cross-polarized birefringent phase matching, is explored. A simple model is developed to predict the spectral state of the photon pair which shows how this can be adjusted by choosing the appropriate pump bandwidth, fiber length and birefringence. Spontaneous Raman scattering is modeled to determine the tradeoff between SFWM and background Raman noise, and the predicted results are shown to agree with experimental data.
Single top and top pair production
Nikolaos Kidonakis
2012-12-12T23:59:59.000Z
I present results for single-top and top-pair production at the LHC and the Tevatron. Higher-order two-loop corrections are used to achieve NNLL resummation, which is then used to derive NNLO soft-gluon corrections. Results are presented for total cross sections, top transverse momentum distributions, and top rapidity distributions. All results are in excellent agreement with data from the LHC and the Tevatron. I also clarify the differences between various methods in top-pair production and their relation to exact NNLO results.
Quantum Key Distribution with Qubit Pairs
Mohd Asad Siddiqui; Tabish Qureshi
2014-07-17T23:59:59.000Z
We propose a new Quantum Key Distribution method in which Alice sends pairs of qubits to Bob, each in one of four possible states. Bob uses one qubit to generate a secure key and the other to generate an auxiliary key. For each pair he randomly decides which qubit to use for which key. The auxiliary key has to be added to Bob's secure key in order to match Alice's secure key. This scheme provides an additional layer of security over the standard BB84 protocol.
Electron-positron pair oscillation in spatially inhomogeneous electric fields and radiation
Wen-Biao Han; Remo Ruffini; She-Sheng Xue
2010-06-11T23:59:59.000Z
It is known that strong electric fields produce electron and positron pairs from the vacuum, and due to the back-reaction these pairs oscillate back and forth coherently with the alternating electric fields in time. We study this phenomenon in spatially inhomogeneous and bound electric fields by integrating the equations of energymomentum and particle-number conservations and Maxwell equations. The space and time evolutions of the pair-induced electric field, electric charge- and currentdensities are calculated. The results show that non-vanishing electric charge-density and the propagation of pair-induced electric fields, differently from the case of homogeneous and unbound electric fields. The space and time variations of pair-induced electric charges and currents emit an electromagnetic radiation. We obtain the narrow spectrum and intensity of this radiation, whose peak {\\omega}peak locates in the region around 4 KeV for electric field strength \\sim Ec. We discuss their relevances to both the laboratory experiments for electron and positron pair-productions and the astrophysical observations of compact stars with an electromagnetic structure.
EFFECT OF JOINT AUDITOR PAIR ON CONSERVATISM
Paris-Sud XI, Université de
1 EFFECT OF JOINT AUDITOR PAIR ON CONSERVATISM: EVIDENCE FROM IMPAIRMENT TESTS Gerald Lobo's (1997) measure of conservatism, are more likely to book impairments when operating performance is low requiring joint audit to improve audit quality. Mots clés : Co-commissariat Reconnaissance adéquate des
Abstract polymer models with general pair interactions
Aldo Procacci
2008-11-26T23:59:59.000Z
A convergence criterion of cluster expansion is presented in the case of an abstract polymer system with general pair interactions (i.e. not necessarily hard core or repulsive). As a concrete example, the low temperature disordered phase of the BEG model with infinite range interactions, decaying polynomially as $1/r^{d+\\lambda}$ with $\\lambda>0$, is studied.
COOPER PAIR TRANSISTOR IN A TUNABLE ENVIRONMENT
Haviland, David
COOPER PAIR TRANSISTOR IN A TUNABLE ENVIRONMENT S. Corlevi, W. Guichard, and D. B. Haviland* 1 measurements of the CPT, which are performed in a low impedance environment, the charging effects are observed as gate voltage modulation of the critical current. However, in a high impedance environment, a Coulomb
Improved Modular Termination Proofs Using Dependency Pairs
Kobbelt, Leif
Improved Modular Termination Proofs Using Dependency Pairs Ren??e Thiemann, J?urgen Giesl, Peter) termination proofs of term rewrite systems (TRSs). For any TRS, it generates inequality constraints that have to be satisfied by wellfounded orders. However, proving innermost termination is considerably easier than
Improved Modular Termination Proofs Using Dependency Pairs #
Ábrahám, Erika
Improved Modular Termination Proofs Using Dependency Pairs # Ren??e Thiemann, J?urgen Giesl, Peter) termination proofs of term rewrite systems (TRSs). For any TRS, it generates inequality constraints that have to be satisfied by wellfounded orders. However, proving innermost termination is considerably easier than
Improved Modular Termination Proofs Using Dependency Pairs
Middeldorp, Aart
Improved Modular Termination Proofs Using Dependency Pairs Ren´e Thiemann, J¨urgen Giesl, Peter) termination proofs of term rewrite systems (TRSs). For any TRS, it generates inequality constraints that have to be satisfied by well-founded orders. However, proving innermost termination is considerably easier than
Relativistic mean field plus exact pairing approach to open shell nuclei
Wei-Chia Chen; J. Piekarewicz; A. Volya
2013-11-20T23:59:59.000Z
Background: Pairing correlations play a critical role in determining numerous properties of open-shell nuclei. Traditionally, they are included in a mean-field description of atomic nuclei through the approximate Bardeen-Cooper-Schrieffer or Hartree-Fock-Bogoliubov formalism. Purpose: We propose a new hybrid ''relativistic-mean-field-plus-pairing'' approach in which pairing is treated exactly so the number of particles is conserved. To verify the reliability of the formalism, we apply it to the study of both ground-state properties and isoscalar monopole excitations of the Tin isotopes. Methods: Accurately-calibrated relativistic mean-field models supplemented by an exact treatment of pairing correlations are used to compute ground-state observables along the isotopic chain in Tin. In turn, ground-state densities are used as input to the calculation of giant monopole resonances through a constrained-relativistic approach. Results: We compute a variety of ground-state observables sensitive to pairing correlations as well as the evolution of giant monopole energies along the isotopic chain in Tin. Whereas ground-state properties are consistent with experiment, we find that pairing correlations have a minor effect on the giant monopole energies. Conclusions: A new mean-field-plus-pairing approach is introduced to compute properties of open-shell nuclei. The formalism provides an efficient and powerful alternative to the computation of both ground-state properties and monopole energies of open-shell nuclei. We find ground-state properties to be well reproduced in this approach. However, as many have concluded before us, we find that pairing correlations are unlikely to provide an answer to the question of ''why is Tin so soft?''
Neutrinoless Double Beta Decay within QRPA with Proton-Neutron Pairing
G. Pantis; F. Simkovic; J. D. Vergados; Amand Faessler
1996-12-14T23:59:59.000Z
We have investigated the role of proton-neutron pairing in the context of the Quasiparticle Random Phase approximation formalism. This way the neutrinoless double beta decay matrix elements of the experimentally interesting A= 48, 76, 82, 96, 100, 116, 128, 130 and 136 systems have been calculated. We have found that the inclusion of proton-neutron pairing influences the neutrinoless double beta decay rates significantly, in all cases allowing for larger values of the expectation value of light neutrino masses. Using the best presently available experimental limits on the half life-time of neutrinoless double beta decay we have extracted the limits on lepton number violating parameters.
Shape and pairing fluctuations effects on neutrinoless double beta decay nuclear matrix elements
Nuria Lpez Vaquero; Toms R. Rodrguez; J. Luis Egido
2014-01-03T23:59:59.000Z
Nuclear matrix elements (NME) for the most promising candidates to detect neutrinoless double beta decay have been computed with energy density functional methods including deformation and pairing fluctuations explicitly on the same footing. The method preserves particle number and angular momentum symmetries and can be applied to any decay without additional fine tunings. The finite range density dependent Gogny force is used in the calculations. An increase of $10\\%-40\\%$ in the NME with respect to the ones found without the inclusion of pairing fluctuations is obtained, reducing the predicted half-lives of these isotopes.
Shanguang Tan
2007-04-23T23:59:59.000Z
A new kind of numbers called Hyper Space Complex Numbers and its algebras are defined and proved. It is with good properties as the classic Complex Numbers, such as expressed in coordinates, triangular and exponent forms and following the associative and commutative laws of addition and multiplication. So the classic Complex Number is developed from in complex plane with two dimensions to in complex space with N dimensions and the number system is enlarged also.
Resonant tunneling of fluctuation Cooper pairs
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Galda, Alexey; Mel'nikov, A. S.; Vinokur, V. M.
2015-02-09T23:59:59.000Z
Superconducting fluctuations have proved to be an irreplaceable source of information about microscopic and macroscopic material parameters that could be inferred from the experiment. According to common wisdom, the effect of thermodynamic fluctuations in the vicinity of the superconducting transition temperature, Tc, is to round off all of the sharp corners and discontinuities, which otherwise would have been expected to occur at Tc. Here we report the current spikes due to radiation-induced resonant tunneling of fluctuation Cooper pairs between two superconductors which grow even sharper and more pronounced upon approach to Tc. This striking effect offers an unprecedented tool formoredirect measurements of fluctuation Cooper pair lifetime, which is key to our understanding of the fluctuation regime, most notably to nature of the pseudogap state in high-temperature superconductors. Our finding marks a radical departure from the conventional view of superconducting fluctuations as a blurring and rounding phenomenon.less
Graduate Student Mentoring and Degree Timeline Pairing Students with Mentors
Hill, Wendell T.
Graduate Student Mentoring and Degree Timeline Pairing Students with Mentors A successful mentoring program depends upon the quality of the mentor-student pairing. In order to maximize the probability of a successful pairing, the mentor and mentoring team selection process will be as follows: 1. Designation
Method for sequencing DNA base pairs
Sessler, Andrew M. (Oakland, CA); Dawson, John (Pacific Palisades, CA)
1993-01-01T23:59:59.000Z
The base pairs of a DNA structure are sequenced with the use of a scanning tunneling microscope (STM). The DNA structure is scanned by the STM probe tip, and, as it is being scanned, the DNA structure is separately subjected to a sequence of infrared radiation from four different sources, each source being selected to preferentially excite one of the four different bases in the DNA structure. Each particular base being scanned is subjected to such sequence of infrared radiation from the four different sources as that particular base is being scanned. The DNA structure as a whole is separately imaged for each subjection thereof to radiation from one only of each source.
Paired Straight Hearth Furnace | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1 Termoelectrica U.SPRESS FACTBiofuels1of Page ThisnewPaired
Multispecies weighted Hurwitz numbers
Harnad, J
2015-01-01T23:59:59.000Z
The construction of hypergeometric 2D Toda $\\tau$-functions as generating functions for weighted Hurwitz numbers is extended to multispecies families. Both the enumerative geometrical significance of multispecies weighted Hurwitz numbers as weighted enumerations of branched coverings of the Riemann sphere and their combinatorial significance in terms of weighted paths in the Cayley graph of $S_n$ are derived. The particular case of multispecies quantum weighted Hurwitz numbers is studied in detail.
Curvature and Tachibana numbers
Stepanov, Sergey E [Finance Academy under the Government of the Russian Federation, Moscow (Russian Federation)
2011-07-31T23:59:59.000Z
The aim of this paper is to define the rth Tachibana number t{sub r} of an n-dimensional compact oriented Riemannian manifold as the dimension of the space of conformally Killing r-forms, for r=1,2,...,n-1. We also describe properties of these numbers, by analogy with properties of the Betti numbers b{sub r} of a compact oriented Riemannian manifold. Bibliography: 25 titles.
Behmer, Spencer T.
Definitions · Numbered Space a single space marked with a number and reserved for a single permit 24/7 · Unnumbered Space a space which can be used by any customer allowed to park in that lot. High Low Average Question 4: If I buy a staff permit for an UNNUMBERED* space in a non-gated surface
Photoproduction of a ??Pair and Transversity GPDs
M. El Beiyad; B. Pire; L. Szymanowski; S. Wallon
2010-07-16T23:59:59.000Z
We demonstrate that the chiral-odd transversity generalized parton distributions (GPDs) of the nucleon can be accessed through the exclusive photoproduction process gamma + N -> pi + rho + N', in the kinematics where the meson pair has a large invariant mass and the final nucleon has a small transverse momentum, provided the vector meson is produced in a transversely polarized state. We calculate perturbatively the scattering amplitude at leading order in alpha_s: We build a simple model for the dominant transversity GPD HT (x; chi; t) based on the concept of double distribution. Counting rates estimates show that the experiment looks feasible with the real photon beam characteristics expected at JLab@12 GeV, in low Q2 leptoproduction at Jlab@12 GeV and in the COMPASS experiment.
Pair Correlation Function of Wilson Loops
S. Chaudhuri; Y. Chen; E. Novak
2000-02-02T23:59:59.000Z
We give a path integral prescription for the pair correlation function of Wilson loops lying in the worldvolume of Dbranes in the bosonic open and closed string theory. The results can be applied both in ordinary flat spacetime in the critical dimension d or in the presence of a generic background for the Liouville field. We compute the potential between heavy nonrelativistic sources in an abelian gauge theory in relative collinear motion with velocity v = tanh(u), probing length scales down to r_min^2 = 2 \\pi \\alpha' u. We predict a universal -(d-2)/r static interaction at short distances. We show that the velocity dependent corrections to the short distance potential in the bosonic string take the form of an infinite power series in the dimensionless variables z = r_min^2/r^2, uz/\\pi, and u^2.
Texas at Austin. University of
Optical Logic Chuanwei Zhang Department of Physics and Center for Nonlinear Dynamics, The University polarization-entangled state of individual photon pairs. The scheme uses only simple linear optical elements and may be feasible within current optical technology. PACS numbers: 03.67.-a, 03.65.Bz, 42.50.-p, 89.70+c
Pair Production and Radiation Effects in Clouds Illuminated by Gamma Ray Sources
C. D. Dermer; M. Boettcher; E. P. Liang
2001-07-12T23:59:59.000Z
Many classes of gamma-ray sources, such as gamma-ray bursts, blazars, Seyfert galaxies, and galactic black hole sources are surrounded by large amounts of gas and dust. X-rays and gamma-rays that traverse this material will be attenuated by Compton scattering and photoelectric absorption. One signature of an intervening scattering cloud is radiation-hardening by electrons that have been scattered and heated by the incident radiation, as illustrated by a Monte Carlo calculation. Compton scattering provides backscattered photons that will attenuate subsequent gamma rays through \\gamma\\gamma pair-production processes. We calculate the pair efficiency for a cloud illuminated by gamma-ray burst radiation. An analytic calculation of the flux of X-rays and gamma rays Thomson scattered by an intervening cloud is presented. Illuminated clouds near GRBs will form relativistic plasmas containing large numbers of electron-positron pairs that can be detected within ~1-2 days of the explosion before expanding and dissipating. Localized regions of pair annihilation radiation in the Galaxy could reveal gamma-ray sources embedded in dense clouds, or sites of past GRB explosions.
On the polar cap cascade pair multiplicity of young pulsars
Timokhin, A N
2015-01-01T23:59:59.000Z
We study the efficiency of pair production in polar caps of young pulsars under a variety of conditions to estimate the maximum possible multiplicity of pair plasma in pulsar magnetospheres. We develop a semi-analytic model for calculation of cascade multiplicity which allows efficient exploration of the parameter space and corroborate it with direct numerical simulations. Pair creation processes are considered separately from particle acceleration in order to assess different factors affecting cascade efficiency, with acceleration of primary particles described by recent self-consistent non-stationary model of pair cascades. We argue that the most efficient cascades operate in the curvature radiation/synchrotron regime, the maximum multiplicity of pair plasma in pulsar magnetospheres is ~few x 10^5. The multiplicity of pair plasma in magnetospheres of young energetic pulsars weakly depends on the strength of the magnetic field and the radius of curvature of magnetic field lines and has a stronger dependence ...
Proton-neutron pairing correlations in the nuclear shell model
Lei Yang; S. Pittel; B. Thakur; N. Sandulescu; A. Poves; Yu-Min Zhao
2010-06-16T23:59:59.000Z
A shell-model study of proton-neutron pairing in f - p shell nuclei using a parametrized hamiltonian that includes deformation and spin-orbit effects as well as isoscalar and isovector pairing is reported. By working in a shell-model framework we are able to assess the role of the various modes of proton-neutron pairing in the presence of nuclear deformation without violating symmetries. Results are presented for $^{44}$Ti, $^{46}$Ti and $^{48}$Cr.
Theoretical overview on top pair production and single top production
Stefan Weinzierl
2012-01-19T23:59:59.000Z
In this talk I will give an overview on theoretical aspects of top quark physics. The focus lies on top pair production and single top production.
A Bell pair in a generic random matrix environment
Carlos Pineda; Thomas H. Seligman
2006-05-18T23:59:59.000Z
Two non-interacting qubits are coupled to an environment. Both coupling and environment are represented by random matrix ensembles. The initial state of the pair is a Bell state, though we also consider arbitrary pure states. Decoherence of the pair is evaluated analytically in terms of purity; Monte Carlo calculations confirm these results and also yield the concurrence of the pair. Entanglement within the pair accelerates decoherence. Numerics display the relation between concurrence and purity known for Werner states, allowing us to give a formula for concurrence decay.
associative pairing enhances: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
design rules... Cowen, Nicholas L. 2010-07-14 22 Associated Production of Neutral Higgs Boson with Squark Pair in the Minimal Supersymmetric Standard Model with Explicit CP...
Space qualified nanosatellite electronics platform for photon pair experiments
Cheng, Cliff; Tan, Yue Chuan; Ling, Alexander
2015-01-01T23:59:59.000Z
We report the design and implementation of a complete electronics platform for conducting a quantum optics experiment that will be operated on board a 1U CubeSat (a 10 x 10 x 10 cm satellite). The quantum optics experiment is designed to produce polarization-entangled photon pairs using non-linear optical crystals and requires opto-electronic components such as a pump laser, single photon detectors and liquid crystal based polarization rotators in addition to passive optical elements. The platform provides mechanical support for the optical assembly. It also communicates autonomously with the host satellite to provide experiment data for transmission to a ground station. A limited number of commands can be transmitted from ground to the platform enabling it to switch experimental modes. This platform requires less than 1.5W for all operations, and is space qualified. The implementation of this electronics platform is a major step on the road to operating quantum communication experiments using nanosatellites.
Space qualified nanosatellite electronics platform for photon pair experiments
Cliff Cheng; Rakhitha Chandrasekara; Yue Chuan Tan; Alexander Ling
2015-05-25T23:59:59.000Z
We report the design and implementation of a complete electronics platform for conducting a quantum optics experiment that will be operated on board a 1U CubeSat (a 10 x 10 x 10 cm satellite). The quantum optics experiment is designed to produce polarization-entangled photon pairs using non-linear optical crystals and requires opto-electronic components such as a pump laser, single photon detectors and liquid crystal based polarization rotators in addition to passive optical elements. The platform provides mechanical support for the optical assembly. It also communicates autonomously with the host satellite to provide experiment data for transmission to a ground station. A limited number of commands can be transmitted from ground to the platform enabling it to switch experimental modes. This platform requires less than 1.5W for all operations, and is space qualified. The implementation of this electronics platform is a major step on the road to operating quantum communication experiments using nanosatellites.
Li, Wei; Harrington, Richard; Tang, Yuanzhi; Kubicki, James D.; Aryanpour, Masoud; Reeder, Richard J.; Parise, John B.; Phillips, Brian L. (SBU); (Penn)
2012-03-15T23:59:59.000Z
Structural information is important for understanding surface adsorption mechanisms of contaminants on metal (hydr)oxides. In this work, a novel technique was employed to study the interfacial structure of arsenate oxyanions adsorbed on {gamma}-alumina nanoparticles, namely, differential pair distribution function (d-PDF) analysis of synchrotron X-ray total scattering. The d-PDF is the difference of properly normalized PDFs obtained for samples with and without arsenate adsorbed, otherwise identically prepared. The real space pattern contains information on atomic pair correlations between adsorbed arsenate and the atoms on {gamma}-alumina surface (Al, O, etc.). PDF results on the arsenate adsorption sample on {gamma}-alumina prepared at 1 mM As concentration and pH 5 revealed two peaks at 1.66 {angstrom} and 3.09 {angstrom}, corresponding to As-O and As-Al atomic pair correlations. This observation is consistent with those measured by extended X-ray absorption fine structure (EXAFS) spectroscopy, which suggests a first shell of As-O at 1.69 {+-} 0.01 {angstrom} with a coordination number of 4 and a second shell of As-Al at 3.13 {+-} 0.04 {angstrom} with a coordination number of 2. These results are in agreement with a bidentate binuclear coordination environment to the octahedral Al of {gamma}-alumina as predicted by density functional theory (DFT) calculation.
Nelson, R.N. (ed.)
1985-05-01T23:59:59.000Z
This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.
Pair correlations in crystalline solid solutions
Ice, G.E.; Sparks, C.J. [Oak Ridge National Lab., TN (United States); Shaffer, L. [Anderson Univ., IN (United States). Dept. of Physics; Zschack, P. [Oak Ridge Institute of Science and Education, TN (United States)
1994-06-01T23:59:59.000Z
Recent measurements of pair correlations in metallic solid solutions challenge simple models of atomic size in alloy structure. These measurements take advantage of intense and tunable synchrotron X radiation to control the x-ray scattering contrast between atoms in a solid solution. For binary alloys with elements nearby in the periodic table it is possible to tune the x-ray energy near the K edge so that the scattering contrast varies from near zero to {plus_minus}5 electron units. Even larger contrast variation is possible near L edges or with complementary x-ray and neutron diffraction data sets. With adjusted scattering contrast it is possible to measure short-range-order (SRO), even in alloys with elements nearby in the periodic table. It is also possible to detect chemically-specific static displacements of {plus_minus}0.001 {angstrom} or less and with fewer assumptions than with previous experimental methods. We compare the measured chemically-specific static displacements in Fe{sub 22.5}Ni{sub 77.5} and Cr{sub 47}Fe{sub 53} with previous models and with the results of other experiments.
Tridiagonal pairs of $q$-Racah type
Ito, Tatsuro
2008-01-01T23:59:59.000Z
Let $K$ denote an algebraically closed field and let $V$ denote a vector space over $K$ with finite positive dimension. We consider a pair of linear transformations $A:V \\to V$ and $A^*:V \\to V$ that satisfy the following conditions: (i) each of $A,A^*$ is diagonalizable; (ii) there exists an ordering $\\lbrace V_i\\rbrace_{i=0}^d$ of the eigenspaces of $A$ such that $A^* V_i \\subseteq V_{i-1} + V_{i} + V_{i+1}$ for $0 \\leq i \\leq d$, where $V_{-1}=0$ and $V_{d+1}=0$; (iii) there exists an ordering $\\lbrace V^*_i\\rbrace_{i=0}^\\delta$ of the eigenspaces of $A^*$ such that $A V^*_i \\subseteq V^*_{i-1} + V^*_{i} + V^*_{i+1}$ for $0 \\leq i \\leq \\delta$, where $V^*_{-1}=0$ and $V^*_{\\delta+1}=0$; (iv) there is no subspace $W$ of $V$ such that $AW \\subseteq W$, $A^* W \\subseteq W$, $W \
How to sharpen a tridiagonal pair
Ito, Tatsuro
2008-01-01T23:59:59.000Z
Let $\\F$ denote a field and let $V$ denote a vector space over $\\F$ with finite positive dimension. We consider a pair of linear transformations $A:V \\to V$ and $A^*:V \\to V$ that satisfy the following conditions: (i) each of $A,A^*$ is diagonalizable; (ii) there exists an ordering $\\lbrace V_i\\rbrace_{i=0}^d$ of the eigenspaces of $A$ such that $A^* V_i \\subseteq V_{i-1} + V_{i} + V_{i+1}$ for $0 \\leq i \\leq d$, where $V_{-1}=0$ and $V_{d+1}=0$; (iii) there exists an ordering $\\lbrace V^*_i\\rbrace_{i=0}^\\delta$ of the eigenspaces of $A^*$ such that $A V^*_i \\subseteq V^*_{i-1} + V^*_{i} + V^*_{i+1}$ for $0 \\leq i \\leq \\delta$, where $V^*_{-1}=0$ and $V^*_{\\delta+1}=0$; (iv) there is no subspace $W$ of $V$ such that $AW \\subseteq W$, $A^* W \\subseteq W$, $W \
A classification of sharp tridiagonal pairs
Ito, Tatsuro; Terwilliger, Paul
2010-01-01T23:59:59.000Z
Let $F$ denote a field and let $V$ denote a vector space over $F$ with finite positive dimension. We consider a pair of linear transformations $A:V \\to V$ and $A^*:V \\to V$ that satisfy the following conditions: (i) each of $A,A^*$ is diagonalizable; (ii) there exists an ordering $\\lbrace V_i\\rbrace_{i=0}^d$ of the eigenspaces of $A$ such that $A^* V_i \\subseteq V_{i-1} + V_{i} + V_{i+1}$ for $0 \\leq i \\leq d$, where $V_{-1}=0$ and $V_{d+1}=0$; (iii) there exists an ordering $\\lbrace V^*_i\\rbrace_{i=0}^\\delta$ of the eigenspaces of $A^*$ such that $A V^*_i \\subseteq V^*_{i-1} + V^*_{i} + V^*_{i+1}$ for $0 \\leq i \\leq \\delta$, where $V^*_{-1}=0$ and $V^*_{\\delta+1}=0$; (iv) there is no subspace $W$ of $V$ such that $AW \\subseteq W$, $A^* W \\subseteq W$, $W \
On the shape of a tridiagonal pair
Nomura, Kazumasa
2009-01-01T23:59:59.000Z
Let $K$ denote a field and let $V$ denote a vector space over $K$ with finite positive dimension. We consider a pair of linear transformations $A:V \\to V$ and $A^*:V \\to V$ that satisfy the following conditions: (i) each of $A,A^*$ is diagonalizable; (ii) there exists an ordering $\\lbrace V_i\\rbrace_{i=0}^d$ of the eigenspaces of $A$ such that $A^* V_i \\subseteq V_{i-1} + V_{i} + V_{i+1}$ for $0 \\leq i \\leq d$, where $V_{-1}=0$ and $V_{d+1}=0$; (iii) there exists an ordering $\\lbrace V^*_i\\rbrace_{i=0}^\\delta$ of the eigenspaces of $A^*$ such that $A V^*_i \\subseteq V^*_{i-1} + V^*_{i} + V^*_{i+1}$ for $0 \\leq i \\leq \\delta$, where $V^*_{-1}=0$ and $V^*_{\\delta+1}=0$; (iv) there is no subspace $W$ of $V$ such that $AW \\subseteq W$, $A^* W \\subseteq W$, $W \
The structure of a tridiagonal pair
Nomura, Kazumasa
2008-01-01T23:59:59.000Z
Let $K$ denote a field and let $V$ denote a vector space over $K$ with finite positive dimension. We consider a pair of linear transformations $A:V \\to V$ and $A^*:V \\to V$ that satisfy the following conditions: (i) each of $A,A^*$ is diagonalizable; (ii) there exists an ordering $\\{V_i\\}_{i=0}^d$ of the eigenspaces of $A$ such that $A^* V_i \\subseteq V_{i-1} + V_i + V_{i+1}$ for $0 \\leq i \\leq d$, where $V_{-1}=0$ and $V_{d+1}=0$; (iii) there exists an ordering $\\{V^*_i\\}_{i=0}^\\delta$ of the eigenspaces of $A^*$ such that $A V^*_i \\subseteq V^*_{i-1} + V^*_i + V^*_{i+1}$ for $0 \\leq i \\leq \\delta$, where $V^*_{-1}=0$ and $V^*_{\\delta+1}=0$; (iv)there is no subspace $W$ of $V$ such that $AW \\subseteq W$, $A^* W \\subseteq W$, $W \
Tridiagonal pairs and the $\\mu$-conjecture
Nomura, Kazumasa
2009-01-01T23:59:59.000Z
Let $F$ denote a field and let $V$ denote a vector space over $F$ with finite positive dimension. We consider a pair of linear transformations $A:V \\to V$ and $A^*:V \\to V$ that satisfy the following conditions: (i) each of $A,A^*$ is diagonalizable; (ii) there exists an ordering $\\{V_i\\}_{i=0}^d$ of the eigenspaces of $A$ such that $A^* V_i \\subseteq V_{i-1} + V_{i} + V_{i+1}$ for $0 \\leq i \\leq d$, where $V_{-1}=0$ and $V_{d+1}=0$; (iii) there exists an ordering $\\{V^*_i\\}_{i=0}^\\delta$ of the eigenspaces of $A^*$ such that $A V^*_i \\subseteq V^*_{i-1} + V^*_{i} + V^*_{i+1}$ for $0 \\leq i \\leq \\delta$, where $V^*_{-1}=0$ and $V^*_{\\delta+1}=0$; (iv) there is no subspace $W$ of $V$ such that $AW \\subseteq W$, $A^* W \\subseteq W$, $W \
Towards a classification of the tridiagonal pairs
Nomura, Kazumasa
2008-01-01T23:59:59.000Z
Let $K$ denote a field and let $V$ denote a vector space over $K$ with finite positive dimension. Let $End(V)$ denote the $K$-algebra consisting of all $K$-linear transformations from $V$ to $V$. We consider a pair $A,A^* \\in End(V)$ that satisfy (i)--(iv) below: (i) Each of $A,A^*$ is diagonalizable. (ii) There exists an ordering $\\{V_i\\}_{i=0}^d$ of the eigenspaces of $A$ such that $A^* V_i \\subseteq V_{i-1} + V_{i} + V_{i+1}$ for $0 \\leq i \\leq d$, where $V_{-1}=0$ and $V_{d+1}=0$. (iii) There exists an ordering $\\{V^*_i\\}_{i=0}^\\delta$ of the eigenspaces of $A^*$ such that $A V^*_i \\subseteq V^*_{i-1} + V^*_{i} + V^*_{i+1}$ for $0 \\leq i \\leq \\delta$, where $V^*_{-1}=0$ and $V^*_{\\delta+1}=0$. (iv) There is no subspace $W$ of $V$ such that $AW \\subseteq W$, $A^* W \\subseteq W$, $W \
Pairing-induced speedup of nuclear spontaneous fission
Jhilam Sadhukhan; J. Dobaczewski; W. Nazarewicz; J. A. Sheikh; A. Baran
2014-10-06T23:59:59.000Z
Collective inertia is strongly influenced at the level crossing at which quantum system changes diabatically its microscopic configuration. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of those configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of $^{264}$Fm and $^{240}$Pu using the state-of-the-art self-consistent framework. We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM$^*$ and a density-dependent pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action principle in a four-dimensional collective space of shape and pairing coordinates. Pairing correlations are enhanced along the minimum-action fission path. For the symmetric fission of $^{264}$Fm, where the effect of triaxiality on the fission barrier is large, the geometry of fission pathway in the space of shape degrees of freedom is weakly impacted by pairing. This is not the case for $^{240}$Pu where pairing fluctuations restore the axial symmetry of the dynamic fission trajectory. The minimum-action fission path is strongly impacted by nucleonic pairing. In some cases, the dynamical coupling between shape and pairing degrees of freedom can lead to a dramatic departure from the static picture. Consequently, in the dynamical description of nuclear fission, particle-particle correlations should be considered on the same footing as those associated with shape degrees of freedom.
Parity violating radiative emission of neutrino pair in heavy alkaline earth atoms of even isotopes
M. Yoshimura; N. Sasao; S. Uetake
2014-03-26T23:59:59.000Z
Metastable excited states ${}^3P_2, {}^3P_0$ of heavy alkaline earth atoms of even isotopes are studied for parity violating (PV) effects in radiative emission of neutrino pair (RENP). PV terms arise from interference between two diagrams containing neutrino pair emission of valence spin current and nuclear electroweak charge density proportional to the number of neutrons in nucleus. This mechanism gives large PV effects, since it does not suffer from the suppression of 1/(electron mass) usually present for non-relativistic atomic electrons. A controllable magnetic field is crucial to identify RENP process by measuring PV observables. Results of PV asymmetries under the magnetic field reversal and the photon circular polarization reversal are presented for an example of Yb atom.
installed solar electric systems on a number of the city's buildings, including the Chicago Center for Green Technology shown here. CityofChicago Aggregated Purchasing--A Clean Energy Strategy SOLAR TODAY Aggregated Purchasing--A Clean Energy Strategy by Lori A. Bird and Edward A. Holt #12;November/December 2002 35 Power
Khan, T.A.; Baum, J.W.; Beckman, M.C. [eds.] [eds.
1993-10-01T23:59:59.000Z
This document contains information dealing with the lessons learned from the experience of nuclear plants. In this issue the authors tried to avoid the `tyranny` of numbers and concentrated on the main lessons learned. Topics include: filtration devices for air pollution abatement, crack repair and inspection, and remote handling equipment.
An interatomic pair potential for cadmium selenide Eran Rabani
Rabani, Eran
in all three crystal structures: wurtzite, zinc blende, and rocksalt. Using the new pair potential we have studied the pressure-induced phase transition from the fourfold-coordinate wurtzite structure for wurtzite cadmium selenide.6 In this paper we derive a set of interatomic pair poten- tials for cadmium
ON WAVELETS INTERPOLATED FROM A PAIR OF WAVELET SETS
Speegle, Darrin
ON WAVELETS INTERPOLATED FROM A PAIR OF WAVELET SETS Ziemowit Rzeszotnik and Darrin Speegle September 1, 2000 Abstract. We show that any wavelet, with the support of its Fourier transform small enough, can be interpolated from a pair of wavelet sets. The interpolation procedure, which was introduced
MENTORING PAIRINGS Graduate students and e-mails
May, J. Peter
MENTORING PAIRINGS APPRENTICE Graduate students and e-mails Name @math.uchicago.edu Mohammed Undergraduate students, e-mails, and mentors. Name (18) @uchicago.edu mentor(s) Padraic James Bartlett padraic jonathan Ben Lee and Wei Ren 1 #12;2 MENTORING PAIRINGS YSP Graduate students and e-mails Name @math
MENTORING PAIRINGS (plus others with mentors in common)
May, J. Peter
MENTORING PAIRINGS APPRENTICE (plus others with mentors in common) Graduate students and e-mails, and mentors. (All e-mails are @midway.uchicago.edu.) Philip Ascher pa7 Fowler, Scheels, and Iyer Emil Bojanov yuc Fowler, Scheels, and Iyer 1 #12;2 MENTORING PAIRINGS YSP (plus others with mentors in common
MENTORING PAIRINGS Graduate students and e-mails
May, J. Peter
MENTORING PAIRINGS APPRENTICE Graduate students and e-mails Name @math.uchicago.edu Kate Ponto-mails, and mentors. Name (24) e-mail mentor(s) Bargar, Emily ebargar@uchicago.edu Booth Behr, Piotr S. pbehr-INS Norton, Emily brntnrtn@uchicago.edu Ponto Rezvi, Sara arsinoe@uchicago.edu Ponto #12;2 MENTORING PAIRINGS
Computing local p-adic height pairings on hyperelliptic curves
Balakrishnan, Jennifer S
2010-01-01T23:59:59.000Z
We describe an algorithm to compute the local component at p of the Coleman-Gross p-adic height pairing on divisors on hyperelliptic curves. As the height pairing is given in terms of a Coleman integral, we also provide new techniques to evaluate Coleman integrals of meromorphic differentials and present our algorithms as implemented in Sage.
LCPHSM2004005 Study of Higgs Boson Pair Production at
LCPHSM2004005 March 2004 Study of Higgs Boson Pair Production at Linear Collider K. Desch a , TV for the measurement of the neutral Higgs boson properties within the framework of the MSSM. The process of associated Higgs boson production with subsequent decays of Higgs bosons into bquark and #lepton pairs
Pair Production of Topological anti de Sitter Black Holes
R. B. Mann
1996-07-28T23:59:59.000Z
The pair creation of black holes with event horizons of non-trivial topology is described. The spacetimes are all limiting cases of the cosmological $C$ metric. They are generalizations of the $(2+1)$ dimensional black hole and have asymptotically anti de Sitter behaviour. Domain walls instantons can mediate their pair creation for a wide range of mass and charge.
Liquid pair correlations in four spatial dimensions: Theory versus simulation
M. Heinen; J. Horbach; H. Lwen
2014-11-06T23:59:59.000Z
Using liquid integral equation theory, we calculate the pair correlations of particles that interact via a smooth repulsive pair potential in d = 4 spatial dimensions. We discuss the performance of different closures for the Ornstein-Zernike equation, by comparing the results to computer simulation data. Our results are of relevance to understand crystal and glass formation in high-dimensional systems.
Pairing-induced speedup of nuclear spontaneous fission
Sadhukhan, Jhilam; Nazarewicz, W; Sheikh, J A; Baran, A
2014-01-01T23:59:59.000Z
Collective inertia is strongly influenced at the level crossing at which quantum system changes diabatically its microscopic configuration. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of those configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of $^{264}$Fm and $^{240}$Pu using the state-of-the-art self-consistent framework. We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM$^*$ and a density-dependent pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action princip...
Relativistic tunneling picture of electron-positron pair creation
Anton Wllert; Michael Klaiber; Heiko Bauke; Christoph H. Keitel
2015-03-19T23:59:59.000Z
The common tunneling picture of electron-positron pair creation in a strong electric field is generalized to pair creation in combined crossed electric and magnetic fields. This enhanced picture, being symmetric for electrons and positrons, is formulated in a gauge-invariant and Lorentz-invariant manner for quasistatic fields. It may be used to infer qualitative features of the pair creation process. In particular, it allows for an intuitive interpretation of how the presence of a magnetic field modifies and, in particular cases, even enhances pair creation. The creation of electrons and positrons from the vacuum may be assisted by an energetic photon, which can also be incorporated into this picture of pair creation.
