National Library of Energy BETA

Sample records for guyana li liberia

  1. Preparing Guyana's REDD+ Participation: Developing Capacities...

    Open Energy Info (EERE)

    Workshop, Guidemanual Website http:unfccc.intfilesmethod Country Guyana UN Region Latin America and the Caribbean References Preparing Guyana's REDD+ Participation1...

  2. Guyana's Low Carbon Development Strategy | Open Energy Information

    Open Energy Info (EERE)

    Guyana's Low Carbon Development Strategy Jump to: navigation, search Tool Summary Name: Guyana's Low Carbon Development Strategy AgencyCompany Organization: Guyana Office of...

  3. Guyana REDD+ Investment Fund (GRIF) | Open Energy Information

    Open Energy Info (EERE)

    Guyana REDD+ Investment Fund (GRIF) Jump to: navigation, search Name Guyana REDD+ Investment Fund (GRIF) AgencyCompany Organization Government of Norway, Government of Guyana...

  4. Guyana-Caribbean Community (CARICOM) Sustainable Energy Roadmap...

    Open Energy Info (EERE)

    Guyana-Caribbean Community (CARICOM) Sustainable Energy Roadmap and Strategy Jump to: navigation, search Name Guyana-Caribbean Community (CARICOM) Sustainable Energy Roadmap and...

  5. Guyana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Guyana Population 747,884 GDP 2,788,000,000 Energy Consumption 0.02 Quadrillion Btu 2-letter ISO code GY 3-letter ISO code GUY Numeric ISO...

  6. Liberia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Liberia Population 3,476,608 GDP 1,735,000,000 Energy Consumption 0.01 Quadrillion Btu 2-letter ISO code LR 3-letter ISO code LBR Numeric ISO...

  7. Guyana-ClimateWorks Low Carbon Growth Planning Support | Open...

    Open Energy Info (EERE)

    ClimateWorks Low Carbon Growth Planning Support Jump to: navigation, search Name Guyana-Low Carbon Growth Planning Support AgencyCompany Organization ClimateWorks, Project...

  8. Liberia-US Forest Service Climate Change Technical Cooperation...

    Open Energy Info (EERE)

    US Forest Service Climate Change Technical Cooperation Jump to: navigation, search Name Liberia-US Forest Service Climate Change Technical Cooperation AgencyCompany Organization...

  9. Assessment of Biomass Resources in Liberia

    SciTech Connect (OSTI)

    Milbrandt, A.

    2009-04-01

    Biomass resources meet about 99.5% of the Liberian population?s energy needs so they are vital to basic welfare and economic activity. Already, traditional biomass products like firewood and charcoal are the primary energy source used for domestic cooking and heating. However, other more efficient biomass technologies are available that could open opportunities for agriculture and rural development, and provide other socio-economic and environmental benefits.The main objective of this study is to estimate the biomass resources currently and potentially available in the country and evaluate their contribution for power generation and the production of transportation fuels. It intends to inform policy makers and industry developers of the biomass resource availability in Liberia, identify areas with high potential, and serve as a base for further, more detailed site-specific assessments.

  10. LI

    Office of Legacy Management (LM)

    \ LI g. / This document con&s of lf pages. No. 1 &of #copies, Series fl . .! ' \ ' > .b P .--r ' i ' ./' MJDIFICATION NO. k sUPPLEMENTALAMw24ENrto CONTRACT NO. A T (30-l)-1335 M O D IFICATION NO. 4 CONTRACTOR AND A D D m S : KIDIFICATION TO: -EINESTIEUTED CCSTOFWORKr TOTAT,ESTIIUTEDC~T OFWRKI INCREASEIN C O M K rSSI~ OBLlDATIONt NEMTOTALCOMMISSION OBLIOaTIONt PAYl%NTTDBEMADEBY: HORIZONS, INCORPOlZATED R-inceton, New Jersey AIBNDSCOPEOFK#tK,EXTENDTR?M AND OTflER CHANOES $&31,lbOO

  11. 07Li

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Li Thermal Neutron Capture Evaluated Data Measurements 1967RA24: 6Li(n, γ), E = thermal; measured Eγ; deduced Q. 1968SP01: 6Li(n, γ), E = thermal; measured Eγ, Iγ; deduced Q. 7Li deduced levels, branchings. 1970MEZS: 6Li(n, γ), E = thermal; measured σ. 1970SP02: 6Li(n, γ), E = thermal; measured Eγ, Iγ; deduced Q. 1972OP01: 6Li(n, γ), E = thermal; measured Eγ, Iγ. 1973JUZT, 1973JUZU: 6Li(n, γ), E = thermal; measured σ(Eγ). 7Li deduced γ-branching. 1985KO47: 6Li(n, γ), E =

  12. 9Li

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    deduced log ft, Gamow-Teller transition strength, level width, di-neutron, neutron halo roles. 1991LUZZ: 9Li(-); measured T12. 1992LI24: 9Li(-); measured NMR...

  13. 5Li

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    abstracted; deduced nuclear properties. 1968TA11: 2H(, p), E 29.2 MeV; measured (Ep, E, ). 5Li deduced resonances. 1968VI03: 6Li(3He, p), E 2 MeV; 5Li; measured...

