Sample records for gvwr gross vehicle

  1. 48669Federal Register / Vol. 65, No. 154 / Wednesday, August 9, 2000 / Proposed Rules Type of motor vehicle

    E-Print Network [OSTI]

    vehicle Service Brake Systems Emergency brake sys- tems: applica- tion and brak- ing distance in feet from initial speed of 20 mph Braking force as a percent- age of gross vehicle or combination weight mph B. Property-carrying vehicles: (1) Single unit vehicles having a manufacturer's GVWR of 10

  2. Fact #768: February 25, 2013 New Light Vehicle Sales and Gross...

    Broader source: Energy.gov (indexed) [DOE]

    downs. Those ups and downs are also reflected in the change in Gross Domestic Product (GDP) over time which shows a trend similar to the vehicle sales trend. Vehicle sales have...

  3. A conceptual framework for the vehicle-to-grid (V2G) implementation Christophe Guille , George Gross

    E-Print Network [OSTI]

    Gross, George

    A conceptual framework for the vehicle-to-grid (V2G) implementation Christophe Guille Ă?, George Gross Department of Electrical and Computer Engineering, University of Illinois at Urbana

  4. Gross decontamination experiment report

    SciTech Connect (OSTI)

    Mason, R.; Kinney, K.; Dettorre, J.; Gilbert, V.

    1983-07-01T23:59:59.000Z

    A Gross Decontamination Experiment was conducted on various levels and surfaces of the TMI - Unit 2 reactor building in March 1982. The polar crane, D-rings, missile shields, refueling canals, refueling bridges, equipment, and elevations 305' and 347'-6'' were flushed with low pressure water. Additionally, floor surfaces on elevation 305' and floor surfaces and major pieces of equipment on elevation 347'-6'' were sprayed with high pressure water. Selective surfaces were decontaminated with a mechanical scrubber and chemicals. Strippable coating was tested and evaluated on equipment and floor surfaces. The effectiveness, efficiency, and safety of several decontamination techniques were established for the large, complex decontamination effort. Various decontamination equipment was evaluated and its effectiveness was documented. Decontamination training and procedures were documented and evaluated, as were the support system and organization for the experiment.

  5. Emotion Regulation JAMES J. GROSS

    E-Print Network [OSTI]

    Gross, James J.

    CHAPTER 31 ·Emotion Regulation JAMES J. GROSS Have you ever gotten so angry that you've done), and self-regulation (Mischel, Shoda, & Rodriguez, 1989). What is new are the theoretical and empiri cal

  6. Solar Energy Gross Receipts Tax Deduction

    Broader source: Energy.gov [DOE]

    New Mexico has a gross receipts tax structure for businesses instead of a sales tax. Businesses are taxed on the gross amount of their business receipts each year before expenses are deducted....

  7. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation 2010 DOE Vehicle Technologies...

  8. Physics Nobel winner David Gross gives public lecture at Jefferson...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Nobel winner David Gross gives public lecture at Jefferson Lab on June 12 (Monday) June 6, 2006 David Gross David Gross, Nobel Prize recipient and lecturer David Gross,...

  9. ,"Utah Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Gross Withdrawals and Production",10,"Monthly","112014","1151989" ,"Release...

  10. ,"Louisiana Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Gross Withdrawals and Production",10,"Monthly","112014","1151989" ,"Release...

  11. ,"California Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Gross Withdrawals and Production",10,"Monthly","112014","1151989" ,"Release...

  12. ,"Oklahoma Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Gross Withdrawals and Production",10,"Monthly","112014","1151989" ,"Release...

  13. ,"Wyoming Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Gross Withdrawals and Production",10,"Monthly","112014","1151989" ,"Release...

  14. ,"Texas Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Gross Withdrawals and Production",10,"Monthly","112014","1151989" ,"Release...

  15. ,"Kansas Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas Gross Withdrawals and Production",10,"Monthly","112014","1151989" ,"Release...

  16. ,"Oregon Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas Gross Withdrawals and Production",10,"Monthly","112014","1151991" ,"Release...

  17. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

  18. Preliminary Assessment of Overweight Mainline Vehicles

    SciTech Connect (OSTI)

    Siekmann, Adam [ORNL; Capps, Gary J [ORNL; Lascurain, Mary Beth [ORNL

    2011-11-01T23:59:59.000Z

    The Federal Motor Carrier Safety Administration requested information regarding overweight and oversized vehicle traffic entering inspection stations (ISs) in order to develop strategies for future research efforts and possibly help guide regulatory issues involving overweight commercial motor vehicles (CMVs). For a period of one month, inspection stations in Knox County and Greene County, Tennessee, recorded overweight and oversized vehicles that entered these ISs. During this period, 435 CMVs were recorded using an electronic form filled out by enforcement personnel at the IS. Of the 435 CMVs recorded, 381 had weight information documented with them. The majority (52.2%) of the vehicles recorded were five-axle combination vehicles, and 50.6% of all the vehicles were permitted to operate above the legal weight limit in Tennessee, which is 80,000 lb for vehicles with five or more axles. Only 16.8% of the CMVs recorded were overweight gross (11.5% of permitted vehicles) and 54.1% were overweight on an axle group. The low percentage of overweight gross CMVs was because only 45 of the vehicles over 80,000 lb. were not permitted. On average, axles that were overweight were 2,000 lb. over the legal limit for an axle or group of axles. Of the vehicles recorded, 172 vehicles were given a North American Standard (NAS) inspection during the assessment. Of those, 69% of the inspections were driver-only inspections (Level III) and only 25% of the inspections had a vehicle component (such as a Level I or Level II). The remaining 6% of inspections did not have valid Aspen numbers; the type of was inspection unknown. Data collected on the types of trailers of each vehicle showed that about half of the recorded CMVs could realistically be given a Level I (full vehicle and driver) inspection; this estimate was solely based on trailer type. Enforcement personnel at ISs without an inspection pit have difficulty fully inspecting certain vehicles due to low clearance below the trailer. Because of this, overweight and oversized vehicles were normally only given a Level III (driver) inspection; thus, little is known about the safety of these vehicles. The out-of-service (OOS) rate of all the inspected vehicles (driver and vehicle inspections) was 18.6%, while the OOS rate for vehicle inspections (Level I and II) was 52.4%. Future work will focus on performing Level I inspections on five-axle combination tractor-trailers and the types of violations that overweight vehicles may have. This research will be conducted in Tennessee and possibly in other states as well.

  19. Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle...

    Energy Savers [EERE]

    Maximizing Alternative Fuel Vehicle Efficiency Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency Besides their energy security and environmental benefits,...

  20. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2009 Advanced Vehicle...

  1. Vehicle Technologies Office: 2008 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2008 Advanced Vehicle...

  2. Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 2011 Report1:Energy 2:

  3. IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 15, NO. 7, JULY 2006 2019 Monocular Precrash Vehicle Detection

    E-Print Network [OSTI]

    Bebis, George

    Detection: Features and Classifiers Zehang Sun, George Bebis, and Ronald Miller Abstract's gross domestic product [1]. Each year in the United States, motor vehicle crashes account for about 40

  4. Electric vehicles

    SciTech Connect (OSTI)

    Not Available

    1990-03-01T23:59:59.000Z

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  5. Electric Vehicles

    ScienceCinema (OSTI)

    Ozpineci, Burak

    2014-07-23T23:59:59.000Z

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  6. Electric Vehicles

    SciTech Connect (OSTI)

    Ozpineci, Burak

    2014-05-02T23:59:59.000Z

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  7. Richmond Electric Vehicle Initiative Electric Vehicle Readiness...

    Office of Environmental Management (EM)

    MO) Vehicles Home About Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Alternative Fuels Modeling, Testing, Data & Results Education...

  8. Commercial Vehicle Classification using Vehicle Signature Data

    E-Print Network [OSTI]

    Liu, Hang; Jeng, Shin-Ting; Andre Tok, Yeow Chern; Ritchie, Stephen G.

    2008-01-01T23:59:59.000Z

    Traffic Measurement and Vehicle Classification with SingleG. Ritchie. Real-time Vehicle Classification using InductiveReijmers, J.J. , "On-line vehicle classification," Vehicular

  9. Deriving the Gross-Pitaevskii equation

    E-Print Network [OSTI]

    Niels Benedikter

    2014-04-17T23:59:59.000Z

    In experiments, Bose-Einstein condensates are prepared by cooling a dilute Bose gas in a trap. After the phase transition has been reached, the trap is switched off and the evolution of the condensate observed. The evolution is macroscopically described by the Gross-Pitaevskii equation. On the microscopic level, the dynamics of Bose gases are described by the $N$-body Schr\\"odinger equation. We review our article [BdS12] in which we construct a class of initial data in Fock space which are energetically close to the ground state and prove that their evolution approximately follows the Gross-Pitaevskii equation. The key idea is to model two-particle correlations with a Bogoliubov transformation.

  10. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1997-01-01T23:59:59.000Z

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  11. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1998-01-01T23:59:59.000Z

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  12. Randomization and the Gross-Pitaevskii hierarchy

    E-Print Network [OSTI]

    Vedran Sohinger; Gigliola Staffilani

    2014-07-25T23:59:59.000Z

    We study the Gross-Pitaevskii hierarchy on the spatial domain $\\mathbb{T}^3$. By using an appropriate randomization of the Fourier coefficients in the collision operator, we prove an averaged form of the main estimate which is used in order to contract the Duhamel terms that occur in the study of the hierarchy. In the averaged estimate, we do not need to integrate in the time variable. An averaged spacetime estimate for this range of regularity exponents then follows as a direct corollary. The range of regularity exponents that we obtain is $\\alpha>\\frac{3}{4}$. It was shown in our previous joint work with Gressman that the range $\\alpha>1$ is sharp in the corresponding deterministic spacetime estimate. This is in contrast to the non-periodic setting, which was studied by Klainerman and Machedon, in which the spacetime estimate is known to hold whenever $\\alpha \\geq 1$. The goal of our paper is to extend the range of $\\alpha$ in this class of estimates in a \\emph{probabilistic sense}. We use the new estimate and the ideas from its proof in order to study randomized forms of the Gross-Pitaevskii hierarchy. More precisely, we consider hierarchies similar to the Gross-Pitaevskii hierarchy, but in which the collision operator has been randomized. For these hierarchies, we show convergence to zero in low regularity Sobolev spaces of Duhamel expansions of fixed deterministic density matrices. We believe that the study of the randomized collision operators could be the first step in the understanding of a nonlinear form of randomization.

  13. On-Road Vehicle Detection Using Optical Sensors: A Review

    E-Print Network [OSTI]

    Bebis, George

    1 On-Road Vehicle Detection Using Optical Sensors: A Review Zehang Sun1 , George Bebis2 and Ronald are expected to add up to 1%-3% of the world's gross domestic product [1]. With the aim of reducing injury

  14. Property:GrossGen | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:PlugNumberOfArraProjectTypeTopic2GrossGen Jump to: navigation,

  15. Heavy and Overweight Vehicle Defects Interim Report

    SciTech Connect (OSTI)

    Siekmann, Adam [ORNL; Capps, Gary J [ORNL

    2012-12-01T23:59:59.000Z

    The Federal Highway Administration (FHWA), along with the Federal Motor Carrier Safety Administration (FMCSA), has an interest in overweight commercial motor vehicles, how they affect infrastructure, and their impact on safety on the nation s highways. To assist both FHWA and FMCSA in obtaining more information related to this interest, data was collected and analyzed from two separate sources. A large scale nationwide data collection effort was facilitated by the Commercial Vehicle Safety Alliance as part of a special study on overweight vehicles and an additional, smaller set, of data was collected from the state of Tennessee which included a much more detailed set of data. Over a six-month period, 1,873 Level I inspections were performed in 18 different states that volunteered to be a part of this study. Of the 1,873 inspections, a vehicle out-of-service (OOS) violation was found on 44.79% of the vehicles, a rate significantly higher than the national OOS rate of 27.23%. The main cause of a vehicle being placed OOS was brake-related defects, with approximately 30% of all vehicles having an OOS brake violation. Only about 4% of vehicles had an OOS tire violation, and even fewer had suspension and wheel violations. Vehicle weight violations were most common on an axle group as opposed to a gross vehicle weight violation. About two thirds of the vehicles cited with a weight violation were overweight on an axle group with an average amount of weight over the legal limit of about 2,000 lbs. Data collection is scheduled to continue through January 2014, with more potentially more states volunteering to collect data. More detailed data collections similar to the Tennessee data collection will also be performed in multiple states.

  16. Autonomous vehicles

    SciTech Connect (OSTI)

    Meyrowitz, A.L. [Navy Center for Applied Research in Artificial Intelligence, Washington, DC (United States)] [Navy Center for Applied Research in Artificial Intelligence, Washington, DC (United States); Blidberg, D.R. [Autonomous Undersea Systems Inst., Lee, NH (United States)] [Autonomous Undersea Systems Inst., Lee, NH (United States); Michelson, R.C. [Georgia Tech Research Inst., Smyrna, GA (United States)] [Georgia Tech Research Inst., Smyrna, GA (United States); [International Association for Unmanned Vehicle Systems, Smyrna, GA (United States)

    1996-08-01T23:59:59.000Z

    There are various kinds of autonomous vehicles (AV`s) which can operate with varying levels of autonomy. This paper is concerned with underwater, ground, and aerial vehicles operating in a fully autonomous (nonteleoperated) mode. Further, this paper deals with AV`s as a special kind of device, rather than full-scale manned vehicles operating unmanned. The distinction is one in which the AV is likely to be designed for autonomous operation rather than being adapted for it as would be the case for manned vehicles. The authors provide a survey of the technological progress that has been made in AV`s, the current research issues and approaches that are continuing that progress, and the applications which motivate this work. It should be noted that issues of control are pervasive regardless of the kind of AV being considered, but that there are special considerations in the design and operation of AV`s depending on whether the focus is on vehicles underwater, on the ground, or in the air. The authors have separated the discussion into sections treating each of these categories.

  17. Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

    2005-01-01T23:59:59.000Z

    of Vehicle Image in Gasoline-Hybrid Electric Vehicles Reidof Vehicle Image in Gasoline-Hybrid Electric Vehicles Reidhigh demand for gasoline-hybrid electric vehicles (HEVs)?

  18. Vehicle Technologies Office: Hybrid and Vehicle Systems | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid and Vehicle Systems Vehicle Technologies Office: Hybrid and Vehicle Systems Hybrid and vehicle systems research provides an overarching vehicle systems perspective to the...

  19. ,"New Mexico Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Gross Withdrawals and Production",10,"Monthly","12015","1151989"...

  20. ,"New York Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"2262015 9:43:21 AM" "Back to Contents","Data 1: New York Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"...

  1. Chevrolet Volt Vehicle Demonstration

    Broader source: Energy.gov (indexed) [DOE]

    Chevrolet Volt Vehicle Demonstration Fleet Summary Report Reporting period: October 2011 through December 2011 Number of vehicles: 135 Number of vehicle days driven: 4,746 All...

  2. Vehicle Technologies Office: AVTA - Electric Vehicle Community...

    Broader source: Energy.gov (indexed) [DOE]

    Making plug-in electric vehicles (PEVs, also known as electric cars) as affordable and convenient as conventional vehicles, as described in the EV Everywhere Grand Challenge,...

  3. Vehicle Technologies Office: Advanced Vehicle Testing Activity...

    Energy Savers [EERE]

    initative. Together, these projects make up the largest ever deployment of all-electric vehicles, plug-in hybrid electric vehicles, and charging infrastructure in the...

  4. Mason Gross School of the Arts Extension Division

    E-Print Network [OSTI]

    Goodman, Robert M.

    Mason Gross School of the Arts Extension Division Practice Your Passion! 2012-2013 Now Satellite School See page 7 within! #12;Main Office Mason Gross Extension Division Marryott Music Building 81 George Street New Brunswick, NJ 08901 Phone: 732-932-8618 Fax: 732-932-3140 Email: extension

  5. GrossStark units for totally real number fields

    E-Print Network [OSTI]

    Dasgupta, Samit

    Gross­Stark units for totally real number fields by Kaloyan Slavov a thesis presented . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5 The proof of Gross's conjecture over the rational field 20 5.1 The p-adic Gamma function Computing the multiplicative integral . . . . . . . . . . . . . . . . . . . . . . 66 2 #12;Acknowledgements

  6. Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov (indexed) [DOE]

    Provide benchmark data for advanced technology vehicles Develop lifecycle cost data for production vehicles utilizing advanced power trains Provide fleet...

  7. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

  8. 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle...

    Energy Savers [EERE]

    - Vehicle Systems Simulation and Testing 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle Systems Simulation and Testing Vehicle systems research and development...

  9. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Describes...

  10. Fuel Economy of the Light-Duty Vehicle Fleet (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01T23:59:59.000Z

    The U.S. fleet of light-duty vehicles consists of cars and light trucks, including minivans, sport utility vehicles (SUVs) and trucks with gross vehicle weight less than 8,500 pounds. The fuel economy of light-duty vehicles is regulated by the (Corporate Average Fuel Economy) CAFE standards set by the National Highway Traffic Safety Administration. Currently, the CAFE standard is 27.5 miles per gallon (mpg) for cars and 20.7 mpg for light trucks. The most recent increase in the CAFE standard for cars was in 1990, and the most recent increase in the CAFE standard for light trucks was in 1996.

  11. Emotion Regulation: Taking Stock and Moving Forward James J. Gross

    E-Print Network [OSTI]

    Gross, James J.

    Emotion Regulation: Taking Stock and Moving Forward James J. Gross Stanford University The field). In this article, I take stock of the field and consider how it might be moved forward. I do this by asking

  12. Fact #564: March 30, 2009 Transportation and the Gross Domestic...

    Energy Savers [EERE]

    of the U.S. Gross Domestic Product (GDP) in 2007 is related to transportation. Housing, health care, and food are the only categories with greater shares of the GDP. GDP by...

  13. Oil and Gas Gross Production Tax (North Dakota)

    Broader source: Energy.gov [DOE]

    A gross production tax applies to most gas produced in North Dakota. Gas burned at the well site to power an electrical generator that consumes at least 75 percent of the gas is exempt from...

  14. Chevrolet Volt Vehicle Demonstration

    Broader source: Energy.gov (indexed) [DOE]

    Volt Vehicle Demonstration Fleet Summary Report Reporting period: January 2013 through March 2013 Number of vehicles: 146 Number of vehicle days driven: 6,680 4292013 2:38:13 PM...

  15. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September bycost than both. Solar-hydrogen fuel- cell vehicles would becost than both. Solar-hydrogen fuel- cell vehicles would be

  16. Fact #768: February 25, 2013 New Light Vehicle Sales and Gross Domestic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 20112:of Energy 3:Plug-inGasoline

  17. Powertrain & Vehicle Research Centre

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    complexity ·More efficient Vehicles, quicker to market, reduced cost to consumer The Optimisation Task and virtual environments Vehicle baseline testing on rolling road Calibration Control Engine VehiclePowertrain & Vehicle Research Centre Low Carbon Powertrain Development S. Akehurst, EPSRC Advanced

  18. Massachusetts Electric Vehicle Efforts

    E-Print Network [OSTI]

    California at Davis, University of

    Massachusetts Electric Vehicle Efforts Christine Kirby, MassDEP ZE-MAP Meeting October 24, 2014 #12 · Provide Clean Air · Grow the Clean Energy Economy · Electric vehicles are a key part of the solution #12 is promoting EVs 4 #12;TCI and Electric Vehicles · Established the Northeast Electric Vehicle Network through

  19. Alternative Fuel Vehicle Data

    Reports and Publications (EIA)

    2013-01-01T23:59:59.000Z

    Annual data released on the number of on-road alternative fuel vehicles and hybrid vehicles made available by both the original equipment manufacturers and aftermarket vehicle conversion facilities. Data on the use of alternative fueled vehicles and the amount of fuel they consume is also available.

  20. AVTA: 2010 Electric Vehicles International Neighborhood Electric...

    Energy Savers [EERE]

    10 Electric Vehicles International Neighborhood Electric Vehicle Testing Results AVTA: 2010 Electric Vehicles International Neighborhood Electric Vehicle Testing Results The...

  1. AGGREGATION ALGORITHMS IN A VEHICLE-TO-VEHICLE-TO-

    E-Print Network [OSTI]

    Miller, Jeffrey A.

    -to-infrastructure (V2V2I) architecture, which is a hybrid of the vehicle-to-vehicle (V2V) and vehicle proposing is a hybrid of the V2I and V2V architectures, which is the vehicle-to-vehicle-to-infrastructure (VAGGREGATION ALGORITHMS IN A VEHICLE-TO-VEHICLE-TO- INFRASTRUCTURE (V2V2I) INTELLIGENT

  2. Vehicle Technologies Office: 2012 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2012vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

  3. Vehicle Technologies Office: 2011 Vehicle and Systems Simulation...

    Energy Savers [EERE]

    vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2011vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

  4. DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle...

    Broader source: Energy.gov (indexed) [DOE]

    1.pdf More Documents & Publications DOE Vehicle Technologies Program 2009 Merit Review Report DOE Vehicle Technologies Program 2009 Merit Review Report - Energy Storage DOE Vehicle...

  5. Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

    2005-01-01T23:59:59.000Z

    The Images of Hybrid Vehicles Each of the householdsbetween hybrid and non-hybrid vehicles was observed in smallowned Honda Civic Hybrids, vehicles that are virtually

  6. NREL: Vehicles and Fuels Research - Hybrid Electric Fleet Vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Electric Fleet Vehicle Testing How Hybrid Electric Vehicles Work Hybrid electric vehicles combine a primary power source, an energy storage system, and an electric motor to...

  7. Intelligent Vehicle Charging Benefits Assessment Using EV Project Data

    SciTech Connect (OSTI)

    Letendre, Steven; Gowri, Krishnan; Kintner-Meyer, Michael CW; Pratt, Richard M.

    2013-12-01T23:59:59.000Z

    PEVs can represent a significant power resource for the grid. An IVCI with bi-direction V2G capabilities would allow PEVs to provide grid support services and thus generate a source of revenue for PEV owners. The fleet of EV Project vehicles represents a power resource between 30 MW and 90 MW, depending on the power rating of the grid connection (5-15 kW). Aggregation of vehicle capacity would allow PEVs to participate in wholesale reserve capacity markets. One of the key insights from EV Project data is the fact that vehicles are connected to an EVSE much longer than is necessary to deliver a full charge. During these hours when the vehicles are not charging, they can be participating in wholesale power markets providing the high-value services of regulation and spinning reserves. The annual gross revenue potential for providing these services using the fleet of EV Project vehicles is several hundred thousands of dollars to several million dollars annually depending on the power rating of the grid interface, the number of hours providing grid services, and the market being served. On a per vehicle basis, providing grid services can generate several thousands of dollars over the life of the vehicle.

  8. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt066vsskarner2012...

  9. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt066vsskarner2011...

  10. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Energy Savers [EERE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt072vssmackie2011...

  11. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Energy Savers [EERE]

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt072vssmackie2012...

  12. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    EVSE Designed And Manufactured To Allow Power And Energy Data Collection And Demand Response Control Residential EVSE Installed For All Vehicles 1,300...