Leonard pairs and the q-Racah polynomials
Paul Terwilliger
2008-07-24T23:59:59.000Z
Let $K$ denote a field and let $V$ denote a vector space over $K$ with finite positive dimension. We consider an ordered pair of linear transformations $A:V\\to V$ and $A^*:V\\to V$ that satisfy conditions (i), (ii) below. (i) There exists a basis for $V$ with respect to which the matrix representing $A$ is irreducible tridiagonal and the matrix representing $A^*$ is diagonal. (ii) There exists a basis for $V$ with respect to which the matrix representing $A$ is diagonal and the matrix representing $A^*$ is irreducible tridiagonal. We call such a pair a {\\it Leonard pair} on $V$. We discuss a correspondence between Leonard pairs and a class of orthogonal polynomials consisting of the $q$-Racah polynomials and some related polynomials of the Askey scheme. For the polynomials in this class we obtain the 3-term recurrence, difference equation, Askey-Wilson duality, and orthogonality in a uniform manner using the corresponding Leonard pair.
Pair distribution function study on compression of liquid gallium
Luo, Shengnian [Los Alamos National Laboratory; Yu, Tony [SUNY-SB; Chen, Jiuhua [SUNY-SB; Ehm, Lars [SUNY-SB; Guo, Quanzhong [SUNY-SB; Parise, John [SUNY-SB
2008-01-01T23:59:59.000Z
Integrating a hydrothermal diamond anvil cell (HDAC) and focused high energy x-ray beam from the superconductor wiggler X17 beamline at the National Synchrotron Light Source (NSLS) at the Brookhaven National Laboratory (BNL), we have successfully collected high quality total x-ray scattering data of liquid gallium. The experiments were conducted at a pressure range from 0.1GPa up to 2GPa at ambient temperature. For the first time, pair distribution functions (PDF) for liquid gallium at high pressure were derived up to 10 {angstrom}. Liquid gallium structure has been studied by x-ray absorption (Di Cicco & Filipponi, 1993; Wei et al., 2000; Comez et al., 2001), x-ray diffraction studies (Waseda & Suzuki, 1972), and molecular dynamics simulation (Tsay, 1993; Hui et al., 2002). These previous reports have focused on the 1st nearest neighbor structure, which tells us little about the atomic arrangement outside the first shell in non- crystalline materials. This study focuses on the structure of liquid gallium and the atomic structure change due to compression. The PDF results show that the observed atomic distance of the first nearest neighbor at 2.78 {angstrom} (first G(r) peak and its shoulder at the higher Q position) is consistent with previous studies by x-ray absorption (2.76 {angstrom}, Comez et al., 2001). We have also observed that the first nearest neighbor peak position did not change with pressure increasing, while the farther peaks positions in the intermediate distance range decreased with pressure increasing. This leads to a conclusion of the possible existence of 'locally rigid units' in the liquid. With the addition of reverse Monte Carlo modeling, we have observed that the coordination number in the local rigit unit increases with pressure. The bulk modulus of liquid gallium derived from the volume compression curve at ambient temperature (300K) is 12.1(6) GPa.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota PriusNSR Key Number Retrieval Pease
Vacuum pair production of charged scalar bosons in time-dependent electric fields
Zi-Liang Li; Ding Lu; Bai-Song Xie
2013-12-10T23:59:59.000Z
Based on the quantum mechanical scattering model, the dynamical assist effect and the multiple-slit interference effect in electron-positron pair production from vacuum are generalized to vacuum pair production of charged scalar bosons. For the former effect some combinations of a strong but slowly varying electric field and a weak but rapidly varying one with different time delay are studied. Results indicate that the oscillation intensity of momentum spectrum and the number density of created bosons reduce with increasing of the time delay. Obviously, they achieve the maximum if the time delay equals zero. For the latter effect, it is shown that this effect does not exist for equal-sign $N$-pulse electric field in contrast to its existence for alternating-sign $N$-pulse. An approximate solution of boson momentum spectrum is got and it is agreeable well with the exact numerical one in alternating-sign $N$-pulse electric field, especially for $2$-pulse field and for small longitudinal momentum. The difference of vacuum pair production between bosons and fermions are also compared for their longitudinal momentum spectra.
Grant Application Package CFDA Number
Talley, Lynne D.
Grant Application Package CFDA Number: Opportunity Title: Offering Agency: Agency Contact: Opportunity Open Date: Opportunity Close Date: CFDA Description: Opportunity Number: Competition ID
Polarization operator approach to pair creation in short laser pulses
Meuren, Sebastian; Keitel, Christoph H; Di Piazza, Antonino
2014-01-01T23:59:59.000Z
We investigate the nonlinear Breit-Wheeler process inside short laser pulses, i.e. the creation of an electron-positron pair induced by a gamma photon inside a plane-wave background field. To obtain the total pair-creation probability we verify (to leading-order) the cutting rule for the polarization operator in the realm of strong-field QED by an explicit calculation. Furthermore, a double-integral representation for the leading-order contribution to the field-dependent part of the polarization operator is derived. The combination of both results yields a compact expression for the total pair-creation probability inside an arbitrary plane-wave background field. It is shown numerically that with presently available technology pair-creation probabilities of the order of ten percent could be reached for a single gamma photon.
Visualizing the Optical Interaction Tensor of a Gold Nanoparticle Pair
Novotny, Lukas
Visualizing the Optical Interaction Tensor of a Gold Nanoparticle Pair Bradley Deutsch, Rainer Hillenbrand,, and Lukas Novotny*, Institute of Optics, University of Rochester, Rochester, New York 14627, Basque Foundation for Science, 48011 Bilbao, Spain ABSTRACT The control of optical fields
Farritor, Shane
Number: CFDA Number(s) - 93.243; Funding Opportunity Number - OA-08-002. Agency/Department: Department
QSO pairs {\\it across} Active galaxies: Evidence of Blueshifts?
D. Basu
2007-01-08T23:59:59.000Z
Several QSO pairs have been reported and their redshifts determined, where the two objects in each pair are located {\\it across} an active galaxy. The usually accepted explanation of such occurrences is that the pair is ejected from the active galaxy. Currebtly interpreted redshifted spectra for both the QSOs imply that both the objects are receding from the observer. However, ejection can occur towards and away from the observer with equal probability. We argue that for a system with two QSOs {\\it across} the parent galaxy, ejection should have occurred in opposite directions, whereby one object will be approaching us and the other will be receding from us. The former would be exhibiting a blueshifted spectrum. We analyse here a sample of four such pairs and show that the observed spectrum of one QSO in each pair can be interpreted as blueshifted. The other exhibits the ususal redshifted spectrum.A scenario based on the 'sling-shot' mechanism of ejection is presented to explain the ocurrences of the pairs in opposite sides of the active galaxies moving in opposite durections.
On magnon mediated Cooper pair formation in ferromagnetic superconductors
Kar, Rakesh; Paul, Bikash Chandra [Department of Physics, University of North Bengal, Raja Rammohunpur, Darjeeling 734013, West Bengal (India); Goswami, Tamal; Misra, Anirban, E-mail: anirbanmisra@yahoo.com [Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling 734013, West Bengal (India)
2014-08-15T23:59:59.000Z
Identification of pairing mechanism leading to ferromagnetic superconductivity is one of the most challenging issues in condensed matter physics. Although different models have been proposed to explain this phenomenon, a quantitative understanding about this pairing is yet to be achieved. Using the localized-itinerant model, we find that in ferromagnetic superconducting materials both triplet pairing and singlet pairing of electrons are possible through magnon exchange depending upon whether the Debye cut off frequency of magnons is greater or lesser than the Hund's coupling (J) multiplied by average spin (S) per site. Taking into account the repulsive interaction due to the existence of paramagnons, we also find an expression for effective interaction potential between a pair of electrons with opposite spins. We apply the developed formalism in case of UGe{sub 2} and URhGe. The condition of singlet pairing is found to be fulfilled in these cases, as was previously envisaged by Suhl [Suhl, Phys. Rev. Lett. 87, 167007 (2001)]. We compute the critical temperatures of URhGe at ambient pressure and of UGe{sub 2} under different pressures for the first time through BCS equation. Thus, this work outlines a very simple way to evaluate critical temperature in case of a superconducting system. A close match with the available experimental results strongly supports our theoretical treatment.
Observer dependence of bubble nucleation and Schwinger pair production
Garriga, Jaume [Departament de Fsica Fonamental i Institut de Cincies del Cosmos, Universitat de Barcelona, Mart i Franqus 1, 08028 Barcelona (Spain); Kanno, Sugumi; Vilenkin, Alexander [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155 (United States); Sasaki, Misao [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Soda, Jiro, E-mail: jaume.garriga@ub.edu, E-mail: sugumi@cosmos.phy.tufts.edu, E-mail: misao@yukawa.kyoto-u.ac.jp, E-mail: jiro@tap.scphys.kyoto-u.ac.jp, E-mail: vilenkin@cosmos.phy.tufts.edu [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan)
2012-12-01T23:59:59.000Z
Pair production in a constant electric field is closely analogous to bubble nucleation in a false vacuum. The classical trajectories of the pairs are Lorentz invariant, but it appears that this invariance should be broken by the nucleation process. Here, we use a model detector, consisting of other particles interacting with the pairs, to investigate how pair production is seen by different Lorentzian observers. We focus on the idealized situation where a constant external electric field is present for an infinitely long time, and we consider the in-vacuum state for a charged scalar field that describes the nucleating pairs. The in-vacuum is defined in terms of modes which are positive frequency in the remote past. Even though the construction uses a particular reference frame and a gauge where the vector potential is time dependent, we show explicitly that the resulting quantum state is Lorentz invariant. We then introduce a ''detector'' particle which interacts with the nucleated pairs, and show that all Lorentzian observers will see the particles and antiparticles nucleating preferentially at rest in the detector's rest frame. Similar conclusions are expected to apply to bubble nucleation in a sufficiently long lived vacuum. We also comment on certain unphysical aspects of the Lorentz invariant in-vacuum, associated with the fact that it contains an infinite density of particles. This can be easily remedied by considering Lorentz breaking initial conditions.
Formation of Cooper pairs as a consequence of exchange interaction
Stanislav Dolgopolov
2015-04-13T23:59:59.000Z
The pairing of two electrons with antiparallel spins may minimize the energy of each of the paired electrons. Thus the exchange interaction and the Pauli Exclusion Principle cause a bond between two electrons in a crystal. This can be proved analyzing the energy of each conduction electron in the field of a crystal on assumption that all other kinds of magnetic spin ordering in the crystal are weak. The superconductivity in a metallic crystal occurs only if conduction electrons before the pairing are put closely on the Fermi surface in the momentum space. The motion of conduction electrons in the crystal may disturb the formation of Cooper pairs, because the kinetic energy of the motion is usually much larger than the energy gap of superconductor. The conduction electrons as standing waves have a zero momentum, hence their momentums are synchronous; consequently the formation of Cooper pairs is more probable than in case of electrons with nonzero momentums. The total momentum of the pair of two electrons as standing waves is zero.
Controlling the transmitted information of a multi-photon interacting with a single-Cooper pair box
Kadry, Heba, E-mail: hkadry1@yahoo.com; Abdel-Aty, Abdel-Haleem, E-mail: hkadry1@yahoo.com; Zakaria, Nordin, E-mail: hkadry1@yahoo.com [Computer and Information Science Department, Universiti Teknologi Petronas, Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Cheong, Lee Yen [Fundamental and Applied Science Department, Universiti Teknologi Petronas, Seri Iskandar, 31750 Tronoh, Perak (Malaysia)
2014-10-24T23:59:59.000Z
We study a model of a multi-photon interaction of a single Cooper pair box with a cavity field. The exchange of the information using this system is studied. We quantify the fidelity of the transmitted information. The effect of the system parameters (detuning parameter, field photons, state density and mean photon number) in the fidelity of the transmitted information is investigated. We found that the fidelity of the transmitted information can be controlled using the system parameters.
Satellite Magnetic Resonances of a Bound Pair of Half-Quantum Vortices in Rotating Superfluid He-3-a
Hu, Chia-Ren; MAKI, K.
1987-01-01T23:59:59.000Z
PHYSICAL REVIE%' B VOLUME 36, NUMBER 13 1 NOVEMBER 1987 Satellite magnetic resonances of a bound pair of half-quantum vortices in rotating superfluid He- A Chia-Ren Hu Center for Theoretical Physics, Department of Physics, Texas A&M University..., College Station, Texas 77843-4242 Kazumi Maki Department of Physics, University of Southern California, Los Angeles, California 90089-0484 (Received 29 December 1986) The transverse magnetic resonance satellite frequency and intensity associated with a...
Using Disorder to Study How Electrons Pair in Iron-Based Superconducto...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Using Disorder to Study How Electrons Pair in Iron-Based Superconductors Researchers introduced disorder to test electron pairing in iron-based superconductors and produced...
Signature of heavy Majorana neutrinos at a linear collider: Enhanced charged Higgs pair production
Atwood, David [Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); Bar-Shalom, Shaouly [Physics Department, Technion-Institute of Technology, Haifa 32000 (Israel); Soni, Amarjit [Theory Group, Brookhaven National Laboratory, Upton, New York 11973 (United States)
2007-08-01T23:59:59.000Z
A charged Higgs pair can be produced at an ee collider through a t-channel exchange of a heavy neutrino (N) via e{sup +}e{sup -}{yields}H{sup +}H{sup -} and, if N is a Majorana particle, also via the lepton number violating (LNV) like-sign reaction e{sup {+-}}e{sup {+-}}{yields}H{sup {+-}}H{sup {+-}}. Assuming no a priori relation between the effective eNH{sup +} coupling ({xi}) and light neutrino masses, we show that this interaction vertex can give a striking enhancement to these charged Higgs pair production processes. In particular, the LNV H{sup -}H{sup -} signal can probe N at the International Linear Collider (ILC) in the mass range 100 GeV < or approx. m{sub N} < or approx. 10{sup 4} TeV and with the effective mixing angle {xi} in the range 10{sup -4} < or approx. {xi}{sup 2} < or approx. 10{sup -8}--well within its perturbative unitarity bound and the {beta}{beta}{sub 0{nu}} limit. The lepton number conserving e{sup +}e{sup -}{yields}H{sup +}H{sup -} mode can be sensitive to, e.g., an O(10) TeV heavy Majorana neutrino at a 500 GeV ILC, if {xi}{sup 2} > or approx. 0.001.
The concrete theory of numbers: initial numbers and wonderful properties of numbers repunit
Boris V. Tarasov
2007-04-07T23:59:59.000Z
In this work initial numbers and repunit numbers have been studied. All numbers have been considered in a decimal notation. The problem of simplicity of initial numbers has been studied. Interesting properties of numbers repunit are proved: $gcd(R_a, R_b) = R_{gcd(a,b)}$; $R_{ab}/(R_aR_b)$ is an integer only if $gcd(a,b) = 1$, where $a\\geq1$, $b\\geq1$ are integers. Dividers of numbers repunit, are researched by a degree of prime number.
Polarization operator approach to pair creation in short laser pulses
Sebastian Meuren; Karen Z. Hatsagortsyan; Christoph H. Keitel; Antonino Di Piazza
2015-01-28T23:59:59.000Z
Short-pulse effects are investigated for the nonlinear Breit-Wheeler process, i.e. the production of an electron-positron pair induced by a gamma photon inside an intense plane-wave laser pulse. To obtain the total pair-creation probability we verify (to leading-order) the cutting rule for the polarization operator in the realm of strong-field QED by an explicit calculation. Using a double-integral representation for the leading-order contribution to the polarization operator, compact expressions for the total pair-creation probability inside an arbitrary plane-wave background field are derived. Correspondingly, the photon wave function including leading-order radiative corrections in the laser field is obtained via the Schwinger-Dyson equation in the quasistatic approximation. Moreover, the influence of the carrier-envelope phase and of the laser pulse shape on the total pair-creation probability in a linearly polarized laser pulse is investigated, and the validity of the (local) constant-crossed field approximation analyzed. It is shown that with presently available technology pair-creation probabilities of the order of ten percent could be reached for a single gamma photon.
Repulsive aspects of pairing correlation in nuclear fusion reaction
Ebata, Shuichiro
2014-01-01T23:59:59.000Z
Numerical simulation on nuclear collisions are performed using the canonical-basis time-dependent Hartree-Fock-Bogoliubov theory (Cb-TDHFB) in the three-dimensional coordinate space. Comparing results of the Cb-TDHFB and the conventional time-dependent Hartree-Fock (TDHF) calculations, we study effects of the pairing correlation on fusion reaction of $^{22}$O+$^{22}$O, $^{52}$Ca+$^{52}$Ca, and $^{22}$O+$^{52}$Ca, using the Skyrme SkM$^*$ functional and a contact-type pairing energy functional. Although current results are yet preliminary, they may suggest that the pairing correlation could hinder the fusion probability at energies in the vicinity of the Coulomb barrier height. We also perform a calculation for heavier nuclei, $^{96}$Zn+$^{124}$Sn, which seems to suggest a similar hindrance effect.
A pair of oscillators interacting with a common heat bath
G. W. Ford; R. F. O'Connell
2014-08-25T23:59:59.000Z
Here the problem considered is that of a pair of oscillators coupled to a common heat bath. Many, if not most, discussions of a single operator coupled to a bath have used the independent oscillator model of the bath. However, that model has no notion of separation, so the question of phenomena when the oscillators are near one another compared with when they are widely separated cannot be addressed. Here the Lamb model of an oscillator attached to a stretched string is generalized to illustrate some of these questions. The coupled Langevin equations for a pair of oscillators attached to the string at different points are derived and their limits for large and small separations obtained. Finally, as an illustration of a different phenomenon, the fluctuation force between a pair of masses attached to the string is calculated, with closed form expressions for the force at small and large separations.
Data Compression with Prime Numbers
Gordon Chalmers
2005-11-16T23:59:59.000Z
A compression algorithm is presented that uses the set of prime numbers. Sequences of numbers are correlated with the prime numbers, and labeled with the integers. The algorithm can be iterated on data sets, generating factors of doubles on the compression.
Tailored photon-pair generation in optical fibers
Offir Cohen; Jeff S. Lundeen; Brian J. Smith; Graciana Puentes; Peter J. Mosley; Ian A. Walmsley
2009-04-14T23:59:59.000Z
We experimentally control the spectral structure of photon pairs created via spontaneous four-wave mixing in microstructured fibers. By fabricating fibers with designed dispersion, one can manipulate the photons' wavelengths, joint spectrum, and, thus, entanglement. As an example, we produce photon-pairs with no spectral correlations, allowing direct heralding of single photons in pure-state wave packets without filtering. We achieve an experimental purity of $85.9\\pm1.6%$, while theoretical analysis and preliminary tests suggest 94.5% purity is possible with a much longer fiber.
The Schwinger pair production rate in confining theories via holography
Daisuke Kawai; Yoshiki Sato; Kentaroh Yoshida
2014-06-02T23:59:59.000Z
We study the Schwinger pair production in confining theories. The production rate in an external electric field E is numerically evaluated by using the holographic description. There exist two kinds of critical values of the electric field, i) E=E_c, above which there is no potential barrier and particles are freely generated, ii) E=E_s, below which the confining string tension dominates the electric field and the pair production does not occur. We argue the universal exponents associated with the critical behaviors.
Magnetic moments of T=3/2 mirror pairs
Perez, S. M. [Department of Physics, University of Cape Town, Private Bag, Rondebosch 7700 (South Africa); iThemba LABS, P. O. Box 722, Somerset West 7129 (South Africa); Richter, W. A. [Department of Physics, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Brown, B. A. [Department of Physics and Astronomy, and National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824-1321 (United States); Horoi, M. [Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859 (United States)
2010-12-15T23:59:59.000Z
We predict values of the magnetic moments of T=3/2 proton-rich fp-shell nuclei in the mass range A=43-53, by using known values for their neutron-rich mirrors together with shell-model estimates for small quantities. We extend the analysis to those T=3/2 sd-shell mirror pairs for which both the T{sub z}=-3/2 and T{sub z}=+3/2 magnetic moments have been measured. We find that these obey the same linear relation as previously deduced for T=1/2 mirror pairs.
Pairing Gaps, Pseudogaps, and Phase Diagrams for Cuprate Superconductors
Yang Sun; Mike Guidry; Cheng-Li Wu
2007-02-21T23:59:59.000Z
We use a symmetry-constrained variational procedure to construct a generalization of BCS to include Cooper pairs with non-zero momentum and angular momentum. The resulting gap equations are solved at zero and finite temperature, and the doping-dependent solutions are used to construct gap and phase diagrams. We find a pseudogap terminating at a critical doping that may be interpreted in terms of both competing order and preformed pairs. The strong similarity between observation and predicted gap and phase structure suggests that this approach may provide a unified description of the complex structure observed for cuprate superconductors.
A pair spectrometer for measuring multipolarities of energetic nuclear transitions
J. Gulys; T. J. Ketel; A. J. Krasznahorkay; M. Csatls; L. Csige; Z. Gcsi; M. Hunyadi; A. Krasznahorkay; A. Vitz; T. G. Tornyi
2015-04-02T23:59:59.000Z
A multi-detector array has been designed and constructed for the simultaneous measurement of energy- and angular correlations of electron-positron pairs. Experimental results are obtained over a wide angular range for high-energy transitions in 16O, 12C and 8Be. A comparison with GEANT simulations demonstrates that angular correlations between 50 and 180 degrees of the electron-positron pairs in the energy range between 6 and 18 MeV can be determined with sufficient resolution and efficiency.
Flexible generation of correlated photon pairs in different frequency ranges
Fernando Oster; Christoph H Keitel; Mihai Macovei
2012-05-30T23:59:59.000Z
The feasibility to generate correlated photon pairs at variable frequencies is investigated. For this purpose, we consider the interaction of an off-resonant laser field with a two-level system possessing broken inversion symmetry. We show that the system generates non-classical photon pairs exhibiting strong intensity-intensity correlations. The intensity of the applied laser tunes the degree of correlation while the detuning controls the frequency of one of the photons which can be in the THz-domain. Furthermore, we observe the violation of a Cauchy-Schwarz inequality characterizing these photons.
Gomez-Ceballos, Guillelmo
We present a search for the pair production of a narrow nonstandard-model strongly interacting particle that decays to a pair of quarks or gluons, leading to a final state with four hadronic jets. We consider both nonresonant ...
Batool, Nazia; Saleem, H. [National Centre for Physics (NCP), Quaid-i-Azam University Campus, Islamabad (Pakistan)] [National Centre for Physics (NCP), Quaid-i-Azam University Campus, Islamabad (Pakistan)
2013-10-15T23:59:59.000Z
The linear and nonlinear dynamics of pair-ion (PI) and pair-ion-electron plasmas (PIE) have been investigated in a cylindrical geometry with a sheared plasma flow along the axial direction having radial dependence. The coupled linear dispersion relation of low frequency electrostatic waves has been presented taking into account the Guassian profile of density and linear gradient of sheared flow. It is pointed out that the quasi-neutral cold inhomogeneous pure pair ion plasma supports only the obliquely propagating convective cell mode. The linear dispersion relation of this mode has been solved using boundary conditions. The nonlinear structures in the form of vortices formed by different waves have been discussed in PI and PIE plasmas.
Baryon number fluctuation and the quark-gluon plasma
Lin, ZW; Ko, Che Ming.
2001-01-01T23:59:59.000Z
#, modification of high pT particle spec- trum @4#, and M T scaling @5# and double phi peaks @6# in the dilepton spectrum. Recently, event-by-event fluctuations of various particles have also attracted much attention @7#. Since the baryon and charge numbers... of Ref. @12# for the production of particles with con- serving charges, we have the following master equation for the multiplicity distribution of BB? pairs: dPn dt 5 G V ^Nm1&^Nm2&~Pn212Pn! 2 L V @n 2Pn2~n11 !2Pn11# . ~1! In the above, Pn(t...
Blind subpixel Point Spread Function estimation from scaled image pairs
Paris-Sud XI, Universit de
Blind subpixel Point Spread Function estimation from scaled image pairs Mauricio Delbracio Andr, causing aliasing effects. This work introduces a blind algorithm for the subpixel estimation of the point shows that the proposed algorithm reaches the accuracy levels of the best non- blind state
A Comparison of h2 and MMM for Mutex Pair
Holte, Robert
are different from one another. The purpose of this paper is to study the effects on search performance when%-24%) whereas MMM's errors have very little effect on search speed or subop- timality, even when its sample size Edmonton, AB, Canada T6G 2E8, holte@cs.ualberta.ca Abstract. In state space search or planning, a pair
List of things to bring: Notes Socks (5 pairs)
Lougheed, Stephen
) Light weight fast drying pants are preferable. Shorts (one pair) Swim suit t-shirts (3-4) long-sleeved shirts (1-2) warm sweater or lightweight coat We may experience nightitme temperatures of down toclose or two Pencils are for your field books (prefered to ink which runs in humid weather). Important #12
Cherenkov radiation and pair production by particles traversing laser beams
I. M. Dremin
2002-03-01T23:59:59.000Z
It is shown that Cherenkov radiation can be observed at TESLA in electron collisions with optical laser pulses. The prospects for it to be observed at SLC, LEP, LHC and RHIC are discussed. The conclusions are compared with results for pair production.
Calculating coherent pair production with Monte Carlo methods
Bottcher, C.; Strayer, M.R.
1989-01-01T23:59:59.000Z
We discuss calculations of the coherent electromagnetic pair production in ultra-relativistic hadron collisions. This type of production, in lowest order, is obtained from three diagrams which contain two virtual photons. We discuss simple Monte Carlo methods for evaluating these classes of diagrams without recourse to involved algebraic reduction schemes. 19 refs., 11 figs.
Bose Einstein correlations of neutral pion pairs at LEP
M. Boutemeur; G. Giacomelli
2005-10-10T23:59:59.000Z
With the OPAL detector at LEP we measured at energies around the Z0 peak the Bose-Einstein Correlations (BECs) of neutral pion pairs. We compare the results of this measurement with former results obtained at LEP for hadrons including those obtained from Fermi-Dirac Correlations (FDCs).
Singlet Free Energies of a Static Quark-Antiquark Pair
Konstantin Petrov
2004-09-01T23:59:59.000Z
We study the singlet part of the free energy of a static quark anti-quark pair at finite temperature in three flavor QCD with degenerate quark masses using $N_{\\tau}=4$ and 6 lattices with Asqtad staggered fermion action. We look at thermodynamics of the system around phase transition and study its scaling with lattice spacing and quark masses.
Improved Approximations for Fermion Pair Production in Inhomogeneous Electric Fields
Sang Pyo Kim; Don N. Page
2007-01-31T23:59:59.000Z
Reformulating the instantons in a complex plane for tunneling or transmitting states, we calculate the pair-production rate of charged fermions in a spatially localized electric field, illustrated by the Sauter electric field E_0 sech^2 (z/L), and in a temporally localized electric field such as E_0 sech^2 (t/T). The integration of the quadratic part of WKB instanton actions over the frequency and transverse momentum leads to the pair-production rate obtained by the worldline instanton method, including the prefactor, of Phys. Rev. D72, 105004 (2005) and D73, 065028 (2006). It is further shown that the WKB instanton action plus the next-to-leading order contribution in spinor QED equals the WKB instanton action in scalar QED, thus justifying why the WKB instanton in scalar QED can work for the pair production of fermions. Finally we obtain the pair-production rate in a spatially localized electric field together with a constant magnetic field in the same direction.
Observation of the Nernst signal generated by fluctuating Cooper pairs
Loss, Daniel
. The Nernst effect, the generation of a transverse electric field by a longitudinal thermal gradient, has with the quanta of electric1 (e2 /h) or thermal11 (2 k2 BT/3h) conductance. However, in the notation used by USHLETTERS Observation of the Nernst signal generated by fluctuating Cooper pairs A. POURRET1 , H
Abstract polymer models with general pair interactions Aldo Procacci
Procacci, Aldo
Abstract polymer models with general pair interactions Aldo Procacci Dep. Matem´atica-ICEx, UFMG (i.e. not necessarily hard core or repulsive). A concrete example is given in which polymers are r0 (possibly attractive), of the type 1/rd+ with > 0. 1. Introduction The abstract polymer gas is an important
Transition maps between the 24 bases for a Leonard pair
Nomura, Kazumasa
2007-01-01T23:59:59.000Z
Let $V$ denote a vector space with finite positive dimension. We consider a pair of linear transformations $A : V \\to V$ and $A^* : V \\to V$ that satisfy (i) and (ii) below: (i) There exists a basis for $V$ with respect to which the matrix representing $A$ is irreducible tridiagonal and the matrix representing $A^*$ is diagonal. (ii) There exists a basis for $V$ with respect to which the matrix representing $A^*$ is irreducible tridiagonal and the matrix representing $A$ is diagonal. We call such a pair a Leonard pair on $V$. In an earlier paper we described 24 special bases for $V$. One feature of these bases is that with respect to each of them the matrices that represent $A$ and $A^*$ are (i) diagonal and irreducible tridiagonal or (ii) irreducible tridiagonal and diagonal or (iii) lower bidiagonal and upper bidiagonal or (iv) upper bidiagonal and lower bidiagonal. For each ordered pair of bases among the 24, there exists a unique linear transformation from $V$ to $V$ that sends the first basis to the seco...
Creation and pinning of vortex-antivortex pairs
Kim, Sangbum; Hu, Chia-Ren; Andrews, Malcolm J.
2006-01-01T23:59:59.000Z
Computer modeling is reported about the creation and pinning of a magnetic vortex-antivortex (V-AV) pair in a superconducting thin film, due to the magnetic field of a vertical magnetic dipole above the film, and two antidot pins inside the film...
Pair Production of Tau Sneutrinos at Linear Colliders
V. Ari; O. Cakir
2010-07-15T23:59:59.000Z
The pair production of tau sneutrinos in $e^{+}e^{-}$ collisions and their subsequent decays are studied in a framework of the supersymmetric extension of the standard model. We present an analysis for the parameter space (BR vs. mass) which could be explored at the future high energy $e^{+}e^{-}$ colliders.
Matched Pairs Procedures Two Sample Procedures General Guidelines t Procedures
Watkins, Joseph C.
this, researchers randomly chose a collection of bags of wheat soy blend bound for Haiti, marked them blend. Factory Haiti Factory Haiti Factory Haiti Factory Haiti 44 40 45 38 39 43 50 37 50 37 32 40 52 38, respectively, at the factory and in Haiti. > t.test(factory, haiti, alternative = c("greater"),mu = 0, paired
Collapsibility of Lung Volume by Paired Inspiratory and Expiratory CT
Collapsibility of Lung Volume by Paired Inspiratory and Expiratory CT Scans: Correlations with Lung Function and Mean Lung Density Tsuneo Yamashiro, MD, Shin Matsuoka, MD, PhD, Brian J. Bartholmai, MD, Rau: To evaluate the relationship between measurements of lung volume (LV) on inspiratory/expiratory computed
RELAXATION OF BLAZAR-INDUCED PAIR BEAMS IN COSMIC VOIDS
Miniati, Francesco [Physics Department, Wolfgang-Pauli-Strasse 27, ETH-Zuerich, CH-8093 Zuerich (Switzerland); Elyiv, Andrii, E-mail: fm@phys.ethz.ch [Institut d'Astrophysique et de Geophysique, Universite de Liege, B-4000 Liege (Belgium)
2013-06-10T23:59:59.000Z
The stability properties of a low-density ultrarelativistic pair beam produced in the intergalactic medium (IGM) by multi-TeV gamma-ray photons from blazars are analyzed. The problem is relevant for probes of magnetic field in cosmic voids through gamma-ray observations. In addition, dissipation of such beams could considerably affect the thermal history of the IGM and structure formation. We use a Monte Carlo method to quantify the properties of the blazar-induced electromagnetic shower, in particular the bulk Lorentz factor and the angular spread of the pair beam generated by the shower, as a function of distance from the blazar itself. We then use linear and nonlinear kinetic theory to study the stability of the pair beam against the growth of electrostatic plasma waves, employing the Monte Carlo results for our quantitative estimates. We find that the fastest growing mode, like any perturbation mode with even a very modest component perpendicular to the beam direction, cannot be described in the reactive regime. Due to the effect of nonlinear Landau damping, which suppresses the growth of plasma oscillations, the beam relaxation timescale is found to be significantly longer than the inverse Compton loss time. Finally, density inhomogeneities associated with cosmic structure induce loss of resonance between the beam particles and plasma oscillations, strongly inhibiting their growth. We conclude that relativistic pair beams produced by blazars in the IGM are stable on timescales that are long compared with the electromagnetic cascades. There appears to be little or no effect of pair beams on the IGM.
Modelling gamma-ray photon emission and pair production in high-intensity lasermatter interactions
Ridgers, C.P. [Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU (United Kingdom) [Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU (United Kingdom); Central Laser Facility, STFC Rutherford-Appleton Laboratory, Chilton, Didcot, Oxfordshire, OX11 0QX (United Kingdom); Kirk, J.G. [Max-Planck-Institut fr Kernphysik, Postfach 10 39 80, 69029 Heidelberg (Germany)] [Max-Planck-Institut fr Kernphysik, Postfach 10 39 80, 69029 Heidelberg (Germany); Duclous, R. [Commissariat l'Energie Atomique, DAM DIF, F-91297 Arpajon (France)] [Commissariat l'Energie Atomique, DAM DIF, F-91297 Arpajon (France); Blackburn, T.G. [Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU (United Kingdom)] [Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU (United Kingdom); Brady, C.S.; Bennett, K.; Arber, T.D. [Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry, CV4 7AL (United Kingdom)] [Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Bell, A.R. [Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU (United Kingdom) [Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU (United Kingdom); Central Laser Facility, STFC Rutherford-Appleton Laboratory, Chilton, Didcot, Oxfordshire, OX11 0QX (United Kingdom)
2014-03-01T23:59:59.000Z
In high-intensity (>10{sup 21} Wcm{sup ?2}) lasermatter interactions gamma-ray photon emission by the electrons can strongly affect the electron's dynamics and copious numbers of electronpositron pairs can be produced by the emitted photons. We show how these processes can be included in simulations by coupling a Monte Carlo algorithm describing the emission to a particle-in-cell code. The Monte Carlo algorithm includes quantum corrections to the photon emission, which we show must be included if the pair production rate is to be correctly determined. The accuracy, convergence and energy conservation properties of the Monte Carlo algorithm are analysed in simple test problems.
Compendium of Experimental Cetane Numbers
Yanowitz, J.; Ratcliff, M. A.; McCormick, R. L.; Taylor, J. D.; Murphy, M. J.
2014-08-01T23:59:59.000Z
This report is an updated version of the 2004 Compendium of Experimental Cetane Number Data and presents a compilation of measured cetane numbers for pure chemical compounds. It includes all available single compound cetane number data found in the scientific literature up until March 2014 as well as a number of unpublished values, most measured over the past decade at the National Renewable Energy Laboratory. This Compendium contains cetane values for 389 pure compounds, including 189 hydrocarbons and 201 oxygenates. More than 250 individual measurements are new to this version of the Compendium. For many compounds, numerous measurements are included, often collected by different researchers using different methods. Cetane number is a relative ranking of a fuel's autoignition characteristics for use in compression ignition engines; it is based on the amount of time between fuel injection and ignition, also known as ignition delay. The cetane number is typically measured either in a single-cylinder engine or a constant volume combustion chamber. Values in the previous Compendium derived from octane numbers have been removed, and replaced with a brief analysis of the correlation between cetane numbers and octane numbers. The discussion on the accuracy and precision of the most commonly used methods for measuring cetane has been expanded and the data has been annotated extensively to provide additional information that will help the reader judge the relative reliability of individual results.
Office of Legacy Management (LM)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V O 1 8 7 +New York, New
Pair of null gravitating shells II. Canonical theory and embedding variables
P. Hajicek; I. Kouletsis
2001-12-28T23:59:59.000Z
The study of the two shell system started in our first paper ``Pair of null gravitating shells I'' (gr-qc/0112060) is continued. An action functional for a single shell due to Louko, Whiting and Friedman is generalized to give appropriate equations of motion for two and, in fact, any number of spherically symmetric null shells, including the cases when the shells intersect. In order to find the symplectic structure for the space of solutions described in paper I, the pull back to the constraint surface of the Liouville form determined by the action is transformed into new variables. They consist of Dirac observables, embeddings and embedding momenta (the so-called Kucha\\v{r} decomposition). The calculation includes the integration of a set of coupled partial differential equations. A general method of solving the equations is worked out.
Synthetic Diamond and Wurtzite Structures Self-Assemble with Isotropic Pair Interactions
Mikael C. Rechtsman; Frank H. Stillinger; Salvatore Torquato
2007-09-24T23:59:59.000Z
Using inverse statistical-mechanical optimization techniques, we have discovered isotropic pair interaction potentials with strongly repulsive cores that cause the tetrahedrally coordinated diamond and wurtzite lattices to stabilize, as evidenced by lattice sums, phonon spectra, positive-energy defects, and self-assembly in classical molecular dynamics simulations. These results challenge conventional thinking that such open lattices can only be created via directional covalent interactions observed in nature. Thus, our discovery adds to fundamental understanding of the nature of the solid state by showing that isotropic interactions enable the self-assembly of open crystal structures with a broader range of coordination number than previously thought. Our work is important technologically because of its direct relevance generally to the science of self-assembly and specifically to photonic crystal fabrication.
Brookhaven National Laboratory Number: Revision
Ohta, Shigemi
Brookhaven National Laboratory Number: Revision: PS-ESH-0057 01 Effective: Page 1 of 9 06 Chris Weilandics Signature on file Department ES&H Approval printed name Signature Date Lori Stiegler Signature on file #12;Number: PS-ESH-0057 Revision: 01 Effective: 06/08/12 Page 2 of 9 The only official
Pair interaction lattice gas simulations: Flow past obstacles in two and three dimensions
Vogeler, A.; Wolf-Gladrow, D.A. (Alfred-Wegener-Institute for Polar and Marine Research, Bremerhaven (Germany))
1993-04-01T23:59:59.000Z
Apart from the FCHC (face-centered hypercube), Nasilowski's pair interaction lattice gas (PI) is the only known lattice gas automaton for three-dimensional hydrodynamic simulations. Unfortunately, the viscosity of PI is not isotropic. In order to determine the degree anisotropy, the authors derive fluid dynamic equations for the regime of compressible viscid flow. From relaxation measurements of waves propagating in various directions they compute the physically relevant dissipation coefficients and compare their results with theoretical predictions. Although PI shows a high degree of anisotropy, they define the mean value of the dissipation tensor as effective shear viscosity. Using this value of v[sub eff][sup 2D] = 0.35, two-dimensional simulations of flow past a cylinder yield drag coefficients in quantitative agreement with wind tunnel measurements over a range of Reynolds numbers of 5-50. Three-dimensional simulations of flow past a sphere yield qualitative agreement with various references. A fit of the results to a semi-empirical curve provides an effective value of v[sub eff][sup 2D] = 0.21 for a range of Reynolds numbers from 0.19 to 40. In order to check for finite-size effects, the authors measured the mean free path [lambda] and computed the Knudsen numbers. They obtained [lambda] [approx]1 lattice unit, corresponding to Kn = 0.01 (2D) and Kn = 0.1 (3D). They found no significant finite-size effects. 44 refs., 10 figs.