  14. 4Li

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Li Ground-State Decay Evaluated Data Measured Ground-State Γcm(T1/2) for 4Li Adopted value: 91 ± 9 ys (2003AU02) Measured Mass Excess for 4Li Adopted value: 25320 ± 210 keV (2003AU02) Measurements 1960BR05: 4Li; measured not abstracted; deduced nuclear properties. 1960BR10: 4Li; measured not abstracted; deduced nuclear properties. 1960BR19: 4Li; measured not abstracted; deduced nuclear properties. 1960RO11: 4Li; measured not abstracted; deduced nuclear properties. 1963WE10: 4Li; measured not

  15. 11Li

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Li β--Decay Evaluated Data Measurements 1969KL08: 11Li; measured T1/2. 1974RO31: 11Li; measured Eγ, Iγ, T1/2, delayed neutrons, βγ-coin, Eβ. 1975TH08: 11Li; measured neutron binding energy, delayed neutron branching ratio, T1/2; deduced log ft. 1979ANZZ: 11Li; 11Li deduced evidence for β-delayed 2n emission. 1979AZ03: 11Li; measured β-delayed En, nn-coin. 11Be levels deduced 1n, 2n decay probabilities. 1979DEYX, 1980DE39, 1980DEZF: 11Li; measured Eγ, Iγ, Iβ, β-delayed En, In; deduced

  16. 08Li

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Neutron Capture Evaluated Data Measurements 1967RA24: 7Li(n, γ), E = thermal; measured Eγ; deduced Q. 1973JUZT, 1973JUZU: 7Li(n, γ), E = thermal; measured σ(Eγ). 7Li deduced γ-branching. 1991LY01: 7Li(n, γ), E = thermal; measured Eγ, Iγ, capture σ. 1996BL10: 7Li(n, γ), E = 1.5-1340 eV; measured Eγ, Iγ, γ yield, absolute σ(E). 1997HEZW, 1998HE35: 7Li(n, γ), E ≈ 5 meV, 54 keV; measured σ. 1999ZHZM, 2000ZHZP: 7Li(n, γ), E = thermal; compiled, evaluated prompt γ-ray

  17. 10Li

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Li Ground-State Decay Evaluated Data Measured Ground-State Γcm(T1/2) for 10Li Adopted value: 2.0 ± 0.5 zs (2003AU02) Measured Mass Excess for 10Li Adopted value: 33051 ± 15 keV (2003AU02) Measurements 1975WI26: 9Be(9Be, 8B), E = 121 MeV; measured σ(E(8B), θ); deduced Q. 10Li deduced mass excess. 1990AM05: 11B(π-, X), E at rest; measured inclusive p-, d-, t-spectra, X = 10Li production. 10Li deduced level, Γ. 1992AMZY: 11B(π-, X), E at rest; measured pion, deuteron, triton spectra. 10Li

  18. 8Li

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -asymmetry, NMR; deduced polarization. 1986WA01: 8Li(-); analyzed -delayed breakup -spectra; deduced intruder states role. 8Be deduced level, , Gamow-Teller matrix...

  19. Jennifer Li | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jennifer Li Jennifer Li Jennifer Li E-mail: jennifer.li

  20. F LI

    Office of Legacy Management (LM)

    >"- -- F LI c ------- RADIATION SURVEY REPORT OF THE M IDDLESEX LANDFILL SITE RADIATION SURVEY REPORT OF THE ~IDDLESEX LfiMDFI.LL S I:TE it%RCH 25 - AFRiL 4, 1374 ;)UNE 27, 1974 T.!BLE OF CONTENTS Introduction and Summary . . . . . . . . . . . . . . . 1 Conclusions. . . . . . w . . . . . . , . . . , . . . . 2 Histohcal Background0 . . . . . . . . . . . . b (I . . 2 Description of Area Surveyed . . . . . . . . I . . . * 3 Survey Findings. * *,. a . . . , . . . . . . . . . . . 4 Surface

  1. 6Li General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Li General Table The General Table for 6Li is subdivided into the following categories: Ground State Properties of 6Li Special States Theoretical Shell Model Cluster Models Complex...

  2. 7Li Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7Li(, '): emission yield 1.0 - 3.4 1 01182012 2011YA02 7Li(, ): elastic scattering differential 1.0 - 4.5 cm 170 07192011 7Li(, p): differential...

  3. 5Li General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Table for 5Li is subdivided into the folowing categories: Ground State Properties Cluster Model Shell Model Special States Model Calculations Model Discussions Complex...

  4. 7Li General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Li General Table The General Table for 7Li is subdivided into the following categories: Reviews Ground State Properties Shell Model Cluster Model Other Theoretical Work Model Calculations Photodisintegration Polarization Fission and Fusion Elastic and Inelastic Scattering Projectile Fragmentation and Multifragmentation Astrophysical Hyperfine Structure b-decay Muons Hypernuclei and Mesons Hypernuclei and Baryons Pion, Kaon and Eta-Mesons Other Work Applications

  5. 8Li General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Li General Tables The General Table for 8Li is subdivided into the following categories: Reviews Ground State Properties Shell Model Cluster Model Other Models Photodissociation Fusion and Fission Elastic and Inelastic Scattering Fragmentation Reactions Astrophysical b Decay Hypernuclei Pions, Kaons and h-mesons

  6. 9Li General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Li General Table The General Table for 9Li is subdivided into the following categories: Shell Model Cluster Model Theoretical Ground State Properties Special States Other Model Calculations Complex Reactions Beta-Decay Pions Muons Photodisintegration Elastic and Inelastic Scattering Electromagnetic Transitions Astrophysical

