Sample records for ha nna carbon

  1. Carbon storage: the economic efficiency of storing CO2 in leaky reservoirs Minh Ha-Duong, David W. Keith

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Carbon storage: the economic efficiency of storing CO2 in leaky reservoirs Minh Ha-Duong, David W carbon underground), we derive analytic expressions for the value of leaky CO2 storage compared to perfect storage when storage is a marginal component of the energy system. If the annual leak rate is 1

  2. SN 2008ha: AN EXTREMELY LOW LUMINOSITY AND EXCEPTIONALLY LOW ENERGY SUPERNOVA

    SciTech Connect (OSTI)

    Foley, Ryan J.; Kirshner, Robert P.; Challis, Peter J.; Friedman, Andrew S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Chornock, Ryan; Filippenko, Alexei V.; Ganeshalingam, Mohan; Li, Weidong; Cenko, S. Bradley; Modjaz, Maryam; Silverman, Jeffrey M. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Wood-Vasey, W. Michael [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States)], E-mail: rfoley@cfa.harvard.edu

    2009-08-15T23:59:59.000Z

    We present ultraviolet, optical, and near-infrared photometry as well as optical spectra of the peculiar supernova (SN) 2008ha. SN 2008ha had a very low peak luminosity, reaching only M{sub V} = -14.2 mag, and low line velocities of only {approx}2000 km s{sup -1} near maximum brightness, indicating a very small kinetic energy per unit mass of ejecta. Spectroscopically, SN 2008ha is a member of the SN 2002cx-like class of SNe, a peculiar subclass of SNe Ia; however, SN 2008ha is the most extreme member, being significantly fainter and having lower line velocities than the typical member, which is already {approx}2 mag fainter and has line velocities {approx}5000 km s{sup -1} smaller (near maximum brightness) than a normal SN Ia. SN 2008ha had a remarkably short rise time of only {approx}10 days, significantly shorter than either SN 2002cx-like objects ({approx}15 days) or normal SNe Ia ({approx}19.5 days). The bolometric light curve of SN 2008ha indicates that SN 2008ha peaked at L {sub peak} = (9.5 {+-} 1.4) x 10{sup 40} erg s{sup -1}, making SN 2008ha perhaps the least luminous SN ever observed. From its peak luminosity and rise time, we infer that SN 2008ha generated (3.0 {+-} 0.9) x 10{sup -3} M {sub sun} of {sup 56}Ni, had a kinetic energy of {approx}2 x 10{sup 48} erg, and ejected 0.15 M {sub sun} of material. The host galaxy of SN 2008ha has a luminosity, star formation rate, and metallicity similar to those of the Large magellanic Cloud. We classify three new (and one potential) members of the SN 2002cx-like class, expanding the sample to 14 (and one potential) members. The host-galaxy morphology distribution of the class is consistent with that of SNe Ia, Ib, Ic, and II. Several models for generating low-luminosity SNe can explain the observations of SN 2008ha; however, if a single model is to describe all SN 2002cx-like objects, deflagration of carbon-oxygen white dwarfs, with SN 2008ha being a partial deflagration and not unbinding the progenitor star, is preferred. The rate of SN 2008ha-like events is {approx}10% of the SN Ia rate, and in the upcoming era of transient surveys, several thousand similar objects may be discovered, suggesting that SN 2008ha may be the tip of a low-luminosity transient iceberg.

  3. Effect of n-HA content on the isothermal crystallization, morphology and mechanical property of n-HA/PLGA composites

    SciTech Connect (OSTI)

    Liuyun, Jiang, E-mail: jlytxg@163.com [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); Chengdong, Xiong [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); Lixin, Jiang [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); Graduated School of Chinese Academy of Sciences, Beijing 100039 (China); Dongliang, Chen; Qing, Li [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China)

    2013-03-15T23:59:59.000Z

    Graphical abstract: Effect of n-HA content on the isothermal crystallization, morphology and mechanical property of n-HA/PLGA composites was studied in details. The results showed that the addition of higher content of g-n-HA was favorable to promote the crystallization better in g-n-HA/PLGA composites, but it could also cause more agglomeration in PLGA matrix, as a result of worse mechanical properties, and the addition content of 3 wt% g-n-HA to PLGA matrix was an appropriate proportion, which had the highest bending strength among these g-n-HA/PLGA composites, and it might be potential to be used in biomedical fields in future. Highlights: ? The effect of n-HA content on the n-HA/PLGA composites was studied in detail. ? Isothermal crystallization, microstructure and mechanical property were studied. ? The relation between n-HA content and properties of n-HA/PLGA composite was found. ? An appropriate proportion of n-HA in n-HA/PLGA composite was obtained. - Abstract: A serials of g-n-HA/PLGA composites with surface-modified g-n-HA of 1%, 3%, 6%, 10% and 15% in weight were prepared by solution mixing. The isothermal crystallization, morphology and mechanical property of g-n-HA/PLGA composites were investigated by differential scanning calorimeter (DSC), scanning electron microscope (SEM) and electromechanical universal tester. The results showed that Avrami equation was suitable for describing the isothermal crystallization process in this system, and the crystallization rate of g-n-HA/PLGA composites containing more than 3 wt% g-n-HA was basically accord with the relational expression of T{sub 110} {sub °C} > T{sub 105°C} > T{sub 115°C} > T{sub 120°C}. Moreover, at the same Tc, crystallization rate was greatly enhanced with the increasing of g-n-HA acting as nucleate. However, the addition of higher content of g-n-HA would cause more agglomeration in PLGA matrix, so that the mechanical properties of g-n-HA/PLGA composites would gradually decrease. In conclusion, the addition of higher content of g-n-HA was favorable to promote the crystallization better in g-n-HA/PLGA composites, but it could also cause more agglomeration in PLGA matrix, result in worse mechanical properties, and the addition content of 3 wt% g-n-HA to PLGA matrix was an appropriate proportion, which had the highest bending strength among these g-n-HA/PLGA composites, and it might be potential to be used in biomedical fields in future.

  4. HA133F10SE1558 Final Report

    E-Print Network [OSTI]

    HA133F10SE1558 Final Report Trainable Video Analytic Software (HA133F10SE1558) October 20, 2010.4 Machine / Human Concepts 9 4.0 SeaUrchin Data 10 4.1 Halibut Detection Performance 12 4.1.1 Understanding) investigated the use of machine vision technology applied to electronic monitoring of the Rockfish fishery

  5. Possible global warming futures Minh Ha-Duong

    E-Print Network [OSTI]

    Possible global warming futures Minh Ha-Duong Minh.Ha.Duong@cmu.edu CNRS, France HDGC, Carnegie Mellon Possible global warming futures ­ p.1/36 #12;SRES: Forecasts or scenarios? +5.5 C in 2100 the controversy using imprecise probabilities, a more general information theory. . . Possible global warming

  6. Digital Documentation of the China Mongghul Ha Clan Oral History

    E-Print Network [OSTI]

    Mingzong, Ha

    2010-12-10T23:59:59.000Z

    This paper will describe the author’s project documenting the Mongghul Ha clan oral history tradition in Qinghai and Gansu provinces, China, by focusing on the purposes, methods and approaches to documentation. Reactions and attitudes towards...

  7. Computer Science at Kent Transformation in HaRe

    E-Print Network [OSTI]

    Kent, University of

    - strates the facilities HaRe provides for program transformation by implementing a deforestation to autonomously optimise a program. One of them is deforestation, a transformation that eliminates intermediate data structures. In this paper, we present a partial implementation of the warm fusion deforestation

  8. Yozmot HaEmek Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch, NewYanceyYokayoYorktown Heights,Yozmot HaEmek

  9. The Molecular Gas Environment around Two Herbig Ae/Be Stars: Resolving the Outflows of LkHa 198 and LkHa 225S

    E-Print Network [OSTI]

    Brenda C. Matthews; James R. Graham; Marshall D. Perrin; Paul Kalas

    2007-08-13T23:59:59.000Z

    Observations of outflows associated with pre-main-sequence stars reveal details about morphology, binarity and evolutionary states of young stellar objects. We present molecular line data from the Berkeley-Illinois-Maryland Association array and Five Colleges Radio Astronomical Observatory toward the regions containing the Herbig Ae/Be stars LkHa 198 and LkHa 225S. Single dish observations of 12CO 1-0, 13CO 1-0, N2H+ 1-0 and CS 2-1 were made over a field of 4.3' x 4.3' for each species. 12CO data from FCRAO were combined with high resolution BIMA array data to achieve a naturally-weighted synthesized beam of 6.75'' x 5.5'' toward LkHa 198 and 5.7'' x 3.95'' toward LkHa 225S, representing resolution improvements of factors of approximately 10 and 5 over existing data. By using uniform weighting, we achieved another factor of two improvement. The outflow around LkHa 198 resolves into at least four outflows, none of which are centered on LkHa 198-IR, but even at our resolution, we cannot exclude the possibility of an outflow associated with this source. In the LkHa 225S region, we find evidence for two outflows associated with LkHa 225S itself and a third outflow is likely driven by this source. Identification of the driving sources is still resolution-limited and is also complicated by the presence of three clouds along the line of sight toward the Cygnus molecular cloud. 13CO is present in the environments of both stars along with cold, dense gas as traced by CS and (in LkHa 225S) N2H+. No 2.6 mm continuum is detected in either region in relatively shallow maps compared to existing continuum observations.

  10. CARBON-CARBON COMPOSITE ALLCOMP Carbon-Carbon Composite

    E-Print Network [OSTI]

    Rollins, Andrew M.

    materials. MATERIALS AND DESIRED DATA Carbon-Carbon Composites(T300 & SWB): Crush Resistance, Bend StrengthCARBON-CARBON COMPOSITE ALLCOMP Carbon-Carbon Composite · C-C supplied in two forms · T300: C strength 4340 steel, carbon-carbon composite, and Carbon-Silicon Carbide composite were tested to examine

  11. Chemical Preparation of Carbonated Calcium Hydroxyapatite Powders at 37

    E-Print Network [OSTI]

    Tas, A. Cuneyt

    Chemical Preparation of Carbonated Calcium Hydroxyapatite Powders at 37 C in Urea-phase ceramic powder. Carbonated HA powders were formed from calcium nitrate tetrahydrate and di- ammonium properties. They were usually observed1 to be carbonate-substituted and calcium-de®cient. Synthetic body

  12. Deflagrations in hybrid CONe white dwarfs: a route to explain the faint Type Iax supernova 2008ha

    E-Print Network [OSTI]

    Kromer, M; Pakmor, R; Ruiter, A J; Hillebrandt, W; Marquardt, K S; Roepke, F K; Seitenzahl, I R; Sim, S A; Taubenberger, S

    2015-01-01T23:59:59.000Z

    Stellar evolution models predict the existence of hybrid white dwarfs (WDs) with a carbon-oxygen core surrounded by an oxygen-neon mantle. Being born with masses ~1.1 Msun, hybrid WDs in a binary system may easily approach the Chandrasekhar mass (MCh) by accretion and give rise to a thermonuclear explosion. Here, we investigate an off-centre deflagration in a near-MCh hybrid WD under the assumption that nuclear burning only occurs in carbon-rich material. Performing hydrodynamics simulations of the explosion and detailed nucleosynthesis post-processing calculations, we find that only 0.014 Msun of material is ejected while the remainder of the mass stays bound. The ejecta consist predominantly of iron-group elements, O, C, Si and S. We also calculate synthetic observables for our model and find reasonable agreement with the faint Type Iax SN 2008ha. This shows for the first time that deflagrations in near-MCh WDs can in principle explain the observed diversity of Type Iax supernovae. Leaving behind a near-MCh...

  13. VEE-0074- In the Matter of H.A. Mapes, Inc.

    Broader source: Energy.gov [DOE]

    On May 30, 2000, H.A. Mapes, Inc., (Mapes) of Springvale, Maine, filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its...

  14. Investigation of a HA/PDLGA/Carbon Foam Material System for Orthopedic Fixation Plates Based on Time-Dependent Properties 

    E-Print Network [OSTI]

    Rodriguez, Douglas E.

    2010-01-14T23:59:59.000Z

    the material response to applied physiological loads. Results from this work demonstrate the importance of material dissolution rate as well as material strength when designing internal fixation plates....

  15. Global Change Biology (1996)2,169-182 Measurements of carbon sequestration by long-term

    E-Print Network [OSTI]

    Rose, Michael R.

    1996-01-01T23:59:59.000Z

    Global Change Biology (1996)2,169-182 Measurements of carbon sequestration by long-term eddy. The integrated carbon sequestration in 1994 was 2.1 t C ha-l y-l with a 90% confidence interval due to sampling an overall uncertainty on the annual carbon sequestration in 1994 of --0.3to +0.8 t C ha-l y-l. Keywords

  16. Van der Vorst, H.A. Computational Science Curriculum in Utrecht

    E-Print Network [OSTI]

    Vorst, Henk A.

    Van der Vorst, H.A. Computational Science Curriculum in Utrecht Abstract In 1993 Utrecht University of about 18 years old. 2. The Circumstances in Utrecht The main departments that are involved in Computational Science at Utrecht University are: ffl Department of Mathematics, with chairs in Algebra, Analysis

  17. BIDIMENSIONAL SAND PILE AND ICE PILE MODELS ENRICA DUCHI, ROBERTO MANTACI, HA DUONG PHAN, DOMINIQUE ROSSIN

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    BIDIMENSIONAL SAND PILE AND ICE PILE MODELS ENRICA DUCHI, ROBERTO MANTACI, HA DUONG PHAN, DOMINIQUE ROSSIN Abstract. In this paper we define an extension of the Sand Pile Model SPM and more generally of the Ice Pile Model IPM by adding a further dimension to the system. By drawing a parallel between

  18. Premio Perini Navi S.p.A. IL COMITATO LEONARDO ITALIAN QUALIT COMMITTE HA

    E-Print Network [OSTI]

    Segatti, Antonio

    1 Premio Perini Navi S.p.A. IL COMITATO LEONARDO ­ ITALIAN QUALITÀ COMMITTE ­ HA DELIBERATO DI DELEGATO DI PERINI NAVI SPA. - ANNO 2011 - "Progetto di un natante ad uso tender per un'imbarcazione a vela dalla direzione della Perini Navi S.p.A. FINALITÀ: Premiare i due migliori progetti relativi ad un

  19. Transcellular degradation of axonal mitochondria Chung-ha O. Davisa,b

    E-Print Network [OSTI]

    Newman, Eric A.

    Transcellular degradation of axonal mitochondria Chung-ha O. Davisa,b , Keun-Young Kimc , Eric A (received for review March 12, 2014) It is generally accepted that healthy cells degrade their own head (ONH), and that these mitochondria are internalized and degraded by adja- cent astrocytes. EM

  20. Fabrication and mechanical properties of PLA/HA composites: A study of in vitro degradation

    E-Print Network [OSTI]

    Ritchie, Robert

    Fabrication and mechanical properties of PLA/HA composites: A study of in vitro degradation J perspective, the in vitro degradation behavior of such composites manufactured using a simple hot due to the degradation of the polymer phase. The degradation is more pronounced in samples with larger

  1. Light Collages: Lighting Design for Effective Visualization Chang Ha Lee Xuejun Hao Amitabh Varshney

    E-Print Network [OSTI]

    Varshney, Amitabh

    Light Collages: Lighting Design for Effective Visualization Chang Ha Lee Xuejun Hao Amitabh 20742 {chlee, hao, varshney}@cs.umd.edu ABSTRACT We introduce Light Collages ­ a lighting design system perception of features with lighting that is locally consistent and globally inconsistent. Inspired

  2. Abstract--Human Augmentics (HA) refers to technologies for expanding the capabilities, and characteristics of humans.

    E-Print Network [OSTI]

    Kenyon, Robert V.

    , exponential advances in miniaturization, and computing has laid the ground for transforming high tech gadgets]. More recently, his Singularity "movement" has been trending toward life extension through advances of human intelligence through computing is one of its core interests. However HA distinguishes itself from

  3. The reduction of carbon-carbon multiple bond systems 

    E-Print Network [OSTI]

    Ferguson, Donald Roy

    1965-01-01T23:59:59.000Z

    to the ability to the phenyl groups to disperse a charge on the benzylic carbon. In ether, an aprotic solvent, lithium reacts with diphenylacetylene 6 to form the lithium derivative of a substituted naphthelene. C6H5-CmC-C6H + Li m ~IC H ~C4Ha CaHs Cexs (12...) Hater or ethyl alcohol reacts with the lithium derivative to form 1, 2, 3-triphenylnaphthelene while reaction of the lithium derivative with carbon dioxide yields the corresponding salt of a 1-naphthoic acid. C4HS H + LiOH (13) Cd Hr C@H5 C@H5...

  4. A survey on the public perception of CCS in Minh Ha-Duong

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    § December 21, 2007 Abstract An awareness and opinion survey on Carbon Capture and Storage was conducted: questioning one half about `Stockage' (English: storage), the other about `Sequestration'. Manipulating of or opposition to' the use of Carbon Capture and Storage in France was conducted to explore the variability

  5. The influence of silanisation on the mechanical and degradation behaviour of PLGA/HA composites

    E-Print Network [OSTI]

    Naik, Ashutosh; Best, Serena M.; Cameron, Ruth E.

    2014-12-18T23:59:59.000Z

    mechanical properties. Abbreviations: HA, Hydroxyapatite; MPTMS, Mercaptopropyl trimethoxy silane; APTMS, Aminopropyl trimethoxy silane; APTES, Aminopropyl triethoxy silane; PBS, Phosphate buffered saline; ICP-AES, Inductively coupled plasma... ) were mixed in a Polytetrafluoroethylene (PTFE) container with acetone as solvent for 1 hour using an overhead magnetic stirrer. The mix was then allowed to stand for a further hour before drying in a vacuum oven at 40°C overnight. 2...

  6. Carbon Smackdown: Carbon Capture

    ScienceCinema (OSTI)

    Jeffrey Long

    2010-09-01T23:59:59.000Z

    In this July 9, 2010 Berkeley Lab summer lecture, Lab scientists Jeff Long of the Materials Sciences and Nancy Brown of the Environmental Energy Technologies Division discuss their efforts to fight climate change by capturing carbon from the flue gas of power plants, as well as directly from the air

  7. HA' R$,kAW CH EM I CAL CO,M i=ANY A

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNewCF INDUSTRIES,L? . -. .- *'TH Ii ' HA'

  8. Fondamenti di Finanza Matematica La Finanza Matematica ha lo scopo di studiare la corretta formalizzazione ed i calcoli legati

    E-Print Network [OSTI]

    Vargiolu, Tiziano

    Capitolo 7 Fondamenti di Finanza Matematica La Finanza Matematica ha lo scopo di studiare la sono i due capisaldi su cui si basa la Finanza Matematica. Ogni modello, deterministico o stocastico'ammontare del costo del postulato (2) 'e chiamato interesse, ed 'e una funzione dell'importo che si ha

  9. Changes in the fish species composition of all Austrian lakes >50 ha during the last 150 years

    E-Print Network [OSTI]

    Filzmoser, Peter

    Changes in the fish species composition of all Austrian lakes >50 ha during the last 150 years D for Limnology, Mondsee, Austria Abstract The fish communities of all Austrian natural lakes (n ¼ 43) larger than 50 ha in surface area were assessed and the historical fish communities in c. 1850 were reconstructed

  10. Process hazards analysis (PrHA) program, bridging accident analyses and operational safety

    SciTech Connect (OSTI)

    Richardson, J. A. (Jeanne A.); McKernan, S. A. (Stuart A.); Vigil, M. J. (Michael J.)

    2003-01-01T23:59:59.000Z

    Recently the Final Safety Analysis Report (FSAR) for the Plutonium Facility at Los Alamos National Laboratory, Technical Area 55 (TA-55) was revised and submitted to the US. Department of Energy (DOE). As a part of this effort, over seventy Process Hazards Analyses (PrHAs) were written and/or revised over the six years prior to the FSAR revision. TA-55 is a research, development, and production nuclear facility that primarily supports US. defense and space programs. Nuclear fuels and material research; material recovery, refining and analyses; and the casting, machining and fabrication of plutonium components are some of the activities conducted at TA-35. These operations involve a wide variety of industrial, chemical and nuclear hazards. Operational personnel along with safety analysts work as a team to prepare the PrHA. PrHAs describe the process; identi fy the hazards; and analyze hazards including determining hazard scenarios, their likelihood, and consequences. In addition, the interaction of the process to facility systems, structures and operational specific protective features are part of the PrHA. This information is rolled-up to determine bounding accidents and mitigating systems and structures. Further detailed accident analysis is performed for the bounding accidents and included in the FSAR. The FSAR is part of the Documented Safety Analysis (DSA) that defines the safety envelope for all facility operations in order to protect the worker, the public, and the environment. The DSA is in compliance with the US. Code of Federal Regulations, 10 CFR 830, Nuclear Safety Management and is approved by DOE. The DSA sets forth the bounding conditions necessary for the safe operation for the facility and is essentially a 'license to operate.' Safely of day-to-day operations is based on Hazard Control Plans (HCPs). Hazards are initially identified in the PrI-IA for the specific operation and act as input to the HCP. Specific protective features important to worker safety are incorporated so the worker can readily identify the safety parameters of the their work. System safety tools such as Preliminary Hazard Analysis, What-If Analysis, Hazard and Operability Analysis as well as other techniques as necessary provide the groundwork for both determining bounding conditions for facility safety, operational safety, and day-to-clay worker safety.

  11. NNA.921218.0092 PARTICULATE MATIER AMEIENT AIR QUALITY DATA REPORT FOR 1991

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNL 2001a,Summary; i- DNA 6187F

  12. Carbon storage: the economic efficiency of storing CO2 in leaky reservoirs

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Carbon storage: the economic efficiency of storing CO2 in leaky reservoirs Minh Ha-Duong David W carbon underground), we derive analytic expressions for the value of leaky CO2 storage compared to perfect storage when storage is a marginal component of the energy system. If the annual leak rate is 1

  13. TGF-?/HA complex promotes tympanic membrane keratinocyte migration and proliferation via ErbB1 receptor

    SciTech Connect (OSTI)

    Mei Teh, Bing, E-mail: bing.teh@earscience.org.au [Ear Sciences Centre, School of Surgery, The University of Western Australia, Nedlands, WA (Australia); Ear Science Institute Australia, Subiaco, WA (Australia); Department of Otolaryngology, Head, Neck and Skull Base Surgery, Sir Charles Gairdner Hospital, Nedlands, WA (Australia); Redmond, Sharon L. [Ear Sciences Centre, School of Surgery, The University of Western Australia, Nedlands, WA (Australia); Ear Science Institute Australia, Subiaco, WA (Australia); Shen, Yi [Ear Sciences Centre, School of Surgery, The University of Western Australia, Nedlands, WA (Australia); Ear Science Institute Australia, Subiaco, WA (Australia); Department of Otolaryngology, Head and Neck, Ningbo Lihuili Hospital (Ningbo Medical Centre), Ningbo, Zhejiang (China); Atlas, Marcus D. [Ear Sciences Centre, School of Surgery, The University of Western Australia, Nedlands, WA (Australia); Ear Science Institute Australia, Subiaco, WA (Australia); Department of Otolaryngology, Head, Neck and Skull Base Surgery, Sir Charles Gairdner Hospital, Nedlands, WA (Australia); Marano, Robert J.; Dilley, Rodney J. [Ear Sciences Centre, School of Surgery, The University of Western Australia, Nedlands, WA (Australia); Ear Science Institute Australia, Subiaco, WA (Australia)

    2013-04-01T23:59:59.000Z

    Tympanic membrane perforations are common and represent a management challenge to clinicians. Current treatments for chronic perforations involve a graft surgery and require general anaesthesia, including associated costs and morbidities. Bioactive molecules (e.g. growth factors, cytokines) play an important role in promoting TM wound healing following perforation and the use of growth factors as a topical treatment for tympanic membrane perforations has been suggested as an alternative to surgery. However, the choice of bioactive molecules best suited to promote wound healing has yet to be identified. We investigated the effects of hyaluronic acid, vitronectin, TGF-?, IL-24 and their combinations on migration, proliferation and adhesion of cultured human tympanic membrane-derived keratinocytes (hTM), in addition to their possible mechanisms of action. We found that TGF-?, TGF-?/HA and TGF-?/IL-24 promoted wound healing by significantly increasing both migration and proliferation. TGF-? and/or HA treated cells showed comparable cell–cell adhesion whilst maintaining an epithelial cell phenotype. With the use of receptor binding inhibitors for ErbB1 (AG1478) and CD44 (BRIC235), we revealed that the activation of ErbB1 is required for TGF-?/HA-mediated migration and proliferation. These results suggest factors that may be incorporated into a tissue-engineered membrane or directly as topical treatment for tympanic membrane perforations and hence reduce the need for a surgery. - Highlights: ? TGF-?, TGF-?/HA and TGF-?/IL-24 improved hTM keratinocyte migration and proliferation. ? TGF-? and/or HA maintained epithelial cell phenotype. ? TGF-?/HA-mediated migration and proliferation requires activation of ErbB1 receptor.

  14. COMPARISON OF THREE METHODS TO PROJECT FUTURE BASELINE CARBON EMISSIONS IN TEMPERATE RAINFOREST, CURINANCO, CHILE

    SciTech Connect (OSTI)

    Patrick Gonzalez; Antonio Lara; Jorge Gayoso; Eduardo Neira; Patricio Romero; Leonardo Sotomayor

    2005-07-14T23:59:59.000Z

    Deforestation of temperate rainforests in Chile has decreased the provision of ecosystem services, including watershed protection, biodiversity conservation, and carbon sequestration. Forest conservation can restore those ecosystem services. Greenhouse gas policies that offer financing for the carbon emissions avoided by preventing deforestation require a projection of future baseline carbon emissions for an area if no forest conservation occurs. For a proposed 570 km{sup 2} conservation area in temperate rainforest around the rural community of Curinanco, Chile, we compared three methods to project future baseline carbon emissions: extrapolation from Landsat observations, Geomod, and Forest Restoration Carbon Analysis (FRCA). Analyses of forest inventory and Landsat remote sensing data show 1986-1999 net deforestation of 1900 ha in the analysis area, proceeding at a rate of 0.0003 y{sup -1}. The gross rate of loss of closed natural forest was 0.042 y{sup -1}. In the period 1986-1999, closed natural forest decreased from 20,000 ha to 11,000 ha, with timber companies clearing natural forest to establish plantations of non-native species. Analyses of previous field measurements of species-specific forest biomass, tree allometry, and the carbon content of vegetation show that the dominant native forest type, broadleaf evergreen (bosque siempreverde), contains 370 {+-} 170 t ha{sup -1} carbon, compared to the carbon density of non-native Pinus radiata plantations of 240 {+-} 60 t ha{sup -1}. The 1986-1999 conversion of closed broadleaf evergreen forest to open broadleaf evergreen forest, Pinus radiata plantations, shrublands, grasslands, urban areas, and bare ground decreased the carbon density from 370 {+-} 170 t ha{sup -1} carbon to an average of 100 t ha{sup -1} (maximum 160 t ha{sup -1}, minimum 50 t ha{sup -1}). Consequently, the conversion released 1.1 million t carbon. These analyses of forest inventory and Landsat remote sensing data provided the data to evaluate the three methods to project future baseline carbon emissions. Extrapolation from Landsat change detection uses the observed rate of change to estimate change in the near future. Geomod is a software program that models the geographic distribution of change using a defined rate of change. FRCA is an integrated spatial analysis of forest inventory, biodiversity, and remote sensing that produces estimates of forest biodiversity and forest carbon density, spatial data layers of future probabilities of reforestation and deforestation, and a projection of future baseline forest carbon sequestration and emissions for an ecologically-defined area of analysis. For the period 1999-2012, extrapolation from Landsat change detection estimated a loss of 5000 ha and 520,000 t carbon from closed natural forest; Geomod modeled a loss of 2500 ha and 250 000 t; FRCA projected a loss of 4700 {+-} 100 ha and 480,000 t (maximum 760,000 t, minimum 220,000 t). Concerning labor time, extrapolation for Landsat required 90 actual days or 120 days normalized to Bachelor degree level wages; Geomod required 240 actual days or 310 normalized days; FRCA required 110 actual days or 170 normalized days. Users experienced difficulties with an MS-DOS version of Geomod before turning to the Idrisi version. For organizations with limited time and financing, extrapolation from Landsat change provides a cost-effective method. Organizations with more time and financing could use FRCA, the only method where that calculates the deforestation rate as a dependent variable rather than assuming a deforestation rate as an independent variable. This research indicates that best practices for the projection of baseline carbon emissions include integration of forest inventory and remote sensing tasks from the beginning of the analysis, definition of an analysis area using ecological characteristics, use of standard and widely used geographic information systems (GIS) software applications, and the use of species-specific allometric equations and wood densities developed for local species.

  15. Carbon Fiber

    ScienceCinema (OSTI)

    McGetrick, Lee

    2014-07-23T23:59:59.000Z

    Lee McGetrick leads ORNL's effort to produce light, durable carbon fiber at lower cost -- a key to improvements in manufacturing that will produce more fuel-efficient vehicles and other advances.

  16. Carbon Sequestration

    SciTech Connect (OSTI)

    None

    2013-05-06T23:59:59.000Z

    Carbon Sequestration- the process of capturing the CO2 released by the burning of fossil fuels and storing it deep withing the Earth, trapped by a non-porous layer of rock.

  17. Carbon Fiber

    SciTech Connect (OSTI)

    McGetrick, Lee

    2014-04-17T23:59:59.000Z

    Lee McGetrick leads ORNL's effort to produce light, durable carbon fiber at lower cost -- a key to improvements in manufacturing that will produce more fuel-efficient vehicles and other advances.