  13. Advanced Technology Vehicle Testing

    SciTech Connect (OSTI)

    James Francfort

    2003-11-01T23:59:59.000Z

    The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energy’s Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

  14. The Case for Electric Vehicles

    E-Print Network [OSTI]

    Sperling, Daniel

    2001-01-01T23:59:59.000Z

    land Press, 1995 TESTING ELECTRIC VEHICLE DEMAND IN " HYBRIDThe Case for Electric Vehicles DanieI Sperlmg Reprint UCTCor The Case for Electric Vehicles Darnel Sperling Institute

  15. Electric Vehicle Smart Charging Infrastructure

    E-Print Network [OSTI]

    Chung, Ching-Yen

    2014-01-01T23:59:59.000Z

    for Multiplexed Electric Vehicle Charging”, US20130154561A1,Chynoweth, ”Intelligent Electric Vehicle Charging System”,of RFID Mesh Network for Electric Vehicle Smart Charging

  16. Coordinating Automated Vehicles via Communication

    E-Print Network [OSTI]

    Bana, Soheila Vahdati

    2001-01-01T23:59:59.000Z

    1.1 Vehicle Automation . . . . . . . . . . . 1.1.1 Controlareas of technology in vehicle automation and communicationChapter 1 Introduction Vehicle Automation Automation is an

  17. Vehicle Technologies Office: AVTA - Diesel Internal Combusion...

    Energy Savers [EERE]

    Vehicle Technologies Office: AVTA - Diesel Internal Combusion Engine Vehicles Vehicle Technologies Office: AVTA - Diesel Internal Combusion Engine Vehicles The Advanced Vehicle...

  18. VEHICLE USAGE LOG Department ________________________________________ Vehicle Homebase ____________________________ Week Ended (Sunday) _________________

    E-Print Network [OSTI]

    Yang, Zong-Liang

    VEHICLE USAGE LOG Department ________________________________________ Vehicle Homebase ____________________________ Week Ended (Sunday) _________________ Door #____________ License Plate ____________________ Vehicle/Supplies (Enter Description such as grade sheets, artifacts, money, etc.) 6. Taking vehicle to Automotive Shop

  19. Intelligent pothole repair vehicle

    E-Print Network [OSTI]

    Minocher Homji, Ruzbeh Adi

    2006-10-30T23:59:59.000Z

    This thesis presents an endeavor to design and construct a prototype of an automated road repair vehicle called the Intelligent Pothole Repair Vehicle (IPRV). The IPRV is capable of automatically detecting and filling potholes on road surfaces...

  20. Social networking in vehicles

    E-Print Network [OSTI]

    Liang, Philip Angus

    2006-01-01T23:59:59.000Z

    In-vehicle, location-aware, socially aware telematic systems, known as Flossers, stand to revolutionize vehicles, and how their drivers interact with their physical and social worlds. With Flossers, users can broadcast and ...

  1. Electric Vehicle Research Group

    E-Print Network [OSTI]

    Liley, David

    .................................................................................9 From diesel to electric: a new era in personnel transport for underground coal minesElectric Vehicle Research Group Annual Report 2012 #12;Table of Contents Executive Summary................................................................................8 C2-25 Electric Vehicle Drivetrain

  2. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September byet al. , 1988,1989 HYDROGEN FUEL-CELL VEHICLES: TECHNICALIn the FCEV, the hydrogen fuel cell could supply the "net"

  3. Consumer Vehicle Technology Data

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  4. Automated Vehicle-to-Vehicle Collision Avoidance at Intersections

    E-Print Network [OSTI]

    Del Vecchio, Domitilla

    Automated Vehicle-to-Vehicle Collision Avoidance at Intersections M. R. Hafner1 , D. Cunningham2 on modified Lexus IS250 test vehicles. The system utilizes vehicle-to-vehicle (V2V) Dedicated Short the velocities of both vehicles with automatic brake and throttle commands. Automatic commands can never cause

  5. Motor Vehicle Record Procedure Objective

    E-Print Network [OSTI]

    Kirschner, Denise

    Motor Vehicle Record Procedure Objective Outline the procedure for obtaining motor vehicle record (MVR) through Fleet Services. Vehicle Operator Policy 3. Operators with 7 or more points on their motor vehicle record

  6. Powertrain & Vehicle Research Centre

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    Simulation Basic Engine Test Vehicle Test Cost & Complexity Towards Final Product Lean Powertrain Development Viewing Trade-Offs and Finding Optima Realism Advanced Engine Test Vehicle Test Rolling Road Powertrain powertrain development tasks to reduce costs and time to market The vehicle powertrain is the system

  7. Washington State Electric Vehicle

    E-Print Network [OSTI]

    California at Davis, University of

    Washington State Electric Vehicle Implementation Bryan Bazard Maintenance and Alternate Fuel Technology Manager #12;Executive Order 14-04 Requires the procurement of electric vehicles where and equipment with electricity or biofuel to the "extent practicable" by June 2015 1. The vehicle is due

  8. Energy 101: Electric Vehicles

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

  9. Automotive vehicle sensors

    SciTech Connect (OSTI)

    Sheen, S.H.; Raptis, A.C.; Moscynski, M.J.

    1995-09-01T23:59:59.000Z

    This report is an introduction to the field of automotive vehicle sensors. It contains a prototype data base for companies working in automotive vehicle sensors, as well as a prototype data base for automotive vehicle sensors. A market analysis is also included.

  10. Gross Receipts Tax Exemption for Sales of Wind and Solar Systems to Government Entities

    Broader source: Energy.gov [DOE]

    New Mexico has a gross receipts tax structure for businesses instead of a sales tax. Businesses are taxed on the gross amount of their business receipts each year before expenses are deducted. ...

  11. William and Mary Athletics State Vehicle / Rental Vehicle / Personal Vehicle Policies

    E-Print Network [OSTI]

    Swaddle, John

    William and Mary Athletics State Vehicle / Rental Vehicle / Personal Vehicle Policies Last Update: 2/14/14 W&M's vehicle use policy requires that a driver authorization form be completed and approved before driving any vehicle (including a personal vehicle) for university business or a university

  12. Vehicle Technologies Office: AVTA - Electric Vehicle Charging...

    Energy Savers [EERE]

    the Alternative Fuel Data Center's page on plug-in electric vehicle infrastructure. For a map of the public EVSE available in the U.S., see the Alternative Fuels Station Locator....

  13. Vehicle underbody fairing

    DOE Patents [OSTI]

    Ortega, Jason M. (Pacifica, CA); Salari, Kambiz (Livermore, CA); McCallen, Rose (Livermore, CA)

    2010-11-09T23:59:59.000Z

    A vehicle underbody fairing apparatus for reducing aerodynamic drag caused by a vehicle wheel assembly, by reducing the size of a recirculation zone formed under the vehicle body immediately downstream of the vehicle wheel assembly. The fairing body has a tapered aerodynamic surface that extends from a front end to a rear end of the fairing body with a substantially U-shaped cross-section that tapers in both height and width. Fasteners or other mounting devices secure the fairing body to an underside surface of the vehicle body, so that the front end is immediately downstream of the vehicle wheel assembly and a bottom section of the tapered aerodynamic surface rises towards the underside surface as it extends in a downstream direction.

  14. Advanced Technology Vehicle Testing

    SciTech Connect (OSTI)

    James Francfort

    2004-06-01T23:59:59.000Z

    The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

  15. General Vehicle Performance Specifications for the UPRM AUV Vehicle Specifications

    E-Print Network [OSTI]

    Gilbes, Fernando

    General Vehicle Performance Specifications for the UPRM AUV Vehicle Specifications Vehicle Characteristics Specification Maximum Depth 700m with 1.5 safety factor Vehicle power 2kWHr Li Ion Rechargeable Transducer 700m rated Paroscientific Depth Sensor will be integrated into the vehicle navigation stream

  16. VEHICLE USE RECORD M/Y DEPARTMENT VEHICLE LOCATION

    E-Print Network [OSTI]

    Watson, Craig A.

    VEHICLE USE RECORD M/Y DEPARTMENT VEHICLE LOCATION Date Origin/Destination Purpose Time Out Time) Accuracy of Information (b) Valid Driver's License VEHICLE # TAG # VEHICLE MAKE, MODEL, AND YEAR NOTE: Vehicle logs must be maintained for audit purposes. It is important that all of the required information

  17. Accomodating Electric Vehicles

    E-Print Network [OSTI]

    Aasheim, D.

    2011-01-01T23:59:59.000Z

    Accommodating Electric Vehicles Dave Aasheim 214-551-4014 daasheim@ecotality.com A leader in clean electric transportation and storage technologies ECOtality North America Overview Today ? Involved in vehicle electrification... ECOtality North America Overview Today ?Warehouse Material Handling ? Lift trucks ? Pallet Jacks ? Over 200 Customers ? Over 5,000 Installations ECOtality North America Overview Today ? 1990?s involved in EV1 ? EV Chargers ? Vehicle & battery...

  18. Quadrennial Technology Review Vehicle Efficiency and Electrification...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review Vehicle Efficiency and Electrification Workshop Documents Quadrennial Technology Review Vehicle Efficiency and Electrification Workshop Documents QTR Vehicle Efficiency and...

  19. Alternative Fuel Vehicle Resources

    Broader source: Energy.gov [DOE]

    Alternative fuel vehicles use fuel types other than petroleum and include such fuels as electricity, ethanol, biodiesel, natural gas, hydrogen, and propane. Compared to petroleum, these...

  20. Vehicle Emissions Review - 2012

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Emissions Review - 2012 Tim Johnson October 16, 2012 2 Environmental Technologies Summary * Regulations - LEVIII finalized, Tier 3? RDE in Europe developing and very...

  1. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    Research Institute 1990 Fuel Cell Status," Proceedings ofMiller, "Introduction: Fuel-Cell-Powered Vehicle DevelopmentPrograms," presented at Fuel Cells for Transportation,

  2. Georgia Tech Vehicle Acquisition and

    E-Print Network [OSTI]

    1 2012 Georgia Tech 10/10/2012 Vehicle Acquisition and Disposition Manual #12;2 Vehicle Procedures Regardless of value, all vehicles should be included in this process. Acquisition of a Vehicle 1. Contact Fleet Coordinator to guide the departments in the purchasing process for all vehicles. 2. Fill out

  3. Electric-Drive Vehicle Basics (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-04-01T23:59:59.000Z

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  4. Vehicle Technologies Office: AVTA - Evaluating Military Bases...

    Energy Savers [EERE]

    Military Bases and Fleet Readiness for Electric Vehicles Vehicle Technologies Office: AVTA - Evaluating Military Bases and Fleet Readiness for Electric Vehicles The Vehicle...

  5. 2012 U.S. Vehicle Analysis

    E-Print Network [OSTI]

    Lam, Ho Yeung Michael

    2012-01-01T23:59:59.000Z

    Electric Vehicles …………………………………………………………. Dieselperformance of electric vehicles Diesel Vehicle From Tableelectric vehicles ……………………… 3.15: Emission and fuel efficiency performance of diesel

  6. Texas Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYear JanSeparation, Proved ReservesReservesGross Withdrawals Total

  7. Alabama Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3.Revenue3ProvedYearGross Withdrawals

  8. Alabama Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3.Revenue3ProvedYearGross

  9. Alabama Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3.Revenue3ProvedYearGrossFeet)

  10. Alaska Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear Jan FebProvedGross Withdrawals Total

  11. Alaska Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear Jan FebProvedGross Withdrawals

  12. Alaska Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear Jan FebProvedGross WithdrawalsFeet)

  13. Alaska--onshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear JanYear Jan Feb Mar AprCubicGross

  14. Federal Offshore--Alabama Natural Gas Gross Withdrawals (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs U.S.WyomingExpansion and Change onFeet) Gross

  15. Property:GrossProdCapacity | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to:FieldProceduresFY Jump to:Partner6WebsiteFacilityGrossProdCapacity

  16. Vehicle Technologies Office Merit Review 2014: In-Vehicle Evaluation...

    Broader source: Energy.gov (indexed) [DOE]

    In-Vehicle Evaluation of Lower-Energy Energy Storage System (LEESS) Devices Vehicle Technologies Office Merit Review 2014: In-Vehicle Evaluation of Lower-Energy Energy Storage...

  17. Laboratory to change vehicle traffic-screening regimen at vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Changes to vehicle traffic-screening Laboratory to change vehicle traffic-screening regimen at vehicle inspection station Lanes two through five will be open 24 hours a day and...

  18. > 070131-073Vehicle

    E-Print Network [OSTI]

    Marques, Eduardo R. B.

    -how developed with the design ofthe ROAZ ASV [3] [4]. Power is provided by electric batteries. The computer> 070131-073Vehicle for Network Centric Operations H. Ferreira-The design and development of the Swordfish Autonomous Surface Vehicle (ASV) system is discussed. Swordfish

  19. Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle...

    Broader source: Energy.gov (indexed) [DOE]

    nation's vehicle fleet. VTO invested 400 million in 18 projects to demonstrate plug-in electric vehicles (PEVs, also known as electric cars) and infrastructure, including 10...

  20. Challenges in Electric Vehicle Adoption and Vehicle-Grid Integration.

    E-Print Network [OSTI]

    Xi, Xiaomin

    2013-01-01T23:59:59.000Z

    ??With rapid innovation in vehicle and battery technology and strong support from governmental bodies and regulators, electric vehicles (EV) sales are poised to rise. While… (more)

  1. Vehicle Technologies Office: 2010 Vehicle and Systems Simulation...

    Broader source: Energy.gov (indexed) [DOE]

    vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2010vsstreport.pdf More Documents & Publications AVTA PHEV Demonstrations and...

  2. Vehicle Technologies Office: 2013 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and field evaluations, codes and standards, industry projects, and vehicle systems optimization. 2013vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

  3. NREL: Vehicles and Fuels Research - Hydraulic Hybrid Fleet Vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydraulic Hybrid Fleet Vehicle Testing How Hydraulic Hybrid Vehicles Work Hydraulic hybrid systems can capture up to 70% of the kinetic energy that would otherwise be lost during...

  4. The Vehicle Technologies Market Report

    E-Print Network [OSTI]

    The Vehicle Technologies Market Report Center for Transportation Analysis 2360 Cherahala Boulevard Efficiency Transportation: Energy Environment Safety Security Vehicle Technologies T he Oak Ridge National Laboratory's Center for Transportation Analysis developed and published the first Vehicle Technologies Market

  5. Vehicle Technologies Office: Propulsion Systems

    Broader source: Energy.gov [DOE]

    Vehicle Technologies Office research focuses much of its effort on improving vehicle fuel economy while meeting increasingly stringent emissions standards. Achieving these goals requires a...

  6. Gasoline Ultra Fuel Efficient Vehicle

    Broader source: Energy.gov (indexed) [DOE]

    Principal Investigator 13MY11 2011 DOE Vehicle Technologies Review Gasoline Ultra Fuel Efficient Vehicle ACE064 "This presentation does not contain any proprietary,...

  7. Spatial confinement and thermal deconfinement in the Gross-Neveu model

    SciTech Connect (OSTI)

    Malbouisson, J. M. C. [Instituto de Fisica, Universidade Federal da Bahia, 40210-340, Salvador, BA (Brazil); Khanna, F. C. [Theoretical Physics Institute, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada); Malbouisson, A. P. C. [Centro Brasileiro de Pesquisas Fisicas/MCT, 22290-180, Rio de Janeiro, RJ (Brazil); Santana, A. E. [Instituto de Fisica, Universidade de Brasilia, 70910-900, Brasilia, DF (Brazil)

    2007-06-19T23:59:59.000Z

    We discuss the occurrence of spatial confinement and thermal deconfinement in the massive, D-dimensional, Gross-Neveu model with compactified spatial dimensions.

  8. APPLICATION OF MICROECONOMIC METRICS IN COMPETITIVE ELECTRICITY Pedro Correia and George Gross

    E-Print Network [OSTI]

    Gross, George

    APPLICATION OF MICROECONOMIC METRICS IN COMPETITIVE ELECTRICITY MARKETS Pedro Correia and George Gross Department of Electrical and Computer Engineering University of Illinois at Urbana

  9. SPPI ORIGINAL PAPER October 11, 2011 GROSS ERRORS IN THE IPCC-AR4

    E-Print Network [OSTI]

    Gray, William

    SPPI ORIGINAL PAPER October 11, 2011 GROSS ERRORS IN THE IPCC-AR4 REPORT REGARDING PAST & FUTURE FIGURE AND GEORGE WILL QUOTE.....................

  10. Advanced Vehicle Electrification and Transportation Sector Electrifica...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector...

  11. A Verified Hybrid Controller For Automated Vehicles

    E-Print Network [OSTI]

    Lygeros, J.; Godbole, D. N.; Sastry, S.

    1997-01-01T23:59:59.000Z

    con- trollers for vehicle automation," in American ControlTomizuka, Vehicle lateral control for highway automation,"

  12. Blast resistant vehicle seat

    DOE Patents [OSTI]

    Ripley, Edward B

    2013-02-12T23:59:59.000Z

    Disclosed are various seats for vehicles particularly military vehicles that are susceptible to attack by road-bed explosive devices such as land mines or improvised explosive devices. The seats often have rigid seat shells and may include rigid bracing for rigidly securing the seat to the chassis of the vehicle. Typically embodiments include channels and particulate media such as sand disposed in the channels. A gas distribution system is generally employed to pump a gas through the channels and in some embodiments the gas is provided at a pressure sufficient to fluidize the particulate media when an occupant is sitting on the seat.

  13. Rapid road repair vehicle

    DOE Patents [OSTI]

    Mara, Leo M. (Livermore, CA)

    1999-01-01T23:59:59.000Z

    Disclosed are improvments to a rapid road repair vehicle comprising an improved cleaning device arrangement, two dispensing arrays for filling defects more rapidly and efficiently, an array of pre-heaters to heat the road way surface in order to help the repair material better bond to the repaired surface, a means for detecting, measuring, and computing the number, location and volume of each of the detected surface imperfection, and a computer means schema for controlling the operation of the plurality of vehicle subsystems. The improved vehicle is, therefore, better able to perform its intended function of filling surface imperfections while moving over those surfaces at near normal traffic speeds.

  14. ROBUST SCALABLE VEHICLE CONTROL VIA NON-DIMENSIONAL VEHICLE DYNAMICS

    E-Print Network [OSTI]

    Brennan, Sean

    - 1 - ROBUST SCALABLE VEHICLE CONTROL VIA NON-DIMENSIONAL VEHICLE DYNAMICS S. Brennan & A. Alleyne and spatial re-parameterization of the linear vehicle Bicycle Model is presented utilizing non-dimensional ratios of vehicle parameters called -groups. Investigation of the -groups using compiled data from 44

  15. ROBUST SCALABLE VEHICLE CONTROL VIA NON-DIMENSIONAL VEHICLE DYNAMICS

    E-Print Network [OSTI]

    Brennan, Sean

    ROBUST SCALABLE VEHICLE CONTROL VIA NON-DIMENSIONAL VEHICLE DYNAMICS S. Brennan & A. Alleyne Dept, IL 61801 ABSTRACT A temporal and spatial re-parameterization of the well- known linear vehicle Bicycle Model is presented. This parameterization utilizes non-dimensional ratios of vehicle parameters

  16. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    Rechargeable Zinc-Air Battery System for Electric Vehicles,"hthium/polymer* Zinc-air battery (Electric Fuel)* NickelThe discharge rate for the zinc/air battery was 5 hours at a

  17. Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households

    E-Print Network [OSTI]

    Abbanat, Brian A.

    2001-01-01T23:59:59.000Z

    VEHICLES: THE CASE OF COMPRESSED NATURAL GAS (CNG) VEHICLESyou first learn about compressed natural gas (CNG) vehicles?VEHICLES: THE CASE OF COMPRESSED NATURAL GAS (CNG) VEHICLES

  18. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)

    Broader source: Energy.gov [DOE]

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  19. Vehicle Technologies Office Merit Review 2014: Smith Electric...

    Broader source: Energy.gov (indexed) [DOE]

    Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Vehicle Technologies Office Merit Review 2014: Smith Electric Vehicles: Advanced...

  20. 6 Multicomponent Density-Functional Theory R. van Leeuwen and E.K.U. Gross

    E-Print Network [OSTI]

    Gross, E.K.U.

    6 Multicomponent Density-Functional Theory R. van Leeuwen and E.K.U. Gross 6.1 Introduction fields. Our goal is to set up a time-dependent multicomponent density-functional theory (TDMCDFT.K.U. Gross: Multicomponent Density-Functional Theory, Lect. Notes Phys. 706, 93­106 (2006) DOI 10

  1. Other incarnations of the Gross-Pitaevskii dark soliton Indubala I Satija 1,2

    E-Print Network [OSTI]

    Satija, Indu

    Other incarnations of the Gross-Pitaevskii dark soliton Indubala I Satija 1,2 and Radha Balakrishnan3 1 Department of Physics, George Mason University, Fairfax, VA 22030 2 National Institute 600113, India (Dated: May 31, 2010) We show that the dark soliton of the Gross-Pitaevskii equation (GPE

  2. The Gross-Pitaevskii Soliton: Relating Weakly and Strongly Repulsive Bosonic condensates and the magnetic soliton

    E-Print Network [OSTI]

    Satija, Indu

    The Gross-Pitaevskii Soliton: Relating Weakly and Strongly Repulsive Bosonic condensates and the magnetic soliton Indubala I Satija 1,2 and Radha Balakrishnan3 1 Department of Physics, George Mason soliton of the Gross-Pitaevskii equation (GPE) that describes the Bose-Einstein con- densate (BEC) density

  3. Vehicle Repair Policy Outline the policy regarding vehicle repair on University of Michigan (U-M) vehicles.

    E-Print Network [OSTI]

    Kirschner, Denise

    Vehicle Repair Policy Objective Outline the policy regarding vehicle repair on University of Michigan (U-M) vehicles. Policy 1. All vehicle repairs performed on U-M vehicles must be coordinated facility to repair their fleet vehicles. 2. U-M vehicles leased through Fleet Services include routine

  4. Methylotroph cloning vehicle

    DOE Patents [OSTI]

    Hanson, Richard S. (Deephaven, MN); Allen, Larry N. (Excelsior, MN)

    1989-04-25T23:59:59.000Z

    A cloning vehicle comprising: a replication determinant effective for replicating the vehicle in a non-C.sub.1 -utilizing host and in a C.sub.1 -utilizing host; DNA effective to allow the vehicle to be mobilized from the non-C.sub.1 -utilizing host to the C.sub.1 -utilizing host; DNA providing resistance to two antibiotics to which the wild-type C.sub.1 -utilizing host is susceptible, each of the antibiotic resistance markers having a recognition site for a restriction endonuclease; a cos site; and a means for preventing replication in the C.sub.1 -utilizing host. The vehicle is used for complementation mapping as follows. DNA comprising a gene from the C.sub.1 -utilizing organism is inserted at the restriction nuclease recognition site, inactivating the antibiotic resistance marker at that site. The vehicle can then be used to form a cosmid structure to infect the non-C.sub.1 -utilizing (e.g., E. coli) host, and then conjugated with a selected C.sub.1 -utilizing mutant. Resistance to the other antibiotic by the mutant is a marker of the conjugation. Other phenotypical changes in the mutant, e.g., loss of an auxotrophic trait, is attributed to the C.sub.1 gene. The vector is also used to inactivate genes whose protein products catalyze side reactions that divert compounds from a biosynthetic pathway to a desired product, thereby producing an organism that makes the desired product in higher yields.