  7. Presence of Li clusters in molten LiCl-Li

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Merwin, Augustus; Phillips, William C.; Williamson, Mark A.; Willit, James L.; Motsegood, Perry N.; Chidambaram, Dev

    2016-05-05

    Molten mixtures of lithium chloride and metallic lithium are of significant interest in various metal oxide reduction processes. These solutions have been reported to exhibit seemingly anomalous physical characteristics that lack a comprehensive explanation. ln the current work, the physical chemistry of molten solutions of lithium chloride and metallic lithium, with and without lithium oxide, was investigated using in situ Raman spectroscopy. The Raman spectra obtained from these solutions were in agreement with the previously reported spectrum of the lithium cluster, Li8. Furthermore, this observation is indicative of a nanofluid type colloidal suspension of Li8, in a molten salt matrix.more » It is suggested that the formation and suspension of lithium clusters in lithium chloride is the cause of various phenomena exhibited by these solutions that were previously unexplainable.« less

  8. 6Li Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    α, X) (Current as of 02/01/2016) NSR Reaction Eα (MeV) Cross Section File X4 Dataset Date Added 1985NE05 6Li(α, γ): γ thick target yield resonance X4 02/15/2012 1966FO05 6Li(α, γ): σ 0.9 - 3.0 2 < Eγ < 4 MeV, 4 < Eγ < 7 MeV, thick target capture γ-ray yield, capture γ-ray yield of 2.43 MeV resonance 02/29/2012 1989BA24 6Li(α, γ): σ 1.085, 1.175 X4 02/15/2012 1979SP01 6Li(α, γ): thick target yield curve for 718 keV γ-rays 1140 - 1250 keV 1175 keV resonance 07/19/2011

  9. 6Li Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    p, X) (Current as of 03012016) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 2004TU02 6Li(p, ): coincidence yields, deduced S-factors low 1, S-factors from ...

  10. 7Li Cross Section

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    p, X) (Current as of 12162015) NSR Reaction Ep (MeV) Cross Section File X4 Dataset Date Added 1997GO13 7Li(pol. p, ): total , S-factor for capture to third-excited state 0 - ...

  11. Li-Z

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis of Cloud Spectral Radiance/Irradiance at the Surface and Top-of-the-Atmosphere from Modeling and Observations Z. Li and A. Trishchenko Canada Centre for Remote Sensing Ottawa, Ontario, Canada M. Cribb Intermap Technologies Ltd. Ottawa, Ontario, Canada Introduction In view of some reported discrepancies concerning cloud parameter retrievals and cloud absorption (Stephens and Tsay 1990; Li et al. 1999; Rossow and Schiffer 1999) it is useful to compare cloud spectral signatures derived

  12. 10Li General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Li General Table The General Table for 10Li is subdivided into the following categories: Reviews Theoretical Ground State Properties Shell Model Cluster Model Other Models Special States Astrophysical Electromagnetic Transitions Hypernuclei Photodisintegration Light-Ion and Neutron Induced Reactions These General Tables correspond to the 2003 preliminary evaluation of ``Energy Levels of Light Nuclei, A = 10''. The prepublication version of A = 10 is available on this website in PDF format: A =

  13. Li Tec | Open Energy Information

    Open Energy Info (EERE)

    Drezden, Germany Product: Based in Kamez, near Dresden, Li-Tec produces components for lithium-ion batteries. References: Li-Tec1 This article is a stub. You can help OpenEI by...

  14. I!' L;I)

    Office of Legacy Management (LM)

    ".>;jy i.~jp.~[~~ i,Zz>-c C,+;) ir,i:%J :' 0 p 'd-i I /) f) ic.c iq -.I ,'c i - * w. 3'2 , phi ': r-t;, ; *.i .; I!' L;I) --, -II s;.,yE;J-~,~;~* I' ;, f: >,p.yg ,p ' .L (3 i!>;' !i.3 y/y!-; x>:-y rJgbf;..qp: \' :sF*:l,' 5-".13, -9 _ ..-;~c~-' ~;Li;-~~~~;, 3h' ;[;i-y ; c; ' 1' 1.b y&k' 2 1 , . ..l =i. 1; G.1 ;Tr.; .j. i-:. I qr:i.gky, M,C. Jp, 2.1 F... ii, Ross CENTRAL F ILES ~"CTIVE OF TXIP m --w- The 0' 0 jet% ive Of this trip xas to evaluate tkie !- .zalth

  15. 7Li MRI of Li batteries reveals location of microstructural lithium...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Journal Article: 7Li MRI of Li batteries reveals location of microstructural lithium Citation Details In-Document Search Title: 7Li MRI of Li ...

  16. UJ LiJ

    Office of Legacy Management (LM)

    o >- tD o UJ :> LiJ o W ~ Central Nevada-23 UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY Federal Center, Denver, Colorado 80225 ANALYSIS OF HYDRAULIC TESTS IN HOT CREEK VALLEY, NEVADA June 1970 Open-file report Prepared Under Contract AT(29-2)-474 for the Nevada Operations Office U.S. Atomic Energy Commission USGS-474-82 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor

  17. A=11Li (2012KE01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    E(11Li) 246 MeVA, analysis of a complete three-body kinematical measurement of 11Li breakup on a 12C target indicates the reaction mechanism is 11Li inelastic scattering to...