  18. TERMODIN`AMICA Estudi dels processos en que hi ha intercanvis d'energia en forma de calor.

    E-Print Network [OSTI]

    Batiste, Oriol

    TERMODIN`AMICA Estudi dels processos en que hi ha intercanvis d'energia en forma de calor. (Estudi TERMODIN`AMICA: equilibri t`ermic. #12;PRIMER PRINCIPI. Conservaci´o de l'energia U = Q - W U variaci´o de

  19. Denial-of-Service Attacks on Battery-powered Mobile Computers Thomas Martin, Michael Hsiao, Dong Ha, Jayan Krishnaswami

    E-Print Network [OSTI]

    Ha, Dong S.

    computer, the battery is expected to give a certain battery life under a set of usage conditions whereDenial-of-Service Attacks on Battery-powered Mobile Computers Thomas Martin, Michael Hsiao, Dong Ha device inoperable by draining the battery more quickly than it would be drained under normal usage. We

  20. Microfluidics for block polymer shells (DMR 0819860) SEED :H.A. Stone, R.A. Register and Janine Nunes

    E-Print Network [OSTI]

    Petta, Jason

    Microfluidics for block polymer shells (DMR 0819860) SEED :H.A. Stone, R.A. Register and Janine. We utilized microfluidic methods to investigate the role of geometric structures, e.g. thin spherical, microfluidic devices with two consecutive flow-focusing junctions were used to generate air bubble

  1. Low Carbon Fuel Standards

    E-Print Network [OSTI]

    Sperling, Dan; Yeh, Sonia

    2009-01-01T23:59:59.000Z

    gas, or even coal with carbon capture and sequestration. Afuels that facilitate carbon capture and sequestration. Forenergy and could capture and sequester carbon emissions.

  2. Capturing carbon | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon Released: October 02, 2011 New technology enables molecular-level insight into carbon sequestration Carbon sequestration is a potential solution for reducing greenhouse...

  3. Carbon supercapacitors

    SciTech Connect (OSTI)

    Delnick, F.M.

    1993-11-01T23:59:59.000Z

    Carbon supercapacitors are represented as distributed RC networks with transmission line equivalent circuits. At low charge/discharge rates and low frequencies these networks approximate a simple series R{sub ESR}C circuit. The energy efficiency of the supercapacitor is limited by the voltage drop across the ESR. The pore structure of the carbon electrode defines the electrochemically active surface area which in turn establishes the volume specific capacitance of the carbon material. To date, the highest volume specific capacitance reported for a supercapacitor electrode is 220F/cm{sup 3} in aqueous H{sub 2}SO{sub 4} (10) and {approximately}60 F/cm{sup 3} in nonaqueous electrolyte (8).

  4. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    SciTech Connect (OSTI)

    J. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

    2003-12-18T23:59:59.000Z

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. In this quarterly report, we present a preliminary comparison of the carbon sequestration benefits for two forest types used to convert abandoned grasslands for carbon sequestration. Annual mixed hardwood benefits, based on total stand carbon volume present at the end of a given year, range from a minimum of $0/ton of carbon to a maximum of $5.26/ton of carbon (low prices). White pine benefits based on carbon volume range from a minimum of $0/ton of carbon to a maximum of $18.61/ton of carbon (high prices). The higher maximum white pine carbon payment can primarily be attributed to the fact that the shorter rotation means that payments for white pine carbon are being made on far less cumulative carbon tonnage than for that of the long-rotation hardwoods. Therefore, the payment per ton of white pine carbon needs to be higher than that of the hardwoods in order to render the conversion to white pine profitable by the end of a rotation. These carbon payments may seem appealingly low to the incentive provider. However, payments (not discounted) made over a full rotation may add up to approximately $17,493/ha for white pine (30-year rotation), and $18,820/ha for mixed hardwoods (60-year rotation). The literature suggests a range of carbon sequestration costs, from $0/ton of carbon to $120/ton of carbon, although the majority of studies suggest a cost below $50/ ton of carbon, with van Kooten et al. (2000) suggesting a cutoff cost of $20/ton of carbon sequestered. Thus, the ranges of carbon payments estimated for this study fall well within the ranges of carbon sequestration costs estimated in previous studies.

  5. Carbon microtubes

    DOE Patents [OSTI]

    Peng, Huisheng (Shanghai, CN); Zhu, Yuntian Theodore (Cary, NC); Peterson, Dean E. (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM)

    2011-06-14T23:59:59.000Z

    A carbon microtube comprising a hollow, substantially tubular structure having a porous wall, wherein the microtube has a diameter of from about 10 .mu.m to about 150 .mu.m, and a density of less than 20 mg/cm.sup.3. Also described is a carbon microtube, having a diameter of at least 10 .mu.m and comprising a hollow, substantially tubular structure having a porous wall, wherein the porous wall comprises a plurality of voids, said voids substantially parallel to the length of the microtube, and defined by an inner surface, an outer surface, and a shared surface separating two adjacent voids.

  6. haRVey: satisfaisabilite et theories Diego Caminha B. de Oliveira (Univ. Rio Grande do Norte, Bresil)

    E-Print Network [OSTI]

    Fontaine, Pascal

    haRVey: satisfaisabilit´e et th´eories Diego Caminha B. de Oliveira (Univ. Rio Grande do Norte, Br´esil) David D´eharbe (Univ. Rio Grande do Norte, Br´esil), Pascal Fontaine (LORIA ­ Universit´e de Nancy) Univ. Rio Grande do Norte, Br´esil / LORIA ­ Universit´e de Nancy Le probl`eme de la satisfaisabilit´e de

  7. Aquí no ha pasado nada': Narcotráfico, corrupción y violencia en Golpe de suerte y El paso de La Candelaria

    E-Print Network [OSTI]

    Garavito, Lucí a

    1997-04-01T23:59:59.000Z

    sucia), a los ataques contra indigentes, gamines, homosexuales, prostitutas (la llamada "limpieza social"), a los conflictos y asesinatos que son producto de los grupos de autodefensa, ha venido a sumarse la violencia originada por la actividad del... autodefensa, etc. El lenguaje corporal y gestual - la segunda de las estrategias de representación - capta con admirable destreza el nivel emotivo asociado con las diversas situaciones y los juegos de violencia y poder. Los extraños generalmente están...

  8. Carbon Storage Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Sequestration Partnership MSU . . . . . . . . . . . . . . . . . . . . . . . Montana State University MVA . . . . . . . . . . . . . . . . . . . . . . . Monitoring,...

  9. Low Carbon Fuel Standards

    E-Print Network [OSTI]

    Sperling, Dan; Yeh, Sonia

    2009-01-01T23:59:59.000Z

    gas, or even coal with carbon capture and sequestration. Afuels that facilitate carbon capture and sequestration. For

  10. Methanation of Carbon Dioxide

    E-Print Network [OSTI]

    Goodman, Daniel Jacob

    2013-01-01T23:59:59.000Z

    cycle plants, possibly with carbon capture and storage (CCS)natural gas plant with carbon capture and storage technology

  11. Methanation of Carbon Dioxide

    E-Print Network [OSTI]

    Goodman, Daniel Jacob

    2013-01-01T23:59:59.000Z

    gas plant with carbon capture and storage technology werewith carbon capture and storage (CCS) technology, to replace

  12. Carbon Additionality: Discussion Paper

    E-Print Network [OSTI]

    Carbon Additionality: A review Discussion Paper Gregory Valatin November 2009 Forest Research. Voluntary Carbon Standards American Carbon Registry Forest Carbon Project Standard (ACRFCPS) 27 CarbonFix Standard (CFS) 28 Climate, Community and Biodiversity Standard (CCBS) 28 Forest Carbon Standard (FCS) 28

  13. Carbon Trading, Carbon Taxes and Social Discounting

    E-Print Network [OSTI]

    Weiblen, George D

    Carbon Trading, Carbon Taxes and Social Discounting Elisa Belfiori belf0018@umn.edu University of Minnesota Abstract This paper considers the optimal design of policies to carbon emissions in an economy, such as price or quantity controls on the net emissions of carbon, are insufficient to achieve the social

  14. Public Review Draft: A Method for Assessing Carbon Stocks, Carbon

    E-Print Network [OSTI]

    Public Review Draft: A Method for Assessing Carbon Stocks, Carbon Sequestration, and Greenhouse, and Zhu, Zhiliang, 2010, Public review draft; A method for assessing carbon stocks, carbon sequestration

  15. Carbon-Optimal and Carbon-Neutral Supply Chains

    E-Print Network [OSTI]

    Caro, F.; Corbett, C. J.; Tan, T.; Zuidwijk, R.

    2011-01-01T23:59:59.000Z

    Li, M. Daskin. 2009. Carbon Footprint and the Management ofThe Importance of Carbon Footprint Estimation Boundaries.Carbon accounting and carbon footprint - more than just

  16. Ha-Duong, Grubb, Hourcade manuscript ?06172? 1 Version information: Document1, 05/08/2004, 09:18

    E-Print Network [OSTI]

    Boyer, Edmond

    , and we show that higher adjustment costs make it optimal to spread the effort across generations and increase the costs of deferring abatement. Balancing the costs of early action against the potentially higher costs of a more rapid forced subsequent transition, we show that early attention to the carbon

  17. CALIFORNIA CARBON SEQUESTRATION THROUGH

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION CARBON SEQUESTRATION THROUGH CHANGES IN LAND USE IN WASHINGTON. Carbon Sequestration Through Changes in Land Use in Washington: Costs and Opportunities. California for Terrestrial Carbon Sequestration in Oregon. Report to Winrock International. #12;ii #12;iii Preface

  18. Photophysics of carbon nanotubes

    E-Print Network [OSTI]

    Samsonidze, Georgii G

    2007-01-01T23:59:59.000Z

    This thesis reviews the recent advances made in optical studies of single-wall carbon nanotubes. Studying the electronic and vibrational properties of carbon nanotubes, we find that carbon nanotubes less than 1 nm in ...

  19. Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production

    E-Print Network [OSTI]

    Narasayya, Vivek

    #12;Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward

  20. Carbon Code Requirements for voluntary carbon sequestration projects

    E-Print Network [OSTI]

    Woodland Carbon Code Requirements for voluntary carbon sequestration projects ® Version 1.2 July trademark 10 3. Carbon sequestration 11 3.1 Units of carbon calculation 11 3.2 Carbon baseline 11 3.3 Carbon leakage 12 3.4 Project carbon sequestration 12 3.5 Net carbon sequestration 13 4. Environmental quality 14

  1. Method of making carbon-carbon composites

    DOE Patents [OSTI]

    Engle, Glen B. (16716 Martincoit Rd., Poway, CA 92064)

    1993-01-01T23:59:59.000Z

    A process for making 2D and 3D carbon-carbon composites having a combined high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizible woven cloth are infiltrated with carbon material to form green composites. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnant step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3100.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. C. to 1300.degree. C. at a reduced. pressure.

  2. Carbon Fiber Technology Facility

    Broader source: Energy.gov (indexed) [DOE]

    The Carbon Fiber Technology Facility is relevant in proving the scale- up of low-cost carbon fiber precursor materials and advanced manufacturing technologies * Significant...

  3. Motivating carbon dioxide | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Motivating carbon dioxide Motivating carbon dioxide Released: April 17, 2013 Scientists show what it takes to get the potential fuel feedstock to a reactive spot on a model...

  4. Carbon Capture (Carbon Cycle 2.0)

    ScienceCinema (OSTI)

    Smit, Berend

    2011-06-08T23:59:59.000Z

    Berend Smit speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 3, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  5. Ctedra de Estudios de Violencia de Gnero El ao 2012 ha sido el primero, desde la puesta en marcha de la Ctedra de Estudios de

    E-Print Network [OSTI]

    Oro, Daniel

    Consejería de Bienestar Social a finales del mes de junio de 2012 llevó como consecuencia el contrato menor con el Instituto Mallorquín de Asuntos Sociales, que ha permitido realizar actividades de carácter

  6. Composite carbon foam electrode

    DOE Patents [OSTI]

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1997-05-06T23:59:59.000Z

    Carbon aerogels used as a binder for granulated materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  7. Composite carbon foam electrode

    DOE Patents [OSTI]

    Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

    1997-01-01T23:59:59.000Z

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

  8. Carbon and nitrogen dynamics in bioenergy ecosystems: 2. Potential greenhouse gas emissions and global

    E-Print Network [OSTI]

    Zhuang, Qianlai

    Carbon and nitrogen dynamics in bioenergy ecosystems: 2. Potential greenhouse gas emissions) from bioenergy ecosystems with a biogeochemical model AgTEM, assuming maize (Zea mays L.), switchgrass haÃ?1 yrÃ?1 . Among all three bioenergy crops, Miscanthus is the most biofuel productive and the least

  9. Complex pockmarks with carbonate-ridges off mid-Norway: Products of sediment degassing

    E-Print Network [OSTI]

    Svensen, Henrik

    Complex pockmarks with carbonate-ridges off mid-Norway: Products of sediment degassing Martin Fossa°f , Rene´ Jonssong , Ha°kon Ruesla°ttene a Statoil, N-4035, Stavanger, Norway b Physics of Geological Processes (PGP), University of Oslo, P.O. Box 1048 Blindern, 0316 Oslo, Norway c Norwegian

  10. Research Summary Carbon Additionality

    E-Print Network [OSTI]

    of the quality assurance of emissions reduction and carbon sequestration activities, but remains a source of muchResearch Summary Carbon Additionality Additionality is widely considered to be a core aspect controversy in national carbon accounting, international regulatory frameworks and carbon markets. A review

  11. Acetylenic carbon allotrope

    DOE Patents [OSTI]

    Lagow, R.J.

    1998-02-10T23:59:59.000Z

    A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein. 17 figs.

  12. Carbon Monoxide Environmental Public

    E-Print Network [OSTI]

    The National Workgroup on Carbon Monoxide Surveillance Formed in April 2005 Membership: EPHT grantees Academic

  13. The Woodland Carbon Code

    E-Print Network [OSTI]

    The Woodland Carbon Code While society must continue to make every effort to reduce greenhouse gas a role by removing carbon dioxide from the atmosphere. The potential of woodlands to soak up carbon to help compensate for their carbon emissions. But before investing in such projects, people want to know

  14. Mesoporous carbon materials

    SciTech Connect (OSTI)

    Dai, Sheng; Fulvio, Pasquale Fernando; Mayes, Richard T.; Wang, Xiqing; Sun, Xiao-Guang; Guo, Bingkun

    2014-09-09T23:59:59.000Z

    A conductive mesoporous carbon composite comprising conductive carbon nanoparticles contained within a mesoporous carbon matrix, wherein the conductive mesoporous carbon composite possesses at least a portion of mesopores having a pore size of at least 10 nm and up to 50 nm, and wherein the mesopores are either within the mesoporous carbon matrix, or are spacings delineated by surfaces of said conductive carbon nanoparticles when said conductive carbon nanoparticles are fused with each other, or both. Methods for producing the above-described composite, devices incorporating them (e.g., lithium batteries), and methods of using them, are also described.

  15. Forest Restoration Carbon Analysis of Baseline Carbon Emissions and Removal in Tropical Rainforest at La Selva Central, Peru

    SciTech Connect (OSTI)

    Patrick Gonzalez; Benjamin Kroll; Carlos R. Vargas

    2006-01-10T23:59:59.000Z

    Conversion of tropical forest to agricultural land and pasture has reduced forest extent and the provision of ecosystem services, including watershed protection, biodiversity conservation, and carbon sequestration. Forest conservation and reforestation can restore those ecosystem services. We have assessed forest species patterns, quantified deforestation and reforestation rates, and projected future baseline carbon emissions and removal in Amazon tropical rainforest at La Selva Central, Peru. The research area is a 4800 km{sup 2} buffer zone around the Parque Nacional Yanachaga-Chemillen, Bosque de Proteccion San Matias-San Carlos, and the Reserva Comunal Yanesha. A planned project for the period 2006-2035 would conserve 4000 ha of forest in a proposed 7000 ha Area de Conservacion Municipale de Chontabamba and establish 5600 ha of natural regeneration and 1400 ha of native species plantations, laid out in fajas de enriquecimiento (contour plantings), to reforest 7000 ha of agricultural land. Forest inventories of seven sites covering 22.6 ha in primary forest and 17 sites covering 16.5 ha in secondary forest measured 17,073 trees of diameter {ge} 10 cm. The 24 sites host trees of 512 species, 267 genera, and 69 families. We could not identify the family of 7% of the trees or the scientific species of 21% of the trees. Species richness is 346 in primary forest and 257 in the secondary forest. In primary forest, 90% of aboveground biomass resides in old-growth species. Conversely, in secondary forest, 66% of aboveground biomass rests in successional species. The density of trees of diameter {ge} 10 cm is 366 trees ha{sup -1} in primary forest and 533 trees ha{sup -1} in secondary forest, although the average diameter is 24 {+-} 15 cm in primary forest and 17 {+-} 8 cm in secondary forest. Using Amazon forest biomass equations and wood densities for 117 species, aboveground biomass is 240 {+-} 30 t ha{sup -1} in the primary sites and 90 {+-} 10 t ha{sup -1} in the secondary sites. Aboveground carbon density is 120 {+-} 15 t ha{sup -1} in primary forest and 40 {+-} 5 t ha{sup -1} in secondary forest. Forest stands in the secondary forest sites range in age from 10 to 42 y. Growth in biomass (t ha{sup -1}) as a function of time (y) follows the relation: biomass = 4.09-0.017 age{sup 2} (p < 0.001). Aboveground biomass and forest species richness are positively correlated (r{sup 2} = 0.59, p < 0.001). Analyses of Landsat data show that the land cover of the 3700 km{sup 2} of non-cloud areas in 1999 was: closed forest 78%; open forest 12%, low vegetation cover 4%, sparse vegetation cover 6%. Deforestation from 1987 to 1999 claimed a net 200 km{sup 2} of forest, proceeding at a rate of 0.005 y{sup -1}. Of those areas of closed forest in 1987, only 89% remained closed forest in 1999. Consequently, closed forests experienced disruption in the time period at double the rate of net deforestation. The three protected areas experienced negligible deforestation or slight reforestation. Based on 1987 forest cover, 26,000 ha are eligible for forest carbon trading under the Clean Development Mechanism, established by the Kyoto Protocol to the United Nations Framework Convention on Climate Change. Principal components analysis showed that distance to nonforest was the factor that best explained observed patterns of deforestation while distance to forest best explained observed patterns of reforestation, more significant than elevation, distance to rivers, distance to roads, slope, and distance to towns of population > 400. Aboveground carbon in live vegetation in the project area decreased from 35 million {+-} 4 million t in 1987 to 34 million {+-} 4 million t in 1999. Projected aboveground carbon in live vegetation would fall to 33 million {+-} 4 million t in 2006, 32 million {+-} 4 million t in 2011, and 29 million {+-} 3 million t in 2035. Projected net deforestation in the research area would total 13,000 {+-} 3000 ha in the period 1999-2011, proceeding at a rate of 0.003 {+-} 0.0007 y{sup -1}, and would total 33,000 {+-} 7000

  16. Soil metagenomics and carbon cycling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and carbon cycling Establishing a foundational understanding of the microbial and ecosystem factors that control carbon cycling to improve climate modeling and carbon...

  17. Carbon Nanostructure-Based Sensors

    E-Print Network [OSTI]

    Sarkar, Tapan

    2012-01-01T23:59:59.000Z

    Control of Single-Walled Carbon Nanotube Functionalization.M. S. Characterizing carbon nanotube samples with resonancewith a Single-Walled Carbon Nanotube Capacitor. Science

  18. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Large Magnetization at Carbon Surfaces Print Wednesday, 31 August 2011 00:00 From organic matter to pencil lead, carbon is a versatile...

  19. The Australian terrestrial carbon budget

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    Australian terrestrial carbon budget Open Access 3 , G. P.The Australian terrestrial carbon budget Luo, C. , Mahowald,terrestrial carbon budget Richards, G. P. , Borough, C. ,

  20. Carbon fuel cells with carbon corrosion suppression

    DOE Patents [OSTI]

    Cooper, John F. (Oakland, CA)

    2012-04-10T23:59:59.000Z

    An electrochemical cell apparatus that can operate as either a fuel cell or a battery includes a cathode compartment, an anode compartment operatively connected to the cathode compartment, and a carbon fuel cell section connected to the anode compartment and the cathode compartment. An effusion plate is operatively positioned adjacent the anode compartment or the cathode compartment. The effusion plate allows passage of carbon dioxide. Carbon dioxide exhaust channels are operatively positioned in the electrochemical cell to direct the carbon dioxide from the electrochemical cell.

  1. Carbon Monoxide Safety Tips

    E-Print Network [OSTI]

    Shaw, Bryan W.; Garcia, Monica L.

    1999-07-26T23:59:59.000Z

    Protect yourself and your family from the deadly effects of carbon monoxide--a colorless, odorless poisonous gas. This publication describes the warning signs of carbon monoxide exposure and includes a home safety checklist....

  2. SCALE-UP OF CARBON /CARBON BIPOLAR PLATES

    E-Print Network [OSTI]

    Scale-up of Carbon/Carbon Bipolar Plates · Project Objectives ­ Build and demonstrate a pilot facility#12;SCALE-UP OF CARBON /CARBON BIPOLAR PLATES Quarterly Report to the Department of Energy, May 19 #12;DOE PROGRAM OBJECTIVES Scale-up of Carbon/Carbon Bipolar Plates · Phase I ­ Technology Development

  3. ESM 271 Carbon Footprints and Carbon Accounting Instructor: Sangwon Suh

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    1 ESM 271 Carbon Footprints and Carbon Accounting Instructor: Sangwon Suh Bren hall 3422, suh: Homework (1 for each week @10%): 40% Personal carbon account (report): 30% Final exam: 30% Course schedule Week 1: Introduction to carbon footprint and carbon account - Background: carbon awareness, major

  4. Big Sky Carbon Atlas

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    (Acknowledgment to the Big Sky Carbon Sequestration Partnership (BSCSP); see home page at http://www.bigskyco2.org/)

  5. Intro to Carbon Sequestration

    ScienceCinema (OSTI)

    None

    2010-01-08T23:59:59.000Z

    NETL's Carbon Sequestration Program is helping to develop technologies to capture, purify, and store carbon dioxide (CO2) in order to reduce greenhouse gas emissions without adversely influencing energy use or hindering economic growth. Carbon sequestration technologies capture and store CO2 that would otherwise reside in the atmosphere for long periods of time.

  6. Intro to Carbon Sequestration

    SciTech Connect (OSTI)

    2008-03-06T23:59:59.000Z

    NETL's Carbon Sequestration Program is helping to develop technologies to capture, purify, and store carbon dioxide (CO2) in order to reduce greenhouse gas emissions without adversely influencing energy use or hindering economic growth. Carbon sequestration technologies capture and store CO2 that would otherwise reside in the atmosphere for long periods of time.

  7. Carbon Footprint Towson University

    E-Print Network [OSTI]

    Fath, Brian D.

    Carbon Footprint Towson University GHG Inventory for Educational Institutes Getting Starting.TM The Carbon Footprint 8 The Constellation Experience A Broad Inventory 1. Scope I-Direct Emissions works.TM The Carbon Footprint 10 The Constellation Experience A Broad Inventory 3. Scope III

  8. Manufacture of finely divided carbon

    SciTech Connect (OSTI)

    Walker, D.G.

    1980-01-22T23:59:59.000Z

    Finely divided carbon is manufactured by a process producing a gaseous stream containing carbon monoxide by reacting coal and air in a slagging ash gasifier, separating carbon monoxide from the gaseous mixture, and disproportionating the carbon monoxide to produce finely divided carbon and carbon dioxide, the latter of which is recycled to the gasifier.

  9. SmallholderSmallholder CarbonCarbon AgroforestryAgroforestry && Carbon for Poverty ReductionCarbon for Poverty Reduction

    E-Print Network [OSTI]

    SmallholderSmallholder CarbonCarbon AgroforestryAgroforestry && Carbon for Poverty ReductionCarbon for Poverty Reduction Roundtable (CAPR)Roundtable (CAPR) GEO Forest Monitoring SymposiumGEO Forest Monitoring)Amazon Initiative Consortium (IA) #12;Carbon for Poverty Reduction Roundtable (CAPR)Carbon for Poverty Reduction

  10. Il Consiglio di Facolt di Economia ha espresso, in un documento approvato il 23/11/2010, una valutazione critica sulle politiche per l'Universit.

    E-Print Network [OSTI]

    Robbiano, Lorenzo

    Il Consiglio di Facoltà di Economia ha espresso, in un documento approvato il 23/11/2010, una come quella di Economia di Genova, che si trova sotto dimensionata nel proprio organico di docenti, al'attenzione degli studenti, delle famiglie, del territorio. A questo scopo la Facoltà di Economia, nella giornata

  11. RE SONANT PHO NON -A 8 8 IS TE D 6E NE HA TION. . . not observed, presumably because either the

    E-Print Network [OSTI]

    Glyde, Henry R.

    , for example, A. Yariv, Quantum Electronics (Wiley, New York, 1967), Chap. 21; N. Bloembergen, Nonlinear OpticsRE SONANT PHO NON -A 8 8 IS TE D 6E NE HA TION. . . not observed, presumably because either cussions. *Present address: Hasler A. G. , Bern, Switzerland. ~P. A. Franken, A. E. Hill, C. %'. Peters

  12. t E c N o l o G a y f u t u r o Por laura cHaParro

    E-Print Network [OSTI]

    Floreano, Dario

    t E c N o l o G í a y f u t u r o Por laura cHaParro El desastre nuclear de Fukushima del pasado 11 a la comunidad internacional. Cuatro de los seis reactores nucleares de la planta sufrieron serios

  13. Formation of Carbon Dwarfs

    E-Print Network [OSTI]

    Charles L. Steinhardt; Dimitar D. Sasselov

    2012-01-27T23:59:59.000Z

    We consider the formation of dwarf carbon stars via accretion from a carbon AGB companion in light of the new 107 object sample of Downes et al. (2004). This sample is now large enough to allow good mass determination via comparison of a composite spectrum to theoretical atmospheric models. Carbon dwarfs of spectral type M are indeed main sequence M dwarfs with enhanced metallicity and carbon abundance. We also calculate the predicted abundance of both M and of F/G carbon dwarfs, and show that the latter should be falsifiable in the near future.

  14. Study of fire retardant behavior of carbon nanotube membranes and carbon nanofiber paper in carbon fiber

    E-Print Network [OSTI]

    Das, Suman

    Study of fire retardant behavior of carbon nanotube membranes and carbon nanofiber paper in carbon Accepted 14 January 2010 Available online 20 January 2010 A B S T R A C T Single-walled carbon nanotube (SWCNT) and multi-walled carbon nanotube (MWCNT) membranes (buckypaper) and carbon nanofiber (CNF) paper

  15. Big Sky Carbon Sequestration Partnership

    SciTech Connect (OSTI)

    Susan Capalbo

    2005-12-31T23:59:59.000Z

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessment framework; (referred to below as the Advanced Concepts component of the Phase I efforts) and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation investigated has significant potential to sequester large amounts of CO{sub 2}. Simulations conducted to evaluate mineral trapping potential of mafic volcanic rock formations located in the Idaho province suggest that supercritical CO{sub 2} is converted to solid carbonate mineral within a few hundred years and permanently entombs the carbon. Although MMV for this rock type may be challenging, a carefully chosen combination of geophysical and geochemical techniques should allow assessment of the fate of CO{sub 2} in deep basalt hosted aquifers. Terrestrial carbon sequestration relies on land management practices and technologies to remove atmospheric CO{sub 2} where it is stored in trees, plants, and soil. This indirect sequestration can be implemented today and is on the front line of voluntary, market-based approaches to reduce CO{sub 2} emissions. Initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil Carbon (C) on rangelands, and forested, agricultural, and reclaimed lands. Rangelands can store up to an additional 0.05 mt C/ha/yr, while the croplands are on average four times that amount. Estimates of technical potential for soil sequestration within the region in cropland are in the range of 2.0 M mt C/yr over 20 year time horizon. This is equivalent to approximately 7.0 M mt CO{sub 2}e/yr. The forestry sinks are well documented, and the potential in the Big Sky region ranges from 9-15 M mt CO{sub 2} equivalent per year. Value-added benefits include enhanced yields, reduced erosion, and increased wildlife habitat. Thus the terrestrial sinks provide a viable, environmentally beneficial, and relatively low cost sink that is available to sequester C in the current time frame. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological and terrestrial sequestration re

  16. Carbon dioxide sensor

    DOE Patents [OSTI]

    Dutta, Prabir K. (Worthington, OH); Lee, Inhee (Columbus, OH); Akbar, Sheikh A. (Hilliard, OH)

    2011-11-15T23:59:59.000Z

    The present invention generally relates to carbon dioxide (CO.sub.2) sensors. In one embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor that incorporates lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3). In another embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor has a reduced sensitivity to humidity due to a sensing electrode with a layered structure of lithium carbonate and barium carbonate. In still another embodiment, the present invention relates to a method of producing carbon dioxide (CO.sub.2) sensors having lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3).

  17. Multiphase Sequestration Geochemistry: Model for Mineral Carbonation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Multiphase Sequestration Geochemistry: Model for Mineral Carbonation. Multiphase Sequestration Geochemistry: Model for Mineral Carbonation. Abstract: Carbonation of formation...

  18. Carbon Sequestration via Mineral Carbonation: Overview and Assessment

    E-Print Network [OSTI]

    1 Carbon Sequestration via Mineral Carbonation: Overview and Assessment 14 March 2002 Howard Herzog overview and assessment of carbon sequestration by mineral carbonation (referred to as "mineral sequestration R&D. The first is that carbonates have a lower energy state than CO2. Therefore, at least

  19. Would Border Carbon Adjustments prevent carbon leakage and heavy industry

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    No 52-2013 Would Border Carbon Adjustments prevent carbon leakage and heavy industry halshs-00870689,version1-7Oct2013 #12;Would Border Carbon Adjustments prevent carbon leakage and heavy The efficiency of unilateral climate policies may be hampered by carbon leakage and competitiveness losses

  20. Carbon RRLs Carbon RRLs towards Ultra-compact HII Regions

    E-Print Network [OSTI]

    Balser, Dana S.