  5. Guidelines for the Establishment of a Model Neighborhood Electric Vehicle (NEV) Fleet

    SciTech Connect (OSTI)

    Roberta Brayer; Donald Karner; Kevin Morrow; James Francfort

    2006-06-01T23:59:59.000Z

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity tests neighborhood electric vehicles (NEVs) in both track and fleet testing environments. NEVs, which are also known as low speed vehicles, are light-duty vehicles with top speeds of between 20 and 25 mph, and total gross vehicle weights of approximately 2,000 pounds or less. NEVs have been found to be very viable alternatives to internal combustion engine vehicles based on their low operating costs. However, special charging infrastructure is usually necessary for successful NEV fleet deployment. Maintenance requirements are also unique to NEVs, especially if flooded lead acid batteries are used as they have watering requirements that require training, personnel protection equipment, and adherence to maintenance schedules. This report provides guidelines for fleet managers to follow in order to successfully introduce and operate NEVs in fleet environments. This report is based on the NEV testing and operational experience of personnel from the Advanced Vehicle Testing Activity, Electric Transportation Applications, and the Idaho National Laboratory.

  6. Apparatus for stopping a vehicle

    DOE Patents [OSTI]

    Wattenburg, Willard H. (Walnut Creek, CA); McCallen, David B. (Livermore, CA)

    2007-03-20T23:59:59.000Z

    An apparatus for externally controlling one or more brakes on a vehicle having a pressurized fluid braking system. The apparatus can include a pressurizable vessel that is adapted for fluid-tight coupling to the braking system. Impact to the rear of the vehicle by a pursuit vehicle, shooting a target mounted on the vehicle or sending a signal from a remote control can all result in the fluid pressures in the braking system of the vehicle being modified so that the vehicle is stopped and rendered temporarily inoperable. A control device can also be provided in the driver's compartment of the vehicle for similarly rendering the vehicle inoperable. A driver or hijacker of the vehicle preferably cannot overcome the stopping action from the driver's compartment.

  7. Unified Architecture for Large-Scale Attested Metering Michael LeMay, George Gross, Carl A. Gunter, Sanjam Garg

    E-Print Network [OSTI]

    Gross, George

    Unified Architecture for Large-Scale Attested Metering Michael LeMay, George Gross, Carl A. Gunter, Sanjam Garg University of Illinois Urbana-Champaign {mdlemay2,gross,cgunter,sanjamg}@uiuc.edu Abstract We

  8. Gulf of Mexico Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 058.5 57.1CubicVehicle0perLiquids, Monthly

  9. Gulf of Mexico Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 058.5 57.1CubicVehicle0perLiquids,

  10. The Evolution of Sustainable Personal Vehicles

    E-Print Network [OSTI]

    Jungers, Bryan D

    2009-01-01T23:59:59.000Z

    energy resource conversion (NREL, 2004). Sustainable Vehicle Energy StorageEnergy, Fuel, & Vehicle Technologies.41 Introduction41 Sustainable Energy Resources..42 Sustainable Vehicle Energy Storage..43 Sustainable

  11. Achieving and Demonstrating Vehicle Technologies Engine Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Technologies Engine Fuel Efficiency Milestones Achieving and Demonstrating Vehicle Technologies Engine Fuel Efficiency Milestones 2010 DOE Vehicle Technologies and Hydrogen...

  12. Demonstration of Automated Heavy-Duty Vehicles

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    a future in which vehicle automation technologies are ableto support the heavy vehicle automation including PrecisionCommittee on Vehicle-Highway Automation, and the attendees

  13. Vehicle Technologies Office: Annual Progress Reports | Department...

    Energy Savers [EERE]

    Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program DOE Vehicle Technologies Office Annual Merit Review Energy Storage Research...

  14. Vehicle Technologies Office Merit Review 2014: Thermoelectric...

    Broader source: Energy.gov (indexed) [DOE]

    Thermoelectric Waste Heat Recovery Program for Passenger Vehicles Vehicle Technologies Office Merit Review 2014: Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...

  15. The Evolution of Sustainable Personal Vehicles

    E-Print Network [OSTI]

    Jungers, Bryan D

    2009-01-01T23:59:59.000Z

    Propulsion Systems for Hybrid Vehicles. The Institution ofA.B. (1996). Ultralight-Hybrid Vehicle Design: OvercomingLightweight Electric/Hybrid Vehicle Design. Reel Educational

  16. Hydrogen Vehicle and Infrastructure Demonstration and Validation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle and Infrastructure Demonstration and Validation Hydrogen Vehicle and Infrastructure Demonstration and Validation 2009 DOE Hydrogen Program and Vehicle Technologies Program...

  17. Vehicle brake testing system

    DOE Patents [OSTI]

    Stevens, Samuel S. (Harriman, TN); Hodgson, Jeffrey W. (Lenoir City, TN)

    2002-11-19T23:59:59.000Z

    This invention relates to a force measuring system capable of measuring forces associated with vehicle braking and of evaluating braking performance. The disclosure concerns an invention which comprises a first row of linearly aligned plates, a force bearing surface extending beneath and beside the plates, vertically oriented links and horizontally oriented links connecting each plate to a force bearing surface, a force measuring device in each link, a transducer coupled to each force measuring device, and a computing device coupled to receive an output signal from the transducer indicative of measured force in each force measuring device. The present invention may be used for testing vehicle brake systems.

  18. BEEST: Electric Vehicle Batteries

    SciTech Connect (OSTI)

    None

    2010-07-01T23:59:59.000Z

    BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

  19. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  20. Vehicle Mass Impact on Vehicle Losses and Fuel Economy

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  1. Control device for vehicle speed

    SciTech Connect (OSTI)

    Kawata, S.; Hyodo, H.

    1987-03-03T23:59:59.000Z

    This patent describes a control device for vehicle speed comprising: a throttle driving means operatively coupled to a throttle valve of a vehicle; a set switch means for commanding memorization of the vehicle speed; a resume switch means for commanding read of the vehicle speed; a vehicle speed detecting means for generating a signal in accordance with the vehicle speed; a vehicle speed memory; an electronical control means for memorizing in the vehicle speed memory vehicle speed information corresponding to the signal obtained from the vehicle speed detecting means in response to actuation of the set switch means. The control means is also for reading out the content of the vehicle speed memory in response to actuation of the resume switch means to control the throttle driving means in accordance with the read-out content; a power supply means for supplying power to the electronical control means; and a power supply control switch means for controlling supply of power to the electronical control means in response to the state of at least one of the set switch means and the resume switch means and the state of the electronical control means. The improvement described here comprises the electronical control means sets the power supply control switch means into such a state that supply of power to the electronical control means is turned OFF, when vehicle speed information is not memorized in the vehicle speed memory.

  2. George Gross is a Professor in the Department of Electrical and Computer Engineering at the University of Illinois at

    E-Print Network [OSTI]

    Gross, George

    1 George Gross is a Professor in the Department of Electrical and Computer Engineering Resource Needs: The Universities' Role George Gross, Fellow, IEEE Abstract This is a summary. Major thrusts of the scope and nature of efforts will be outlined. BIOGRAPHY T George Gross

  3. Parametrized maneuvers for autonomous vehicles

    E-Print Network [OSTI]

    Dever, Christopher W. (Christopher Walden), 1972-

    2004-01-01T23:59:59.000Z

    This thesis presents a method for creating continuously parametrized maneuver classes for autonomous vehicles. These classes provide useful tools for motion planners, bundling sets of related vehicle motions based on a ...

  4. Commercial Vehicles Collaboration for

    E-Print Network [OSTI]

    Waliser, Duane E.

    events (level derived from integrated design and safety analysis) · Protection against fire, depress Vehicle Transition Concepts Astronaut Office letter (June, 2010) describes position on crew suit as a resource to expedite this transition to the commercial market The current astronaut corps can be used

  5. Gasoline Ultra Fuel Efficient Vehicle

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  6. Methylotroph cloning vehicle

    DOE Patents [OSTI]

    Hanson, R.S.; Allen, L.N.

    1989-04-25T23:59:59.000Z

    A cloning vehicle comprising: a replication determinant effective for replicating the vehicle in a non-C[sub 1]-utilizing host and in a C[sub 1]-utilizing host; DNA effective to allow the vehicle to be mobilized from the non-C[sub 1]-utilizing host to the C[sub 1]-utilizing host; DNA providing resistance to two antibiotics to which the wild-type C[sub 1]-utilizing host is susceptible, each of the antibiotic resistance markers having a recognition site for a restriction endonuclease; a cos site; and a means for preventing replication in the C[sub 1]-utilizing host. The vehicle is used for complementation mapping as follows. DNA comprising a gene from the C[sub 1]-utilizing organism is inserted at the restriction nuclease recognition site, inactivating the antibiotic resistance marker at that site. The vehicle can then be used to form a cosmid structure to infect the non-C[sub 1]-utilizing (e.g., E. coli) host, and then conjugated with a selected C[sub 1]-utilizing mutant. Resistance to the other antibiotic by the mutant is a marker of the conjugation. Other phenotypical changes in the mutant, e.g., loss of an auxotrophic trait, is attributed to the C[sub 1] gene. The vector is also used to inactivate genes whose protein products catalyze side reactions that divert compounds from a biosynthetic pathway to a desired product, thereby producing an organism that makes the desired product in higher yields. 3 figs.

  7. Utility vehicle safety Operator training program

    E-Print Network [OSTI]

    Minnesota, University of

    Utility vehicle safety Operator training program #12;Permissible use Utility Vehicles may only Utility Vehicle operator · When equipped with the "Required Equipment" · On public roadways within Drivers" · Obey all traffic regulations · Trained; update training every two years · Operate vehicles

  8. VEHICLE OPERATING PROCEDURES DEPARTMENT OF BIOLOGICAL SCIENCE

    E-Print Network [OSTI]

    Ronquist, Fredrik

    VEHICLE OPERATING PROCEDURES DEPARTMENT OF BIOLOGICAL SCIENCE GENERAL INFORMATION Vehicles resposniblity and disciplinary action. Vehicles may be used by faculty or staff from other departments complete the vehicle usage agreement form certifying that they have a valid driver's license

  9. Electric-Drive Vehicle engineering

    E-Print Network [OSTI]

    Berdichevsky, Victor

    Electric-Drive Vehicle engineering COLLEGE of ENGINEERING Electric-drive engineers for 80 years t Home to nation's first electric-drive vehicle engineering program and alternative-credit EDGE Engineering Entrepreneur Certificate Program is a great addition to an electric-drive vehicle

  10. Vehicle Operation and Parking Policy

    E-Print Network [OSTI]

    Vehicle Operation and Parking Policy Responsible Administrative Unit: Finance & Administration in this policy. 2.0 POLICY STATEMENT This policy is intended to promote safe driving by operators of all vehicles are in effect at all times and apply to all persons and vehicles physically present on the CSM campus

  11. UWO Vehicle ACCIDENT REPORTING FORM

    E-Print Network [OSTI]

    Sinnamon, Gordon J.

    UWO Vehicle ­ ACCIDENT REPORTING FORM To be completed at the scene. (Important: Do not admit liability or discuss any settlement.) If there are personal injuries or severe damage to the vehicle, call 911. If vehicle is drivable and if it's safe to do so, pull to the side of road away from traffic. Put

  12. VEHICLE NETWORKS: ACHIEVING REGULAR FORMATION

    E-Print Network [OSTI]

    VEHICLE NETWORKS: ACHIEVING REGULAR FORMATION MADALENA CHAVES, ROBERT DAY, LUCIA GOMEZ a network of vehicles exchanging information among themselves with the intention of achieving a specified the performance of the vehicle network. A stochastic model for information flow is also considered, allowing

  13. Vehicle Operation and Parking Policy

    E-Print Network [OSTI]

    Vehicle Operation and Parking Policy Responsible Administrative Unit: Finance & Administration STATEMENT This policy is intended to promote safe driving by operators of all vehicles utilizing streets and apply to all persons and vehicles physically present on the CSM campus. For the purpose of this policy

  14. Vehicle Management Driver Safety Program

    E-Print Network [OSTI]

    Machel, Hans

    Vehicle Management and Driver Safety Program Manual Facilities & Operations / Finance & Administration Version 2 April 2012 #12;© 2012 University of Alberta. #12;The Vehicle Management and Driver of employment. Driver Acknowledgement I have received the University of Alberta, Vehicle Management and Driver

  15. Method and appartus for converting static in-ground vehicle scales into weigh-in-motion systems

    DOE Patents [OSTI]

    Muhs, Jeffrey D. (Lenior City, TN); Scudiere, Matthew B. (Oak Ridge, TN); Jordan, John K. (Oak Ridge, TN)

    2002-01-01T23:59:59.000Z

    An apparatus and method for converting in-ground static weighing scales for vehicles to weigh-in-motion systems. The apparatus upon conversion includes the existing in-ground static scale, peripheral switches and an electronic module for automatic computation of the weight. By monitoring the velocity, tire position, axle spacing, and real time output from existing static scales as a vehicle drives over the scales, the system determines when an axle of a vehicle is on the scale at a given time, monitors the combined weight output from any given axle combination on the scale(s) at any given time, and from these measurements automatically computes the weight of each individual axle and gross vehicle weight by an integration, integration approximation, and/or signal averaging technique.

  16. Advanced Vehicle Electrification and Transportation Sector Electrifica...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and...

  17. Advanced Vehicle Electrification & Transportation Sector Electrificati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies...

  18. Achieving and Demonstrating Vehicle Technologies Engine Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    Engine Fuel Efficiency Milestones Achieving and Demonstrating Vehicle Technologies Engine Fuel Efficiency Milestones 2009 DOE Hydrogen Program and Vehicle Technologies...

  19. 2012 U.S. Vehicle Analysis

    E-Print Network [OSTI]

    Lam, Ho Yeung Michael

    2012-01-01T23:59:59.000Z

    Vehicles …………………………………………………………….. Ethanol Fuel Mixturesperformance of ethanol fuel mixtures vehicles ……….. Summaryon diesel, electricity, and ethanol fuel mixtures (ethanol/

  20. Vehicle Technologies Office: Financial Opportunities - Active...

    Energy Savers [EERE]

    Vehicle Technologies Office: Financial Opportunities - Active Solicitations Vehicle Technologies Office: Financial Opportunities - Active Solicitations To explore current financial...

  1. Gross Error Detection in Chemical Plants and Refineries for On-Line Optimization

    E-Print Network [OSTI]

    Pike, Ralph W.

    Gross Error Detection in Chemical Plants and Refineries for On-Line Optimization Xueyu Chen, Derya) British Petroleum Applications mainly crude units in refineries and ethylene plants #12;Companies

  2. ENERGY CONSERVATION AND BLOWUP OF SOLUTIONS FOR FOCUSING GROSS-PITAEVSKII HIERARCHIES

    E-Print Network [OSTI]

    Tzirakis, Nikolaos

    ENERGY CONSERVATION AND BLOWUP OF SOLUTIONS FOR FOCUSING GROSS-PITAEVSKII HIERARCHIES THOMAS CHEN . This is usually proven by use of energy conservation combined with a virial identity, a method often referred

  3. Analysis of historical gross gamma logging data from BY tank farm

    SciTech Connect (OSTI)

    MYERS, D.A.

    1999-10-13T23:59:59.000Z

    Gross gamma ray logs, recorded from January 1975 through mid-year 1994 as part of the Single-Shell Tank Farm Dry Well Surveillance Program, have been reanalyzed for the BY tank farm to locate the presence of mobile radionuclides in the subsurface. This report presents the BY tank farm gross gamma ray data in such a way as to assist others in their study of vadose zone mechanisms.

  4. Analysis of historical gross gamma logging data from TY tank farm

    SciTech Connect (OSTI)

    MYERS, D.A.

    1999-10-19T23:59:59.000Z

    Gross gamma ray logs, recorded from January 1975 through mid-year 1994 as part of the Single-Shell Tank Farm Dry Well Surveillance Program, have been reanalyzed for the TY tank farm to locate the presence of mobile radionuclides in the subsurface. This report presents the TY tank farm gross gamma ray data in such a way as to assist others in their study of vadose zone mechanism.

  5. Analysis of historical gross gamma logging data from BX tank farm

    SciTech Connect (OSTI)

    MYERS, D.A.

    1999-10-12T23:59:59.000Z

    Gross gamma ray logs, recorded from January 1975 through mid-year 1994 as part of the Single-Shell Tank Farm Dry Well Surveillance Program, have been reanalyzed for the BX tank farm to locate the presence of mobile radionuclides in the subsurface. This report presents the BX tank farm gross gamma ray data in such a way as to assist others in their study of vadose zone mechanism.

  6. Miniature Autonomous Robotic Vehicle (MARV)

    SciTech Connect (OSTI)

    Feddema, J.T.; Kwok, K.S.; Driessen, B.J.; Spletzer, B.L.; Weber, T.M.

    1996-12-31T23:59:59.000Z

    Sandia National Laboratories (SNL) has recently developed a 16 cm{sup 3} (1 in{sup 3}) autonomous robotic vehicle which is capable of tracking a single conducting wire carrying a 96 kHz signal. This vehicle was developed to assess the limiting factors in using commercial technology to build miniature autonomous vehicles. Particular attention was paid to the design of the control system to search out the wire, track it, and recover if the wire was lost. This paper describes the test vehicle and the control analysis. Presented in the paper are the vehicle model, control laws, a stability analysis, simulation studies and experimental results.

  7. Rapid road repair vehicle

    DOE Patents [OSTI]

    Mara, Leo M. (Livermore, CA)

    1998-01-01T23:59:59.000Z

    Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find an the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was was heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past.

  8. Vehicle rear suspension mechanism

    SciTech Connect (OSTI)

    Kijima, T.; Maebayashi, J.

    1986-08-05T23:59:59.000Z

    A vehicle rear suspension mechanism is described which consists of: a suspension member connected with a vehicle body; wheel hub means supporting a rear wheel having a wheel center plane for rotation about a rotating axis; and connecting means for connecting the wheel hub means with the suspension member. The connecting means include ball joint means having a pivot center located forwardly of and below the rotating axis of the rear wheel and connecting the wheel hub means to the suspension member pivotably about the pivot center, first resilient means located between the wheel hub means and the suspension member rearwardly of and above the rotating axis of the rear wheel, and second resilient means located between the wheel hub means and the suspension member forwardly of and above the rotating axis of the rear wheel.

  9. Unmanned Aerospace Vehicle Workshop

    SciTech Connect (OSTI)

    Vitko, J. Jr. [Sandia National Labs., Livermore, CA (United States)

    1995-04-01T23:59:59.000Z

    The Unmanned Aerospace Vehicle (UAV) Workshop concentrated on reviewing and refining the science experiments planned for the UAV Demonstration Flights (UDF) scheduled at the Oklahoma Cloud and Radiation Testbed (CART) in April 1994. These experiments were focused around the following sets of parameters: Clear sky, daylight; Clear-sky, night-to-day transition; Clear sky - improve/validate the accuracy of radiative fluxes derived from satellite-based measurements; Daylight, clouds of opportunity; and, Daylight, broken clouds.

  10. Alternative Fuel Vehicle

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel Vehicle & Fueling Infrastructure

  11. Stabilizer for motor vehicle

    SciTech Connect (OSTI)

    Takadera, I.; Kuroda, S.

    1986-11-11T23:59:59.000Z

    This patent describes a stabilizer for a motor vehicle comprising: a rod-shaped torsion section extending in the transverse direction of a motor vehicle; a pair of arm sections continuous with both ends of the torsion section and extending in the longitudinal direction of the motor vehicle; a first member attached to the torsion section or at least one of the arm sections and formed with an axially penetrating cylindrical bore; a columnar second member inserted in the bore of the first member; at least one coil spring disposed between the inner peripheral surface of the bore of the first member and the outer peripheral surface of the second member and wound around the second member, at least one end of the coil spring being a free end; an operating member connected to the free end of the coil spring, at least a part of the operating member being located outside the first member; and drive means coupled to the operating member and adapted to apply a force in a direction such that the diameter of the coil spring is increased or reduced.

  12. Advanced Vehicle Testing and Evaluation

    SciTech Connect (OSTI)

    Garetson, Thomas

    2013-03-31T23:59:59.000Z

    The objective of the United States (U.S.) Department of Energy?s (DOEs) Advanced Vehicle Testing and Evaluation (AVTE) project was to provide test and evaluation services for advanced technology vehicles, to establish a performance baseline, to determine vehicle reliability, and to evaluate vehicle operating costs in fleet operations. Vehicles tested include light and medium-duty vehicles in conventional, hybrid, and all-electric configurations using conventional and alternative fuels, including hydrogen in internal combustion engines. Vehicles were tested on closed tracks and chassis dynamometers, as well as operated on public roads, in fleet operations, and over prescribed routes. All testing was controlled by procedures developed specifically to support such testing. Testing and evaluations were conducted in the following phases: ? Development of test procedures, which established testing procedures; ? Baseline performance testing, which established a performance baseline; ? Accelerated reliability testing, which determined vehicle reliability; ? Fleet testing, used to evaluate vehicle economics in fleet operation, and ? End of test performance evaluation. Test results are reported by two means and posted by Idaho National Laboratory (INL) to their website: quarterly progress reports, used to document work in progress; and final test reports. This final report documents work conducted for the entirety of the contract by the Clarity Group, Inc., doing business as ECOtality North America (ECOtality). The contract was performed from 1 October 2005 through 31 March 2013. There were 113 light-duty on-road (95), off-road (3) and low speed (15) vehicles tested.

  13. automated vehicle control for ground vehicles: Topics by E-print...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a Robot Vehicle James L. Crowley Patrick Cartesian coordinate space. In the same sense, robot vehicles require a "vehicle controller" to command. This paper presents the design of...

  14. Myths Regarding Alternative Fuel Vehicle Demand by Light-Duty Vehicle Fleets

    E-Print Network [OSTI]

    Nesbitt, Kevin; Sperling, Daniel

    1998-01-01T23:59:59.000Z

    eet demand for alternative-fuel vehicles in California.Britain MYTHS REGARDING ALTERNATIVE FUEL VEHICLE DEMAND BYinitial market for alternative fuel vehicles (AFVs). We

  15. Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Testing Activity (AVTA) Non-PHEV Evaluations and Data Collection AVTA HEV, NEV, BEV and HICEV Demonstrations and Testing Benchmarking of Advanced HEVs and...

  16. Vehicle Technologies Office Merit Review 2014: Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    Presentation given by Intertek at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about testing and evaluating advanced...

  17. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    vehicle into an electric power source. Although electricity production may contribute to air pollution, the U.S. Environmental Protection Agency (EPA) considers EVs Hybrid and...

  18. Vehicle Technologies Office Merit Review 2014: Consumer Vehicle Technology Data

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about consumer...

  19. Vehicle Technologies Office Merit Review 2014: Vehicle & Systems...

    Energy Savers [EERE]

    & Testing Presentation given by U.S. Department of Energy at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  20. Mack LNG vehicle development

    SciTech Connect (OSTI)

    Southwest Research Institute

    2000-01-05T23:59:59.000Z

    The goal of this project was to install a production-ready, state-of-the-art engine control system on the Mack E7G natural gas engine to improve efficiency and lower exhaust emissions. In addition, the power rating was increased from 300 brake horsepower (bhp) to 325 bhp. The emissions targets were oxides of nitrogen plus nonmethane hydrocarbons of less than 2.5 g/bhp-hr and particulate matter of less than 0.05 g/bhp-hr on 99% methane. Vehicle durability and field testing were also conducted. Further development of this engine should include efficiency improvements and oxides of nitrogen reductions.