  18. Lithium salts for advanced lithium batteries: Li-metal, Li-O2, and Li-S

    SciTech Connect (OSTI)

    Younesi, Reza; Veith, Gabriel M.; Johansson, Patrik; Edstrom, Kristina; Vegge, Tejs

    2015-06-01

    Presently lithium hexafluorophosphate (LiPF6) is the dominant Li-salt used in commercial rechargeable lithium-ion batteries (LIBs) based on a graphite anode and a 3-4 V cathode material. While LiPF6 is not the ideal Li-salt for every important electrolyte property, it has a uniquely suitable combination of properties (temperature range, passivation, conductivity, etc.) rendering it the overall best Li-salt for LIBs. However, this may not necessarily be true for other types of Li-based batteries. Indeed, next generation batteries, for example lithium-metal (Li-metal), lithium-oxygen (Li-O2), and lithium sulphur (Li-S), require a re-evaluation of Li-salts due to the different electrochemical and chemical reactions and conditions within such cells. Furthermore, this review explores the critical role Li-salts play in ensuring in these batteries viability.

  19. Lithium salts for advanced lithium batteries: Li-metal, Li-O2, and Li-S

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Younesi, Reza; Veith, Gabriel M.; Johansson, Patrik; Edstrom, Kristina; Vegge, Tejs

    2015-06-01

    Presently lithium hexafluorophosphate (LiPF6) is the dominant Li-salt used in commercial rechargeable lithium-ion batteries (LIBs) based on a graphite anode and a 3-4 V cathode material. While LiPF6 is not the ideal Li-salt for every important electrolyte property, it has a uniquely suitable combination of properties (temperature range, passivation, conductivity, etc.) rendering it the overall best Li-salt for LIBs. However, this may not necessarily be true for other types of Li-based batteries. Indeed, next generation batteries, for example lithium-metal (Li-metal), lithium-oxygen (Li-O2), and lithium sulphur (Li-S), require a re-evaluation of Li-salts due to the different electrochemical and chemical reactions andmore » conditions within such cells. Furthermore, this review explores the critical role Li-salts play in ensuring in these batteries viability.« less

  20. Lithium Salts for Advanced Lithium Batteries: Li-metal, Li-O2, and Li-S

    SciTech Connect (OSTI)

    Younesi, Reza; Veith, Gabriel M; Johansson, Patrik; Edstrom, Kristina; Vegge, Tejs

    2015-01-01

    Presently lithium hexafluorophosphate (LiPF6) is the dominant Li-salt used in commercial rechargeable lithium-ion batteries (LIBs) based on a graphite anode and a 3-4 V cathode material. While LiPF6 is not the ideal Li-salt for every important electrolyte property, it has a uniquely suitable combination of properties (temperature range, passivation, conductivity, etc.) rendering it the overall best Li-salt for LIBs. However, this may not necessarily be true for other types of Li-based batteries. Indeed, next generation batteries, for example lithium-metal (Li-metal), lithium-oxygen (Li-O2), and lithium sulphur (Li-S), require a re-evaluation of Li-salts due to the different electrochemical and chemical reactions and conditions within such cells. This review explores the critical role Li-salts play in ensuring in these batteries viability.

  1. Recovery of Li from alloys of Al- Li and Li- Al using engineered scavenger compounds

    DOE Patents [OSTI]

    Riley, W. D.; Jong, B. W.; Collins, W. K.; Gerdemann, S. J.

    1994-01-01

    A method of producing lithium of high purity from lithium aluminum alloys using an engineered scavenger compound, comprising: I) preparing an engineered scavenger compound by: a) mixing and heating compounds of TiO2 and Li2CO3 at a temperature sufficient to dry the compounds and convert Li.sub.2 CO.sub.3 to Li.sub.2 O; and b) mixing and heating the compounds at a temperature sufficient to produce a scavenger Li.sub.2 O.3TiO.sub.2 compound; II) loading the scavenger into one of two electrode baskets in a three electrode cell reactor and placing an Al-Li alloy in a second electrode basket of the three electrode cell reactor; III) heating the cell to a temperature sufficient to enable a mixture of KCl-LiCl contained in a crucible in the cell to reach its melting point and become a molten bath; IV) immersing the baskets in the bath until an electrical connection is made between the baskets to charge the scavenger compound with Li until there is an initial current and voltage followed by a fall off ending current and voltage; and V) making a connection between the basket electrode containing engineered scavenger compound and a steel rod electrode disposed between the basket electrodes and applying a current to cause Li to leave the scavenger compound and become electrodeposited on the steel rod electrode.

  2. A=14Li (1986AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    86AJ01) (Not illustrated) 14Li has not been observed. The calculated mass excess is 72.29 MeV: see (1981AJ01). 14Li is then particle unstable with respect to decay into 13Li + n and 12Li + 2n by 3.88 and 3.22 MeV, respectively

  3. A=15Li (1981AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1AJ01) (Not illustrated) 15Li has not been observed: its atomic mass excess is calculated to be 81.60 MeV. It is then unstable with respect to decay into 14Li + n and 13Li + 2n by 1.24 and 3.90 MeV, respectively (1974TH01). See also 13Li

  4. Microsoft Word - li_abstract

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    will be served at 3:30 pm A few new issues regarding the density dependence of nuclear symmetry energy Professor Bao-An Li Department of Physics and Astronomy, Texas A&M ...