    Carbon RRLs Carbon RRLs towards Ultra-compact HII Regions Dana S. Balser D. Anish Roshi (Raman (Agnes Scott College) #12;Carbon RRLs Carbon Radio Recombination Lines (RRLs) NGC 2024 (Orion B) IC 1795 (W3) Palmer et al. (1967) #12;Carbon RRLs Photodissociation Regions (PDRs) Hollenbach & Tielens (1997

  1. Cumulative Carbon and Just Allocation of the Global Carbon Commons

    E-Print Network [OSTI]

    Pierrehumbert, Raymond

    Cumulative Carbon and Just Allocation of the Global Carbon Commons R.T. Pierrehumbert1 on climate can be characterized by a single statistic, called Cumulative Carbon. This is the aggregate amount of carbon emitted in the form of carbon dioxide by activities such as fossil fuel burning and deforestation

  2. Pyrolytic carbon electrodes Lithographically Defined Porous Carbon Electrodes**

    E-Print Network [OSTI]

    New Mexico, University of

    Pyrolytic carbon electrodes Lithographically Defined Porous Carbon Electrodes** D. Bruce Burckel Polsky* The special nature of the CÀC bond can lead to various polymorphic forms of carbon such as graphite, glassy-carbon, fullerenes (such as buckyballs), carbon nanotubes, and diamond. Electrodes made

  3. Mesoporous carbon materials

    DOE Patents [OSTI]

    Dai, Sheng; Wang, Xiqing

    2013-08-20T23:59:59.000Z

    The invention is directed to a method for fabricating a mesoporous carbon material, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic compound or material, (iii) a crosslinkable aldehyde component, and (iv) at least 0.5 M concentration of a strong acid having a pKa of or less than -2, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a mesoporous carbon material. The invention is also directed to a mesoporous carbon material having an improved thermal stability, preferably produced according to the above method.

  4. Mesoporous carbon materials

    DOE Patents [OSTI]

    Dai, Sheng (Knoxville, TN); Wang, Xiqing (Oak Ridge, TN)

    2012-02-14T23:59:59.000Z

    The invention is directed to a method for fabricating a mesoporous carbon material, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic compound or material, (iii) a crosslinkable aldehyde component, and (iv) at least 0.5 M concentration of a strong acid having a pKa of or less than -2, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a mesoporous carbon material. The invention is also directed to a mesoporous carbon material having an improved thermal stability, preferably produced according to the above method.

  5. Activated Carbon Injection

    ScienceCinema (OSTI)

    None

    2014-07-22T23:59:59.000Z

    History of the Clean Air Act and how the injection of carbon into a coal power plant's flu smoke can reduce the amount of mercury in the smoke.

  6. Carbon Fiber SMC

    Broader source: Energy.gov (indexed) [DOE]

    confidential, or otherwise restricted information. ACC932 Materials and Processes Technology Development Carbon Fiber SMC 5-20-09 Charles Knakal USCAR C. S. Wang General Motors...

  7. Activated Carbon Injection

    SciTech Connect (OSTI)

    None

    2014-07-16T23:59:59.000Z

    History of the Clean Air Act and how the injection of carbon into a coal power plant's flu smoke can reduce the amount of mercury in the smoke.

  8. Reinforced Carbon Nanotubes.

    DOE Patents [OSTI]

    Ren, Zhifen (Newton, MA); Wen, Jian Guo (Newton, MA); Lao, Jing Y. (Chestnut Hill, MA); Li, Wenzhi (Brookline, MA)

    2005-06-28T23:59:59.000Z

    The present invention relates generally to reinforced carbon nanotubes, and more particularly to reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  9. Carbon Fiber Technology Facility

    Broader source: Energy.gov (indexed) [DOE]

    conventional and alternative precursors to carbon fiber Advance high-volume composite design and manufacturing capabilities Transition technology to industry partners...

  10. EMBODIED CARBON TARIFFS Christoph Bhringer

    E-Print Network [OSTI]

    EMBODIED CARBON TARIFFS Christoph Böhringer Jared C. Carbone Thomas F. Rutherford Revised: August 2013 Abstract Embodied carbon tariffs tax the direct and indirect carbon emissions embodied in trade -- an idea popularized by countries seeking to extend the reach of domestic carbon regu- lations. We

  11. Carbon-Optimal and Carbon-Neutral Supply Chains

    E-Print Network [OSTI]

    Caro, F.; Corbett, C. J.; Tan, T.; Zuidwijk, R.

    2011-01-01T23:59:59.000Z

    Y. Li, M. Daskin. 2009. Carbon Footprint and the ManagementJ. van Houtum. 2011. E?ect of carbon emission regulations onStreamlined Enterprise Carbon Footprinting. Environmental

  12. Carbon-Optimal and Carbon-Neutral Supply Chains

    E-Print Network [OSTI]

    Caro, F.; Corbett, C. J.; Tan, T.; Zuidwijk, R.

    2011-01-01T23:59:59.000Z

    Pearce, D. 2003. The Social Cost Of Carbon And Its PolicyR.S.J. 2008. The Social Cost of Carbon: Trends, Outliers and

  13. Carbon Park Environmental Impact Assessment

    E-Print Network [OSTI]

    of offsetting the University's carbon footprint, promoting biodiversity and establishing easily maintained Carbon Park Environmental Impact Assessment A B.E.S.T. Project By, Adam Bond 2011 #12; Bishop's University Carbon Park

  14. First Proof of Ferromagnetic Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proof of Ferromagnetic Carbon First Proof of Ferromagnetic Carbon Print Wednesday, 25 July 2007 00:00 Although it has long been suspected that carbon belongs on the short list of...

  15. Lead carbonate scintillator materials

    DOE Patents [OSTI]

    Derenzo, Stephen E. (Pinole, CA); Moses, William W. (Berkeley, CA)

    1991-01-01T23:59:59.000Z

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses.

  16. Fly ash carbon passivation

    DOE Patents [OSTI]

    La Count, Robert B; Baltrus, John P; Kern, Douglas G

    2013-05-14T23:59:59.000Z

    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most of the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.

  17. CARBON SEQUESTRATION STRATEGIES FOR CALIFORNIA

    E-Print Network [OSTI]

    GEOLOGIC CARBON SEQUESTRATION STRATEGIES FOR CALIFORNIA: REPORT TO THE LEGISLATURE Regional Carbon Sequestration Partnership (WESTCARB) studies that we used, including Cameron Downey

  18. Laser Guide Star Adaptive Optics Integral Field Spectroscopy of a Tightly Collimated Bipolar Jet from the Herbig Ae star LkHa 233

    E-Print Network [OSTI]

    Marshall D. Perrin; James R. Graham

    2007-07-16T23:59:59.000Z

    We have used the integral field spectrograph OSIRIS and laser guide star adaptive optics at Keck Observatory to obtain high angular resolution (0.06"), moderate spectral resolution (R ~ 3800) images of the bipolar jet from the Herbig Ae star LkHa 233, seen in near-IR [Fe II] emission at 1.600 & 1.644 microns. This jet is narrow and tightly collimated, with an opening angle of only 9 degrees, and has an average radial velocity of ~ 100 km/s. The jet and counterjet are asymmetric, with the red-shifted jet much clumpier than its counterpart at the angular resolution of our observations. The observed properties are in general similar to jets seen around T Tauri stars, though it has a relatively large mass flux of (1.2e-7 +- 0.3e-7) M_sun/year, near the high end of the observed mass flux range around T Tauri stars. We also spatially resolve an inclined circumstellar disk around LkHa 233, which obscures the star from direct view. By comparison with numerical radiative transfer disk models, we estimate the disk midplane to be inclined i = 65 +- 5 degrees relative to the plane of the sky. Since the star is seen only in scattered light at near-infrared wavelengths, we detect only a small fraction of its intrinsic flux. Because previous estimates of its stellar properties did not account for this, either LkHa 233 must be located closer than the previously believed, or its true luminosity must be greater than previously supposed, consistent with its being a ~4 M_sun star near the stellar birthline.

  19. advanced carbon-carbon composites: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 CARBON-CARBON COMPOSITE ALLCOMP Carbon-Carbon Composite Biology and Medicine Websites Summary: CARBON-CARBON...

  20. Trading Water for Carbon with Biological Carbon Sequestration

    E-Print Network [OSTI]

    Nacional de San Luis, Universidad

    Trading Water for Carbon with Biological Carbon Sequestration Robert B. Jackson,1 * Esteban G. Farley,1 David C. le Maitre,5 Bruce A. McCarl,6 Brian C. Murray7 Carbon sequestration strategies plantations feature prominently among tools for carbon sequestration (1­8). Plantations typi- cally combine

  1. Cumulative Carbon and Just Allocation of the Global Carbon Commons

    E-Print Network [OSTI]

    Pierrehumbert, Raymond

    Cumulative Carbon and Just Allocation of the Global Carbon Commons R.T. Pierrehumbert* Abstract statistic, called cumulative carbon. This statistic is the aggregate amount ofcarbon emitted in theform such activitiespersist.In thispaper the conceptis usedto addressthe question offair allocation of carbon emissions

  2. International Conference on Carbon Nanotechnology: Potential and Challenges (Carbon 10)

    E-Print Network [OSTI]

    Srivastava, Kumar Vaibhav

    International Conference on Carbon Nanotechnology: Potential and Challenges (Carbon 10) 15 - 17th Since the discovery of the carbon nanotube (CNT) about two decades ago, research related to its of Materials and Process Engineering Kanpur Chapter hosted the `International Conference on Carbon

  3. IMPACCT: Carbon Capture Technology

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    IMPACCT Project: IMPACCT’s 15 projects seek to develop technologies for existing coal-fired power plants that will lower the cost of carbon capture. Short for “Innovative Materials and Processes for Advanced Carbon Capture Technologies,” the IMPACCT Project is geared toward minimizing the cost of removing carbon dioxide (CO2) from coal-fired power plant exhaust by developing materials and processes that have never before been considered for this application. Retrofitting coal-fired power plants to capture the CO2 they produce would enable greenhouse gas reductions without forcing these plants to close, shifting away from the inexpensive and abundant U.S. coal supply.

  4. Black Carbon’s Properties and Role in the Environment: A Comprehensive Review

    E-Print Network [OSTI]

    Shrestha, Gyami

    2010-01-01T23:59:59.000Z

    carbon has a high carbon sequestration potential due to itsin soil can lead to sustainable carbon sequestration.process takes carbon sequestration from afforestation a step

  5. Method for synthesizing carbon nanotubes

    DOE Patents [OSTI]

    Fan, Hongyou

    2012-09-04T23:59:59.000Z

    A method for preparing a precursor solution for synthesis of carbon nanomaterials, where a polar solvent is added to at least one block copolymer and at least one carbohydrate compound, and the precursor solution is processed using a self-assembly process and subsequent heating to form nanoporous carbon films, porous carbon nanotubes, and porous carbon nanoparticles.

  6. GETTING CARBON CAPTURE AND STORAGE

    E-Print Network [OSTI]

    Haszeldine, Stuart

    GETTING CARBON CAPTURE AND STORAGE TECHNOLOGIES TO MARKET BREAKING THE DEADLOCK Report of a Science: Carbon Capture and Storage © OECD/IEA 2009, fig. 1, p. 6 Figures 2 and 3 reprinted with permission from `UK Carbon storage and capture, where is it?' by Stuart Haszeldine, Professor of Carbon Capture

  7. Research Report Forests and carbon

    E-Print Network [OSTI]

    , baseline, carbon, climate change mitigation, forestry, quality assurance, sequestration. FCRP013/FCResearch Report Forests and carbon: a review of additionality #12;#12;Forests and carbon: a review. ISBN 978-0-85538-816-4 Valatin, G. (2011). Forests and carbon: a review of additionality. Forestry

  8. 4, 1367, 2007 Modelling carbon

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    BGD 4, 13­67, 2007 Modelling carbon overconsumption and extracellular POC formation M. Schartau et carbon overconsumption and the formation of extracellular particulate organic carbon M. Schartau1 , A Correspondence to: M. Schartau (markus.schartau@gkss.de) 13 #12;BGD 4, 13­67, 2007 Modelling carbon

  9. ATK - Supersonic Carbon Capture

    ScienceCinema (OSTI)

    Castrogiovanni, Anthony (ACEnT Laboratories, President and CEO); Calayag, Bon (ATK, Program Manager)

    2014-04-11T23:59:59.000Z

    ATK and ACEnt Laboratories, with the help of ARPA-E funding, have taken an aerospace problem, supersonic condensation, and turned it into a viable clean energy solution for carbon capture.

  10. Carbon Capture Pilots (Kentucky)

    Broader source: Energy.gov [DOE]

    Support for the Carbon Management Research Group (CMRG), a public/private partnership consisting of most of the Commonwealth’s utilities, the Electric Power Research Institute, the Center for...

  11. Extrasolar Carbon Planets

    E-Print Network [OSTI]

    Marc J. Kuchner; S. Seager

    2005-05-02T23:59:59.000Z

    We suggest that some extrasolar planets planets and low-mass white dwarf planets are especially good candidate members of this new class of planets, but these objects could also conceivably form around stars like the Sun. This planet-formation pathway requires only a factor of two local enhancement of the protoplanetary disk's C/O ratio above solar, a condition that pileups of carbonaceous grains may create in ordinary protoplanetary disks. Hot, Neptune-mass carbon planets should show a significant paucity of water vapor in their spectra compared to hot planets with solar abundances. Cooler, less massive carbon planets may show hydrocarbon-rich spectra and tar-covered surfaces. The high sublimation temperatures of diamond, SiC, and other carbon compounds could protect these planets from carbon depletion at high temperatures.

  12. Regional Carbon Sequestration Partnerships

    Broader source: Energy.gov [DOE]

    DOE has created a network of seven Regional Carbon Sequestration Partnerships (RCSPs) to help develop the technology, infrastructure, and regulations to implement large-scale CO2 storage (also...

  13. Low Carbon Fuel Standards

    E-Print Network [OSTI]

    Sperling, Dan; Yeh, Sonia

    2009-01-01T23:59:59.000Z

    S O N I A YE H Low Carbon Fuel Standards The most direct andalternative transportation fuels is to spur innovation withstandard for upstream fuel producers. hen it comes to energy

  14. Activated carbon aerogels

    SciTech Connect (OSTI)

    Hanzawa, Y.; Kaneko, K. [Chiba Univ. (Japan)] [Chiba Univ. (Japan); Pekala, R.W. [Lawrence Livermore National Lab., CA (United States)] [Lawrence Livermore National Lab., CA (United States); Dresselhaus, M.S. [Massachusetts Inst. of Technology, Cambridge, MA (United States)] [Massachusetts Inst. of Technology, Cambridge, MA (United States)

    1996-12-25T23:59:59.000Z

    Activated carbon aerogels were obtained from the CO{sub 2} activation of the carbon aerogels. The adsorption isotherms of nitrogen on activated carbon aerogels at 77 K were measured and analyzed by the high-resolution {alpha}{sub s} plot to evaluate their porosities. The {alpha}{sub s} plot showed an upward deviation from linearity below {alpha}{sub s} = 0.5, suggesting that the presence of micropores becomes more predominant with the extent of the activation. Activation increased noticeably the pore volume and the surface area (the maximum value: 2600 m{sup 2}.g{sup -1}) without change of the basic network structure of primary particles. Activated carbon aerogels had a bimodal pore size distribution of uniform micropores and mesopores. 16 refs., 2 figs., 1 tab.

  15. ATK - Supersonic Carbon Capture

    SciTech Connect (OSTI)

    Castrogiovanni, Anthony (ACEnT Laboratories, President and CEO) [ACEnT Laboratories, President and CEO; Calayag, Bon (ATK, Program Manager) [ATK, Program Manager

    2014-03-05T23:59:59.000Z

    ATK and ACEnt Laboratories, with the help of ARPA-E funding, have taken an aerospace problem, supersonic condensation, and turned it into a viable clean energy solution for carbon capture.

  16. Lead carbonate scintillator materials

    DOE Patents [OSTI]

    Derenzo, S.E.; Moses, W.W.

    1991-05-14T23:59:59.000Z

    Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses. 3 figures.

  17. Carbon dioxide removal process

    DOE Patents [OSTI]

    Baker, Richard W.; Da Costa, Andre R.; Lokhandwala, Kaaeid A.

    2003-11-18T23:59:59.000Z

    A process and apparatus for separating carbon dioxide from gas, especially natural gas, that also contains C.sub.3+ hydrocarbons. The invention uses two or three membrane separation steps, optionally in conjunction with cooling/condensation under pressure, to yield a lighter, sweeter product natural gas stream, and/or a carbon dioxide stream of reinjection quality and/or a natural gas liquids (NGL) stream.

  18. History of Has (Ha) Valley

    E-Print Network [OSTI]

    Tshewang, Ven. Lam Pema

    2001-01-01T23:59:59.000Z

    , a visitor came to sell the head of the statue. The sculptor tried to fit the head to the torso, to which it straightaway stuck as if drawn by a magnet. The head, as can be seen even today, is slightly bent and somewhat large in proportion... of Drukpa Kunley, the impression of which, like a mark made on clay, can be seen till today on a big chunk of stone. The tail of the Kuptshonapatra comes through the rock of Nyangtoekha. In ancient times, a boy of herdsman wearing a coarse yak...

  19. Carbon based prosthetic devices

    SciTech Connect (OSTI)

    Devlin, D.J.; Carroll, D.W.; Barbero, R.S.; Archuleta, T. [Los Alamos National Lab., NM (US); Klawitter, J.J.; Ogilvie, W.; Strzepa, P. [Ascension Orthopedics (US); Cook, S.D. [Tulane Univ., New Orleans, LA (US). School of Medicine

    1998-12-31T23:59:59.000Z

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project objective was to evaluate the use of carbon/carbon-fiber-reinforced composites for use in endoprosthetic devices. The application of these materials for the metacarpophalangeal (MP) joints of the hand was investigated. Issues concerning mechanical properties, bone fixation, biocompatibility, and wear are discussed. A system consisting of fiber reinforced materials with a pyrolytic carbon matrix and diamond-like, carbon-coated wear surfaces was developed. Processes were developed for the chemical vapor infiltration (CVI) of pyrolytic carbon into porous fiber preforms with the ability to tailor the outer porosity of the device to provide a surface for bone in-growth. A method for coating diamond-like carbon (DLC) on the articulating surface by plasma-assisted chemical vapor deposition (CVD) was developed. Preliminary results on mechanical properties of the composite system are discussed and initial biocompatibility studies were performed.

  20. Carbon Characterization Laboratory Report

    SciTech Connect (OSTI)

    David Swank; William Windes; D.C. Haggard; David Rohrbaugh; Karen Moore

    2009-03-01T23:59:59.000Z

    The newly completed Idaho National Laboratory (INL) Carbon Characterization Laboratory (CCL) is located in Lab-C20 of the Idaho National Laboratory Research Center. This laboratory was established under the Next Generation Nuclear Plant (NGNP) Project to support graphite research and development activities. The CCL is designed to characterize and test carbon-based materials such as graphite, carbon-carbon composites, and silicon-carbide composite materials. The laboratory is fully prepared to measure material properties for nonirradiated carbon-based materials. Plans to establish the laboratory as a radiological facility within the next year are definitive. This laboratory will be modified to accommodate irradiated materials, after which it can be used to perform material property measurements on both irradiated and nonirradiated carbon-based material. Instruments, fixtures, and methods are in place for preirradiation measurements of bulk density, thermal diffusivity, coefficient of thermal expansion, elastic modulus, Young’s modulus, Shear modulus, Poisson ratio, and electrical resistivity. The measurement protocol consists of functional validation, calibration, and automated data acquisition.

  1. Measurement of carbon capture efficiency and stored carbon leakage

    DOE Patents [OSTI]

    Keeling, Ralph F.; Dubey, Manvendra K.

    2013-01-29T23:59:59.000Z

    Data representative of a measured carbon dioxide (CO.sub.2) concentration and of a measured oxygen (O.sub.2) concentration at a measurement location can be used to determine whether the measured carbon dioxide concentration at the measurement location is elevated relative to a baseline carbon dioxide concentration due to escape of carbon dioxide from a source associated with a carbon capture and storage process. Optionally, the data can be used to quantify a carbon dioxide concentration increase at the first location that is attributable to escape of carbon dioxide from the source and to calculate a rate of escape of carbon dioxide from the source by executing a model of gas-phase transport using at least the first carbon dioxide concentration increase. Related systems, methods, and articles of manufacture are also described.

  2. WESTCARB Carbon Atlas

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The West Coast Regional Carbon Sequestration Partnership (known as WESTCARB) was established in Fall 2003. It is one of seven research partnerships co-funded by DOE to characterize regional carbon sequestration opportunities and conduct pilot-scale validation tests. The California Energy Commission manages WESTCARB and is a major co-funder. WESTCARB is characterizing the extent and capacity of geologic formations capable of storing CO2, known as sinks. Results are entered into a geographic information system (GIS) database, along with the location of major CO2-emitting point sources in each of the six WESTCARB states, enabling researchers and the public to gauge the proximity of candidate CO2 storage sites to emission sources and the feasibility of linking them via pipelines. Specifically, the WESTCARB GIS database (also known as the carbon atlas) stores layers of geologic information about potential underground storage sites, such as porosity and nearby fault-lines and aquifers. Researchers use these data, along with interpreted geophysical data and available oil and gas well logs to estimate the region's potential geologic storage capacity. The database also depicts existing pipeline routes and rights-of-way and lands that could be off-limits, which can aid the development of a regional carbon management strategy. The WESTCARB Carbon Atlas, which is accessible to the public, provides a resource for public discourse on practical solutions for regional CO2 management. A key WESTCARB partner, the Utah Automated Geographic Reference Center, has developed data serving procedures to enable the WESTCARB Carbon Atlas to be integrated with those from other regional partnerships, thereby supporting the U.S. Department of Energy's national carbon atlas, NATCARB

  3. Carbon Fuel Particles Used in Direct Carbon Conversion Fuel Cells

    DOE Patents [OSTI]

    Cooper, John F. (Oakland, CA); Cherepy, Nerine (Oakland, CA)

    2008-10-21T23:59:59.000Z

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  4. Carbon fuel particles used in direct carbon conversion fuel cells

    DOE Patents [OSTI]

    Cooper, John F. (Oakland, CA); Cherepy, Nerine (Oakland, CA)

    2012-01-24T23:59:59.000Z

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  5. Carbon fuel particles used in direct carbon conversion fuel cells

    DOE Patents [OSTI]

    Cooper, John F.; Cherepy, Nerine

    2012-10-09T23:59:59.000Z

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  6. Carbon fuel particles used in direct carbon conversion fuel cells

    DOE Patents [OSTI]

    Cooper, John F. (Oakland, CA); Cherepy, Nerine (Oakland, CA)

    2011-08-16T23:59:59.000Z

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  7. Chemically modified carbonic anhydrases useful in carbon capture systems

    DOE Patents [OSTI]

    Novick, Scott J; Alvizo, Oscar

    2013-10-29T23:59:59.000Z

    The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

  8. Chemically modified carbonic anhydrases useful in carbon capture systems

    DOE Patents [OSTI]

    Novick, Scott; Alvizo, Oscar

    2013-01-15T23:59:59.000Z

    The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

  9. activated carbon composites: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    T300: C strength 4340 steel, carbon-carbon composite, and Carbon-Silicon Carbide composite were tested to examine materials. MATERIALS AND DESIRED DATA Carbon-Carbon...

  10. ammonium carbonates: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    T300: C strength 4340 steel, carbon-carbon composite, and Carbon-Silicon Carbide composite were tested to examine materials. MATERIALS AND DESIRED DATA Carbon-Carbon...

  11. a537 carbon steel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    T300: C strength 4340 steel, carbon-carbon composite, and Carbon-Silicon Carbide composite were tested to examine materials. MATERIALS AND DESIRED DATA Carbon-Carbon...

  12. americium carbonates: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    T300: C strength 4340 steel, carbon-carbon composite, and Carbon-Silicon Carbide composite were tested to examine materials. MATERIALS AND DESIRED DATA Carbon-Carbon...

  13. affecting carbon tetrachloride: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    T300: C strength 4340 steel, carbon-carbon composite, and Carbon-Silicon Carbide composite were tested to examine materials. MATERIALS AND DESIRED DATA Carbon-Carbon...

  14. Carbon contamination topography analysis of EUV masks

    E-Print Network [OSTI]

    Fan, Y.-J.

    2010-01-01T23:59:59.000Z

    induced carbon contamination of extreme ultraviolet optics,"and A. Izumi. "Carbon contamination of EL'V mask: filmEffect of Carbon Contamination on the Printing Performance

  15. Carbon Trading Protocols for Geologic Sequestration

    E-Print Network [OSTI]

    Hoversten, Shanna

    2009-01-01T23:59:59.000Z

    H. , 2005, IPCC: Carbon Capture and Storage: Technical05CH11231. INTRODUCTION Carbon capture and storage (CCS)Development Mechanism CCS: Carbon Capture and Storage C02e:

  16. Sandia National Laboratories: Carbon Capture & Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Capture & Storage High-Pressure and High-Temperature Neutron Reflectometry Cell for Solid-Fluid Interface Studies On February 21, 2013, in Carbon Capture, Carbon Capture &...

  17. ASSESSMENT OF HOUSEHOLD CARBON FOOTPRINT REDUCTION POTENTIALS

    E-Print Network [OSTI]

    Masanet, Eric

    2010-01-01T23:59:59.000Z

    of  American household carbon footprint. ” Ecological and  limitations) of carbon footprint estimates toward of the art in carbon footprint analyses for California, 

  18. On carbon footprints and growing energy use

    E-Print Network [OSTI]

    Oldenburg, C.M.

    2012-01-01T23:59:59.000Z

    On carbon footprints and growing energy use Curtis M.reductions in the carbon footprint of a growing organizationhis own organization's carbon footprint and answers this

  19. Carbon nanotubes : synthesis, characterization, and applications

    E-Print Network [OSTI]

    Deck, Christian Peter

    2009-01-01T23:59:59.000Z

    around Surface-Attached Carbon Nanotubes. Ind. Eng. Chem.the flexural rigidity of carbon nanotube ensembles. AppliedNanotechnology in Carbon Materials. Acta Metallurgica, 1997.

  20. Participatory Carbon Monitoring: Operational Guidance for National...

    Open Energy Info (EERE)

    Participatory Carbon Monitoring: Operational Guidance for National REDD+ Carbon Accounting Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Participatory Carbon...

  1. Carbon Chemistry in interstellar clouds

    E-Print Network [OSTI]

    Maryvonne Gerin; David Fosse; Evelyne Roueff

    2002-12-03T23:59:59.000Z

    We discuss new developments of interstellar chemistry, with particular emphasis on the carbon chemistry. We confirm that carbon chains and cycles are ubiquitous in the ISM and closely chemically related to ea ch other, and to carbon. Investigation of the carbon budget in shielded and UV illuminated gas shows that the inventory of interstellar molecules is not complete and more complex molecules with 4 or more carbon atoms must be present. Finally we discuss the consequences for the evolution of clouds and conclude that the ubiquitous presence of carbon chains and cycles is not a necessary consequence of a very young age for interstellar clouds.

  2. (c) 2008-2011. Minh Ha-Duong. Rodica Loisel. CIRED Reproduction allowed. share alike. attribution. Blue cells: Numerical assumptions defining the scenario

    E-Print Network [OSTI]

    ,00 Gt CO2 generated G = g B 4,50 Gt CO2 stored S = s B Carbon dioxide emissions and coal types 2,38 t CO2 generated by t of coal (bituminous grade) Coal Types CO2 emissions 2050 2,101 Gt of coal consumed « Expected fatalities for one wedge of CCS in 2050 » Defines the « wedge of CCS at baseload coal power plants

  3. Formation of rare earth carbonates using supercritical carbon dioxide

    DOE Patents [OSTI]

    Fernando, Quintus (Tucson, AZ); Yanagihara, Naohisa (Zacopan, MX); Dyke, James T. (Santa Fe, NM); Vemulapalli, Krishna (Tuscon, AZ)

    1991-09-03T23:59:59.000Z

    The invention relates to a process for the rapid, high yield conversion of select rare earth oxides or hydroxides, to their corresponding carbonates by contact with supercritical carbon dioxide.

  4. Carbon-particle generator

    DOE Patents [OSTI]

    Hunt, A.J.

    1982-09-29T23:59:59.000Z

    A method and apparatus whereby small carbon particles are made by pyrolysis of a mixture of acetylene carried in argon. The mixture is injected through a nozzle into a heated tube. A small amount of air is added to the mixture. In order to prevent carbon build-up at the nozzle, the nozzle tip is externally cooled. The tube is also elongated sufficiently to assure efficient pyrolysis at the desired flow rates. A key feature of the method is that the acetylene and argon, for example, are premixed in a dilute ratio, and such mixture is injected while cool to minimize the agglomeration of the particles, which produces carbon particles with desired optical properties for use as a solar radiant heat absorber.

  5. ISSUES IN EVALUATING CARBON SEQUESTRATION AND ATTRIBUTING CARBON CREDITS TO GRASSLAND RESTORATION EFFORTS

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    ISSUES IN EVALUATING CARBON SEQUESTRATION AND ATTRIBUTING CARBON CREDITS TO GRASSLAND RESTORATION examines biological carbon sequestration using a grassland restoration as a model system. Chapter 1 for biological carbon sequestration. In this analysis, we found that significantly greater soil carbon

  6. Ultrahard carbon nanocomposite films

    SciTech Connect (OSTI)

    SIEGAL,MICHAEL P.; TALLANT,DAVID R.; PROVENCIO,PAULA P.; OVERMYER,DONALD L.; SIMPSON,REGINA L.; MARTINEZ-MIRANDA,L.J.

    2000-01-27T23:59:59.000Z

    Modest thermal annealing to 600 C of diamondlike amorphous-carbon (a-C) films grown at room temperature results in the formation of carbon nanocomposites with hardness similar to diamond. These nanocomposite films consist of nanometer-sized regions of high density a-C embedded in an a-C matrix with a reduced density of 5--10%. The authors report on the evolution of density and bonding topologies as a function of annealing temperature. Despite a decrease in density, film hardness actually increases {approximately} 15% due to the development of the nanocomposite structure.