  1. Hybrid vehicle motor alignment

    DOE Patents [OSTI]

    Levin, Michael Benjamin (Ann Arbor, MI)

    2001-07-03T23:59:59.000Z

    A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

  2. Vehicles | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudha Patri MechanicalofVehicles - ORNL inverter

  3. Vehicle Technologies Office News

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research PetroleumDepartment of Energy KavehHeavy Vehicle FuelCombustion

  4. Delayed neutron emission in the semi-gross theory of nuclear {beta}-decay

    SciTech Connect (OSTI)

    Tachibana, Takahiro; Yamada, Masami [Advanced Research Institute for Science and Engineering, Waseda University 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan)

    1998-12-21T23:59:59.000Z

    The semi-gross theory of nuclear {beta}-decay enables one to estimate some {beta}-decay properties such as half-lives and delayed neutron emission probabilities (P{sub n}-values) in the region far from the {beta}-stability line. This theory has been obtained by refining the conventional gross theory to take into account some shell effects of the parent nucleus. In this theory, the one-particle energy-levels are assumed to be discrete and non-uniform, and the one-particle strength function depends on the orbital and total angular momenta of the decaying nucleon. The P{sub n}-values obtained with use of the semi-gross theory are lower than the experimental values in many cases. In order to get more reasonable P{sub n}-values, the strength of the semi-gross theory in each small energy interval is spread with a width depending on the excitation energy. Modified P{sub n}-values thus obtained are compared with the experimental data as well as those estimated by the semi-gross theory.

  5. Hybrid Vehicle Program. Final report

    SciTech Connect (OSTI)

    None

    1984-06-01T23:59:59.000Z

    This report summarizes the activities on the Hybrid Vehicle Program. The program objectives and the vehicle specifications are reviewed. The Hybrid Vehicle has been designed so that maximum use can be made of existing production components with a minimum compromise to program goals. The program status as of the February 9-10 Hardware Test Review is presented, and discussions of the vehicle subsystem, the hybrid propulsion subsystem, the battery subsystem, and the test mule programs are included. Other program aspects included are quality assurance and support equipment. 16 references, 132 figures, 47 tables.

  6. Vehicle Technologies Office: Information Resources

    Broader source: Energy.gov [DOE]

    From here you can access additional information on advanced transportation technologies; view programmatic publications and technical information; learn the basics of hybrid vehicle technology;...

  7. New York State-wide Alternative Fuel Vehicle Program for Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New York State-wide Alternative Fuel Vehicle Program for Vehicles and Fueling Stations New York State-wide Alternative Fuel Vehicle Program for Vehicles and Fueling Stations 2010...

  8. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  9. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01T23:59:59.000Z

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  10. Water Emissions from Fuel Cell Vehicles | Department of Energy

    Energy Savers [EERE]

    Water Emissions from Fuel Cell Vehicles Water Emissions from Fuel Cell Vehicles Hydrogen fuel cell vehicles (FCVs) emit approximately the same amount of water per mile as vehicles...

  11. Fact #706: December 19, 2011 Vocational Vehicle Fuel Consumption...

    Broader source: Energy.gov (indexed) [DOE]

    recently published final fuel consumption standards for heavy vehicles called "vocational" vehicles. A vocational vehicle is generally a single-unit work vehicle over 8,500 lbs...

  12. Evaluation Of Potential Hybrid Electric Vehicle Applications: Vol I

    E-Print Network [OSTI]

    Gris, Arturo E.

    1991-01-01T23:59:59.000Z

    Vehicle Symposium, "The Hybrid Vehicle Revisited", OctoberBus Hv REFERENCES “Hybrid Vehicle Assessment, Phase I,Laboratory, March 1984 “Hybrid Vehicle Engineering Task”

  13. Integrable Gross-Neveu models with fermion-fermion and fermion-antifermion pairing

    E-Print Network [OSTI]

    Michael Thies

    2014-08-23T23:59:59.000Z

    The massless Gross-Neveu and chiral Gross-Neveu models are well known examples of integrable quantum field theories in 1+1 dimensions. We address the question whether integrability is preserved if one either replaces the four-fermion interaction in fermion-antifermion channels by a dual interaction in fermion-fermion channels, or if one adds such a dual interaction to an existing integrable model. The relativistic Hartree-Fock-Bogoliubov approach is adequate to deal with the large N limit of such models. In this way, we construct and solve three integrable models with Cooper pairing. We also identify a candidate for a fourth integrable model with maximal kinematic symmetry, the "perfect" Gross-Neveu model. This type of field theories can serve as exactly solvable toy models for color superconductivity in quantum chromodynamics.

  14. ARMY VEHICLE DURABILITY OPTIMIZATION & RELIABILITY

    E-Print Network [OSTI]

    Kusiak, Andrew

    ARMY VEHICLE DURABILITY OPTIMIZATION & RELIABILITY How to Optimize the Vehicle Design to Minimize/Reduce the Weight? Under These Uncertainties, How to Achieve Component Level Reliability? Under These Uncertainties, How to Achieve System Level Reliability? Dynamics Analysis FE Model System Model Dynamic Stress

  15. EV Project Chevrolet Volt Vehicle Summary Report

    Broader source: Energy.gov (indexed) [DOE]

    charging events per day when the vehicle was driven 1.5 EV Project Chevrolet Volt Vehicle Summary Report Region: ALL Number of vehicles: 1895 Reporting period: April 2013 through...

  16. Fuel Savings from Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Bennion, K.; Thornton, M.

    2009-03-01T23:59:59.000Z

    NREL's study shows that hybrid electric vehicles can significantly reduce oil imports for use in light-duty vehicles, particularly if drivers switch to smaller, more fuel-efficient vehicles overall.

  17. Anonymous vehicle reidentification using heterogeneous detection systems

    E-Print Network [OSTI]

    Oh, Cheol; Jeng, Shin-Ting; Ritchie, Stephen G.

    2007-01-01T23:59:59.000Z

    C. A. MacCarley, Video-Based Vehicle Signature Analysis andRamachandran, and S. Ritchie, “Vehicle reidenti?cation usingand R. Jayakrishnan, “Use of vehicle signature analysis and

  18. 2012 U.S. Vehicle Analysis

    E-Print Network [OSTI]

    Lam, Ho Yeung Michael

    2012-01-01T23:59:59.000Z

    and Air Quality. Green Vehicle Guide. Web. May 2012. 2. "Los Angeles 2012 U.S. Vehicle Analysis A thesis submitted inOF THE THESIS 2012 U.S. Vehicle Analysis by Ho Yeung Michael

  19. Quantifying the benefits of hybrid vehicles

    E-Print Network [OSTI]

    Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

    2006-01-01T23:59:59.000Z

    The Emergence of Hybrid Vehicles: Ending oil’s strangleholdthe benefits of hybrid vehicles Dr. Thomas Turrentine Dr.the benefits of hybrid vehicles Report prepared for CSAA Dr.

  20. Solar-Hydrogen Fuel-Cell Vehicles

    E-Print Network [OSTI]

    DeLuchi, Mark A.; Ogden, Joan M.

    1993-01-01T23:59:59.000Z

    M. A. (1992). Hydrogen Fuel-Cell Vehicles. Re- koebensteinthan both. Solar-hydrogen and fuel-cell vehicles wouldberegulation. Solar-Hydrogen Fuel-Cell Vehicles MarkA. DeLuchi

  1. Electric vehicle repairs and modifications

    SciTech Connect (OSTI)

    Buffett, R.K.

    1982-11-01T23:59:59.000Z

    This informal report describes the electric vehicle (EV) inspection and the necessary maintenance and repairs required to improve reliable operation of five Volkswagen (VW) Electrotransporter vans and five VW EV buses. The recommendations of TVA, EPRI, GES, Volkswagen, Siemens, and Hoppecke have been carried out in this effort. These modifications were necessary before entering the EPRI/TVA phase II and III continuing program. As new energy storage systems are explored using the VW test-bed vehicles in the battery field testing program, additional modifications may be required. All modifications will be submitted to the vehicle and component manufacturer for general assessment and recommendations. At present three different types of battery systems are being evaluated in six VW vehicles. The two Hoppecke and Exide utilize the modified Hoppecke charging systems. The other batteries being tested require off-board chargers specified by their manufacturer and are separate from the vehicle system.

  2. Aggregate vehicle travel forecasting model

    SciTech Connect (OSTI)

    Greene, D.L.; Chin, Shih-Miao; Gibson, R. [Tennessee Univ., Knoxville, TN (United States)

    1995-05-01T23:59:59.000Z

    This report describes a model for forecasting total US highway travel by all vehicle types, and its implementation in the form of a personal computer program. The model comprises a short-run, econometrically-based module for forecasting through the year 2000, as well as a structural, scenario-based longer term module for forecasting through 2030. The short-term module is driven primarily by economic variables. It includes a detailed vehicle stock model and permits the estimation of fuel use as well as vehicle travel. The longer-tenn module depends on demographic factors to a greater extent, but also on trends in key parameters such as vehicle load factors, and the dematerialization of GNP. Both passenger and freight vehicle movements are accounted for in both modules. The model has been implemented as a compiled program in the Fox-Pro database management system operating in the Windows environment.

  3. Hydrogen ICE Vehicle Testing Activities

    SciTech Connect (OSTI)

    J. Francfort; D. Karner

    2006-04-01T23:59:59.000Z

    The Advanced Vehicle Testing Activity teamed with Electric Transportation Applications and Arizona Public Service to develop and monitor the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant. The Pilot Plant provides 100% hydrogen, and hydrogen and compressed natural gas (H/CNG)-blended fuels for the evaluation of hydrogen and H/CNG internal combustion engine (ICE) vehicles in controlled and fleet testing environments. Since June 2002, twenty hydrogen and H/CNG vehicles have accumulated 300,000 test miles and 5,700 fueling events. The AVTA is part of the Department of Energy’s FreedomCAR and Vehicle Technologies Program. These testing activities are managed by the Idaho National Laboratory. This paper discusses the Pilot Plant design and monitoring, and hydrogen ICE vehicle testing methods and results.

  4. 2012 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

    2013-03-01T23:59:59.000Z

    The Oak Ridge National Laboratory s Center for Transportation Analysis developed and published the first Vehicle Technologies Market Report in 2008. Three editions of the report have been published since that time. This 2012 report details the major trends in U.S. light vehicle and medium/heavy truck markets as well as the underlying trends that caused them. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national scale. The following section examines light-duty vehicle use, markets, manufacture, and supply chains. The discussion of medium and heavy trucks offers information on truck sales and fuel use. The technology section offers information on alternative fuel vehicles and infrastructure, and the policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standards.

  5. Propane Vehicle Demonstration Grant Program

    SciTech Connect (OSTI)

    Jack Mallinger

    2004-08-27T23:59:59.000Z

    Project Description: Propane Vehicle Demonstration Grants The Propane Vehicle Demonstration Grants was established to demonstrate the benefits of new propane equipment. The US Department of Energy, the Propane Education & Research Council (PERC) and the Propane Vehicle Council (PVC) partnered in this program. The project impacted ten different states, 179 vehicles, and 15 new propane fueling facilities. Based on estimates provided, this project generated a minimum of 1,441,000 new gallons of propane sold for the vehicle market annually. Additionally, two new off-road engines were brought to the market. Projects originally funded under this project were the City of Portland, Colorado, Kansas City, Impco Technologies, Jasper Engines, Maricopa County, New Jersey State, Port of Houston, Salt Lake City Newspaper, Suburban Propane, Mutual Liquid Propane and Ted Johnson.

  6. Security enhanced with increased vehicle inspections

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security enhanced with increased vehicle inspections Security measures increase as of March: vehicle inspections won't delay traffic New increased security procedures meet LANL's...

  7. Blog Feed: Vehicles | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Pat Davis, the Director of our Vehicle Technologies Program, doles out the facts on the costs and benefits of owning an electric vehicle. December 14, 2010 Nanotechnology: Small...

  8. Clean Cities Recovery Act: Vehicle & Infrastructure Deployment

    Broader source: Energy.gov (indexed) [DOE]

    project through collection of vehicle, infrastructure and training information. RELEVANCE Alternative Fuel & Advance Technology Vehicles Pilot Program Clean Cities Recovery Act:...

  9. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Broader source: Energy.gov (indexed) [DOE]

    Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen On April...

  10. Vehicle Technologies Office: Transitioning the Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office: Transitioning the Transportation Sector - Exploring the Intersection of H2 Fuel Cell and Natural Gas Vehicles Vehicle Technologies Office: Transitioning the Transportation...

  11. NREL: Vehicles and Fuels Research - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    graph illustrating three pathways (biofuel, hydrogen, and electric vehicle) to reduce energy use and greenhouse gas emissions. Electric Vehicle Technologies & Targets 3-D...

  12. Vehicle Technologies Office Merit Review 2014: Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    for High Efficiency, Low Emissions Vehicle Applications Presentation given by Wisconsin Engine Research Consultants at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle...

  13. Vehicle Technologies Office: AVTA - Evaluating National Parks...

    Energy Savers [EERE]

    National Parks and Forest Service Fleets for Plug-in Electric Vehicles Vehicle Technologies Office: AVTA - Evaluating National Parks and Forest Service Fleets for Plug-in Electric...

  14. EV Project Chevrolet Volt Vehicle Summary Report

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Summary Report Region: ALL Number of vehicles: 1766 Reporting period: January 2013 through March 2013 1 A trip is defined as all the driving done between consecutive...

  15. Measuring & Mitigating Electric Vehicle Adoption Barriers.

    E-Print Network [OSTI]

    Tommy, Carpenter

    2015-01-01T23:59:59.000Z

    ??Transitioning our cars to run on renewable sources of energy is crucial to addressing concerns over energy security and climate change. Electric vehicles (EVs), vehicles… (more)

  16. Vehicle Technologies Office | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Efficient Vehicle Technologies Secretary Moniz Announces 55 M to Advance Fuel Efficient Vehicle Technologies Energy Secretary Moniz spoke at the Washington Auto Show,...

  17. Advanced Technology Vehicles Manufacturing Incentive Program...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program This is an interim final rule that establishes the...

  18. Advanced Vehicle Testing Activity (AVTA) ? PHEV Evaluations...

    Broader source: Energy.gov (indexed) [DOE]

    1.pdf More Documents & Publications Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and Demonstration Activities AVTA PHEV Demonstrations and Testing Argonne...

  19. NREL: Vehicles and Fuels Research - Success Stories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Vehicle, Grid, and Renewable Synergies Fuel, Engine, and Infrastructure Co-Optimization Red engine. Demo Projects Introduce New Class of Natural Gas Vehicles Graph...

  20. Blog Feed: Vehicles | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The MV-1, a new wheelchair accessible, fuel-efficient vehicle | Photo Courtesy of Vehicle Production Group Automotive Accessibility and Efficiency Meet in the Innovative MV-1 A...

  1. PECO-ELIGIBLE PROJECT REQUESTS Academic or Net Gross Project Cost Educational Approved by

    E-Print Network [OSTI]

    Slatton, Clint

    PECO-ELIGIBLE PROJECT REQUESTS Academic or Net Gross Project Cost Educational Approved by 2013 Priority to Benefit Square Feet Feet Project (Proj. Cost/ Recommended reference No Project Title Year 1 Year 2 Year 3 Year 4 Year 5 from Projects (NASF) (GSF) Cost GSF) Date/Rec No. 1 UTILITIES

  2. PECO-ELIGIBLE PROJECT REQUESTS Academic or Net Gross Project Cost Educational Approved by

    E-Print Network [OSTI]

    Slatton, Clint

    PECO-ELIGIBLE PROJECT REQUESTS Academic or Net Gross Project Cost Educational Approved by 2014 Priority to Benefit Square Feet Feet Project (Proj. Cost/ Recommended reference No Project Title Year 1 Year 2 Year 3 Year 4 Year 5 from Projects (NASF) (GSF) Cost GSF) Date/Rec No. 1 UTILITIES

  3. PECO-ELIGIBLE PROJECT REQUESTS Academic or Net Gross Project Cost Educational Approved by

    E-Print Network [OSTI]

    Slatton, Clint

    PECO-ELIGIBLE PROJECT REQUESTS Academic or Net Gross Project Cost Educational Approved by 2015 Priority to Benefit Square Feet Feet Project (Proj. Cost/ Recommended reference No Project Title Year 1 Year 2 Year 3 Year 4 Year 5 from Projects (NASF) (GSF) Cost GSF) Date/Rec No. 1 UTILITIES

  4. Vanishing beta function for Grosse-Wulkenhaar model in a magnetic field

    E-Print Network [OSTI]

    Joseph Ben Geloun; Razvan Gurau; Vincent Rivasseau

    2008-05-28T23:59:59.000Z

    We prove that the beta function of the Grosse-Wulkenhaar model including a magnetic field vanishes at all order of perturbations. We compute the renormalization group flow of the relevant dynamic parameters and find a non-Gaussian infrared fixed point. Some consequences of these results are discussed.

  5. Suppressed gross erosion of high-temperature lithium films under high-flux deuterium bombardment

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    P1-030 Suppressed gross erosion of high-temperature lithium films under high-flux deuterium) and thick (~500 m) lithium films under high-flux deuterium and neon plasma bombardment were studied. For Ne plasmas, Li erosion rates inferred from measurements of Li-I radiation are consistent

  6. Density-Functional Theory for Triplet Superconductors K. Capelle E.K.U. Gross

    E-Print Network [OSTI]

    Gross, E.K.U.

    Density-Functional Theory for Triplet Superconductors K. Capelle E.K.U. Gross Institut f Introduction The purpose of this work is to generalize the density-functional theory (DFT) for superur Theoretische Physik Universitat Wurzburg Am Hubland D-97074 Wurzburg Germany Abstract The density-functional

  7. Electronic Structure: Density Functional Theory S. Kurth, M. A. L. Marques, and E. K. U. Gross

    E-Print Network [OSTI]

    Gross, E.K.U.

    Electronic Structure: Density Functional Theory S. Kurth, M. A. L. Marques, and E. K. U. Gross: July 5, 2003) PACS numbers: 71.15.Mb, 31.15.Ew 1 #12;I. INTRODUCTION Density functional theory (DFT systems becomes prohibitive. A different approach is taken in density functional theory where, instead

  8. Time-dependent Density Functional Theory Miguel A. L. Marques and E. K. U. Gross

    E-Print Network [OSTI]

    Wu, Zhigang

    Time-dependent Density Functional Theory Miguel A. L. Marques and E. K. U. Gross 1 Introduction Time-dependent density-functional theory (TDDFT) extends the basic ideas of ground-state density-functional is the one-body electron density, n(r, t). The advantages are clear: The many-body wave-function, a function

  9. Resource Adequacy in Competitive Electricity Markets George Gross and Pablo Ruiz

    E-Print Network [OSTI]

    Gross, George

    Resource Adequacy in Competitive Electricity Markets by George Gross and Pablo Ruiz University of Illinois at Urbana-Champaign Urbana, IL, USA The definition of resource adequacy is "the ability of the electric system to supply the aggregate electrical demand and energy requirements of the customers at all

  10. Not Just for Lawyers! Professor Michelle L. Gross will discuss the USPTO's Patent Agent program,

    E-Print Network [OSTI]

    Reisslein, Martin

    Patent Law Not Just for Lawyers! Professor Michelle L. Gross will discuss the USPTO's Patent Agent program, the patent bar exam, and how becoming a Patent Agent can provide new and exciting career opportunities for those who want to draft and submit patent applications, but do not want to spend three years

  11. Dipole oscillations in Bose-Fermi mixtures in the time-dependent Gross-Pitaevskii and Vlasov equations

    E-Print Network [OSTI]

    Bertsch George F.

    Dipole oscillations in Bose-Fermi mixtures in the time-dependent Gross-Pitaevskii and Vlasov equations Tomoyuki Maruyama1,2,3 and George F. Bertsch1 1 Institute for Nuclear Theory, University with the time-dependent Gross-Pitaevskii equation and the Vlasov equation. While the Bose gas oscillates

  12. Solitons in a hard-core bosonic system: Gross-Pitaevskii type and beyond Radha Balakrishnan1

    E-Print Network [OSTI]

    Satija, Indu

    Solitons in a hard-core bosonic system: Gross-Pitaevskii type and beyond Radha Balakrishnan1, Astronomy and Computational Sciences, George Mason University, Fairfax, VA 22030, USA A unified formulation of the hallmarks of quantum coherence inherent in ultracold atomic systems As predicted theoretically in the Gross

  13. Supporting Systolic and Memory Communication in iWarp Shekhar Borkar, Robert Cohn, George Cox, Thomas Gross,

    E-Print Network [OSTI]

    Shewchuk, Jonathan

    Supporting Systolic and Memory Communication in iWarp Shekhar Borkar, Robert Cohn, George Cox, Thomas Gross, H. T. Kung, Monica Lam, Margie Levine, Brian Moore, Wire Moore, Craig Peterson, Jim Susman/CMO under Contract MDA972­90­C­0035. Authors' affiliations: R. Cohn, T. Gross, H. T. Kung, and J. Webb

  14. Vehicle-to-Vehicle-to-Infrastructure (V2V2I) Intelligent Transportation System Architecture

    E-Print Network [OSTI]

    Miller, Jeffrey A.

    is a hybrid of the vehicle-to-vehicle (V2V) and vehicle-to- infrastructure (V2I) architectures. The V2V2I I am proposing is a hybrid of the V2I and V2V architectures, which is the vehicle-to-vehicleVehicle-to-Vehicle-to-Infrastructure (V2V2I) Intelligent Transportation System Architecture Jeffrey

  15. Effect Of Platooning on Fuel Consumption of Class 8 Vehicles Over a Range of Speeds, Following Distances, and Mass

    SciTech Connect (OSTI)

    Lammert, M. P.; Duran, A.; Diez, J.; Burton, K.; Nicholson, A.

    2014-10-01T23:59:59.000Z

    This research project evaluates fuel consumption results of two Class 8 tractor-trailer combinations platooned together compared to their standalone fuel consumption. A series of ten modified SAE Type II J1321 fuel consumption track tests were performed to document fuel consumption of two platooned vehicles and a control vehicle at varying steady-state speeds, following distances, and gross vehicle weights (GVWs). The steady-state speeds ranged from 55 mph to 70 mph, the following distances ranged from a 20-ft following distance to a 75-ft following distance, and the GVWs were 65K lbs and 80K lbs. All tractors involved had U.S. Environmental Protection Agency (EPA) SmartWay-compliant aerodynamics packages installed, and the trailers were equipped with side skirts. Effects of vehicle speed, following distance, and GVW on fuel consumption were observed and analyzed. The platooning demonstration system used in this study consisted of radar systems, Dedicated Short-Range Communication (DSRC) vehicle-to-vehicle (V2V) communications, vehicle braking and torque control interface, cameras and driver displays. The lead tractor consistently demonstrated an improvement in average fuel consumption reduction as following distance decreased, with results showing 2.7% to 5.3% fuel savings at a GVW of 65k. The trailing vehicle achieved fuel consumption savings ranging from 2.8% to 9.7%; tests during which the engine cooling fan did not operate achieved savings of 8.4% to 9.7%. 'Team' fuel savings, considering the platooned vehicles as one, ranged from 3.7% to 6.4%, with the best combined result being for 55 mph, 30-ft following distance, and 65k GVW.