Transversity Signal in two Hadron Pair Production in COMPASS
H. Wollny; for the COMPASS collaboration
2009-07-06T23:59:59.000Z
Measuring single spin asymmetries in semi-inclusive deep-inelastic scattering (SIDIS) on a transversely polarized target gives a handle to investigate the transversity distribution and transverse momentum dependent distribution functions. In the years 2002, 2003 and 2004 COMPASS took data with a transversely polarized deuteron target and in the year 2007 with a proton target. Three channels for accessing transversity have been analysed. Azimuthal asymmetries in the production of hadron pairs, involving the polarized two hadron interference fragmentation function, azimuthal asymmetries in the production of single hadrons, involving the Collins fragmentation function and polarization measurements of spin-${1/2} \\hbar$ particles like $\\Lambda$-Hyperons via their self analyzing weak decay. In the following we will focus on new preliminary results from the analysis of two hadron pair asymmetries measured with the proton target.
Threshold energy surface and Frenkel-pair resistivity for Cu
King, W.E.; Merkle, K.L.; Meshii, M.
1982-01-01T23:59:59.000Z
In-situ electrical resistivity damage-rate measurements in the high voltage electron microscope have been used to study electron-irradiation-induced defect production in copper single crystals at T < 10/sup 0/K. Analysis of the directional and energy dependence yields a threshold energy surface that is significantly different from those of previous investigations: two pockets of low threshold energy centered at <100> and <110> surrounded by regions of much higher threshold energy. The corresponding damage function exhibits a plateau of 0.6 Frenkel pairs. the present results imply a Frenkel pair resistivity for C of (2.75/sub -0.2//sup +0.6/) x ..cap omega..-cm.
Eigenstate Localization in an Asymmetric Coupled Quantum Well Pair
Mialitsin, A.; Schmult, S.; Solov'yov, I. A.; Fluegel, B.; Mascarenhas, A.
2012-06-01T23:59:59.000Z
Optical pumping of a type-I/type-II coupled asymmetric quantum well pair induces a spatially separated two dimensional charge carriers plasma in the well's wide and narrow parts. Treating the two coupled wells as a single system we find that the eigenstate probability distribution localizes exclusively either in the wide or the narrow parts of the well pair. The energy of the narrow-well localized state determines the minimal excitation energy for optically pumped charge carriers separation. In a previously used design [Guliamov et al., PRB 64 035314 (2001)] this narrow well transition energy was measured to correspond to a wavelength of 646 nm. We propose modifications to the design suggested earlier with the purpose of pushing up the energy required for the optical pumping of the two-dimensional plasma into the green and blue regions of the visible spectrum.
Pair Instability Supernovae of Very Massive Population III Stars
Chen, Ke-Jung; Woosley, Stan; Almgren, Ann; Whalen, Daniel
2014-01-01T23:59:59.000Z
Numerical studies of primordial star formation suggest that the first stars in the universe may have been very massive. Stellar models indicate that non-rotating Population III stars with initial masses of 140-260 Msun die as highly energetic pair-instability supernovae. We present new two-dimensional simulations of primordial pair-instability supernovae done with the CASTRO code. Our simulations begin at earlier times than previous multidimensional models, at the onset of core collapse, to capture any dynamical instabilities that may be seeded by collapse and explosive burning. Such instabilities could enhance explosive yields by mixing hot ash with fuel, thereby accelerating nuclear burning, and affect the spectra of the supernova by dredging up heavy elements from greater depths in the star at early times. Our grid of models includes both blue supergiants and red supergiants over the range in progenitor mass expected for these events. We find that fluid instabilities driven by oxygen and helium burning ari...
Observation of ?c1 Decays into Vector Meson Pairs ??, ?? and, ??
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Ablikim, M.; Achasov, M. N.; An, L.; An, Q.; An, Z. H.; Bai, J. Z.; Baldini, R.; Ban, Y.; Becker, J.; Berger, N.; Bertani, M.; Bian, J. M.; Bondarenko, O.; Boyko, I.; Briere, R. A.; Bytev, V.; Cai, X.; Cao, G. F.; Cao, X. X.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, Y.; Chen, Y. B.; Cheng, H. P.; Chu, Y. P.; Cronin-Hennessy, D.; Dai, H. L.; Dai, J. P.; Dedovich, D.; Deng, Z. Y.; Denysenko, I.; Destefanis, M.; Ding, Y.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Duan, M. Y.; Fan, R. R.; Fang, J.; Fang, S. S.; Feng, C. Q.; Fu, C. D.; Fu, J. L.; Gao, Y.; Geng, C.; Goetzen, K.; Gong, W. X.; Greco, M.; Grishin, S.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y. P.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, M.; He, Z. Y.; Heng, Y. K.; Hou, Z. L.; Hu, H. M.; Hu, J. F.; Hu, T.; Huang, B.; Huang, G. M.; Huang, J. S.; Huang, X. T.; Huang, Y. P.; Hussain, T.; Ji, C. S.; Ji, Q.; Ji, X. B.; Ji, X. L.; Jia, L. K.; Jiang, L. L.; Jiang, X. S.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Jing, F. F.; Kavatsyuk, M.; Komamiya, S.; Kuehn, W.; Lange, J. S.; Leung, J. K. C.; Li, Cheng; Li, Cui; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, Lei; Li, N. B.; Li, Q. J.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, X. R.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Liao, X. T.; Liu, B. J.; Liu, B. J.; Liu, C. L.; Liu, C. X.; Liu, C. Y.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, G. C.; Liu, H.; Liu, H. B.; Liu, H. M.; Liu, H. W.; Liu, J. P.; Liu, K.; Liu, K. Y.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, X. H.; Liu, Y. B.; Liu, Y. W.; Liu, Yong; Liu, Z. A.; Liu, Z. Q.; Loehner, H.; Lu, G. R.; Lu, H. J.; Lu, J. G.; Lu, Q. W.; Lu, X. R.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Ma, C. L.; Ma, F. C.; Ma, H. L.; Ma, Q. M.; Ma, T.; Ma, X.; Ma, X. Y.; Maggiora, M.; Malik, Q. A.; Mao, H.; Mao, Y. J.; Mao, Z. P.; Messchendorp, J. G.; Min, J.; Mitchell, R. E.; Mo, X. H.; Muchnoi, N. Yu.; Nefedov, Y.; Ning, Z.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pelizaeus, M.; Peters, K.; Ping, J. L.; Ping, R. G.; Poling, R.; Pun, C. S. J.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, X. S.; Qiu, J. F.; Rashid, K. H.; Rong, G.; Ruan, X. D.; Sarantsev, A.; Schulze, J.; Shao, M.; Shen, C. P.; Shen, X. Y.; Sheng, H. Y.; Shepherd, M. R.; Song, X. Y.; Sonoda, S.; Spataro, S.; Spruck, B.; Sun, D. H.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. D.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tang, X. F.; Tian, H. L.; Toth, D.; Varner, G. S.; Wan, X.; Wang, B. Q.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, Q.; Wang, S. G.; Wang, X. L.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. Y.; Wei, D. H.; Wen, Q. G.; Wen, S. P.; Wiedner, U.; Wu, L. H.; Wu, N.; Wu, W.; Wu, Z.; Xiao, Z. J.; Xie, Y. G.; Xu, G. F.; Xu, G. M.; Xu, H.; Xu, Y.; Xu, Z. R.; Xu, Z. Z.; Xue, Z.; Yan, L.; Yan, W. B.; Yan, Y. H.; Yang, H. X.; Yang, M.; Yang, T.; Yang, Y.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yu, B. X.; Yu, C. X.; Yu, L.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, L.; Zhang, S. H.; Zhang, T. R.; Zhang, X. J.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, H. S.; Zhao, Jiawei; Zhao, Jingwei; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, S. J.; Zhao, T. C.; Zhao, X. H.; Zhao, Y. B.; Zhao, Z. G.; Zhao, Z. L.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, Y. H.; Zheng, Z. P.; Zhong, B.; Zhong, J.; Zhong, L.; Zhou, L.; Zhou, X. K.; Zhou, X. R.; Zhu, C.; Zhu, K.; Zhu, K. J.; Zhu, S. H.; Zhu, X. L.; Zhu, X. W.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.; Zuo, J. X.; Zweber, P.
2011-08-01T23:59:59.000Z
Using (1064)10? ?(3686) events accumulated with the BESIII detector at the BEPCII e?e? collider, we present the first measurement of decays of ?c1 to vector meson pairs ??, ??, and ??. The branching fractions are measured to be (4.40.30.5)10??, (6.00.30.7)10??, and (2.20.60.2)10??, for ?c1 ???, ??, and ??, respectively, which indicates that the hadron helicity selection rule is significantly violated in ?cJ decays. In addition, the measurement of ?cJ??? provides the first indication of the rate of doubly OZI-suppressed ?cJ decay. Finally, we present improved measurements for the branching fractions of ?c0 and ?c2 to vector meson pairs.
Flow localization in sheet specimens with pairs of holes
Geltmacher, A.B. [FM Technologies, Fairfax, VA (United States); Koss, D.A. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Metals Science and Engineering; Stout, M.G. [Los Alamos National Lab., NM (United States); Matic, P. [Naval Research Lab., Washington, DC (United States). Mechanics of Materials Dept.
1998-03-01T23:59:59.000Z
The deformation localization behavior of sheet specimens containing geometric perturbations in the form of pairs of through-thickness holes is examined. Both experiments and computational modeling are performed in either uniaxial or equal-biaxial tension in order to examine the effect of applied loading path on the far-field strain needed to initiate localized necking in the ligament between the hole pairs. The models also examine the influence of hole spacing and matrix strain hardening on ligament localization. The far-field strain needed to cause the localization of the ligament is shown to increase as the biaxiality of the loading path increases, the hole spacing increases, and the strain-hardening exponent increases. The present study also indicates that the onset of localized necking can be predicted by employing the Hill criterion, if the local strain states within the ligament are taken into account.
Proton-neutron pairing energies in N=Z nuclei at finite temperature
K. Kaneko; M. Hasegawa
2005-08-27T23:59:59.000Z
Thermal behavior of isoscalar and isovector proton-neutron (pn) pairing energies at finite temperature are investigated by the shell model calculations. These pn pairing energies can be estimated by double differences of "thermal" energies which are extended from the double differences of binding energies as the indicators of pn pairing energies at zero temperature. We found that the delicate balance between isoscalar and isovector pn pairing energies at zero temperature disappears at finite temperature. When temperature rises, while the isovector pn pairing energy decreases, the isoscalar pn pairing energy rather increases. We discuss also the symmetry energy at finite temperature.
Fourier Transform Pairs The Fourier transform transforms a function of
Masci, Frank
Fourier Transform Pairs The Fourier transform transforms a function of time, f(t), into a function of frequency, F(s): F {f(t)}(s) = F(s) = Z - f(t)e- j2st dt. The inverse Fourier transform transforms a func. The inverse Fourier transform of the Fourier trans- form is the identity transform: f(t) = Z - Z - f()e- j2s
Interference of Cooper Pairs Emitted from Independent Superconductors
Mauro Iazzi; Kazuya Yuasa
2010-05-16T23:59:59.000Z
We discuss the interference in the two-particle distribution of the electrons emitted from two independent superconductors. It is clarified that, while the interference appearing in the antibunching correlation is due to the Hanbury Brown and Twiss effect, that in the positive correlation due to superconductivity is intrinsically different and is nothing but the first-order interference of Cooper pairs emitted from different sources. This is the equivalent of the interference of two independent Bose-Einstein condensates.
Top quark pair production cross section at the Tevatron
Cortiana, Giorgio; /INFN, Padua /Padua U.
2008-04-01T23:59:59.000Z
Top quark pair production cross section has been measured at the Tevatron by CDF and D0 collaborations using different channels and methods, in order to test standard model predictions, and to search for new physics hints affecting the t{bar t} production mechanism or decay. Measurements are carried out with an integrated luminosity of 1.0 to 2.0 fb{sup -1}, and are found to be consistent with standard model expectations.
HBT interferometry with quantum transport of the interfering pair
Yu, Li-Li; Wong, Cheuk-Yin
2008-01-01T23:59:59.000Z
In the late stage of the evolution of a pion system in high-energy heavy-ion collisions when pions undergo multiple scatterings, the quantum transport of the interfering pair of identical pions plays an important role in determining the characteristics of the Hanbury-Brown-Twiss (HBT) interference. We study the quantum transport of the interfering pair using the path-integral method, in which the evolution of the bulk matter is described by relativistic hydrodynamics while the paths of the two interfering pions by test particles following the fluid positions and velocity fields. We investigate in addition the effects of secondary pion sources from particle decays, for nuclear collisions at AGS and RHIC energies. We find that quantum transport of the interfering pair leads to HBT radii close to those for the chemical freeze-out configuration. Particle decays however lead to HBT radii greater than those for the chemical freeze-out configuration. As a consequence, the combined effects give rise to HBT radii betw...
Departmental Business Instrument Numbering System
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
2000-12-05T23:59:59.000Z
To prescribe procedures for assigning identifying numbers to all Department of Energy (DOE), including the National Nuclear Security Administration, business instruments. Cancels DOE 1331.2B. Canceled by DOE O 540.1A.
Departmental Business Instrument Numbering System
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
2005-01-27T23:59:59.000Z
The Order prescribes the procedures for assigning identifying numbers to all Department of Energy (DOE) and National Nuclear Security Administration (NNSA) business instruments. Cancels DOE O 540.1. Canceled by DOE O 540.1B.
Andrews, George E; Gawronski, Wolfgang; Littlejohn, Lance L
2011-01-01T23:59:59.000Z
The Jacobi-Stirling numbers were discovered as a result of a problem involving the spectral theory of powers of the classical second-order Jacobi differential expression. Specifically, these numbers are the coefficients of integral composite powers of the Jacobi expression in Lagrangian symmetric form. Quite remarkably, they share many properties with the classical Stirling numbers of the second kind which, as shown in LW, are the coefficients of integral powers of the Laguerre differential expression. In this paper, we establish several properties of the Jacobi-Stirling numbers and its companions including combinatorial interpretations thereby extending and supplementing known contributions to the literature of Andrews-Littlejohn, Andrews-Gawronski-Littlejohn, Egge, Gelineau-Zeng, and Mongelli.
Molecular Hydrogen Formation from Proximal Glycol Pairs on TiO2...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Hydrogen Formation from Proximal Glycol Pairs on TiO2(110). Molecular Hydrogen Formation from Proximal Glycol Pairs on TiO2(110). Abstract: Understanding hydrogen formation on TiO2...
Single-molecule derivation of salt dependent base-pair free energies in DNA
Ritort, Felix
Single-molecule derivation of salt dependent base-pair free energies in DNA Josep M. Hugueta measurements of base-pair free energies in DNA are obtained in thermal denaturation experiments, which depend on several as- sumptions. Here we report measurements of the DNA base-pair free energies based
Gluon polarisation from high transverse momentum hadron pairs production (COMPASS)
L. Silva; for the COMPASS Collaboration
2010-10-08T23:59:59.000Z
A new preliminary result of a gluon polarisation \\Delta G/G obtained selecting high transverse momentum hadron pairs in DIS events with Q^2>1 (GeV/c)^2 is presented. Data has been collected by COMPASS at CERN during the 2002-2004 years. In the extraction of $\\Delta G/G$ contributions coming from the leading order $\\gamma q$ and QCD processes are taken into account. A new weighting method based on a neural network approach is used. Also a preliminary result of \\Delta G/G for events with Q^2<1 (GeV/c)^2 is presented.
Free energy and criticality in the nucleon pair breaking process
M. Guttormsen; R. Chankova; M. Hjorth-Jensen; J. Rekstad; S. Siem; A. Schiller; D. J. Dean
2003-07-29T23:59:59.000Z
Experimental level densities for 171,172Yb, 166,167Er, 161,162Dy, and 148,149Sm are analyzed within the microcanonical ensemble. In the even isotopes at excitation energies E energy F signals the transition from zero to two quasiparticles. For E > 2 MeV, the odd and even isotopes reveal a surprisingly constant F at a critical temperature Tc of appr. 0.5 MeV, indicating the continuous melting of nucleon Cooper pairs as function of excitation energy.
HOM Survey of the First CEBAF Upgrade Style Cavity Pair
Marhauser, Frank; Davis, G; Drury, Michael; Grenoble, Christiana; Hogan, John; Manus, Robert; Preble, Joseph; Reece, Charles; Rimmer, Robert; Tian, Kai
2009-05-01T23:59:59.000Z
The planned upgrade of the Continuous Electron Beam Accelerator Facility (CEBAF) at the Thomas Jefferson National Accelerator Laboratory (JLab) requires ten new superconducting rf (SRF) cavity cryomodules to double the beam energy to the envisaged 12 GeV. Adequate cavity Higher Order Mode (HOM) suppression is essential to avoid multipass, multibunch beam break-up (BBU) instabilities of the recirculating beam. We report on detailed HOM surveys performed for the first two upgrade style cavities tested in a dedicated cavity pair cryomodule at 2K. The safety margin to the BBU threshold budget at 12 GeV has been assessed.
Radiative emission of neutrino pair free of quantum electrodynamic backgrounds
M. Yoshimura; N. Sasao; M. Tanaka
2015-01-23T23:59:59.000Z
A scheme of quantum electrodynamic (QED) background-free radiative emission of neutrino pair (RENP) is proposed in order to achieve precision determination of neutrino properties so far not accessible. The important point for the background rejection is the fact that the dispersion relation between wave vector along propagating direction in wave guide (and in a photonic-crystal type fiber) and frequency is modified by a discretized non-vanishing effective mass. This effective mass acts as a cutoff of allowed frequencies, and one may select the RENP photon energy region free of all macro-coherently amplified QED processes by choosing the cutoff larger than the mass of neutrinos.
A semiconductor source of triggered entangled photon pairs?
A. Gilchrist; K. J. Resch; A. G. White
2006-08-08T23:59:59.000Z
The realisation of a triggered entangled photon source will be of great importance in quantum information, including for quantum key distribution and quantum computation. We show here that: 1) the source reported in ``A semiconductor source of triggered entangled photon pairs''[1. Stevenson et al., Nature 439, 179 (2006)]} is not entangled; 2) the entanglement indicators used in Ref. 1 are inappropriate, relying on assumptions invalidated by their own data; and 3) even after simulating subtraction of the significant quantity of background noise, their source has insignificant entanglement.
Metal Absorption Systems in Spectra of Pairs of QSOs
David Tytler; Mark Gleed; Carl Melis; Angela Chapman; David Kirkman; Dan Lubin; Pascal Paschos; Tridivesh Jena; Arlin P. S. Crotts
2007-11-17T23:59:59.000Z
We present the first large sample of absorption systems in paired QSOs consisting of 691 absorption systems in the spectra of 310 QSOs including 170 pairings. All these absorption systems have metal lines, usually C IV or Mg II. We see 17 cases of absorption in one line-of-sight within 200 km/s (1 Mpc) of absorption in the paired line-of-sight with the probability at least approx 50% at 100kpc, declining rapidly to 23% at 100 - 200 kpc. We detect clustering on 0.5Mpc scales and see a hint of the "fingers of God" redshift-space distortion. The distribution matches absorbers arising in galaxies at z=2 with a normal correlation function and systematic infall velocities but unusually low random pair-wise velocity differences. Absorption in gas flowing out from galaxies at a mean velocity of 250 km/s would produce vastly more elongation than we see. The UV absorption from fast winds that Adelberger et al. 2005 see in spectra of LBGs is not representative of the absorption that we see. Either the winds are confined to LBGs, or they can not extend to 40 kpc with large velocities, while continuing to make UV absorption we see, implying most metals were in place in the IGM long before z=2. Separately, when we examine the absorption seen when a sight line passes a second QSO, we see 19 absorbers within 400 km/s of the partner QSO. The probability of seeing absorption is approximately constant for impact parameters 0.1 - 1.5 Mpc. Perhaps we do not see a rapid rise in the probability at small impact parameters because the UV from QSOs destroys some absorbers near to the QSOs. The 3D distribution of 64 absorbers around 313 QSOs is to first order isotropic, with just a hint of the anisotropy expected if the QSO UV emission is beamed, or alternatively QSOs might emit UV isotropically but for a surprisingly short time of only 0.3Myr.
Report/Product Number(s) DOE/ER/64701 DOE Award/Contract Number(s)
Office of Scientific and Technical Information (OSTI)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Foundenhancer activity than FINAL Report/Product Number(s)
Seems a Fate in It: Misdirection and Foreshadowing in Bleak House and A Pair of Blue Eyes
Bradfield, Meredith
2013-01-01T23:59:59.000Z
for Action in A Pair of Blue Eyes. English Literature in2013). Hardy, Thomas. A Pair of Blue Eyes. Harmondsworth,aware of Thomas Hardy. A Pair of Blue Eyes. (Harmondsworth,
Electrostatic ion waves in non-Maxwellian pair-ion plasmas
Arshad, Kashif [Department of Physics, Quaid-i-Azam University, Islamabad 44000 (Pakistan); National Centre for Physics, Quaid-i-Azam University Campus, Shadhra Valley Road, Islamabad 44000 (Pakistan); Mahmood, S. [Theoretical Plasma Physics Division, PINSTECH, P.O. Nilore, Islamabad 44000 (Pakistan); National Centre for Physics, Quaid-i-Azam University Campus, Shadhra Valley Road, Islamabad 44000 (Pakistan)
2010-12-15T23:59:59.000Z
The electrostatic ion waves are studied for non-Maxwellian or Lorentzian distributed unmagnetized pair-ion plasmas. The Vlasov equation is solved and damping rates are calculated for electrostatic waves in Lorentzian pair-ion plasmas. The damping rates of the electrostatic ion waves are studied for the equal and different ion temperatures of pair-ion species. It is found that the Landau damping rate of the ion plasma wave is increased in Lorentzian plasmas in comparison with Maxwellian pair-ion plasmas. The numerical results are also presented for illustration by taking into account the parameters reported in fullerene pair-ion plasma experiments.
Search for pair production of second generation scalar leptoquarks
Abazov, V.M.; /Dubna, JINR; Abbott, B.; /Oklahoma U.; Abolins, M.; /Michigan State U.; Acharya, B.S.; /Tata Inst.; Adams, M.; /Illinois U., Chicago; Adams, T.; /Florida State U.; Aguilo, E.; /Alberta U. /Simon Fraser U. /York U., Canada /McGill U.; Ahsan, M.; /Kansas State U.; Alexeev, G.D.; /Dubna, JINR; Alkhazov, Georgiy D.; /St. Petersburg, INP; Alton, Andrew K.; /Michigan U. /Northeastern U.
2008-08-01T23:59:59.000Z
We report on a search for the pair production of second generation scalar leptoquarks (LQ) in p{bar p} collisions at the center of mass energy {radical}s = 1.96TeV using a data set corresponding to an integrated luminosity of 1.0 fb{sup -1} collected with the D0 experiment at the Fermilab Tevatron Collider. Topologies arising from the LQ{ovr LQ} {yields} {mu}q{nu}q and LQ{ovr LQ} {yields} {mu}q{mu}q decay modes are investigated. No excess of data over the standard model prediction is observed and upper limits on the leptoquark pair production cross section are derived at the 95% C.L. as a function of the leptoquark mass and the branching fraction {beta} for the decay LQ {yields} {mu}q. These are interpreted as lower limits on the leptoquark mass as a function of {beta}. For {beta} = 1 (0.5), scalar second generation leptoquarks with masses up to 316GeV (270GeV) are excluded.
Creation of Electron Spinless Pairs in the Superconductivity
V. N. Minasyan
2009-03-28T23:59:59.000Z
First, it is demonstrated that the Froolich Hamiltonian of system in the superconductivity, proposed by the model of a phonon gas and an electron gas mixture, contains a subtle error. In this respect, we present a correct form of the Froolich Hamiltonian of system where the term of the interaction between the phonon modes and the density modes of the electron modes is described by the term of scattering, introduced by the Froolich in a phonon gas electron gas mixture. The later is removed by a canonical transformation of the Froolich Hamiltonian by an appearance of the attractive interaction mediated via the electron modes, which leads to a bound state on a spinless electron pairs. In this letter, we show that the Cooper approximation as the constancy of the density states within around of the Fermi level has a flaw because the effective attractive forces cannot create the Cooper pairs into energetic gap at the Fermi level. In this letter, we find a condition for density metal which determines metal as superconductor.
Modeling the secular evolution of migrating planet pairs
Michtchenko, Tatiana A
2011-01-01T23:59:59.000Z
The subject of this paper is the secular behaviour of a pair of planets evolving under dissipative forces. In particular, we investigate the case when dissipative forces affect the planetary semi-major axes and the planets move inward/outward the central star, in a process known as planet migration. To perform this investigation, we introduce fundamental concepts of conservative and dissipative dynamics of the three-body problem. Based on these concepts, we develop a qualitative model of the secular evolution of the migrating planetary pair. Our approach is based on analysis of the energy and the orbital angular momentum exchange between the two-planet system and an external medium; thus no specific kind of dissipative forces is invoked. We show that, under assumption that dissipation is weak and slow, the evolutionary routes of the migrating planets are traced by the Mode I and Mode II stationary solutions of the conservative secular problem. The ultimate convergence and the evolution of the system along one...
Top quark pair production and top quark properties at CDF
Chang-Seong Moon
2014-11-01T23:59:59.000Z
We present the most recent measurements of top quark pairs production and top quark properties in proton-antiproton collisions with center-of-mass energy of 1.96 TeV using CDF II detector at the Tevatron. The combination of top pair production cross section measurements and the direct measurement of top quark width are reported. The test of Standard Model predictions for top quark decaying into $b$-quarks, performed by measuring the ratio $R$ between the top quark branching fraction to $b$-quark and the branching fraction to any type of down quark is shown. The extraction of the CKM matrix element $|V_{tb}|$ from the ratio $R$ is discussed. We also present the latest measurements on the forward-backward asymmetry ($A_{FB}$) in top anti-top quark production. With the full CDF Run II data set, the measurements are performed in top anti-top decaying to final states that contain one or two charged leptons (electrons or muons). In addition, we combine the results of the leptonic forward-backward asymmetry in $t\\bar t$ system between the two final states. All the results show deviations from the next-to-leading order (NLO) standard model (SM) calculation.
FINDING THE FIRST COSMIC EXPLOSIONS. I. PAIR-INSTABILITY SUPERNOVAE
Whalen, Daniel J.; Smidt, Joseph; Lovekin, C. C. [T-2, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Even, Wesley; Fryer, Chris L. [CCS-2, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Frey, Lucille H. [HPC-3, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Johnson, Jarrett L.; Hungerford, Aimee L. [XTD-6, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Stiavelli, Massimo [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Holz, Daniel E. [Enrico Fermi Institute, Department of Physics, and Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Heger, Alexander [Monash Centre for Astrophysics, Monash University, Victoria 3800 (Australia); Woosley, S. E. [Department of Astronomy and Astrophysics, UCSC, Santa Cruz, CA 95064 (United States)
2013-11-10T23:59:59.000Z
The first stars are the key to the formation of primitive galaxies, early cosmological reionization and chemical enrichment, and the origin of supermassive black holes. Unfortunately, in spite of their extreme luminosities, individual Population III (Pop III) stars will likely remain beyond the reach of direct observation for decades to come. However, their properties could be revealed by their supernova explosions, which may soon be detected by a new generation of near-IR (NIR) observatories such as JWST and WFIRST. We present light curves and spectra for Pop III pair-instability supernovae calculated with the Los Alamos radiation hydrodynamics code RAGE. Our numerical simulations account for the interaction of the blast with realistic circumstellar envelopes, the opacity of the envelope, and Lyman absorption by the neutral intergalactic medium at high redshift, all of which are crucial to computing the NIR signatures of the first cosmic explosions. We find that JWST will detect pair-instability supernovae out to z ?> 30, WFIRST will detect them in all-sky surveys out to z ? 15-20, and LSST and Pan-STARRS will find them at z ?< 7-8. The discovery of these ancient explosions will probe the first stellar populations and reveal the existence of primitive galaxies that might not otherwise have been detected.
On Normal Numbers Veronica Becher
Figueira, Santiago
ends with all zeros; hence, q is not simply normal to base b. 3/23 #12;The problem is still open Theorem (Borel 1909) Almost all real numbers are absolutely normal. Problem (Borel 1909) Give an example transducers. Huffman 1959 calls them lossless compressors. A direct proof of the above theorem Becher
Brookhaven National Laboratory Number: Revision
Ohta, Shigemi
NATIONAL LABORATORY LASER CONTROLLED AREA STANDARD OPERATING PROCEDURE (SOP) This document defines OPERATIONS Operation Maintenance Service Specific Operation (specify) #12;Number: PS-ESH-0083 Revision: 01 the safety management program for the laser system(s) listed below. All American National Standard Institute
Reiter, Harold
for all pairs of pile sizes from up to 10 per pile for Whytoff's game. For example, the Grundy value of counters from one pile or the same number of counters from two piles. 0 1 2 3 4 5 6 7 8 9 10 11 0 0 1 2 3 4 of the four one pile nim games N(3), N(5), N(7) and N(9). That is, N(3, 5, 7, 9) = N(3)N(5)N(7)N(9
State recovery and lockstep execution restart in a system with multiprocessor pairing
Gara, Alan; Gschwind, Michael K; Salapura, Valentina
2014-01-21T23:59:59.000Z
System, method and computer program product for a multiprocessing system to offer selective pairing of processor cores for increased processing reliability. A selective pairing facility is provided that selectively connects, i.e., pairs, multiple microprocessor or processor cores to provide one highly reliable thread (or thread group). Each paired microprocessor or processor cores that provide one highly reliable thread for high-reliability connect with a system components such as a memory "nest" (or memory hierarchy), an optional system controller, and optional interrupt controller, optional I/O or peripheral devices, etc. The memory nest is attached to a selective pairing facility via a switch or a bus. Each selectively paired processor core is includes a transactional execution facility, whereing the system is configured to enable processor rollback to a previous state and reinitialize lockstep execution in order to recover from an incorrect execution when an incorrect execution has been detected by the selective pairing facility.
Generalized lepton number and dark left-right gauge model
Khalil, Shaaban [Center for Theoretical Physics, British University in Egypt, El Sherouk City, Postal No. 11837, P.O. Box 43 (Egypt); Department of Mathematics, Ain Shams University, Faculty of Science, Cairo 11566 (Egypt); Lee, Hye-Sung; Ma, Ernest [Department of Physics and Astronomy, University of California, Riverside, California 92521 (United States)
2009-02-15T23:59:59.000Z
In a left-right gauge model of particle interactions, the left-handed fermion doublet ({nu},e){sub L} is connected to its right-handed counterpart (n,e){sub R} through a scalar bidoublet so that e{sub L} pairs with e{sub R}, and {nu}{sub L} with n{sub R} to form mass terms. Suppose the latter link is severed without affecting the former, then n{sub R} is not the mass partner of {nu}{sub L}, and as we show in this paper, becomes a candidate for dark matter which is relevant for the recent PAMELA and ATIC observations. We accomplish this in a specific nonsupersymmetric model, where a generalized lepton number can be defined, so that n{sub R} and W{sub R}{sup {+-}} are odd under R{identical_to}(-1){sup 3B+L+2j}. Fermionic leptoquarks are also predicted.
Maine Natural Gas Number of Commercial Consumers (Number of Elements)
Gasoline and Diesel Fuel Update (EIA)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 07,755,432Commercial Consumers (Number
Minnesota Natural Gas Number of Commercial Consumers (Number of Elements)
Gasoline and Diesel Fuel Update (EIA)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet)Commercial Consumers (Number of Elements)
Minnesota Natural Gas Number of Industrial Consumers (Number of Elements)
Gasoline and Diesel Fuel Update (EIA)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet)Commercial Consumers (Number of
Kansas Natural Gas Number of Residential Consumers (Number of Elements)
Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLessAprilResidential Consumers (Number of
Tennessee Natural Gas Number of Residential Consumers (Number of Elements)
U.S. Energy Information Administration (EIA) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan FebDecadeDecade217523,552.1Residential Consumers (Number
Wisconsin Natural Gas Number of Residential Consumers (Number of Elements)
U.S. Energy Information Administration (EIA) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYearFuel5,266 6,090Industrial Consumers (Number
Vermont Natural Gas Number of Commercial Consumers (Number of Elements)
Gasoline and Diesel Fuel Update (EIA)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreasesCommercial Consumers (Number of Elements)
Vermont Natural Gas Number of Industrial Consumers (Number of Elements)
Gasoline and Diesel Fuel Update (EIA)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreasesCommercial Consumers (Number of
Georgia Natural Gas Number of Industrial Consumers (Number of Elements)
Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear JanPriceIndustrial Consumers (Number of
Valley pair qubits in double quantum dots of gapped graphene
G. Y. Wu; N. -Y. Lue; L. Chang
2011-07-03T23:59:59.000Z
The rise of graphene opens a new door to qubit implementation, as discussed in the recent proposal of valley pair qubits in double quantum dots of gapped graphene (Wu et al., arXiv: 1104.0443 [cond-mat.mes-hall]). The work here presents the comprehensive theory underlying the proposal. It discusses the interaction of electrons with external magnetic and electric fields in such structures. Specifically, it examines a strong, unique mechanism, i.e., the analogue of the 1st-order relativistic effect in gapped graphene. This mechanism is state mixing free and allows, together with the electrically tunable exchange coupling, a fast, all-electric manipulation of qubits via electric gates, in the time scale of ns. The work also looks into the issue of fault tolerance in a typical case, yielding at 10oK a long qubit coherence time (~O(ms)).
Dynamically tunable Fano resonance in periodically asymmetric graphene nanodisk pair
Zhang, Zhengren; Fan, Yuancheng; Yin, Pengfei; Zhang, Liwei; Shi, Xi
2015-01-01T23:59:59.000Z
We present a dynamically frequency tunable Fano resonance planar device composed of periodically asymmetric graphene nanodisk pair for the mid-infrared region. There are two kinds of modes in this structure, that is, the symmetric mode and the antisymmetric mode. The resonance coupling between the symmetric and antisymmetric modes creates a classical Fano resonance. Both of the Fano resonance amplitude and frequency of the structure can be dynamically controlled by varying the Fermi energy of graphene. Resonance transition in the structure is studied to reveal the physical mechanism behind the dynamically tunable Fano resonance. The features of the Fano resonant graphene nanostructures should have promising applications in tunable THz filters, switches, and modulators.
EPR pairing dynamics in Hubbard model with resonant $U$
X. Z. Zhang; Z. Song
2015-04-28T23:59:59.000Z
We study the dynamics of the collision between two fermions in Hubbard model with on-site interaction strength $U$. The exact solution shows that the scattering matrix for two-wavepacket collision is separable into two independent parts, operating on spatial and spin degrees of freedom, respectively. The S-matrix for spin configuration is equivalent to that of Heisenberg-type pulsed interaction with the strength depending on $U$ and relative group velocity $\\upsilon _{r}$. This can be applied to create distant EPR pair, through a collision process for two fermions with opposite spins in the case of $\\left\\vert \\upsilon _{r}/U\\right\\vert =1$,\\ without the need for temporal control and measurement process. Multiple collision process for many particles is also discussed.
Reduction in maximum time uncertainty of paired time signals
Theodosiou, George E. (West Chicago, IL); Dawson, John W. (Clarendon Hills, IL)
1983-01-01T23:59:59.000Z
Reduction in the maximum time uncertainty (t.sub.max -t.sub.min) of a series of paired time signals t.sub.1 and t.sub.2 varying between two input terminals and representative of a series of single events where t.sub.1 .ltoreq.t.sub.2 and t.sub.1 +t.sub.2 equals a constant, is carried out with a circuit utilizing a combination of OR and AND gates as signal selecting means and one or more time delays to increase the minimum value (t.sub.min) of the first signal t.sub.1 closer to t.sub.max and thereby reduce the difference. The circuit may utilize a plurality of stages to reduce the uncertainty by factors of 20-800.
Reduction in maximum time uncertainty of paired time signals
Theodosiou, G.E.; Dawson, J.W.
1983-10-04T23:59:59.000Z
Reduction in the maximum time uncertainty (t[sub max]--t[sub min]) of a series of paired time signals t[sub 1] and t[sub 2] varying between two input terminals and representative of a series of single events where t[sub 1][<=]t[sub 2] and t[sub 1]+t[sub 2] equals a constant, is carried out with a circuit utilizing a combination of OR and AND gates as signal selecting means and one or more time delays to increase the minimum value (t[sub min]) of the first signal t[sub 1] closer to t[sub max] and thereby reduce the difference. The circuit may utilize a plurality of stages to reduce the uncertainty by factors of 20--800. 6 figs.
Reduction in maximum time uncertainty of paired time signals
Theodosiou, G.E.; Dawson, J.W.