  7. Low Cost Carbon Fiber Production Carbon Fiber Manufacturing Cost Modeling

    E-Print Network [OSTI]

    to bond with composite matrix material. It is important that a carbon fiber manufacturing cost model manufactured with carbon fiber as opposed to traditional materials such as steel, automotive parts are able associated with both the manufacture of carbon fibers themselves as well as their composites. Traditional

  8. Irradiation Stability of Carbon Nanotubes 

    E-Print Network [OSTI]

    Aitkaliyeva, Assel

    2010-01-14T23:59:59.000Z

    Ion irradiation of carbon nanotubes is a tool that can be used to achieve modification of the structure. Irradiation stability of carbon nanotubes was studied by ion and electron bombardment of the samples. Different ion ...

  9. Sensor applications of carbon nanotubes

    E-Print Network [OSTI]

    Rushfeldt, Scott I

    2005-01-01T23:59:59.000Z

    A search of published research on sensing mechanisms of carbon nanotubes was performed to identify applications in which carbon nanotubes might improve on current sensor technologies, in either offering improved performance, ...

  10. First Proof of Ferromagnetic Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proof of Ferromagnetic Carbon Print Although it has long been suspected that carbon belongs on the short list of materials that can be magnetic at room temperature, attempts to...

  11. Large Magnetization at Carbon Surfaces

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Magnetization at Carbon Surfaces Print From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure...

  12. Carbon nanotubes: synthesis and functionalization 

    E-Print Network [OSTI]

    Andrews, Robert

    2007-01-01T23:59:59.000Z

    conditions were then used as the basis of several comparative CVD experiments showing that the quality of nanotubes and the yield of carbon depended on the availability of carbon to react. The availability could be controlled by the varying concentration...

  13. First Proof of Ferromagnetic Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Proof of Ferromagnetic Carbon Print Although it has long been suspected that carbon belongs on the short list of materials that can be magnetic at room temperature, attempts...

  14. 14 April 2001 tmospheric carbon dioxide

    E-Print Network [OSTI]

    Teskey, Robert O.

    emissions is through increased carbon sequestration into forests. In a large-scale assessment, Birdsey- ing carbon sequestration in southern forests. Carbon sequestration via southern pine forests may policy commitments. Keywords: carbon sequestration; southern pine forests ABSTRACT MEETING GLOBAL POLICY

  15. Distributed Energy Resources for Carbon Emissions Mitigation

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2008-01-01T23:59:59.000Z

    Distributed Energy Resource Technology Characterizations. ”ABORATORY Distributed Energy Resources for Carbon Emissions5128 Distributed Energy Resources for Carbon Emissions

  16. Project Profile: Direct Supercritical Carbon Dioxide Receiver...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Direct Supercritical Carbon Dioxide Receiver Development Project Profile: Direct Supercritical Carbon Dioxide Receiver Development National Renewable Energy Laboratory logo The...

  17. Electrobiocommodities from Carbon Dioxide: Enhancing Microbial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrobiocommodities from Carbon Dioxide: Enhancing Microbial Electrosynthesis with Synthetic Electromicrobiology and System Design Electrobiocommodities from Carbon Dioxide:...

  18. Carbon-Fuelled Future

    SciTech Connect (OSTI)

    Appel, Aaron M.

    2014-09-12T23:59:59.000Z

    Whether due to changes in policy or consumption of available fossil fuels, alternative sources of energy will be required, especially given the rising global energy demand. However, one of the main factors limiting the widespread utilization of renewable energy, such as wind, solar, wave or geothermal, is our ability to store energy. Storage of energy from carbon-neutral sources, such as electricity from solar or wind, can be accomplished through many routes. One approach is to store energy in the form of chemical bonds, as fuels. The conversion of low-energy compounds, such as water and carbon dioxide, to higher energy molecules, such as hydrogen or carbon-based fuels, enables the storage of carbon-neutral energy on a very large scale. The author¹s work in this area is supported by the US Department of Energy Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  19. Carbon Footprint Calculator

    Broader source: Energy.gov [DOE]

    This calculator estimates the amount of carbon emissions you and members of your household are responsible for. It does not include emissions associated with your work or getting to work if you commute by public transportation. It was developed by IEEE Spectrum magazine.

  20. Carbon smackdown: smart windows

    ScienceCinema (OSTI)

    Delia Milliron

    2010-09-01T23:59:59.000Z

    August 3, 2010 Berkeley Lab talk: In the fourth of five Carbon Smackdown matches, Berkeley Lab researchers Delia Milliron of the Materials Sciences Division and Stephen Selkowitz of the Environmental Energy Technologies Division talk about their work on energy-saving smart windows.

  1. Carbon smackdown: wind warriors

    SciTech Connect (OSTI)

    Glen Dahlbacka of the Accelerator & Fusion Research Division and Ryan Wiser of the Environmental Energy Technologies Division are the speakers.

    2010-07-21T23:59:59.000Z

    July 16. 2010 carbon smackdown summer lecture: learn how Berkeley Lab scientists are developing wind turbines to be used in an urban setting, as well as analyzing what it will take to increase the adoption of wind energy in the U.S.

  2. CARBON -14 PHYSICAL DATA

    E-Print Network [OSTI]

    Vallino, Joseph J.

    CARBON - 14 [14C] PHYSICAL DATA · Beta Energy: 156 keV (maximum) 49 keV (average) (100% abundance on wipes. #12;RADIATION MONITORING DOSIMETERS · Not needed (beta energy too low). · 14C Beta Dose Rate: 6) · Effective Half-Life: 40 days (unbound) · Specific Activity: 4460 mCi/gram · Maximum Beta Range in Air: 24

  3. Carbon smackdown: wind warriors

    ScienceCinema (OSTI)

    Glen Dahlbacka of the Accelerator & Fusion Research Division and Ryan Wiser of the Environmental Energy Technologies Division are the speakers.

    2010-09-01T23:59:59.000Z

    July 16. 2010 carbon smackdown summer lecture: learn how Berkeley Lab scientists are developing wind turbines to be used in an urban setting, as well as analyzing what it will take to increase the adoption of wind energy in the U.S.

  4. 4, 99123, 2007 Amazon carbon

    E-Print Network [OSTI]

    Boyer, Edmond

    , suggested much larger estimates for tropical forest carbon sequestration in the Ama- zon BasinBGD 4, 99­123, 2007 Amazon carbon balanc J. Lloyd et al. Title Page Abstract Introduction Discussions is the access reviewed discussion forum of Biogeosciences An airborne regional carbon balance

  5. 3, 409447, 2006 Modeling carbon

    E-Print Network [OSTI]

    Boyer, Edmond

    BGD 3, 409­447, 2006 Modeling carbon dynamics in farmland of China F. Zhang et al. Title Page impacts of management alternatives on soil carbon storage of farmland in Northwest China F. Zhang1,3 , C-term losses of soil organic carbon (SOC) have been observed in many agricul- ture lands in Northwest China

  6. 7, 405428, 2007 SCIAMACHY carbon

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    with an increasing energy demand and inherent fuel consump- tion such as China. Carbon monoxide (CO) contributesACPD 7, 405­428, 2007 SCIAMACHY carbon monoxide M. Buchwitz et al. Title Page Abstract Introduction Discussions Three years of global carbon monoxide from SCIAMACHY: comparison with MOPITT and first results

  7. 4, 21112145, 2007 Enhanced carbon

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    are generally low in productivity and carbon (C) storage. We report, however, large increases in C sequestration . Carbon sequestration following afforestation was associated with increased N use efficiency as reflected of terrestrial ecosystems that leads to increased carbon (C) sequestration. One of those means is afforestation

  8. Dispersion toughened silicon carbon ceramics

    DOE Patents [OSTI]

    Wei, G.C.

    1984-01-01T23:59:59.000Z

    Fracture resistant silicon carbide ceramics are provided by incorporating therein a particulate dispersoid selected from the group consisting of (a) a mixture of boron, carbon and tungsten, (b) a mixture of boron, carbon and molybdenum, (c) a mixture of boron, carbon and titanium carbide, (d) a mixture of aluminum oxide and zirconium oxide, and (e) boron nitride. 4 figures.

  9. Research Report Forests and carbon

    E-Print Network [OSTI]

    Research Report Forests and carbon: valuation, discounting and risk management #12;#12;Forests and carbon: valuation, discounting and risk management Gregory Valatin Forestry Commission: Edinburgh-0-85538-815-7 Valatin, G. (2010). Forests and carbon: valuation, discounting and risk management. Forestry Commission

  10. 1, 167193, 2004 Terrestrial carbon

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    BGD 1, 167­193, 2004 Terrestrial carbon budget at country-scale I. A. Janssens et al. Title Page Biogeosciences Discussions is the access reviewed discussion forum of Biogeosciences The carbon budget.janssens@ua.ac.be) 167 #12;BGD 1, 167­193, 2004 Terrestrial carbon budget at country-scale I. A. Janssens et al. Title

  11. Multifunctional Superhydrophobic Polymer/Carbon Nanocomposites: Graphene, Carbon Nanotubes, or Carbon Black?

    E-Print Network [OSTI]

    Daraio, Chiara

    Multifunctional Superhydrophobic Polymer/Carbon Nanocomposites: Graphene, Carbon Nanotubes, Switzerland *S Supporting Information ABSTRACT: Superhydrophobic surfaces resisting water penetration fabrication of highly electrically conductive, polymer-based superhydrophobic coatings, with impressive

  12. CALCULATING THE CARBON FOOTPRINT SUPPLY CHAIN FOR

    E-Print Network [OSTI]

    Su, Xiao

    CALCULATING THE CARBON FOOTPRINT SUPPLY CHAIN FOR THE SEMICONDUCTOR INDUSTRY By: Yasser Dessouky #12;Carbon Footprint Supply Chain Carbon Trust defines carbon footprint of a supply chain as follows: "The carbon footprint of a product is the carbon dioxide emitted across the supply chain for a single

  13. 6, 34193463, 2006 Black carbon or

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 6, 3419­3463, 2006 Black carbon or brown carbon M. O. Andreae and A. Gelencs´er Title Page Chemistry and Physics Discussions Black carbon or brown carbon? The nature of light-absorbing carbonaceous;ACPD 6, 3419­3463, 2006 Black carbon or brown carbon M. O. Andreae and A. Gelencs´er Title Page

  14. Catalytic Carbon-Carbon and Carbon-Silicon Bond Activation and Functionalization by Nickel Complexes

    E-Print Network [OSTI]

    Jones, William D.

    Catalytic Carbon-Carbon and Carbon-Silicon Bond Activation and Functionalization by Nickel of Rochester, Rochester, New York 14627 Received June 11, 1999 The nickel alkyne complexes (dippe)Ni(Me3Si, and nickel phosphine complexes.3 Milstein and co-workers reported the cata- lytic hydrogenolysis

  15. Carbon Capture and Storage, 2008

    ScienceCinema (OSTI)

    None

    2010-01-08T23:59:59.000Z

    The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.

  16. Carbon Capture and Storage, 2008

    SciTech Connect (OSTI)

    2009-03-19T23:59:59.000Z

    The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.

  17. EB2012-MS-43 ADVANCES IN THE MODELLING OF CARBON/CARBON

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , the Carbon-Carbon composites (C/C) are materials frequently used in industrial applications such as planeEB2012-MS-43 ADVANCES IN THE MODELLING OF CARBON/CARBON COMPOSITE UNDER TRIBOLOGICAL CONSTRAINTS 1, homogenization, carbon ABSTRACT Thermo mechanical properties of Carbon-Carbon composite (C/C) allow them

  18. Carbon Cycle Discussion After the warm-up quiz, discuss the carbon cycle.

    E-Print Network [OSTI]

    Carrington, Emily

    Carbon Cycle Discussion After the warm-up quiz, discuss the carbon cycle. Carbon is one is without carbon. Where else is carbon on our Earth? In rocks, living organisms, the atmosphere, oceans Does carbon stay in one place? What processes include moving carbon? Introduce residence time: How long does

  19. Lithium in LMC carbon stars

    E-Print Network [OSTI]

    D. Hatzidimitriou; D. H. Morgan; R. D. Cannon; B. F. W. Croke

    2003-04-16T23:59:59.000Z

    Nineteen carbon stars that show lithium enrichment in their atmospheres have been discovered among a sample of 674 carbon stars in the Large Magellanic Cloud. Six of the Li-rich carbon stars are of J-type, i.e. with strong 13C isotopic features. No super-Li-rich carbon stars were found. The incidence of lithium enrichment among carbon stars in the LMC is much rarer than in the Galaxy, and about five times more frequent among J-type than among N-type carbon stars. The bolometric magnitudes of the Li-rich carbon stars range between -3.3 and -5.7. Existing models of Li-enrichment via the hot bottom burning process fail to account for all of the observed properties of the Li-enriched stars studied here.

  20. CARBON DIOXIDE FIXATION.

    SciTech Connect (OSTI)

    FUJITA,E.

    2000-01-12T23:59:59.000Z

    Solar carbon dioxide fixation offers the possibility of a renewable source of chemicals and fuels in the future. Its realization rests on future advances in the efficiency of solar energy collection and development of suitable catalysts for CO{sub 2} conversion. Recent achievements in the efficiency of solar energy conversion and in catalysis suggest that this approach holds a great deal of promise for contributing to future needs for fuels and chemicals.

  1. Carbon Capital: The Political Ecology of Carbon Forestry and Development in Chiapas, Mexico

    E-Print Network [OSTI]

    Osborne, Tracey Muttoo

    2010-01-01T23:59:59.000Z

    B v + B d ) C T = Total carbon B v = biomass contained indevelopment through carbon sequestration: experiences in2000) Rural livelihoods and carbon management, IIED Natural

  2. Carbon taxes and India

    SciTech Connect (OSTI)

    Fisher-Vanden, K.A.; Pitcher, H.M.; Edmonds, J.A.; Kim, S.H. [Pacific Northwest Lab., Richland, WA (United States); Shukla, P.R. [Indian Institute of Management, Ahmedabad (India)

    1994-07-01T23:59:59.000Z

    Using the Indian module of the Second Generation Model 9SGM, we explore a reference case and three scenarios in which greenhouse gas emissions were controlled. Two alternative policy instruments (carbon taxes and tradable permits) were analyzed to determine comparative costs of stabilizing emissions at (1) 1990 levels (the 1 X case), (2) two times the 1990 levels (the 2X case), and (3) three times the 1990 levels (the 3X case). The analysis takes into account India`s rapidly growing population and the abundance of coal and biomass relative to other fuels. We also explore the impacts of a global tradable permits market to stabilize global carbon emissions on the Indian economy under the following two emissions allowance allocation methods: (1) {open_quotes}Grandfathered emissions{close_quotes}: emissions allowances are allocated based on 1990 emissions. (2) {open_quotes}Equal per capita emissions{close_quotes}: emissions allowances are allocated based on share of global population. Tradable permits represent a lower cost method to stabilize Indian emissions than carbon taxes, i.e., global action would benefit India more than independent actions.

  3. Assessment of Brine Management for Geologic Carbon Sequestration

    E-Print Network [OSTI]

    Breunig, Hanna M.

    2014-01-01T23:59:59.000Z

    for  Geologic  Carbon  Sequestration. ”   International  of  Energy.  “Carbon  Sequestration  Atlas  of  the  Water  Extracted  from  Carbon  Sequestration  Projects."  

  4. activated carbon electrodes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Pyrolytic carbon electrodes Lithographically Defined Porous Carbon Electrodes** Materials Science Websites Summary: Pyrolytic carbon electrodes Lithographically Defined...

  5. Method for joining carbon-carbon composites to metals

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); McMillan, April D. (Knoxville, TN); Moorhead, Arthur J. (Knoxville, TN)

    1997-01-01T23:59:59.000Z

    A method for joining carbon-carbon composites to metals by brazing. Conventional brazing of recently developed carbon-bonded carbon fiber (CBCF) material to a metal substrate is limited by the tendency of the braze alloy to "wick" into the CBCF composite rather than to form a strong bond. The surface of the CBCF composite that is to be bonded is first sealed with a fairly dense carbonaceous layer achieved by any of several methods. The sealed surface is then brazed to the metal substrate by vacuum brazing with a Ti-Cu-Be alloy.

  6. Method for joining carbon-carbon composites to metals

    DOE Patents [OSTI]

    Lauf, R.J.; McMillan, A.D.; Moorhead, A.J.

    1997-07-15T23:59:59.000Z

    A method for joining carbon-carbon composites to metals by brazing. Conventional brazing of recently developed carbon-bonded carbon fiber (CBCF) material to a metal substrate is limited by the tendency of the braze alloy to ``wick`` into the CBCF composite rather than to form a strong bond. The surface of the CBCF composite that is to be bonded is first sealed with a fairly dense carbonaceous layer achieved by any of several methods. The sealed surface is then brazed to the metal substrate by vacuum brazing with a Ti-Cu-Be alloy. 1 fig.

  7. Carbonation Mechanism of Reservoir Rock by Supercritical Carbon...

    Open Energy Info (EERE)

    Task 3: Mechanical behaviors of carbonated minerals. - Task 4: Modeling of CO2- reservoir rock interactions. - Task 5: Preparation of report covering the four tasks previous task,...

  8. Geologic Carbon Sequestration and Biosequestration (Carbon Cycle 2.0)

    ScienceCinema (OSTI)

    DePaolo, Don [Director, LBNL Earth Sciences Division

    2011-06-08T23:59:59.000Z

    Don DePaolo, Director of LBNL's Earth Sciences Division, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 3, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  9. Howell, R.A., 2012 Living with a carbon allowance 1 Living with a carbon allowance: the experiences of Carbon

    E-Print Network [OSTI]

    Howell, R.A., 2012 Living with a carbon allowance 1 Living with a carbon allowance: the experiences of Carbon Rationing Action Groups and implications for policy Rachel A. Howell Environmental Change with a carbon allowance: the experiences of Carbon Rationing Action Groups and implications for policy. Energy

  10. Carbon/Ternary Alloy/Carbon Optical Stack on Mylar as an Optical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CarbonTernary AlloyCarbon Optical Stack on Mylar as an Optical Data Storage Medium to Potentially Replace Magnetic Tape. CarbonTernary AlloyCarbon Optical Stack on Mylar as an...

  11. Geologic Carbon Storage Archived Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Corporation 9302005 Enhanced Microbial Pathways for Methane Production from Oil Shale Western Research Institute 1012005 Carbon Sequestration for Existing Power Plants...

  12. Carbon-assisted flyer plates

    DOE Patents [OSTI]

    Stahl, David B. (Los Alamos, NM); Paisley, Dennis L. (Santa Fe, NM)

    1994-01-01T23:59:59.000Z

    A laser driven flyer plate utilizing an optical fiber connected to a laser. The end of the optical fiber has a layer of carbon and a metal layer deposited onto it. The carbon layer provides the laser induced plasma which is superior to the plasma produced from most metals. The carbon layer plasma is capable of providing a flatter flyer plate, converting more of the laser energy to driving plasma, promoting a higher flyer plate acceleration, and providing a more uniform pulse behind the plate. In another embodiment, the laser is in optical communication with a substrate onto which a layer of carbon and a layer of metal have been deposited.

  13. Carbon nanotube IR detectors (SV)

    SciTech Connect (OSTI)

    Leonard, F. L.

    2012-03-01T23:59:59.000Z

    Sandia National Laboratories (Sandia) and Lockheed Martin Corporation (LMC) collaborated to (1) evaluate the potential of carbon nanotubes as channels in infrared (IR) photodetectors; (2) assemble and characterize carbon nanotube electronic devices and measure the photocurrent generated when exposed to infrared light;(3) compare the performance of the carbon nanotube devices with that of traditional devices; and (4) develop and numerically implement models of electronic transport and opto-electronic behavior of carbon nanotube infrared detectors. This work established a new paradigm for photodetectors.

  14. Carbon Sequestration Atlas IV Video

    ScienceCinema (OSTI)

    Rodosta, Traci

    2014-06-27T23:59:59.000Z

    The Carbon Sequestration Atlas is a collection of all the storage sites of CO2 such as, petroleum, natural gas, coal, and oil shale.

  15. Carbon Sequestration Advisory Committee (Nebraska)

    Broader source: Energy.gov [DOE]

    Under this statute, the Director of Natural Resources will document and quantify carbon sequestration and greenhouse emissions reductions associated with agricultural practices, management systems,...

  16. Low Cost Carbon Fiber Overview

    Broader source: Energy.gov (indexed) [DOE]

    and Processing (IT) Lignin-Based Low-Cost Carbon Fiber Precursors * Structural Materials for Vehicles (VT) * Graphite Electrodes for Arc Furnaces (IT) * Nanoporous CF for...

  17. Carbon Fiber Consortium | Partnerships | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in 2011 to accelerate the development and deployment of new, lower cost carbon fiber composite materials. The Consortium draws on the broad experience that the Oak Ridge National...

  18. Sandia National Laboratories: Carbon Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SO2), nitrous oxides (NOx), mercury, and fine particulate matter. Carbon dioxide (CO2) is always a byproduct of combustion. ... Geomechanics Laboratory On April 7, 2011,...

  19. Carbon Sequestration Atlas IV Video

    SciTech Connect (OSTI)

    Rodosta, Traci

    2013-04-19T23:59:59.000Z

    The Carbon Sequestration Atlas is a collection of all the storage sites of CO2 such as, petroleum, natural gas, coal, and oil shale.

  20. University of Dundee Carbon Management Plan

    E-Print Network [OSTI]

    Davidson, Fordyce A.

    Carbon Management Strategy 2.1 Our low carbon vision 6 2.2 Context and drivers for Carbon Management 6 2 and sources of funding 18 6 Actions to Embed Carbon Management in Your Organisation 19 6.1 Corporate Strategy Appendix A: Carbon Management Matrix - Embedding 23 Appendix B: Energy Prices 24 #12;3 FOREWORD FROM

  1. University of Aberdeen Carbon Management Plan

    E-Print Network [OSTI]

    Levi, Ran

    of Aberdeen is committed to reducing its carbon footprint and to playing its part in limiting the worstUniversity of Aberdeen Carbon Management Plan Higher Education Carbon Management Programme working with Page 1 The University of Aberdeen Carbon Management Programme Carbon Management Plan (CMP

  2. Carbon Management Plan 1. Executive summary 5

    E-Print Network [OSTI]

    Haase, Markus

    Carbon Management Plan June 2011 #12;2 #12;3 CONTENTS 1. Executive summary 5 2. Introduction 15 3. Background and context 16 4. Carbon management strategy 18 5. Carbon emissions baseline and projections 22 6. Past actions and achievements 30 7. Carbon Management Plan implementation 33 8. Carbon Management Plan

  3. Carbonate fuel cell anodes

    DOE Patents [OSTI]

    Donado, Rafael A. (Chicago, IL); Hrdina, Kenneth E. (Glenview, IL); Remick, Robert J. (Bolingbrook, IL)

    1993-01-01T23:59:59.000Z

    A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process for production of the lithium ferrite containing anode by slipcasting.

  4. Carbonate fuel cell anodes

    DOE Patents [OSTI]

    Donado, R.A.; Hrdina, K.E.; Remick, R.J.

    1993-04-27T23:59:59.000Z

    A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process is described for production of the lithium ferrite containing anode by slipcasting.

  5. ARM - Carbon Dioxide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492air Comments? We would love to heargovInstrumentstdma Comments? WeairgovInstrumentswsiCampaignCarbon

  6. Sandia Energy - Carbon Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatings Initiated at PNNL's Sequim BayCapture Home Carbon Capture The

  7. Sandia Energy - Carbon Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatings Initiated at PNNL's Sequim BayCapture Home Carbon

  8. Carbon Capture FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r8.05CarBen Version 3 Prototype:carbon

  9. Carbon Storage Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l aNanocomposites, and DevicesCarbonProgram

  10. Carbon Bearing Trace Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries BatteriesCAESMissionMetal-OrganicCarbon Bearing

  11. Carbon Fiber Technology Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Change RequestFirst Report to the PrimePilot Plant andCarbon

  12. Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide

    Broader source: Energy.gov [DOE]

    Project Objectives: Elucidate comprehensively the carbonation reaction mechanisms between supercritical carbon dioxide (scCO2) and reservoir rocks consisting of different mineralogical compositions in aqueous and non-aqueous environments at temperatures of up to 250ºC, and to develop chemical modeling of CO2-reservior rock interactions.

  13. Carbon Dioxide Sequestration in Concrete Using Vacuum-Carbonation Alain Azar, Prof. Yixin Shao

    E-Print Network [OSTI]

    Barthelat, Francois

    Carbon Dioxide Sequestration in Concrete Using Vacuum-Carbonation Alain Azar, Prof. Yixin Shao promising carbon uptake results and is a viable option for carbonation curing. Carbon sequestration increase in Carbon dioxide (CO2) emissions over the past five decades, specific ways to reduce

  14. Intermediate Temperature Carbon - Carbon Composite Structures. CRADA Final Report

    SciTech Connect (OSTI)

    Lara-Curzio, Edgar [ORNL

    2007-06-01T23:59:59.000Z

    The objective of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC (the "Contractor") and Synterials, Inc. (the "Participant") was to demonstrate promising processing methods, which can lead to producing Carbon-Carbon Composites (CCC), with tensile and interlaminar properties comparable to those of organic matrix composites and environmental stability at 1200 F for long periods of time. The participant synthesized carbon-carbon composites with two different fiber coatings and three different matrices. Both parties evaluated the tensile and interlaminar properties of these materials and characterized the microstructure of the matrices and interfaces. It was found that fiber coatings of carbon and boron carbide provided the best environmental protection and resulted in composites with high tensile strength.

  15. Carbon dioxide and climate

    SciTech Connect (OSTI)

    Not Available

    1990-10-01T23:59:59.000Z

    Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

  16. Carbon Dioxide Reduction Through Urban Forestry

    E-Print Network [OSTI]

    Standiford, Richard B.

    . Retrieval Terms: urban forestry, carbon dioxide, sequestration, avoided energy The Authors E. Gregory McCarbon Dioxide Reduction Through Urban Forestry: Guidelines for Professional and Volunteer Tree; Simpson, James R. 1999. Carbon dioxide reduction through urban forestry

  17. Carbon Fiber Composite Cellular A Dissertation

    E-Print Network [OSTI]

    Wadley, Haydn

    Carbon Fiber Composite Cellular Structures ____________________________________ A Dissertation and honeycombs. However, for weight sensitive, ambient temperature applications, carbon fiber composites have emerged as a promising material due to its high specific strength and low density. Carbon fiber reinforced

  18. A synthesis of carbon in international trade

    E-Print Network [OSTI]

    Peters, G. P; Davis, S. J; Andrew, R.

    2012-01-01T23:59:59.000Z

    and Peters, G. P. : Carbon Footprint of Nations: A Global,analysis for na- tional carbon footprint accounting, Eco.study of the UK’s carbon footprint, Eco. Syst. Res. , 22,

  19. Carbon Nanotubes: Bearing Stress Like Never Before

    E-Print Network [OSTI]

    Limaye, Aditya

    2013-01-01T23:59:59.000Z

    of the mechanical properties of carbon nanotube– polymercomposites. Carbon, 44. 1624 – 1652 doi: 10.1016/j.R.H. , & Hart, A.J. (2013). Carbon Nanotubes: Present and

  20. CARBON MARKETS AROUND THE WORLD Ashley Lawson

    E-Print Network [OSTI]

    California at Davis, University of

    CARBON MARKETS AROUND THE WORLD Ashley Lawson Senior Analyst, Thomson Reuters Point Carbon only pilot trading carbon 6 #12;Shenzhen · Policy ­ Intensity-based ETS started June 18, 2013

  1. Who Pays a Price on Carbon?

    E-Print Network [OSTI]

    Grainger, Corbett A.; Kolstad, Charles D.

    2010-01-01T23:59:59.000Z

    on a per-capita basis a carbon price is much more regressiveadverse distributional effects of a carbon emissions policy.Distributional incidence · Carbon tax · Tradable permits Q52

  2. Este trabajo ha contado con la financiacin del Plan Nacional de Ciencia y Tecnologa (CICYT TEL96 1304C0201) y del Departamento de Industria del Gobierno Vasco (PGTI96 CO96RO01).

    E-Print Network [OSTI]

    Miguel-Alonso, José

    Este trabajo ha contado con la financiación del Plan Nacional de Ciencia y Tecnología (CICYT TEL96 formación a distancia: IKASTEL J. Aramberri, F. Abal, M. Gamboa, J. Lasa y J. Miguel Departamento de para el aprendizaje a distancia. Las universidades tradicionales se basan en un modelo de aprendizaje

  3. 2013 Carbon Management Research Symposium

    E-Print Network [OSTI]

    . BACKGROUND · As a first step towards developing risk assessment strategies for carbon sequestration projects2013 Carbon Management Research Symposium Effects of Formation Heterogeneity on CO2 Gas Phase Attenuation in the Shallow Subsurface During Possible Leakage from Geologic Sequestration Sites Michael

  4. Permafrost soils and carbon cycling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ping, C. L.; Jastrow, J. D.; Jorgenson, M. T.; Michaelson, G. J.; Shur, Y. L.