  5. Women @ Energy: Yan Li | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Yan Li Women @ Energy: Yan Li March 12, 2013 - 9:23am Addthis Yan Li is a Computational Physicist at the Computational Science Center at Brookhaven National Laboratory. Yan Li is a Computational Physicist at the Computational Science Center at Brookhaven National Laboratory. Yan Li is a Computational Physicist at the Computational Science Center at Brookhaven National Laboratory. Her work is mainly focused on developing and applying advanced computational tools to investigate material properties

  6. Liang Li | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liang Li Postdoctoral Appointee (Supervisor, Maria Chan) Current research focuses on ab-initio theoretical studies on hybrid lithium-ion/lithium-oxygen battery materials and photocatalytic reduction of CO2. News Visualizing Redox Dynamics of a Single Ag/AgCl Heterogeneous Nanocatalyst at Atomic Resolution Telephone 630.252.2788 Fax 630.252.4646 E-mail liangli@anl.gov CV/Resume PDF icon Liang_Li

  7. Anion Coordination Interactions in Solvates with the Lithium Salts LiDCTA and LiTDI

    SciTech Connect (OSTI)

    McOwen, Dennis W.; Delp, Samuel A.; Paillard, Elie; Herriot, Cristelle; Han, Sang D.; Boyle, Paul D.; Sommer, Roger D.; Henderson, Wesley A.

    2014-04-17

    Lithium 4,5-dicyano-1,2,3-triazolate (LiDCTA) and lithium 2-trifluoromethyl-4,5-dicyanoimidazole (LiTDI) are two salts proposed for lithium battery electrolyte applications, but little is known about the manner in which the DCTA- and TDI- anions coordinate Li+ cations. To explore this in-depth, crystal structures are reported here for two solvates with LiDCTA: (G2)1:LiDCTA and (G1)1:LiDCTA with diglyme and monoglyme, respectively, and seven solvates with LiTDI: (G1)2:LiTDI, (G2)2:LiTDI, (G3)1:LiTDI, (THF)1:LiTDI, (EC)1:LiTDI, (PC)1:LiTDI and (DMC)1/2:LiTDI with monoglyme, diglyme, triglyme, tetrahydrofuran, ethylene carbonate, propylene carbonate and dimethyl carbonate, respectively. These latter solvate structures are compared with the previously reported acetonitrile (AN)2:LiTDI structure. The solvates indicate that the LiTDI salt is much less associated than the LiDCTA salt and that the ions in LiTDI, when aggregated in solvates, have a very similar TDI-...Li+ cation mode of coordination through both the anion ring and cyano nitrogen atoms. Such coordination facilitates the formation of polymeric ion aggregates, instead of dimers. Insight into such ion speciation is instrumental for understanding the electrolyte properties of aprotic solvent mixtures with these salts.

  8. A=12Li (1975AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    75AJ02) (Not illustrated) 12Li is not observed in the 4.8 GeV proton bombardment of a uranium target: it is particle unstable (1974BO05). Its atomic mass excess is therefore > 49.0 MeV. (1974TH01) calculate the mass excess of 12Li to be 52.92 MeV. 12Li would then be unstable with respect to 11Li + n, 10Li + 2n and 9Li + 3n by 3.9, 3.68 and 3.74 MeV, respectively. See also (1972TH13, 1973BO30, 1974IR04

  9. A=12Li (1990AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    90AJ01) (Not illustrated) 12Li is not observed in the 4.8 GeV proton bombardment of a uranium target: it is particle unstable. The calculated value of its mass excess is 52.93 MeV [see (1980AJ01)]: 12Li would then be unstable with respect to 11Li + n ,10Li + 2n and 9Li + 3n by 4.01, 2.96 and 3.76 MeV, respectively. The ground state of 12Li is predicted to have Jπ = 2- (1988POZS, 1985PO10; theor.). See also (1980AJ01

  10. A=4Li (1992TI02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Li (1992TI02) (See Energy Level Diagrams for 4Li) GENERAL: The stability of 8B against particle decay (1988AJ01), in particular against decay into 4He + 4Li, sets an upper limit of 1.7 MeV on the separation energy of 4Li into p + 3He (1952SH44). The instability of 4H against particle decay (see 4H, GENERAL section) makes the particle stability of 4Li very unlikely, since the Coulomb energy of 4Li is approximately 1.7 MeV larger than that of 4H (1963WE10), and the nuclear energies should be

  11. Construction Consultants, L.I., Inc.

    Office of Environmental Management (EM)

    Mr. Eric Baumack Senior Project Manager Construction Consultants L.I., Inc. 36 East 2 nd ... worker employed by a subcontractor to Construction Consultants L.I., Inc. (CCLI) at the ...

  12. A=11Li (1980AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    80AJ01) (See the Isobar Diagram for 11Li) 11Li has been observed in the bombardment of iridium by 24 GeV protons. Its mass excess is 40.94 ± 0.08 MeV (1975TH08). The cross section for its formation is ~ 50 μb (1976TH1A). 11Li is bound: Eb for break up into 9Li + 2n and 10Li + n are 158 ± 80 and 960 ± 250 keV, respectively [see (1979AJ01) for discussions of the masses of 9Li and 10Li]. The half-life of 11Li is 8.5 ± 0.2 msec (1974RO31): it decays to neutron unstable states of 11Be [Pn =

  13. A=10Li (2004TI06)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2004TI06) (See Energy Level Diagrams for 10Li) GENERAL: References to articles on general properties of 10Li published since the previous review (1988AJ01) are grouped into...

  14. A=18Li (1995TI07)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Li (1995TI07) (Not illustrated) 18Li has not been observed. Shell model calculations described in (1988POZS) predict the ground-state magentic dipole moment and charge and matter radii.