  16. Smog Check II Evaluation Part II: Overview of Vehicle

    E-Print Network [OSTI]

    Denver, University of

    Smog Check II Evaluation Part II: Overview of Vehicle Emissions . . . . . . . . . . . . Prepared in Later Sections ____________________ 1 3. Older Vehicles Have Higher Emissions on Average _____________ 3 4. The Vehicle Fleet Is Dominated by Newer Vehicles______________ 8 5. More Recent Vehicle Models

  17. Adaptive control of hypersonic vehicles

    E-Print Network [OSTI]

    Gibson, Travis Eli

    2008-01-01T23:59:59.000Z

    The guidance, navigation and control of hypersonic vehicles are highly challenging tasks due to the fact that the dynamics of the airframe, propulsion system and structure are integrated and highly interactive. Such a ...

  18. Riverside, CA Vehicle Purchase Incentives

    Broader source: Energy.gov [DOE]

    City of Riverside residents and employees are eligible to receive a rebate toward the purchase of qualified natural gas or hybrid electric vehicles purchased from a City of Riverside automobile...

  19. Gasoline Ultra Fuel Efficient Vehicle

    Broader source: Energy.gov (indexed) [DOE]

    at Wayne State University May 18, 2012 Slide 13 2011 Sonata 6MT, 2.0L GDI Theta Turbo Technologies on Vehicle: EMS Control Algorithms Calibration GDi Pump ECM...

  20. Light Duty Vehicle CNG Tanks

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle CNG Tanks Dane A. Boysen, PhD Program Director Advanced Research Projects Agency-Energy, US DOE dane.boysen@doe.gov Fiber Reinforced Polymer Composite Manufacturing...

  1. Prediction of vehicle impact forces

    E-Print Network [OSTI]

    Kaderka, Darrell Laine

    1990-01-01T23:59:59.000Z

    PREDICTION OF VEHICLE IMPACT FORCES A Thesis by DARRELL LAINE KADERKA Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1990 Major Subject...: Civil Engineering PREDICTION OF VEHICLE IMPACT FORCES A Thesis by DARRELL LAINE KADERKA Approved as to style and content by: C. Eugene Buth (Chair of Committee) W. ynn Beason (Member) I? D n E. B ay (Member) es T. P. Yao (Departmen Head) May...

  2. Nonlinear Dynamics of Longitudinal Ground Vehicle Traction

    E-Print Network [OSTI]

    Shaw, Steven W.

    asphalt b) Wet asphalt c) Gravel d) Packed Snow Nonlinear Dynamics of Longitudinal Ground Vehicle Traction

  3. Method and system for vehicle refueling

    SciTech Connect (OSTI)

    Surnilla, Gopichandra; Leone, Thomas G; Prasad, Krishnaswamy Venkatesh; Agarwal, Apoorv; Hinds, Brett Stanley

    2014-06-10T23:59:59.000Z

    Methods and systems are provided for facilitating refueling operations in vehicles operating with multiple fuels. A vehicle operator may be assisted in refueling the multiple fuel tanks of the vehicle by being provided one or more refueling profiles that take into account the vehicle's future trip plans, the predicted environmental conditions along a planned route, and the operator's preferences.

  4. Plugging Vehicles into Clean Energy October, 2012

    E-Print Network [OSTI]

    California at Davis, University of

    Plugging Vehicles into Clean Energy 1 October, 2012 Plugging Vehicles into Clean Energy Max-in electric vehicles and clean energy. Giving consumers options to offset energy and emissions associated briefly summarizes the relationship between clean energy and vehicle electrification and describes five

  5. Electric and Hydrogen Vehicles Past and Progress

    E-Print Network [OSTI]

    Kammen, Daniel M.

    status and TSRC research ­ Future? · Hydrogen Fuel Cell Vehicles ­ 20 years ago ­ 10 years ago ­ Current · Transportation Propulsion, Fuels, & Emissions ­ Electric-drive vehicles (including plug-in hybrid and fuel-cell Electric and Fuel Cell Vehicles?Why Electric and Fuel Cell Vehicles? · Transportation accounts for about 33

  6. Electric Vehicle Charging as an Enabling Technology

    E-Print Network [OSTI]

    Electric Vehicle Charging as an Enabling Technology Prepared for the U.S. Department of Energy technologies, electric vehicles and the appurtenant charging infrastructure, is explored in detail to determine regarding system load profiles, vehicle charging strategies, electric vehicle adoption rates, and storage

  7. Explosion proof vehicle for tank inspection

    DOE Patents [OSTI]

    Zollinger, William T. (Idaho Falls, ID); Klingler, Kerry M. (Idaho Falls, ID); Bauer, Scott G. (Idaho Falls, ID)

    2012-02-28T23:59:59.000Z

    An Explosion Proof Vehicle (EPV) having an interior substantially filled with an inert fluid creating an interior pressure greater than the exterior pressure. One or more flexible tubes provide the inert fluid and one or more electrical conductors from a control system to the vehicle. The vehicle is preferably used in subsurface tank inspection, whereby the vehicle is submerged in a volatile fluid.

  8. Feasible Path Synthesis for Automated Guided Vehicles

    E-Print Network [OSTI]

    Vuik, Kees

    Feasible Path Synthesis for Automated Guided Vehicles Reijer Idema 2005 TU Delft FROG Navigation for Automated Guided Vehicles Author: Reijer Idema Supervisors: prof.dr.ir. P. Wesseling (TU Delft) dr.ir. Kees is a manufacturer of Automated Guided Vehicles. They have developed a multitude of vehicles that transport products

  9. VEHICLE USAGE AGREEMENT DEPARTMENT OF BIOLOGICAL SCIENCE

    E-Print Network [OSTI]

    Ronquist, Fredrik

    VEHICLE USAGE AGREEMENT DEPARTMENT OF BIOLOGICAL SCIENCE All drivers of vehicles must certify to the following: 1. I certify that I have a valid driver's license appropriate for the vehicle type and will abide belts. 2. I have read and understand the vehicle operating policies and procedures as defined

  10. VEHICLE RESERVATION DO NOT WRITE IN

    E-Print Network [OSTI]

    Kirschner, Denise

    VEHICLE RESERVATION DO NOT WRITE IN SHADED AREAS For Information Call 764-2485 FAX # (76)3-1470 Vehicle No. License OK VEHICLE DAMAGE INSPECTION Circle area of damage and/or describe below: OUTGOING for Rules & Regulations for Vehicle Rentals Reference Number 5 digit # Date Department Short code Requestor

  11. Master Thesis Proposal: Simulation of Vehicle

    E-Print Network [OSTI]

    Zhao, Yuxiao

    Master Thesis Proposal: Simulation of Vehicle Driving Behavior Based on External Excitations Background For vehicle manufacturers it is important to know how their vehicles are used during the components and also for designing the controls of the vehicle. For example, the load characteristics

  12. VEHICLE SERVICES POLICY Table of Contents

    E-Print Network [OSTI]

    Shihadeh, Alan

    VEHICLE SERVICES POLICY Table of Contents 1. Policy 2. Procedures a. Vehicle Services Oversight b. Vehicle Maintenance and Inspection c. Authorized Drivers d. Responsibilities Back to Top (To download requirements for AUB's vehicles, the University has adopted a policy of centralizing these activities under one

  13. VEHICLE RENTAL FACT SHEET January 20, 2012

    E-Print Network [OSTI]

    VEHICLE RENTAL FACT SHEET January 20, 2012 When Smithsonian travelers rent a vehicle during official travel, the vehicle should be rented using an individual travel card (if available) and using are not reimbursable so the rental car company CDW should be declined if the vehicle is rented under the government

  14. Method and system for vehicle refueling

    DOE Patents [OSTI]

    Surnilla, Gopichandra; Leone, Thomas G; Prasad, Krishnaswamy Venkatesh; Argarwal, Apoorv; Hinds, Brett Stanley

    2012-11-20T23:59:59.000Z

    Methods and systems are provided for facilitating refueling operations in vehicles operating with multiple fuels. A vehicle operator may be assisted in refueling the multiple fuel tanks of the vehicle by being provided one or more refueling profiles that take into account the vehicle's future trip plans, the predicted environmental conditions along a planned route, and the operator's preferences.

  15. Planning for Autonomous Underwater Vehicles Zeyn Saigol

    E-Print Network [OSTI]

    Yao, Xin

    , 2007 4 / 25 #12;Autonomous Underwater Vehicles Unmanned, untethered submersibles Autosub, developedPlanning for Autonomous Underwater Vehicles Zeyn Saigol Intelligent Robotics Lab meeting July 31 in Southampton Cheaper than manned vehicles Can get to places tethered vehicles can't No need for human

  16. Using Vehicle Taxes to Reduce Carbon Dioxide Emissions Rates of New Passenger Vehicles: Evidence from France, Germany, and Sweden

    E-Print Network [OSTI]

    Klier, Thomas

    France, Germany, and Sweden link vehicle taxes to the carbon dioxide (CO2) emissions rates of passenger vehicles. Based on new vehicle registration data from 2005–2010, a vehicle’s tax is negatively correlated with its ...

  17. Protection against malevolent use of vehicles at Nuclear Power Plants. Vehicle barrier system selection guidance

    SciTech Connect (OSTI)

    Nebuda, D.T.

    1994-08-01T23:59:59.000Z

    This manual provides a simplified procedure for selecting land vehicle barriers that will stop the design basis vehicle threat adopted by the U.S. Nuclear Regulatory Commission. Proper selection and construction of vehicle barriers should prevent intrusion of the design basis vehicle. In addition, vital safety related equipment should survive a design basis vehicle bomb attack when vehicle barriers are properly selected, sited, and constructed. This manual addresses passive vehicle barriers, active vehicle barriers, and site design features that can be used to reduce vehicle impact velocity.

  18. Multi-lane Vehicle-to-Vehicle Networks with Time-Varying Radio Ranges

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Multi-lane Vehicle-to-Vehicle Networks with Time-Varying Radio Ranges: Information Propagation propagation speed in multi-lane vehicle-to-vehicle networks such as roads or highways. We focus on the impact of time-varying radio ranges and of multiple lanes of vehicles, varying in speed and in density. We assess

  19. Vehicle Signage Policy Outline the policy regarding signage on University of Michigan (U-M) vehicles.

    E-Print Network [OSTI]

    Kirschner, Denise

    Vehicle Signage Policy Objective Outline the policy regarding signage on University of Michigan (U-M) vehicles. Policy 1. All vehicles owned by U-M will be identified by a vehicle number, U-M decal and special municipal license plate issued by Fleet Services. 2. All signage on vehicles owned by U-M must be approved

  20. CEOAS VEHICLE POLICY CEOAS has 4 vehicles for use by CEOAS personnel.

    E-Print Network [OSTI]

    Kurapov, Alexander

    CEOAS VEHICLE POLICY CEOAS has 4 vehicles for use by CEOAS personnel. 1) A Dodge ľ ton cargo van; vehicle # 096813, located on Orchard Street in a reserved parking space, south of Burt Hall. This cargo/log book. OSU approves charging vehicle use to grants. If logs show the vehicle to be underutilized (thus

  1. A Paired-Vehicle Recourse Strategy for the Vehicle Routing Problem with Stochastic Demands

    E-Print Network [OSTI]

    Erera, Alan

    A Paired-Vehicle Recourse Strategy for the Vehicle Routing Problem with Stochastic Demands Aykagan Institute of Technology Abstract This paper presents a paired-vehicle recourse strategy for the vehicle vehicles is dispatched from a terminal to serve single-period customer demands which are known

  2. Vehicle Maintenance Policy Outline the policy regarding vehicle maintenance at University of Michigan (U-M).

    E-Print Network [OSTI]

    Kirschner, Denise

    Vehicle Maintenance Policy Objective Outline the policy regarding vehicle maintenance at University of Michigan (U-M). Policy 1. All maintenance performed on U-M vehicles must be coordinated through Garage to repair their fleet vehicles. 2. U-M vehicles leased through Fleet Services include routine maintenance

  3. Vehicle Maintenance Procedure Outline the procedure for vehicle maintenance at University of Michigan (U-M).

    E-Print Network [OSTI]

    Kirschner, Denise

    Vehicle Maintenance Procedure Objective Outline the procedure for vehicle maintenance at University of Michigan (U-M). Procedure 1. Your U-M vehicle has a mechanical and/or safety issue. 2. Contact Garage of the vehicle or if needed, have the vehicle towed to the maintenance facility. 4. If a loaner is needed while

  4. Anomalous discrete chiral symmetry in the Gross-Neveu model and loop gas simulations

    E-Print Network [OSTI]

    Oliver Bär; Willi Rath; Ulli Wolff

    2009-05-27T23:59:59.000Z

    We investigate the discrete chiral transformation of a Majorana fermion on a torus. Depending on the boundary conditions the integration measure can change sign. Taking this anomalous behavior into account we define a chiral order parameter as a ratio of partition functions with differing boundary conditions. Then the lattice realization of the Gross-Neveu model with Wilson fermions is simulated using the recent `worm' technique on the loop gas or all-order hopping representation of the fermions. An algorithm is formulated that includes the Gross-Neveu interaction for N fermion species. The critical line m_c(g) is constructed for a range of couplings at N = 6 and for N = 2, the Thirring model, as examples.

  5. Analysis of the AirTouch automatic vehicle location system's ability to locate moving vehicles

    E-Print Network [OSTI]

    Henry, Tracy Lynn

    1995-01-01T23:59:59.000Z

    Automatic vehicle location systems are becoming more prevalent in diverse transportation applications. Their ability to locate vehicles can assist in locating emergency and public transit vehicles for better real-time dispatching as well...

  6. Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers

    E-Print Network [OSTI]

    Heffner, Reid R.

    2007-01-01T23:59:59.000Z

    Would You Buy a Hybrid Vehicle? Study #715238, conducted forcars/high-cost-of-hybrid-vehicles- 406/overview.htm ConsumerRelease. (2005) Most Hybrid Vehicles Not as Cost-Effective

  7. One-loop Beta Functions for the Orientable Non-commutative Gross-Neveu Model

    E-Print Network [OSTI]

    Ahmed Lakhoua; Fabien Vignes-Tourneret; Jean-Christophe Wallet

    2007-01-18T23:59:59.000Z

    We compute at the one-loop order the beta-functions for a renormalisable non-commutative analog of the Gross Neveu model defined on the Moyal plane. The calculation is performed within the so called x-space formalism. We find that this non-commutative field theory exhibits asymptotic freedom for any number of colors. The beta-function for the non-commutative counterpart of the Thirring model is found to be non vanishing.

  8. 2011 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Davis, Stacy Cagle [ORNL; Boundy, Robert Gary [ORNL; Diegel, Susan W [ORNL

    2012-02-01T23:59:59.000Z

    This report details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Program (VTP), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. This third edition since this report was started in 2008 offers several marked improvements relative to its predecessors. Most significantly, where earlier editions of this report focused on supplying information through an examination of market drivers, new vehicle trends, and supplier data, this edition uses a different structure. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. In addition to making this sectional re-alignment, this year s edition of the report also takes a different approach to communicating information. While previous editions relied heavily on text accompanied by auxiliary figures, this third edition relies primarily on charts and graphs to communicate trends. Any accompanying text serves to introduce the trends communication by the graphic and highlight any particularly salient observations. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 11 through 13 discuss the connections between global oil prices and U.S. GDP, and Figures 20 and 21 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 26 through 33 offer snapshots of major light-duty vehicle brands in the U.S. and Figures 38 through 43 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and Heavy Trucks offers information on truck sales (Figures 58 through 61) and fuel use (Figures 64 through 66). The Technology section offers information on alternative fuel vehicles and infrastructure (Figures 68 through 77), and the Policy section concludes with information on recent, current, and near-future Federal policies like the Cash for Clunkers program (Figures 87 and 88) and the Corporate Automotive Fuel Economy standard (Figures 90 through 99) and. In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible nuggets.

  9. Vehicle security apparatus and method

    DOE Patents [OSTI]

    Veligdan, James T. (Manorville, NY)

    1996-02-13T23:59:59.000Z

    A vehicle security apparatus for use in a motor vehicle, the apparatus comprising an optical key, a receptacle, a receiver and at least one optical fiber. The optical key has a transmitter having at least one first preprogrammed coded signal stored in a first electric circuit. The receptacle receives the optical key and at least one transmittable coded optical signal from the transmitter corresponding to the at least one preprogrammed coded signal stored in the first electric circuit. The receiver compares the at least one transmittable coded optical signal to at least one second preprogrammed coded signal stored in a second electric circuit and the receiver is adapted to trigger switching effects for at least one of enabling starting the motor vehicle and starting the motor vehicle upon determination that the at least one transmittable coded optical signal corresponds to the at least one second preprogrammed signal in the second electric circuit. The at least one optical fiber is operatively connected between the receptacle and the receiver for carrying the optical signal from the receptacle to the receiver. Also disclosed is a method for permitting only authorized use of a motor vehicle.

  10. Consumer Vehicle Choice Model Documentation

    SciTech Connect (OSTI)

    Liu, Changzheng [ORNL] [ORNL; Greene, David L [ORNL] [ORNL

    2012-08-01T23:59:59.000Z

    In response to the Fuel Economy and Greenhouse Gas (GHG) emissions standards, automobile manufacturers will need to adopt new technologies to improve the fuel economy of their vehicles and to reduce the overall GHG emissions of their fleets. The U.S. Environmental Protection Agency (EPA) has developed the Optimization Model for reducing GHGs from Automobiles (OMEGA) to estimate the costs and benefits of meeting GHG emission standards through different technology packages. However, the model does not simulate the impact that increased technology costs will have on vehicle sales or on consumer surplus. As the model documentation states, “While OMEGA incorporates functions which generally minimize the cost of meeting a specified carbon dioxide (CO2) target, it is not an economic simulation model which adjusts vehicle sales in response to the cost of the technology added to each vehicle.” Changes in the mix of vehicles sold, caused by the costs and benefits of added fuel economy technologies, could make it easier or more difficult for manufacturers to meet fuel economy and emissions standards, and impacts on consumer surplus could raise the costs or augment the benefits of the standards. Because the OMEGA model does not presently estimate such impacts, the EPA is investigating the feasibility of developing an adjunct to the OMEGA model to make such estimates. This project is an effort to develop and test a candidate model. The project statement of work spells out the key functional requirements for the new model.

  11. Vehicle security apparatus and method

    DOE Patents [OSTI]

    Veligdan, J.T.

    1996-02-13T23:59:59.000Z

    A vehicle security apparatus for use in a motor vehicle is disclosed, the apparatus comprising an optical key, a receptacle, a receiver and at least one optical fiber. The optical key has a transmitter having at least one first preprogrammed coded signal stored in a first electric circuit. The receptacle receives the optical key and at least one transmittable coded optical signal from the transmitter corresponding to the at least one preprogrammed coded signal stored in the first electric circuit. The receiver compares the at least one transmittable coded optical signal to at least one second preprogrammed coded signal stored in a second electric circuit and the receiver is adapted to trigger switching effects for at least one of enabling starting the motor vehicle and starting the motor vehicle upon determination that the at least one transmittable coded optical signal corresponds to the at least one second preprogrammed signal in the second electric circuit. The at least one optical fiber is operatively connected between the receptacle and the receiver for carrying the optical signal from the receptacle to the receiver. Also disclosed is a method for permitting only authorized use of a motor vehicle. 7 figs.

  12. PASSIVE DETECTION OF VEHICLE LOADING

    SciTech Connect (OSTI)

    Garrett, A.

    2012-01-03T23:59:59.000Z

    The Digital Imaging and Remote Sensing Laboratory (DIRS) at the Rochester Institute of Technology, along with the Savannah River National Laboratory is investigating passive methods to quantify vehicle loading. The research described in this paper investigates multiple vehicle indicators including brake temperature, tire temperature, engine temperature, acceleration and deceleration rates, engine acoustics, suspension response, tire deformation and vibrational response. Our investigation into these variables includes building and implementing a sensing system for data collection as well as multiple full-scale vehicle tests. The sensing system includes; infrared video cameras, triaxial accelerometers, microphones, video cameras and thermocouples. The full scale testing includes both a medium size dump truck and a tractor-trailer truck on closed courses with loads spanning the full range of the vehicle's capacity. Statistical analysis of the collected data is used to determine the effectiveness of each of the indicators for characterizing the weight of a vehicle. The final sensing system will monitor multiple load indicators and combine the results to achieve a more accurate measurement than any of the indicators could provide alone.

  13. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01T23:59:59.000Z

    Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  14. Apps for Vehicles: What are some examples of vehicle data applications...

    Open Energy Info (EERE)

    and weather changes * Helping consumers understand the cost and overall potential of electric drive vehicles * Enhanced security with real-time notification of a vehicle...

  15. Vehicle Technologies Office Merit Review 2014: Vehicle Thermal Systems Modeling in Simulink

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

  16. Vehicle Technologies Office Merit Review 2014: Vehicle Communications and Charging Control

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

  17. Vehicle Technologies Office Merit Review 2014: Vehicle to Grid Communications and Field Testing

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

  18. Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households

    E-Print Network [OSTI]

    Abbanat, Brian A.

    2001-01-01T23:59:59.000Z

    same circumstances. iii ALTERNATIVE FUEL VEHICLES: THE CASEDoug; Chelius, Michael, “Alternative Fuel Vehicle Programs:Conventional and Alternative Fuel Response Simulator: A

  19. Vehicle Battery Safety Roadmap Guidance

    SciTech Connect (OSTI)

    Doughty, D. H.

    2012-10-01T23:59:59.000Z

    The safety of electrified vehicles with high capacity energy storage devices creates challenges that must be met to assure commercial acceptance of EVs and HEVs. High performance vehicular traction energy storage systems must be intrinsically tolerant of abusive conditions: overcharge, short circuit, crush, fire exposure, overdischarge, and mechanical shock and vibration. Fail-safe responses to these conditions must be designed into the system, at the materials and the system level, through selection of materials and safety devices that will further reduce the probability of single cell failure and preclude propagation of failure to adjacent cells. One of the most important objectives of DOE's Office of Vehicle Technologies is to support the development of lithium ion batteries that are safe and abuse tolerant in electric drive vehicles. This Roadmap analyzes battery safety and failure modes of state-of-the-art cells and batteries and makes recommendations on future investments that would further DOE's mission.

  20. Heavy Duty Vehicle Futures Analysis.

    SciTech Connect (OSTI)

    Askin, Amanda Christine; Barter, Garrett; West, Todd H.; Manley, Dawn Kataoka

    2014-05-01T23:59:59.000Z

    This report describes work performed for an Early Career Research and Development project. This project developed a heavy-duty vehicle (HDV) sector model to assess the factors influencing alternative fuel and efficiency technology adoption. This model builds on a Sandia light duty vehicle sector model and provides a platform for assessing potential impacts of technological advancements developed at the Combustion Research Facility. Alternative fuel and technology adoption modeling is typically developed around a small set of scenarios. This HDV sector model segments the HDV sector and parameterizes input values, such as fuel prices, efficiencies, and vehicle costs. This parameterization enables sensitivity and trade space analyses to identify the inputs that are most associated with outputs of interest, such as diesel consumption and greenhouse gas emissions. Thus this analysis tool enables identification of the most significant HDV sector drivers that can be used to support energy security and climate change goals.

  1. 2010 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Ward, Jacob [U.S. Department of Energy; Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL

    2011-06-01T23:59:59.000Z

    In the past five years, vehicle technologies have advanced on a number of fronts: power-train systems have become more energy efficient, materials have become more lightweight, fuels are burned more cleanly, and new hybrid electric systems reduce the need for traditional petroleum-fueled propulsion. This report documents the trends in market drivers, new vehicles, and component suppliers. This report is supported by the U.S. Department of Energy s (DOE s) Vehicle Technologies Program, which develops energy-efficient and environmentally friendly transportation technologies that will reduce use of petroleum in the United States. The long-term aim is to develop "leap frog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

  2. 2008 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Ward, J.; Davis, S.