    2015-01-01T23:59:59.000Z

    Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environment. These efforts significantly increased estimates of the amount of organic carbon stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enormous organic carbon stocks during the Quaternary. This knowledge has also called attention to the importance of permafrost-affected soils to the global carbon cycle and the potential vulnerability of the region's soil organic carbon (SOC) stocks to changing climatic conditions. Inmore »this review, we briefly introduce the permafrost characteristics, ice structures, and cryopedogenic processes that shape the development of permafrost-affected soils, and discuss their effects on soil structures and on organic matter distributions within the soil profile. We then examine the quantity of organic carbon stored in permafrost-region soils, as well as the characteristics, intrinsic decomposability, and potential vulnerability of this organic carbon to permafrost thaw under a warming climate. Overall, frozen conditions and cryopedogenic processes, such as cryoturbation, have slowed decomposition and enhanced the sequestration of organic carbon in permafrost-affected soils over millennial timescales. Due to the low temperatures, the organic matter in permafrost soils is often less humified than in more temperate soils, making some portion of this stored organic carbon relatively vulnerable to mineralization upon thawing of permafrost.« less

  5. LOW CARBON & 570 million GVA

    E-Print Network [OSTI]

    Wrigley, Stuart

    LOW CARBON & RENEWABLES #12;£570 million GVA THE SECTOR COMPRISES 326 COMPANIES EMPLOYING 12- tor comprises 326 companies, employing approximately 12,240 people and contributing £570 million nuclear, wind, solar, geo-thermal and tidal power. The total market value of the low carbon environmental

  6. Process for making hollow carbon spheres

    DOE Patents [OSTI]

    Luhrs, Claudia C.; Phillips, Jonathan; Richard, Monique N.; Knapp, Angela Michelle

    2013-04-16T23:59:59.000Z

    A hollow carbon sphere having a carbon shell and an inner core is disclosed. The hollow carbon sphere has a total volume that is equal to a volume of the carbon shell plus an inner free volume within the carbon shell. The inner free volume is at least 25% of the total volume. In some instances, a nominal diameter of the hollow carbon sphere is between 10 and 180 nanometers.

  7. Method for producing carbon nanotubes

    DOE Patents [OSTI]

    Phillips, Jonathan (Santa Fe, NM); Perry, William L. (Jemez Springs, NM); Chen, Chun-Ku (Albuquerque, NM)

    2006-02-14T23:59:59.000Z

    Method for producing carbon nanotubes. Carbon nanotubes were prepared using a low power, atmospheric pressure, microwave-generated plasma torch system. After generating carbon monoxide microwave plasma, a flow of carbon monoxide was directed first through a bed of metal particles/glass beads and then along the outer surface of a ceramic tube located in the plasma. As a flow of argon was introduced into the plasma through the ceramic tube, ropes of entangled carbon nanotubes, attached to the surface of the tube, were produced. Of these, longer ropes formed on the surface portion of the tube located in the center of the plasma. Transmission electron micrographs of individual nanotubes revealed that many were single-walled.

  8. Natural materials for carbon capture.

    SciTech Connect (OSTI)

    Myshakin, Evgeniy M. (National Energy Technology Laboratory, Pittsburgh, PA); Romanov, Vyacheslav N. (National Energy Technology Laboratory, Pittsburgh, PA); Cygan, Randall Timothy

    2010-11-01T23:59:59.000Z

    Naturally occurring clay minerals provide a distinctive material for carbon capture and carbon dioxide sequestration. Swelling clay minerals, such as the smectite variety, possess an aluminosilicate structure that is controlled by low-charge layers that readily expand to accommodate water molecules and, potentially, carbon dioxide. Recent experimental studies have demonstrated the efficacy of intercalating carbon dioxide in the interlayer of layered clays but little is known about the molecular mechanisms of the process and the extent of carbon capture as a function of clay charge and structure. A series of molecular dynamics simulations and vibrational analyses have been completed to assess the molecular interactions associated with incorporation of CO2 in the interlayer of montmorillonite clay and to help validate the models with experimental observation.

  9. atomics international aqueous carbonate procelladonna: Topics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PROGRAM ON ENERGY AND Geosciences Websites Summary: and storage, 6) adaptation of wholesale electricity markets to support a low-carbon future, 7) global power carbon policy...

  10. Carbon Storage Atlas, Employee Newsletter Earn International...

    Broader source: Energy.gov (indexed) [DOE]

    NETL's Carbon Storage Atlas IV and FE's internal employee newsletter, inTouch, earned 2013 National Association of Government Communicators awards. NETL's Carbon Storage Atlas IV...

  11. Contraction & Convergence: UK carbon emissions and the

    E-Print Network [OSTI]

    Watson, Andrew

    the EU's emissions trading scheme will do little to mitigate carbon emissions 4) Aviation growth must emissions. Keywords Contraction & Convergence; aviation; emissions trading; passengers; carbon dioxide #12

  12. Who Pays a Price on Carbon?

    E-Print Network [OSTI]

    Grainger, Corbett A.; Kolstad, Charles D.

    2010-01-01T23:59:59.000Z

    that a fully auctioned emissions trading program (with aof a carbon tax or emissions trading system (Fullertona carbon tax or emissions trading system may have exemptions

  13. New Zealand Joins International Carbon Storage Group

    Broader source: Energy.gov [DOE]

    The Carbon Sequestration Leadership Forum today announced that New Zealand has become the newest member of the international carbon storage body.

  14. Hydrogen Adsorption Induces Interlayer Carbon Bond Formation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Adsorption Induces Interlayer Carbon Bond Formation in Supported Few-Layer Graphene Friday, February 28, 2014 Among the allotropes of carbon, diamond has some of the most...

  15. Energy-Related Carbon Emissions in Manufacturing

    Reports and Publications (EIA)

    2000-01-01T23:59:59.000Z

    Energy-related carbon emissions in manufacturing analysis and issues related to the energy use, energy efficiency, and carbon emission indicators.

  16. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate...

  17. GEOLOGIC CARBON SEQUESTRATION STRATEGIES FOR CALIFORNIA

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION GEOLOGIC CARBON SEQUESTRATION STRATEGIES FOR CALIFORNIA to extend our thanks to the authors of various West Coast Regional Carbon Sequestration Partnership

  18. Greening up fossil fuels with carbon sequestration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Greening up fossil fuels with carbon sequestration 1663 Los Alamos science and technology magazine Latest Issue:May 2015 All Issues submit Greening up fossil fuels with carbon...

  19. Carbonic Acid Shows Promise in Geology, Biology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Surprising Secrets of Carbonic Acid Probing the Surprising Secrets of Carbonic Acid Berkeley Lab Study Holds Implications for Geological and Biological Processes October 23,...

  20. Electrical Transport in Carbon Nanotubes and Graphene

    E-Print Network [OSTI]

    Liu, Gang

    2010-01-01T23:59:59.000Z

    Introduction to Carbon Nanotubes and Graphene Single wallCarbon nanotubes and graphene are the most popular Carbonin the Normal Metal – Graphene – Superconductor Junctions

  1. Carbon Fiber Pilot Plant and Research Facilities

    Broader source: Energy.gov (indexed) [DOE]

    for the U.S. Department of Energy Presentationname Carbon Fiber Facilities Materials Carbon Fiber Research Facility Type Production Fiber Types Tow Size Tensioning Line...

  2. Structure and Transformation of Amorphous Calcium Carbonate:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transformation of Amorphous Calcium Carbonate: A Solid-State 43Ca NMR and Computational Molecular Dynamics Structure and Transformation of Amorphous Calcium Carbonate: A...

  3. Prospects for Enhancing Carbon Sequestration and Reclamation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prospects for Enhancing Carbon Sequestration and Reclamation of Degraded Lands with Fossil-fuel Combustion By-products. Prospects for Enhancing Carbon Sequestration and Reclamation...

  4. Putting the pressure on carbon dioxide | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on carbon dioxide Released: March 26, 2014 Improving the chances for fuel recovery and carbon sequestration Artwork from this research graces the cover of Environmental Science...

  5. UCSF Sustainability Baseline Assessment: Carbon Footprint Analysis

    E-Print Network [OSTI]

    Yamamoto, Keith

    UCSF Sustainability Baseline Assessment: Carbon Footprint Analysis Final Issue Date: March 21, 2010 #12;Carbon Footprint Analysis Background This chapter of the Sustainability Assessment focuses on UCSF

  6. A chemistry tale of two carbons | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A chemistry tale of two carbons A chemistry tale of two carbons Released: September 03, 2012 Comprehensive field study of urban, natural emissions interacting to affect climate...

  7. Electrochemical implications of defects in carbon nanotubes

    E-Print Network [OSTI]

    Hoefer, Mark

    2012-01-01T23:59:59.000Z

    conducting polymer hybrid supercapacitors. Journal of Thestudies of carbon-carbon supercapacitors. Journal of TheHigh-voltage asymmetric supercapacitors operating in aqueous

  8. Noncovalently functionalized graphitic mesoporous carbon as a...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    functionalized graphitic mesoporous carbon as a stable support of Pt nanoparticles for oxygen reduction. Noncovalently functionalized graphitic mesoporous carbon as a stable...

  9. Case Study: Transcritical Carbon Dioxide Supermarket Refrigeration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Case Study: Transcritical Carbon Dioxide Supermarket Refrigeration Systems Case Study: Transcritical Carbon Dioxide Supermarket Refrigeration Systems This case study documents one...

  10. Functionalized carbon nanotubes and nanofibers for biosensing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon nanotubes and nanofibers for biosensing applications. Functionalized carbon nanotubes and nanofibers for biosensing applications. Abstract: This review summarizes the recent...

  11. CFTF | Carbon Fiber Technology Facility | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BTRIC CNMS CSMB CFTF Working with CFTF HFIR MDF NTRC OLCF SNS Carbon Fiber Technology Facility Home | User Facilities | CFTF CFTF | Carbon Fiber Technology Facility SHARE Oak...

  12. Robust carbon monolith having hierarchical porosity

    DOE Patents [OSTI]

    Dai, Sheng; Guiohon, Georges A; Liang, Chengdu

    2013-02-05T23:59:59.000Z

    A carbon monolith includes a robust carbon monolith characterized by a skeleton size of at least 100 nm, and a hierarchical pore structure having macropores and mesopores.

  13. Robust carbon monolith having hierarchical porosity

    DOE Patents [OSTI]

    Dai, Sheng; Guiochon, Georges A; Liang, Chengdu

    2014-01-14T23:59:59.000Z

    A carbon monolith includes a robust carbon monolith characterized by a skeleton size of at least 100 nm, and a hierarchical pore structure having macropores and mesopores.

  14. California Low Carbon Fuels Infrastructure Investment Initiative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Carbon Fuels Infrastructure Investment Initiative California Low Carbon Fuels Infrastructure Investment Initiative 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  15. QUANTIFYING FOREST ABOVEGROUND CARBON POOLS AND FLUXES USING MULTI-TEMPORAL LIDAR A report on field monitoring, remote sensing MMV, GIS integration, and modeling results for forestry field validation test to quantify aboveground tree biomass and carbon

    SciTech Connect (OSTI)

    Lee Spangler; Lee A. Vierling; Eva K. Stand; Andrew T. Hudak; Jan U.H. Eitel; Sebastian Martinuzzi

    2012-04-01T23:59:59.000Z

    Sound policy recommendations relating to the role of forest management in mitigating atmospheric carbon dioxide (CO{sub 2}) depend upon establishing accurate methodologies for quantifying forest carbon pools for large tracts of land that can be dynamically updated over time. Light Detection and Ranging (LiDAR) remote sensing is a promising technology for achieving accurate estimates of aboveground biomass and thereby carbon pools; however, not much is known about the accuracy of estimating biomass change and carbon flux from repeat LiDAR acquisitions containing different data sampling characteristics. In this study, discrete return airborne LiDAR data was collected in 2003 and 2009 across {approx}20,000 hectares (ha) of an actively managed, mixed conifer forest landscape in northern Idaho, USA. Forest inventory plots, established via a random stratified sampling design, were established and sampled in 2003 and 2009. The Random Forest machine learning algorithm was used to establish statistical relationships between inventory data and forest structural metrics derived from the LiDAR acquisitions. Aboveground biomass maps were created for the study area based on statistical relationships developed at the plot level. Over this 6-year period, we found that the mean increase in biomass due to forest growth across the non-harvested portions of the study area was 4.8 metric ton/hectare (Mg/ha). In these non-harvested areas, we found a significant difference in biomass increase among forest successional stages, with a higher biomass increase in mature and old forest compared to stand initiation and young forest. Approximately 20% of the landscape had been disturbed by harvest activities during the six-year time period, representing a biomass loss of >70 Mg/ha in these areas. During the study period, these harvest activities outweighed growth at the landscape scale, resulting in an overall loss in aboveground carbon at this site. The 30-fold increase in sampling density between the 2003 and 2009 did not affect the biomass estimates. Overall, LiDAR data coupled with field reference data offer a powerful method for calculating pools and changes in aboveground carbon in forested systems. The results of our study suggest that multitemporal LiDAR-based approaches are likely to be useful for high quality estimates of aboveground carbon change in conifer forest systems.

  16. Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants

    SciTech Connect (OSTI)

    P. Alan Mays; Bert R. Bock; Gregory A. Brodie; L. Suzanne Fisher; J. Devereux Joslin; Donald L. Kachelman; Jimmy J. Maddox; N. S. Nicholas; Larry E. Shelton; Nick Taylor; Mark H. Wolfe; Dennis H. Yankee; John Goodrich-Mahoney

    2005-08-30T23:59:59.000Z

    The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. The CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by 2025. Other potential benefits of the demonstration include developing a passive technology for water treatment for trace metal and nutrient release reductions, using power plant by-products to improve coal mine land reclamation and carbon sequestration, developing wildlife habitat and green-space around production facilities, generating Total Maximum Daily Load (TMDL) credits for the use of process water, and producing wood products for use by the lumber and pulp and paper industry. Project activities conducted during the five year project period include: Assessing tree cultivation and other techniques used to sequester carbon; Project site assessment; Greenhouse studies to determine optimum plant species and by-product application; Designing, constructing, operating, monitoring, and evaluating the CCWESTRS system; and Reporting (ongoing). The ability of the system to sequester carbon will be the primary measure of effectiveness, measured by accessing survival and growth response of plants within the CCWESTRS. In addition, costs associated with design, construction, and monitoring will be evaluated and compared to projected benefits of other carbon sequestration technologies. The test plan involves the application of three levels each of two types of power plant by-products--three levels of FGD gypsum mulch, and three levels of ash pond irrigation water. This design produces nine treatment levels which are being tested with two species of hardwood trees (sweet gum and sycamore). The project is examining the effectiveness of applications of 0, 8-cm, and 15-cm thick gypsum mulch layers and 0, 13 cm, and 25 cm of coal fly ash water for irrigation. Each treatment combination is being replicated three times, resulting in a total of 54 treatment plots (3 FGD gypsum levels X 3 irrigation water levels x 2 tree species x 3 replicates). Survival and growth response of plant species in terms of sequestering carbon in plant material and soil will be the primary measure of effectiveness of each treatment. Additionally, the ability of the site soils and unsaturated zone subsurface m

  17. Capacitor with a composite carbon foam electrode

    DOE Patents [OSTI]

    Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

    1999-01-01T23:59:59.000Z

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid partides being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.

  18. Capacitor with a composite carbon foam electrode

    DOE Patents [OSTI]

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1999-04-27T23:59:59.000Z

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  19. Method for fabricating composite carbon foam

    DOE Patents [OSTI]

    Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

    2001-01-01T23:59:59.000Z

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.

  20. Gas permeability of carbon aerogels

    SciTech Connect (OSTI)

    Kong, F.; LeMay, J.D.; Hulsey, S.S.; Alviso, C.T.; Pekala, R.W. (Chemistry and Materials Science Department, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States))

    1993-12-01T23:59:59.000Z

    Carbon aerogels are synthesized via the aqueous polycondensation of resorcinol with formaldehyde, followed by supercritical drying and subsequent pyrolysis at 1050 [degree]C. As a result of their interconnected porosity, ultrafine cell/pore size, and high surface area, carbon aerogels have many potential applications such as supercapacitors, battery electrodes, catalyst supports, and gas filters. The performance of carbon aerogels in the latter two applications depends on the permeability or gas flow conductance in these materials. By measuring the pressure differential across a thin specimen and the nitrogen gas flow rate in the viscous regime, the permeability of carbon aerogels was calculated from equations based upon Darcy's law. Our measurements show that carbon aerogels have permeabilities on the order of 10[sup [minus]12] to 10[sup [minus]10] cm[sup 2] over the density range from 0.05--0.44 g/cm[sup 3]. Like many other aerogel properties, the permeability of carbon aerogels follows a power law relationship with density, reflecting differences in the average mesopore size. Comparing the results from this study with the permeability of silica aerogels reported by other workers, we found that the permeability of aerogels is governed by a simple universal flow equation. This paper discusses the relationship between permeability, pore size, and density in carbon aerogels.

  1. Carbon foam characterization tensile evaluation of carbon foam ligaments 

    E-Print Network [OSTI]

    Verdugo Rodriguez, Rogelio Alberto

    2004-09-30T23:59:59.000Z

    A methodology for ligament isolation and specimen preparation for tensile testing of single ligaments from the unit cell of open-cell carbon foams has been successfully developed and implemented. Results are presented for ...

  2. Carbon dioxide hydrate particles for ocean carbon sequestration

    E-Print Network [OSTI]

    Chow, A.C.

    This paper presents strategies for producing negatively buoyant CO[subscript 2] hydrate composite particles for ocean carbon sequestration. Our study is based on recent field observations showing that a continuous-jet ...

  3. Atmospheric carbon dioxide and the global carbon cycle

    SciTech Connect (OSTI)

    Trabalka, J R [ed.

    1985-12-01T23:59:59.000Z

    This state-of-the-art volume presents discussions on the global cycle of carbon, the dynamic balance among global atmospheric CO2 sources and sinks. Separate abstracts have been prepared for the individual papers. (ACR)

  4. Carbon-Optimal and Carbon-Neutral Supply Chains

    E-Print Network [OSTI]

    Caro, F.; Corbett, C. J.; Tan, T.; Zuidwijk, R.

    2011-01-01T23:59:59.000Z

    that the focus in the life-cycle assessment (LCA) and carbonclosely related to life-cycle assessment (LCA). The existingsupply chains, and on life-cycle assessment (LCA) and carbon

  5. Measuring supply chain carbon efficiency : a carbon label framework

    E-Print Network [OSTI]

    Craig, Anthony (Anthony J.)

    2012-01-01T23:59:59.000Z

    In the near term, efficiency improvements represent a key option for reducing the impacts of climate change. The growing awareness of climate change has increased the attention regarding the carbon emissions "embedded" in ...

  6. Carbon films produced from ionic liquid carbon precursors

    DOE Patents [OSTI]

    Dai, Sheng; Luo, Huimin; Lee, Je Seung

    2013-11-05T23:59:59.000Z

    The invention is directed to a method for producing a film of porous carbon, the method comprising carbonizing a film of an ionic liquid, wherein the ionic liquid has the general formula (X.sup.+a).sub.x(Y.sup.-b).sub.y, wherein the variables a and b are, independently, non-zero integers, and the subscript variables x and y are, independently, non-zero integers, such that ax=by, and at least one of X.sup.+ and Y.sup.- possesses at least one carbon-nitrogen unsaturated bond. The invention is also directed to a composition comprising a porous carbon film possessing a nitrogen content of at least 10 atom %.

  7. Aluminum-carbon composite electrode

    DOE Patents [OSTI]

    Farahmandi, C.J.; Dispennette, J.M.

    1998-07-07T23:59:59.000Z

    A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg. 3 figs.

  8. Carbon Markets and Technological Innovation

    E-Print Network [OSTI]

    Weber, T A; Neuhoff, Karsten

    www.eprg.group.cam.ac.uk E P R G W O R K IN G P A P E R N O N -T E C H N IC A L S U M M A R Y Carbon Markets and Technological Innovation EPRG Working Paper 0917 Cambridge Working Paper in Economics 0932 Thomas A. Weber... and Karsten Neuhoff This paper examines how considering firm-level innovation in carbon-abatement technologies influences the optimal design choice for carbon pricing. It builds on Weitzman’s model (1974) that shows in what instances cap and trade...

  9. Rapid oxidation/stabilization technique for carbon foams, carbon fibers and C/C composites

    DOE Patents [OSTI]

    Tan, Seng; Tan, Cher-Dip

    2004-05-11T23:59:59.000Z

    An enhanced method for the post processing, i.e. oxidation or stabilization, of carbon materials including, but not limited to, carbon foams, carbon fibers, dense carbon-carbon composites, carbon/ceramic and carbon/metal composites, which method requires relatively very short and more effective such processing steps. The introduction of an "oxygen spill over catalyst" into the carbon precursor by blending with the carbon starting material or exposure of the carbon precursor to such a material supplies required oxygen at the atomic level and permits oxidation/stabilization of carbon materials in a fraction of the time and with a fraction of the energy normally required to accomplish such carbon processing steps. Carbon based foams, solids, composites and fiber products made utilizing this method are also described.

  10. Purification and Processing of Graphitic Carbons

    E-Print Network [OSTI]

    Worsley, Kimberly Anne

    2010-01-01T23:59:59.000Z

    Oxidation of Petroleum Asphaltenes. Liq. Fuels Tech. 1985,fibers, 2, petroleum asphaltenes, 4 carbon xerogels, 5

  11. Ultimate Isotope Precision for Carbonates Thermo Scientific

    E-Print Network [OSTI]

    Lachniet, Matthew S.

    Ultimate Isotope Precision for Carbonates Thermo Scientific KIEL IV Carbonate Device Part of Thermo integration cycle Ultimate Isotope Precision for Carbonates The Thermo Scientific KIEL IV Carbonate DeviceV Thermo Scientific MAT 253 or the 3-kV DELTA V isotope ratio mass spectrometer meets the requirements

  12. March 2005 Number 238 CARBON CAPTURE AND

    E-Print Network [OSTI]

    Mather, Tamsin A.

    March 2005 Number 238 CARBON CAPTURE AND STORAGE (CCS) As part of the government's global strategy. This POSTnote discusses the potential of carbon capture and storage (CCS), a method of carbon sequestration2 and will be included in the forthcoming Department of Trade and Industry (DTI) Carbon Abatement Technology Strategy

  13. Biochar and Carbon Sequestration: A Regional Perspective

    E-Print Network [OSTI]

    Everest, Graham R

    Biochar and Carbon Sequestration: A Regional Perspective A report prepared for East of England #12;Low Carbon Innovation Centre Report for EEDA Biochar and Carbon Sequestration: A Regional Perspective 20/04/2009 ii Biochar and Carbon Sequestration: A Regional Perspective A report prepared for East

  14. CARBON DIOXIDE AND OUR OCEAN LEGACY

    E-Print Network [OSTI]

    is a biologist at the California State Univer- sity San Marcos, with expertise in the effects of carbon dioxideCARBON DIOXIDE AND OUR OCEAN LEGACY G Carbon Dioxide: Our Role The United States is the single. Every day the average American adds about 118 pounds of carbon dioxide to the atmos- phere, due largely

  15. Mesoporous carbonates and method of making

    DOE Patents [OSTI]

    Fryxell, Glen; Liu, Jun; Zemanian, Thomas S.

    2004-06-15T23:59:59.000Z

    Mesoporous metal carbonate structures are formed by providing a solution containing a non-ionic surfactant and a calcium acetate salt, adding sufficient base to react with the acidic byproducts to be formed by the addition of carbon dioxide, and adding carbon dioxide, thereby forming a mesoporous metal carbonate structure containing the metal from said metal salt.

  16. INTRODUCTION Pedogenic (secondary) calcium carbonate is,

    E-Print Network [OSTI]

    Ahmad, Sajjad

    INTRODUCTION Pedogenic (secondary) calcium carbonate is, by definition, a product of soil processes of calcium for pe- dogenic calcium carbonate (Gile et al., 1979). In regard to the source of the carbonate; Cerling et al., 1989; Quade et al., 1989). Because pedogenic calcium carbonate is read- ily soluble, its

  17. 6 Monthly Report on MMU Carbon

    E-Print Network [OSTI]

    Monthly Report on MMU Carbon Management Plan #12;2009/10 Emissions MMU Carbon Footprint Trajectory Project Footprint MMU Actual Carbon Footprint Projects that Reduced the 2009/10 CO2 Footprint #12;2010/11 Emissions6 Monthly Report on MMU Carbon Management Plan June 2011 let's make a sustainable planet #12

  18. Carbon nanotubes : synthesis, characterization, and applications

    E-Print Network [OSTI]

    Deck, Christian Peter

    2009-01-01T23:59:59.000Z

    in carbon nanotube ceramic matrix composites. Actapolymeric, metallic, or ceramic matrix material. These fiber

  19. Carbon Capture and Storage Realising the potential?

    E-Print Network [OSTI]

    Haszeldine, Stuart

    Carbon Capture and Storage Realising the potential? UKERC Research Project #12;Carbon Capture Winskel University of Edinburgh Peter Pearson and Stathis Arapostathis Low Carbon Research Institute @UKERKHQ #12;UKERC Research Project: Carbon Capture and Storage: Realising the potential? 01 It is the hub

  20. Carbon dioxide storage professor Martin Blunt

    E-Print Network [OSTI]

    Carbon dioxide storage professor Martin Blunt executive summary Carbon Capture and Storage (CCS) referS to the Set of technologies developed to capture carbon dioxide (Co2) gas from the exhausts raises new issues of liability and risk. the focus of this briefing paper is on the storage of carbon

  1. Irradiation-induced phenomena in carbon

    E-Print Network [OSTI]

    Krasheninnikov, Arkady V.

    Chapter 1 Irradiation-induced phenomena in carbon nanotubes To appear in "Chemistry of Carbon@acclab.helsinki.fi 1 #12;2CHAPTER 1. IRRADIATION-INDUCED PHENOMENA IN CARBON NANOTUBES #12;Contents 1 Irradiation-induced phenomena in carbon nanotubes 1 1.1 Introduction

  2. Carbon nanotube composites P. J. F. Harris*

    E-Print Network [OSTI]

    Harris, Peter J F

    Carbon nanotube composites P. J. F. Harris* Carbon nanotubes are molecular-scale tubes of graphitic carbon with outstanding properties. They are among the stiffest and strongest fibres known, with Young. There is currently great interest in exploiting these properties by incorporating carbon nanotubes into some form

  3. Explaining the Price of Voluntary Carbon Offsets

    E-Print Network [OSTI]

    Conte, Marc N.; Kotchen, Matthew

    2009-01-01T23:59:59.000Z

    Energy and Sustainable Development, Stanford Univer- sity. Figure 1: Histogram of carbon offset prices (

  4. Irradiation Stability of Carbon Nanotubes

    E-Print Network [OSTI]

    Aitkaliyeva, Assel

    2010-01-14T23:59:59.000Z

    were used in experiments, and several defect characterization techniques were applied to characterize the damage. Development of dimensional changes of carbon nanotubes in microscopes operated at accelerating voltages of 30 keV revealed that binding...

  5. Increasing carbon nanotube forest density

    E-Print Network [OSTI]

    McCarthy, Alexander P

    2014-01-01T23:59:59.000Z

    The outstanding mechanical, electrical, thermal, and morphological properties of individual carbon nanotubes (CNTs) open up exciting potential applications in a wide range of fields. One such application is replacing the ...

  6. Carbon Dioxide: Threat or Opportunity?

    E-Print Network [OSTI]

    McKinney, A. R.

    1982-01-01T23:59:59.000Z

    catastrophic long term effects on world climate. An alternative to discharging carbon dioxide into the atmosphere is to find new uses. One possible use is in 'Biofactories'. Biofactories may be achieved by exploiting two new developing technologies: Solar...

  7. Low Cost Carbon Fiber Overview

    Broader source: Energy.gov (indexed) [DOE]

    UT-Battelle for the U.S. Department of Energy Presentationname CARBON FIBER OVERVIEW Materials LM002 Task FY 2010 Budget Industry Cost Share FY 2011 Budget Industry Cost Share...

  8. The Australian terrestrial carbon budget

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    emissions from fossil-fuel com- bustion, Biogeosciences, 9,re- gional and national fossil-fuel CO 2 emissions, Carbontimes more carbon in fossil fuels than it emitted by burning

  9. Method for making carbon films

    SciTech Connect (OSTI)

    Tan, M.X.

    1999-07-29T23:59:59.000Z

    A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area ([approx equal]1000 m[sup 2] /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160 C for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750 C in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750--850 C for between 1--6 hours. 2 figs.

  10. Carbon-assisted flyer plates

    DOE Patents [OSTI]

    Stahl, D.B.; Paisley, D.L.

    1994-04-12T23:59:59.000Z

    A laser driven flyer plate is described utilizing an optical fiber connected to a laser. The end of the optical fiber has a layer of carbon and a metal layer deposited onto it. The carbon layer provides the laser induced plasma which is superior to the plasma produced from most metals. The carbon layer plasma is capable of providing a flatter flyer plate, converting more of the laser energy to driving plasma, promoting a higher flyer plate acceleration, and providing a more uniform pulse behind the plate. In another embodiment, the laser is in optical communication with a substrate onto which a layer of carbon and a layer of metal have been deposited. 2 figures.

  11. Carbon dynamics in arctic vegetation 

    E-Print Network [OSTI]

    Street, Lorna Elizabeth

    2011-11-24T23:59:59.000Z

    Rapid climate change in Arctic regions is of concern due to important feedbacks between the Arctic land surface and the global climate system. A large amount of organic carbon (C) is currently stored in Arctic soils; if ...

  12. Lower Cost Carbon Fiber Precursors

    Broader source: Energy.gov (indexed) [DOE]

    1 Lower Cost Carbon Fiber Precursors P.I. Name: Dave Warren Presenter: Dr. Amit K. Naskar Oak Ridge National Laboratory 05162012 Project ID LM004 This presentation does not...

  13. Emerging Applications of Carbon Nanotubes

    E-Print Network [OSTI]

    Schnorr, Jan Markus

    On the basis of their unique electrical and mechanical properties, carbon nanotubes (CNTs) have attracted great attention in recent years. A diverse array of methods has been developed to modify CNTs and to assemble them ...

  14. Reducing carbon dioxide to products

    DOE Patents [OSTI]

    Cole, Emily Barton; Sivasankar, Narayanappa; Parajuli, Rishi; Keets, Kate A

    2014-09-30T23:59:59.000Z

    A method reducing carbon dioxide to one or more products may include steps (A) to (C). Step (A) may bubble said carbon dioxide into a solution of an electrolyte and a catalyst in a divided electrochemical cell. The divided electrochemical cell may include an anode in a first cell compartment and a cathode in a second cell compartment. The cathode may reduce said carbon dioxide into said products. Step (B) may adjust one or more of (a) a cathode material, (b) a surface morphology of said cathode, (c) said electrolyte, (d) a manner in which said carbon dioxide is bubbled, (e), a pH level of said solution, and (f) an electrical potential of said divided electrochemical cell, to vary at least one of (i) which of said products is produced and (ii) a faradaic yield of said products. Step (C) may separate said products from said solution.