  15. A=20Li (1998TI06)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Li (1998TI06) (Not observed) See (1977CE05, 1983ANZQ, 1986AN07, 1987SIZX).

  16. A=14Li (1976AJ04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    76AJ04) (Not illustrated) 14Li has not been observed: it is calculated to be particle unstable with a binding energy of -2.66 MeV for decay into 13Li + n and of -3.23 MeV for decay into 12Li + 2n. The calculated mass excess is 72.29 MeV (1974TH01)

  17. A=15Li (1976AJ04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    76AJ04) (Not illustrated) 15Li has not been observed: its atomic mass excess is calculated to be 81.60 MeV. It is then unstable with respect to decay into 14Li + n and 13Li + 2n by 1.24 and 3.90 MeV, respectively (1974TH01)

  18. A=15Li (1986AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6AJ01) (Not illustrated) 15Li has not been observed. Its atomic mass excess is calculated to be 81.60 MeV: see (1981AJ01). It is then unstable with respect to decay into 14Li + n and 13Li + 2n by 1.24 and 3.90 MeV, repsectively

  19. A=8Li (2004TI06)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    p)8Li Qm 0.80079 Angular distributions have been obtained at Et 23 MeV for the proton groups to 8Li*(0, 0.98, 2.26, 6.54 0.03); cm for 8Li*(2.26, 6.54) are 35 10 and 35...

  20. A=8Li (66LA04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to the geometric value, supports the hypothesis that 7Li may be described as an ( + t) cluster (RO62C). See also (AL63N, BA63O, BR63M, VA64G). 9. 7Li(d, p)8Li Qm -0.192...

  1. A=11Li (1975AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by GeV protons. Its mass excess is 40.9 0.1 MeV (1973KL1C). 11Li is bound: Eb for breakup into 9Li + 2n and 10Li + n are 0.2 and 0.3 MeV, respectively see (1974AJ01) for a...

  2. A=13Li (1976AJ04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    13Li is predicted to have an atomic mass excess of 61.56 MeV: it is then unstable for breakup into 12Li + n and 11Li + 2n by 0.6 and 4.5 MeV, respectively (1974TH01). The modified...

  3. A=13Li (1981AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    13Li is predicted to have an atomic mass excess of 61.56 MeV: it is then unstable for breakup into 12Li + n and 11Li + 2n by 0.6 and 4.5 MeV, respectively (1974TH01). The modified...

  4. Recovery of Li from alloys of Al-Li and Li-Al using engineered scavenger compounds

    SciTech Connect (OSTI)

    Riley, W.D.; Jong, B.W.; Collins, W.K.; Gerdemann, S.J.

    1992-01-01

    The invention relates to a process for obtaining Li metal selectively recovered from Li-Al or Al-Li alloy scrap by: (1) removing Li from aluminum-lithium alloys at temperatures between about 400 C-750 C in a molten salt bath of KC1-LiCl using lithium titanate (Li2O.3TiO2) as an engineered scavenger compound (ESC); and (2) electrodepositing of Li from the loaded ESC to a stainless steel electrode. By use of the second step, the ESC is prepared for reuse. A molten salt bath is required in the invention because of the inability of molten aluminum alloys to wet the ESC.

  5. A=12Li (1985AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5AJ01) (Not illustrated) 12Li is not observed in the 4.8 GeV proton bombardment of a uranium target: it is particle-unstable. The calculated value of its mass excess is 52.93 MeV [see (1980AJ01)]: 12Li would then be unstable with respect to 11Li + n, 10Li + 2n and 9Li + 3n by 3.92, 2.96 and 3.76 MeV, respectively. See also (1980AJ01) and (1982KA1D, 1983ANZQ, 1984VA06

  6. A=13Li (1986AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    86AJ01) (Not illustrated) 13Li has not been observed. The calculated value of its mass excess is 60.34 MeV [see (1981AJ01)]: 13Li would then be unstable with respect to 11Li + 2n by 3.26 MeV. (1980BO31) have not observed 13Li in the bombardment of 124Sn by 6.7 GeV protons but state that the statistics were poor in the region of interest and that it is not excluded that 13Li may be stable. See also (1983ANZQ

  7. A=11Li (1985AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5AJ01) (See the Isobar Diagram for 11Li) GENERAL: The mass excess of 11Li is 40.94 ± 0.08 MeV (1975TH08). [(A.H. Wapstra, private communication) suggests 40.91 ± 0.11 MeV.] Using the value reported by (1975TH08) 11Li is bound with respect to 9Li + 2n by 156 ± 80 keV and with respect to 10Li + n by 966 ± 260 keV [see (1984AJ01) for the masses of 9Li and 10Li]. Systematics suggest Jπ = 1/2- for 11Lig.s.. See also (1979AZ03, 1980AZ01, 1980BO31, 1981BO1X, 1982BO1Y, 1982OG02), (1981HA2C),

  8. A=9Li (59AJ76)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    59AJ76) (Not illustrated) Mass of 9Li: From the threshold for 9Be(d, 2p)9Li, Ed = 19 ± 1 MeV (GA51C), the mass excess of 9Li is determined as M - A = 28.1 ± 1 MeV. 1. 9Li(β-)9Be* --> 8Be + n Qm = 12.4 9Li decays to excited states of 9Be which decay by neutron emission. The mean of the reported half-lives is 0.169 ± 0.003 sec (GA51C, HO52B). See also (SH52, FR53A, BE55D, FL56, TA58B). 2. 9Be(d, 2p)9Li Qm = -15.5 The threshold is 19 ± 1 MeV (GA51C). 3. 11B(γ, 2p)9Li Qm = -31.4 See (SH52,