    2009-07-01T23:59:59.000Z

    In the past five years, vehicle technologies have advanced on a number of fronts: power-train systems have become more energy efficient, materials have become more lightweight, fuels are burned more cleanly, and new hybrid electric systems reduce the need for traditional petroleum-fueled propulsion. This report documents the trends in market drivers, new vehicles, and component suppliers. This report is supported by the Department of Energy's (DOE's) Vehicle Technologies Program, which develops energy-efficient and environmentally friendly highway transportation technologies that will reduce use of petroleum in the United States. The long-term aim is to develop 'leap frog' technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

  3. Vehicle to Grid Demonstration Project

    SciTech Connect (OSTI)

    Willett Kempton; Meryl Gardner; Michael Hidrue; Fouad Kamilev; Sachin Kamboj; Jon Lilley; Rodney McGee; George Parsons; Nat Pearre; Keith Trnka

    2010-12-31T23:59:59.000Z

    This report summarizes the activities and accomplishments of a two-year DOE-funded project on Grid-Integrated Vehicles (GIV) with vehicle to grid power (V2G). The project included several research and development components: an analysis of US driving patterns; an analysis of the market for EVs and V2G-capable EVs; development and testing of GIV components (in-car and in-EVSE); interconnect law and policy; and development and filing of patents. In addition, development activities included GIV manufacturing and licensing of technologies developed under this grant. Also, five vehicles were built and deployed, four for the fleet of the State of Delaware, plus one for the University of Delaware fleet.

  4. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01T23:59:59.000Z

    in batteries, ultracapacitors, fuel cells and hybrid vehicleBattery, Hybrid and Fuel Cell Electric Vehicle SymposiumBattery, Hybrid and Fuel Cell Electric Vehicle Symposium

  5. taking charge : optimizing urban charging infrastructure for shared electric vehicles

    E-Print Network [OSTI]

    Subramani, Praveen

    2012-01-01T23:59:59.000Z

    This thesis analyses the opportunities and constraints of deploying charging infrastructure for shared electric vehicles in urban environments. Existing electric vehicle charging infrastructure for privately owned vehicles ...

  6. Societal lifetime cost of hydrogen fuel cell vehicles

    E-Print Network [OSTI]

    Sun, Yongling; Ogden, J; Delucchi, Mark

    2010-01-01T23:59:59.000Z

    vehicle -$1,612 No engine Vehicle retail cost to consumercosts, for hydrogen FCVs and conventional gasoline internal combustion engine vehicles (

  7. Vehicle Technologies Office's Research Recognized by R&D 100...

    Office of Environmental Management (EM)

    Vehicles Home About Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Alternative Fuels Modeling, Testing, Data & Results Education...

  8. Moving toward a commercial market for hydrogen fuel cell vehicles...

    Energy Savers [EERE]

    Moving toward a commercial market for hydrogen fuel cell vehicles Moving toward a commercial market for hydrogen fuel cell vehicles Fuel cell vehicles and fueling stations...

  9. Electric Vehicles: Performances, Life Cycle Costs, Emissions, and Recharging Requirements

    E-Print Network [OSTI]

    DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

    1989-01-01T23:59:59.000Z

    Sealed lead-acid electric and vehicle battery development.A. (1987a) ture for electric vehicles. In Resources ElectricInternational Conference. Electric Vehicle De- Universityof

  10. Advanced Powertrain Research Facility Vehicle Test Cell Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powertrain Research Facility Vehicle Test Cell Thermal Upgrade Advanced Powertrain Research Facility Vehicle Test Cell Thermal Upgrade 2010 DOE Vehicle Technologies and Hydrogen...

  11. Development of High Energy Lithium Batteries for Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lithium Batteries for Electric Vehicles Development of High Energy Lithium Batteries for Electric Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program...

  12. Interested but unsure: Public attitudes toward electric vehicles in China

    E-Print Network [OSTI]

    Lo, Kevin

    2013-01-01T23:59:59.000Z

    to pay for electric vehicles and their attributes. Resourceownership and use of electric vehicles–a review ofenvironmental effects of electric vehicles versus compressed

  13. Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andy

    2009-01-01T23:59:59.000Z

    Moderate Hybrid-electric Vehicles. ESScap06, Switzerland,GH. SIMPLEV: A Simple Electric Vehicle Simulation Program-20 th International Electric Vehicle Symposium, Long Beach,

  14. Enhanced Ethanol Engine And Vehicle Efficiency (Agreement 13425...

    Broader source: Energy.gov (indexed) [DOE]

    Enhanced Ethanol Engine And Vehicle Efficiency (Agreement 13425) Enhanced Ethanol Engine And Vehicle Efficiency (Agreement 13425) Presentation from the U.S. DOE Office of Vehicle...

  15. Vehicle Technologies Office Merit Review 2014: High-Voltage Solid...

    Broader source: Energy.gov (indexed) [DOE]

    High-Voltage Solid Polymer Batteries for Electric Drive Vehicles Vehicle Technologies Office Merit Review 2014: High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...

  16. 2014 Annual Merit Review Results Report - Hybrid Vehicle Systems...

    Energy Savers [EERE]

    Hybrid Vehicle Systems Technologies 2014 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies Merit review of DOE Vehicle Technologies research activities...

  17. NREL: Vehicles and Fuels Research - Systems Analysis and Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    evaluates the impact of emerging technologies on efficiency, performance, cost, and battery life for a full range of vehicles-conventional vehicles, hybrid electric vehicles,...

  18. automated vehicle control: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a Robot Vehicle James L. Crowley Patrick Cartesian coordinate space. In the same sense, robot vehicles require a "vehicle controller" to command. This paper presents the design of...

  19. advanced vehicle control: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a Robot Vehicle James L. Crowley Patrick Cartesian coordinate space. In the same sense, robot vehicles require a "vehicle controller" to command. This paper presents the design of...

  20. advanced vehicle control systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a Robot Vehicle James L. Crowley Patrick Cartesian coordinate space. In the same sense, robot vehicles require a "vehicle controller" to command. This paper presents the design of...

  1. Advanced Technology and Alternative Fuel Vehicle Basics | Department...

    Office of Environmental Management (EM)

    Vehicles & Fuels Advanced Technology and Alternative Fuel Vehicle Basics Advanced Technology and Alternative Fuel Vehicle Basics August 20, 2013 - 9:00am Addthis Photo of a...

  2. Vehicle Technologies Office Merit Review 2014: Advanced Technology...

    Energy Savers [EERE]

    Advanced Technology Vehicle Lab Benchmarking - Level 1 Vehicle Technologies Office Merit Review 2014: Advanced Technology Vehicle Lab Benchmarking - Level 1 Presentation given by...

  3. Real-time Vehicle Reidentification System for Freeway Performance Measurements

    E-Print Network [OSTI]

    Jeng, Shin-Ting

    2007-01-01T23:59:59.000Z

    Tok, A. (2005). “Anonymous Vehicle Tracking for Real-timeField Investigation of Advanced Vehicle Reidentificationvariance, land changing, and vehicle heterogeneity. In:

  4. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    49 Table 13. Vehicle and fuel efficiency and electricity14. Timing profiles and vehicle and fuel pathways includedand generation, Table 18. Vehicle demand and system load

  5. Commercial Vehicle Classification System using Advanced Inductive Loop Technology

    E-Print Network [OSTI]

    Tok, Yeow Chern Andre

    2008-01-01T23:59:59.000Z

    Measurement Based on Vehicle Reidentification In proceedingsof Service Based on Anonymous Vehicle Reidentification InInvestigation of Anonymous Vehicle Tracking for Real-Time

  6. Will China's Vehicle Population Grow Even Faster than Forecasted?

    E-Print Network [OSTI]

    Wang, Yunshi; Teter, Jacob; Sperling, Daniel

    2012-01-01T23:59:59.000Z

    2011. “China’s Soaring Vehicle Population: Even Greater Thanversion, “China’s Soaring Vehicle Population: Even Greater2012. “Modeling Future Vehicle Sales and Stock in China,”

  7. Robust Vehicle State Estimation for Improved Traffic Sensing and Management

    E-Print Network [OSTI]

    Vu, Anh Quoc

    2011-01-01T23:59:59.000Z

    31 3. Vehicle Segmentation from Monocular Video38 3.2.2. Vehicle40 3.2.3. Extraction of Vehicle Structure and

  8. 2008 Annual Merit Review Results Summary - 14. Vehicle Systems...

    Broader source: Energy.gov (indexed) [DOE]

    14. Vehicle Systems and Simulation 2008 Annual Merit Review Results Summary - 14. Vehicle Systems and Simulation DOE Vehicle Technologies Annual Merit Review 2008meritreview14.p...

  9. Carbonyl Emissions from Gasoline and Diesel Motor Vehicles

    E-Print Network [OSTI]

    Jakober, Chris A.

    2008-01-01T23:59:59.000Z

    fraction of light-duty gasoline vehicle particulate matterQuinone emissions from gasoline and diesel motor vehicles.32 organic compounds from gasoline- powered motor vehicles.

  10. Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Program for Passenger Vehicles Thermoelectric Waste Heat Recovery Program for Passenger Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  11. DOE Vehicle Technologies Program 2009 Merit Review Report - Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review Report DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle Systems DOE Vehicle Technologies Program 2009 Merit Review Report - Safety Codes and Standards...

  12. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01T23:59:59.000Z

    ultracapacitors, fuel cells and hybrid vehicle design. Dr.on electric and hybrid vehicle technology and applicationsand performance. Hybrid vehicles utilizing a load leveling

  13. 2013 Annual Merit Review Results Report - Hybrid Vehicle Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Vehicle Systems Technologies 2013 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies Merit review of DOE Vehicle Technologies research activities...

  14. 2012 Annual Merit Review Results Report - Hybrid Vehicle Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Vehicle Systems Technologies 2012 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies Merit review of DOE Vehicle Technologies research activities...

  15. Energy Department Awards Will Promote Electric Vehicles in 24...

    Broader source: Energy.gov (indexed) [DOE]

    Will Promote Electric Vehicles in 24 States and Train a Workforce for Advanced Vehicle Development Energy Department Awards Will Promote Electric Vehicles in 24 States and Train a...

  16. Vehicle Technologies Office Merit Review 2014: Hydrogen Fuel...

    Energy Savers [EERE]

    Vehicle Technologies Office Merit Review 2014: Hydrogen Fuel-Cell Electric Hybrid Truck & Zero Emission Delivery Vehicle Deployment Vehicle Technologies Office Merit Review 2014:...

  17. Societal lifetime cost of hydrogen fuel cell vehicles

    E-Print Network [OSTI]

    Sun, Yongling; Ogden, J; Delucchi, Mark

    2010-01-01T23:59:59.000Z

    of Energy for hydrogen and fuel cell vehicle markethybrid, electric and hydrogen fuel cell vehicles, Journal ofof the Transition to Hydrogen Fuel Cell Vehicles & the

  18. Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2009-01-01T23:59:59.000Z

    simulation tool for hydrogen fuel cell vehicles, Journal ofeconomies of the direct hydrogen fuel cell vehicle withoutMaximizing Direct-Hydrogen Pem Fuel Cell Vehicle Efficiency-

  19. Electric Vehicle Site Operator Program

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    Kansas State University, with funding support from federal, state, public, and private companies, is participating in the Department of Energy's Electric Vehicle Site Operator Program. Through participation is this program, Kansas State is demonstrating, testing, and evaluating electric or hybrid vehicle technology. This participation will provide organizations the opportunity to examine the latest EHV prototypes under actual operating conditions. KSU proposes to purchase one (1) electric or hybrid van and four (4) electric cars during the first two years of this five year program. KSU has purchased one G-Van built by Conceptor Industries, Toronto, Canada and has initiated a procurement order to purchase two (2) Soleq 1992 Ford EVcort stationwagons.

  20. Thermoelectric generator for motor vehicle

    DOE Patents [OSTI]

    Bass, John C. (6121 La Pintra Dr., La Jolla, CA 92037)

    1997-04-29T23:59:59.000Z

    A thermoelectric generator for producing electric power for a motor vehicle from the heat of the exhaust gasses produced by the engine of the motor vehicle. The exhaust gasses pass through a finned heat transfer support structure which has seat positions on its outside surface for the positioning of thermoelectric modules. A good contact cylinder provides a framework from which a spring force can be applied to the thermoelectric modules to hold them in good contact on their seats on the surface of the heat transfer support structure.

  1. Thermoelectric generator for motor vehicle

    SciTech Connect (OSTI)

    Bass, J.C.

    1997-04-29T23:59:59.000Z

    A thermoelectric generator is described for producing electric power for a motor vehicle from the heat of the exhaust gases produced by the engine of the motor vehicle. The exhaust gases pass through a finned heat transfer support structure which has seat positions on its outside surface for the positioning of thermoelectric modules. A good contact cylinder provides a framework from which a spring force can be applied to the thermoelectric modules to hold them in good contact on their seats on the surface of the heat transfer support structure. 8 figs.

  2. Vehicle barrier with access delay

    DOE Patents [OSTI]

    Swahlan, David J; Wilke, Jason

    2013-09-03T23:59:59.000Z

    An access delay vehicle barrier for stopping unauthorized entry into secure areas by a vehicle ramming attack includes access delay features for preventing and/or delaying an adversary from defeating or compromising the barrier. A horizontally deployed barrier member can include an exterior steel casing, an interior steel reinforcing member and access delay members disposed within the casing and between the casing and the interior reinforcing member. Access delay members can include wooden structural lumber, concrete and/or polymeric members that in combination with the exterior casing and interior reinforcing member act cooperatively to impair an adversarial attach by thermal, mechanical and/or explosive tools.

  3. Micro-unmanned aerodynamic vehicle

    DOE Patents [OSTI]

    Reuel, Nigel (Rio Rancho, NM); Lionberger, Troy A. (Ann Arbor, MI); Galambos, Paul C. (Albuquerque, NM); Okandan, Murat (Albuquerque, NM); Baker, Michael S. (Albuquerque, NM)

    2008-03-11T23:59:59.000Z

    A MEMS-based micro-unmanned vehicle includes at least a pair of wings having leading wing beams and trailing wing beams, at least two actuators, a leading actuator beam coupled to the leading wing beams, a trailing actuator beam coupled to the trailing wing beams, a vehicle body having a plurality of fulcrums pivotally securing the leading wing beams, the trailing wing beams, the leading actuator beam and the trailing actuator beam and having at least one anisotropically etched recess to accommodate a lever-fulcrum motion of the coupled beams, and a power source.

  4. Low floor mass transit vehicle

    DOE Patents [OSTI]

    Emmons, J. Bruce (Beverly Hills, MI); Blessing, Leonard J. (Rochester, MI)

    2004-02-03T23:59:59.000Z

    A mass transit vehicle includes a frame structure that provides an efficient and economical approach to providing a low floor bus. The inventive frame includes a stiff roof panel and a stiff floor panel. A plurality of generally vertical pillars extend between the roof and floor panels. A unique bracket arrangement is disclosed for connecting the pillars to the panels. Side panels are secured to the pillars and carry the shear stresses on the frame. A unique seating assembly that can be advantageously incorporated into the vehicle taking advantage of the load distributing features of the inventive frame is also disclosed.

  5. An empirical analysis on the adoption of alternative fuel vehicles:The case of natural gas vehicles

    E-Print Network [OSTI]

    Yeh, Sonia

    2007-01-01T23:59:59.000Z

    lessons learned from alternative fuel vehicle programs inShirk, C. , 2000. Alternative Fuel Vehicles Made Available,for sustained adoption of alternative fuel vehicles and

  6. New Vehicle Choices, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and Gasoline Tax

    E-Print Network [OSTI]

    Martin, Elliot William

    2009-01-01T23:59:59.000Z

    7: Change in Sales of Hybrid Vehicles Due to Federal Taxof alternative fuels and hybrid vehicles. A primary policythe federal level to hybrid vehicles. This policy, begun in

  7. New Vehicle Choice, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and the Gasoline Tax

    E-Print Network [OSTI]

    Martin, Elliott William

    2009-01-01T23:59:59.000Z

    7: Change in Sales of Hybrid Vehicles Due to Federal Taxof alternative fuels and hybrid vehicles. A primary policythe federal level to hybrid vehicles. This policy, begun in

  8. EV Project Nissan Leaf Vehicle Summary Report

    Broader source: Energy.gov (indexed) [DOE]

    2011 through March 2011 Vehicle Usage Number of trips 3,364 Total distance traveled (mi) 21,706 Avg trip distance (mi) 5.8 Avg distance traveled per day when the vehicle was...

  9. EV Project Nissan Leaf Vehicle Summary Report

    Broader source: Energy.gov (indexed) [DOE]

    through June 2013 Vehicle Usage Number of trips 1,135,053 Total distance traveled (mi) 8,040,300 Avg trip distance (mi) 7.1 Avg distance traveled per day when the vehicle was...

  10. EV Project Nissan Leaf Vehicle Summary Report

    Broader source: Energy.gov (indexed) [DOE]

    through September 2012 Vehicle Usage Number of trips 813,430 Total distance traveled (mi) 5,837,173 Avg trip distance (mi) 7.2 Avg distance traveled per day when the vehicle was...

  11. EV Project Nissan Leaf Vehicle Summary Report

    Broader source: Energy.gov (indexed) [DOE]

    2012 through June 2012 Vehicle Usage Number of trips 787,895 Total distance traveled (mi) 5,666,469 Avg trip distance (mi) 7.2 Avg distance traveled per day when the vehicle was...

  12. EV Project Nissan Leaf Vehicle Summary Report

    Broader source: Energy.gov (indexed) [DOE]

    through December 2012 Vehicle Usage Number of trips 969,853 Total distance traveled (mi) 6,724,952 Avg trip distance (mi) 6.9 Avg distance traveled per day when the vehicle was...

  13. EV Project NIssan Leaf Vehicle Summary Report

    Broader source: Energy.gov (indexed) [DOE]

    2012 through March 2012 Vehicle Usage Number of trips 773,602 Total distance traveled (mi) 5,558,155 Avg trip distance (mi) 7.2 Avg distance traveled per day when the vehicle was...

  14. EV Project NIssan Leaf Vehicle Summary Report

    Broader source: Energy.gov (indexed) [DOE]

    through December 2011 Vehicle Usage Number of trips 707,330 Total distance traveled (mi) 4,878,735 Avg trip distance (mi) 6.9 Avg distance traveled per day when the vehicle was...

  15. EV Project NIssan Leaf Vehicle Summary Report

    Broader source: Energy.gov (indexed) [DOE]

    2011 through June 2011 Vehicle Usage Number of trips 160,588 Total distance traveled (mi) 1,077,931 Avg trip distance (mi) 6.7 Avg distance traveled per day when the vehicle was...

  16. Vehicle Technologies Office | Department of Energy

    Office of Environmental Management (EM)

    Read more Buying a New Car? Buying a New Car? Compare gas mileage, emissions, air pollution ratings, and safety data for new and used vehicles. Read more The Vehicle...

  17. Vehicle Technologies Office: Electric Drive Technologies

    Broader source: Energy.gov [DOE]

    Advanced power electronics and electric motors (APEEM) that make up vehicles' electric drive system are essential to hybrid and plug-in electric vehicles. As such, improvements in these...

  18. Performance optimization for unmanned vehicle systems

    E-Print Network [OSTI]

    Le Ny, Jerome

    2008-01-01T23:59:59.000Z

    Technological advances in the area of unmanned vehicles are opening new possibilities for creating teams of vehicles performing complex missions with some degree of autonomy. Perhaps the most spectacular example of these ...

  19. Dynamic Vehicle Routing with Stochastic Time Constraints

    E-Print Network [OSTI]

    Pavone, Marco

    In this paper we study a dynamic vehicle routing problem where demands have stochastic deadlines on their waiting times. Specifically, a network of robotic vehicles must service demands whose time of arrival, location and ...

  20. Path Planning Algorithms for Multiple Heterogeneous Vehicles

    E-Print Network [OSTI]

    Oberlin, Paul V.

    2010-01-16T23:59:59.000Z

    Unmanned aerial vehicles (UAVs) are becoming increasingly popular for surveillance in civil and military applications. Vehicles built for this purpose vary in their sensing capabilities, speed and maneuverability. It is therefore natural to assume...

  1. Multiple Vehicle Routing Problem with Fuel Constraints

    E-Print Network [OSTI]

    Levy, David

    2013-06-26T23:59:59.000Z

    In this paper, a Multiple Vehicle Routing Problem with Fuel Constraints (MVRPFC) is considered. This problem consists of a field of targets to be visited, and a collection of vehicles with fuel tanks that may visit the targets. Consideration...

  2. Algorithms for Multiple Vehicle Routing Problems

    E-Print Network [OSTI]

    Bae, Jung Yun

    2014-06-02T23:59:59.000Z

    Surveillance and monitoring applications require a collection of heterogeneous vehicles to visit a set of targets. This dissertation considers three fundamental routing problems involving multiple vehicles that arise in these applications. The main...

  3. Collaborative Military Vehicle Design | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    many others will be allowed and incentivized to contribute to the design of a military vehicle is, I think, astounding VehicleForge-300x225 Share This Article Click to email...

  4. International Commercial Vehicle Technology Symposium

    E-Print Network [OSTI]

    Steidl, Gabriele

    Cluster (CVC), the Fraunhofer Innovations Cluster for Digital Commercial Vehicle Technology (DNT Fraunhofer Innovation Cluster DNT/FUMI, Fraunhofer ITWM Opening of exhibition and come together WEDNESDAY, 12 innovation projects between the industry and the scientific fraternity. A network like the CVA works like

  5. Vehicle assisted harpoon breaching tool

    DOE Patents [OSTI]

    Pacheco, James E. (Albuquerque, NM); Highland, Steven E. (Albuquerque, NM)

    2011-02-15T23:59:59.000Z

    A harpoon breaching tool that allows security officers, SWAT teams, police, firemen, soldiers, or others to forcibly breach metal doors or walls very quickly (in a few seconds), without explosives. The harpoon breaching tool can be mounted to a vehicle's standard receiver hitch.

  6. Hybrid & Hydrogen Vehicle Research Laboratory

    E-Print Network [OSTI]

    Lee, Dongwon

    such as Challenge X use this facility to develop advanced vehicles. Hydrogen Fueling Station Developed byAir Products and Chemicals, Inc. with funding from US DOE, the commercial hydrogen fueling station was installed at Penn State University Park in Fall 2004. This station will be used to fuel in-service hydrogen

  7. Advanced Technology Vehicle Lab Benchmarking- Level 1

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  8. Vehicle Fuel Economy Improvement through Thermoelectric Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters...

  9. Medium and Heavy Duty Vehicle Field Evaluations

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  10. Houston Zero Emission Delivery Vehicle Deployment Project

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. Electric Drive Vehicle Climate Control Load Reduction

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  12. AVTA: Neighborhood All-Electric Vehicles

    Broader source: Energy.gov [DOE]

    2013 BRP Commander Electric2010 Electric Vehicles International E-Mega2009 Vantage Pickup EVX10002009 Vantage Van EVC1000

  13. Vehicle to Grid Communications Field Testing

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  14. Integrated Vehicle Thermal Management Systems (VTMS) Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Vehicle Thermal Management Power Electronic Thermal System Performance and Integration Characterization and Development of Advanced Heat Transfer Technologies...