  15. What is stopping Carbon Capture Utilization and Storage from closing the carbon loop?

    E-Print Network [OSTI]

    dioxide as a global public good. Considering the social cost of carbon, or the net present valueWhat is stopping Carbon Capture Utilization and Storage from closing the carbon loop? The social cost of carbon is still not developed There is no global consensus on the price of reducing carbon

  16. University of Glasgow Carbon Management Programme Carbon Management Plan working with

    E-Print Network [OSTI]

    Mottram, Nigel

    fully in the initiatives which will help us reduce our carbon footprint and combat climate changeUniversity of Glasgow Carbon Management Programme Carbon Management Plan working with Page 1 Carbon Management Programme Carbon Management Plan (CMP) Albert Young, 3 November 2009 #12;University of Glasgow

  17. Endohedral Carbon Chains in Single-Wall Carbon Nanotubes R. K. Vadapalli

    E-Print Network [OSTI]

    Mintmire, John W.

    Endohedral Carbon Chains in Single-Wall Carbon Nanotubes R. K. Vadapalli and J. W. Mintmire of endohedral linear carbon chains. In these calculations, all-carbon nanowire structures were constructed by inserting cumulenic linear carbon chains inside the semiconducting (7,3) and metallic (7,4) single

  18. Black Carbon in the Soil Carbon Cycle: Is it an Oxidation Resistant End-Product?

    E-Print Network [OSTI]

    Fischlin, Andreas

    Black Carbon in the Soil Carbon Cycle: Is it an Oxidation Resistant End-Product? Simone Submitted on December 21, 2007 Reviewed April 1, 2008 Abstract Black carbon (BC) is a very oxidation, charcoal, and soot. Due to its high recalcitrance, black carbon might act as a long-term carbon sink

  19. Protein carbon content evolves in response to carbon availability and may influence

    E-Print Network [OSTI]

    Wagner, Andreas

    Protein carbon content evolves in response to carbon availability and may influence the fate that ancestral yeast strains preferentially express proteins with low carbon content during carbon limitation, relative to strains selected in the laboratory under carbon limitation. The likely reason

  20. Fabrication of activated carbon fibers/carbon aerogels composites by gelation and supercritical drying

    E-Print Network [OSTI]

    Liu, Jie

    Fabrication of activated carbon fibers/carbon aerogels composites by gelation and supercritical August 2003) Activated carbon fiber/carbon aerogel (ACF/CA) composites were fabricated by gelling. The ACFs can reinforce the related carbon aerogels when they originally have low mass density and are weak

  1. Lithographically defined microporous carbon structures

    DOE Patents [OSTI]

    Burckel, David Bruce; Washburn, Cody M.; Polsky, Ronen; Brozik, Susan M.; Wheeler, David R.

    2013-01-08T23:59:59.000Z

    A lithographic method is used to fabricate porous carbon structures that can provide electrochemical electrodes having high surface area with uniform and controllable dimensions, providing enormous flexibility to tailor the electrodes toward specific applications. Metal nanoparticles deposited on the surface of the porous carbon electrodes exhibit ultra small dimensions with uniform size distribution. The resulting electrodes are rugged, electrically conductive and show excellent electrochemical behavior.

  2. Recuperative supercritical carbon dioxide cycle

    DOE Patents [OSTI]

    Sonwane, Chandrashekhar; Sprouse, Kenneth M; Subbaraman, Ganesan; O'Connor, George M; Johnson, Gregory A

    2014-11-18T23:59:59.000Z

    A power plant includes a closed loop, supercritical carbon dioxide system (CLS-CO.sub.2 system). The CLS-CO.sub.2 system includes a turbine-generator and a high temperature recuperator (HTR) that is arranged to receive expanded carbon dioxide from the turbine-generator. The HTR includes a plurality of heat exchangers that define respective heat exchange areas. At least two of the heat exchangers have different heat exchange areas.

  3. Department o f Math ema tics , Tucso n, AZ 85721 520.626.6145 i me @mat h.a rizo na. edu im e. mat h.ar izona .e du ANNUAL REPORT, 20072008

    E-Print Network [OSTI]

    Zakharov, Vladimir

    Department o f Math ema tics , Tucso n, AZ 85721 · 520.626.6145 · i me @mat h.a rizo na. edu · im e. mat h.ar izona .e du ANNUAL REPORT, 2007­2008 INSTITUTE FOR MATHEMATICS AND EDUCATION #12;#12;I ns ti Education, March 20­22, 2008 5 Southwestern Network Meeting and Proof Workshop, September 27, 2008 5 Facing

  4. Carbon-enhanced VRLA batteries.

    SciTech Connect (OSTI)

    Enos, David George; Hund, Thomas D.; Shane, Rod (East Penn Manufacturing, Lyon Station, PA)

    2010-10-01T23:59:59.000Z

    The addition of certain forms of carbon to the negative plate in valve regulated lead acid (VRLA) batteries has been demonstrated to increase the cycle life of such batteries by an order of magnitude or more under high-rate, partial-state-of-charge operation. Such performance will provide a significant impact, and in some cases it will be an enabling feature for applications including hybrid electric vehicles, utility ancillary regulation services, wind farm energy smoothing, and solar photovoltaic energy smoothing. There is a critical need to understnd how the carbon interacts with the negative plate and achieves the aforementioned benefits at a fundamental level. Such an understanding will not only enable the performance of such batteries to be optimzied, but also to explore the feasibility of applying this technology to other battery chemistries. In partnership with the East Penn Manufacturing, Sandia will investigate the electrochemical function of the carbon and possibly identify improvements to its anti-sulfation properties. Shiomi, et al. (1997) discovered that the addition of carbon to the negative active material (NAM) substantially reduced PbSO{sub 4} accumulation in high rate, partial state of charge (HRPSoC) cycling applications. This improved performance with a minimal cost. Cycling applications that were uneconomical for traditional VRLA batteries are viable for the carbon enhanced VRLA. The overall goal of this work is to quantitatively define the role that carbon plays in the electrochemistry of a VRLA battery.

  5. Carbon sequestration research and development

    SciTech Connect (OSTI)

    Reichle, Dave; Houghton, John; Kane, Bob; Ekmann, Jim; and others

    1999-12-31T23:59:59.000Z

    Predictions of global energy use in the next century suggest a continued increase in carbon emissions and rising concentrations of carbon dioxide (CO{sub 2}) in the atmosphere unless major changes are made in the way we produce and use energy--in particular, how we manage carbon. For example, the Intergovernmental Panel on Climate Change (IPCC) predicts in its 1995 ''business as usual'' energy scenario that future global emissions of CO{sub 2} to the atmosphere will increase from 7.4 billion tonnes of carbon (GtC) per year in 1997 to approximately 26 GtC/year by 2100. IPCC also projects a doubling of atmospheric CO{sub 2} concentration by the middle of next century and growing rates of increase beyond. Although the effects of increased CO{sub 2} levels on global climate are uncertain, many scientists agree that a doubling of atmospheric CO{sub 2} concentrations could have a variety of serious environmental consequences. The goal of this report is to identify key areas for research and development (R&D) that could lead to an understanding of the potential for future use of carbon sequestration as a major tool for managing carbon emissions. Under the leadership of DOE, researchers from universities, industry, other government agencies, and DOE national laboratories were brought together to develop the technical basis for conceiving a science and technology road map. That effort has resulted in this report, which develops much of the information needed for the road map.

  6. Scale-up of Carbon/Carbon Bipolar Plates

    SciTech Connect (OSTI)

    David P. Haack

    2009-04-08T23:59:59.000Z

    This project was focused upon developing a unique material technology for use in PEM fuel cell bipolar plates. The carbon/carbon composite material developed in this program is uniquely suited for use in fuel cell systems, as it is lightweight, highly conductive and corrosion resistant. The project further focused upon developing the manufacturing methodology to cost-effectively produce this material for use in commercial fuel cell systems. United Technology Fuel Cells Corp., a leading fuel cell developer was a subcontractor to the project was interested in the performance and low-cost potential of the material. The accomplishments of the program included the development and testing of a low-cost, fully molded, net-shape carbon-carbon bipolar plate. The process to cost-effectively manufacture these carbon-carbon bipolar plates was focused on extensively in this program. Key areas for cost-reduction that received attention in this program was net-shape molding of the detailed flow structures according to end-user design. Correlations between feature detail and process parameters were formed so that mold tooling could be accurately designed to meet a variety of flow field dimensions. A cost model was developed that predicted the cost of manufacture for the product in near-term volumes and long-term volumes (10+ million units per year). Because the roduct uses lowcost raw materials in quantities that are less than competitive tech, it was found that the cost of the product in high volume can be less than with other plate echnologies, and can meet the DOE goal of $4/kW for transportation applications. The excellent performance of the all-carbon plate in net shape was verified in fuel cell testing. Performance equivalent to much higher cost, fully machined graphite plates was found.

  7. Carbonic Acid Pretreatment of Biomass

    SciTech Connect (OSTI)

    G. Peter van Walsum; Kemantha Jayawardhana; Damon Yourchisin; Robert McWilliams; Vanessa Castleberry

    2003-05-31T23:59:59.000Z

    This project sought to address six objectives, outlined below. The objectives were met through the completion of ten tasks. 1) Solidify the theoretical understanding of the binary CO2/H2O system at reaction temperatures and pressures. The thermodynamics of pH prediction have been improved to include a more rigorous treatment of non-ideal gas phases. However it was found that experimental attempts to confirm theoretical pH predictions were still off by a factor of about 1.8 pH units. Arrhenius experiments were carried out and the activation energy for carbonic acid appears to be substantially similar to sulfuric acid. Titration experiments have not yet confirmed or quantified the buffering or acid suppression effects of carbonic acid on biomass. 2) Modify the carbonic acid pretreatment severity function to include the effect of endogenous acid formation and carbonate buffering, if necessary. It was found that the existing severity functions serve adequately to account for endogenous acid production and carbonate effects. 3) Quantify the production of soluble carbohydrates at different reaction conditions and severity. Results show that carbonic acid has little effect on increasing soluble carbohydrate concentrations for pretreated aspen wood, compared to pretreatment with water alone. This appears to be connected to the release of endogenous acids by the substrate. A less acidic substrate such as corn stover would derive benefit from the use of carbonic acid. 4) Quantify the production of microbial inhibitors at selected reaction conditions and severity. It was found that the release of inhibitors was correlated to reaction severity and that carbonic acid did not appear to increase or decrease inhibition compared to pretreatment with water alone. 5) Assess the reactivity to enzymatic hydrolysis of material pretreated at selected reaction conditions and severity. Enzymatic hydrolysis rates increased with severity, but no advantage was detected for the use of carbonic acid compared to water alone. 6) Determine optimal conditions for carbonic acid pretreatment of aspen wood. Optimal severities appeared to be in the mid range tested. ASPEN-Plus modeling and economic analysis of the process indicate that the process could be cost competitive with sulfuric acid if the concentration of solids in the pretreatment is maintained very high (~50%). Lower solids concentrations result in larger reactors that become expensive to construct for high pressure applications.

  8. CARBON ISOTOPE STRATIGRAPHY AND DIAGENESIS OF PENNSYLVANIAN (DESMOINESIAN-MISSOURIAN) CARBONATES IN EAST-CENTRAL IDAHO

    E-Print Network [OSTI]

    Wood, Stephanie

    2011-05-10T23:59:59.000Z

    Carbon isotope stratigraphy of carbonate sediments is instrumental in examining major perturbations in the global carbon cycle and in correlating strata. However, the primary isotopic signal recorded in these sediments can vary with depositional...

  9. A study of the remineralization of organic carbon in nearshore sediments using carbon isotopes

    E-Print Network [OSTI]

    McNichol, Ann P., 1956-

    1986-01-01T23:59:59.000Z

    A study of the remineralization of organic carbon was conducted in the organic-rich sediments of Buzzards Bay, MA. Major processes affecting the carbon chemistry in sediments are reflected by changes in the stable carbon ...

  10. Extraneous Carbon Assessments in Radiocarbon Measurements of Black Carbon in Environmental Matrices

    E-Print Network [OSTI]

    Coppola, Alysha; Ziolkowski, L. A.; Druffel, E. R. M.

    2013-01-01T23:59:59.000Z

    rived (black/elemental) carbon in soils and sediments usingbon measurements of black carbon in aerosols and oceanMWI, Noack AG. 2000. Black carbon in soils and sediments:

  11. Carbon fiber manufacturing via plasma technology

    DOE Patents [OSTI]

    Paulauskas, Felix L. (Knoxville, TN); Yarborough, Kenneth D. (Oak Ridge, TN); Meek, Thomas T. (Knoxville, TN)

    2002-01-01T23:59:59.000Z

    The disclosed invention introduces a novel method of manufacturing carbon and/or graphite fibers that avoids the high costs associated with conventional carbonization processes. The method of the present invention avoids these costs by utilizing plasma technology in connection with electromagnetic radiation to produce carbon and/or graphite fibers from fully or partially stabilized carbon fiber precursors. In general, the stabilized or partially stabilized carbon fiber precursors are placed under slight tension, in an oxygen-free atmosphere, and carbonized using a plasma and electromagnetic radiation having a power input which is increased as the fibers become more carbonized and progress towards a final carbon or graphite product. In an additional step, the final carbon or graphite product may be surface treated with an oxygen-plasma treatment to enhance adhesion to matrix materials.

  12. Blue carbon storage potential of marine carbonate deposits Project reference IAP/13/50. Please quote this reference when applying.

    E-Print Network [OSTI]

    Guo, Zaoyang

    IAPETUS Blue carbon storage potential of marine carbonate deposits Project reference IAP/13 Henrik Stahl, Scottish Association for Marine Science Key Words 1. Blue carbon 2. Carbonate 3. Coralline is referred to as `blue carbon' to differentiate it from terrestrial carbon stores. Known blue carbon sinks

  13. Ultra low friction carbon/carbon composites for extreme temperature applications

    DOE Patents [OSTI]

    Erdemir, Ali (Naperville, IL); Busch, Donald E. (Hinsdale, IL); Fenske, George R. (Downers Grove, IL); Lee, Sam (Gardena, CA); Shepherd, Gary (Los Alamitos, CA); Pruett, Gary J. (Cypress, CA)

    2001-01-01T23:59:59.000Z

    A carbon/carbon composite in which a carbon matrix containing a controlled amount of boron or a boron compound is reinforced with carbon fiber exhibits a low coefficient of friction, i.e., on the order of 0.04 to 0.1 at temperatures up to 600.degree. C., which is one of the lowest frictional coefficients for any type of carbonaceous material, including graphite, glassy carbon, diamond, diamond-like carbon and other forms of carbon material. The high degree of slipperiness of the carbon composite renders it particularly adapted for limiting friction and wear at elevated temperatures such as in seals, bearings, shafts, and flexible joints

  14. Synthesis of supported carbon nanotubes in mineralized silica...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    supported carbon nanotubes in mineralized silica-wood composites. Synthesis of supported carbon nanotubes in mineralized silica-wood composites. Abstract: Multiwall carbon...

  15. Carbon calculator tracks the climate benefits of managed private forests

    E-Print Network [OSTI]

    Stewart, William C; Sharma, Benktesh D

    2015-01-01T23:59:59.000Z

    forests provide more carbon sequestration benefits than let-the relative carbon sequestration benefits of let-growlife cycle carbon sequestration benefits, averaged over 120,

  16. Beryllium-7 labeled carbon particles and method of making

    DOE Patents [OSTI]

    Richards, Powell (New Bern, NC); Mausner, Leonard F. (Stony Brook, NY); Prach, Thomas F. (Port Jefferson, NY)

    1987-01-01T23:59:59.000Z

    Beryllium-7 labeled carbon particles made from the proton irradiation of carbon materials, preferably from dry carbon black are disclosed. Such particles are useful as gamma emitting radiotracers.

  17. Optically Functional Nanomaterials: Optothermally Responsive Composites and Carbon Nanotube Photovoltaics

    E-Print Network [OSTI]

    Okawa, David

    2010-01-01T23:59:59.000Z

    and Carbon Nanotube Photovoltaics by David Christopher OkawaPart II: Carbon Nanotube Photovoltaics Chapter 6:Carbon Nanotube – Polymer Photovoltaics 6.1 Polymer-Nanotube

  18. Autonomous observations of the ocean biological carbon pump

    E-Print Network [OSTI]

    Bishop, James K.B.

    2009-01-01T23:59:59.000Z

    efficiency of biological pump in the global ocean. JournalOcean Biological Carbon Pump Carbon Flux Explorerocean’s “biological carbon pump” (Broecker and Peng, 1982;

  19. argon carbon dioxide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon dioxide levels in the atmosphere. Additional measurements by scientists working 10 Carbon Dioxide Sequestration and Utilization CiteSeer Summary: ? Carbon dioxide (CO2) in...

  20. applied carbon dioxide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon dioxide levels in the atmosphere. Additional measurements by scientists working 8 Carbon Dioxide Sequestration and Utilization CiteSeer Summary: ? Carbon dioxide (CO2) in...

  1. alter carbon nitrogen: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PAPER Influence of tree species on carbon and nitrogen Physics Websites Summary: and for carbon sequestration (Jandl et al. 2007). Soil acidification and carbon sequestration are...

  2. aqueous carbon dioxide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon dioxide levels in the atmosphere. Additional measurements by scientists working 12 Carbon Dioxide Sequestration and Utilization CiteSeer Summary: ? Carbon dioxide (CO2) in...

  3. Bioenergy with Carbon Capture and Sequestration WorkshopBioenergy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy with Carbon Capture and Sequestration WorkshopBioenergy with Carbon Capture and Sequestration (BECCS) Workshop Bioenergy with Carbon Capture and Sequestration...

  4. The significance of the erosion-induced terrestrial carbon sink

    E-Print Network [OSTI]

    Berhe, A.A.; Harte, J.; Harden, J.W.; Torn, M.S.

    2006-01-01T23:59:59.000Z

    potential of soil carbon sequestration to mitigate theof soil movement on carbon sequestration in agriculturalEnhancement of carbon sequestration in US soils. BioScience.

  5. Climate control of terrestrial carbon exchange across biomes and continents

    E-Print Network [OSTI]

    Yi, C.; Ricciuota, D.; Goulden, M. L.

    2010-01-01T23:59:59.000Z

    control, terrestrial carbon sequestration, temperature,on terrestrial carbon sequestration (Nemani et al 2003, Xiaodeposition and forest carbon sequestration Glob. Change

  6. Study of Porous Adsorbents for Carbon Capture via Molecular Simulation

    E-Print Network [OSTI]

    Swisher, Joseph Andrew

    2012-01-01T23:59:59.000Z

    4 Ab initio carbon capture Background . . . . . .K. ; Haranczyk, M. ; Carbon Capture Materials Database;silico screening of carbon capture mate- rials” C Additional

  7. Water Challenges for Geologic Carbon Capture and Sequestration

    E-Print Network [OSTI]

    Newmark, Robin L.; Friedmann, Samuel J.; Carroll, Susan A.

    2010-01-01T23:59:59.000Z

    and HB 90:Carbon capture and sequestration, http://legisweb.6th annual conference on carbon capture and sequestration,7th annual conference on carbon capture & seques- tration,

  8. Beryllium-7 labeled carbon particles and method of making

    DOE Patents [OSTI]

    Richards, P.; Mausner, L.F.; Prach, T.F.

    1985-04-29T23:59:59.000Z

    Beryllium-7 labeled carbon particles made from the proton irradiation of carbon materials, preferably from dry carbon black are disclosed. Such particles are useful as gamma emitting radiotracers.

  9. Perspectives on Carbon Capture and Sequestration in the United States

    E-Print Network [OSTI]

    Wong-Parodi, Gabrielle

    2011-01-01T23:59:59.000Z

    Community acceptance of carbon capture and sequestrationThe public perceptions of carbon capture and storage Workingproblems and prospects Carbon Capture and Sequestration:

  10. China's Energy and Carbon Emissions Outlook to 2050

    E-Print Network [OSTI]

    Zhou, Nan

    2011-01-01T23:59:59.000Z

    commercialization of carbon capture and sequestration (CCS)commercialization of carbon capture and sequestration (CCS)of installing carbon capture and sequestration (CCS)

  11. Certification Framework Based on Effective Trapping for Geologic Carbon Sequestration

    E-Print Network [OSTI]

    Oldenburg, Curtis M.

    2009-01-01T23:59:59.000Z

    Sixth Annual Conference on Carbon Capture and Sequestration,Annual Conference on Carbon Capture & Sequestration, May 7–Annual Conference on Carbon Capture & Sequestration, May 7–

  12. Perspectives on Carbon Capture and Sequestration in the United States

    E-Print Network [OSTI]

    Wong-Parodi, Gabrielle

    2011-01-01T23:59:59.000Z

    Community acceptance of carbon capture and sequestrationand realities of carbon capture and storage; www.eenews.net/Howard. What Future for Carbon Capture and Sequestration?

  13. Biologically Enhanced Carbon Sequestration: Research Needs and Opportunities

    E-Print Network [OSTI]

    Oldenburg, Curtis M.

    2008-01-01T23:59:59.000Z

    2 sequestration. 4th Annual Carbon Capture and SequestrationAnnual Conference on Carbon Capture and Sequestration, Mayon the roles of carbon capture and disposal, hydrogen, and

  14. China's Energy and Carbon Emissions Outlook to 2050

    E-Print Network [OSTI]

    Zhou, Nan

    2011-01-01T23:59:59.000Z

    installing carbon capture and sequestration (CCS) technologycapture of carbon emissions for pre- and post-combustion technologiescapture of carbon emissions for pre- and post-combustion technologies

  15. Perspectives on Carbon Capture and Sequestration in the United States

    E-Print Network [OSTI]

    Wong-Parodi, Gabrielle

    2011-01-01T23:59:59.000Z

    Carbon capture and sequestration technology A.4 Carbon capture and sequestration technology Today,as ‘carbon capture and storage’ technologies (Steinberg

  16. Water Challenges for Geologic Carbon Capture and Sequestration

    E-Print Network [OSTI]

    Newmark, Robin L.; Friedmann, Samuel J.; Carroll, Susan A.

    2010-01-01T23:59:59.000Z

    and HB 90:Carbon capture and sequestration, http://legisweb.conference on carbon capture and sequestration, Pittsburgh,The DOE’s Regional Carbon Sequestration Partnerships are

  17. Risk assessment framework for geologic carbon sequestration sites

    E-Print Network [OSTI]

    Oldenburg, C.

    2010-01-01T23:59:59.000Z

    Framework for geologic carbon sequestration risk assessment,for geologic carbon sequestration risk assessment, Energyfor Geologic Carbon Sequestration, Int. J. of Greenhouse Gas

  18. Biologically Enhanced Carbon Sequestration: Research Needs and Opportunities

    E-Print Network [OSTI]

    Oldenburg, Curtis M.

    2008-01-01T23:59:59.000Z

    Enhancement of soil carbon sequestration by amendment withBiologically Enhanced Carbon Sequestration: Research Needson Biologically Enhanced Carbon Sequestration, October 29,

  19. Certification Framework Based on Effective Trapping for Geologic Carbon Sequestration

    E-Print Network [OSTI]

    Oldenburg, Curtis M.

    2009-01-01T23:59:59.000Z

    workshop on geologic carbon sequestration, 2002. Benson,verification of geologic carbon sequestration, Geophys. Res.CO 2 from geologic carbon sequestration sites, Vadose Zone

  20. Carbon sequestration and greenhouse gas emissions in urban turf

    E-Print Network [OSTI]

    Townsend-Small, Amy; Czimczik, Claudia I

    2010-01-01T23:59:59.000Z

    Article Correction to “Carbon sequestration and greenhouseCor- rection to “Carbon sequestration and greenhouse gas1 ] In the paper “Carbon sequestration and greenhouse gas

  1. EFRC Carbon Capture and Sequestration Activities at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EFRC Carbon Capture and Sequestration Activities at NERSC EFRC Carbon Capture and Sequestration Activities at NERSC Why it Matters: Carbon dioxide (CO2) gas is considered to be...

  2. On leakage and seepage from geological carbon sequestration sites

    E-Print Network [OSTI]

    Oldenburg, C.M.; Unger, A.J.A.; Hepple, R.P.; Jordan, P.D.

    2002-01-01T23:59:59.000Z

    from Geologic Carbon Sequestration Sites Orlando Lawrencefrom Geologic Carbon Sequestration Sites Farrar, C.D. , M.L.1999. Reichle, D. et al. , Carbon sequestration research and

  3. Perspectives on Carbon Capture and Sequestration in the United States

    E-Print Network [OSTI]

    Wong-Parodi, Gabrielle

    2011-01-01T23:59:59.000Z

    West Coast Regional Carbon Sequestration Partnership 2008Community perceptions of carbon sequestration: insights fromof coal with carbon sequestration. Casper Star Tribune.

  4. Micromodel Investigations of CO2 Exsolution from Carbonated Water...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of CO2 Exsolution from Carbonated Water in Sedimentary Rocks. Abstract: In this study, carbon dioxide exsolution from carbonated water is directly observed under reservoir...

  5. acid carbonates: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Page Last Page Topic Index 1 Carbon 40 (2002) 12491254 Oxidation protection of carbon materials by acid phosphate Engineering Websites Summary: Carbon 40 (2002) 1249-1254...

  6. anchored carbon fiber: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    material. It is important that a carbon fiber manufacturing cost model 4 Carbon Fiber Composite Cellular A Dissertation Materials Science Websites Summary: Carbon Fiber Composite...

  7. authigenic carbonate formation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    L. Steinhardt; Dimitar D. Sasselov 2005-02-08 6 Carbon nanotube initiated formation of carbon nanoscrolls Zhao Zhang1 Materials Science Websites Summary: Carbon nanotube initiated...

  8. amorphous diamondlike carbon: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: Field Emission from Hybrid Diamond-like Carbon and Carbon Nanotube Composite Structures H. Zanin Information ABSTRACT: A thin diamond-like carbon (DLC) film was...

  9. aligned multiwalled carbon: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Structural annealing of carbon coated aligned multi-walled carbon nanotube sheets Materials Science Websites Summary: Structural annealing of carbon coated aligned multi-walled...

  10. Autonomous observations of the ocean biological carbon pump

    E-Print Network [OSTI]

    Bishop, James K.B.

    2009-01-01T23:59:59.000Z

    B.C. , et al. (2005) Calcium carbonate measurements in thein the productivity of calcium carbonate forming coral reefcarbon pump. Calcium carbonate particles (predominantly

  11. Upscaling calcium carbonate precipitation rates from pore to continuum scale

    E-Print Network [OSTI]

    Noiriel, C.

    2013-01-01T23:59:59.000Z

    and detachment of calcium and carbonate ions. Crystal Growthdue to consumption of calcium and carbonate. In general, new1971. Crytallization of calcium carbonate 2. Calcite growth

  12. Mechanisms controlling soil carbon turnover and their potential...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration . Mechanisms controlling soil carbon turnover and their potential...

  13. Carbon and Water Resource Management for Water Distribution Systems

    E-Print Network [OSTI]

    Hendrickson, Thomas Peter

    2013-01-01T23:59:59.000Z

    Buckley, C. A. ; Carbon footprint analysis for increasingeffectively reduce their carbon footprint. To accomplish7 February 2013. (8) The Carbon Footprint of Water; River

  14. City carbon budgets: Aligning incentives for climate-friendly communities

    E-Print Network [OSTI]

    Salon, Deborah; Sperling, Dan; Meier, Alan; Murphy, Sinnott; Gorham, Roger; Barrett, James

    2008-01-01T23:59:59.000Z

    2008. Shrinking the carbon footprint of metropolitantheir per capita carbon footprint by a predetermined percentor of lower carbon footprint (embodied emissions) building

  15. Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers Supercritical Carbon Dioxide Turbo-Expander and Heat Exchangers This fact sheet describes a supercritical carbon...

  16. Bloomberg New Energy Finance Carbon Markets formerly New Energy...

    Open Energy Info (EERE)

    Bloomberg New Energy Finance Carbon Markets formerly New Energy Finance Carbon Markets Group Jump to: navigation, search Name: Bloomberg New Energy Finance Carbon Markets (formerly...

  17. Carbon dioxide-assisted fabrication of highly uniform submicron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dioxide-assisted fabrication of highly uniform submicron-sized colloidal carbon spheres via hydrothermal carbonization Carbon dioxide-assisted fabrication of highly uniform...

  18. Diffusional Motion of Redox Centers in Carbonate Electrolytes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The organic solvents were propylene carbonate (PC), ethyl methyl carbonate (EMC) and a ternary mixture that also includes ethylene carbonate (EC). Results from NMR...

  19. Mesoporous Carbon-based Materials for Alternative Energy Applications

    E-Print Network [OSTI]

    Cross, Kimberly Michelle

    2012-01-01T23:59:59.000Z

    Carbon-Silica Composite Aerogels." Nano Letters 2(3): 235.metal-carbonized aerogel composites as electrocatalysts forcarbons (Joo, 2001), carbon aerogels (Anderson, 2002; Ye,

  20. Beryllium-7 labeled carbon particles and method of making

    DOE Patents [OSTI]

    Richards, P.; Mausner, L.F.; Prach, T.F.

    1987-11-17T23:59:59.000Z

    Beryllium-7 labeled carbon particles made from the proton irradiation of carbon materials, preferably from dry carbon black are disclosed. Such particles are useful as gamma emitting radiotracers.

  1. Theorizing the carbon economy: introduction to the special issue The term `carbon economy'often has an adjective placed nearby: the `new'carbon economy,

    E-Print Network [OSTI]

    of carbon capture and storage and nuclear technologies. These dimensionsöand surface-level to deeperTheorizing the carbon economy: introduction to the special issue The term `carbon economy'often has an adjective placed nearby: the `new'carbon economy, the `low' carbon economy, the carbon `neutral' economy

  2. Compacted carbon for electrochemical cells

    DOE Patents [OSTI]

    Greinke, R.A.; Lewis, I.C.