  9. A=9Li (66LA04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    66LA04) (See Energy Level Diagrams for 9Li) GENERAL: See (GR64C). See also Table 9.1 [Table of Energy Levels] (in PDF or PS). Mass of 9Li: From the Q-value for 7Li(t, p)9Li: Q = -2.397 ± 0.020 MeV, the mass excess of 9Li is 24.965 ± 0.020 MeV (MI64E, MA65A). 1. 9Li(β-)9Be Qm = 13.615 9Li decays to the ground state (25 ± 15 %) and to the 2.43 MeV, neutron-unstable state of 9Be (75 ± 15 %). The β-endpoints are 13.5 ± 0.3 MeV and 11.0 ± 0.4 MeV; log ft = 5.5 ± 0.2 and 4.7 ± 0.2,

  10. li(1)-98.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    23 Radiative Forcing by Smoke Aerosols Determined from Satellite and Surface Measurements Z. Li Canada Centre for Remote Sensing Ottawa, Ontario, Canada L. Kou Intermap Technologies Ottawa, Ontario, Canada Introduction As a potential offsetting agent to the greenhouse effect, aerosols are receiving increasing attention in the atmospheric science community. Notwithstanding, our knowledge of the impact of aerosols on radiation and climate is rather poor and falls well behind that of the greenhouse

  11. li(1)-99.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consistency Check of Cloud Optical Properties Derived from Satellite and Surface Observations Z. Li, A. P. Trishchenko, and F.-L. Chang Canada Center for Remote Sensing Ottawa, Canada H. W. Barker Atmospheric Environmental Service Downsview, Canada W. B. Sun Dalhousie University Halifax, Nova Scotia, Canada Introduction Much work has been done to retrieve both cloud and radiative variables using space-borne observations. Several recent studies also attempted to retrieve cloud optical depth using

  12. li(2)-98.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 A Consistency Analysis of ARESE Measurements Regarding Cloud Absorption Z. Li and A. Trishchenko Canada Centre for Remote Sensing Ottawa, Ontario, Canada H. W. Barker Atmospheric Environment Service Downsview, Ontario, Canada G. L. Stephens and P. Partain Colorado State University Fort Collins, Colorado P. Minnis NASA-Langley Research Center Hampton, Virginia Introduction In an attempt to resolve the recent debate over the cloud absorption anomaly, the U.S. Department of Energy sponsored a

  13. A=12Li (1980AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0AJ01) (Not illustrated) 12Li is not observed in the 4.8 GeV proton bombardment of a uranium target: it is particle unstable. Its atomic mass excess would then be > 49.0 MeV. (1974TH01) calculate the mass excess of 12Li to be 52.92 MeV, while (1975JE02) calculate 52.94 MeV. Taking the average of these two values, 12Li would then be unstable with respect to 11Li + n, 10Li + 2n and 9Li + 3n by 3.92, 2.96 and 3.76 MeV, respectively. See also (1975AJ02) and (1975BE31, 1976IR1B

  14. A=14Li (1991AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    91AJ01) (Not illustrated) 14Li has not been observed. The calculated mass excess is 72.29 MeV: see (1981AJ01). 14Li is then particle unstable with respect to decay into 13Li + n and 12Li + 2n by 3.9 and 3.2 MeV, respectively [see, however, 13Li]. (1985PO10) calculate [in a (0 + 1)ℏω model space] that the first four states of 14Li at 0, 0.75, 1.22 and 1.48 MeV have, respectively, Jπ = 2-, 4-, 3- and 1-. See also (1986AL09, 1989OG1B) and (1988POZS; theor.)

  15. Local field effects at Li K edges in electron energy-loss spectra of Li, Li{sub 2}O and LiF

    SciTech Connect (OSTI)

    Mauchamp, V.; Moreau, P.; Ouvrard, G.; Boucher, F.

    2008-01-15

    Local field effects (LFEs) in low-losses of electron energy-loss spectra of Li, Li{sub 2}O, and LiF were calculated using the density functional theory under the generalized gradient approximation. By including the lithium 1s semicore state in the pseudopotentials, the amplitude of LFE was assessed all the way up to the Li K edge (from 0 to 80 eV). They are found to be much larger for semicore levels (2s of oxygen, 2s of fluorine, and 1s of lithium) than for the valence electron energy-loss region. LFEs at the Li K edge are studied in detail. In particular, for q=0 they are shown to increase with the inhomogeneities of the compounds (from Li to LiF). The influence of the magnitude and the direction of q is also presented. Both parameters have negligible effect in the case of Li metal but changes are quite substantial for Li{sub 2}O and LiF. This is in agreement with the isotropy and the delocalization of the metallic bonding as compared to the ionic one. LFEs at the Li K edge are, however, whatever the compound, much smaller than those observed at transition metal M{sub 2,3} edges situated at similar energy positions. This result can be accounted for by considering the wave functions associated with the initial and final states involved in both edges. For lithium battery materials, most often presenting a transition metal edge close to the Li K edge, these findings imply significant consequences with respect to the interpretation of their electron energy-loss spectroscopy spectra. In particular, LFE can be expected to be stronger in positive electrodes than in negative ones.