1981-02-11T23:59:59.000Z
Reduction in the maximum time uncertainty (t/sub max/ - t/sub min/) of a series of paired time signals t/sub 1/ and t/sub 2/ varying between two input terminals and representative of a series of single events where t/sub 1/ less than or equal to t/sub 2/ and t/sub 1/ + t/sub 2/ equals a constant, is carried out with a circuit utilizing a combination of OR and AND gates as signal selecting means and one or more time delays to increase the minimum value (t/sub min/) of the first signal t/sub 1/ closer to t/sub max/ and thereby reduce the difference. The circuit may utilize a plurality of stages to reduce the uncertainty by factors of 20 to 800.
Reexamination of an anomaly in near-threshold pair production
De Braeckeleer, L.; Adelberger, E.G.; Garcia, A. (Physics Department FM-15, University of Washington, Seattle, Washington 98195 (United States))
1992-11-01T23:59:59.000Z
We investigated a reported anomaly in near-threshold pair production, using radioactive sources to measure the {gamma}+Ge{r arrow}{ital e}{sup +}+{ital e}{sup {minus}}+Ge cross-section at {ital E}{sub {gamma}}=1063, 1086, 1112, 1173, 1213, 1299, 1332, and 1408 keV. Although the data agree with the theory (numerical calculations based on an exact partial-wave formulation for a screened central potential) at the higher energies, the data lie above the theory at 1063, 1082, and 1112 keV. The discrepancy is reduced by including the final-state Coulomb interaction between the {ital e}{sup +} and {ital e}{sup {minus}}.
Hong-yi Fan; Wei-bo Gao
2005-12-08T23:59:59.000Z
As a continuum work of Bhaumik et al who derived the common eigenvector of the number-difference operator Q and pair-annihilation operator ab (J. Phys. A9 (1976) 1507) we search for the simultaneous eigenvector of Q and (ab-a^{+}b^{+}) by setting up a complex differential equation in the bipartite entangled state representation. The differential equation is then solved in terms of the two-variable Hermite polynomials and the formal hypergeometric functions. The work is also an addendum to Mod. Phys. Lett. A 9 (1994) 1291 by Fan and Klauder, in which the common eigenkets of Q and pair creators are discussed.
The Holmberg effect of Main galaxy pairs of the SDSS Data Release 4 (SDSS4)
Deng Xin-Fa; Ma Xin-Sheng; He Con-Gen; Luo Cheng-Hong; He Ji-Zhou
2006-05-12T23:59:59.000Z
We have investigated the Holmberg effect of Main galaxy pairs of the SDSS Data Release 4 (SDSS4). It is found that except i-z color the color indices between the two components of Main galaxy pairs clearly have significantly larger correlation coefficients. Further analyses also show that the Holmberg Effect of galaxies not only depends on the color indices but also on the morphological type for two components of pairs.
Particle Number & Particulate Mass Emissions Measurements on...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Number & Particulate Mass Emissions Measurements on a 'Euro VI' Heavy-duty Engine using the PMP Methodologies Particle Number & Particulate Mass Emissions Measurements on a 'Euro...
Dynamics of iron-acceptor-pair formation in co-doped silicon
Bartel, T.; Gibaja, F.; Graf, O.; Gross, D.; Kaes, M.; Heuer, M.; Kirscht, F. [Calisolar GmbH, Magnusstrasse 11, 12489 Berlin (Germany)] [Calisolar GmbH, Magnusstrasse 11, 12489 Berlin (Germany); Mller, C. [CiS Forschungsinstitut fr Mikrosensorik und Photovoltaik GmbH, Konrad-Zuse-Str. 14, 99099 Erfurt (Germany) [CiS Forschungsinstitut fr Mikrosensorik und Photovoltaik GmbH, Konrad-Zuse-Str. 14, 99099 Erfurt (Germany); TU Ilmenau, Institut fr Physik, Weimarer Str. 32, 98693 Ilmenau (Germany); Lauer, K. [CiS Forschungsinstitut fr Mikrosensorik und Photovoltaik GmbH, Konrad-Zuse-Str. 14, 99099 Erfurt (Germany)] [CiS Forschungsinstitut fr Mikrosensorik und Photovoltaik GmbH, Konrad-Zuse-Str. 14, 99099 Erfurt (Germany)
2013-11-11T23:59:59.000Z
The pairing dynamics of interstitial iron and dopants in silicon co-doped with phosphorous and several acceptor types are presented. The classical picture of iron-acceptor pairing dynamics is expanded to include the thermalization of iron between different dopants. The thermalization is quantitatively described using Boltzmann statistics and different iron-acceptor binding energies. The proper understanding of the pairing dynamics of iron in co-doped silicon will provide additional information on the electronic properties of iron-acceptor pairs and may become an analytical method to quantify and differentiate acceptors in co-doped silicon.
Cherenkov Radiation from e+e- Pairs and Its Effect on nu e Induced Showers
Mandal, Sourav K.; Klein, Spencer R.; Jackson, J. David
2005-01-01T23:59:59.000Z
5] J. V. Jelley, Cherenkov Radiation and its applications (calculated the Cherenkov radiation from e + e ? pairs as a? 2 [1?? 2 ?(?)]), the radiation is suppressed compared to
Momentum signatures for Schwinger pair production in short laser pulses with a sub-cycle structure
Florian Hebenstreit; Reinhard Alkofer; Gerald V. Dunne; Holger Gies
2009-04-20T23:59:59.000Z
We investigate electron-positron pair production from vacuum for short laser pulses with sub-cycle structure, in the nonperturbative regime (Schwinger pair production). We use the non-equilibrium quantum kinetic approach, and show that the momentum spectrum of the created electron-positron pairs is extremely sensitive to the sub-cycle dynamics -- depending on the laser frequency $\\omega$, the pulse length $\\tau$, and the carrier phase $\\phi$ -- and shows several distinctive new signatures. This observation could help not only in the design of laser pulses to optimize the experimental signature of Schwinger pair production, but also ultimately lead to new probes of light pulses at extremely short time scales.
Paho Lurie-Gregg; Jeff B. Schulte; David Roundy
2014-09-24T23:59:59.000Z
We introduce an approximation for the pair distribution function of the inhomogeneous hard sphere fluid. Our approximation makes use of our recently published averaged pair distribution function at contact which has been shown to accurately reproduce the averaged pair distribution function at contact for inhomogeneous density distributions. This approach achieves greater computational efficiency than previous approaches by enabling the use of exclusively fixed-kernel convolutions and thus allowing an implementation using fast Fourier transforms. We compare results for our pair distribution approximation with two previously published works and Monte-Carlo simulation, showing favorable results.
What Signals Do Packet-Pair Dispersions Carry? Xiliang Liu, Kaliappa Ravindran, and Dmitri Loguinov
Loguinov, Dmitri
of packet-pair probing in the context of a single-hop path and non-fluid cross-traffic. We identify three
What Signals Do Packet-pair Dispersions Carry? Xiliang Liu, Kaliappa Ravindran, and Dmitri Loguinov
Liu, Xiliang
of packet-pair probing in the context of a single-hop path and non-fluid cross-traffic. We identify three
Final state interactions at the threshold of Higgs boson pair production
Zhang, Zhentao
2015-01-01T23:59:59.000Z
We study the effect of final state interactions at the threshold of Higgs boson pair production in the Glashow-Weinberg-Salam model. We consider three major processes of the pair production in the model: lepton pair annihilation, ZZ fusion, and WW fusion. We find that the corrections caused by the effect for these processes are markedly different. According to our results, the effect can cause non-negligible corrections to the cross sections for lepton pair annihilation and small corrections for ZZ fusion, and this effect is negligible for WW fusion.
Pair correlations in nuclei involved in neutrinoless double beta decay: 76Ge and 76Se
S. J. Freeman; J. P. Schiffer; A. C. C. Villari; J. A. Clark; C. Deibel; S. Gros; A. Heinz; D. Hirata; C. L. Jiang; B. P. Kay; A. Parikh; P. D. Parker; J. Qian; K. E. Rehm; X. D. Tang; V. Werner; C. Wrede
2007-03-23T23:59:59.000Z
Precision measurements were carried out to test the similarities between the ground states of 76Ge and 76Se. The extent to which these two nuclei can be characterized as consisting of correlated pairs of neutrons in a BCS-like ground state was studied. The pair removal (p,t) reaction was measured at the far forward angle of 3 degrees. The relative cross sections are consistent (at the 5% level) with the description of these nuclei in terms of a correlated pairing state outside the N=28 closed shells with no pairing vibrations. Data were also obtained for 74Ge and 78Se.
E-Print Network 3.0 - atom-photon pair laser Sample Search Results
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
quantum communication and a first... pairs of counterpropagating laser beams for optical cooling. Fluorescence light is collected... photon 5 . This kind of atom-photon...
Natural orbits of atomic Cooper pairs in a nonuniform Fermi gas
Y. H. Pong; C. K. Law
2006-05-08T23:59:59.000Z
We examine the basic mode structure of atomic Cooper pairs in an inhomogeneous Fermi gas. Based on the properties of Bogoliubov quasi-particle vacuum, the single particle density matrix and the anomalous density matrix share the same set of eigenfunctions. These eigenfunctions correspond to natural pairing orbits associated with the BCS ground state. We investigate these orbits for a Fermi gas in a spherical harmonic trap, and construct the wave function of a Cooper pair in the form of Schmidt decomposition. The issue of spatial quantum entanglement between constituent atoms in a pair is addressed.
Random number stride in Monte Carlo calculations
Hendricks, J.S.
1990-01-01T23:59:59.000Z
Monte Carlo radiation transport codes use a sequence of pseudorandom numbers to sample from probability distributions. A common practice is to start each source particle a predetermined number of random numbers up the pseudorandom number sequence. This number of random numbers skipped between each source particles the random number stride, S. Consequently, the jth source particle always starts with the j{center dot}Sth random number providing correlated sampling'' between similar calculations. A new machine-portable random number generator has been written for the Monte Carlo radiation transport code MCNP providing user's control of the random number stride. First the new MCNP random number generator algorithm will be described and then the effects of varying the stride will be presented. 2 refs., 1 fig.
Device Independent Random Number Generation
Mataj Pivoluska; Martin Plesch
2015-02-23T23:59:59.000Z
Randomness is an invaluable resource in today's life with a broad use reaching from numerical simulations through randomized algorithms to cryptography. However, on the classical level no true randomness is available and even the use of simple quantum devices in a prepare-measure setting suffers from lack of stability and controllability. This gave rise to a group of quantum protocols that provide randomness certified by classical statistical tests -- Device Independent Quantum Random Number Generators. In this paper we review the most relevant results in this field, which allow the production of almost perfect randomness with help of quantum devices, supplemented with an arbitrary weak source of additional randomness. This is in fact the best one could hope for to achieve, as with no starting randomness (corresponding to no free will in a different concept) even a quantum world would have a fully deterministic description.
Neutrino-pair bremsstrahlung by electrons in neutron star crusts
A. D. Kaminker; C. J. Pethick; A. Y. Potekhin; V. Thorsson; D. G. Yakovlev
1998-12-25T23:59:59.000Z
Neutrino-pair bremsstrahlung by relativistic degenerate electrons in a neutron-star crust at densities (10^9 - 1.5x10^{14}) g/cm^3 is analyzed. The processes taken into account are neutrino emission due to Coulomb scattering of electrons by atomic nuclei in a Coulomb liquid, and electron-phonon scattering and Bragg diffraction (the static-lattice contribution) in a Coulomb crystal. The static-lattice contribution is calculated including the electron band-structure effects for cubic Coulomb crystals of different types and also for the liquid crystal phases composed of rod- and plate-like nuclei in the neutron-star mantle (at 10^{14} - 1.5x10^{14} g/cm^3). The phonon contribution is evaluated with proper treatment of the multi-phonon processes which removes a jump in the neutrino bremsstrahlung emissivity at the melting point obtained in previous works. Below 10^{13} g/cm^3, the results are rather insensitive to the nuclear form factor, but results for the solid state near the melting point are affected significantly by the Debye-Waller factor and multi-phonon processes. At higher densities, the nuclear form factor becomes more significant. A comparison of the various neutrino generation mechanisms in neutron star crusts shows that electron bremsstrahlung is among the most important ones.
Top Quark Properties from Top Pair Events and Decays
Andrew G. Ivanov; for the CDF; Dzero Collaborations
2008-10-19T23:59:59.000Z
Over a decade since the discovery of the top quark we are still trying to unravel mysteries of the heaviest observed particle and learn more about its nature. The continuously accumulating statistics of CDF and Dzero data provide the means for measuring top quark properties with ever greater precision and the opportunity to search for signs of new physics that could be manifested through subtle deviations from the standard model in the production and decays of top quarks. In the following we present a slice of the rich program in top quark physics at the Fermilab Tevatron: measurements of the properties of top quark decays and searches for unusual phenomena in events with pair produced tops. In particular, we discuss the most recent and precise CDF and Dzero measurements of the transverse polarization of W bosons from top decays, branching ratios and searches for flavor-changing neutral current decays, decays into charged Higgs and invisible decays. These analyses correspond to integrated luminosities ranging from 0.9 to 2.7 inv. fb.
The Drinfel'd polynomial of a tridiagonal pair
Ito, Tatsuro
2008-01-01T23:59:59.000Z
Let $K$ denote a field and let $V$ denote a vector space over $K$ with finite positive dimension. We consider a pair of linear transformations $A:V \\to V$ and $A^*:V \\to V$ that satisfy the following conditions: (i) each of $A,A^*$ is diagonalizable; (ii) there exists an ordering $\\{V_i\\}{i=0}^d$ of the eigenspaces of $A$ such that $A^* V_i \\subseteq V_{i-1} + V_{i} + V_{i+1}$ for $0 \\leq i \\leq d$, where $V_{-1}=0$ and $V_{d+1}=0$; (iii) there exists an ordering $\\{V^*_i\\}{i=0}^\\delta$ of the eigenspaces of $A^*$ such that $A V^*_i \\subseteq V^*_{i-1} + V^*_{i} + V^*_{i+1}$ for $0 \\leq i \\leq \\delta$, where $V^*_{-1}=0$ and $V^*_{\\delta+1}=0$; (iv) there is no subspace $W$ of $V$ such that $AW \\subseteq W$, $A^* W \\subseteq W$, $W \
Modeling exclusive meson pair production at hadron colliders
L. A. Harland-Lang; V. A. Khoze; M. G. Ryskin
2014-07-21T23:59:59.000Z
We present a study of the central exclusive production of light meson pairs, concentrating on the region of lower invariant masses of the central system and/or meson transverse momentum, where perturbative QCD cannot be reliably applied. We describe in detail a phenomenological model, using the tools of Regge theory, that may be applied with some success in this regime, and we present the new, publicly available, Dime Monte Carlo (MC) implementation of this for $\\pi\\pi$, $KK$ and $\\rho\\rho$ production. The MC includes a fully differential treatment of the survival factor, which in general depends on all kinematic variables, as well as allowing for the so far reasonably unconstrained model parameters to be set by the user. We present predictions for the Tevatron and LHC and show how future measurements may further test this Regge--based approach, as well as the soft hadronic model required to calculate the survival factor, in particular in the presence of tagged protons.
THE PAIR BEAM PRODUCTION SPECTRUM FROM PHOTON-PHOTON ANNIHILATION IN COSMIC VOIDS
Schlickeiser, R.; Ibscher, D. [Institut fuer Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); Elyiv, A. [Institut d'Astrophysique et de Geophysique, Universite de Liege, B-4000 Liege (Belgium); Miniati, F., E-mail: rsch@tp4.rub.de, E-mail: ibscher@tp4.rub.de, E-mail: elyiv@astro.ulg.ac.be, E-mail: fm@phys.ethz.ch [Physics Department, Wolfgang-Pauli-Strasse 27, ETH-Zuerich, CH-8093 Zuerich (Switzerland)
2012-10-20T23:59:59.000Z
Highly beamed relativistic e {sup {+-}}-pair energy distributions result in double photon collisions of the beamed gamma rays from TeV blazars at cosmological distances with the isotropically distributed extragalactic background light (EBL) in the intergalactic medium. The typical energies k {sub 0} {approx_equal} 10{sup -7} in units of m{sub e}c {sup 2} of the EBL are more than 10 orders of magnitude smaller than the observed gamma-ray energies k {sub 1} {>=} 10{sup 7}. Using the limit k {sub 0} << k {sub 1}, we demonstrate that the angular distribution of the generated pairs in the lab frame is highly beamed in the direction of the initial gamma-ray photons. For the astrophysically important case of power-law distributions of the emitted gamma-ray beam up to the maximum energy M interacting with Wien-type N(k {sub 0}){proportional_to}k{sup q} {sub 0}exp (- k {sub 0}/{Theta}) soft photon distributions with total number density N {sub 0}, we calculate analytical approximations for the electron production spectrum. For distant objects with luminosity distances d{sub L} >> r {sub 0} = ({sigma} {sub T} N {sub 0}){sup -1} = 0.49N {sup -1} {sub 0} Mpc (with Thomson cross section {sigma} {sub T}), the implied large values of the optical depth {tau}{sub 0} = d{sub L} /r {sub 0} indicate that the electron production spectra differ at energies inside and outside the interval [({Theta}ln {tau}{sub 0}){sup -1}, {tau}{sub 0}/{Theta}], given the maximum gamma-ray energy M >> {Theta}{sup -1}. In the case M >> {Theta}{sup -1}, the production spectrum is strongly peaked near E {approx_equal} {Theta}{sup -1}, being exponentially reduced at small energies and decreasing with the steep power law {proportional_to}E {sup -1-p} up to the maximum energy E = M - (1/2).
On q-deformed Stirling numbers
Yilmaz Simsek
2007-11-03T23:59:59.000Z
The purpose of this article is to introduce q-deformed Stirling numbers of the first and second kinds. Relations between these numbers, Riemann zeta function and q-Bernoulli numbers of higher order are given. Some relations related to the classical Stirling numbers and Bernoulli numbers of higher order are found. By using derivative operator to the generating function of the q-deformed Stirling numbers of the second kinds, a new function is defined which interpolates the q-deformed Stirling numbers of the second kinds at negative integers. The recurrence relations of the Stirling numbers of the first and second kind are given. In addition, relation between q-deformed Stirling numbers and q-Bell numbers is obtained.
Induction logging device with a pair of mutually perpendicular bucking coils
Koelle, Alfred R. (Los Alamos, NM); Landt, Jeremy A. (Los Alamos, NM)
1981-01-01T23:59:59.000Z
An instrument is disclosed for mapping vertical conductive fractures in a resistive bedrock, magnetically inducing eddy currents by a pair of vertically oriented, mutually perpendicular, coplanar coils. The eddy currents drive magnetic fields which are picked up by a second, similar pair of coils.
Bose-Einstein correlations in K K pairs from Z 0 decays into two hadronic jets
Bose-Einstein correlations in K #6; K #6; pairs from Z 0 decays into two hadronic jets The OPAL collaboration Abstract Bose-Einstein correlations in pairs of charged kaons produced in a sample of 3.9 million function. The parameters of the Bose- Einstein correlations were measured to be #21; = 0.82 #6; 0.22 + 0
Differential top pair cross section and top anti-top plus jets Physics
Malgorzata Worek
2013-02-14T23:59:59.000Z
A brief summary of the current status of the next-to-leading order QCD corrections to top quark pair production and the associated production of top anti-top with jet(s) in different configurations, i.e. with one jet, two jets and another top anti-top pair, is presented.
Universal Design Rules from Product Pairs and Association Rule Based Learning
Cowen, Nicholas L.
2010-07-14T23:59:59.000Z
A product pair is two products with similar functionality that satisfy the same high level need but are different by design. The goal of this research is to apply association rule-based learning to product pairs and develop universal design rules...
Methods and composition for the production of orthogonal tRNA-aminoacyltRNA synthetase pairs
Schultz, Peter G. (La Jolla, CA); Wang, Lei (San Diego, CA); Anderson, John Christopher (San Diego, CA); Chin, Jason (Cambridge, GB); Liu, David R. (Lexington, MA); Magliery, Thomas J. (North Haven, CT); Meggers, Eric L. (Philadelphia, PA); Mehl, Ryan Aaron (Lancaster, PA); Pastrnak, Miro (San Diego, CA); Santoro, Steven William (Cambridge, MA); Zhang, Zhiwen (San Diego, CA)
2012-05-22T23:59:59.000Z
This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.
EFFICIENT PARTICLE-PAIR FILTERING FOR ACCELERATION OF MOLECULAR DYNAMICS SIMULATION
Herbordt, Martin
EFFICIENT PARTICLE-PAIR FILTERING FOR ACCELERATION OF MOLECULAR DYNAMICS SIMULATION Matt Chiu ABSTRACT The acceleration of molecular dynamics (MD) simulations using high performance reconfigurable: determining the short-range force between particle pairs. In particular, we present the first FPGA study
A Paired-Vehicle Recourse Strategy for the Vehicle Routing Problem with Stochastic Demands
Erera, Alan
A Paired-Vehicle Recourse Strategy for the Vehicle Routing Problem with Stochastic Demands Aykagan Institute of Technology Abstract This paper presents a paired-vehicle recourse strategy for the vehicle vehicles is dispatched from a terminal to serve single-period customer demands which are known
Verification Challenges at Low Numbers
Benz, Jacob M.; Booker, Paul M.; McDonald, Benjamin S.
2013-06-01T23:59:59.000Z
Many papers have dealt with the political difficulties and ramifications of deep nuclear arms reductions, and the issues of Going to Zero. Political issues include extended deterrence, conventional weapons, ballistic missile defense, and regional and geo-political security issues. At each step on the road to low numbers, the verification required to ensure compliance of all parties will increase significantly. Looking post New START, the next step will likely include warhead limits in the neighborhood of 1000 . Further reductions will include stepping stones at1000 warheads, 100s of warheads, and then 10s of warheads before final elimination could be considered of the last few remaining warheads and weapons. This paper will focus on these three threshold reduction levels, 1000, 100s, 10s. For each, the issues and challenges will be discussed, potential solutions will be identified, and the verification technologies and chain of custody measures that address these solutions will be surveyed. It is important to note that many of the issues that need to be addressed have no current solution. In these cases, the paper will explore new or novel technologies that could be applied. These technologies will draw from the research and development that is ongoing throughout the national laboratory complex, and will look at technologies utilized in other areas of industry for their application to arms control verification.
Flexibility of short DNA helices with finite-length effect: from base pairs to tens of base pairs
Wu, Yuan-Yan; Zhang, Xi; Tan, Zhi-Jie
2015-01-01T23:59:59.000Z
Flexibility of short DNA helices is important for the biological functions such as nucleosome formation and DNA-protein recognition. Recent experiments suggest that short DNAs of tens of base pairs (bps) may have apparently higher flexibility than those of kilo bps, while there is still the debate on such high flexibility. In the present work, we have studied the flexibility of short DNAs with finite-length of 5 to 50 bps by the all-atomistic molecular dynamics simulations and Monte Carlo simulations with the worm-like chain model. Our microscopic analyses reveal that short DNAs have apparently high flexibility which is attributed to the significantly strong bending and stretching flexibilities of ~6 bps at each helix end. Correspondingly, the apparent persistence length lp of short DNAs increases gradually from ~29nm to ~45nm as DNA length increases from 10 to 50 bps, in accordance with the available experimental data. Our further analyses show that the short DNAs with excluding ~6 bps at each helix end have...
A weak-value interpretation of the Schwinger mechanism of massless/massive pair productions
Kazuhiro Yokota; Nobuyuki Imoto
2015-04-28T23:59:59.000Z
According to the Schwinger mechanism, a uniform electric field brings about pair productions in vacuum; the relationship between the production rate and the electric field is different, depending on the dimension of the system. In this paper, we make an offer of another model for the pair productions, in which weak values are incorporated: energy fluctuations trigger the pair production, and a weak value appears as the velocity of a particle there. Although our model is only available for the approximation of the pair production rates, the weak value reveals a new aspect of the pair production. Especially, within the first order, our estimation approximately agrees with the exponential decreasing rate of the Landau-Zener tunneling through the mass energy gap. In other words, such tunneling can be associated with energy fluctuations via the weak value, when the tunneling gap can be regarded as so small due to the high electric field.
The Radical Pair Mechanism and the Avian Chemical Compass: Quantum Coherence and Entanglement
Zhang, Yiteng; Kais, Sabre
2015-01-01T23:59:59.000Z
We review the spin radical pair mechanism which is a promising explanation of avian navigation. This mechanism is based on the dependence of product yields on (1) the hyperfine interaction involving electron spins and neighboring nuclear spins and (2) the intensity and orientation of the geomagnetic field. One surprising result is that even at ambient conditions quantum entanglement of electron spins can play an important role in avian magnetoreception. This review describes the general scheme of chemical reactions involving radical pairs generated from singlet and triplet precursors; the spin dynamics of the radical pairs; and the magnetic field dependence of product yields caused by the radical pair mechanism. The main part of the review includes a description of the chemical compass in birds. We review: the general properties of the avian compass; the basic scheme of the radical pair mechanism; the reaction kinetics in cryptochrome; quantum coherence and entanglement in the avian compass; and the effects o...
Origin of the low-mass electron pair excess in light nucleus-nucleus collisions
The HADES Collaboration; G. Agakishiev; A. Balanda; D. Belver; A. V. Belyaev; A. Blanco; M. Bhmer; J. L. Boyard; P. Braun-Munzinger; P. Cabanelas; E. Castro; S. Chernenko; T. Christ; M. Destefanis; J. Daz; F. Dohrmann; A. Dybczak; L. Fabbietti; O. V. Fateev; P. Finocchiaro; P. Fonte; J. Friese; I. Frhlich; T. Galatyuk; J. A. Garzn; R. Gernhuser; A. Gil; C. Gilardi; M. Golubeva; D. Gonzlez-Daz; F. Guber; T. Hennino; R. Holzmann; I. Iori; A. Ivashkin; M. Jurkovic; B. Kmpfer; T. Karavicheva; D. Kirschner; I. Koenig; W. Koenig; B. W. Kolb; R. Kotte; F. Krizek; R. Krcken; W. Khn; A. Kugler; A. Kurepin; S. Lang; J. S. Lange; K. Lapidus; T. Liu; L. Lopes; M. Lorenz; L. Maier; A. Mangiarotti; J. Markert; V. Metag; B. Michalska; J. Michel; E. Morinire; J. Mousa; C. Mntz; L. Naumann; J. Otwinowski; Y. C. Pachmayer; M. Palka; Y. Parpottas; V. Pechenov; O. Pechenova; J. Pietraszko; W. Przygoda; B. Ramstein; A. Reshetin; A. Rustamov; A. Sadovsky; P. Salabura; A. Schmah; E. Schwab; Yu. G. Sobolev; S. Spataro; B. Spruck; H. Strbele; J. Stroth; C. Sturm; M. Sudol; A. Tarantola; K. Teilab; P. Tlusty; M. Traxler; R. Trebacz; H. Tsertos; V. Wagner; M. Weber; M. Wisniowski; T. Wojcik; J. Wstenfeld; S. Yurevich; Y. V. Zanevsky; P. Zhou
2009-10-30T23:59:59.000Z
We report measurements of electron pair production in elementary p+p and d+p reactions at 1.25 GeV/u with the HADES spectrometer. For the first time, the electron pairs were reconstructed for n+p reactions by detecting the proton spectator from the deuteron breakup. We find that the yield of electron pairs with invariant mass Me+e- > 0.15 GeV/c2 is about an order of magnitude larger in n+p reactions as compared to p+p. A comparison to model calculations demonstrates that the production mechanism is not sufficiently described yet. The electron pair spectra measured in C+C reactions are compatible with a superposition of elementary n+p and p+p collisions, leaving little room for additional electron pair sources in such light collision systems.
MULTI-DIMENSIONAL SIMULATIONS OF ROTATING PAIR-INSTABILITY SUPERNOVAE
Chatzopoulos, E.; Wheeler, J. Craig [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Couch, Sean M., E-mail: manolis@astro.as.utexas.edu [Department of Astronomy and Astrophysics, Flash Center for Computational Science, University of Chicago, Chicago, IL 60637 (United States)
2013-10-20T23:59:59.000Z
We study the effects of rotation on the dynamics, energetics, and {sup 56}Ni production of pair instability supernova (PISN) explosions by performing rotating two-dimensional ({sup 2}.5D{sup )} hydrodynamics simulations. We calculate the evolution of eight low-metallicity (Z = 10{sup 3}, 10{sup 4} Z{sub ?}) massive (135-245 M{sub ?}) PISN progenitors with initial surface rotational velocities of 50% of the critical Keplerian value using the stellar evolution code MESA. We allow for both the inclusion and the omission of the effects of magnetic fields in the angular momentum transport and in chemical mixing, resulting in slowly rotating and rapidly rotating final carbon-oxygen cores, respectively. Increased rotation for carbon-oxygen cores of the same mass and chemical stratification leads to less energetic PISN explosions that produce smaller amounts of {sup 56}Ni due to the effect of the angular momentum barrier that develops and slows the dynamical collapse. We find a non-monotonic dependence of {sup 56}Ni production on rotational velocity in situations when smoother composition gradients form at the outer edge of the rotating cores. In these cases, the PISN energetics are determined by the competition of two factors: the extent of chemical mixing in the outer layers of the core due to the effects of rotation in the progenitor evolution and the development of angular momentum support against collapse. Our 2.5D PISN simulations with rotation are the first presented in the literature. They reveal hydrodynamic instabilities in several regions of the exploding star and increased explosion asymmetries with higher core rotational velocity.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Aaltonen, T.; Aaltonen, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Apresyan, A.
2011-08-01T23:59:59.000Z
We present a new method to measure the top quark pair production cross section and the background rates with data corresponding to an integrated luminosity of 2.7 fb-1 from p p? collisions at ?s = 1.96 TeV collected with the CDF II Detector. We select events with a single electron or muon candidate, missing transverse energy, and at least one b-tagged jet. We perform a simultaneous fit to a jet flavor discriminant across nine samples defined by the number of jets and b-tags. An advantage of this approach is that many systematic uncertainties are measured in situ and inversely scale with integrated luminosity. We measure a top cross section of ?tt? = 7.64 0.57 (stat + syst) 0.45 (luminosity) pb.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Aaltonen, T.; Aaltonen, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; et al
2011-08-01T23:59:59.000Z
We present a new method to measure the top quark pair production cross section and the background rates with data corresponding to an integrated luminosity of 2.7 fb-1 from p p? collisions at ?s = 1.96 TeV collected with the CDF II Detector. We select events with a single electron or muon candidate, missing transverse energy, and at least one b-tagged jet. We perform a simultaneous fit to a jet flavor discriminant across nine samples defined by the number of jets and b-tags. An advantage of this approach is that many systematic uncertainties are measured in situ and inversely scalemorewith integrated luminosity. We measure a top cross section of ?tt? = 7.64 0.57 (stat + syst) 0.45 (luminosity) pb.less
Farritor, Shane
Opportunity Number: NSF 12-597. CFDA Number(s): 47.076. Agency/Department: National Science Foundation
Shan-Guang Tan
2014-12-29T23:59:59.000Z
The representation of even numbers as the sum of two primes and the distribution of primes in short intervals were investigated and a main theorem was given out and proved, which states: For every number $n$ greater than a positive number $n_{0}$, let $q$ be an odd prime number smaller than $\\sqrt{2n}$ and $d=2n-q$, then there is always at least an odd number $d$ which does not contain any prime factor smaller than $\\sqrt{2n}$ and must be an odd prime number greater than $2n-\\sqrt{2n}$. Then it was proved that for every number $n$ greater than 1, there are always at least a pair of primes $p$ and $q$ which are symmetrical about the number $n$ so that even numbers greater than 2 can be expressed as the sum of two primes. Hence, the Goldbach's conjecture was proved. Also theorems of the distribution of primes in short intervals were given out and proved. By these theorems, the Legendre's conjecture, the Oppermann's conjecture, the Hanssner's conjecture, the Brocard's conjecture, the Andrica's conjecture, the Sierpinski's conjecture and the Sierpinski's conjecture of triangular numbers were proved and the Mills' constant can be determined. The representation of odd numbers as the sum of an odd prime number and an even semiprime was investigated and a main theorem was given out and proved, which states: For every number $n$ greater than a positive number $n_{0}$, let $q$ be an odd prime number smaller than $\\sqrt{2n}$ and $d=2n+1-2q$, then there is always at least an odd number $d$ which does not contain any odd prime factor smaller than $\\sqrt{2n}$ and must be a prime number greater than $2n+1-2\\sqrt{2n}$. Then it was proved that for every number $n$ greater than 2, there are always at least a pair of primes $p$ and $q$ so that all odd integers greater than 5 can be represented as the sum of an odd prime number and an even semiprime. Hence, the Lemoine's conjecture was proved.
Prime number generation and factor elimination
Vineet Kumar
2014-10-06T23:59:59.000Z
We have presented a multivariate polynomial function termed as factor elimination function,by which, we can generate prime numbers. This function's mapping behavior can explain the irregularities in the occurrence of prime numbers on the number line. Generally the different categories of prime numbers found till date, satisfy the form of this function. We present some absolute and probabilistic conditions for the primality of the number generated by this method. This function is capable of leading to highly efficient algorithms for generating prime numbers.
Measurements of Baryon Pair Decays of $?_{cJ}$ Mesons
M. Ablikim; M. N. Achasov; O. Albayrak; D. J. Ambrose; F. F. An; Q. An; J. Z. Bai; Y. Ban; J. Becker; J. V. Bennett; M. Bertani; J. M. Bian; E. Boger; O. Bondarenko; I. Boyko; R. A. Briere; V. Bytev; X. Cai; O. Cakir; A. Calcaterra; G. F. Cao; S. A. Cetin; J. F. Chang; G. Chelkov; G. Chen; H. S. Chen; J. C. Chen; M. L. Chen; S. J. Chen; X. Chen; Y. B. Chen; H. P. Cheng; Y. P. Chu; D. Cronin-Hennessy; H. L. Dai; J. P. Dai; D. Dedovich; Z. Y. Deng; A. Denig; I. Denysenko; M. Destefanis; W. M. Ding; Y. Ding; L. Y. Dong; M. Y. Dong; S. X. Du; J. Fang; S. S. Fang; L. Fava; C. Q. Feng; R. B. Ferroli; P. Friedel; C. D. Fu; Y. Gao; C. Geng; K. Goetzen; W. X. Gong; W. Gradl; M. Greco; M. H. Gu; Y. T. Gu; Y. H. Guan; A. Q. Guo; L. B. Guo; T. Guo; Y. P. Guo; Y. L. Han; F. A. Harris; K. L. He; M. He; Z. Y. He; T. Held; Y. K. Heng; Z. L. Hou; C. Hu; H. M. Hu; J. F. Hu; T. Hu; G. M. Huang; G. S. Huang; J. S. Huang; L. Huang; X. T. Huang; Y. Huang; Y. P. Huang; T. Hussain; C. S. Ji; Q. Ji; Q. P. Ji; X. B. Ji; X. L. Ji; L. L. Jiang; X. S. Jiang; J. B. Jiao; Z. Jiao; D. P. Jin; S. Jin; F. F. Jing; N. Kalantar-Nayestanaki; M. Kavatsyuk; B. Kopf; M. Kornicer; W. Kuehn; W. Lai; J. S. Lange; M. Leyhe; C. H. Li; Cheng Li; Cui Li; D. M. Li; F. Li; G. Li; H. B. Li; J. C. Li; K. Li; Lei Li; Q. J. Li; S. L. Li; W. D. Li; W. G. Li; X. L. Li; X. N. Li; X. Q. Li; X. R. Li; Z. B. Li; H. Liang; Y. F. Liang; Y. T. Liang; G. R. Liao; X. T. Liao; D. Lin; B. J. Liu; C. L. Liu; C. X. Liu; F. H. Liu; Fang Liu; Feng Liu; H. Liu; H. B. Liu; H. H. Liu; H. M. Liu; H. W. Liu; J. P. Liu; K. Liu; K. Y. Liu; Kai Liu; P. L. Liu; Q. Liu; S. B. Liu; X. Liu; Y. B. Liu; Z. A. Liu; Zhiqiang Liu; Zhiqing Liu; H. Loehner; G. R. Lu; H. J. Lu; J. G. Lu; Q. W. Lu; X. R. Lu; Y. P. Lu; C. L. Luo; M. X. Luo; T. Luo; X. L. Luo; M. Lv; C. L. Ma; F. C. Ma; H. L. Ma; Q. M. Ma; S. Ma; T. Ma; X. Y. Ma; F. E. Maas; M. Maggiora; Q. A. Malik; Y. J. Mao; Z. P. Mao; J. G. Messchendorp; J. Min; T. J. Min; R. E. Mitchell; X. H. Mo; C. Morales Morales; N. Yu. Muchnoi; H. Muramatsu; Y. Nefedov; C. Nicholson; I. B. Nikolaev; Z. Ning; S. L. Olsen; Q. Ouyang; S. Pacetti; J. W. Park; M. Pelizaeus; H. P. Peng; K. Peters; J. L. Ping; R. G. Ping; R. Poling; E. Prencipe; M. Qi; S. Qian; C. F. Qiao; L. Q. Qin; X. S. Qin; Y. Qin; Z. H. Qin; J. F. Qiu; K. H. Rashid; G. Rong; X. D. Ruan; A. Sarantsev; B. D. Schaefer; M. Shao; C. P. Shen; X. Y. Shen; H. Y. Sheng; M. R. Shepherd; X. Y. Song; S. Spataro; B. Spruck; D. H. Sun; G. X. Sun; J. F. Sun; S. S. Sun; Y. J. Sun; Y. Z. Sun; Z. J. Sun; Z. T. Sun; C. J. Tang; X. Tang; I. Tapan; E. H. Thorndike; D. Toth; M. Ullrich; G. S. Varner; B. Q. Wang; D. Wang; D. Y. Wang; K. Wang; L. L. Wang; L. S. Wang; M. Wang; P. Wang; P. L. Wang; Q. J. Wang; S. G. Wang; X. F. Wang; X. L. Wang; Y. F. Wang; Z. Wang; Z. G. Wang; Z. Y. Wang; D. H. Wei; J. B. Wei; P. Weidenkaff; Q. G. Wen; S. P. Wen; M. Werner; U. Wiedner; L. H. Wu; N. Wu; S. X. Wu; W. Wu; Z. Wu; L. G. Xia; Z. J. Xiao; Y. G. Xie; Q. L. Xiu; G. F. Xu; G. M. Xu; Q. J. Xu; Q. N. Xu; X. P. Xu; Z. R. Xu; F. Xue; Z. Xue; L. Yan; W. B. Yan; Y. H. Yan; H. X. Yang; Y. Yang; Y. X. Yang; H. Ye; M. Ye; M. H. Ye; B. X. Yu; C. X. Yu; H. W. Yu; J. S. Yu; S. P. Yu; C. Z. Yuan; Y. Yuan; A. A. Zafar; A. Zallo; Y. Zeng; B. X. Zhang; B. Y. Zhang; C. Zhang; C. C. Zhang; D. H. Zhang; H. H. Zhang; H. Y. Zhang; J. Q. Zhang; J. W. Zhang; J. Y. Zhang; J. Z. Zhang; R. Zhang; S. H. Zhang; X. J. Zhang; X. Y. Zhang; Y. Zhang; Y. H. Zhang; Z. P. Zhang; Z. Y. Zhang; Zhenghao Zhang; G. Zhao; H. S. Zhao; J. W. Zhao; K. X. Zhao; Lei Zhao; Ling Zhao; M. G. Zhao; Q. Zhao; Q. Z. Zhao; S. J. Zhao; T. C. Zhao; Y. B. Zhao; Z. G. Zhao; A. Zhemchugov; B. Zheng; J. P. Zheng; Y. H. Zheng; B. Zhong; Z. Zhong; L. Zhou; X. K. Zhou; X. R. Zhou; C. Zhu; K. Zhu; K. J. Zhu; S. H. Zhu; X. L. Zhu; Y. C. Zhu; Y. M. Zhu; Y. S. Zhu; Z. A. Zhu; J. Zhuang; B. S. Zou; J. H. Zou
2013-03-05T23:59:59.000Z
Using 106 $\\times 10^{6}$ $\\psi^{\\prime}$ decays collected with the BESIII detector at the BEPCII, three decays of $\\chi_{cJ}$ ($J=0,1,2$) with baryon pairs ($\\llb$, $\\ssb$, $\\SSB$) in the final state have been studied. The branching fractions are measured to be $\\cal{B}$$(\\chi_{c0,1,2}\\rightarrow\\Lambda\\bar\\Lambda) =(33.3 \\pm 2.0 \\pm 2.6)\\times 10^{-5}$, $(12.2 \\pm 1.1 \\pm 1.1)\\times 10^{-5}$, $(20.8 \\pm 1.6 \\pm 2.3)\\times 10^{-5}$; $\\cal{B}$$(\\chi_{c0,1,2}\\rightarrow\\Sigma^{0}\\bar\\Sigma^{0})$ = $(47.8 \\pm 3.4 \\pm 3.9)\\times 10^{-5}$, $(3.8 \\pm 1.0 \\pm 0.5)\\times 10^{-5}$, $(4.0 \\pm 1.1 \\pm 0.5) \\times 10^{-5}$; and $\\cal{B}$$(\\chi_{c0,1,2}\\rightarrow\\Sigma^{+}\\bar\\Sigma^{-})$ = $(45.4 \\pm 4.2 \\pm 3.0)\\times 10^{-5}$, $(5.4 \\pm 1.5 \\pm 0.5)\\times 10^{-5}$, $(4.9 \\pm 1.9 \\pm 0.7)\\times 10^{-5}$, where the first error is statistical and the second is systematic. Upper limits on the branching fractions for the decays of $\\chi_{c1,2}\\rightarrow\\Sigma^{0}\\bar\\Sigma^{0}$, $\\Sigma^{+}\\bar\\Sigma^{-}$, are estimated to be $\\cal{B}$$(\\chi_{c1}\\rightarrow\\Sigma^{0}\\bar\\Sigma^{0}) < 6.2\\times 10^{-5}$, $\\cal{B}$$(\\chi_{c2}\\rightarrow\\Sigma^{0}\\bar\\Sigma^{0}) < 6.5\\times 10^{-5}$, $\\cal{B}$$(\\chi_{c1}\\rightarrow\\Sigma^{+}\\bar\\Sigma^{-}) < 8.7\\times 10^{-5}$ and $\\cal{B}$$(\\chi_{c2}\\rightarrow\\Sigma^{+}\\bar\\Sigma^{-}) < 8.8\\times 10^{-5}$ at the 90% confidence level.