    1997-10-14T23:59:59.000Z

    This invention provides compacted carbon that is useful in the electrode of an alkali metal/carbon electrochemical cell of improved capacity selected from the group consisting of: (a) coke having the following properties: (1) an x-ray density of at least 2.00 grams per cubic centimeters, (2) a closed porosity of no greater than 5%, and (3) an open porosity of no greater than 47%; and (b) graphite having the following properties: (1) an x-ray density of at least 2.20 grams per cubic centimeters, (2) a closed porosity of no greater than 5%, and (3) an open porosity of no greater than 25%. This invention also relates to an electrode for an alkali metal/carbon electrochemical cell comprising compacted carbon as described above and a binder. This invention further provides an alkali metal/carbon electrochemical cell comprising: (a) an electrode as described above, (b) a non-aqueous electrolytic solution comprising an organic aprotic solvent and an electrolytically conductive salt and an alkali metal, and (c) a counter electrode. 10 figs.

  3. The reduction of carbon-carbon multiple bond systems

    E-Print Network [OSTI]

    Ferguson, Donald Roy

    1965-01-01T23:59:59.000Z

    and Uses, " Reinhold Publishing Corporations New York, N. Y. & 1956, p. 309 the dicarbanion with carbon dioxide yields the di-sodium salt of 1, 1, 2, 4 2-tetraphenylsuccinic acid. If two atoms of an alkali metal add to the multiple bond of an al- kyne... acid. One mole of carbon dioxide reacts with III to form the indone. It was proposed on the basis of the foregoing evidence that alkali metals could be caused to add across an acetylenic bond of a molecule to form a vinylic dicarbanion. It was hoped...

  4. Apparatus for extracting and sequestering carbon dioxide

    DOE Patents [OSTI]

    Rau, Gregory H. (Castro Valley, CA); Caldeira, Kenneth G. (Livermore, CA)

    2010-02-02T23:59:59.000Z

    An apparatus and method associated therewith to extract and sequester carbon dioxide (CO.sub.2) from a stream or volume of gas wherein said apparatus hydrates CO.sub.2 and reacts the resulting carbonic acid with carbonate. Suitable carbonates include, but are not limited to, carbonates of alkali metals and alkaline earth metals, preferably carbonates of calcium and magnesium. Waste products are metal cations and bicarbonate in solution or dehydrated metal salts, which when disposed of in a large body of water provide an effective way of sequestering CO.sub.2 from a gaseous environment.

  5. Method for extracting and sequestering carbon dioxide

    DOE Patents [OSTI]

    Rau, Gregory H. (Castro Valley, CA); Caldeira, Kenneth G. (Livermore, CA)

    2005-05-10T23:59:59.000Z

    A method and apparatus to extract and sequester carbon dioxide (CO.sub.2) from a stream or volume of gas wherein said method and apparatus hydrates CO.sub.2, and reacts the resulting carbonic acid with carbonate. Suitable carbonates include, but are not limited to, carbonates of alkali metals and alkaline earth metals, preferably carbonates of calcium and magnesium. Waste products are metal cations and bicarbonate in solution or dehydrated metal salts, which when disposed of in a large body of water provide an effective way of sequestering CO.sub.2 from a gaseous environment.

  6. Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    2009 P. E. Thornton et al. : Carbon-nitrogen interactionsregulate climate-carbon cycle feedbacks Monfray, P. ,T. H. : A global ocean carbon climatology: Results from

  7. Simple ocean carbon cycle models

    SciTech Connect (OSTI)

    Caldeira, K. [Lawrence Livermore National Lab., CA (United States); Hoffert, M.I. [New York Univ., NY (United States). Dept. of Earth System Sciences; Siegenthaler, U. [Bern Univ. (Switzerland). Inst. fuer Physik

    1994-02-01T23:59:59.000Z

    Simple ocean carbon cycle models can be used to calculate the rate at which the oceans are likely to absorb CO{sub 2} from the atmosphere. For problems involving steady-state ocean circulation, well calibrated ocean models produce results that are very similar to results obtained using general circulation models. Hence, simple ocean carbon cycle models may be appropriate for use in studies in which the time or expense of running large scale general circulation models would be prohibitive. Simple ocean models have the advantage of being based on a small number of explicit assumptions. The simplicity of these ocean models facilitates the understanding of model results.

  8. Thermal diffusivity mapping of 4D carbon-carbon composites

    SciTech Connect (OSTI)

    Wang, H.; Dinwiddie, R.B.

    1997-03-01T23:59:59.000Z

    High resolution, 2-D thermal diffusivity maps of carbon-carbon composites were obtained by a state-of-the-art infrared thermal imaging system. Unlike the traditional single-point IR detector used for thermal diffusivity measurements, the IR camera is capable of capturing images in its 256 x 256 pixel Focal Plane Array detector in a snap-shot mode. The camera takes up to 200 images at a rate of 120 frames/second. The temperature resolution of the Ir camera is 0.015 C and the spatial resolution is 20 {micro}m. Thermal diffusivity was calculated for each pixel. Four-direction carbon-carbon composites were used for the thermal diffusivity mapping study. The fiber bundles along the heat flow direction were found to have 25% higher diffusivity values than the surrounding matrix. The diffusivity map also showed detailed local variations in diffusivity which were impossible to measure using a single-point detector. Accurate diffusivity maps are very important to the design of composite materials.

  9. Structural response of oxidation resistant carbon-carbon composites

    E-Print Network [OSTI]

    Ashley, Timothy Harold

    1996-01-01T23:59:59.000Z

    subjected to thermo-mechanical loading. The analytical models are compared to test data to verify the predictions of the lamina response. The material system studied is HITCO 2D CC137EH, highly inhibited, eight harness satin weave, RT42 CVD SiC coated carbon...

  10. Reversing Climate Change: Using Carbon Tech to Fight Carbon Em

    E-Print Network [OSTI]

    formation of coal 1 of 3 3/2/13 4:59 PM In absence of air: C+H2O+ heat è CO +H2 (syngas) C+H2+heat-carbonate/acetone-acetic acid cycle for transp fuel: 3 acetone + heat & zeolite à mesitylene (C9H12) + 3H2O · Syngas: CO, H2

  11. Activated, coal-based carbon foam

    DOE Patents [OSTI]

    Rogers, Darren Kenneth; Plucinski, Janusz Wladyslaw

    2004-12-21T23:59:59.000Z

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  12. Soil Carbon Sequestration and the Greenhouse Effect

    E-Print Network [OSTI]

    Archer, Steven R.

    Soil Carbon Sequestration and the Greenhouse Effect Second edition Rattan Lal & Ronald F. Follett. Printed in the United States of America. #12;181 Soil Carbon Sequestration and the Greenhouse Effect, 2nd

  13. Multi-Scale Reinforced Carbon Fiber Nanocomposites

    E-Print Network [OSTI]

    VanRooyen, Ainsley

    2008-08-19T23:59:59.000Z

    composites through addition of carbon nanofibers. As a first step, this study aims to develop an effective technique to disperse carbon nanofibers in the epoxy using mechanical stirring along with sonication, and characterize cured composite samples...

  14. Terrestrial Carbon Observations: Protocols for Vegetation Sampling

    E-Print Network [OSTI]

    GTOS GTOS 55 Terrestrial Carbon Observations: Protocols for Vegetation Sampling and Data Submission Shashi Verma #12;(intentionally blank) #12;Terrestrial Carbon Observations: Protocols for Vegetation Forestry University, Bejing 100083, China 5 University of Wisconsin, Milwaukee, WI 6 Microsoft Research

  15. ASSESSMENT OF BUILDING LIFECYLE CARBON EMISSIONS

    E-Print Network [OSTI]

    Kwok, George

    2014-05-31T23:59:59.000Z

    for not abandoning me as your teammate due to the troubles caused by my immigration status. vi ASSESSMENT OF BUILDING LIFECYLE CARBON EMISSIONS ABSTRACT Even though the Carbon Capture & Sequestration Technologies (CC & ST) program at the Massachusetts...

  16. Crystallization of carbon tetrachloride in confined geometries

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Crystallization of carbon tetrachloride in confined geometries Adil Meziane1 , Jean-Pierre E 40 71 08 #12;2 Abstract The thermal behaviour of carbon tetrachloride confined in silica gels

  17. (Carbon monoxide metabolism by photosynthetic bacteria)

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    Research continued on the metabolism of carbon monoxide by Rhodospirillum rubrum. This report discusses progress on the activity, induction, inhibition, and spectroscopic analysis of the enzyme Carbon Monoxide Dehydrogenase. (CBS)

  18. THE PATH OF CARBON IN PHOTOSYNTHESIS

    E-Print Network [OSTI]

    Calvin, Melvin Nobel Prize lecture

    2008-01-01T23:59:59.000Z

    The Path ot Carbon in Photosynthesis. Science" l2J. , 476 (48 THE PATH OF CARBON IN PHOTOSYNTHESIS Melvin Calvin Nobel8-A Fig. 1. Elementary photosynthesis scheme. DES IOU OF THE

  19. THE PATH OF CARBON IN PHOTOSYNTHESIS

    E-Print Network [OSTI]

    Bassham, J.A.; Calvin, Melvin

    2008-01-01T23:59:59.000Z

    The Path of Carbon in Photosynthesis, Prentice-Hall, Ino. ,to StUdy the Products of Photosynthesis as Depending on the48 THE PATH OF CARBON IN PHOTOSYNTHESIS J. A. Bassham and

  20. SOIL PARENT MATERIALS Low-carbonate alluvium

    E-Print Network [OSTI]

    - carbonate" designates parent materials with more than about 15% CaCO3 equivalent; 'low-carbonate" designates parent materials with less than about 2% CaCO3 equivalent. Mountain-derived alluvium from the sedimentary

  1. DOE Manual Studies Terrestrial Carbon Sequestration

    Broader source: Energy.gov [DOE]

    There is considerable opportunity and growing technical sophistication to make terrestrial carbon sequestration both practical and effective, according to the latest carbon capture and storage "best practices" manual issued by the U.S. Department of Energy.

  2. A nanochemomechanical investigation of carbonated cement paste

    E-Print Network [OSTI]

    Vanzo, James (James F.)

    2009-01-01T23:59:59.000Z

    Concrete, and in particular its principal component, cement paste, has an interesting relation with carbon dioxide. Concrete is a carbon dioxide generator-- it is estimated that 5-10% of atmospheric CO? comes from this ...

  3. Carbon Fiber Cluster Strategy | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Fiber Cluster Strategy ORNL has a 40-year history in R&D on fiber-reinforced composite materials, and has been leading DOE's low-cost carbon fiber initiative for more than...

  4. Coupling between the Carbon Cycle and

    E-Print Network [OSTI]

    Zeeman, Mary Lou

    variation in carbon dioxide Coupling between the Carbon Cycle and Physical Processes on multiple scales in the past and present: "chap01" -- 2005/6/2 -- 10:43 -- page 4 -- #4 is difficult to measure global cloud properties

  5. Spherical Carbon with Unique Architectures and Properties

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spherical Carbon with Unique Architectures and Properties V.G. Pol, K.C. Lau, L.A. Curtiss, J.G. Wen, D.J. Miller, and M.M. Thackeray, Argonne National Laboratory Carbon atoms can...

  6. Mechanical energy storage in carbon nanotube springs

    E-Print Network [OSTI]

    Hill, Frances Ann

    2011-01-01T23:59:59.000Z

    Energy storage in mechanical springs made of carbon nanotubes is a promising new technology. Springs made of dense, ordered arrays of carbon nanotubes have the potential to surpass both the energy density of electrochemical ...

  7. Mechanics of deformation of carbon nanotubes

    E-Print Network [OSTI]

    Garg, Mohit, S.M. Massachusetts Institute of Technology

    2005-01-01T23:59:59.000Z

    The deformation mechanics of multi-walled carbon nanotubes (MWCNT) and vertically aligned carbon nanotube (VACNT) arrays were studied using analytical and numerical methods. An equivalent orthotropic representation (EOR) ...

  8. Carbon Nanotube Membranes: Carbon Nanotube Membranes for Energy-Efficient Carbon Sequestration

    SciTech Connect (OSTI)

    None

    2010-03-01T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: Porifera is developing carbon nanotube membranes that allow more efficient removal of CO2 from coal plant exhaust. Most of today’s carbon capture methods use chemical solvents, but capture methods that use membranes to draw CO2 out of exhaust gas are potentially more efficient and cost effective. Traditionally, membranes are limited by the rate at which they allow gas to flow through them and the amount of CO2 they can attract from the gas. Smooth support pores and the unique structure of Porifera’s carbon nanotube membranes allows them to be more permeable than other polymeric membranes, yet still selective enough for CO2 removal. This approach could overcome the barriers facing membrane-based approaches for capturing CO2 from coal plant exhausts.

  9. Biologically Enhanced Carbon Sequestration: Research Needs and Opportunities

    E-Print Network [OSTI]

    Oldenburg, Curtis M.

    2008-01-01T23:59:59.000Z

    carbon dioxide removal as calcium carbonate mineral. Energyin the form of calcium carbonate (CaCO 3 , as calcite), andto the formation of calcium carbonate; on the other hand,

  10. High surface area silicon carbide-coated carbon aerogel

    DOE Patents [OSTI]

    Worsley, Marcus A; Kuntz, Joshua D; Baumann, Theodore F; Satcher, Jr, Joe H

    2014-01-14T23:59:59.000Z

    A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust. Carbon aerogels can be coated with sol-gel silica and the silica can be converted to silicone carbide, improved the thermal stability of the carbon aerogel.

  11. Mesoporous Carbon-based Materials for Alternative Energy Applications

    E-Print Network [OSTI]

    Cross, Kimberly Michelle

    2012-01-01T23:59:59.000Z

    fabricate mesoporous hybrid carbon silica nanocomposites andhybrids pore walls. Ordered mesoporous carbon/silica nanocompositeshybrid decomposes the surfactant and converts the phenylene moieties into carbon, resulting in mesoporous carbon/silica nanocomposites

  12. Distributed Energy Resources for Carbon Emissions Mitigation

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2008-01-01T23:59:59.000Z

    tax increases, larger solar collector/absorption chillerphotovoltaics, solar thermal collectors, and energy storagecapacity of solar thermal collectors carbon emissions

  13. Carbon sequestration in depleted oil shale deposits

    DOE Patents [OSTI]

    Burnham, Alan K; Carroll, Susan A

    2014-12-02T23:59:59.000Z

    A method and apparatus are described for sequestering carbon dioxide underground by mineralizing the carbon dioxide with coinjected fluids and minerals remaining from the extraction shale oil. In one embodiment, the oil shale of an illite-rich oil shale is heated to pyrolyze the shale underground, and carbon dioxide is provided to the remaining depleted oil shale while at an elevated temperature. Conditions are sufficient to mineralize the carbon dioxide.

  14. Carbon Nanotubes Based Nanoelectrode Arrays: Fabrication, Evaluation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arrays: Fabrication, Evaluation and Application in Voltammetric Analysis. Carbon Nanotubes Based Nanoelectrode Arrays: Fabrication, Evaluation and Application in...

  15. Royal College of Art Carbon Management Programme Carbon Management Plan working with

    E-Print Network [OSTI]

    Subramanian, Sriram

    carbon emissions come from our consumption of gas and electricity. We can expect energy prices of carbon management. Richard Rugg Head of Public Sector, Carbon Trust #12;Royal College of Art Carbon and the College recognises that it has a responsibility to contribute to the commitments made by the HE sector

  16. Magnetic properties of carbon-coated, ferromagnetic nanoparticles produced by a carbon-arc method

    E-Print Network [OSTI]

    McHenry, Michael E.

    Magnetic properties of carbon-coated, ferromagnetic nanoparticles produced by a carbon-arc method E to generate carbon-coated transition metal (TM) and TM-carbide nanocrystallites. The magnetic nanocrystallites report here on the synthesis and separation of carbon-coated ferromagnetic transition metal (TM) and TM

  17. Assessing Early Investments in Low Carbon Technologies under Uncertainty: The Case of Carbon Capture and Storage

    E-Print Network [OSTI]

    Assessing Early Investments in Low Carbon Technologies under Uncertainty: The Case of Carbon and Policy Program #12;2 #12;3 Assessing Early Investments in Low Carbon Technologies under Uncertainty: The Case of Carbon Capture and Storage By Eleanor Ereira Submitted to the Engineering Systems Division

  18. Vegetation succession and carbon sequestration in a coastal wetland in northwest Florida: Evidence from carbon isotopes

    E-Print Network [OSTI]

    Wang, Yang

    Vegetation succession and carbon sequestration in a coastal wetland in northwest Florida: Evidence from carbon isotopes Yonghoon Choi and Yang Wang Department of Geological Sciences, Florida State. Measurements of stable carbon isotopic ratios as well as carbon (C), nitrogen (N), and phosphorus (P) contents

  19. Carbon Sequestration and Its Role in the Global Carbon Cycle Geophysical Monograph Series 183

    E-Print Network [OSTI]

    Pennycook, Steve

    73 Carbon Sequestration and Its Role in the Global Carbon Cycle Geophysical Monograph Series 183. Blaine Metting2 The purpose of this chapter is to review terrestrial biological carbon sequestration Northwest National Laboratory, Richland, Washington, USA. #12;74 TERRESTRIAL BIOLOGICAL CARBON SEqUESTRATION

  20. Carbon Dioxide Sequestration Industrial-scale processes are available for separating carbon dioxide from the post-

    E-Print Network [OSTI]

    Carbon Dioxide Sequestration Industrial-scale processes are available for separating carbon dioxide dioxide separation and sequestration because the lower cost of carbon dioxide separation from for injection of carbon dioxide into oil or gas-bearing formations. An advantage of sequestration involving

  1. Electromagnetic interference shielding using continuous carbon-fiber carbon-matrix and polymer-matrix composites

    E-Print Network [OSTI]

    Chung, Deborah D.L.

    of polymer-matrix composites have also been conducted in relation to the laminate properties, the fib of polymer-matrix composites with continuous carbon-fibers was less and that of polymer-matrix composites. Carbon-fiber; A. Carbon-carbon composites (CCCs); A. Polymer-matrix composites (PMCs); Electromagnetic

  2. tice sites of calcium carbonate and affect Mars' soil geochemistry, and calcium carbonate can

    E-Print Network [OSTI]

    Kounaves, Samuel P.

    tice sites of calcium carbonate and affect Mars' soil geochemistry, and calcium carbonate can sample. 18. Estimation of the concentration of calcium carbonate in the sample is uncertain because qualification model (17). Other carbonates have decomposition temperatures that are lower than that of calcite

  3. Tuning Chirality of Single-Wall Carbon Nanotubes by Selective Etching with Carbon Dioxide

    E-Print Network [OSTI]

    Kim, Bongsoo

    Tuning Chirality of Single-Wall Carbon Nanotubes by Selective Etching with Carbon Dioxide Kwanyong properties that are determined by the chirality1 and diameter of carbon nanotubes. One way to overcome@skku.ac.kr Application of carbon nanotubes (CNTs) to various electronic devices such as field emission displays, gas

  4. Mar., 1955 GASIFICATIONOF CARBONRODSWITH CARBONDIOXIDE 241 GASIFICATION OF CARBON RODS WITH CARBON DIOXIDE1*2

    E-Print Network [OSTI]

    commercial carbons and their gasification rates with carbon dioxide at a series of temperatures between 900 and 1300" has been investigated. The following properties of the carbons have been determined: yantitative. No general correlation between these properties and the carbon gasification rates was found. Introduction

  5. VAPOR + LIQUID EQUILIBRIUM OF WATER, CARBON DIOXIDE, AND THE BINARY SYSTEM WATER + CARBON DIOXIDE FROM

    E-Print Network [OSTI]

    ) and their binary mixtures (between 348 and 393 K). The properties of supercritical carbon dioxide were determinedVAPOR + LIQUID EQUILIBRIUM OF WATER, CARBON DIOXIDE, AND THE BINARY SYSTEM WATER + CARBON DIOXIDE the vapor-liquid equilibrium of water (between 323 and 573 K), carbon dioxide (between 230 and 290 K

  6. The Experience of Carbon Rationing Action Groups: Implications for a Personal Carbon

    E-Print Network [OSTI]

    The Experience of Carbon Rationing Action Groups: Implications for a Personal Carbon Allowances Policy Executive Summary Personal Carbon Allowances (PCAs) have been proposed as a policy to facilitate reductions in individuals' carbon dioxide (CO2) emissions. A PCAs scheme would be a cap-and-trade system

  7. The carbon question Debate The carbon question Comment/Q&A he key to climate change

    E-Print Network [OSTI]

    The carbon question Debate The carbon question Comment/Q&A T he key to climate change mitigation arguing incessantly about the details of carbon trading, we should befocusingonpublicpoliciestospeedthe research, development, demonstration, and diffusion of low-emission technolo- gies. Carbon capture

  8. Effect of bending buckling of carbon nanotubes on thermal conductivity of carbon nanotube materials

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    Effect of bending buckling of carbon nanotubes on thermal conductivity of carbon nanotube materials and lateral lattice strain states under a tensile load in as-reacted and prebent CuNb/Nb3Sn wires using;Effect of bending buckling of carbon nanotubes on thermal conductivity of carbon nanotube materials

  9. A cryogenic fluorescence spectroscopic study of uranyl carbonate...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fluorescence spectroscopic study of uranyl carbonate, phosphate, and oxyhydroxide minerals. A cryogenic fluorescence spectroscopic study of uranyl carbonate, phosphate, and...

  10. activated carbon fibers: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon fiberscarbon aerogels composites by gelation and supercritical drying Materials Science Websites Summary: Fabrication of activated carbon fiberscarbon aerogels...

  11. aerogels involving carbon: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon fiberscarbon aerogels composites by gelation and supercritical drying Materials Science Websites Summary: Fabrication of activated carbon fiberscarbon aerogels...

  12. activated carbon fabrics: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon fiberscarbon aerogels composites by gelation and supercritical drying Materials Science Websites Summary: Fabrication of activated carbon fiberscarbon aerogels...

  13. activated carbon fiber: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon fiberscarbon aerogels composites by gelation and supercritical drying Materials Science Websites Summary: Fabrication of activated carbon fiberscarbon aerogels...

  14. Regional evaluation of brine management for geologic carbon sequestration

    E-Print Network [OSTI]

    Breunig, H.M.

    2014-01-01T23:59:59.000Z

    be managed early on. Carbon capture technology is water-,we believe that carbon capture technology will improve over

  15. The Governmentalization of “Lifestyle” and the Biopolitics of Carbon

    E-Print Network [OSTI]

    Lipschutz, Ronnie D.

    2009-01-01T23:59:59.000Z

    Tim Jackson, “The Carbon Footprint of UK Households 1990-tried to quantify the carbon footprints (or similar metrics)

  16. Manufacturing Energy and Carbon Footprint Definitions and Assumptions...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Understanding Manufacturing Energy and Carbon Footprints, October 2012 2010 Manufacturing Energy and Carbon Footprints: Definitions...

  17. Terahertz detection and carbon nanotubes

    SciTech Connect (OSTI)

    Leonard, Francois

    2014-06-11T23:59:59.000Z

    Researchers at Sandia National Laboratories, along with collaborators from Rice University and the Tokyo Institute of Technology, are developing new terahertz detectors based on carbon nanotubes that could lead to significant improvements in medical imaging, airport passenger screening, food inspection and other applications.

  18. Desalination with carbon aerogel electrodes

    SciTech Connect (OSTI)

    Farmer, J.C.; Richardson, J.H.; Fix, D.V.

    1996-10-21T23:59:59.000Z

    An electrically regenerated electrosorption process known as carbon aerogel CDI was developed for continuously removing ionic impurities from aqueous streams. A salt solution flows in a channel formed by pairs of parallel carbon aerogel electrodes. Each electrode has a very high BET surface area and very low resistivity. After polarization, anions and cations are removed from electrolyte by the electric field and electrosorbed onto the carbon aerogel. The solution is thus separated into two streams, brine and water. Based on this, carbon aerogel CDI appears to be an energy-efficient alternative to evaporation, electrodialysis, and reverse osmosis. The energy required by this process is about QV/2, plus losses. Estimated energy requirement for sea water desalination is 18-27 Wh gal{sup -1}, depending on cell voltage and flow rate. The requirement for brackish water desalination is less, 1.2-2.5 Wh gal{sup -1} at 1600 ppM. This is assuming that stored electrical energy is reclaimed during regeneration.

  19. Terahertz detection and carbon nanotubes

    ScienceCinema (OSTI)

    Leonard, Francois

    2014-06-13T23:59:59.000Z

    Researchers at Sandia National Laboratories, along with collaborators from Rice University and the Tokyo Institute of Technology, are developing new terahertz detectors based on carbon nanotubes that could lead to significant improvements in medical imaging, airport passenger screening, food inspection and other applications.

  20. WithCarbonSequestration Biological-

    E-Print Network [OSTI]

    · Techno-Economic Analysis of H2 Production by Gasification of Biomass · Renewables Analysis · BiomassWithCarbonSequestration Biomass Hydro Wind Solar Coal Nuclear Natural Gas Oil Biological- and Biomass- Based Hydrogen Production RoxanneRoxanne DanzDanz #12;Barriers Hydrogen Production from Biomass

  1. Carbon smackdown: visualizing clean energy

    ScienceCinema (OSTI)

    Juan Meza

    2010-09-01T23:59:59.000Z

    The final Carbon Smackdown match took place Aug. 9, 2010. Juan Meza of the Computational Research Division revealed how scientists use computer visualizations to accelerate climate research and discuss the development of next-generation clean energy technologies such as wind turbines and solar cells.

  2. Carbon smackdown: visualizing clean energy

    SciTech Connect (OSTI)

    Juan Meza

    2010-08-11T23:59:59.000Z

    The final Carbon Smackdown match took place Aug. 9, 2010. Juan Meza of the Computational Research Division revealed how scientists use computer visualizations to accelerate climate research and discuss the development of next-generation clean energy technologies such as wind turbines and solar cells.

  3. AMAZING CARBON Prof. David Tomnek

    E-Print Network [OSTI]

    , or gasoline. Without carbon, the key player in molecular biology, our life would be different, or not exist. The role of nanotubes in hydrogen storage is a matter of continuing controversy. It comes as no surprise, Chem.. Phys. Lett. 309, 165 (1999)], bear promise for energy storage due to their large accessible

  4. 5, 11391174, 2008 Organic carbon and

    E-Print Network [OSTI]

    Boyer, Edmond

    BGD 5, 1139­1174, 2008 Organic carbon and nutrient export from disturbed peatlands S. Waldron et al of Biogeosciences The significance of organic carbon and nutrient export from peatland-dominated landscapes subject Union. 1139 #12;BGD 5, 1139­1174, 2008 Organic carbon and nutrient export from disturbed peatlands S

  5. Technologies for Carbon Capture and Storage

    E-Print Network [OSTI]

    Hydrogen Program · FutureGen · Carbon Sequestration Leadership Forum (CSLF) #12;24-Jun-03 Slide 3 OfficeFutureGen Technologies for Carbon Capture and Storage and Hydrogen and Electricity Production-to-hydrogen costs must be lowered and affordable methods developed to sequester the "left behind" carbon #12;24-Jun

  6. Understanding the carbon and greenhouse gas balance

    E-Print Network [OSTI]

    Understanding the carbon and greenhouse gas balance of forests in Britain Research Report #12;#12;Research Report Understanding the carbon and greenhouse gas balance of forests in Britain Forestry forest soil survey 29 3.5.2 Carbon storage in the main British forest soil types 30 3.5.3 Changes in soil

  7. Squestration biologique du carbone par les cyanobactries

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . ______________________________________________________________________________________________________ TITRE en anglais Biological carbon sequestration by cyanobacteria1 Séquestration biologique du carbone par les cyanobactéries THESE PRESENTEE POUR L'OBTENTION DU, qui peuvent fixer du CO2 sous forme de biomasse et carbonate de calcium. Ce dernier, insoluble dans l

  8. tributed by bicarbonate (HCO3 ) and carbon-

    E-Print Network [OSTI]

    Kalas, Paul G.

    - tinental margin "biogeochemical reactor." Sea- level change also affected carbon sequestration through such as phosphorous may have caused a glacial-interglacial redistri- bution of carbon sequestration between the margin1982 tributed by bicarbonate (HCO3 ­) and carbon- ate (CO3 2­) ions, the main forms of dissolved

  9. Carbon dioxide capture process with regenerable sorbents

    DOE Patents [OSTI]

    Pennline, Henry W. (Bethel Park, PA); Hoffman, James S. (Library, PA)

    2002-05-14T23:59:59.000Z

    A process to remove carbon dioxide from a gas stream using a cross-flow, or a moving-bed reactor. In the reactor the gas contacts an active material that is an alkali-metal compound, such as an alkali-metal carbonate, alkali-metal oxide, or alkali-metal hydroxide; or in the alternative, an alkaline-earth metal compound, such as an alkaline-earth metal carbonate, alkaline-earth metal oxide, or alkaline-earth metal hydroxide. The active material can be used by itself or supported on a substrate of carbon, alumina, silica, titania or aluminosilicate. When the active material is an alkali-metal compound, the carbon-dioxide reacts with the metal compound to generate bicarbonate. When the active material is an alkaline-earth metal, the carbon dioxide reacts with the metal compound to generate carbonate. Spent sorbent containing the bicarbonate or carbonate is moved to a second reactor where it is heated or treated with a reducing agent such as, natural gas, methane, carbon monoxide hydrogen, or a synthesis gas comprising of a combination of carbon monoxide and hydrogen. The heat or reducing agent releases carbon dioxide gas and regenerates the active material for use as the sorbent material in the first reactor. New sorbent may be added to the regenerated sorbent prior to subsequent passes in the carbon dioxide removal reactor.