  15. Multi-Material Lightweight Prototype Vehicle

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  16. AVTA: Hybrid-Electric Tractor Vehicles

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following set of reports describes data collected from hybrid-electric tractor vehicles in the Coca-Cola fleet. This research was conducted by the National Renewable Energy Laboratory (NREL).

  17. Vehicle Mass and Fuel Efficiency Impact Testing

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  18. Social Implications of Vehicle Choice and Use

    E-Print Network [OSTI]

    Langer, Ashley Anne

    2010-01-01T23:59:59.000Z

    3.5.2 Lagged retail gasoline pricesand gasoline futures 3.5.3 VehicleFactors . . . . . . . . . . . . . . . . Gasoline Price Lags

  19. GATE: Energy Efficient Vehicles for Sustainable Mobility

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  20. Advanced Vehicle Electrification and Transportation Sector Electrification

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  1. Codes and Standards to Support Vehicle Electrification

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. Advancing Transportation Through Vehicle Electrification- PHEV

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles

    E-Print Network [OSTI]

    Firestone, Jeremy

    i Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Resources Board (CARB), battery and fuel cell EDVs are considered Zero Emission Vehicles (ZEV), hybrids for carrying power from hybrid and fuel cell vehicles to the grid. Implications for current industry directions

  4. Reachability Calculations for Vehicle Safety during Manned/Unmanned Vehicle Interaction

    E-Print Network [OSTI]

    Sastry, S. Shankar

    Reachability Calculations for Vehicle Safety during Manned/Unmanned Vehicle Interaction Jerry Ding by unmanned aerial vehicles (UAVs) under supervision of human operators, with applications to safety for refining or designing protocols for multi-UAV and/or manned vehicle interaction. The mathematical

  5. Department of Mechanical Engineering Spring 2012 Space Vehicle Water Drop Test and Vehicle Design

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Mechanical Engineering Spring 2012 Space Vehicle Water Drop Test and Vehicle Design Overview The team was tasked with modelling the accelerations and pressures of an impact of the scaled landing vehicle to reduce the accelerations and pressures of the vehicle. Objectives Provide

  6. Development and Evaluation of a Novel Traffic Friendly Commuter Vehicle

    E-Print Network [OSTI]

    Minnesota, University of

    Development and Evaluation of a Novel Traffic Friendly Commuter Vehicle Rajesh Rajamani Department What solutions do researchers in the automotive industry and researchers in the vehicle dynamics lanes - Vehicles will travel together in closely- packed "platoons". Dedicated to automated vehicles

  7. Vehicle Fleet Policy Responsible Administrative Unit: Finance & Administration

    E-Print Network [OSTI]

    Vehicle Fleet Policy Responsible Administrative Unit: Finance & Administration Policy Contact, and established campus vehicle fleet service under Facilities Management operations. The purpose of the fleet vehicles. This policy is applicable to the entire Mines fleet, which includes department vehicles. 2

  8. CONSENSUS SEEKING, FORMATION KEEPING, AND TRAJECTORY TRACKING IN MULTIPLE VEHICLE

    E-Print Network [OSTI]

    Ren, Wei

    to mobile robots, unmanned air vehicles, autonomous underwater vehicles, satellites, aircraft, spacecraft controllers for fixed wing unmanned air vehicles and nonholonomic mobile robots with velocity and heading rateCONSENSUS SEEKING, FORMATION KEEPING, AND TRAJECTORY TRACKING IN MULTIPLE VEHICLE COOPERATIVE

  9. Clean Cities 2011 Vehicle Buyer's Guide

    SciTech Connect (OSTI)

    Not Available

    2011-01-01T23:59:59.000Z

    The 2011 Clean Cities Light-Duty Vehicle Buyer's Guide is a consumer publication that provides a comprehensive list of commercially available alternative fuel and advanced vehicles in model year 2011. The guide allows for side-by-side comparisons of fuel economy, price, emissions, and vehicle specifications.

  10. www.ave.kth.se Rail Vehicles

    E-Print Network [OSTI]

    Haviland, David

    www.ave.kth.se Rail Vehicles Part of the Masters program in Vehicle Engineering Master's Thesis: Validation of wheel wear calculation code Background Rail vehicle operators have a genuine concern about wheel and rail wear prediction methodologies, due to the influence of worn profiles in the cost of both

  11. Page 1 of 9 Vehicle Buyers' Guide

    E-Print Network [OSTI]

    in Part 3 of the survey. We will discuss vehicles that can be powered by gasoline only, electricity only, or both. We will also discuss how the vehicles that are powered by electricity can be recharged. In Part 3: · With a fully charged battery, the vehicle is powered by electricity for the first 16 to 64 kilometres

  12. Optimal Decentralized Protocols for Electric Vehicle Charging

    E-Print Network [OSTI]

    Low, Steven H.

    1 Optimal Decentralized Protocols for Electric Vehicle Charging Lingwen Gan Ufuk Topcu Steven Low Abstract--We propose decentralized algorithms for optimally scheduling electric vehicle (EV) charging. The algorithms exploit the elasticity and controllability of electric vehicle loads in order to fill the valleys

  13. Clean Cities 2014 Vehicle Buyer's Guide (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-12-01T23:59:59.000Z

    This annual guide features a comprehensive list of 2014 light-duty alternative fuel and advanced vehicles, grouped by fuel and technology. The guide provides model-specific information on vehicle specifications, manufacturer suggested retail price, fuel economy, energy impact, and emissions. The information can be used to identify options, compare vehicles, and help inform purchase decisions.

  14. MOTOR VEHICLE USE PROGRAM DRIVER SAFETY TIPS

    E-Print Network [OSTI]

    MOTOR VEHICLE USE PROGRAM DRIVER SAFETY TIPS Observe Speed Limits and Traffic Laws ­ Allow - Employees who drive Institute or privately owned vehicles on Institute business must possess and carry person. Insurance - Employees who operate their privately owned vehicles on Institute business shall

  15. Emissions from US waste collection vehicles

    SciTech Connect (OSTI)

    Maimoun, Mousa A., E-mail: mousamaimoun@gmail.com [Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL (United States); Reinhart, Debra R. [Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL (United States); Gammoh, Fatina T. [Quality Department, Airport International Group, Amman (Jordan); McCauley Bush, Pamela [Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL (United States)

    2013-05-15T23:59:59.000Z

    Highlights: ? Life-cycle emissions for alternative fuel technologies. ? Fuel consumption of alternative fuels for waste collection vehicles. ? Actual driving cycle of waste collection vehicles. ? Diesel-fueled waste collection vehicle emissions. - Abstract: This research is an in-depth environmental analysis of potential alternative fuel technologies for waste collection vehicles. Life-cycle emissions, cost, fuel and energy consumption were evaluated for a wide range of fossil and bio-fuel technologies. Emission factors were calculated for a typical waste collection driving cycle as well as constant speed. In brief, natural gas waste collection vehicles (compressed and liquid) fueled with North-American natural gas had 6–10% higher well-to-wheel (WTW) greenhouse gas (GHG) emissions relative to diesel-fueled vehicles; however the pump-to-wheel (PTW) GHG emissions of natural gas waste collection vehicles averaged 6% less than diesel-fueled vehicles. Landfill gas had about 80% lower WTW GHG emissions relative to diesel. Biodiesel waste collection vehicles had between 12% and 75% lower WTW GHG emissions relative to diesel depending on the fuel source and the blend. In 2011, natural gas waste collection vehicles had the lowest fuel cost per collection vehicle kilometer travel. Finally, the actual driving cycle of waste collection vehicles consists of repetitive stops and starts during waste collection; this generates more emissions than constant speed driving.

  16. Intelligent Planning for Autonomous Underwater Vehicles

    E-Print Network [OSTI]

    Yao, Xin

    such as the Mid-Atlantic Ridge 4 / 10 #12;Autonomous Underwater Vehicles Unmanned, untethered submersibles AutosubIntelligent Planning for Autonomous Underwater Vehicles Zeyn Saigol January 31, 2007 Supervisors Underwater Vehicles Classical planning systems Problem specification Markov Decision Processes 2 / 10 #12

  17. Advanced underground Vehicle Power and Control: The locomotive Research Platform

    SciTech Connect (OSTI)

    Vehicle Projects LLC

    2003-01-28T23:59:59.000Z

    Develop a fuelcell mine locomotive with metal-hydride hydrogen storage. Test the locomotive for fundamental limitations preventing successful commercialization of hydride fuelcells in underground mining. During Phase 1 of the DOE-EERE sponsored project, FPI and its partner SNL, completed work on the development of a 14.4 kW fuelcell power plant and metal-hydride energy storage. An existing battery-electric locomotive with similar power requirements, minus the battery module, was used as the base vehicle. In March 2001, Atlas Copco Wagner of Portland, OR, installed the fuelcell power plant into the base vehicle and initiated integration of the system into the vehicle. The entire vehicle returned to Sandia in May 2001 for further development and integration. Initial system power-up took place in December 2001. A revision to the original contract, Phase 2, at the request of DOE Golden Field Office, established Vehicle Projects LLC as the new prime contractor,. Phase 2 allowed industry partners to conduct surface tests, incorporate enhancements to the original design by SNL, perform an extensive risk and safety analysis, and test the fuelcell locomotive underground under representative production mine conditions. During the surface tests one of the fuelcell stacks exhibited reduced power output resulting in having to replace both fuelcell stacks. The new stacks were manufactured with new and improved technology resulting in an increase of the gross power output from 14.4 kW to 17 kW. Further work by CANMET and Hatch Associates, an engineering consulting firm specializing in safety analysis for the mining industry, both under subcontract to Vehicle Projects LLC, established minimum requirements for underground testing. CANMET upgraded the Programmable Logic Control (PLC) software used to monitor and control the fuelcell power plant, taking into account locomotive operator's needs. Battery Electric, a South Africa manufacturer, designed and manufactured (at no cost to the project) a new motor controller capable of operating the higher rpm motor and different power characteristics of the fuelcells. In early August 2002, CANMET, with the technical assistance of Nuvera Fuel Cells and Battery Electric, installed the new PLC software, installed the new motor controller, and installed the new fuelcell stacks. After minor adjustments, the fuelcell locomotive pulled its first fully loaded ore cars on a surface track. The fuelcell-powered locomotive easily matched the battery powered equivalent in its ability to pull tonnage and equaled the battery-powered locomotive in acceleration. The final task of Phase 2, testing the locomotive underground in a production environment, occurred in early October 2002 in a gold mine. All regulatory requirements to allow the locomotive underground were completed and signed off by Hatch Associates prior to going underground. During the production tests, the locomotive performed flawlessly with no failures or downtime. The actual tests occurred during a 2-week period and involved moving both gold ore and waste rock over a 1,000 meter track. Refueling, or recharging, of the metal-hydride storage took place on the surface. After each shift, the metal-hydride storage module was removed from the locomotive, transported to surface, and filled with hydrogen from high-pressure tanks. The beginning of each shift started with taking the fully recharged metal-hydride storage module down into the mine and re-installing it onto the locomotive. Each 8 hour shift consumed approximately one half to two thirds of the onboard hydrogen. This indicates that the fuelcell-powered locomotive can work longer than a similar battery-powered locomotive, which operates about 6 hours, before needing a recharge.

  18. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    DOE Patents [OSTI]

    Bockelmann, Thomas R. (Battle Creek, MI); Beaty, Kevin D. (Kalamazoo, MI); Zou, Zhanijang (Battle Creek, MI); Kang, Xiaosong (Battle Creek, MI)

    2009-07-21T23:59:59.000Z

    A battery control system for controlling a state of charge of a hybrid vehicle battery includes a detecting arrangement for determining a vehicle operating state or an intended vehicle operating state and a controller for setting a target state of charge level of the battery based on the vehicle operating state or the intended vehicle operating state. The controller is operable to set a target state of charge level at a first level during a mobile vehicle operating state and at a second level during a stationary vehicle operating state or in anticipation of the vehicle operating in the stationary vehicle operating state. The invention further includes a method for controlling a state of charge of a hybrid vehicle battery.

  19. Vehicle Technologies Office Merit Review 2014: Cost-Competitive...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power Vehicle Technologies Office Merit Review 2014:...

  20. Vehicle Technologies Office Merit Review 2014: Integrated Computationa...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Computational Materials Engineering Approach to Development of Lightweight 3GAHSS Vehicle Assembly Vehicle Technologies Office Merit Review 2014: Integrated...

  1. Advanced Vehicles Group: Center for Transportation Technologies and Systems

    SciTech Connect (OSTI)

    Not Available

    2008-08-01T23:59:59.000Z

    Describes R&D in advanced vehicle systems and components (e.g., batteries) by NREL's Advanced Vehicles Group.

  2. IN-VEHICLE, HIGH-POWER ENERGY STORAGE SYSTEMS

    Broader source: Energy.gov (indexed) [DOE]

    - electric and hybrid vehicle configurations - vehicle modeling (Autonomie) - fuel cells - Hardware in the Loop (HIL) techniques - power electronics - combustion - controls -...

  3. A measurement of $alpha_s(Q^2)$ from the Gross-Llewellyn Smith Sum Rule

    E-Print Network [OSTI]

    J. H. Kim; D. A. Harris

    1998-08-19T23:59:59.000Z

    We extract a set of values for the Gross-Llewellyn Smith sum rule at different values of 4-momentum transfer squared ($Q^{2}$), by combining revised CCFR neutrino data with data from other neutrino deep-inelastic scattering experiments for $1 < Q^2 < 15 GeV^2/c^2$. A comparison with the order $\\alpha^{3}_{s}$ theoretical predictions yields a determination of $\\alpha_{s}$ at the scale of the Z-boson mass of $0.114 \\pm^{.009}_{.012}$. This measurement provides a new and useful test of perturbative QCD at low $Q^2$, because of the low uncertainties in the higher order calculations.

  4. Test of the Schrödinger functional with chiral fermions in the Gross-Neveu model

    E-Print Network [OSTI]

    Bjorn Leder

    2008-04-15T23:59:59.000Z

    The recently proposed construction of chiral fermions on lattices with boundaries is tested in an interacting theory up to first order of perturbation theory. We confirm that, in the bulk of the lattice, the chiral Ward identities take their continuum value up to cutoff effects without any tuning. Universal quantities are defined that have an expansion in the renormalised couplings with coefficients that are functions of the physical size and the periodicity in the spatial direction. These coefficient functions have to be identical for different discretisations. We find agreement with the standard Wilson fermions. The computation is done in the asymptotically free Gross-Neveu model with continuous chiral symmetry.

  5. Gross Gamma-Ray Calibration Blocks (May 1978) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject: GuidanceNotGrandPurchasingGO-102009-2829Department1Gross

  6. ,"Alaska--State Offshore Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"Coalbed Methane Proved Reserves (BillionShare ofNetGas, Wet AfterGross

  7. ,"California--State Offshore Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"Coalbed Methane ProvedDry Natural Gas ExpectedWellheadCrudeCoalbedGross

  8. Table 2. Real Gross Domestic Product Growth Trends, Projected vs. Actual

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1. Summary: Reported provedReal Gross

  9. US--State Offshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYear Jan Feb2009Two-DimensionalGross Withdrawals

  10. Texas--State Offshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYear JanSeparation,(Million(Million(Million Barrels)ProvedGross

  11. Alaska Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear Jan FebProvedGross

  12. Alaska Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear Jan FebProvedGrossYear Jan Feb Mar Apr

  13. Alaska Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear Jan FebProvedGrossYear Jan Feb Mar

  14. Alaska Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear Jan FebProvedGrossYear Jan Feb MarYear

  15. Federal Offshore--Texas Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs U.S.WyomingExpansion andFeet)Feet) TexasGross

  16. ,"Texas--State Offshore Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"Brunei (Dollars per ThousandPriceDryCoalbedCrude Oil Reserves inGross

  17. Control of Multiple Robotic Sentry Vehicles

    SciTech Connect (OSTI)

    Feddema, J.; Klarer, P.; Lewis, C.

    1999-04-01T23:59:59.000Z

    As part of a project for the Defense Advanced Research Projects Agency, Sandia National Laboratories is developing and testing the feasibility of using of a cooperative team of robotic sentry vehicles to guard a perimeter and to perform surround and diversion tasks. This paper describes on-going activities in the development of these robotic sentry vehicles. To date, we have developed a robotic perimeter detection system which consists of eight ''Roving All Terrain Lunar Explorer Rover'' (RATLER{trademark}) vehicles, a laptop-based base-station, and several Miniature Intrusion Detection Sensors (MIDS). A radio frequency receiver on each of the RATLER vehicles alerts the sentry vehicles of alarms from the hidden MIDS. When an alarm is received, each vehicle decides whether it should investigate the alarm based on the proximity of itself and the other vehicles to the alarm. As one vehicle attends an alarm, the other vehicles adjust their position around the perimeter to better prepare for another alarm. We have also demonstrated the ability to drive multiple vehicles in formation via tele-operation or by waypoint GPS navigation. This is currently being extended to include mission planning capabilities. At the base-station, the operator can draw on an aerial map the goal regions to be surrounded and the repulsive regions to be avoided. A potential field path planner automatically generates a path from the vehicles' current position to the goal regions while avoiding the repulsive regions and the other vehicles. This path is previewed to the operator before the regions are downloaded to the vehicles. The same potential field path planner resides on the vehicle, except additional repulsive forces from on-board proximity sensors guide the vehicle away from unplanned obstacles.

  18. Integrated Vehicle Thermal Management - Combining Fluid Loops in Electric Drive Vehicles (Presentation)

    SciTech Connect (OSTI)

    Rugh, J. P.

    2013-07-01T23:59:59.000Z

    Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.

  19. Sandia National Laboratories: vehicle networks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-activeNationalhydrogentechnologiesvehicle

  20. Multiyear Program Plan: Reducing Friction and Wear in Heavy Vehicles

    SciTech Connect (OSTI)

    R.R. Fessler; G.R. Fenske

    1999-12-13T23:59:59.000Z

    As described in its multiyear program plan for 1998-2000, the Office of Heavy Vehicle Technologies (OHVT) envisions the development of a fuel-flexible, energy-efficient, near-zero-emissions, heavy-duty U.S. diesel engine technology devolving into all truck classes as a real and viable strategy for reducing energy requirements for commercial transport services and the rapidly growing multipurpose vehicle market (pickups, vans, and sport utility vehicles). Implementation of the OHVT program plan will have significant national benefits in energy savings, cleaner air, more jobs, and increased gross domestic product (GDP). Successful implementation will reduce the petroleum consumption of Class 1-8 trucks by 1.4 million barrels of oil per day by 2020 and over 1.8 million by 2030, amounting to a reduction in highway petroleum consumption of 13.2% and 18.6%, respectively. All types of regulated emissions will be reduced, that is, 20% drop in PM10 emissions (41,000 metric tons per year) by 203 0, 17% reduction in CO2 greenhouse gases (205 million metric tons per year), 7% reduction in NOx, 20% reduction in NMHC, and 30% reduction in CO. An increase of 15,000 jobs by 2020 is expected, as is an increase of $24 billion in GDP. The strategy of OHVT is to focus primarily on the diesel engine since it has numerous advantages. It has the highest efficiency of any engine today, 45% versus 30% for production gasoline engines; and it can be made more efficient at least to 55% and possibly up to 63%. It is the engine of choice for heavy vehicles (trucks), because it offers power, efficiency, durability, and reliability and is used extensively in rail, marine, and off-road applications. Its emission can be ultra-low to near zero, and the production infrastructure is already in place. The primary goals of OHVT are as follows: (1) Develop by 2002 the diesel-engine enabling technologies to support large-scale industry dieselization of light trucks, achieving a 35% fuel efficiency improvement over equivalent gasoline-fueled trucks. (2) Develop by 2004 the enabling technology for a Class 7-8 truck with a fuel efficiency of 10 mpg (at 65 mph) that will meet prevailing emission standards, using either diesel or a liquid alternative fuel. (3) Develop by 2006 diesel engines with fuel flexibility and a thermal efficiency of 55% with liquid alternative fuels, and a thermal efficiency of 55% with dedicated gaseous fuels. (4) Develop a methodology for analyzing and evaluating the operation of a heavy vehicle as an integrated system, considering such factors as engine efficiency; emissions; rolling resistance; aerodynamic drag; friction, wear, and lubrication effects; auxiliary power units; material substitutions for reducing weight; and other sources of parasitic energy losses. Overarching these considerations is the need to preserve system functionality, cost, competitiveness, reliability, durability, and safety.

  1. Electric and Hybrid Vehicle Technology: TOPTEC

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today's electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between refueling'' stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  2. Electric and Hybrid Vehicle Technology: TOPTEC

    SciTech Connect (OSTI)

    Not Available

    1992-12-01T23:59:59.000Z

    Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today`s electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between ``refueling`` stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of ``Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

  3. Hybrid options for light-duty vehicles.

    SciTech Connect (OSTI)

    An, F., Stodolsky, F.; Santini, D.

    1999-07-19T23:59:59.000Z

    Hybrid electric vehicles (HEVs) offer great promise in improving fuel economy. In this paper, we analyze why, how, and by how much vehicle hybridization can reduce energy consumption and improve fuel economy. Our analysis focuses on efficiency gains associated solely with vehicle hybridization. We do not consider such other measures as vehicle weight reduction or air- and tire-resistance reduction, because such measures would also benefit conventional technology vehicles. The analysis starts with understanding the energy inefficiencies of light-duty vehicles associated with different operation modes in US and Japanese urban and highway driving cycles, with the corresponding energy-saving potentials. The potential for fuel economy gains due to vehicle hybridization can be estimated almost exclusively on the basis of three elements: the reducibility of engine idling operation, the recoverability of braking energy losses, and the capability of improving engine load profiles to gain efficiency associated with specific HEV configurations and control strategies. Specifically, we evaluate the energy efficiencies and fuel economies of a baseline MY97 Corolla-like conventional vehicle (CV), a hypothetical Corolla-based minimal hybrid vehicle (MHV), and a MY98 Prius-like full hybrid vehicle (FHV). We then estimate energy benefits of both MHVs and FHVs over CVs on a performance-equivalent basis. We conclude that the energy benefits of hybridization vary not only with test cycles, but also with performance requirements. The hybrid benefits are greater for ''Corolla (high) performance-equivalent'' vehicles than for ''Prius (low) performance-equivalent'' vehicles. An increasing acceleration requirement would result in larger fuel economy benefits from vehicle hybridization.

  4. Impact of Vehicle Air-Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range: Preprint

    SciTech Connect (OSTI)

    Farrington, R.; Rugh, J.

    2000-09-22T23:59:59.000Z

    Vehicle air-conditioning can significantly impact fuel economy and tailpipe emissions of conventional and hybrid electric vehicles and reduce electric vehicle range. In addition, a new US emissions procedure, called the Supplemental Federal Test Procedure, has provided the motivation for reducing the size of vehicle air-conditioning systems in the US. The SFTP will measure tailpipe emissions with the air-conditioning system operating. Current air-conditioning systems can reduce the fuel economy of high fuel-economy vehicles by about 50% and reduce the fuel economy of today's mid-sized vehicles by more than 20% while increasing NOx by nearly 80% and CO by 70%.