Turing's normal numbers: towards randomness Veronica Becher
presumably in 1938 Alan Turing gave an algorithm that produces real numbers normal to every integer base- putable normal numbers, and this result should be attributed to Alan Turing. His manuscript entitled "A
High speed optical quantum random number generation
Weinfurter, Harald
.3351 (2009). 6. I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, "Ultrahigh-speed random number generation
Clar number of catacondensed benzenoid hydrocarbons
Klavzar, Sandi
Clar number of catacondensed benzenoid hydrocarbons Sandi KlavŸzar a,# , Petra Ÿ Zigert a , Ivan hydrocarbon: CL is equal to the minimum number of straight lines required to intersect all hexagons theory; Clar formula; Clar number; Resonance graph; Benzenoid hydrocarbons 1. Introduction Within
Competing Pairing Symmetries in a Generalized Two-Orbital Model for the Pnictide Superconductors
Nicholson, Andrew D [ORNL; Ge, Weihao [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Zhang, Xiaotian [Oak Ridge National Laboratory (ORNL); Riera, J. A. [Universidad Nacional de Rosario; Daghofer, M. [IFW Dresden; Ols, Andrzej M. [Max-Planck-Institut fur Feskorperforschung, Stuttgart, Germany; Martins, G. B. [Oakland University, Rochester, MI; Moreo, Adriana [ORNL; Dagotto, Elbio R [ORNL
2011-01-01T23:59:59.000Z
We introduce and study an extended t-U-J two-orbital model for the pnictides that includes Heisenberg terms deduced from the strong coupling expansion. Including these J terms explicitly allows us to enhance the strength of the %;0 - 0;% spin order which favors the presence of tightly bound pairing states even in the small clusters that are here exactly diagonalized. The A1g and B2g pairing symmetries are found to compete in the realistic spin-ordered and metallic regime. The dynamical pairing susceptibility additionally unveils low-lying B1g states, suggesting that small changes in parameters may render any of the three channels stable.
Distribution of Primes and of Interval Prime Pairs Based on $?$ Function
Yifang Fan; Zhiyu Li
2010-04-19T23:59:59.000Z
$\\Theta$ function is defined based upon Kronecher symbol. In light of the principle of inclusion-exclusion, $\\Theta$ function of sine function is used to denote the distribution of composites and primes. The structure of Goldbach Conjecture has been analyzed, and $\\Xi$ function is brought forward by the linear diophantine equation; by relating to $\\Theta$ function, the interval distribution of composite pairs and prime pairs (i.e. the Goldbach Conjecture) is thus obtained. In the end, Abel's Theorem (Multiplication of Series) is used to discuss the lower limit of the distribution of the interval prime pairs.
Shenanigans at the black hole horizon: pair creation or Boulware accretion?
Israel, Werner
2015-01-01T23:59:59.000Z
The current scenario of black hole evaporation holds that the Hawking energy flux $F$ is powered by pair creation at the horizon. However, pair creation produces entanglements, some of which must necessarily be broken before the black hole evaporates completely. That leads to loss of information and violation of unitarity. In this paper, an alternative scenario is suggested that reproduces the essential features of Hawking evaporation, but does not invoke pair creation with its attendant problems. In this "accreting Boulware" scenario, a positive flux $F$ is still an outflux at infinity, but near the horizon it becomes an influx of negative energy. This negative energy flux (marginally) satisfies the Flanagan energy inequality.
Geometric Origin of Pair Production by Electric Field in de Sitter Space
Sang Pyo Kim
2014-04-15T23:59:59.000Z
The particle production in a de Sitter space provides an interesting model to understand the curvature effect on Schwinger pair production by a constant electric field or Schwinger mechanism on the de Sitter radiation. For that purpose, we employ the recently introduced complex analysis method, in which the quantum evolution in the complex time explains the pair production via the geometric transition amplitude and gives the pair-production rate as the contour integral. We compare the result by the contour integral with that of the phase-integral method.
Tip sheet: Expanded Library of Congress Call Number Classification system Call Number Subject Matter
Kambhampati, Patanjali
Tip sheet: Expanded Library of Congress Call Number Classification system Call Number Subject R: Medicine T: Technology U: Military Science Z: Bibliography. Library Science. Information
PHYSICAL REVIEW B 86, 195103 (2012) Dynamics of doublon-holon pairs in Hubbard two-leg ladders
Dias, Luis Gregório
PHYSICAL REVIEW B 86, 195103 (2012) Dynamics of doublon-holon pairs in Hubbard two-leg ladders Luis of holon-doublon pairs is studied in Hubbard two-leg ladders using the time-dependent density matrix of a doublon-holon pair. Two distinct regimes are identified. For weak interleg coupling, the results
Choi, Mahn-Soo
2014-01-01T23:59:59.000Z
PHYSICAL REVIEW B 89, 045137 (2014) Hanbury Brown and Twiss correlations of Cooper pairs in helical; published 29 January 2014) We propose a Hanbury Brown and Twiss (HBT) experiment of Cooper pairs on the edge a Hanbury Brown and Twiss (HBT) experiment of Cooper pairs on the edge channels of quantum spin Hall
A. V. Borisov; P. E. Sizin
2014-06-12T23:59:59.000Z
We calculate the neutrino luminosity of a degenerate electron gas in a strong magnetic field via plasmon decay to a neutrino pair due to neutrino electromagnetic moments and obtain the relative upper bounds on the effective neutrino magnetic moment.
WHEN A PAIR of nuclear-powered Russian submarines was reported patrolling
California at Los Angeles, University of
WHEN A PAIR of nuclear-powered Russian submarines was reported patrolling off the eastern seaboard as "explaining-away." Although several algorithms were later developed to perform Bayesian updating in general
Thesis for the Degree of Licentiate of Philosophy TwoLocus Affected SibPair
Patriksson, Michael
Thesis for the Degree of Licentiate of Philosophy TwoLocus Affected SibPair Identity By Descenttime arrangement. This licentiate thesis has been financially supported by the National Network in Applied
Study of nuclear pairing with Configuration-Space Monte-Carlo approach
Lingle, Mark
2015-01-01T23:59:59.000Z
Pairing correlations in nuclei play a decisive role in determining nuclear drip-lines, binding energies, and many collective properties. In this work a new Configuration-Space Monte-Carlo (CSMC) method for treating nuclear pairing correlations is developed, implemented, and demonstrated. In CSMC the Hamiltonian matrix is stochastically generated in Krylov subspace, resulting in the Monte-Carlo version of Lanczos-like diagonalization. The advantages of this approach over other techniques are discussed; the absence of the fermionic sign problem, probabilistic interpretation of quantum-mechanical amplitudes, and ability to handle truly large-scale problems with defined precision and error control, are noteworthy merits of CSMC. The features of our CSMC approach are shown using models and realistic examples. Special attention is given to difficult limits: situations with non-constant pairing strengths, cases with nearly degenerate excited states, limits when pairing correlations in finite systems are weak, and pr...
Mao, James X.; Lee, Anita S.; Kitchin, John R.; Nulwala, Hunaid B; Luebke, David R.; Damodaran, Krishnan
2013-04-24T23:59:59.000Z
Density Functional Theory is used to investigate a weakly coordinating room-temperature ionic liquid, 1-ethyl-3-methyl imidazolium tetracyanoborate ([Emim]{sup +}[TCB]{sup -}). Four locally stable conformers of the ion pair were located. Atoms-in-molecules (AIM) and electron density analysis indicated the existence of several hydrogen bonds. Further investigation through the Natural Bond Orbital (NBO) and Natural Energy Decomposition Analysis (NEDA) calculations provided insight into the origin of interactions in the [Emim]{sup +}[TCB]{sup -} ion pair. Strength of molecular interactions in the ionic liquid was correlated with frequency shifts of the characteristic vibrations of the ion pair. Harmonic vibrations of the ion pair were also compared with the experimental Raman and Infrared spectra. Vibrational frequencies were assigned by visualizing displacements of atoms around their equilibrium positions and through Potential Energy Distribution (PED) analysis.
INTRODUCTION Meiosis is the specialized pair of cell divisions that normally
Bass, Hank W.
(FISH) were used to localize a single pair of homologs in diploid nuclei of a chromosome-addition line of FISH signals. Using a triple labeling scheme for simultaneous imaging of chromatin, telomeres Hank W. Bass1,2,*, Osc
Formation of O Adatom Pairs and Charge Transfer upon O-2 Dissociation...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
details of O2 dissociation leading to the formation of oxygen adatom (Oa) pairs at terminal Ti sites. An intermediate, metastable Oa-Oa configuration with two nearest-neighbor O...
Interacting vortex pairs in inviscid and viscous planar flows Thierry Gallay
Gallay, Thierry
Interacting vortex pairs in inviscid and viscous planar flows Thierry Gallay Universit??e de Grenoble I Institut Fourier, UMR CNRS 5582 B.P. 74 F38402 SaintMartind'H??eres, France Thierry.Gallay
Interacting vortex pairs in inviscid and viscous planar flows Thierry Gallay
Gallay, Thierry
Interacting vortex pairs in inviscid and viscous planar flows Thierry Gallay Universit´e de Grenoble I Institut Fourier, UMR CNRS 5582 B.P. 74 F-38402 Saint-Martin-d'H`eres, France Thierry.Gallay
Pairing preferences of the model mono-valence mono-atomic ions investigated by molecular simulation
Zhang, Qiang [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning (China) [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning (China); Department of Chemistry, Bohai University, Jinzhou 121000 (China); Zhang, Ruiting; Zhao, Ying; Li, HuanHuan; Zhuang, Wei, E-mail: wzhuang@dicp.ac.cn, E-mail: gaoyq@pku.edu.cn [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning (China)] [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning (China); Gao, Yi Qin, E-mail: wzhuang@dicp.ac.cn, E-mail: gaoyq@pku.edu.cn [College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871 (China)
2014-05-14T23:59:59.000Z
We carried out a series of potential of mean force calculations to study the pairing preferences of a series of model mono-atomic 1:1 ions with evenly varied sizes. The probabilities of forming the contact ion pair (CIP) and the single water separate ion pair (SIP) were presented in the two-dimensional plots with respect to the ion sizes. The pairing preferences reflected in these plots largely agree with the empirical rule of matching ion sizes in the small and big size regions. In the region that the ion sizes are close to the size of the water molecule; however, a significant deviation from this conventional rule is observed. Our further analysis indicated that this deviation originates from the competition between CIP and the water bridging SIP state. The competition is mainly an enthalpy modulated phenomenon in which the existing of the water bridging plays a significant role.
Pair correlations in the neutrinoless double-{beta} decay candidate {sup 130}Te
Bloxham, T.; Freedman, S. J. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Kay, B. P.; Schiffer, J. P.; Clark, J. A. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Deibel, C. M. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, Michigan 48825 (United States); Freeman, S. J.; Howard, A. M.; McAllister, S. A.; Sharp, D. K.; Thomas, J. S. [Schuster Laboratory, University of Manchester, Manchester, M13 9PL (United Kingdom); Parker, P. D. [A. W. Wright Nuclear Structure Laboratory, Yale University, New Haven, Connecticut 06520 (United States)
2010-08-15T23:59:59.000Z
Pair correlations in the ground state of {sup 130}Te have been investigated using pair-transfer experiments to explore the validity of approximations in calculating the matrix element for neutrinoless double-{beta} decay. This nucleus is a candidate for the observation of such decay, and a good understanding of its structure is crucial for eventual calculations of the neutrino mass, should such a decay indeed be observed. For proton-pair adding, strong transitions to excited 0{sup +} states had been observed in the Te isotopes by Alford et al. [Nucl. Phys. A 323, 339 (1979)], indicating a breaking of the BCS approximation for protons in the ground state. We measured the neutron-pair removing (p,t) reaction on {sup 130}Te and found no indication of a corresponding splitting of the BCS nature of the ground state for neutrons.
Pair correlations in neutrinoless double {beta} decay candidate {sup 130}Te.
Bloxham, T.; Kay, B. P.; Schiffer, J. P.; Clark, J. A.; Deibel, C. M.; Freeman, S. J.; Freedman, S. J.; Howard, A. M.; McAllister, S. A.; Parker, P. D.; Sharp, D. K.; Thomas, J. S. (Physics); ( PSC-USR); (LBNL); (Michigan State Univ.); (Univ. of Manchester); (Yale Univ.)
2010-08-16T23:59:59.000Z
Pair correlations in the ground state of {sup 130}Te have been investigated using pair-transfer experiments to explore the validity of approximations in calculating the matrix element for neutrinoless double-{beta} decay. This nucleus is a candidate for the observation of such decay, and a good understanding of its structure is crucial for eventual calculations of the neutrino mass, should such a decay indeed be observed. For proton-pair adding, strong transitions to excited 0{sup +} states had been observed in the Te isotopes by Alford et al. [Nucl. Phys. A 323, 339 (1979)], indicating a breaking of the BCS approximation for protons in the ground state. We measured the neutron-pair removing (p,t) reaction on {sup 130}Te and found no indication of a corresponding splitting of the BCS nature of the ground state for neutrons.
Gomez-Ceballos, Guillelmo
We combine six measurements of the inclusive top-quark pair (t[bar over t]) production cross section (?[subscript tt]-) from data collected with the CDF and D0 detectors at the Fermilab Tevatron with proton-antiproton ...
Pairing of valence electrons as necessary condition for energy minimization in a crystal
Dolgopolov Stanislav Olegovich
2014-10-21T23:59:59.000Z
Pairing of valence electrons can lead to energy minimization of a crystal. It can be proved by use of representation of the valence electrons as plane waves in periodic potential of the crystal.
Parallel Assembly of Large Genomes from Paired Short Reads (2010 JGI/ANL HPC Workshop)
Aluru, Srinivas [Iowa State University
2011-06-08T23:59:59.000Z
Srinivas Aluru from Iowa State University gives a presentation on "Parallel Assembly of Large Genomes from Paired Short Reads" at the JGI/Argonne HPC Workshop on January 25, 2010.
Nucleon and nucleon-pair momentum distributions in A?12 nuclei
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Wiringa, Robert B. [ANL; Schiavilla, Rocco [ODU, JLAB; Pieper, Steven C. [ANL; Carlson, Joseph A. [LANL
2014-02-01T23:59:59.000Z
We report variational Monte Carlo calculations of single-nucleon momentum distributions for A?12 nuclei and nucleon-pair and nucleon-cluster momentum distributions for A?8. The wave functions have been generated for a Hamiltonian containing the Argonne ?18 two-nucleon and Urbana X three-nucleon potentials. The single-nucleon and nucleon-pair momentum distributions exhibit universal features attributable to the one-pion-exchange tensor interaction The single-nucleon distributions are broken down into proton and neutron components and spin-up and spin-down components where appropriate. The nucleon-pair momentum distributions are given separately for pp and pn pairs. The nucleon-cluster momentum distributions include dp in 3He, tp and dd in S4He, ?d in 6Li,?t in 7Li, and ?? in 8Be. Detailed tables are provided on-line for download.
Towards laser based improved experimental schemes for multiphoton e+ e- pair production from vacuum
I. Ploumistakis; S. D. Moustaizis; I. Tsohantjis
2009-07-15T23:59:59.000Z
Numerical estimates for pair production from vacuum in the presence of strong electromagnetic fields are derived, for two experimental schemes : the First concerns a laser based X-FEL and the other imitates the E144 experiment. The approximation adopted in this work is that of two level multiphoton on resonance. Utilizing achievable values of laser beam parameters, an enhancedproduction efficiency of up to 10^11 and 10^15 pairs can be obtained, for the two schemes respectively.
Electron-Positron Pair Production in Space- or Time-Dependent Electric Fields
Hagen Kleinert; Remo Ruffini; She-Sheng Xue
2008-07-06T23:59:59.000Z
Treating the production of electron and positron pairs by a strong electric field from the vacuum as a quantum tunneling process we derive, in semiclassical approximation, a general expression for the pair production rate in a $z$-dependent electric field $E(z)$ pointing in the $z$-direction. We also allow for a smoothly varying magnetic field parallel to $E(z)$. The result is applied to a confined field $E(z)\
Synaptonemal complex analysis of chromosomal pairing in two species of quail
Ryder, Elizabeth Jeanne
1989-01-01T23:59:59.000Z
SYNAPTONEMAL COMPLEX ANALYSIS OF CHROMOSOMAL PAIRING IN TWO SPECIES OF QUAIL A THESIS by ELIZABETH JEANNE RYDER Submitted to the Office of Graduate Studies of Texas A & M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 1989 Maj or subj ect: Genetics SYNAPTONEMAL COMPLEX ANALYSIS OF CHROMOSOMAL PAIRING IN TWO SPECIES OF QUAIL A THESIS by ELIZABETH JEANNE RYDER Approved as to style and content by: / '. '/, ( ~ P /, g/? Ira F...
On Evolution of the Pair-Electromagnetic Pulse of a Charge Black Hole
Remo Ruffini; Jay D. Salmonson; James R. Wilson; She-Sheng Xue
1999-05-04T23:59:59.000Z
Using hydrodynamic computer codes, we study the possible patterns of relativistic expansion of an enormous pair-electromagnetic-pulse (P.E.M. pulse); a hot, high density plasma composed of photons, electron-positron pairs and baryons deposited near a charged black hole (EMBH). On the bases of baryon-loading and energy conservation, we study the bulk Lorentz factor of expansion of the P.E.M. pulse by both numerical and analytical methods.
Parity mixing of pair at nuclear surface due to spin-orbit potential in $^{18}$F
Yoshiko Kanada-En'yo; Fumiharu Kobayashi
2014-07-01T23:59:59.000Z
We investigate the structure of $^{18}$F with the microscopic wave function based on the three-body $^{16}$O+$p$+$n$ model. In the calculation of the generator coordinate method (GCM) of the three-body model, $T=0$ energy spectra of $J^\\pi=1^+$, $3^+$, and $5^+$ states and $T=1$ spectra of $J^\\pi=0^+$, $2^+$ states in $^{18}$F are described reasonably. Based on the dinucleon picture, the effect of the spin-orbit force on the $T=0$ and $T=1$ $pn$ pairs around the $^{16}$O core is discussed. The $T=1$ pair in the $J^\\pi=0^+$ state gains the spin-orbit potential energy involving the odd-parity mixing in the pair. The spin-orbit potential energy gain with the parity mixing is not so efficient for the $T=0$ pair in the $J^\\pi=1^+$ state. The parity mixing in the pair is regarded as the internal symmetry breaking of the pair in the spin-orbit potential at the nuclear surface.
Generation, characterization and use of atom-resonant indistinguishable photon pairs
Morgan W. Mitchell
2015-02-26T23:59:59.000Z
We describe the generation of atom-resonant indistinguishable photon pairs using nonlinear optical techniques, their spectral purification using atomic filters, characterization using multi-photon interference, and application to quantum-enhanced sensing with atoms. Using either type-I or type-II cavity-enhanced spontaneous parametric down-conversion, we generate pairs of photons in the resonant modes of optical cavities with linewidths comparable to the 6 MHz natural linewidth of the D$_1$ line of atomic rubidium. The cavities and pump lasers are tuned so that emission occurs in a mode or a pair of orthogonally-polarized modes that are resonant to the D$_1$ line, at 794.7 nm. The emission from these frequency-degenerate modes is separated from other cavity emission using ultra-narrow atomic frequency filters, either a Faraday anomalous dispersion optical filter (FADOF) with a 445MHz linewidth and 57 dB of out-of-band rejection or an induced dichroism filter with an 80 MHz linewidth and $\\ge$35dB out-of-band rejection. Using the type-I source, we demonstrate interference of photon pair amplitudes against a coherent state and a new method for full characterization of the temporal wave-function of narrow-band photon pairs. With the type-II source we demonstrate high-visibility super-resolving interference, a high-fidelity atom-tuned NooN state, and quantum enhanced sensing of atoms using indistinguishable photon pairs.
Relativistic theory of tidal Love numbers
Taylor Binnington; Eric Poisson
2009-09-16T23:59:59.000Z
In Newtonian gravitational theory, a tidal Love number relates the mass multipole moment created by tidal forces on a spherical body to the applied tidal field. The Love number is dimensionless, and it encodes information about the body's internal structure. We present a relativistic theory of Love numbers, which applies to compact bodies with strong internal gravities; the theory extends and completes a recent work by Flanagan and Hinderer, which revealed that the tidal Love number of a neutron star can be measured by Earth-based gravitational-wave detectors. We consider a spherical body deformed by an external tidal field, and provide precise and meaningful definitions for electric-type and magnetic-type Love numbers; and these are computed for polytropic equations of state. The theory applies to black holes as well, and we find that the relativistic Love numbers of a nonrotating black hole are all zero.
Predicting landfalling hurricane numbers from basin hurricane numbers: basic statistical analysis
Laepple, T; Penzer, J; Bellone, E; Nzerem, K; Laepple, Thomas; Jewson, Stephen; Penzer, Jeremy; Bellone, Enrica; Nzerem, Kechi
2007-01-01T23:59:59.000Z
One possible method for predicting landfalling hurricane numbers is to first predict the number of hurricanes in the basin and then convert that prediction to a prediction of landfalling hurricane numbers using an estimated proportion. Should this work better than just predicting landfalling hurricane numbers directly? We perform a basic statistical analysis of this question in the context of a simple abstract model.
REFINED BOUNDS ON THE NUMBER OF CONNECTED ...
2011-04-06T23:59:59.000Z
Apr 6, 2011 ... Smith inequality (see Theorem 2.5) a bound on the number of semi- ... then using Smith inequality, have been used before in several different...
Harmonic resolution as a holographic quantum number
Bousso, Raphael
2009-01-01T23:59:59.000Z
LBNL- 57239 Harmonic resolution as a holographic quantumhep-th/0310223 UCB-PTH-03/26 Harmonic resolution as aquantum number, the harmonic resolution K. The Bekenstein
On Conformal Field Theory and Number Theory
Huang, An
2011-01-01T23:59:59.000Z
Frontiers in Number Theory, Physics, and Ge- ometry II. (Witten, Quantum Field Theory, Crassmannians, and AlgebraicJ. Polchinski, String Theory, Vol. 1, Cambridge Univ.
Pomorski, Krzysztof
DepartmentofTheoreticalPhysics, University MCS, Lublin, Poland. the potential energy surface of nuclei and the mass parameters were evaluated WITH THE FISSION MODE ~ A. STASZCZAK, A. BARAN Department of TheoreticalPhysics, UniversityMCS, Lublin, Poland K. BONING Institute of Nuclear Studies, Warsaw,Poland Received24 May 1985; revisedmanuscriptreceived15 July
Search for stop pairs in the emu channel
Tissandier, Fabrice; /Clermont-Ferrand U.
2007-10-01T23:59:59.000Z
The Standard Model gives a satisfying description of subatomic processes at low energy (< 1 TeV). Beyond this energy scale, other models must be considered. Supersymmetry is one of them. It gives in an elegant way, solutions to several Standard Model short comings. This document reports the search for a supersymmetric signal characterized by the production of two stops decaying into two b-jets, one electron, one muon and missing energy. This study has been performed at the D0 experiment, located on the ring of Tevatron collider at FermiLab, (Chicago, USA), whose energy in the center of mass reaches {radical}s = 1.96 TeV. The data used for this analysis have been collected during Run IIa of D0 detector; from april 2003 to march 2006 ({approx} 1fb{sup -1}). The objects handled for this analysis require a good understanding of both calorimeters, muon detectors and trackers. As Tevatron is an hadronic collider and the number of Standard Model processes with the same signature as the signal is low, the background is thus dominated by QCD processes. After the selection cuts, no excess of data has been observed with respect to the Standard Model expectation. D0 experiment sensibility has been improved and the 95% CL exclusion area in [m{sub {bar {nu}}}, m{sub {bar t}{sub 1}}], extended up to stop masses of 170 GeV/c{sup 2} and sneutrino masses of 105 GeV/c{sup 2}. Besides, a part of my work for the collaboration consisted in elaborating a tool to discriminate calorimetric objects at level 3 trigger system; and also in calibrating the two simulated level 1 readouts.
Farritor, Shane
Opportunity Number: PAR-12-123. CFDA Number(s): 93.173. Agency/Department: National Institutes of Health (NIH
Farritor, Shane
Opportunity Number: PA-13-046. CFDA Number(s): 93.226. Agency/Department: Department of Health and Human
Farritor, Shane
Number: RFA-HD-13-002. CFDA Number(s): 93.865. Agency/Department: Department of Health and Human Services
Farritor, Shane
Number: PA-12-219. CFDA Number(s): 93.242. Agency/Department: Department of Health and Human Services
Farritor, Shane
Opportunity Number: PAR-12-103. CFDA Number(s): 93.242. Agency/Department: Department of Health and Human
Farritor, Shane
Opportunity Number: RFA-CE-14-006. CFDA Number(s): 93.136. Agency/Department: Centers for Disease Control
Farritor, Shane
Opportunity Number: PAR-12-251. CFDA Number(s): 93.279. Agency/Department: Department of Health and Human
Farritor, Shane
Number: ED-GRANTS-022013-001. CFDA Number(s): 84.351D. Agency/Department: Department of Education, Office
P. A. Marchetti; F. Ye; Z. B. Su; L. Yu
2011-05-25T23:59:59.000Z
Within a gauge approach to the t-J model, we propose a new, non-BCS mechanism of superconductivity for underdoped cuprates. We implement the no-double occupancy constraint with a (semionic) slave-particle formalism. The dopant generates a vortex-like quantum distortion of the AF background centered on the empty sites, with opposite chirality for cores on the two N\\'eel sublattices. Empty sites are described in terms of spinless fermionic holons and the long-range attraction between spin vortices on two opposite N\\'eel sublattices is the holon pairing force, leading eventually to SC. The spin fluctuations are described by bosonic spinons with a gap generated by scattering on spin vortices. Due to the occupation constraint, there is a gauge attraction between holon and spinon, binding them into a physical hole. Through gauge interaction the spin vortex attraction induces the formation of spin-singlet RVB pairs reducing the spinon gap. Lowering T, there are two crossovers as precursors of the SC transition: at the higher one a gas of holon pairs appears, reducing the hole spectral weight, while at the lower one a gas of spinon pairs also appears, giving rise to a gas of incoherent preformed hole pairs with magnetic vortices in the plasma phase, supporting a Nernst signal. At an even lower T the hole pairs become coherent and SC appears beyond a critical doping. The proposed SC mechanism is not of the BCS-type, because it involves a gain in kinetic energy (lowering of spinon gap) and it is "almost" of the classical 3D XY-type. Since both the spinon gap and the holon pairing originate from the same term in the slave-particle representation of the t-J model, this approach incorporates a strong interplay between AF and SC, giving rise to a universal relation between Tc and the energy of the resonance mode, as observed in neutron scattering experiments.
Possible Effects of Pair Echoes on Gamma-Ray Burst Afterglow Emission
Kohta Murase; Bing Zhang; Keitaro Takahashi; Shigehiro Nagataki
2009-02-27T23:59:59.000Z
High-energy emission from gamma-ray bursts (GRBs) is widely expected but had been sparsely observed until recently when the Fermi satellite was launched. If >TeV gamma rays are produced in GRBs and can escape from the emission region, they are attenuated by the cosmic infrared background photons, leading to regeneration of GeV-TeV secondary photons via inverse-Compton scattering. This secondary emission can last for a longer time than the duration of GRBs, and it is called a pair echo. We investigate how this pair echo emission affects spectra and light curves of high energy afterglows, considering not only prompt emission but also afterglow as the primary emission. Detection of pair echoes is possible as long as the intergalactic magnetic field (IGMF) in voids is weak. We find (1) that the pair echo from the primary afterglow emission can affect the observed high-energy emission in the afterglow phase after the jet break, and (2) that the pair echo from the primary prompt emission can also be relevant, but only when significant energy is emitted in the TeV range, typically E_{gamma, >0.1 TeV} > (Y/(1+Y)) epsilon_e E_k. Even non-detections of the pair echoes could place interesting constraints on the strength of IGMF. The more favorable targets to detect pair echoes may be the "naked" GRBs without conventional afterglow emission, although energetic naked GRBs would be rare. If the IGMF is weak enough, it is predicted that the GeV emission extends to >30-300 s.
2001 TRAFFIC ZONE BOUNDARIES Zone Numbers
Toronto, University of
2001 TRAFFIC ZONE BOUNDARIES Zone Numbers & Detailed Definitions #12;2001 TRAFFIC ZONE BOUNDARIES of Toronto Joint Program in Transportation January 2003 #12;PREFACE This report presents the 2001 traffic zone numbers by local municipalities in the 2001 TTS survey area. The second part presents detailed
Geometrical accumulations and computably enumerable real numbers
Durand-Lose, Jérôme
Geometrical accumulations and computably enumerable real numbers (extended abstract) J and space are continuous and accumulations can be devised to unlimitedly accelerate a computation with rational numbers for coordinates and speeds, the time of any accumulation is a c.e. (compu- tably
SOCIAL SECURITY NUMBER AND NAME VERIFICATION
Amin, S. Massoud
SOCIAL SECURITY NUMBER AND NAME VERIFICATION Academic Year 20142015 *FA552-A* Please recycle. DIRECTIONS--You must verify your name and Social Security number for processing of your 20142015 Free Application for Federal Student Aid (FAFSA) to continue. Please attach a legible copy of your Social Security
SOCIAL SECURITY NUMBER AND NAME VERIFICATION
Amin, S. Massoud
SOCIAL SECURITY NUMBER AND NAME VERIFICATION Academic Year 20132014 *FA552-A* Please recycle. DIRECTIONS--You must verify your name and Social Security number for processing of your 20132014 Free Application for Federal Student Aid (FAFSA) to continue. Please attach a legible copy of your Social Security
Search for lepton-family-number nonconservation
Hoffman, C.M.
1986-01-01T23:59:59.000Z
A review of the status of lepton-family-number nonconservation is given. After a brief historical and theoretical discussion, a description of how experimental searches for lepton-family-number nonconservation are performed is presented. Finally, a summary of the results from past experiments and prospects for future experiments is given.
Protocol Number: (IBC office use only)
Asaithambi, Asai
Protocol Number: (IBC office use only) 1 UNF Registration of Biosafety Level 2 (BSL-2) A-2 Form", describe the methods of inactivation. #12;Protocol Number: (IBC office use only) 2 10. Describe the mechanism for decontaminating lab waste prior to disposal. Yes No If "Yes", describe the methods
A Thermodynamic Classification of Real Numbers
Thomas Garrity
2009-03-15T23:59:59.000Z
A new classification scheme for real numbers is given, motivated by ideas from statistical mechanics in general and work of Knauf and of Fiala and Kleban in particular. Critical for this classification of a real number will be the Diophantine properties of its continued fraction expansion.
enter part number BNC / RP-BNC
Berns, Hans-Gerd
enter part number Products 7/16 1.0/2.3 1.6/5.6 AFI AMC BNC / RP-BNC C FAKRA SMB FME HN MCX Mini ------- Product Search ------- Inventory Search Search Results for: 31-10152-RFX Results: 1 - 1 of 1 Part Number. All rights reserved. Copyright | Terms & Conditions | RF E-Mail Client | Contact Us | Amphenol
Company number 5857955 Wellcome Trust Finance plc
Rambaut, Andrew
Company number 5857955 Wellcome Trust Finance plc Annual Report and Financial Statements Year ended 30 September 2012 #12;Company number 5857955 Wellcome Trust Finance plc Contents Page Directors Trust Finance plc Directors' Report for the year ended 30 September 2012 Report of the Directors
Company number 5857955 Wellcome Trust Finance plc
Rambaut, Andrew
Company number 5857955 Wellcome Trust Finance plc Annual Report and Financial Statements Year ended 30 September 2013 #12;Company number 5857955 Wellcome Trust Finance plc Contents Page Directors Trust Finance plc Directors' Report For the year ended 30 September 2013 Report of the Directors
Experimental Number Theory Part I : Tower Arithmetic
Zeilberger, Doron
Experimental Number Theory Part I : Tower Arithmetic by Edinah K. Gnang January 15, 2011 1 rooted trees, which we shall here refer to as towers. The bijection between numbers and towers provides by XXX = (xk)1kn , (1) a tower expansion ( or simply a tower ) over XXX is a finite product of iterated
Compendium of Experimental Cetane Number Data
Murphy, M. J.; Taylor, J. D.; McCormick, R. L.
2004-09-01T23:59:59.000Z
In this report, we present a compilation of reported cetane numbers for pure chemical compounds. The compiled database contains cetane values for 299 pure compounds, including 156 hydrocarbons and 143 oxygenates. Cetane number is a relative ranking of fuels based on the amount of time between fuel injection and ignition. The cetane number is typically measured either in a combustion bomb or in a single-cylinder research engine. This report includes cetane values from several different measurement techniques - each of which has associated uncertainties. Additionally, many of the reported values are determined by measuring blending cetane numbers, which introduces significant error. In many cases, the measurement technique is not reported nor is there any discussion about the purity of the compounds. Nonetheless, the data in this report represent the best pure compound cetane number values available from the literature as of August 2004.