  10. Geological carbon sequestration: critical legal issues

    E-Print Network [OSTI]

    Watson, Andrew

    Geological carbon sequestration: critical legal issues Ray Purdy and Richard Macrory January 2004 Tyndall Centre for Climate Change Research Working Paper 45 #12;1 Geological carbon sequestration an integrated assessment of geological carbon sequestration (Project ID code T2.21). #12;2 1 Introduction

  11. Optimize carbon dioxide sequestration, enhance oil recovery

    E-Print Network [OSTI]

    - 1 - Optimize carbon dioxide sequestration, enhance oil recovery January 8, 2014 Los Alamos simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based on known production. Due to carbon capture and storage technology advances, prolonged high oil prices

  12. Experimental Study of Carbon Sequestration Reactions Controlled

    E-Print Network [OSTI]

    Demouchy, Sylvie

    Experimental Study of Carbon Sequestration Reactions Controlled by the Percolation of CO2-Rich. Carbonation of ultramafic rocks in geological reservoirs is, in theory, the most efficient way to trap CO2 irreversibly; however, possible feedback effects between carbonation reactions and changes in the reservoir

  13. THE COMPARATIVE VALUE OF BIOLOGICAL CARBON SEQUESTRATION

    E-Print Network [OSTI]

    McCarl, Bruce A.

    THE COMPARATIVE VALUE OF BIOLOGICAL CARBON SEQUESTRATION BRUCE A. MCCARL, BRIAN C. MURRAY, AND UWE A. SCHNEIDER A. Abstract Carbon sequestration via forests and agricultural soils saturates over time to sequestration because of (1) an ecosystems limited ability to take up carbon which we will call saturation

  14. CORROSION-RESISTANT COATING FOR CARBONATE

    E-Print Network [OSTI]

    CORROSION-RESISTANT COATING FOR CARBONATE FUEL CELL COMPONENTS Prepared For: California Energy ANALYSIS REPORT (FAR) CORROSION RESISTANT COATING FOR CARBONATE FUEL CELL COMPONENTS EISG AWARDEE Chemat://www.energy.ca.gov/research/index.html. #12;Page 1 Corrosion Resistant Coating for Carbonate Fuel Cell Components EISG Grant # 00-05 Awardee

  15. Soil Carbon Accumulation During Temperate Forest Succession

    E-Print Network [OSTI]

    Grogan, Paul

    K7L 3N6, Canada ABSTRACT Carbon sequestration in soils that have previously beendepletedoforganic the soil carbon sequestration potential of such lands by sampling adjacent mature forest and agricultural abandonment is more important than soil type in determining the potential magnitude of carbon sequestration

  16. The Importance of Carbon Footprint Estimation Boundaries

    E-Print Network [OSTI]

    Kammen, Daniel M.

    The Importance of Carbon Footprint Estimation Boundaries H . S C O T T M A T T H E W S , C H R I and organizations are pursuing "carbon footprint" projects to estimate their own contributions to global climate change. Protocol definitions from carbon registries help organizations analyze their footprints

  17. OXYGEN ADSORPTION ON NITROGEN CONTAINING CARBON SURFACES

    E-Print Network [OSTI]

    Truong, Thanh N.

    OXYGEN ADSORPTION ON NITROGEN CONTAINING CARBON SURFACES Alejandro Montoya, Jorge O. Gil, Fanor-rich site of the carbon basal plane of graphite and then, it dissociates into oxygen atoms.1,2 Oxygen atoms at the edge of the carbon surface can form covalent bonds with oxygen. These sites can chemisorb

  18. 9, 1443714473, 2012 Soil carbon drivers

    E-Print Network [OSTI]

    Ickert-Bond, Steffi

    BGD 9, 14437­14473, 2012 Soil carbon drivers and benchmarks in Earth system models K. E. O. Todd if available. Causes of variation in soil carbon predictions from CMIP5 Earth system models and comparison #12;BGD 9, 14437­14473, 2012 Soil carbon drivers and benchmarks in Earth system models K. E. O. Todd

  19. Nonlinearity of Carbon Cycle Feedbacks KIRSTEN ZICKFELD

    E-Print Network [OSTI]

    Schmittner, Andreas

    properties and anthropogenic CO2. These findings suggest that metrics of carbon cycle feedback that pos, human activities have emitted large amounts of carbon dioxide (CO2) into the atmosphere (490 PgC fromNonlinearity of Carbon Cycle Feedbacks KIRSTEN ZICKFELD Canadian Centre for Climate Modelling

  20. Officials launch Carbon Fiber Technology Facility, announce

    E-Print Network [OSTI]

    Pennycook, Steve

    to reduce carbon fiber's high cost, Danielson noted: "Many of these new clean energy technologies are withinSCIENCE Officials launch Carbon Fiber Technology Facility, announce new manufacturing initiative and a large crowd of local business and civic leaders came to the Carbon Fiber Technology Facility (CFTF

  1. Carbon and Nitrogen Dynamics in Agricultural Soils

    E-Print Network [OSTI]

    Carbon and Nitrogen Dynamics in Agricultural Soils Model Applications at Different Scales in Time Print: SLU Service/Repro, Uppsala 2012 #12;Carbon and Nitrogen Dynamics in Agricultural Soils. Model Applications at Different Scales in Time and Space Abstract An understanding of soil organic carbon (C

  2. Carbon Allocation in Underground Storage Organs

    E-Print Network [OSTI]

    Carbon Allocation in Underground Storage Organs Studies on Accumulation of Starch, Sugars and Oil Cover: Starch granules in cells of fresh potato tuber visualised by iodine staining. #12;Carbon By increasing knowledge of carbon allocation in underground storage organs and using the knowledge to improve

  3. Carbon Footprinting for the Food Industry

    E-Print Network [OSTI]

    Balasundaram, Balabhaskar "Baski"

    174-1 Carbon Footprinting for the Food Industry Tim Bowser FAPC Food Process Engineer FAPC-174 and Natural Resources Carbon footprinting in the food industry is an activity that determines the greenhouse.g. tons) of carbon dioxide (CO2) equivalent per functional unit (e.g. kg or liter of goods sold) (PAS2050

  4. CARBON MITIGATION HS 2014 Prof. Nicolas Gruber

    E-Print Network [OSTI]

    Fischlin, Andreas

    CARBON MITIGATION HS 2014 Prof. Nicolas Gruber Mondays 10-12, CHN E42 (nicolas & Introduction (Gruber) Introduction to the carbon mitigation problem 9/22 2 Geological CO2 sequestration (Mazzotti) Putting the CO2 underground... 9/29 3 No class ­ group formation 10/06 4 Carbon sinks on land

  5. Carbon-based Materials for Energy Storage

    E-Print Network [OSTI]

    Rice, Lynn Margaret

    2012-01-01T23:59:59.000Z

    G. Luo, W. Qian and F. Wei, Carbon, 18. Q. Zhang, G. Xu, J.Wang, W. Qian and F. Wei, Carbon, 2009, 47, 538 1. Z. Chen,Frackowiak, E. and Béguin, F. Carbon 39, 937-950 (2001) 13.

  6. CARBON MITIGATION HS 2013 Prof. Nicolas Gruber

    E-Print Network [OSTI]

    Fischlin, Andreas

    CARBON MITIGATION HS 2013 Prof. Nicolas Gruber Mondays 10-12, CHN E42 (nicolas & Introduction (Gruber) Introduction to the carbon mitigation problem 9/23 2 Ocean Sequestration (Gruber) Putting2 sequestration (Mazzotti) Putting the CO2 underground... 10/14 5 Carbon sinks on land (Gruber) How

  7. results and benefits... The Bittern Line Carbon

    E-Print Network [OSTI]

    Everest, Graham R

    results and benefits... The Bittern Line Carbon Neutral Stations Transport Regeneration Ltd. June 2008 c a s e s t u d yCRed carbon reduction Project Summary Our client, Transport Regeneration Ltd., aims to make nine stations on the Bittern Line between Norwich and Sheringham carbon neutral

  8. 1, 367392, 2004 The carbon budget of

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    BGD 1, 367­392, 2004 The carbon budget of the North Sea H. Thomas et al. Title Page Abstract Discussions is the access reviewed discussion forum of Biogeosciences The carbon budget of the North Sea H­392, 2004 The carbon budget of the North Sea H. Thomas et al. Title Page Abstract Introduction Conclusions

  9. SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW

    E-Print Network [OSTI]

    Santos, Juan

    SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW J. E. Santos1, G. B. Savioli2, J. M. Carcione3, D´e, Argentina SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW ­ p. #12;Introduction. I Storage of CO2). SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW ­ p. #12;Introduction. II CO2 is separated from natural

  10. Resistivity changes in carbon-implanted Teflon 

    E-Print Network [OSTI]

    Jackson, Matthew R.

    2013-02-22T23:59:59.000Z

    . e Figure 10: Carbon Distribution vs Depth for 50 kV/140 kV Dual Implantation Based on the simulation results above, it was determined that using dual energies would maximize the concentration of carbon in the implanted area. Consequently carbon...

  11. The human carbon budget: an estimate of the spatial distribution of metabolic carbon consumption and release in the United States

    E-Print Network [OSTI]

    West, Tristram O.; Marland, Gregg; Singh, Nagendra; Bhaduri, Budhendra L.; Roddy, Adam B.

    2009-01-01T23:59:59.000Z

    West TO, Marland G (2002a) Net carbon ?ux from agriculturalmethodology for full carbon cycle analyses. Environ PollutG (2002b) A synthesis of carbon seques- tration, carbon

  12. CALCULATING THE CARBON FOOTPRINT SUPPLY CHAIN FOR THE

    E-Print Network [OSTI]

    Su, Xiao

    CALCULATING THE CARBON FOOTPRINT SUPPLY CHAIN FOR THE SEMICONDUCTOR INDUSTRY A LEARNING TOOL By a complete supply chain #12;Carbon Footprint Supply Chain Carbon Trust defines carbon footprint of a supply chain as follows: "The carbon footprint of a product is the carbon dioxide emitted across the supply

  13. Mr. J . Kieling, Acting Chief Ha

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    East, Building 1 Santa Fe , New Mexico 87505-6303 Subject: Notification of Class 1 Permit Modification to the Hazardous Waste Facility Permit, Number: NM4890139088-TSDF Dear...

  14. MARY PARK HA hrough 6 and a

    E-Print Network [OSTI]

    @sfsu.ed 2011] s: Floors 1 th ny resident in M ooms and livin East [odd] side ooms. An asse rs 1, 2, 4, 5

  15. art Phones ha versity of Wa

    E-Print Network [OSTI]

    Queitsch, Christine

    nts a potentia ed smart pho icer (CISO) e secure the sm ss code or PI e or PIN with one to lock au of the CISO bile work force d to importa ty application y, integrity, an y business, th er the followin ccess

  16. Mr. J . Kieling, Acting Chief Ha

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA /Ml'.SolarUS Dept of Energy,Moving Quarks Help JohnMr. J

  17. Carbon nanotube coatings as chemical absorbers

    DOE Patents [OSTI]

    Tillotson, Thomas M.; Andresen, Brian D.; Alcaraz, Armando

    2004-06-15T23:59:59.000Z

    Airborne or aqueous organic compound collection using carbon nanotubes. Exposure of carbon nanotube-coated disks to controlled atmospheres of chemical warefare (CW)-related compounds provide superior extraction and retention efficiencies compared to commercially available airborne organic compound collectors. For example, the carbon nanotube-coated collectors were four (4) times more efficient toward concentrating dimethylmethyl-phosphonate (DMMP), a CW surrogate, than Carboxen, the optimized carbonized polymer for CW-related vapor collections. In addition to DMMP, the carbon nanotube-coated material possesses high collection efficiencies for the CW-related compounds diisopropylaminoethanol (DIEA), and diisopropylmethylphosphonate (DIMP).

  18. Fabricating solid carbon porous electrodes from powders

    DOE Patents [OSTI]

    Kaschmitter, James L. (Pleasanton, CA); Tran, Tri D. (Livermore, CA); Feikert, John H. (Livermore, CA); Mayer, Steven T. (San Leandro, CA)

    1997-01-01T23:59:59.000Z

    Fabrication of conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive dionization, and waste treatment. Electrodes fabricated from low surface area (<50 m.sup.2 /gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon compositives with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to be high surface area carbons, fuel cell electrodes can be produced.

  19. Fabricating solid carbon porous electrodes from powders

    DOE Patents [OSTI]

    Kaschmitter, J.L.; Tran, T.D.; Feikert, J.H.; Mayer, S.T.

    1997-06-10T23:59:59.000Z

    Fabrication is described for conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive deionization, and waste treatment. Electrodes fabricated from low surface area (<50 m{sup 2}/gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon composites with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to high surface area carbons, fuel cell electrodes can be produced. 1 fig.

  20. Transition metal-catalyzed process for addition of amines to carbon-carbon double bonds

    DOE Patents [OSTI]

    Hartwig, John F. (Durham, CT); Kawatsura, Motoi (Chatham, NJ); Loeber, Oliver (New Haven, CT)

    2002-01-01T23:59:59.000Z

    The present invention is directed to a process for addition of amines to carbon-carbon double bonds in a substrate, comprising: reacting an amine with a compound containing at least one carbon-carbon double bond in the presence a transition metal catalyst under reaction conditions effective to form a product having a covalent bond between the amine and a carbon atom of the former carbon-carbon double bond. The transition metal catalyst comprises a Group 8 metal and a ligand containing one or more 2-electron donor atoms. The present invention is also directed to enantioselective reactions of amine compounds with compounds containing carbon-carbon double bonds, and a calorimetric assay to evaluate potential catalysts in these reactions.

  1. Big Sky Carbon Sequestration Partnership

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2005-11-01T23:59:59.000Z

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO2 utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research agenda in Carbon Sequestration. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other DOE regional partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound MMV is critical for public acceptance of these technologies. Deliverables for the 7th Quarter reporting period include (1) for the geological efforts: Reports on Technology Needs and Action Plan on the Evaluation of Geological Sinks and Pilot Project Deployment (Deliverables 2 and 3), and Report on the Feasibility of Mineralization Trapping in the Snake River Plain Basin (Deliverable 14); (2) for the terrestrial efforts: Report on the Evaluation of Terrestrial Sinks and a Report of the Best Production Practices for Soil C Sequestration (Deliverables 8 and 15). In addition, the 7th Quarter activities for the Partnership included further development of the proposed activities for the deployment and demonstration phase of the carbon sequestration pilots including geological and terrestrial pilots, expansion of the Partnership to encompass regions and institutions that are complimentary to the steps we have identified, building greater collaborations with industry and stakeholders in the region, contributed to outreach efforts that spanned all partnerships, co-authorship on the Carbon Capture and Separation report, and developed a regional basis to address future energy opportunities in the region. The deliverables and activities are discussed in the following sections and appended to this report. The education and outreach efforts have resulted in a comprehensive plan which serves as a guide for implementing the outreach activities under Phase I. The public website has been expanded and integrated with the GIS carbon atlas. We have made presentations to stakeholders and policy makers including two tribal sequestration workshops, and made connections to other federal and state agencies concerned with GHG emissions, climate change, and efficient and environmental

  2. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2004-10-31T23:59:59.000Z

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies. Two key deliverables were completed in the second quarter--a literature review/database to assess the soil carbon on rangelands, and the draft protocols, contracting options for soil carbon trading. The protocols developed for soil carbon trading are unique and provide a key component of the mechanisms that might be used to efficiently sequester GHG and reduce CO{sub 2} concentrations. While no key deliverables were due during the third quarter, progress on other deliverables is noted in the PowerPoint presentations and in this report. A series of meetings held during the second and third quarters have laid the foundations for assessing the issues surrounding carbon sequestration in this region, the need for a holistic approach to meeting energy demands and economic development potential, and the implementation of government programs or a market-based setting for soil C credits. These meetings provide a connection to stakeholders in the region and a basis on which to draw for the DOE PEIS hearings. In the fourth quarter, three deliverables have been completed, some in draft form to be revised and updated to include Wyoming. This is due primarily to some delays in funding to LANL and INEEL and the approval of a supplemental proposal to include Wyoming in much of the GIS data sets, analysis, and related materials. The de

  3. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2004-06-30T23:59:59.000Z

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop (see attached agenda). The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies. Two key deliverables were completed in the second quarter--a literature review/database to assess the soil carbon on rangelands, and the draft protocols, contracting options for soil carbon trading. The protocols developed for soil carbon trading are unique and provide a key component of the mechanisms that might be used to efficiently sequester GHG and reduce CO2 concentrations. While no key deliverables were due during the third quarter, progress on other deliverables is noted in the PowerPoint presentations and in this report. A series of meetings held during the second and third quarters have laid the foundations for assessing the issues surrounding carbon sequestration in this region, the need for a holistic approach to meeting energy demands and economic development potential, and the implementation of government programs or a market-based setting for soil C credits. These meetings provide a connection to stakeholders in the region and a basis on which to draw for the DOE PEIS hearings. A third Partnership meeting has been planned for August 04 in Idaho Falls; a preliminary agenda is attached.

  4. Supercapacitors based on carbon foams

    DOE Patents [OSTI]

    Kaschmitter, J.L.; Mayer, S.T.; Pekala, R.W.

    1993-11-09T23:59:59.000Z

    A high energy density capacitor incorporating a variety of carbon foam electrodes is described. The foams, derived from the pyrolysis of resorcinol-formaldehyde and related polymers, are high density (0.1 g/cc-1.0 g/cc) electrically conductive and have high surface areas (400 m[sup 2]/g-1000 m[sup 2]/g). Capacitances on the order of several tens of farad per gram of electrode are achieved. 9 figures.

  5. Supercapacitors based on carbon foams

    DOE Patents [OSTI]

    Kaschmitter, James L. (6291 Alisal St., Pleasanton, CA 94566); Mayer, Steven T. (16026 Selborne Dr., San Leandro, CA 94578); Pekala, Richard W. (802 Cliffside Dr., Pleasant Hill, CA 94523)

    1993-01-01T23:59:59.000Z

    A high energy density capacitor incorporating a variety of carbon foam electrodes is described. The foams, derived from the pyrolysis of resorcinol-formaldehyde and related polymers, are high density (0.1 g/cc-1.0 g/cc) electrically conductive and have high surface areas (400 m.sup.2 /g-1000 m.sup.2 /g). Capacitances on the order of several tens of farad per gram of electrode are achieved.

  6. ARM - Measurement - Organic Carbon Concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDCnarrowband upwelling irradiance ARMgovMeasurementsOrganic Carbon

  7. SEQUESTERING CARBON DIOXIDE IN COALBEDS

    SciTech Connect (OSTI)

    K.A.M. Gasem; R.L. Robinson, Jr.; L.R. Radovic

    2001-06-15T23:59:59.000Z

    The authors' long term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure and adsorbent types. The major objectives of the project are to: (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coal being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals, to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. The specific accomplishments of this project during this reporting period are summarized below in three broad categories outlining experimentation, model development, and coal characterization. (1) Experimental Work: Our adsorption apparatus was reassembled, and all instruments were tested and calibrated. Having confirmed the viability of the experimental apparatus and procedures used, adsorption isotherms for pure methane, carbon dioxide and nitrogen on wet Fruitland coal were measured at 319.3 K (115 F) and pressures to 12.4 MPa (1800 psia). These measurements showed good agreement with our previous data and yielded an expected uncertainty of about 2%. Preparations are underway to measure adsorption isotherms for pure methane, carbon dioxide and nitrogen on two other coals. (2) Model Development: The experimental data were used to evaluate the predictive capabilities of various adsorption models, including the Langmuir/loading ratio correlation, two-dimensional cubic equations of state, and the local density model. In general, all models performed well for Type I adsorption exhibited by methane, nitrogen, and carbon dioxide up to 8.3 MPa (average deviations within 2%). However, for pressures higher than 8.3 MPa (1200 psia), carbon dioxide produced multilayer adsorption behavior similar to Type IV adsorption. Our results to date indicate that the SLD model may be a suitable choice for modeling multilayer coalbed gas adsorption. However, model improvements are required to (a) account for coal heterogeneity and structure complexity, and (b) provide for more accurate density predictions. (3) Coal Characterization: We have identified several well-characterized coals for use in our adsorption studies. The criteria for coal selection has been guided by the need for coals that (a) span the spectrum of properties encountered in coalbed methane production (such as variation in rank), and (b) originate from coalbed methane recovery sites (e.g., San Juan Basin, Black Warrior Basin, etc.). At Pennsylvania State University, we have completed calibrating our instruments using a well-characterized activated carbon. In addition, we have conducted CO{sub 2} and methane uptakes on four samples, including (a) a widely used commercial activated carbon, BPL from Calgon Carbon Corp.; (b) an Illinois No.6 bituminous coal from the Argonne Premium Coal sample bank; (c) a Fruitland Intermediate coal sample; (d) a dry Fruitland sample. The results are as expected, except for a greater sensitivity to the outgassing temperature. ''Standard'' outgassing conditions (e.g., 383.2 K, overnight), which are often used, may not be appropriate for gas storage in coalbeds. Conditions that are more representative of in-situ coal (approximately 313.2 K) may be much more appropriate. In addition, our results highlight the importance of assessing the degree of approach to adsorption equilibrium.

  8. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2004-06-01T23:59:59.000Z

    The Big Sky Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts during the second performance period fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies. Two key deliverables were completed this quarter--a literature review/database to assess the soil carbon on rangelands, and the draft protocols, contracting options for soil carbon trading. To date, there has been little research on soil carbon on rangelands, and since rangeland constitutes a major land use in the Big Sky region, this is important in achieving a better understanding of terrestrial sinks. The protocols developed for soil carbon trading are unique and provide a key component of the mechanisms that might be used to efficiently sequester GHG and reduce CO{sub 2} concentrations. Progress on other deliverables is noted in the PowerPoint presentations. A series of meetings held during the second quarter have laid the foundations for assessing the issues surrounding the implementation of a market-based setting for soil C credits. These meetings provide a connection to stakeholders in the region and a basis on which to draw for the DOE PEIS hearings. Finally, the education and outreach efforts have resulted in a comprehensive plan and process which serves as a guide for implementing the outreach activities under Phase I. While we are still working on the public website, we have made many presentations to stakeholders and policy makers, connections to other federal and state agencies concerned with GHG emissions, climate change, and efficient and environmentally-friendly energy production. In addition, we have laid plans for integration of our outreach efforts with the students, especially at the tribal colleges and at the universities involved in our partnership. This includes collaboration with the film and media arts departments at MSU, with outreach effort

  9. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2004-01-04T23:59:59.000Z

    The Big Sky Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts during the first performance period fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first Partnership meeting the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Complementary to the efforts on evaluation of sources and sinks is the development of the Big Sky Partnership Carbon Cyberinfrastructure (BSP-CC) and a GIS Road Map for the Partnership. These efforts will put in place a map-based integrated information management system for our Partnership, with transferability to the national carbon sequestration effort. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but other policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long term viability. A series of meetings held in November and December, 2003, have laid the foundations for assessing the issues surrounding the implementation of a market-based setting for soil C credits. These include the impact of existing local, state, and federal permitting issues for terrestrial based carbon sequestration projects, consistency of final protocols and planning standards with national requirements, and alignments of carbon sequestration projects with existing federal and state cost-share programs. Finally, the education and outreach efforts during this performance period have resulted in a comprehensive plan which serves as a guide for implementing the outreach activities under Phase I. The primary goal of this plan is to increase awareness, understanding, and public acceptance of sequestration efforts and build support for a constituent based network which includes the initial Big Sky Partnership and other local and regional businesses and entities.

  10. Monolithic carbon structures including suspended single nanowires and nanomeshes as a sensor platform

    E-Print Network [OSTI]

    Lim, Yeongjin; Heo, Jeong-Il; Madou, Marc; Shin, Heungjoo

    2013-01-01T23:59:59.000Z

    derived carbon for microelectromechanical systems andcalled carbon microelectromechanical systems (C-MEMS) wasfor carbon microelectromechanical systems devices in

  11. Carbon sequestration in natural gas reservoirs: Enhanced gas recovery and natural gas storage

    E-Print Network [OSTI]

    Oldenburg, Curtis M.

    2003-01-01T23:59:59.000Z

    gas reservoirs for carbon sequestration and enhanced gasproduction and carbon sequestration, Society of Petroleumfeasibiilty of carbon sequestration with enhanced gas

  12. Coda-wave interferometry analysis of time-lapse VSP data for monitoring geological carbon sequestration

    E-Print Network [OSTI]

    Zhou, R.

    2010-01-01T23:59:59.000Z

    Monitoring Geological Carbon Sequestration Authors: RongmaoGeological Carbon Sequestration ABSTRACT Injection andmonitoring geological carbon sequestration. ACKNOWLEDGEMENTS

  13. The consequences of failure should be considered in siting geologic carbon sequestration projects

    E-Print Network [OSTI]

    Price, P.N.

    2009-01-01T23:59:59.000Z

    2007. Geologic Carbon Sequestration Strategies forfor carbon capture and sequestration. Environmental Sciencein Siting Geologic Carbon Sequestration Projects Phillip N.

  14. Restoring Sustainable Forests on Appalachian Mined Lands for Wood Products, Renewable Energy, Carbon Sequestration, and Other Ecosystem Services

    SciTech Connect (OSTI)

    Burger, James A

    2005-07-20T23:59:59.000Z

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. We are currently estimating the acreage of lands in Virginia, West Virginia, Kentucky, Ohio, and Pennsylvania mined under SMCRA and reclaimed to non-forested post-mining land uses that are not currently under active management, and therefore can be considered as available for carbon sequestration. To determine actual sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, one each in Ohio, West Virginia, and Virginia. The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots is 4.5 acres, and the complete installation at each site is 13.5 acres. During the reporting period we determined that by grinding the soil samples to a finer particle size of less than 250 ?m (sieve No. 60), the effect of mine soil coal particle size on the extent to which these particles will be oxidized during the thermal treatment of the carbon partitioning procedure will be eliminated, thus making the procedure more accurate and precise. In the second phase of the carbon sequestration project, we focused our attention on determining the sample size required for carbon accounting on grassland mined fields in order to achieve a desired accuracy and precision of the final soil organic carbon (SOC) estimate. A mine land site quality classification scheme was developed and some field-testing of the methods of implementation was completed. The classification model has been validated for softwoods (white pine) on several reclaimed mine sites in the southern Appalachian coal region. The classification model is a viable method for classifying post-SMCRA abandoned mined lands into productivity classes for white pine. A thinning study was established as a random complete block design to evaluate the response to thinning of a 26-year-old white pine stand growing on a reclaimed surface mine in southwest Virginia. Stand parameters were projected to age 30 using a stand table projection. Site index of the stand was found to be 32.3 m at base age 50 years. Thinning rapidly increased the diameter growth of the residual trees to 0.84 cm yr{sup -1} compared to 0.58 cm yr{sup -1} for the unthinned treatment; however, at age 26, there was no difference in volume or value per hectare. At age 30, the unthinned treatment had a volume of 457.1 m{sup 3} ha{sup -1} but was only worth $8807 ha{sup -1}, while the thinned treatment was projected to have 465.8 m{sup 3} ha{sup -1}, which was worth $11265 ha{sup -1} due to a larger percentage of the volume being in sawtimber size classes.

  15. Method for making thin carbon foam electrodes

    DOE Patents [OSTI]

    Pekala, R.W.; Mayer, S.T.; Kaschmitter, J.L.; Morrison, R.L.

    1999-08-03T23:59:59.000Z

    A method for fabricating thin, flat carbon electrodes by infiltrating highly porous carbon papers, membranes, felts, metal fibers/powders, or fabrics with an appropriate carbon foam precursor material is disclosed. The infiltrated carbon paper, for example, is then cured to form a gel-saturated carbon paper, which is subsequently dried and pyrolyzed to form a thin sheet of porous carbon. The material readily stays flat and flexible during curing and pyrolyzing to form thin sheets. Precursor materials include polyacrylonitrile (PAN), polymethylacrylonitrile (PMAN), resorcinol/formaldehyde, catechol/formaldehyde, phenol/formaldehyde, etc., or mixtures thereof. These thin films are ideal for use as high power and energy electrodes in batteries, capacitors, and fuel cells, and are potentially useful for capacitive deionization, filtration and catalysis.

  16. Influence of stand age on the magnitude and seasonality of carbon fluxes in Canadian forests

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    seasons lead to less carbon sequestration by a subalpineboreal forests to global carbon sequestration (Kurz et al. ,off- set point when carbon sequestration equals carbon loss

  17. Geologic carbon sequestration as a global strategy to mitigate CO2 emissions: Sustainability and environmental risk

    E-Print Network [OSTI]

    Oldenburg, C.M.

    2012-01-01T23:59:59.000Z

    and Co. (2008) Carbon capture and storage: Assessing theof Carbon Dioxide, in Carbon Capture and SequestrationWilson and Gerard, editors, Carbon Capture and Sequestration

  18. Method of making carbon nanotube composite materials

    DOE Patents [OSTI]

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2014-05-20T23:59:59.000Z

    The present invention is a method of making a composite polymeric material by dissolving a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes and optionally additives in a solvent to make a solution and removing at least a portion of the solvent after casting onto a substrate to make thin films. The material has enhanced conductivity properties due to the blending of the un-functionalized and hydroxylated carbon nanotubes.

  19. Electrolyte reservoir for carbonate fuel cells

    DOE Patents [OSTI]

    Iacovangelo, C.D.; Shores, D.A.

    1984-05-23T23:59:59.000Z

    An electrode for a carbonate fuel cell and method of making same are described wherein a substantially uniform mixture of an electrode-active powder and porous ceramic particles suitable for a carbonate fuel cell are formed into an electrode with the porous ceramic particles having pores in the range of from about 1 micron to about 3 microns, and a carbonate electrolyte is in the pores of the ceramic particles.

  20. The effect of inhibitors on material and mechanical properties of oxidized carbon-carbon composites 

    E-Print Network [OSTI]

    Elliott, Charles Howard

    1995-01-01T23:59:59.000Z

    The carbon-carbon laminates examined in this research program are two-dimensional, eight harness satin weaves with boron carbide (B4C) inhibitor particles and a multi-layer silicon carbide (SiC) coating. These inhibitor ...