  5. Infrared renormalons and the relations between the Gross-Llewellyn Smith and the Bjorken polarized and unpolarized sum rules

    E-Print Network [OSTI]

    A. L. Kataev

    2005-05-27T23:59:59.000Z

    It is demonstrated that the infrared renormalon calculus indicates that the QCD theoretical expressions for the Gross-Llewelln Smith sum rules and for the Bjorken polarized and unpolarized ones contain an identical negative twist-4 1/Q^2 correction. This observation is supported by the consideration of the results of calculations of the corresponding twist-4 matrix elements. Together with the indication of the similarity of perturbative QCD corrections to these three sum rules, this observation leads to simple new theoretical relations between the Gross-Llewellyn Smith and Bjorken polarized and unpolarized sum rules in the energy region $Q^2\\geq 1 GeV^2$. The validity of this relation is checked using concrete experimental data for the Gross-Llewellyn Smith and Bjorken polarized sum rules

  6. Vehicle Technologies Office - AVTA: All Electric USPS Long Life Vehicle

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of EnergyProgram2-26TheUtility-Scaleof EnergyVehicle TechnologiesConversions

  7. Vehicle Technologies Office - AVTA: Hybrid-Electric Delivery Vehicles |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of EnergyProgram2-26TheUtility-Scaleof EnergyVehicle

  8. Vehicle Technologies Office - AVTA: Hybrid-Electric Tractor Vehicles |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of EnergyProgram2-26TheUtility-Scaleof EnergyVehicleDepartment of Energy

  9. Vehicle Technologies Office Merit Review 2014: Integrated Vehicle Thermal Management – Combining Fluid Loops in Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  10. A study of gross features in the reaction 310 MeV [superscript 16]o on [superscript 40]Ca

    E-Print Network [OSTI]

    Tervisidis, Fotis

    1981-01-01T23:59:59.000Z

    A STUDY OF GROSS FEATURES IN THE REACTION 310 NeV 0 ON Ca 16 40 A Thesis by FOTIS TERVISIDIS Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE August.... 1981 Na3or Subject: Physics A STUDY OF GROSS FEATURES IN THE REACTION 310 NeV 0 ON Ca 40 A Thesis by FOTIS TERVISIDIS Approved as to style and content by: (Chairm f Committee) (Nember) (M er) (Head of Department) August 1981 ABSTRACT A...

  11. A CONCEPTUAL FRAMEWORK FOR THE VEHICLE-TO-GRID (V2G) IMPLEMENTATION

    E-Print Network [OSTI]

    Gross, George

    at Urbana-Champaign, 2009 Urbana, Illinois Adviser: Professor George Gross #12;ii ABSTRACT The quest

  12. AVTA: Hybrid-Electric Delivery Vehicles

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following set of reports describes data collected from testing on FedEx Express and UPS hybrid-electric delivery trucks. This research was conducted by the National Renewable Energy Laboratory (NREL).

  13. NAVIGATION SOFTWARE OF AUTOMATED GUIDED VEHICLE

    E-Print Network [OSTI]

    Magdalena Dobrza?ska; Pawe? Dobrza?ski

    Abstract: In the article it has been presented the structure of the control system and measurement data processing of an automated guided vehicle. The basic navigation technique – odometry, which is applied in the automated guided vehicle, has been described, as well as connected with it errors of position tracing. Next the navigation software was shown which enables to design the trajectory of the vehicle movement as well as the registration and reading of the measurement data from the measurement sensors.

  14. Device for reducing vehicle aerodynamic resistance

    DOE Patents [OSTI]

    Graham, Sean C.

    2005-02-15T23:59:59.000Z

    A device for a vehicle with a pair of swinging rear doors, which converts flat sheets of pliable material hinged to the sides of the vehicle adjacent the rear thereof into effective curved airfoils that reduce the aerodynamic resistance of the vehicle, when the doors are closed by hand, utilizing a plurality of stiffeners disposed generally parallel to the doors and affixed to the sheets and a plurality of collapsible tension bearings struts attached to each stiffener and the adjacent door.

  15. The Gross-Pitaevskii equations and beyond for inhomogeneous condensed bosons

    E-Print Network [OSTI]

    G. G. N. Angilella; S. Bartalini; F. S. Cataliotti; I. Herrera; N. H. March; R. Pucci

    2006-05-22T23:59:59.000Z

    A simple derivation of the static Gross-Pitaevskii (GP) equation is given from an energy variational principle. The result is then generalized heuristically to the time-dependent GP form. With this as background, a number of different experimental areas explored very recently are reviewed, in each case contact being established between the measurements and the predictions of the GP equations. The various limitations of these equations as used on dilute inhomogeneous condensed Boson atomic gases are then summarized, reference also being made to the fact that there is no many-body wave function underlying the GP formulation. This then leads into a discussion of a recently proposed integral equation, derived by taking the Bogoliubov-de Gennes equation as starting point. Some limitations of the static GP differential equation are thereby removed, though it is a matter of further study to determine whether a correlated wave function exists as underpinning for the integral equation formulation.

  16. Fluid cooled vehicle drive module

    DOE Patents [OSTI]

    Beihoff, Bruce C.; Radosevich, Lawrence D.; Meyer, Andreas A.; Gollhardt, Neil; Kannenberg, Daniel G.

    2005-11-15T23:59:59.000Z

    An electric vehicle drive includes a support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EM/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  17. Household Vehicles Energy Consumption 1991

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0Decade Year-0 Year-1 Appendix A. Vehicle

  18. Household Vehicles Energy Consumption 1991

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0Decade Year-0 Year-1 Appendix A. Vehicle

  19. Household Vehicles Energy Consumption 1991

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0Decade Year-0 Year-1 Appendix A. Vehicle

  20. Rental Vehicles | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST31 ORV 15051SoilWind EnergyRental Vehicles

  1. Sandia National Laboratories: Vehicle Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for USMaterials ProgramProtected:Transportation EnergyVehicle

  2. Vehicles Blog | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwoVulnerabilitiesPowertrainReadiness10 DOE Vehicle09Blog

  3. Vehicles News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwoVulnerabilitiesPowertrainReadiness10 DOE Vehicle09BlogNews

  4. New York State-wide Alternative Fuel Vehicle Program for Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Peer Evaluation Meeting arravt053tibolton2012o.pdf More Documents & Publications New York State-wide Alternative Fuel Vehicle Program for Vehicles and Fueling Stations New...

  5. New York State-wide Alternative Fuel Vehicle Program for Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review and Peer Evaluation arravt053tibolton2011p.pdf More Documents & Publications New York State-wide Alternative Fuel Vehicle Program for Vehicles and Fueling Stations New...

  6. Myths Regarding Alternative Fuel Vehicle Demand by Light-Duty Vehicle Fleets

    E-Print Network [OSTI]

    Nesbitt, Kevin; Sperling, Daniel

    1998-01-01T23:59:59.000Z

    MythsRegarding Alternative Fuel Vehicte Demand Light-Dutyregulation Myths Regarding Alternative Fuel Vehicle DemandBy00006-6 MYTHS REGARDING ALTERNATIVE FUEL VEHICLE LIGHT-DUTY

  7. Vehicle Technologies Office Merit Review 2014: Multi-Material Lightweight Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by VEHMA at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about multi-material lightweight vehicles.

  8. Vehicle Technologies Office Merit Review 2014: Multi-Material Lightweight Vehicles: Mach II Design

    Broader source: Energy.gov [DOE]

    Presentation given by VEHMA at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about multi-material lightweight vehicles:...

  9. Vehicle Technologies Office Merit Review 2014: Characterization...

    Broader source: Energy.gov (indexed) [DOE]

    Characterization of Voltage Fade in Lithium-ion Cells with Layered Oxides Vehicle Technologies Office Merit Review 2014: Characterization of Voltage Fade in Lithium-ion Cells with...

  10. Advancing Transportation Through Vehicle Electrification - PHEV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting arravt067vssbazzi2012o.pdf More Documents & Publications Advancing Transportation Through Vehicle Electrification - PHEV Advancing Plug In Hybrid Technology and...

  11. Advancing Transportation Through Vehicle Electrification - PHEV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt067vssbazzi2011o.pdf More Documents & Publications...

  12. Advancing Transportation Through Vehicle Electrification - PHEV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation Meeting, June 7-11, 2010 -- Washington D.C. vssarravt067bazzi2010p.pdf More Documents & Publications Advancing Transportation Through Vehicle Electrification - PHEV...

  13. Advanced Vehicle Technology Analysis & Evaluation Team

    Broader source: Energy.gov [DOE]

    Presentation on Advanced Vehicle Technology Analysis & Evaluation Team to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004.

  14. Robotic vehicle with multiple tracked mobility platforms

    DOE Patents [OSTI]

    Salton, Jonathan R. (Albuquerque, NM); Buttz, James H. (Albuquerque, NM); Garretson, Justin (Albuquerque, NM); Hayward, David R. (Wetmore, CO); Hobart, Clinton G. (Albuquerque, NM); Deuel, Jr., Jamieson K. (Albuquerque, NM)

    2012-07-24T23:59:59.000Z

    A robotic vehicle having two or more tracked mobility platforms that are mechanically linked together with a two-dimensional coupling, thereby forming a composite vehicle of increased mobility. The robotic vehicle is operative in hazardous environments and can be capable of semi-submersible operation. The robotic vehicle is capable of remote controlled operation via radio frequency and/or fiber optic communication link to a remote operator control unit. The tracks have a plurality of track-edge scallop cut-outs that allow the tracks to easily grab onto and roll across railroad tracks, especially when crossing the railroad tracks at an oblique angle.

  15. Hypersonic airbreathing vehicle visions and enhancing technologies

    SciTech Connect (OSTI)

    Hunt, J.L.; Lockwood, M.K.; Petley, D.H.; Pegg, R.J. [NASA Langley Research Center (LaRC) Hampton, Virginia (United States)

    1997-01-01T23:59:59.000Z

    This paper addresses the visions for hypersonic airbreathing vehicles and the advanced technologies that forge and enhance the designs. The matrix includes space access vehicles (single-stage-to-orbit (SSTO), two-stage-to-orbit (2STO) and three-stage-to-orbit (3STO)) and endoatmospheric vehicles (airplanes{emdash}missiles are omitted). The characteristics, the performance potential, the technologies and the synergies will be discussed. A common design constraint is that all vehicles (space access and endoatmospheric) have enclosed payload bays. {copyright} {ital 1997 American Institute of Physics.}

  16. Vehicle Technologies Office: Workforce Development and Professional...

    Energy Savers [EERE]

    drive vehicles. These documents describe the results of the full-scale testing of lithium-ion batteries and best practices. Hydrogen Education: DOE's Hydrogen Fuel Cell and...

  17. The Vehicle Platooning Problem: Computational Complexity and ...

    E-Print Network [OSTI]

    2014-10-22T23:59:59.000Z

    Since fuel costs represent a third of the total operational costs of an HDV ... into engine efficiency and aerodynamic vehicle design, a supplementary method.

  18. Codes and Standards Support Vehicle Electrification

    Broader source: Energy.gov (indexed) [DOE]

    chair) Scope: Test method and conditions for rating performance of electric propulsion motors as used in hybrid electric and battery electric vehicles. Rationale: Promote...

  19. Vehicle Technologies Office Merit Review 2014: Electrochemical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrochemical Modeling of LMR-NMC Materials and Electrodes Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle...

  20. Topology-Based Vehicle Systems Modelling.

    E-Print Network [OSTI]

    Yam, Edward

    2013-01-01T23:59:59.000Z

    ??The simulation tools that are used to model vehicle systems have not been advancing as quickly as the growth of research and technology surrounding the… (more)

  1. NREL: Vehicles and Fuels Research - Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Vehicles and Fuels Research Cutaway image of an automobile showing the location of energy storage components (battery and inverter), as well as electric motor, power...

  2. Safer Vehicles for People and the Planet

    E-Print Network [OSTI]

    Wenzel, Thomas P

    2008-01-01T23:59:59.000Z

    t save people and the planet at the same time. ReferencesVehicles for People and the Planet Published in American

  3. Advanced Electric Drive Vehicles ? A Comprehensive Education...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting arravt034tiferdowsi2012o.pdf More Documents & Publications Advanced Electric Drive Vehicles A Comprehensive Education, Training, and Outreach Program...

  4. Electric Vehicle Charging Infrastructure Deployment Guidelines...

    Open Energy Info (EERE)

    Guidelines: British Columbia Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Electric Vehicle Charging Infrastructure Deployment Guidelines: British Columbia Agency...

  5. Advanced Electric Drive Vehicles ? A Comprehensive Education...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peer Evaluation arravt034tiferdowsi2011p.pdf More Documents & Publications Advanced Electric Drive Vehicles A Comprehensive Education, Training, and Outreach Program...

  6. Advanced Electric Drive Vehicles ? A Comprehensive Education...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -- Washington D.C. tiarravt034ferdowsi2010o.pdf More Documents & Publications Advanced Electric Drive Vehicles A Comprehensive Education, Training, and Outreach Program...

  7. Blog Feed: Vehicles | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Building cost-effective EVs just got a little easier. August 11, 2010 Electric vehicles are powered by electricity that comes in the form of electrically charged molecules...

  8. Vehicle Technologies Office: EV Everywhere Workplace Charging...

    Broader source: Energy.gov (indexed) [DOE]

    States are parked at overnight locations with access to plugs, providing a great foundation for the country's plug-in electric vehicle (PEV) charging infrastructure. However,...

  9. Advanced Electric Drive Vehicle Education Program

    Broader source: Energy.gov (indexed) [DOE]

    Training Consortium (NAFTC), together with its partners, will develop an Advanced Electric Drive Vehicle Education Program that will help accelerate mass market introduction...

  10. The Evolution of Sustainable Personal Vehicles

    E-Print Network [OSTI]

    Jungers, Bryan D

    2009-01-01T23:59:59.000Z

    Enabling Platform for Sustainable Energy Pathways. Presentedin Road Vehicles. Sustainable Energy Research Group, Schooland W. A. Peters (2005). Sustainable Energy: Choosing Among

  11. Quantifying the benefits of hybrid vehicles

    E-Print Network [OSTI]

    Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

    2006-01-01T23:59:59.000Z

    is not true—remember the diesel electric locomotive. One bigrunning on gasoline or diesel with electric motors that usediesel vehicles, as well as encouraging improvements in electric

  12. AVTA: ARRA EV Project Vehicle Placement Maps

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following maps describe where the EV Project deployed 5,700 all-electric Nissan Leafs and 2,600 plug-in hybrid electric Chevrolet Volts.

  13. Blog Feed: Vehicles | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Chu Visits Advanced Battery Plant in Michigan, Announces New Army Partnership Thirty new manufacturing plants across the country for electric vehicle batteries and components -...

  14. A Fuel-Cell Vehicle Test Station.

    E-Print Network [OSTI]

    Thorne, Michelle I

    2008-01-01T23:59:59.000Z

    ??Due to concerns about energy security, rising oil prices, and adverse effects of internal combustion engine vehicles on the environment, the automotive industry is quickly… (more)

  15. Vehicle Technologies Office: 2011 Advanced Power Electronics...

    Energy Savers [EERE]

    2012 Advanced Power Electronics and Electric Motors R&D Annual Progress Report Electro-thermal-mechanical Simulation and Reliability for Plug-in Vehicle Converters and Inverters...

  16. Plug-In Hybrid Electric Vehicles (Presentation)

    SciTech Connect (OSTI)

    Markel, T.

    2006-05-08T23:59:59.000Z

    Provides an overview on the current status, long-term prospects, and key challenges in the development of plug-in hybrid electric vehicle technology.

  17. Vehicle Technologies Office: 2010 Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electric Motors R&D Annual Progress Report Vehicle Technologies Office: 2010 Advanced Power Electronics and Electric Motors R&D Annual Progress Report The...

  18. Vehicle Technologies Office: 2014 Advanced Combustion Engine...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive...

  19. Vehicle Technologies Office Merit Review 2014: Nanostructured...

    Broader source: Energy.gov (indexed) [DOE]

    2014: Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery Vehicle Technologies Office Merit Review 2014: Nanostructured...

  20. Wireless Power Transfer for Electric Vehicles

    SciTech Connect (OSTI)

    Scudiere, Matthew B [ORNL; McKeever, John W [ORNL

    2011-01-01T23:59:59.000Z

    As Electric and Hybrid Electric Vehicles (EVs and HEVs) become more prevalent, there is a need to change the power source from gasoline on the vehicle to electricity from the grid in order to mitigate requirements for onboard energy storage (battery weight) as well as to reduce dependency on oil by increasing dependency on the grid (our coal, gas, and renewable energy instead of their oil). Traditional systems for trains and buses rely on physical contact to transfer electrical energy to vehicles in motion. Until recently, conventional magnetically coupled systems required a gap of less than a centimeter. This is not practical for vehicles of the future.

  1. Vehicle Technologies Office: Power Electronics and Electrical...

    Office of Environmental Management (EM)

    vehicles. As such, improvements in these technologies can substantially reduce petroleum consumption in transportation, and help meet national economic, environmental, and...

  2. Vehicle Technologies Office: 2009 Advanced Power Electronics...

    Broader source: Energy.gov (indexed) [DOE]

    Power Electronics R&D Annual Progress Report Vehicle Technologies Office: 2009 Advanced Power Electronics R&D Annual Progress Report Annual report focusing on understanding and...

  3. Blog Feed: Vehicles | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    more about how he's descibing the structure and dynamics of biological materials through neutron scattering. May 2, 2011 A123 battery in passenger vehicle application | Photo...

  4. Advanced Technology Vehicle Lab Benchmarking - Level 1

    Broader source: Energy.gov (indexed) [DOE]

    HEV (PHEV) * Battery Electric (BEV or EV) * Fuel Cell Vehicle Alternative fuels * Hydrogen, Natural Gas * Ethanol, Butanol * Diesel (Bio, Fisher-Tropsch) APRF Test Process:...

  5. Advanced Technology Vehicle Lab Benchmarking - Level 1

    Broader source: Energy.gov (indexed) [DOE]

    * Hybrid Electric (HEV) * Plug-in HEV (PHEV) * Battery Electric (BEV or EV) * Fuel Cell Vehicle Alternative fuels * Hydrogen * Ethanol, Butanol * Diesel (Bio,...

  6. Vehicle Technologies Office Merit Review 2014: Manufacturability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Batteries Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  7. Providing Vehicle OEMs Flexible Scale to Accelerate Adoption of Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  8. Integrated Vehicle Thermal Management ? Combining Fluid Loops in Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  9. Dr. Jeremy Martin Senior Scientist, Clean Vehicles Program

    E-Print Network [OSTI]

    Firestone, Jeremy

    impacts of advanced vehicles, specifically hybrid-electric, plug-in electric, and fuel cell vehicles and advanced battery electric and fuel cell vehicles. UDEI Seminar March 19, 2014 10:30 a.m. 322 ISE Lab #12; and innovative clean fuels and advanced vehicles. Jeremy will focus on biomass based fuels, vehicle and fuel

  10. Modelling and control strategy development for fuel cell electric vehicles

    E-Print Network [OSTI]

    Peng, Huei

    Modelling and control strategy development for fuel cell electric vehicles Andreas Schell b , Huei applicable to the development of fuel cell electric vehicles (FCEVs) and hybrid electric vehicles (HEVs reserved. Keywords: Fuel cell electric vehicle; Hybrid vehicles; Modelling 1. Introduction Advanced

  11. A Hybrid Controller for Autonomous Vehicles Driving on Automated Highways #

    E-Print Network [OSTI]

    Girault, Alain

    A Hybrid Controller for Autonomous Vehicles Driving on Automated Highways # Alain Girault a a Inria the problem of the hybrid control of autonomous vehicles driving on automated highways. Vehicles to be dealt with: a vehicle driving in a single­lane highway must never collide with its leading vehicle

  12. Vehicle System Dynamics Vol. 00, No. 00, April 2008, 129

    E-Print Network [OSTI]

    Brennan, Sean

    Vehicle System Dynamics Vol. 00, No. 00, April 2008, 1­29 Fidelity of using scaled vehicles (April 2008) There are many situations where physical testing of a vehicle or vehicle controller is necessary, yet use of a full-size vehicle is not practical. Some situations include implementation testing

  13. Implementation of a Control Architecture for Networked Vehicle Systems

    E-Print Network [OSTI]

    Marques, Eduardo R. B.

    . INTRODUCTION The Underwater Systems and Technology Laboratory (LSTS) aims the creation of networked vehicles has already built autonomous vehicles of different types, namely Autonomous Underwater Vehicles (Madu- reira et al. (2009)), Autonomous Surface Vehicles (Ferreira et al. (2007)), Unmanned Air Vehicles (Gon

  14. Fact #796: September 9, 2013 Electric Vehicle and Plug-In Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    September 9, 2013 Electric Vehicle and Plug-In Hybrid Electric Vehicle Sales History Electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) have been available...

  15. Fuel Cell Powered Vehicles Using Supercapacitors: Device Characteristics, Control Strategies, and Simulation Results

    E-Print Network [OSTI]

    Zhao, Hengbing; Burke, Andy

    2010-01-01T23:59:59.000Z

    cell vehicles (a) Direct hydrogen fuel cell vehicles withoutApplication to Direct Hydrogen Fuel Cell Vehicles, Researchconsidered: (a) Direct hydrogen fuel cell vehicles (FCVs)

  16. Testing Electric Vehicle Demand in "Hybrid Households" Using a Reflexive Survey

    E-Print Network [OSTI]

    Kurani, Kenneth S.; Turrentine, Thomas; Sperling, Daniel

    2001-01-01T23:59:59.000Z

    In contrast to a hybrid vehicle whichcombines multipleor 180 mile hybrid electric vehicle. Natural gas vehicles (1994) "Demand Electric Vehicles in Hybrid for Households:

  17. Assessment of the Greenhouse Gas Emission Reduction Potential of Ultra-Clean Hybrid-Electric Vehicles

    E-Print Network [OSTI]

    Burke, A.F.; Miller, M.

    1997-01-01T23:59:59.000Z

    Table ES-3: Summaryof Hybrid Vehicle Fuel Economy Results onmal ICE and Series Hybrid Vehicles (t) Vehicle Test Weight (I) Conventional and Series Hybrid Vehicles had same weight,

  18. In-Vehicle Testing and Computer Modeling of Electric Vehicle Batteries

    E-Print Network [OSTI]

    Wang, Chao-Yang

    -extending series hybrid electric vehicle (HEV) by the student members of the Society of Automotive Engineers (SAEIn-Vehicle Testing and Computer Modeling of Electric Vehicle Batteries B. Thomas, W.B. Gu, J driving conditions as opposed to purely experimental testing. The new approach is cost- effective, greatly

  19. Comparison of the Fire Consequences of an Electric Vehicle and an Internal Combustion Engine Vehicle.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Comparison of the Fire Consequences of an Electric Vehicle and an Internal Combustion Engine key new technologies in the development of electric vehicles (EV), risks pertaining to them have at presenting the main results of these fire tests. KEYWORDS: electric vehicles, battery, fire, safety

  20. Hybrid Human Powered Vehicle (Phase 3) The Zero EMission (ZEM) Vehicle Project

    E-Print Network [OSTI]

    Su, Xiao

    The Construction of ZEM Car ­ a hybrid human/electric/solar powered vehicle (P-2) (2007-2008) Principal) Hybrid human pedaling/ electric powered vehicle- Designed and constructed P-1 prototype Sponsor: SJSU) Hybrid human pedaling/ Electric/solar powered vehicle (HPV-ZEM)-Designed P-2 Sponsor: SJSU-COE 16 ME + 3