Interesting features of nonlinear shock equations in dissipative pair-ion-electron plasmas
Masood, W. [Theoretical Plasma Physics Division, PINSTECH, P.O. Nilore, Islamabad 54000 (Pakistan); National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Rizvi, H. [Theoretical Plasma Physics Division, PINSTECH, P.O. Nilore, Islamabad 54000 (Pakistan)
2011-09-15T23:59:59.000Z
Two dimensional nonlinear electrostatic waves are studied in unmagnetized, dissipative pair-ion-electron plasmas in the presence of weak transverse perturbation. The dissipation in the system is taken into account by incorporating the kinematic viscosity of both positive and negative ions. In the linear case, a biquadratic dispersion relation is obtained, which yields the fast and slow modes in a pair-ion-electron plasma. It is shown that the limiting cases of electron-ion and pair-ion can be retrieved from the general biquadratic dispersion relation, and the differences in the characters of the waves propagating in both the cases are also highlighted. Using the small amplitude approximation method, the nonlinear Kadomtsev Petviashvili Burgers as well as Burgers-Kadomtsev Petviashvili equations are derived and their applicability for pair-ion-electron plasma is explained in detail. The present study may have relevance to understand the formation of two dimensional electrostatic shocks in laboratory produced pair-ion-electron plasmas.
The Radical Pair Mechanism and the Avian Chemical Compass: Quantum Coherence and Entanglement
Yiteng Zhang; Gennady P. Berman; Sabre Kais
2015-03-23T23:59:59.000Z
We review the spin radical pair mechanism which is a promising explanation of avian navigation. This mechanism is based on the dependence of product yields on (1) the hyperfine interaction involving electron spins and neighboring nuclear spins and (2) the intensity and orientation of the geomagnetic field. One surprising result is that even at ambient conditions quantum entanglement of electron spins can play an important role in avian magnetoreception. This review describes the general scheme of chemical reactions involving radical pairs generated from singlet and triplet precursors; the spin dynamics of the radical pairs; and the magnetic field dependence of product yields caused by the radical pair mechanism. The main part of the review includes a description of the chemical compass in birds. We review: the general properties of the avian compass; the basic scheme of the radical pair mechanism; the reaction kinetics in cryptochrome; quantum coherence and entanglement in the avian compass; and the effects of noise. We believe that the "quantum avian compass" can play an important role in avian navigation and can also provide the foundation for a new generation of sensitive and selective magnetic-sensing nano-devices.
Generation of potential/surface density pairs in flat disks Power law distributions
J. -M. Hure; D. Pelat; A. Pierens
2007-06-25T23:59:59.000Z
We report a simple method to generate potential/surface density pairs in flat axially symmetric finite size disks. Potential/surface density pairs consist of a ``homogeneous'' pair (a closed form expression) corresponding to a uniform disk, and a ``residual'' pair. This residual component is converted into an infinite series of integrals over the radial extent of the disk. For a certain class of surface density distributions (like power laws of the radius), this series is fully analytical. The extraction of the homogeneous pair is equivalent to a convergence acceleration technique, in a matematical sense. In the case of power law distributions, the convergence rate of the residual series is shown to be cubic inside the source. As a consequence, very accurate potential values are obtained by low order truncation of the series. At zero order, relative errors on potential values do not exceed a few percent typically, and scale with the order N of truncation as 1/N**3. This method is superior to the classical multipole expansion whose very slow convergence is often critical for most practical applications.
Comparison of Three Cre-LoxP Based Paired-End Library Construction Methods
Peng, Ze; Nath, Nandita; Tritt, Andrew; Liang, Shoudan; Han, James; Pennacchio, Len; Chen, Feng
2013-03-26T23:59:59.000Z
Paired-end library sequencing has been proven useful in scaffold construction during de novo whole genome shotgun assembly. The ability of generating mate pairs with > 8 Kb insert sizes is especially important for genomes containing long repeats. To make mate paired libraries for next generation sequencing, DNA fragments need to be circularized to bring the ends together. There are several methods that can be used for DNA circulation, namely ligation, hybridization and Cre-LoxP recombination. With higher circularization efficiency with large insert DNA fragments, Cre-LoxP recombination method generally has been used for constructing >8 kb insert size paired-end libraries. Second fragmentation step is also crucial for maintaining high library complexity and uniform genome coverage. Here we will describe the following three fragmentation methods: restriction enzyme digestion, random shearing and nick translation. We will present the comparison results for these three methods. Our data showed that all three methods are able to generate paired-end libraries with greater than 20 kb insert. Advantages and disadvantages of these three methods will be discussed as well.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Aaltonen, T.; Albin, E.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; et al
2013-07-01T23:59:59.000Z
We present a search for the pair production of a narrow nonstandard-model strongly interacting particle that decays to a pair of quarks or gluons, leading to a final state with four hadronic jets. We consider both nonresonant production via an intermediate gluon as well as resonant production via a distinct nonstandard-model intermediate strongly interacting particle. We use data collected by the CDF experiment in proton-antiproton collisions at ?s=1.96 TeV corresponding to an integrated luminosity of 6.6 fb?. We find the data to be consistent with nonresonant production. We report limits on ?(pp??jjjj) as a function of the masses of themorehypothetical intermediate particles. Upper limits on the production cross sections for nonstandard-model particles in several resonant and nonresonant processes are also derived.less
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Aaltonen, T.; Albin, E.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Ciocci, M. A.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; dAscenzo, N.; Datta, M.; De Barbaro, P.; Demortier, L.; Deninno, M.; Devoto, F.; dErrico, M.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; DOnofrio, M.; Donati, S.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Elagin, A.; Erbacher, R.; Errede, S.; Esham, B.; Eusebi, R.; Farrington, S.; Fernndez Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; Gonzlez Lpez, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kim, Y. J.; Kimura, N.; Kirby, M.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, P.; Martnez, M.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Prokoshin, F.; Pranko, A.; Ptohos, F.; Punzi, G.; Ranjan, N.; Redondo Fernndez, I.; Renton, P.; Rescigno, M.; Riddick, T.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sinervo, P.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Sorin, V.; Song, H.; Stancari, M.; Denis, R. St.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.
2013-07-01T23:59:59.000Z
We present a search for the pair production of a narrow nonstandard-model strongly interacting particle that decays to a pair of quarks or gluons, leading to a final state with four hadronic jets. We consider both nonresonant production via an intermediate gluon as well as resonant production via a distinct nonstandard-model intermediate strongly interacting particle. We use data collected by the CDF experiment in proton-antiproton collisions at ?s=1.96 TeV corresponding to an integrated luminosity of 6.6 fb?. We find the data to be consistent with nonresonant production. We report limits on ?(pp??jjjj) as a function of the masses of the hypothetical intermediate particles. Upper limits on the production cross sections for nonstandard-model particles in several resonant and nonresonant processes are also derived.
Farritor, Shane
-1321. CFDA Number(s): 47.075. Agency/Department: National Science Foundation. Area of Research: Research
Farritor, Shane
-018. CFDA Number(s): 93.310. Agency/Department: Department of Health and Human Services, Office of Strategic
Farritor, Shane
-277. CFDA Number(s): 93.173. Agency/Department: National Institutes of Health (NIH), National Institute
Farritor, Shane
-12-102. CFDA Number(s): 93.865. Agency/Department: Department of Health and Human Services, National
Farritor, Shane
-205. CFDA Number(s) 93.273. Agency/Department: Department of Health and Human Services (HHS), National
Farritor, Shane
-220. CFDA Number(s): 93.279. Agency/Department: Department of Health and Human Services, National Institutes
Farritor, Shane
: PAR-13-082. CFDA Number(s): 93.859. Agency/Department: National Institutes of Health (NIH), National
Search for pair-produced resonances decaying to jet pairs in proton-proton collisions at ?s = 8 TeV
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Khachatryan, Vardan
2015-07-01T23:59:59.000Z
Results are reported of a general search for pair production of heavy resonances decaying to pairs of jets in events with at least four jets. The study is based on up to 19.4 inverse femtobarns of integrated luminosity from proton-proton collisions at a center-of-mass energy of 8 TeV, recorded with the CMS detector at the LHC. Limits are determined on the production of scalar top quarks (top squarks) in the framework of R-parity violating supersymmetry and on the production of color-octet vector bosons (colorons). First limits at the LHC are placed on top squark production for two scenarios. The firstmoreassumes decay to a bottom quark and a light-flavor quark and is excluded for masses between 200 and 385 GeV, and the second assumes decay to a pair of light-flavor quarks and is excluded for masses between 200 and 350 GeV at 95% confidence level. Previous limits on colorons decaying to light-flavor quarks are extended to exclude masses from 200 to 835 GeV.less
Long-range Cooper pair splitter with high entanglement production rate
Wei Chen; D. N. Shi; D. Y. Xing
2015-01-05T23:59:59.000Z
Cooper pairs in the superconductor are a natural source of spin entanglement. The existing proposals of the Cooper pair splitter can only realize a low efficiency of entanglement production, and its size is constrained by the superconducting coherence length. Here we show that a long-range Cooper pair splitter can be implemented in a normal metal-superconductor-normal metal (NSN) junction by driving a supercurrent in the S. The supercurrent results in a band gap modification of the S, which significantly enhances the crossed Andreev reflection (CAR) of the NSN junction and simultaneously quenches its elastic cotunneling. Therefore, a high entanglement production rate close to its saturation value can be achieved by the inverse CAR. Interestingly, in addition to the conventional entangled electron states between opposite energy levels, novel entangled states with equal energy can also be induced in our proposal.
Statistics of simulated and observed pair separations in the Gulf of Mexico
Beron-Vera, F J
2015-01-01T23:59:59.000Z
Pair-separation statistics of in-situ and synthetic surface drifters deployed near the \\emph{Deepwater Horizon} site in the Gulf of Mexico are investigated. The synthetic trajectories derive from synthetic particles advected by surface velocities from a 1-km-resolution data-assimilative Navy Coastal Ocean Model (NCOM) simulation. The in-situ drifters were launched in the Grand LAgrangian Deployment (GLAD). The statistical measures are of two classes---those which are functions of time, including the probability distribution function (PDF) of pair separations, the relative dispersion and the kurtosis, and those which are functions of separation, including the second-order velocity structure function and the relative diffusivity. The measures yield a consistent picture of the dispersion with the simulated pairs, with nonlocal dispersion from separations of 1 km to the Rossby deformation radius, $L_\\mathrm{D}$, and diffusive dispersion above $L_\\mathrm{D}$. The measures are less consistent with the GLAD drifters...
Study of correlation of PDF uncertainty in single top and top pair production at the LHC
The ATLAS collaboration
2015-01-01T23:59:59.000Z
The incomplete knowledge of parton distribution functions is an important source of systematic uncertainty for top-quark measurements, including top-quark pair and single top-quark production cross sections, as well as for analyses that have a large background from these processes. The correlation of the parton-distribution-function uncertainty is studied for top-quark pair production and single top-quark production in association with a W boson, in final states with two reconstructed leptons. Four types of correlation are studied: between total production cross-sections, between cross-section and acceptance correction, between the two processes for common selection requirements, and between different jet multiplicity requirements. The uncertainty correlation is evaluated for several sets of parton distribution functions using simulated samples of top-quark pair and single top-quark events.
Index pairings in presence of symmetries with applications to topological insulators
Julian Grossmann; Hermann Schulz-Baldes
2015-04-07T23:59:59.000Z
In a basic framework of a complex Hilbert space furnished with a complex conjugation and an involution, linear operators can be real, quaternionic, symmetric or anti-symmetric, and orthogonal projections can furthermore be symplectic. This paper investigates index pairings of projections and unitaries submitted to such symmetries. Various scenarios emerge: Noether indices can take either arbitrary integer values or only even integer values or they can vanish and then possibly have secondary $\\mathbb{Z}_2$-invariants. These general results are applied to prove index theorems for the strong invariants of topological insulators. The symmetries come from the Fermi projection ($K$-theoretic part of the pairing) and the Dirac operator ($K$-homological part of the pairing depending on the dimension of physical space).
Z. L. Li; D. Lu; B. F. Shen; L. B. Fu; J. Liu; B. S. Xie
2014-10-23T23:59:59.000Z
The mass shift effects in multiphoton pair production of a nonperturbative nature for arbitrary polarized electric fields are investigated numerically by employing the real-time Dirac-Heisenberg-Wigner formalism, and theoretically by proposing an effective energy concept. It is found that the theoretical results are agreement with the numerical ones very well. It is the first time to consider the roles of the momenta of created particles and the polarizations of external fields played in the mass shift effects. These results can deepen the understanding of pair production in the nonperturbative threshold regime. Moreover, the distinct mass shift effects are observable in the forthcoming experiments and can be used as a probe to distinguish the electron-positron pair production from other background events.
Krawtchouk polynomials, the Lie algebra $\\mathfrak{sl}_2$, and Leonard pairs
Nomura, Kazumasa
2012-01-01T23:59:59.000Z
A Leonard pair is a pair of diagonalizable linear transformations of a finite-dimensional vector space, each of which acts in an irreducible tridiagonal fashion on an eigenbasis for the other one. In the present paper we give an elementary but comprehensive account of how the following are related: (i) Krawtchouk polynomials; (ii) finite-dimensional irreducible modules for the Lie algebra ${\\mathfrak{sl}_2}$; (iii) a class of Leonard pairs said to have Krawtchouk type. Along the way we obtain elementary proofs of some well-known facts about Krawtchouk polynomials, such as the three-term recurrence, the orthogonality, the difference equation, and the generating function. The paper is a tutorial meant for a graduate student or a researcher unfamiliar with the above topics.
The vacuum bubbles in de Sitter background and black hole pair creation
Bum-Hoon Lee; Wonwoo Lee
2009-10-07T23:59:59.000Z
We study the possible types of the nucleation of vacuum bubbles. We classify vacuum bubbles in de Sitter background and present some numerical solutions. The thin-wall approximation is employed to obtain the nucleation rate and the radius of vacuum bubbles. With careful analysis we confirm that Parke's formula is also applicable to the large true vacuum bubbles. The nucleation of the false vacuum bubble in de Sitter background is also evaluated. The tunneling process in the potential with degenerate vacua is analyzed as the limiting cases of the large true vacuum bubble and false vacuum bubble. Next, we consider the pair creation of black holes in the background of bubble solutions. We obtain static bubble wall solutions of junction equation with black hole pair. The masses of created black holes are uniquely determined by the cosmological constant and surface tension on the wall. Finally, we obtain the rate of pair creation of black holes.
Neutral Higgs boson pair production at the linear collider in the noncommutative standard model
Das, Prasanta Kumar; Prakash, Abhishodh; Mitra, Anupam [Birla Institute of Technology and Science-Pilani, K.K. Birla Goa Campus, NH-17B, Zuarinagar, Goa-403726 (India)
2011-03-01T23:59:59.000Z
We study the Higgs boson pair production at the linear collider in the noncommutative extension of the standard model using the Seiberg-Witten map of this to the first order of the noncommutative parameter {Theta}{sub {mu}{nu}}. Unlike the standard model (where the process is forbidden) here the Higgs boson pair directly interacts with the photon. We find that the pair production cross section can be quite significant for the noncommutative scale {Lambda} lying in the range 0.5 TeV to 1.0 TeV. Using the experimental (LEP 2, Tevatron, and global electroweak fit) bound on the Higgs mass, we obtain 626 GeV{<=}{Lambda}{<=}974 GeV.
HIV-1 sequence variation between isolates from mother-infant transmission pairs
Wike, C.M.; Daniels, M.R.; Furtado, M.; Wolinsky, M.; Korber, B.; Hutto, C.; Munoz, J.; Parks, W.; Saah, A.
1991-12-31T23:59:59.000Z
To examine the sequence diversity of human immunodeficiency virus type 1 (HIV-1) between known transmission sets, sequences from the V3 and V4-V5 region of the env gene from 4 mother-infant pairs were analyzed. The mean interpatient sequence variation between isolates from linked mother-infant pairs was comparable to the sequence diversity found between isolates from other close contacts. The mean intrapatient variation was significantly less in the infants` isolates then the isolates from both their mothers and other characterized intrapatient sequence sets. In addition, a distinct and characteristic difference in the glycosylation pattern preceding the V3 loop was found between each linked transmission pair. These findings indicate that selection of specific genotypic variants, which may play a role in some direct transmission sets, and the duration of infection are important factors in the degree of diversity seen between the sequence sets.
HIV-1 sequence variation between isolates from mother-infant transmission pairs
Wike, C.M.; Daniels, M.R.; Furtado, M.; Wolinsky, M.; Korber, B.; Hutto, C.; Munoz, J.; Parks, W.; Saah, A.
1991-01-01T23:59:59.000Z
To examine the sequence diversity of human immunodeficiency virus type 1 (HIV-1) between known transmission sets, sequences from the V3 and V4-V5 region of the env gene from 4 mother-infant pairs were analyzed. The mean interpatient sequence variation between isolates from linked mother-infant pairs was comparable to the sequence diversity found between isolates from other close contacts. The mean intrapatient variation was significantly less in the infants' isolates then the isolates from both their mothers and other characterized intrapatient sequence sets. In addition, a distinct and characteristic difference in the glycosylation pattern preceding the V3 loop was found between each linked transmission pair. These findings indicate that selection of specific genotypic variants, which may play a role in some direct transmission sets, and the duration of infection are important factors in the degree of diversity seen between the sequence sets.
ON THE PROBLEM OF UNIQUENESS FOR THE MAXIMUM STIRLING NUMBER(S) OF THE SECOND KIND
Pomerance, Carl
ON THE PROBLEM OF UNIQUENESS FOR THE MAXIMUM STIRLING NUMBER(S) OF THE SECOND KIND E. Rodney Say that an integer n is exceptional if the maximum Stirling number of the second kind S(n, k) occurs or equal to x is O(x3/5+ ), for any > 0. 1. Introduction Let S(n, k) be the Stirling number of the second
A CLOSE-PAIR ANALYSIS OF DAMP MERGERS AT INTERMEDIATE REDSHIFTS
Chou, Richard C. Y.; Abraham, Roberto G. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Bridge, Carrie R., E-mail: chou@astro.utoronto.ca, E-mail: abraham@astro.utoronto.ca, E-mail: bridge@astro.caltech.edu [Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States)
2012-12-01T23:59:59.000Z
We have studied the kinematics of {approx}2800 candidate close-pair galaxies at 0.1 < z < 1.2 identified from the Canada-France-Hawaii Telescope Legacy Survey fields. Spectra of these systems were obtained using spectrometers on the 6.5 m Magellan and 5 m Hale telescopes. These data allow us to constrain the rate of dry mergers at intermediate redshifts and to test the 'hot halo' model for quenching of star formation. Using virial radii estimated from the correlation between dynamical and stellar masses published by Leauthaud et al., we find that around 1/5 of our candidate pairs are likely to share a common dark matter halo (our metric for close physical association). These pairs are divided into red-red, blue-red, and blue-blue systems using the rest-frame colors classification method introduced in Chou et al.. Galaxies classified as red in our sample have very low star formation rates, but they need not be totally quiescent, and hence we refer to them as 'damp', rather than 'dry', systems. After correcting for known selection effects, the fraction of blue-blue pairs is significantly greater than that of red-red and blue-red pairs. Red-red pairs are almost entirely absent from our sample, suggesting that damp mergers are rare at z {approx} 0.5. Our data support models with a short merging timescale (<0.5 Gyr) in which star formation is enhanced in the early phase of mergers, but quenched in the late phase. Hot halo models may explain this behavior, but only if virial shocks that heat gas are inefficient until major mergers are nearly complete.
OMB Control Number: 1910-5165 Expires: xxxx201x SEMI-ANNUAL DAVIS-BACON ENFORCEMENT REPORT Please submit this Semi-Annual Davis-Bacon Enforcement Report to your site DOENNSA...
Estimating visitor and visit numbers to
............................................ 24 4.5 Monitoring and Evaluating Quality of Life for CRS'07 .......................................25 4.6 Quality of experience visitor, visit and total numbers of visits to woodlands. This document builds on guidance on visitor
REFINED BOUNDS ON THE NUMBER OF CONNECTED ...
2011-11-06T23:59:59.000Z
Nov 6, 2011 ... closure imply using the well-known Smith inequality (see Theorem 2.4) a bound on the number of semi-algebraically connected components of...
Libraries Reference Document Number: 253262-002
Talbot, James P.
Intel Fortran Libraries Reference Document Number: 253262-002 World Wide Web: http PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustain- ing.................................................................................... xxiv Chapter 1 Overview of the Libraries Portability Routines
THE NEW ELEMENT BERKELIUM (ATOMIC NUMBER 97)
Thompson, S.G.; Ghiorso, A.; Seaborg, G.T.
2008-01-01T23:59:59.000Z
NUMBER 97) Stanley G. Thompson, Albert Ghiorso, and Glenn T.Rev Eventually 5 S G. Thompson, Physo Revo 76, 319 (1949)0~'Street, Ghiorso, and Thompson, unpublished work. UCRL-669
CORAL Name: STS 1 Model Number: ICP
Reif, Rafael
CORAL Name: STS 1 Model Number: ICP Location: TRL What it does: Deep Silicon Etch Introduction prior to use and to ENGAGE MACHINE prior to starting your process in CORAL. Venting and Loading a Wafer
Contributions to Metric Number Technical Report
Dent, Alexander W.
Contributions to Metric Number Theory Paul Rowe Technical Report RHULMA20022 5 December 2002, Professor Glyn Harman, for sug- gestions of problems to attempt, helpful advice on methods and help
Elastic tail propulsion at low Reynolds number
Yu, Tony S. (Tony Sheung)
2007-01-01T23:59:59.000Z
A simple way to generate propulsion at low Reynolds number is to periodically oscillate a passive flexible filament. Here we present a macroscopic experimental investigation of such a propulsive mechanism. A robotic swimmer ...
Carter, Colin A.; Just, David; Zilberman, David; Karp, Larry
2002-01-01T23:59:59.000Z
in California, the major GM crop is cotton. However, biotechor impossible if the GM crop is highly pro- internationala small number of authorized GM crops in the EU. Partly in
The concrete theory of numbers : Problem of simplicity of Fermat number-twins
Boris V. Tarasov
2007-07-06T23:59:59.000Z
The problem of simplicity of Fermat number-twins $f_{n}^{\\pm}=2^{2^n}\\pm3$ is studied. The question for what $n$ numbers $f_{n}^{\\pm}$ are composite is investigated. The factor-identities for numbers of a kind $x^2 \\pm k $ are found.
Sequence and Series of Real Numbers 1.1 Sequence of Real Numbers
Nair, M.Thamban
1 Sequence and Series of Real Numbers 1.1 Sequence of Real Numbers Suppose for each positive a sequence, and this ordered list is usually written as (a1, a2, . . . , . . .) or (an) or {an}. More precisely, we define a sequence as follows: Definition 1.1 A sequence of real numbers is a function from
SESAME equation of state number 7740: Polycarbonate
Boettger, J.C.
1991-06-01T23:59:59.000Z
An equation of state (EOS) for polycarbonate (a widely used polymer) has been generated with the computer code GRIZZLY and will be added to the SESAME library as material number 7740. Although a number of the input parameter used in the calculations are based on rough estimates. 7740 provides a good match to experimental Hugoniot data and should be reliable on or near the principal Hugoniot. 6 refs., 1 fig.
Dynamical real numbers and living systems
Dhurjati Prasad Datta
2010-01-11T23:59:59.000Z
Recently uncovered second derivative discontinuous solutions of the simplest linear ordinary differential equation define not only an nonstandard extension of the framework of the ordinary calculus, but also provide a dynamical representation of the ordinary real number system. Every real number can be visualized as a living cell -like structure, endowed with a definite evolutionary arrow. We discuss the relevance of this extended calculus in the study of living systems. We also present an intelligent version of the Newton's first law of motion.
Nuclear pairing from bare interaction: Two and three-body chiral forces
Finelli, Paolo [Physics Department, University of Bologna, Via Irnerio 46, 40126 Bologna (Italy); INFN, Section of Bologna, Viale Berti Pichat 6/2, 40127 Bologna (Italy)
2012-10-20T23:59:59.000Z
In a recent paper the {sup 1}S{sub 0} pairing gap in isospin-symmetric nuclear matter and finite nuclei has been investigated starting from the chiral nucleon-nucleon potential at the N{sup 3}LO order in the two-body sector and the N{sup 2}LO order in the three-body sector. To include realistic nuclear forces in RHB (Relativistic Hartree Bolgoliubov) calculations we relied on a separable representation of the pairing interaction. In this paper we would like to show recent results concerning isotonic chains with N= 28,50,82.
Feedback effects on the pairing interaction in color superconductors near the transition temperature
Kei Iida
2005-07-13T23:59:59.000Z
We examine the role that the gap dependence of the pairing interaction plays in the gap equation for a weakly coupled uniform superfluid of three-flavor massless quarks near the transition temperature T_c. We find that the feedback effects on Landau-damped transverse gluons mediating the pairing interaction alter the gap magnitude in a way dependent on the color structure of the gap. We estimate corrections by these effects to the parameters characterizing the fourth order terms in the Ginzburg-Landau free energy and ensure the stability of a color-flavor locked state near T_c.
On the frequency of oscillations in the pair plasma generated by a strong electric field
A. Benedetti; W. -B. Han; R. Ruffini; G. V. Vereshchagin
2011-02-21T23:59:59.000Z
We study the frequency of the plasma oscillations of electron-positron pairs created by the vacuum polarization in an uniform electric field with strength E in the range 0.2 Ec plasma oscillation equation when E -> 0. Thereby, we focus our attention on its evolution in time studying how this oscillation frequency approaches the plasma frequency. The time-scale needed to approach to the plasma frequency and the power spectrum of these oscillations are computed. The characteristic frequency of the power spectrum is determined uniquely from the initial value of the electric field strength. The effects of plasma degeneracy and pair annihilation are discussed.
Discovering Higgs boson pair production through rare final states at a 100 TeV collider
Papaefstathiou, Andreas
2015-01-01T23:59:59.000Z
We consider Higgs boson pair production at a future proton collider with centre-of-mass energy of 100 TeV, focusing on rare final states that include a bottom-anti-bottom quark pair and multiple isolated leptons: $hh \\rightarrow (b\\bar{b}) + n \\ell + X$, $n = \\{2,4\\}$, $X = \\{ E_T^\\mathrm{miss}, \\gamma, -\\}$. We construct experimental search strategies for observing the process through these channels and make suggestions on the desired requirements for the detector design of the future collider.
Validity of pair truncation of the nuclear shell model in {sup 46}Ca
Lei, Y.; Xu, Z. Y. [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhao, Y. M. [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 730000 (China); CCAST, World Laboratory, Post Office Box 8730, Beijing 100080 (China); Arima, A. [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Science Museum, Japan Science Foundation, 2-1 Kitanomaru-koen, Chiyoda-ku, Tokyo 102-0091 (Japan)
2009-12-15T23:59:59.000Z
We study the validity of pair truncation of the nuclear shell model by using the semimagic nucleus {sup 46}Ca. We present low-lying states and their E2 transition rates based on both nucleon pair approximation (NPA) and exact shell-model (SM) calculations. We also calculate overlaps between wave functions of low-lying states calculated by using the NPA and those calculated by using the SM. Our calculated results show a remarkable agreement between the NPA results and the SM results, although the NPA is a drastic truncation of the SM.
Gap anisotropy and universal pairing scale in a spin-fluctuation model of cuprate superconductors
Abanov, Artem; Chubukov, A. V.; Norman, M. R.
2008-01-01T23:59:59.000Z
-Tc cu- prate superconductors is a key problem.1 Some argue that the pseudogap originates from #1;quasi-#2;long-range order in a non- pairing channel #1;two-gap scenario#2;.2 Others argue instead that the pseudogap is a phase in which fermions already... and W is the bandwidth. For u#2;1, it is natural to assume that pairing is confined to near the Fermi surface and can be thought of as mediated by a bosonic ?glue,? the most natural candidate being collective excitations in the spin channel, enhanced...
Reduced effect of impurities on the universal pairing scale in the cuprates
Vorontsov, A. B.; Abanov, Artem; Vavilov, M. G.; Chubukov, A. V.
2010-01-01T23:59:59.000Z
corrections are small numerically.22 The set of equations includes fermionic and bosonic self- energies in the normal state and the linearized equation for the d-wave pairing vertex #11;pf #12; #1; m#2; #1;Ref. 1#2; pf#1; m#2; = #5;T #1;#7; m#1; #8...; /2#5;T #1;#2;?#7;#1;1 /2#2;, where #7;#1;x#2; is the di-Gamma function and T 0 #1; is the pairing temperature in the absence of impurities #1;for an s-wave and magnetic impurities, the formula is the same,7 but with #3; /2 instead of #3...
Gap anisotropy and universal pairing scale in a spin-fluctuation model of cuprate superconductors
Abanov, Artem; Chubukov, A. V.; Norman, M. R.
2008-01-01T23:59:59.000Z
Gap anisotropy and universal pairing scale in a spin-fluctuation model of cuprate superconductors Ar. Abanov,1 A. V. Chubukov,2 and M. R. Norman3 1Department of Physics, Texas A&M University, College Station, Texas 77843, USA 2Department...-Tc cu- prate superconductors is a key problem.1 Some argue that the pseudogap originates from #1;quasi-#2;long-range order in a non- pairing channel #1;two-gap scenario#2;.2 Others argue instead that the pseudogap is a phase in which fermions already...
A Method for Constructing a Lax Pair for the Ernst Equation
C. J. Papachristou; B. Kent Harrison
2009-10-26T23:59:59.000Z
A systematic construction of a Lax pair and an infinite set of conservation laws for the Ernst equation is described. The matrix form of this equation is rewritten as a differential ideal of gl(2,R)-valued differential forms, and its symmetry condition is expressed as an exterior equation which is linear in the symmetry characteristic and has the form of a conservation law. By means of a recursive process, an infinite collection of such laws is then obtained, and the conserved "charges" are used to derive a linear exterior equation whose components constitute a Lax pair.
Energy levels of odd-even nuclei using broken pair model
Hamammu, I. M.; Haq, S.; Eldahomi, J. M. [Department of Physics, Faculty of Science Benghazi University, P. O. Box 9480 Benghazi (Libya)
2012-09-06T23:59:59.000Z
A method to calculate energy levels and wave functions of odd-even nuclei, in the frame work of the broken pair model have been developed. The accuracy of the model has been tested by comparing the shell model results of limiting cases in which the broken pair model exactly coincides with the shell model, where there are two-proton/neutron + one-neutron/proton in the valence levels. The model is then applied to calculate the energy levels of some nuclei in the Zirconium region. The model results compare reasonably well with the shell model as well as with the experimental data.
Production of mixed flavour heavy quarkonium pair $\\Upsilon(1S) J/\\psi$ at LHC
Likhoded, A K; Poslavsky, S V
2015-01-01T23:59:59.000Z
Inclusive production of $\\Upsilon J/\\psi$ pair in proton-proton interation at LHCb is considered. This process is forbidden at leading order of perturbation theory, so such channels as double parton scattering, $\\chi_b\\chi_c$ pair production with subsequent radiative decays of $P$-wave quarkonia, contributions of color-octet states, and NLO corrections are studied in details. For all these channels we present theoretical predictions of total cross sections at LHCb and distributions over different kinematical variables. According to presented in the paper results, double parton interaction gives main contribution to the cross section of the considered reaction.
Subnatural-Linewidth Polarization-Entangled Photon Pairs with Controllable Temporal Length
Kaiyu Liao; Hui Yan; Junyu He; Shengwang Du; Zhi-Ming Zhang; Shi-Liang Zhu
2014-07-15T23:59:59.000Z
We demonstrate an efficient experimental scheme for producing polarization-entangled photon pairs from spontaneous four-wave mixing (SFWM) in a laser-cooled $^{85}$Rb atomic ensemble, with a bandwidth (as low as 0.8 MHz) much narrower than the rubidium atomic natural linewidth. By stabilizing the relative phase between the two SFWM paths in a Mach-Zehnder interferometer configuration, we are able to produce all four Bell states. These subnatural-linewidth photon pairs with polarization entanglement are ideal quantum information carriers for connecting remote atomic quantum nodes via efficient light-matter interaction in a photon-atom quantum network.
Spin polarized electron-positron pair production via elliptical polarized laser fields
Wllert, Anton; Keitel, Christoph H
2015-01-01T23:59:59.000Z
We study nonperturbative multiphoton electron-positron pair creation in ultra-strong electromagnetic fields formed by two counterpropagating pulses with elliptic polarization. Our numerical approach allows us to take into account the temporal as well as the spatial variation of the standing electromagnetic field. The spin and momentum resolved pair creation probabilities feature characteristic Rabi oscillations and resonance spectra. Therefore, each laser frequency features a specific momentum distribution of the created particles. We find that depending on the relative polarization of both pulses the created electrons may be spin polarized along the direction of field propagation.
Reduced effect of impurities on the universal pairing scale in the cuprates
Vorontsov, A. B.; Abanov, Artem; Vavilov, M. G.; Chubukov, A. V.
2010-01-01T23:59:59.000Z
corrections are small numerically.22 The set of equations includes fermionic and bosonic self- energies in the normal state and the linearized equation for the d-wave pairing vertex #11;pf #12; #1; m#2; #1;Ref. 1#2; pf#1; m#2; = #5;T #1;#7; m#1; #8...; /2#5;T #1;#2;?#7;#1;1 /2#2;, where #7;#1;x#2; is the di-Gamma function and T 0 #1; is the pairing temperature in the absence of impurities #1;for an s-wave and magnetic impurities, the formula is the same,7 but with #3; /2 instead of #3...
Equal-spin pairing state of superfluid {sup 3}He in aerogel
Aoyama, Kazushi; Ikeda, Ryusuke [Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan)
2005-07-01T23:59:59.000Z
The equal-spin pairing state, the so-called A-like phase, of superfluid {sup 3}He in aerogels is studied theoretically in the Ginzburg-Landau region by examining thermodynamics, and the resulting equilibrium phase diagram is mapped out. We find that the ABM pairing state with presumably quasi-long-ranged superfluid order has a lower free energy than the planar and 'robust' states and is the best candidate of the A-like phase with a strange lowering of the polycritical point observed experimentally.
Spin polarized electron-positron pair production via elliptical polarized laser fields
Anton Wllert; Heiko Bauke; Christoph H. Keitel
2015-02-23T23:59:59.000Z
We study nonperturbative multiphoton electron-positron pair creation in ultra-strong electromagnetic fields formed by two counterpropagating pulses with elliptic polarization. Our numerical approach allows us to take into account the temporal as well as the spatial variation of the standing electromagnetic field. The spin and momentum resolved pair creation probabilities feature characteristic Rabi oscillations and resonance spectra. Therefore, each laser frequency features a specific momentum distribution of the created particles. We find that depending on the relative polarization of both pulses the created electrons may be spin polarized along the direction of field propagation.
Recent results from HADES on electron pair production in relativistic heavy-ion collisions
The HADES Collaboration; T. Galatyuk; G. Agakishiev; A. Balanda; D. Belver; A. V. Belyaev; A. Blanco; M. Bhmer; J. L. Boyard; P. Braun-Munzinger; P. Cabanelas; E. Castro; S. Chernenko; T. Christ; M. Destefanis; J. Daz; F. Dohrmann; A. Dybczak; L. Fabbietti; O. V. Fateev; P. Finocchiaro; P. Fonte; J. Friese; I. Frhlich; J. A. Garzn; R. Gernhuser; A. Gil; C. Gilardi; M. Golubeva; D. Gonzlez-Daz; F. Guber; T. Hennino; R. Holzmann; I. Iori; A. Ivashkin; M. Jurkovic; B. Kmpfer; T. Karavicheva; D. Kirschner; I. Koenig; W. Koenig; B. W. Kolb; R. Kotte; F. Krizek; R. Krcken; W. Khn; A. Kugler; A. Kurepin; S. Lang; J. S. Lange; K. Lapidus; T. Liu; L. Lopes; M. Lorenz; L. Maier; A. Mangiarotti; J. Markert; V. Metag; B. Michalska; J. Michel; E. Morinire; J. Mousa; C. Mntz; L. Naumann; J. Otwinowski; Y. C. Pachmayer; M. Palka; Y. Parpottas; V. Pechenov; O. Pechenova; J. Pietraszko; W. Przygoda; B. Ramstein; A. Reshetin; A. Rustamov; A. Sadovsky; P. Salabura; A. Schmah; E. Schwab; Yu. G. Sobolev; S. Spataro; B. Spruck; H. Strbele; J. Stroth; C. Sturm; M. Sudol; A. Tarantola; K. Teilab; P. Tlusty; M. Traxler; R. Trebacz; H. Tsertos; V. Wagner; M. Weber; M. Wisniowski; T. Wojcik; J. Wstenfeld; S. Yurevich; Y. V. Zanevsky; P. Zhou
2009-11-12T23:59:59.000Z
Systematic investigations of dilepton production are performed at the SIS accelerator of GSI with the HADES spectrometer. The goal of this program is a detailed understanding of di-electron emission from hadronic systems at moderate temperatures and densities. New results obtained in HADES experiments focussing on electron pair production in elementary collisions are reported here. They pave the way to a better understanding of the origin of the so-called excess pairs earlier on observed in heavy-ion collisions by the DLS collaboration and lately confirmed in two measurements of the HADES collaboration using C+C and Ar+KCl collisions. Results of these studies are discussed.
Study of correlations between photoproduced pairs of charmed particles at Experiment E831/FOCUS
Castromonte Flores, Cesar Manuel; /Rio de Janeiro, CBPF
2008-08-01T23:59:59.000Z
The authors present the study of the charm-pair correlations produced in photon-nucleon interactions at
Compositions of orthogonal lysyl-tRNA and aminoacyl-tRNA synthetase pairs and uses thereof
Anderson, J. Christopher (San Francisco, CA); Wu, Ning (Brookline, MA); Santoro, Stephen (Cambridge, MA); Schultz, Peter G. (La Jolla, CA)
2009-12-29T23:59:59.000Z
Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal lysyl-tRNAs, orthogonal lysyl-aminoacyl-tRNA synthetases, and orthogonal pairs of lysyl-tRNAs/synthetases, which incorporate homoglutamines into proteins are provided in response to a four base codon. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with homoglutamines using these orthogonal pairs.
Compositions of orthogonal lysyl-tRNA and aminoacyl-tRNA synthetase pairs and uses thereof
Anderson, J. Christopher (San Francisco, CA); Wu, Ning (Brookline, MA); Santoro, Stephen (Cambridge, MA); Schultz, Peter G. (La Jolla, CA)
2011-10-04T23:59:59.000Z
Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal lysyl-tRNAs, orthogonal lysyl-aminoacyl-tRNA synthetases, and orthogonal pairs of lysyl-tRNAs/synthetases, which incorporate homoglutamines into proteins are provided in response to a four base codon. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with homoglutamines using these orthogonal pairs.
Compositions of orthogonal lysyl-tRNA and aminoacyl-tRNA synthetase pairs and uses thereof
Anderson, J. Christopher (San Francisco, CA); Wu, Ning (Brookline, MA); Santoro, Stephen (Cambridge, MA); Schultz, Peter G. (La Jolla, CA)
2009-08-18T23:59:59.000Z
Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal lysyl-tRNAs, orthogonal lysyl-aminoacyl-tRNA synthetases, and orthogonal pairs of lysyl-tRNAs/synthetases, which incorporate homoglutamines into proteins are provided in response to a four base codon. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with homoglutamines using these orthogonal pairs.
Compositions of orthogonal lysyl-tRNA and aminoacyl-tRNA synthetase pairs and uses thereof
Anderson, J. Christopher; Wu, Ning; Santoro, Stephen; Schultz, Peter G
2014-03-11T23:59:59.000Z
Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal lysyl-tRNAs, orthogonal lysyl-aminoacyl-tRNA synthetases, and orthogonal pairs of lysyl-tRNAs/synthetases, which incorporate homoglutamines into proteins are provided in response to a four base codon. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with homoglutamines using these orthogonal pairs.
NIR Luminosity Function of Galaxies in Close Major-Merger Pairs and Mass Dependence of Merger Rate
C. K. Xu; Y. C. Sun; X. T. He
2004-02-07T23:59:59.000Z
A sample of close major-merger pairs (projected separation ${\\rm 5 \\leq r \\leq 20 h^{-1}}$ kpc, ${\\rm K_s}$ band magnitude difference $\\delta {\\rm K_s} \\leq 1$ mag) is selected from the matched 2MASS-2dFGRS catalog of Cole et al. (2001). The pair primaries are brighter than ${\\rm K_s} = 12.5$ mag. After corrections for various biases, the comparison between counts in the paired galaxy sample and counts in the parent sample shows that for the local `M* galaxies' sampled by flux limited surveys, the fraction of galaxies in the close major-merger pairs is 1.70$\\pm 0.32%$. Using 38 paired galaxies in the sample, a ${\\rm K_s}$ band luminosity function (LF) is calculated. This is the first unbiased LF for a sample of objectively defined interacting/merging galaxies in the local universe, while all previously determined LFs of paired galaxies are biased by mistreating paired galaxies as singles. A stellar mass function (MF) is translated from the LF. Compared to the LF/MF of 2MASS galaxies, a differential pair fraction function is derived. The results suggest a trend in the sense that less massive galaxies may have lower chance to be involved in close major-merger pairs than more massive galaxies. The algorithm presented in this paper can be easily applied to much larger samples of 2MASS galaxies with redshifts in near future.
True random numbers from amplified quantum vacuum
M. Jofre; M. Curty; F. Steinlechner; G. Anzolin; J. P. Torres; M. W. Mitchell; V. Pruneri
2011-10-17T23:59:59.000Z
Random numbers are essential for applications ranging from secure communications to numerical simulation and quantitative finance. Algorithms can rapidly produce pseudo-random outcomes, series of numbers that mimic most properties of true random numbers while quantum random number generators (QRNGs) exploit intrinsic quantum randomness to produce true random numbers. Single-photon QRNGs are conceptually simple but produce few random bits per detection. In contrast, vacuum fluctuations are a vast resource for QRNGs: they are broad-band and thus can encode many random bits per second. Direct recording of vacuum fluctuations is possible, but requires shot-noise-limited detectors, at the cost of bandwidth. We demonstrate efficient conversion of vacuum fluctuations to true random bits using optical amplification of vacuum and interferometry. Using commercially-available optical components we demonstrate a QRNG at a bit rate of 1.11 Gbps. The proposed scheme has the potential to be extended to 10 Gbps and even up to 100 Gbps by taking advantage of high speed modulation sources and detectors for optical fiber telecommunication devices.
Drell-Yan Lepton pair production at NNLO QCD with parton showers
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Hoeche, Stefan [SLAC National Accelerator Lab., Menlo Park, CA (United States); Li, Ye [SLAC National Accelerator Lab., Menlo Park, CA (United States); Prestel, Stefan [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2015-04-01T23:59:59.000Z
We present a simple approach to combine NNLO QCD calculations and parton showers, based on the UNLOPS technique. We apply the method to the computation of Drell-Yan lepton-pair production at the Large Hadron Collider. We comment on possible improvements and intrinsic uncertainties.
JOINTLY HYPONORMAL PAIRS OF COMMUTING SUBNORMAL OPERATORS NEED NOT BE JOINTLY SUBNORMAL
Curto, Raúl
JOINTLY HYPONORMAL PAIRS OF COMMUTING SUBNORMAL OPERATORS NEED NOT BE JOINTLY SUBNORMAL RA´UL E operators, jointly hyponormal but not admitting commuting normal extensions. Each such family can be used] := ST - TS. We say that an n-tuple T = (T1, · · · , Tn) of operators on H is (jointly) hyponormal
29 Nov 2001 A. Bacchetta -Fragmentation to probe transversity 31 Hadron pair azimuthal angle
1 29 Nov 2001 A. Bacchetta - Fragmentation to probe transversity 31 Hadron pair azimuthal angle 29 Nov 2001 A. Bacchetta - Fragmentation to probe transversity 32 Center of mass angle hadron decay plane Center of mass direction in lab frame Center of mass frame R #12;2 29 Nov 2001 A. Bacchetta
Costa, Eunice
The layer-by-layer (LbL) assembly of polyelectrolyte pairs on temperature and pH-sensitive cross-linked poly(N-isopropylacrylamide)-co-(methacrylic acid), poly(NIPAAm-co-MAA), microgels enabled a fine-tuning of the gel ...
Pairs and heptamers of C70 molecules ordered via PTCDI-melamine supramolecular networks
Castell, Martin
Pairs and heptamers of C70 molecules ordered via PTCDI-melamine supramolecular networks Fabien Silly Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom and Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands Adam
Model Calculations of Protein Pair Interference Functions P. B. MOORE AND D. I~. ENGELMAN
of the interference cross term, derived from neutron scattering studies of structures containing pairs of deuterated by the neutron scattering method, and should help clarify the interpretation of such data. A2. Method Our and -~2 are the radii of the spheres in question, px and p2 are their respective scattering densities
Higher twist contributions to lepton-pair production and other QCD processes
Brodsky, S.J.; Berger, E.L.; Lepage, G.P.
1982-12-01T23:59:59.000Z
A general discussion of the calculations and phenomenological consequences of power-law suppressed QCD processes is given with emphasis on tests in massive lepton pair production. Absolutely normalized predictions are given for the leading twist (transverse current) and higher twist (longitudinal current) contributions to the meson structure function in the region of large x.
First Observation of Vector Boson Pairs in a Hadronic Final State at the Tevatron Collider
Paus, Christoph M. E.
We present the first observation in hadronic collisions of the electroweak production of vector boson pairs (VV, V=W, Z) where one boson decays to a dijet final state. The data correspond to 3.5??fb[superscript -1] of ...
Peck, Mason A.
American Institute of Aeronautics and Astronautics 1 A Flux-Pinned Magnet-Superconductor Pair consisting of combinations of magnets and Type II superconductors, establishing a non-contacting interaction between the modules thanks to magnetic flux pinning. This stable action-at-a- distance interaction
Use of Exchangeable Pairs in the Analysis of Simulations Charles Stein with
labels (the so-called magnetization), direct or theoretical evaluation of EW is impossible e.g. when N are introduced. The relation with reversible Markov chains is recalled. A basic identity for an exchangeable pair (Stein [23]) and to derive combinatorial formulae for balls and boxes and cycle lengths in random
Nuclear Physics A 781 (2007) 317341 Symmetry energies, pairing energies, and mass
O'Donnell, Tom
2007-01-01T23:59:59.000Z
Nuclear Physics A 781 (2007) 317341 Symmetry energies, pairing energies, and mass equations J of the respective mass equation since symmetry energies are related to the curvature of the nuclear mass surface.10.Dr; 21.10.Hw; 21.30.Fe; 21.60.-n Keywords: NUCLEAR STRUCTURE Z = 1118; analyzed isobaric analog
A Standard Reference Frame for the Description of Nucleic Acid Base-pair Geometry
Gerstein, Mark
uncertainties in this data set closely match numerical values reported in the recent survey of nucleic acid baseA Standard Reference Frame for the Description of Nucleic Acid Base-pair Geometry These preliminary (Rockefeller University), Richard E. Dickerson (University of California, Los Angeles), Mark Gerstein (Yale
Domanski, Tadeusz
Influence of pair coherence on charge tunneling through a quantum dot connected the temperature below T* larger than Tc the single particle states become gradually depleted over a certain energy to a close neighborhood to the Mott insulating state, or because of competition with some other types
R. Rodriguez-Guzman; Y. Alhassid; G. F. Bertsch
2007-09-04T23:59:59.000Z
We describe a procedure for mapping a self-consistent mean-field theory (also known as density functional theory) into a shell model Hamiltonian that includes quadrupole-quadrupole and monopole pairing interactions in a truncated space. We test our method in the deformed N=Z sd-shell nuclei Ne-20, Mg-24 and Ar-36, starting from the Hartree-Fock plus BCS approximation of the USD shell model interaction. A similar procedure is then followed using the SLy4 Skyrme energy density functional in the particle-hole channel plus a zero-range density-dependent force in the pairing channel. Using the ground-state solution of this density functional theory at the Hartree-Fock plus BCS level, an effective shell model Hamiltonian is constructed. We use this mapped Hamiltonian to extract quadrupolar and pairing correlation energies beyond the mean field approximation. The rescaling of the mass quadrupole operator in the truncated shell model space is found to be almost independent of the coupling strength used in the pairing channel of the underlying mean-field theory.
D0 Collaboration; V. Abazov
2011-07-10T23:59:59.000Z
We present a search for the pair production of first generation scalar leptoquarks (LQ) in data corresponding to an integrated luminosity of 5.4 fb$^{-1}$ collected with the D0 detector at the Fermilab Tevatron Collider in ppbar collisions at $\\sqrt{s}=1.96$ TeV. In the channel $LQ \\bar{LQ} \\rightarrow e\
Stillinger, Frank
Synthetic diamond and wurtzite structures self-assemble with isotropic pair interactions Mikael C with strongly repulsive cores that cause the tetrahedrally coordinated diamond and wurtzite lattices-dimensional diamond and wurtzite structures can self-assemble with isotropic in- teractions possessing a strongly
Isosuperconductivity: A nonlocal-nonhamiltonian theory of pairing in high-T{sub c} superconductivity
Animalu, A.O.E. [Univ. of Nigeria, Nsukka (Nigeria)]|[The Institute for Basic Research, Palm Harbor, FL (United States)
1994-08-01T23:59:59.000Z
The author presents a review and reformulation of the author`s recent nonlocal-nonhamiltonian generalization of the standard BCS (Bardeen-Cooper-Schrieffer) theory of electron pairing in superconductors, here called iso-superconductivity or iso-standard model for short, by drawing two analogies. The first analogy is a geometrical (relativistic) one between the internal (isominkowskian) structures of the neutral pion and the Cooper pair envisaged in the generalization; and the second analogy is a dynamical (fluid mechanics) one between the classical Hamilton-Santilli limit of the generalization and its apparent local/nonlocal two-dimensional (London) superfluid mechanics realizations for flows in the CuO{sub 2} planes of the high-T{sub c} cuprate superconductors. By using the analogies and physical considerations, the author elucidates the origins of the interactions responsible for the fluctuations in the iso-characteristics of the electron within the pair due to the mutual overlapping of the paired electron wavefunctions. The fluctuations are defined in terms of a single quantity, namely an integral operator or {open_quotes}iso unit{close_quotes}. 33 refs., 5 figs., 4 tabs.
Modification of the GS LT Paired-end Library Protocol for Constructing Longer Insert Size Libraries
Peng, Ze; Peng, Ze; Hamilton, Matthew; Ting, Sara; Tu, Hank; Goltsman, Eugene; Lapidus, Alla; Lucas, Susan; Cheng, Jan-Fang
2008-05-22T23:59:59.000Z
Paired-end library sequencing has been proven useful in scaffold construction during de novo assembly of genomic sequences. The ability of generating mate pairs with 8 Kb or greater insert sizes is especially important for genomes containing long repeats. While the current 454 GS LT Paired-end library preparation protocol can successfully construct libraries with 3 Kb insert size, it fails to generate longer insert sizes because the protocol is optimized to purify shorter fragments. We have made several changes in the protocol in order to increase the fragment length. These changes include the use of Promega column to increase the yield of large size DNA fragments, two gel purification steps to remove contaminated short fragments, and a large reaction volume in the circularization step to decrease the formation of chimeras. We have also made additional changes in the protocol to increase the overall quality of the libraries. The quality of the libraries are measured by a set of metrics, which include levels of redundant reads, linker positive, linker negative, half linker reads, and driver DNA contamination, and read length distribution, were used to measure the primary quality of these libraries. We have also assessed the quality of the resulted mate pairs including levels of chimera, distribution of insert sizes, and genome coverage after the assemblies are completed. Our data indicated that all these changes have improved the quality of the longer insert size libraries.
Kinetic Energy Driven Pairing in Cuprate Superconductors Th. A. Maier,1
Jarrell, Mark
Kinetic Energy Driven Pairing in Cuprate Superconductors Th. A. Maier,1 M. Jarrell,2 A. Macridin,2, Tennessee 37831-6164, USA 2 Department of Physics, University of Cincinnati, Cincinnati Ohio 45221, USA 3 of the electronic potential energy accompanied by an increase in kinetic energy. In the underdoped cuprates, optical
Tunneling into black hole, escape from black hole, reflection from horizon and pair creation
V. V. Flambaum
2004-08-05T23:59:59.000Z
Within classical general relativity, a particle cannot reach the horizon of a black hole during a finite time, in the reference frame of an external observer; a particle inside cannot escape from a black hole; and the horizon does not produce any reflection. We argue that these processes may possibly be allowed in the quantum world. It is known that quantum mechanics allows pair creation at the horizon (one particle inside, another particle outside) and Hawking radiation. One can extend this idea to propose other processes. Tunneling of an external particle inside black hole may be produced by the creation of a pair at the horizon, followed by the annihilation of one created particle with the initial particle outside, with the other created particle appearing inside. Escape of a particle from a black hole may result from the creation of a pair, followed by the annihilation of one created particle with the particle inside, with the other created particle appearing outside. The escape may allow the transfer of information to the outside.Finally, the reflection of an external particle from the horizon may be modelled by a combination of the two processes presented above. The relationship between these "pair creation-annihilation'' mechanisms and the "horizon tunneling" calculations [1-5] is discussed.
Detecting W/Z pairs and Higgs at high energy pp colliders: Main experimental issues
Alverson, G.; Bengtsson, H.U.; Hauptman, J.; Hedin, D.; Herrero, M.J.; Wang, E.; Linn, S.; Young, C.; Milliken, B.; Paige, F.
1987-03-01T23:59:59.000Z
The main detection issues implied by the search for W and Z/sup 0/ pairs and Higgs in a high energy pp collider context are discussed here. It includes: precise electron identification, missing energy measurement, multilepton recognition, sophisticated jet pattern recognition, and pile-up. The study uses, as much as possible, a ''realistic simulation of life.''
QCD Corrections to Vector Boson Pair Production via Weak Boson Fusion
B. Jager; C. Oleari; D. Zeppenfeld
2006-08-24T23:59:59.000Z
NLO-QCD corrections to vector boson pair production via weak boson fusion have recently been calculated and implemented into flexible parton-level Monte-Carlo programs. These allow for the computation of cross sections and kinematical distributions within realistic experimental cuts. We summarize the basic elements of the calculation and review phenomenological results for the LHC.
Next-to-leading order QCD corrections to light Higgs Pair production via vector boson fusion
Terrance Figy
2008-06-15T23:59:59.000Z
We present the NLO QCD corrections for light Higgs pair production via vector boson fusion at the LHC within the CP conserving type II two higgs doublet model in the form of a fully flexible parton--level Monte Carlo program. Scale dependences on integrated cross sections and distributions are reduced with QCD K-factors of order unity.
Niu, J. G. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Department of Mechanical Engineering, Hebei University, Baoding 071000 (China); Zhan, Q., E-mail: qzhan@mater.ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Geng, W. T., E-mail: geng@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Psi Quantum Materials LLC, Laiwu 271100 (China)
2014-06-15T23:59:59.000Z
Despite well documented first-principles theoretical determination of the low migration energy (0.06 eV) of a single He in tungsten, fully quantum mechanical calculations on the migration of a He pair still present a challenge due to the complexity of its trajectory. By identifying the six most stable configurations of the He pair in W and decomposing its motion into rotational, translational, and rotational-translational routines, we are able to determine its migration barrier and trajectory. Our density functional theory calculations demonstrate a He pair has three modes of motion: a close or open circular two-dimensional motion in (100) plane with an energy barrier of 0.30 eV, a snaking motion along [001] direction with a barrier of 0.30 eV, and a twisted-ladder motion along [010] direction with the two He swinging in the plane (100) and a barrier of 0.31 eV. The graceful associative movements of a He pair are related to the chemical-bonding-like He-He interaction being much stronger than its migration barrier in W. The excellent agreement with available experimental measurements (0.240.32 eV) on He migration makes our first-principles result a solid input to obtain accurate He-W interatomic potentials in molecular dynamics simulations.
On the kinetic equation approach to pair production by time-dependent electric field
A. M. Fedotov; E. G. Gelfer; K. Yu. Korolev; S. A. Smolyansky
2010-08-12T23:59:59.000Z
We investigate the quantum kinetic approach to pair production from vacuum by time-dependent electric field. Equivalence between this approach and the more familiar S-matrix approach is explicitly established for both scalar and fermion cases. For the particular case of a constant electric field exact solution for kinetic equations is provided and the accuracy of low-density approximation is estimated.
Chaotic ratchet dynamics with cold atoms in a pair of pulsed optical lattices
Gabriel G. Carlo; Giuliano Benenti; Giulio Casati; Sandro Wimberger; Oliver Morsch; Riccardo Mannella; Ennio Arimondo
2006-07-27T23:59:59.000Z
We present a very simple model for realizing directed transport with cold atoms in a pair of periodically flashed optical lattices. The origin of this ratchet effect is explained and its robustness demonstrated under imperfections typical of cold atom experiments. We conclude that our model offers a clear-cut way to implement directed transport in an atom optical experiment.
Measurement of prompt J/? pair production in pp collisions at ?s = 7 Tev
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Khachatryan, Vardan
2014-09-01T23:59:59.000Z
Production of prompt J/? meson pairs in proton-proton collisions at ?s = 7 TeV is measured with the CMS experiment at the LHC in a data sample corresponding to an integrated luminosity of about 4.7 fb?. The two J/? mesons are fully reconstructed via their decays into ?? ?? pairs. This observation provides for the first time access to the high-transverse-momentum region of J/? pair production where model predictions are not yet established. The total and differential cross sections are measured in a phase space defined by the individual J/? transverse momentum (pTJ/?) and rapidity (|yJ/?|): |yJ/?| morepTJ/? > 6.5 GeV/c, 1.2 J/?| T threshold that scales linearly with |yJ/?| from 6.5 to 4.5 GeV/c, and 1.43 J/?| TJ/? > 4.5 GeV/c. The total cross section, assuming unpolarized prompt J/? pair production is 1.49 0.07 (stat) 0.13 (syst) nb. Different assumptions about the J/? polarization imply modifications to the cross section ranging from -31% to +27%.less
Quasi-stationary states and a classification of the range of pair interactions
Gabrielli, A. [Istituto dei Sistemi Complessi (ISC), CNR, Via dei Taurini 19, Rome (Italy); Joyce, M. [Laboratoire de Physique Nucleaire et Hautes Energies, Universite Pierre et Marie Curie (France); Marcos, B. [Laboratoire J.-A. Dieudonne, Universite de Nice-Sophia Antipolis (France)
2011-03-24T23:59:59.000Z
Systems of long-range interacting particles present typically 'quasi-stationary' states (QSS). Investigating their lifetime for a generic pair interaction V(r{yields}{infinity}){approx}1/r{sup {gamma}} we give a classification of the range of the interactions according to the dynamical properties of the system.
Swigon, David
DNA stretching modeled at the base pair level: Overtwisting and shear instability in elastic Accepted 28 October 2011 Available online 12 November 2011 Keywords: DNA mechanics Overstretching Discrete elastic model Simplex algorithm Bifurcations a b s t r a c t Stretching experiments on single DNA
Donor-vacancy pairs in irradiated n-Ge: A searching look at the problem
Emtsev, Vadim; Oganesyan, Gagik [IoffePhysicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ulitsa 26, 194021 St. Petersburg (Russian Federation)
2014-02-21T23:59:59.000Z
The present situation concerning the identification of vacancy-donor pairs in irradiated n-Ge is discussed. The challenging points are the energy states of these defects deduced from DLTS spectra. Hall effect data seem to be at variance with some important conclusions drawn from DLTS measurements. Critical points of the radiation-produced defect modeling in n-Ge are highlighted.
Adams, R.L. [Sandia National Labs., Albuquerque, NM (United States). Communications Dept.
1994-09-01T23:59:59.000Z
This revision updates Sandia`s working standard for testing optical fiber and unshielded twisted pair cables included in the Lab-wide telecommunications cabling infrastructure. The purpose of these standard testing procedures is to deliver to all Sandians a reliable, low-maintenance, state-of-the-art, ubiquitous telecommunications cabling infrastructure capable of satisfying all current and future telecommunication needs.
Visual Image of Cooper Pairing in Superconductors A. O. E. Animalu
Nigeria Nsukka, Nigeria and Tepper L. Gill Department of Electrical & Computer Engineering Computational-relativistic quasiparticle energy in (k-space) of a Cooper pair, Ek = k 2 + k( ), as an eigenvalue of a 4 4 Hamiltonian construction of a positive energy relativistic wave equation for an integral spin particle. We find a new class
Gckler, Heinz G.
subband-signals by a synthe- sis filter bank (SFB). Due to low battery energy available in hear- ing aidsOVERSAMPLING COMPLEX-MODULATED DIGITAL FILTER BANK PAIRS SUITABLE FOR EXTENSIVE SUBBAND@nt.rub.de, web: www.dsv.rub.de ABSTRACT Oversampling, complex-modulated digital subband coder filter banks
Vortex-Pair Dynamics in Anisotropic Bistable Media: A Kinematic Approach Aric Hagberg1
Hagberg, Aric
Vortex-Pair Dynamics in Anisotropic Bistable Media: A Kinematic Approach Aric Hagberg1 and Ehud typically evolves into rotating spiral waves. In an anisotropic system, instead of spiral waves, the vortices can form wave fragments that propagate with a constant speed in a given direction determined
Performance comparison of pulse-pair and wavelets methods for the pulse Doppler weather radar
Paris-Sud XI, Universit de
- eters. The radar reflectivity (Z), the radial velocity (Vr) and the spectral width of velocities (W). [1). Generally, the meteorological targets move with speeds lower than 50 m/secs. The Doppler Effect wouldPerformance comparison of pulse-pair and wavelets methods for the pulse Doppler weather radar
Measurement of prompt J/? pair production in pp collisions at ?s = 7 Tev
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Khachatryan, Vardan [Yerevan Physics Institute (Armenia)
2014-09-01T23:59:59.000Z
Production of prompt J/? meson pairs in proton-proton collisions at ?s = 7 TeV is measured with the CMS experiment at the LHC in a data sample corresponding to an integrated luminosity of about 4.7 fb?. The two J/? mesons are fully reconstructed via their decays into ?? ?? pairs. This observation provides for the first time access to the high-transverse-momentum region of J/? pair production where model predictions are not yet established. The total and differential cross sections are measured in a phase space defined by the individual J/? transverse momentum (pTJ/?) and rapidity (|yJ/?|): |yJ/?| TJ/? > 6.5 GeV/c, 1.2 J/?| T threshold that scales linearly with |yJ/?| from 6.5 to 4.5 GeV/c, and 1.43 J/?| TJ/? > 4.5 GeV/c. The total cross section, assuming unpolarized prompt J/? pair production is 1.49 0.07 (stat) 0.13 (syst) nb. Different assumptions about the J/? polarization imply modifications to the cross section ranging from ?31% to +27%.
Random perturbations of spiking activity in a pair of coupled neurons
Random perturbations of spiking activity in a pair of coupled neurons Boris Gutkin , Jurgen Jost on the firing be- haviour of two coupled Type 1 or Type 2 neurons. In Hodgkin-Huxley model neurons with standard that regular spiking and fast spiking neurons in the rat somatosensory cortex exhibit Type 1 and Type 2 firing
Computer simulation study of liquid CH2F2 with a new effective pair potential model
Mezei, Mihaly
to reproduce the thermodynamic internal energy, density, heat capacity, vapor-liquid equilibrium and structuralComputer simulation study of liquid CH2F2 with a new effective pair potential model Pa potential model is proposed for computer simulations of liquid methylene fluoride and used in Monte Carlo
ENVIRONMENTAL BENZENE EXPOSURE ASSESSMENT FOR PARENT-CHILD PAIRS IN ROUEN, FRANCE
Boyer, Edmond
1 ENVIRONMENTAL BENZENE EXPOSURE ASSESSMENT FOR PARENT-CHILD PAIRS IN ROUEN, FRANCE Amin KOUNIALIa environmental benzene exposure. In this study we compared personal benzene exposure and inhalation uptake in a group of children to those of their parents. We also compared levels of urinary benzene metabolites
A Distributed Scheme for Efficient Pair-wise Comparison of Complete Genomes
Bansal, Arvind K.
#12;48 A Distributed Scheme for Efficient Pair-wise Comparison of Complete Genomes Valerian S}@mcs.kent.edu 1 Corresponding author Abstract The comparisons of newly sequenced genomes against a genome and a CORBA-based implementation to compare and align gene sequences in large complete genomes, using multiple
Evidence for the 125 GeV Higgs boson decaying to a pair of ? leptons
Apyan, Aram
A search for a standard model Higgs boson decaying into a pair of ? leptons is performed using events recorded by the CMS experiment at the LHC in 2011 and 2012. The dataset corresponds to an integrated luminosity of 4.9 ...
Search for the associated production of the Higgs boson with a top-quark pair
CMS Collaboration
A search for the standard model Higgs boson produced in association with a top-quark pair (ttH) is presented, using data samples corresponding to integrated luminosities of up to 5.1 fb?1 and 19.7 fb?1 collected in pp ...
Measurement of prompt J/? pair production in pp collisions at ?s = 7 Tev
Khachatryan, Vardan [Yerevan Physics Institute (Armenia)
2014-09-01T23:59:59.000Z
Production of prompt J/? meson pairs in proton-proton collisions at ?s = 7 TeV is measured with the CMS experiment at the LHC in a data sample corresponding to an integrated luminosity of about 4.7 fb?. The two J/? mesons are fully reconstructed via their decays into ?? ?? pairs. This observation provides for the first time access to the high-transverse-momentum region of J/? pair production where model predictions are not yet established. The total and differential cross sections are measured in a phase space defined by the individual J/? transverse momentum (p_{T}^{J/?}) and rapidity (|y^{J/?}|): |y^{J/?}| < 1.2 for p_{T}^{J/?} > 6.5 GeV/c, 1.2 < |y^{J/?}| < 1.43 for a p_{T} threshold that scales linearly with |y^{J/?}| from 6.5 to 4.5 GeV/c, and 1.43 < |y^{J/?}| < 2.2 for p_{T}^{J/?} > 4.5 GeV/c. The total cross section, assuming unpolarized prompt J/? pair production is 1.49 0.07 (stat) 0.13 (syst) nb. Different assumptions about the J/? polarization imply modifications to the cross section ranging from -31% to +27%.
proteinsSTRUCTURE O FUNCTION O BIOINFORMATICS Integrating statistical pair potentials into
Weng, Zhiping
they are typical of many approaches to problems in computational biology. In this work, we have chosen the popularproteinsSTRUCTURE O FUNCTION O BIOINFORMATICS Integrating statistical pair potentials into protein and Zhiping Weng1,2 * 1 Bioinformatics Program Boston University, Massachusetts 02215 2 Biomedical Engineering
proteinsSTRUCTURE O FUNCTION O BIOINFORMATICS Integrating statistical pair potentials into
Weng, Zhiping
they are typical of many approaches to problems in computational biology. In this work, we have chosen the popularproteinsSTRUCTURE O FUNCTION O BIOINFORMATICS Integrating statistical pair potentials into protein , and Zhiping Weng1,2 * 1 Bioinformatics Program Boston University, Massachusetts 02215 2 Biomedical Engineering
Farritor, Shane
Grant Title: CHILDHOOD OBESITY PREVENTION Funding Opportunity Number: USDA-NIFA-AFRI-004156. CFDA, including food environment, that influence childhood obesity and use this information to develop and obesity and promoting healthy behaviors in children and adolescents. Release and Expiration: Release Date
Probing lepton number violation on three frontiers
Deppisch, Frank F. [Department of Physics and Astronomy, University College London (United Kingdom)
2013-12-30T23:59:59.000Z
Neutrinoless double beta decay constitutes the main probe for lepton number violation at low energies, motivated by the expected Majorana nature of the light but massive neutrinos. On the other hand, the theoretical interpretation of the (non-)observation of this process is not straightforward as the Majorana neutrinos can destructively interfere in their contribution and many other New Physics mechanisms can additionally mediate the process. We here highlight the potential of combining neutrinoless double beta decay with searches for Tritium decay, cosmological observations and LHC physics to improve the quantitative insight into the neutrino properties and to unravel potential sources of lepton number violation.
Peng, Ze [DOE JGI
2013-01-25T23:59:59.000Z
Ze Peng from DOE JGI presents "Fosmid Cre-LoxP Inverse PCR Paired-End (Fosmid CLIP-PE), a Novel Method for Constructing Fosmid Pair-End Library" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.
Peng, Ze [DOE JGI] [DOE JGI
2012-06-01T23:59:59.000Z
Ze Peng from DOE JGI presents "Fosmid Cre-LoxP Inverse PCR Paired-End (Fosmid CLIP-PE), a Novel Method for Constructing Fosmid Pair-End Library" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.
Ramanujan's Harmonic Number Expansion into Negative Powers of a Triangular Number
Mark B. Villarino
2007-07-28T23:59:59.000Z
An algebraic transformation of the DeTemple-Wang half-integer approximation to the harmonic series produces the general formula and error estimate for the Ramanujan expansion for the nth harmonic number into negative powers of the nth triangular number. We also discuss the history of the Ramanujan expansion for the nth harmonic number as well as sharp estimates of its accuracy, with complete proofs, and we compare it with other approximative formulas.
Customer Service Specialist Job Number: 54844874
Heller, Barbara
Customer Service Specialist Job Number: 54844874 Company Name: Baxter International, Inc Job to the customer and/or the sales team including any corrective actions needed to prevent the failure in the future: Medical Information, Distribution Centers, Planning and Deployment, Credit and Collections, Customer
Clar number of catacondensed benzenoid hydrocarbons
Klavzar, Sandi
Clar number of catacondensed benzenoid hydrocarbons Sandi Klavzara, , Petra Zigerta , Ivan Gutmanb sextets in any of the Clar formulae) of a catacondensed benzenoid hydrocarbon: CL is equal to the minimum; Resonance graph; Benzenoid hydrocarbons 1. Introduction Within the theory that was formulated [1, 2
Preferential Path Profiling: Compactly Numbering Interesting Paths
Chilimbi, Trishul
preferential path profiling (PPP), that reduces the overhead of path profiling. PPP leverages the observation that most consumers of path profiles are only inter- ested in a subset of all program paths. PPP achieves produced by PPP. This compact path numbering enables our PPP implementation to record path information
Building Grassmann Numbers from PI-Algebras
Ricardo M. Bentin; Sergio Mota
2012-04-06T23:59:59.000Z
This works deals with the formal mathematical structure of so called Grassmann Numbers applied to Theoretical Physics, which is a basic concept on Berezin integration. To achieve this purpose we make use of some constructions from relative modern Polynomial Identity Algebras (PI-Algebras) applied to the special case of the Grassmann algebra.
Volume 89 number 44 28 october 2008
Mcdonough, William F.
Volume 89 number 44 28 october 2008 pages 433444 Eos, Vol. 89, No. 44, 28 October 2008 EOS, Tran.Mahoney Geoneutrino Measurements and Models Investigate Deep Earth PAGES 433434 #12;Eos, Vol. 89, No. 44, 28 October 2008 uranium-238, thorium-232, and potassium- 40. Neutrinos and their antiparticles, anti- neutrinos
Policy Title: Policy Number: Facilities and
Papautsky, Ian
been supported by the federal government since that time. Indirect costs are also called "Facilities and Administrative" or F&A costs. These costs include facilities costs such as electricity, heating and airPolicy Title: Policy Number: Facilities and Administrative Distribution 2.1.11 Category: Financial
Master Project Assessment Form Student: ID number
Franssen, Michael
Master Project Assessment Form Student: ID number: Master Program: Graduation supervisor Graduation presentation Defense Execution of the project Grade Signature of supervisor Date * Hand in at the student administration (MF 3.068) together with an official result form (uitslagbon) #12;"Master Project
March 2005 Number 238 CARBON CAPTURE AND
Mather, Tamsin A.
March 2005 Number 238 CARBON CAPTURE AND STORAGE (CCS) As part of the government's global strategy. This POSTnote discusses the potential of carbon capture and storage (CCS), a method of carbon sequestration2 and will be included in the forthcoming Department of Trade and Industry (DTI) Carbon Abatement Technology Strategy
The New Element Curium (Atomic Number 96)
DOE R&D Accomplishments [OSTI]
Seaborg, G. T.; James, R. A.; Ghiorso, A.
1948-00-00T23:59:59.000Z
Two isotopes of the element with atomic number 96 have been produced by the helium-ion bombardment of plutonium. The name curium, symbol Cm, is proposed for element 96. The chemical experiments indicate that the most stable oxidation state of curium is the III state.
Mass-induced transition in fermion number
Aragao de Carvalho, C.; Pureza, J. M.
1989-05-15T23:59:59.000Z
We show that if we increase the mass of fermions in interaction with a topological (kink) scalar background in 1+1 dimensions, the fractional fermion number of the system will eventually vanish. The transition is sharp and corresponds to the disappearance of localized states from the spectrum of a Dirac operator which is exactly solvable. Possible applications to different physical systems are discussed.
Fast K System Generators of Pseudorandom Numbers
Akopov, N Z; Nersessian, A B; Savvidy, G K; Greiner, W
1993-01-01T23:59:59.000Z
We suggest fast algorithm for the matrix generator of pseudorandom numbers based on Kolmogorov-Anosov K systems which has been earliar proposed in \\cite{savvidy1,akopov1}. This algorithm reduces $N^{2}$ operation of the matrix generator to $NlnN$ and essentially reduces the generation time. It also clarifies the algebraic structure of this type of K system generators.
Fast K System Generators of Pseudorandom Numbers
N. Z. Akopov; E. M. Madounts; A. B. Nersesian; G. K. Savvidy; W. Greiner
1993-11-19T23:59:59.000Z
We suggest fast algorithm for the matrix generator of pseudorandom numbers based on Kolmogorov-Anosov K systems which has been earliar proposed in \\cite{savvidy1,akopov1}. This algorithm reduces $N^{2}$ operation of the matrix generator to $NlnN$ and essentially reduces the generation time. It also clarifies the algebraic structure of this type of K system generators.
Write your extension number on this card.
and slide it down. Press here to remove the stand. 1 Use the key hole slots on the stand to mark Press here jack. illustrations. for a secure fit. T7100 Telephone User Card 1-800-4 NORTEL www of your display. 1. Press . 2. Press / to to select a contrast level. The higher the number the higher
Policy Title: Policy Number: Federal Student Aid
Franco, John
. All such officials shall further distribute the Code to their direct and indirect reports who havePolicy Title: Policy Number: Federal Student Aid Code of Conduct 1.3.3 Category: Administrative Office of the Bursar University of Cincinnati Federal Student Aid Code of Conduct, page 1 of 5 Background
NUMBER: 1530 TITLE: Code of Student Conduct
. For the purposes of this Code, the term "University Official" is inclusive of "Faculty Member" as defined in IV 1530 1 NUMBER: 1530 TITLE: Code of Student Conduct APPROVED: August 27, 1970; Revised June 14, 2012 I. BASIS AND RATIONALE FOR A CODE OF STUDENT CONDUCT Old Dominion University
CORAL Name: STS 2 Model Number: ICP
Reif, Rafael
CORAL Name: STS 2 Model Number: ICP Location: TRL Introduction: The ST Systems Multiplex ICP tool prior to starting your process in CORAL. Loading a Wafer: The wafer is loaded into the system using of the tool. #12;If there are any issues with the tool post a comment in CORAL and contact Donal 2-2983. #12;
NUMBER: 1626 TITLE: Information Technology Management
cost of more than $100,000 but less than $1 million. E. University Advisory Council on Technology (UACT technology project estimated to cost $1 million or more or deemed to be mission-critical. VI. Designated1626 - 1 NUMBER: 1626 TITLE: Information Technology Management APPROVED: September 9, 2005 I
Project Name Project Number Tagging Type
Project Name Project Number Primary Tagging Type Secondary Tagging Type Fish Species Tagging/ Secondary Legal Driver (BiOp, MOA, Accord, etc.) Tagging Purpose Funded Entity Tagging Location Retrieval CWT Recovery Project 2010-036-00 CWT PIT Chinook, coho retrieval, analysis, address PSMFC sampling
Reference number ISO 8601:2004(E)
Wu, Shiliang
Reference number ISO 8601:2004(E) ISO 2004 INTERNATIONAL STANDARD ISO 8601 Third edition 2004'heure #12;ISO 8601:2004(E) PDF disclaimer This PDF file may contain embedded typefaces. In accordance. The ISO Central Secretariat accepts no liability in this area. Adobe is a trademark of Adobe Systems
Paper Number: 023084 An ASAE Meeting Presentation
applications. In these terms, quality comprehends all factors influencing the system like accuracy, speedPaper Number: 023084 An ASAE Meeting Presentation Spatio-Temporal Quality of Precision Farming and Land Management, Chair of Geodesy, Arcisstrasse 21, D 80290 Munich Written for presentation
Cohn, Martin
Biphasic Hoxd Gene Expression in Shark Paired Fins Reveals an Ancient Origin of the Distal Limb of expression occurs at later stages of shark fin development, in which Hoxd12 and Hoxd13 are re-expressed along GJ, Cohn MJ (2007) Biphasic Hoxd Gene Expression in Shark Paired Fins Reveals an Ancient Origin
Methods and composition for the production of orthogonal tRNA-aminoacyl tRNA synthetase pairs
Schultz, Peter G. (La Jolla, CA); Wang, Lei (San Diego, CA); Anderson, John Christopher (San Diego, CA); Chin, Jason W. (San Diego, CA); Liu, David R. (Lexington, MA); Magliery, Thomas J. (North Haven, CT); Meggers, Eric L. (Philadelphia, PA); Mehl, Ryan Aaron (San Diego, CA); Pastrnak, Miro (San Diego, CA); Santoro, Stephen William (San Diego, CA); Zhang, Zhiwen (San Diego, CA)
2012-05-08T23:59:59.000Z
This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.
John, Volker
48 2 Functional Analysis for Linear Saddle Point Problems 2.4 Examples of Pairs of Finite Element Spaces Violating the Discrete Inf-Sup Condition Remark 2.50. On simple pairs of finite element spaces. The simplest and most common finite element spaces are spaces of continuous functions which are piecewise
Four-nucleon alpha-type correlations and proton-neutron pairing away of N=Z line
N. Sandulescu; D. Negrea; C. W. Johnson
2012-09-15T23:59:59.000Z
We study the competition between alpha-type and conventional pair condensation in the ground state of nuclei with neutrons and protons interacting via a charge-independent pairing interaction. The ground state is described by a product of two condensates, one of alpha-like quartets and the other one of pairs in excess relative to the isotope with N=Z. It is shown that this ansatz for the ground state gives very accurate pairing correlation energies for nuclei with the valence nucleons above the closed cores 16O, 40Ca and 100Sn. These results indicate that alpha-type correlations are important not only for the self-conjugate nuclei but also for nuclei away of N=Z line. In the latter case alpha-like quartets coexist with the collective Cooper pairs formed by the nucleons in excess.
Four-nucleon alpha-type correlations and proton-neutron pairing away of N=Z line
Sandulescu, N; Johnson, C W
2012-01-01T23:59:59.000Z
We study the competition between alpha-type and conventional pair condensation in the ground state of nuclei with neutrons and protons interacting via a charge-independent pairing interaction. The ground state is described by a product of two condensates, one of alpha-like quartets and the other one of pairs in excess relative to the isotope with N=Z. It is shown that this ansatz for the ground state gives very accurate pairing correlation energies for nuclei with the valence nucleons above the closed cores 16O, 40Ca and 100Sn. These results indicate that alpha-type correlations are important not only for the self-conjugate nuclei but also for nuclei away of N=Z line. In the latter case alpha-like quartets coexist with the collective Cooper pairs formed by the nucleons in excess.
S. Lin; X. Z. Zhang; Z. Song
2015-01-09T23:59:59.000Z
We study the dynamics of bound pairs in the extended Hubbard model driven by a linear external field. It is shown that two interacting bosons or singlet fermions with nonzero on-site and nearest-neighbor interaction strengths can always form bound pairs in the absence of an external field. There are two bands of bound pairs, one of which may have incomplete wave vectors when it has an overlap with the scattering band, referred to as an imperfect band. In the presence of the external field, the dynamics of the bound pair in the perfect band exhibits distinct Bloch-Zener oscillation (BZO), while in the imperfect band the oscillation presents a sudden death. The pair becomes uncorrelated after the sudden death and the BZO never comes back. Such dynamical behaviors are robust even for the weak-coupling regime and thus can be used to characterize the phase diagram of the bound states.
Call Numbers Explained 1 8/23/2012 Call Numbers Explained
Su, Xiao
. The second method is the Library of Congress Classification system, which is used to identify university. In the library, books are organized by call number. 3. A call number classifies a book by its subject and tells in the library. 6. The King Library is unusual because it is both a public library and a university library
Number Plastic Type Common Items Number of Items (tally) 1 polyethylene terephthalate
Schladow, S. Geoffrey
End Time: Number Plastic Type Common Items Number of Items (tally) 1 polyethylene terephthalate Soft drink, water and beer bottles; mouthwash bottles; peanut butter containers; salad dressing and vegetable oil containers; ovenable food trays. 2 high density polyethylene Milk jugs, juice bottles; bleach
Strongly Intensive Measures for Particle Number Fluctuations: Effects of Hadronic Resonances
Viktor V. Begun; Mark I. Gorenstein; Katarzyna Grebieszkow
2015-05-15T23:59:59.000Z
Strongly intensive measures $\\Delta$ and $\\Sigma$ are used to study event-by-event fluctuations of hadron multiplicities in nucleus-nucleus collisions. The effects of resonance decays are investigated within statistical model and relativistic transport model. Two specific examples are considered: resonance decays to two positively charged particles (e.g., $\\Delta^{++}\\rightarrow p+ \\pi^+$) and to $\\pi^+\\pi^-$-pairs. (e.g., $\\rho^0\\rightarrow \\pi^-+\\pi^+$). It is shown that resonance abundances at the chemical freeze-out can be estimated by measuring the fluctuations of the number of stable hadrons. These model results are compared to the full hadron-resonance gas analysis within both the grand canonical and canonical ensemble. The ultra-relativistic quantum molecular dynamics (UrQMD) model of nucleus-nucleus collisions is used to illustrate the role of global charge conservation, centrality selection, and limited experimental acceptance.
Finite-particle-number approach to physics
Noyes, H.P.
1982-10-01T23:59:59.000Z
Starting from a discrete, self-generating and self-organizing, recursive model and self-consistent interpretive rules we construct: the scale constants of physics (3,10,137,1.7x10/sup 38/); 3+1 Minkowski space with a discrete metric and the algebraic bound ..delta.. is an element of ..delta.. tau is greater than or equal to 1; the Einstein-deBroglie relation; algebraic double slit interference; a single-time momentum-space scattering theory connected to laboratory experience; an approximation to wave functions; local phase severance and hence both distant correlations and separability; baryon number, lepton number, charge and helicity; m/sub p//m/sub e/; a cosmology not in disagreement with current observations.
Sensitivity in risk analyses with uncertain numbers.
Tucker, W. Troy; Ferson, Scott
2006-06-01T23:59:59.000Z
Sensitivity analysis is a study of how changes in the inputs to a model influence the results of the model. Many techniques have recently been proposed for use when the model is probabilistic. This report considers the related problem of sensitivity analysis when the model includes uncertain numbers that can involve both aleatory and epistemic uncertainty and the method of calculation is Dempster-Shafer evidence theory or probability bounds analysis. Some traditional methods for sensitivity analysis generalize directly for use with uncertain numbers, but, in some respects, sensitivity analysis for these analyses differs from traditional deterministic or probabilistic sensitivity analyses. A case study of a dike reliability assessment illustrates several methods of sensitivity analysis, including traditional probabilistic assessment, local derivatives, and a ''pinching'' strategy that hypothetically reduces the epistemic uncertainty or aleatory uncertainty, or both, in an input variable to estimate the reduction of uncertainty in the outputs. The prospects for applying the methods to black box models are also considered.
Search for the standard model Higgs boson in tau lepton pair final states
D0 Collaboration
2012-05-16T23:59:59.000Z
We present a search for the standard model Higgs boson in final states with an electron or muon and a hadronically decaying tau lepton in association with zero, one, or two or more jets using data corresponding to an integrated luminosity of up to 7.3 fb^{-1} collected with the D0 detector at the Fermilab Tevatron collider. The analysis is sensitive to Higgs boson production via gluon gluon fusion, associated vector boson production, and vector boson fusion, and to Higgs boson decays to tau lepton pairs or W boson pairs. Observed (expected) limits are set on the ratio of 95% C.L. upper limits on the cross section times branching ratio, relative to those predicted by the Standard Model, of 14 (22) at a Higgs boson mass of 115 GeV and 7.7 (6.8) at 165 GeV.
Masood, W. [Theoretical Plasma Physics Division, PINSTECH, P.O. Nilore, Islamabad 54000 (Pakistan); National Centre for Physics (NCP), Shahdara Valley Road, Islamabad 44000 (Pakistan); Rizvi, H. [Theoretical Plasma Physics Division, PINSTECH, P.O. Nilore, Islamabad 54000 (Pakistan)
2011-04-15T23:59:59.000Z
Nonlinear electrostatic shock waves are studied in unmagnetized, dissipative pair-ion plasmas. The dissipation in the system is taken into account by considering the effect of kinematic viscosity of both positive and negative ions in plasmas. The system of fluid equations for asymmetric pair-ion plasma is reduced to Korteweg-deVries-Burgers equation in the limit of small amplitude perturbation. It is observed that the system under consideration admits rarefactive shocks. Keeping in view the practical applications, the nonlinear propagation of both the exploding and imploding shocks is investigated and the differences are expounded in detail. The present study may have relevance in the study of the formation of electrostatic shocks in laser-induced implosion devices, star formation, supernovae explosion, etc.
Mushtaq, A. [Theoretical Plasma Physics Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Nilore, Islamabad 45660 (Pakistan); School of Physics, University of Sydney, New South Wales 2006 (Australia); Saeed, R.; Haque, Q. [Theoretical Plasma Physics Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Nilore, Islamabad 45660 (Pakistan)
2011-04-15T23:59:59.000Z
Linear and nonlinear coupled electrostatic drift and ion acoustic waves are studied in inhomogeneous, collisional pair ion-electron plasma. The Korteweg-de Vries-Burgers (KdVB) equation for a medium where both dispersion and dissipation are present is derived. An attempt is made to obtain exact solution of KdVB equation by using modified tanh-coth method for arbitrary velocity of nonlinear drift wave. Another exact solution for KdVB is obtained, which gives a structure of shock wave. Korteweg-de Vries (KdV) and Burgers equations are derived in limiting cases with solitary and monotonic shock solutions, respectively. Effects of species density, magnetic field, obliqueness, and the acoustic to drift velocity ratio on the solitary and shock solutions are investigated. The results discussed are useful in understanding of low frequency electrostatic waves at laboratory pair ion plasmas.
Testing the local-void alternative to dark energy using galaxy pairs
Wang, F Y
2013-01-01T23:59:59.000Z
The possibility that we live in a special place in the universe, close to the center of a large, radially inhomogeneous void, has attracted attention recently as an alternative to dark energy or modified gravity to explain the accelerating universe. We show that the distribution of orientations of galaxy pairs can be used to test the Copernican principle that we are not in a central or special region of Universe. The popular void models can not fit both the latest type Ia supernova, cosmic microwave background data and the distribution of orientations of galaxy pairs simultaneously. Our results rule out the void models at the $4\\sigma$ confidence level as the origin of cosmic acceleration and favor the Copernican principle.
Optical-fiber source of polarization-entangled photon pairs in the 1550nm telecom band
Xiaoying Li; Paul L. Voss; Jay E. Sharping; Prem Kumar
2004-08-12T23:59:59.000Z
We present a fiber based source of polarization-entangled photon pairs that is well suited for quantum communication applications in the 1550nm band of standard fiber-optic telecommunications. Polarization entanglement is created by pumping a nonlinear-fiber Sagnac interferometer with two time-delayed orthogonally-polarized pump pulses and subsequently removing the time distinguishability by passing the parametrically scattered signal-idler photon pairs through a piece of birefringent fiber. Coincidence detection of the signal-idler photons yields biphoton interference with visibility greater than 90%, while no interference is observed in direct detection of either the signal or the idler photons. All four Bell states can be prepared with our setup and we demonstrate violations of CHSH form of Bell's inequalities by up to 10 standard deviations of measurement uncertainty.
The latest results on top quark pair cross-section measurement
Yamauchi, Katsuya; The ATLAS collaboration
2015-01-01T23:59:59.000Z
The latest results on top quark pair production cross-section measurement in proton-proton collisions at $\\sqrt{s} = 7\\ TeV$ and $\\sqrt{s} = 8\\ TeV$ with the ATLAS detector are reported. The inclusive cross-section was measured with 4% of uncertainty using di-lepton e-mu events. The measurement of the differential cross-section as functions of various observables such as transverse momentum and rapidity of the top quark and invariant mass of the pseudo-top-quark pair system including the results in boosted topologies are also reported. These results are compared with the various generators such as Powheg, Alpgen and MC@NLO and the various PDF sets.
On detection of narrow angle e+e- pairs from dark photon decays
Dermenev, A V; Gninenko, S N; Kuleshov, S B; Matveev, V A; Myalkovskiy, V V; Peshekhonov, V D; Poliakov, V A; Savenkov, A A; Tikhomirov, V O; Zhukov, I A
2015-01-01T23:59:59.000Z
A class of models of dark sectors consider new very weak interaction between the ordinary and dark matter transmitted by U'(1) gauge bosons A' (dark photons) mixing with our photons. If such A's exist, they could be searched for in a light-shining-through-a-wall experiment with a high energy electron beam from the CERN SPS. The proposed search scheme suggests detection of the e+e- pairs produced in the A' -> e+e- decay with a very small opening angle. Coordinate chambers based on the thin-wall drift tubes with a minimal material budget and a two-hit resolution for e+ and e- tracks separated by more than 0.5 mm are considered as an option for detecting such pairs.
Finding the first cosmic explosions. III. Pulsational pair-instability supernovae
Whalen, Daniel J.; Smidt, Joseph [T-2, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Even, Wesley; Fryer, Chris L. [CCS-2, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Woosley, S. E. [Department of Astronomy and Astrophysics, UCSC, Santa Cruz, CA 95064 (United States); Heger, Alexander [Monash Centre for Astrophysics, Monash University, Clayton, Victoria 3800 (Australia); Stiavelli, Massimo [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)
2014-02-01T23:59:59.000Z
Population III supernovae have been the focus of growing attention because of their potential to directly probe the properties of the first stars, particularly the most energetic events that can be seen at the edge of the observable universe. But until now pulsational pair-instability supernovae, in which explosive thermonuclear burning in massive stars fails to unbind them but can eject their outer layers into space, have been overlooked as cosmic beacons at the earliest redshifts. These shells can later collide and, like Type IIn supernovae, produce superluminous events in the UV at high redshifts that could be detected in the near infrared today. We present numerical simulations of a 110 M {sub ?} pulsational pair-instability explosion done with the Los Alamos radiation hydrodynamics code Radiation Adaptive Grid Eulerian. We find that collisions between consecutive pulsations are visible in the near infrared out to z ? 15-20 and can probe the earliest stellar populations at cosmic dawn.
First Measurement of the Fraction of Top Quark Pair Production Through Gluon-Gluon Fusion
CDF Collaboration; T. Aaltonen
2008-04-08T23:59:59.000Z
We present the first measurement of the fraction of top quark pair production through gluon-gluon fusion. We use 0.96/fb of s**(1/2)=1.96 TeV p-pbar collision data recorded with the CDF II detector at Fermilab. We identify the candidate t-tbar events with a high-energy charged lepton, a neutrino candidate, and four or more jets. Using charged particles with low transverse momentum in t-tbar events, we find the fraction of top quark pair production through gluon-gluon fusion to be 0.07+/-0.14(stat)+/-0.07(syst), corresponding to a 95% confidence level upper limit of 0.33, in agreement with the standard model NLO prediction of 0.15+/-0.05.
Fred Cooper; Gouranga C. Nayak
2006-12-29T23:59:59.000Z
We study the Schwinger mechanism for the pair production of fermions in the presence of an arbitrary time-dependent background electric field E(t) by directly evaluating the path integral. We obtain an exact non-perturbative result for the probability of fermion-antifermion pair production per unit time per unit volume per unit transverse momentum (of the fermion or antifermion) from the arbitrary time dependent electric field E(t) via Schwinger mechanism. We find that the exact non-perturbative result is independent of all the time derivatives d^nE(t)/dt^n, where n=1,2,....\\infty. This result has the same functional dependence on E as the Schwinger's constant electric field E result with the replacement: E -> E(t).
Pair dispersion in a chaotic flow reveals the role of the memory of initial velocity
Afik, Eldad
2015-01-01T23:59:59.000Z
The leading paradigm for chaotic flows dominated by dissipation predicts an exponential growth of the mean distance between pairs of fluid elements, in the long run. This is reflected in the analysis of experimental results on tracer particles and the discussions which follow, as reported in recent experimental and numerical publications. To quantitatively validate this prediction, we have conducted a microfluidic experiment generating elastic turbulence, a flow characterised in the literature as smooth in space and random in time. To our great surprise, we discovered that the pair separation follows a much slower power-law --- also known as ballistic --- a notion overlooked so far for flows of this type. We provide conclusive experimental evidence that this scaling is well-desribed by the same coefficients derived from the short-time dynamics. Our finding reinforces the role of the ballistic regime over a significant range in time and space, providing a quantitative estimation for the spreading of particles ...
Observation of ?_{c1} Decays into Vector Meson Pairs ??, ?? and, ??
Ablikim, M.; Achasov, M. N.; An, L.; An, Q.; An, Z. H.; Bai, J. Z.; Baldini, R.; Ban, Y.; Becker, J.; Berger, N.; Bertani, M.; Bian, J. M.; Bondarenko, O.; Boyko, I.; Briere, R. A.; Bytev, V.; Cai, X.; Cao, G. F.; Cao, X. X.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, Y.; Chen, Y. B.; Cheng, H. P.; Chu, Y. P.; Cronin-Hennessy, D.; Dai, H. L.; Dai, J. P.; Dedovich, D.; Deng, Z. Y.; Denysenko, I.; Destefanis, M.; Ding, Y.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Duan, M. Y.; Fan, R. R.; Fang, J.; Fang, S. S.; Feng, C. Q.; Fu, C. D.; Fu, J. L.; Gao, Y.; Geng, C.; Goetzen, K.; Gong, W. X.; Greco, M.; Grishin, S.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y. P.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, M.; He, Z. Y.; Heng, Y. K.; Hou, Z. L.; Hu, H. M.; Hu, J. F.; Hu, T.; Huang, B.; Huang, G. M.; Huang, J. S.; Huang, X. T.; Huang, Y. P.; Hussain, T.; Ji, C. S.; Ji, Q.; Ji, X. B.; Ji, X. L.; Jia, L. K.; Jiang, L. L.; Jiang, X. S.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Jing, F. F.; Kavatsyuk, M.; Komamiya, S.; Kuehn, W.; Lange, J. S.; Leung, J. K. C.; Li, Cheng; Li, Cui; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, Lei; Li, N. B.; Li, Q. J.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, X. R.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Liao, X. T.; Liu, B. J.; Liu, B. J.; Liu, C. L.; Liu, C. X.; Liu, C. Y.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, G. C.; Liu, H.; Liu, H. B.; Liu, H. M.; Liu, H. W.; Liu, J. P.; Liu, K.; Liu, K. Y.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, X. H.; Liu, Y. B.; Liu, Y. W.; Liu, Yong; Liu, Z. A.; Liu, Z. Q.; Loehner, H.; Lu, G. R.; Lu, H. J.; Lu, J. G.; Lu, Q. W.; Lu, X. R.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Ma, C. L.; Ma, F. C.; Ma, H. L.; Ma, Q. M.; Ma, T.; Ma, X.; Ma, X. Y.; Maggiora, M.; Malik, Q. A.; Mao, H.; Mao, Y. J.; Mao, Z. P.; Messchendorp, J. G.; Min, J.; Mitchell, R. E.; Mo, X. H.; Muchnoi, N. Yu.; Nefedov, Y.; Ning, Z.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pelizaeus, M.; Peters, K.; Ping, J. L.; Ping, R. G.; Poling, R.; Pun, C. S. J.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, X. S.; Qiu, J. F.; Rashid, K. H.; Rong, G.; Ruan, X. D.; Sarantsev, A.; Schulze, J.; Shao, M.; Shen, C. P.; Shen, X. Y.; Sheng, H. Y.; Shepherd, M. R.; Song, X. Y.; Sonoda, S.; Spataro, S.; Spruck, B.; Sun, D. H.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. D.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tang, X. F.; Tian, H. L.; Toth, D.; Varner, G. S.; Wan, X.; Wang, B. Q.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, Q.; Wang, S. G.; Wang, X. L.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. Y.; Wei, D. H.; Wen, Q. G.; Wen, S. P.; Wiedner, U.; Wu, L. H.; Wu, N.; Wu, W.; Wu, Z.; Xiao, Z. J.; Xie, Y. G.; Xu, G. F.; Xu, G. M.; Xu, H.; Xu, Y.; Xu, Z. R.; Xu, Z. Z.; Xue, Z.; Yan, L.; Yan, W. B.; Yan, Y. H.; Yang, H. X.; Yang, M.; Yang, T.; Yang, Y.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yu, B. X.; Yu, C. X.; Yu, L.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, L.; Zhang, S. H.; Zhang, T. R.; Zhang, X. J.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, H. S.; Zhao, Jiawei; Zhao, Jingwei; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, S. J.; Zhao, T. C.; Zhao, X. H.; Zhao, Y. B.; Zhao, Z. G.; Zhao, Z. L.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, Y. H.; Zheng, Z. P.; Zhong, B.; Zhong, J.; Zhong, L.; Zhou, L.; Zhou, X. K.; Zhou, X. R.; Zhu, C.; Zhu, K.; Zhu, K. J.; Zhu, S. H.; Zhu, X. L.; Zhu, X. W.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.; Zuo, J. X.; Zweber, P.
2011-08-01T23:59:59.000Z
Using (1064)10? ?(3686) events accumulated with the BESIII detector at the BEPCII e?e? collider, we present the first measurement of decays of ?_{c1} to vector meson pairs ??, ??, and ??. The branching fractions are measured to be (4.40.30.5)10??, (6.00.30.7)10??, and (2.20.60.2)10??, for ?_{c1} ???, ??, and ??, respectively, which indicates that the hadron helicity selection rule is significantly violated in ?_{cJ} decays. In addition, the measurement of ?_{cJ}??? provides the first indication of the rate of doubly OZI-suppressed ?_{cJ} decay. Finally, we present improved measurements for the branching fractions of ?_{c0} and ?_{c2} to vector meson pairs.
Auxiliary-field quantum Monte Carlo method for strongly paired fermions
Carlson, J.; Gandolfi, Stefano [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Schmidt, Kevin E. [Department of Physics, Arizona State University, Tempe, Arizona 85287 (United States); Zhang, Shiwei [Department of Physics, College of William and Mary, Williamsburg, Virginia 23187 (United States)
2011-12-15T23:59:59.000Z
We solve the zero-temperature unitary Fermi gas problem by incorporating a BCS importance function into the auxiliary-field quantum Monte Carlo method. We demonstrate that this method does not suffer from a sign problem and that it increases the efficiency of standard techniques by many orders of magnitude for strongly paired fermions. We calculate the ground-state energies exactly for unpolarized systems with up to 66 particles on lattices of up to 27{sup 3} sites, obtaining an accurate result for the universal parameter {xi}. We also obtain results for interactions with different effective ranges and find that the energy is consistent with a universal linear dependence on the product of the Fermi momentum and the effective range. This method will have many applications in superfluid cold atom systems and in both electronic and nuclear structures where pairing is important.
Nonlinear pair production in scattering of photons on ultra-short laser pulses at high energy
Tuchin, Kirill
2009-01-01T23:59:59.000Z
We consider scattering of a photon on a short intense laser pulse at high energy. We argue that for ultra-short laser pulses the interaction is coherent over the entire length of the pulse. At low pulse intensity $I$ the total cross section for electron-positron pair production is proportional to $I$. However, at pulse intensities higher than the characteristic value $I_s$, the total cross section saturates -- it becomes proportional to the logarithm of intensity. This nonlinear effect is due to multi-photon interactions. We derive the total cross section for pair production at high energies by resuming the multi-photon amplitudes to all orders in intensity. We calculate the saturation intensity $I_s$ and show that it is significantly lower than the Schwinger's critical value. We discuss possible experimental tests.
Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block
Deng Fuguo; Liu Xiaoshu [Department of Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory For Quantum Information and Measurements, Beijing 100084 (China); Long Guilu [Department of Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory For Quantum Information and Measurements, Beijing 100084 (China); Center for Atomic and Molecular NanoSciences, Tsinghua University, Beijing 100084 (China); Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100080 (China)
2003-10-01T23:59:59.000Z
A protocol for quantum secure direct communication using blocks of Einstein-Podolsky-Rosen (EPR) pairs is proposed. A set of ordered N EPR pairs is used as a data block for sending secret message directly. The ordered N EPR set is divided into two particle sequences, a checking sequence and a message-coding sequence. After transmitting the checking sequence, the two parties of communication check eavesdropping by measuring a fraction of particles randomly chosen, with random choice of two sets of measuring bases. After insuring the security of the quantum channel, the sender Alice encodes the secret message directly on the message-coding sequence and sends them to Bob. By combining the checking and message-coding sequences together, Bob is able to read out the encoded messages directly. The scheme is secure because an eavesdropper cannot get both sequences simultaneously. We also discuss issues in a noisy channel.
Nonlinear pair production in scattering of photons on ultra-short laser pulses at high energy
Kirill Tuchin
2010-02-15T23:59:59.000Z
We consider scattering of a photon on a short intense laser pulse at high energy. We argue that for ultra-short laser pulses the interaction is coherent over the entire length of the pulse. At low pulse intensity $I$ the total cross section for electron-positron pair production is proportional to $I$. However, at pulse intensities higher than the characteristic value $I_s$, the total cross section saturates -- it becomes proportional to the logarithm of intensity. This nonlinear effect is due to multi-photon interactions. We derive the total cross section for pair production at high energies by resuming the multi-photon amplitudes to all orders in intensity. We calculate the saturation intensity $I_s$ and show that it is significantly lower than the Schwinger's critical value. We discuss possible experimental tests.
Small Ramsey Numbers Stanislaw P. Radziszowski
Radziszowski, Stanislaw P.
, March 25 ElJC revision #3 1997, July 11 ElJC revision #4 1998, July 9 ElJC revision #5 1999, July 5 El of Technology Rochester, NY 14623, spr@cs.rit.edu http://www.cs.rit.edu/~spr Submitted: June 11, 1994; Revision Subject Number 05C55 Revisions 1993, February preliminary version, RIT-TR-93-009 [Ra2] 1994, July 3 first
Texas Rice, Volume VI, Number 5
a large number of questions from the audience. The biofuels topic is so critical to Texas agriculture that it is likely that I will be discussing it from time to time during the next several issues. In many states, the biofuels boat is rapidly... gaining speed. Some states are providing monetary incentives for businesses to establish production plants. Some states see tremendous value in biofuels research, and are providing broad-based funding to foster research focusing on increasing ethanol...
Texas Rice, Volume 1, Number 8
Texas A&M University System Agricultural Research and Extension Center Beaumont, Texas October 2001 Volume I Number 8 Texas Rice Combine Harvester Efficiency: Material Other Than Grain Or Money On The Ground? continued on page 6 From... such observations it is easy to conclude that rice combines are extremely efficient. But this might be misleading, given that the choppers and spreaders do a good job of cutting plant material, including grains, into small pieces. How much rice does a combine leave...
Texas Rice, Volume IV, Number 6
Texas A&M University System Agricultural Research and Extension Center Beaumont, Texas August 2004 Volume IV Number 6 Texas Rice Bacterial and Fungal Endophytes in Rice Endophytes are plant-associ- ated organisms that often form... plant/endophyte associations, may infer resistance to insects such as aphids and armyworms. The following is a laymans review of research conducted by scientists worldwide on endophytic continued on page 4 associations that pertain to rice pro- duction...
J. P?kalski; N. G. Almarza; A. Ciach
2015-04-15T23:59:59.000Z
The effects of confinement on colloidal self-assembly in the case of fixed number of confined particles are studied in the one dimensional lattice model solved exactly in the Grand Canonical Ensemble (GCE) in [J. P\\k{e}kalski et al. J. Chem. Phys. 142, 014903 (2015)]. The model considers a pair interaction defined by a short-range attraction plus a longer-range repulsion. We consider thermodynamic states corresponding to self-assembly into clusters. Both, fixed and adaptive boundaries are studied. For fixed boundaries, there are particular states in which, for equal average densities, the number of clusters in the GCE is larger than in the Canonical Ensemble. The dependence of pressure on density has a different form when the system size changes with fixed number of particles and when the number of particles changes with fixed size of the system. In the former case the pressure has a nonmonotonic dependence on the system size. The anomalous increase of pressure for expanding system is accompanied by formation of a larger number of smaller clusters. In the case of elastic confining surfaces we observe a bistability, i.e. two significantly different system sizes occur with almost the same probability. The mechanism of the bistability in the closed system is different to that of the case of permeable walls, where the two equilibrium system sizes correspond to a different number of particles.
Borisov, A. V.; Kerimov, B. K.; Sizin, P. E., E-mail: borisov@phys.msu.ru [Moscow State University (Russian Federation)
2012-11-15T23:59:59.000Z
Expressions for the power of neutrino radiation from a degenerate electron gas in a strong magnetic field are derived for the case of neutrino-pair photoproduction via the weak and electromagnetic interaction mechanisms (it is assumed that the neutrino possesses electromagnetic form factors). It is shown that the neutrino luminosity of a medium in the electromagnetic reaction channel may exceed substantially the luminosity in the weak channel. Relative upper bounds on the effective neutrino magnetic moment are obtained.
X-shooter Science Verification Proposal A special co-moving white dwarfmain sequence pair
Liske, Jochen
and HD 122750 form a co-moving proper motion pair (PM in mas/yr: RA, Dec, from UCAC-2): WD 1401-147 (-170: The white dwarf (WD) WD 1401-147 and the main sequence (MS) star HD 122750 form a co-moving proper motion laboratory to study the complex physics of pulsating WDs in a quantitative manner. Scientific Case: WD 1401-147
Two-color ghost interference with photon pairs generated in hot atoms
Ding Dongsheng; Zhou Zhiyuan; Shi Baosen; Zou Xubo; Guo Guangcan [Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026 (China)
2012-09-15T23:59:59.000Z
We report on an experimental observation of a two-photon ghost interference experiment. A distinguishing feature of our experiment is that the photons are generated via a non-degenerated spontaneous four-wave mixing process in a hot atomic ensemble; therefore the photon has narrow bandwidth. Besides, there is a large difference in frequency between two photons in a pair. Our works may be important to achieve more secure, large transmission capacity long-distance quantum communication.
Pure-state dynamics of a pair of charge qubits in a random environment
Buric, Nikola [Department of Physics and Mathematics, Faculty of Pharmacy, University of Beograd, Vojvode Stepe 450, Belgrade (Serbia and Montenegro)
2005-10-15T23:59:59.000Z
A pair of charge qubits in a random electromagnetic environment is studied, using the description of the random dynamics of its pure-state vector as given by quantum-state diffusion theory. It is shown by numerical computations that the pure-state dynamics provides a more detailed description than the density-matrix picture of the main effects such as phase dumping and depolarization.
Next-to-leading order QCD corrections to slepton pair production via vector-boson fusion
Partha Konar; Dieter Zeppenfeld
2006-12-11T23:59:59.000Z
Slepton pairs can be produced in vector-boson fusion processes at hadron colliders. The next-to-leading order QCD corrections to the electroweak production cross section for p p -> slepton+ slepton- +2jets at order alpha_s alpha^4 have been calculated and implemented in a NLO parton-level Monte Carlo program. Numerical results are presented for the CERN Large Hadron Collider.
Relativistic Quantization of Cooper Pairs and Distributed Electrons in Rotating Superconductors
I. E. Bulyzhenkov
2009-07-02T23:59:59.000Z
Relativistic time synchronization along closed integral lines maintains magnetic flux quantization independently from gravitation. All Fermi-volume electrons form time-averaged electromagnetic fields within rotating conductors, while Fermi-surface superelectrons enable flux quantization in SQUID experiments. Inertia is not related to instantaneous self-coherent states of the distributed electric charge and, therefore, the Cooper pair mass can not be measured in principle from magnetic flux quantization.
Two pairs of interacting EBs towards the LMC in the OGLE database
Aviv Ofir
2008-12-17T23:59:59.000Z
A single point source on the OGLE LMC database shows the characteristics of two superimposed eclipsing binaries (EBs). The two EBs happen to have periods very close to the 3:2 resonance. The telescope's small PSF and the apparent resonance between the two EBs raises the suspicion that this is not chance alignment but rather a compact hierarchical system of two pairs of interacting EBs in 3:2 resonance.
Contributions of different neutron pairs in different approaches for neutrinoless double beta decay
Alberto Escuderos; Amand Faessler; Vadim Rodin; Fedor Simkovic
2010-06-07T23:59:59.000Z
The methods used till now to calculate the neutrinoless double beta decay matrix elements are: the Quasiparticle Random Phase Approximation (QRPA), the Shell Model (SM), the angular momentum projected Hartee-Fock-Bogoliubov approach (HFB) and the Interacting Boson Model (IBM). The different approaches are compared specifically concerning the the angular momenta and parities of the neutron pairs, which are changed into two protons by the $0\
Electron-Positron Pair Production by an Electron in a Magnetic Field Near the Process Threshold
O. P. Novak; R. I. Kholodov; P. I. Fomin
2011-01-13T23:59:59.000Z
The electron-positron pair production by an electron in a strong magnetic field near the process threshold is considered. The process is shown to be more probable if the spin of the initial electron is oriented along the field. In this case, the probability of the process is $\\sim10^{13} s^{-1}$ when the magnetic field strength is $H=4\\cdot 10^{12}$ G.
mTGen: mass scale measurements in pair-production at colliders
Lester, Christopher G; Barr, Alan
2007-01-01T23:59:59.000Z
ar X iv :0 70 8. 10 28 v4 [ he p- ph ] 6 A ug 20 09 Cavendish-HEP-2007-05 PACS: 13.85.Hd 13.85.-t 11.30.Pb 11.80.Cr 12.60.-i mTGen : Mass scale measurements in pair-production at colliders Christopher G. Lester and Alan J. Barr Cavendish...
N. N. Ajitanand; J. M. Alexander; P. Chung; W. G. Holzmann; M. Issah; Roy A. Lacey; A. Shevel; A. Taranenko; P. Danielewicz
2005-06-14T23:59:59.000Z
Methodology is presented for analysis of two-particle azimuthal angle correlation functions obtained in collisions at ultra-relativistic energies. We show that harmonic and di-jet contributions to these correlation functions can be reliably decomposed by two techniques to give an accurate measurement of the jet-pair distribution. Results from detailed Monte Carlo simulations are used to demonstrate the efficacy of these techniques in the study of possible modifications to jet topologies in heavy ion reactions.
About the logic of the prime number distribution
Harry K. Hahn
2008-01-28T23:59:59.000Z
There are two basic number sequences which play a major role in the prime number distribution. The first Number Sequence SQ1 contains all prime numbers of the form 6n+5 and the second Number Sequence SQ2 contains all prime numbers of the form 6n+1. All existing prime numbers seem to be contained in these two number sequences, except of the prime numbers 2 and 3. Riemanns Zeta Function also seems to indicate, that there is a logical connection between the mentioned number sequences and the distribution of prime numbers. This connection is indicated by lines in the diagram of the Zeta Function, which are formed by the points s where the Zeta Function is real. Another key role in the distribution of the prime numbers plays the number 5 and its periodic occurrence in the two number sequences SQ1 and SQ2. All non-prime numbers in SQ1 and SQ2 are caused by recurrences of these two number sequences with increasing wave-lengths in themselves, in a similar fashion as Overtones (harmonics) or Undertones derive from a fundamental frequency. On the contrary prime numbers represent spots in these two basic Number Sequences SQ1 and SQ2 where there is no interference caused by these recurring number sequences. The distribution of the non-prime numbers and prime numbers can be described in a graphical way with a -Wave Model- (or Interference Model) -- see Table 2.
STUDYING INTERCLUSTER GALAXY FILAMENTS THROUGH STACKING gmBCG GALAXY CLUSTER PAIRS
Zhang Yuanyuan; Dietrich, Joerg P.; McKay, Timothy A.; Nguyen, Alex T. Q. [Department of Physics, University of Michigan, Ann Arbor, MI (United States); Sheldon, Erin S. [Brookhaven National Laboratory, Upton, NY (United States)
2013-08-20T23:59:59.000Z
We present a method to study the photometric properties of galaxies in filaments by stacking the galaxy populations between pairs of galaxy clusters. Using Sloan Digital Sky Survey data, this method can detect the intercluster filament galaxy overdensity with a significance of {approx}5{sigma} out to z = 0.40. Using this approach, we study the g - r color and luminosity distribution of filament galaxies as a function of redshift. Consistent with expectation, filament galaxies are bimodal in their color distribution and contain a larger blue galaxy population than clusters. Filament galaxies are also generally fainter than cluster galaxies. More interestingly, the observed filament population seems to show redshift evolution at 0.12 < z < 0.40: the blue galaxy fraction has a trend to increase at higher redshift; such evolution is parallel to the ''Butcher-Oemler effect'' of galaxy clusters. We test the dependence of the observed filament density on the richness of the cluster pair: richer clusters are connected by higher density filaments. We also test the spatial dependence of filament galaxy overdensity: this quantity decreases when moving away from the intercluster axis between a cluster pair. This method provides an economical way to probe the photometric properties of filament galaxies and should prove useful for upcoming projects like the Dark Energy Survey.