  16. Li-rich anti-perovskite Li3OCl films with enhanced ionic conductivity

    SciTech Connect (OSTI)

    Lu, XJ; Wu, G; Howard, JW; Chen, AP; Zhao, YS; Daemen, LL; Jia, QX

    2014-08-13

    Anti-perovskite solid electrolyte films were prepared by pulsed laser deposition, and their room-temperature ionic conductivity can be improved by more than an order of magnitude in comparison with its bulk counterpart. The cyclability of Li3OCl films in contact with lithium was evaluated using a Li/Li3OCl/Li symmetric cell, showing self-stabilization during cycling test.

  17. Microsoft PowerPoint - Electrolytic T Extraction in Molten Li-LiT_2.pptx

    Office of Environmental Management (EM)

    Electrolytic Tritium Extraction in Molten Li-LiT Luke Olson Brenda L. García-Díaz Hector Colon-Mercado Joe Teprovich Dave Babineau Savannah River National Laboratory Fall 2015 Tritium Focus Group Meeting November 3-5, 2015 SRNL-STI-2015-00605 This presentation does not contain any proprietary, confidential, or otherwise restricted information LiT Electrolysis Options LiT Electrolysis Maroni Process (Baseline Option) Improve Liquid-Liquid Extraction & Electrolysis Process Intensification

  18. A=16Li (1993TI07)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Li (1993TI07) (Not illustrated) This nucleus has not been observed. Shell model studies (1988POZS) are used to predict J and the magnetic dipole moment....

  19. A=5Li (2002TI10)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2002TI10) (See Energy Level Diagrams for 5Li) GENERAL: References to articles on general properties of 5Li published since the previous review (1988AJ01) are grouped into categories and listed, along with brief descriptions of each item, in the General Tables for 5Li located on our website at (www.tunl.duke.edu/NuclData/General_Tables/5li.shtml). See also Table Prev. Table 5.3 preview 5.3 [Table of Energy Levels] (in PDF or PS). See also the A = 5 introductory discussion titled A = 5 resonance

  20. A=9Li (2004TI06)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2004TI06) (See Energy Level Diagrams for 9Li) GENERAL: References to articles on general properties of 9Li published since the previous review (1988AJ01) are grouped into categories and listed, along with brief descriptions of each item, in the General Tables for 9Li located on our website at (www.tunl.duke.edu/nucldata/General_Tables/9li.shtml). See also Table Prev. Table 9.1 preview 9.1 [Table of Energy Levels] (in PDF or PS). Ground state properties: μ = 3.4391 ± 0.0006 μN (1983CO11). See

  1. Nanoscale LiFePO4 and Li4Ti5O12 for High Rate Li-ion Batteries

    SciTech Connect (OSTI)

    Jaiswal, A.; Horne, C.R.; Chang, O.; Zhang, W.; Kong, W.; Wang, E.; Chern, T.; Doeff, M. M.

    2009-08-04

    The electrochemical performances of nanoscale LiFePO4 and Li4Ti5O12 materials are described in this communication. The nanomaterials were synthesized by pyrolysis of an aerosol precursor. Both compositions required moderate heat-treatment to become electrochemically active. LiFePO4 nanoparticles were coated with a uniform, 2-4 nm thick carbon-coating using an organic precursor in the heat treatment step and showed high tap density of 1.24 g/cm3, in spite of 50-100 nm particle size and 2.9 wtpercent carbon content. Li4Ti5O12 nanoparticles were between 50-200 nm in size and showed tap density of 0.8 g/cm3. The nanomaterials were tested both in half cell configurations against Li-metal and also in LiFePO4/Li4Ti5O12 full cells. Nano-LiFePO4 showed high discharge rate capability with values of 150 and 138 mAh/g at C/25 and 5C, respectively, after constant C/25 charges. Nano-Li4Ti5O12 also showed high charge capability with values of 148 and 138 mAh/g at C/25 and 5C, respectively, after constant C/25 discharges; the discharge (lithiation) capability was comparatively slower. LiFePO4/Li4Ti5O12 full cells deliver charge/discharge capacity values of 150 and 122 mAh/g at C/5 and 5C, respectively.

  2. Antiperovskite Li 3 OCl superionic conductor films for solid...

    Office of Scientific and Technical Information (OSTI)

    Antiperovskite Li 3 OCl superionic conductor films for solid-state Li-ion batteries Citation Details In-Document Search Title: Antiperovskite Li 3 OCl superionic conductor films ...

  3. Electrochemistry of LiCl-Li2O-H2O Molten Salt Systems

    SciTech Connect (OSTI)

    Natalie J. Gese; Batric Pesic

    2013-03-01

    Uranium can be recovered from uranium oxide (UO2) spent fuel through the combination of the oxide reduction and electrorefining processes. During oxide reduction, the spent fuel is introduced to molten LiCl-Li2O salt at 650 degrees C and the UO2 is reduced to uranium metal via two routes: (1) electrochemically, and (2) chemically by lithium metal (Li0) that is produced electrochemically. However, the hygroscopic nature of both LiCl and Li2O leads to the formation of LiOH, contributing hydroxyl anions (OH-), the reduction of which interferes with the Li0 generation required for the chemical reduction of UO2. In order for the oxide reduction process to be an effective method for the treatment of uranium oxide fuel, the role of moisture in the LiCl-Li2O system must be understood. The behavior of moisture in the LiCl-Li2O molten salt system was studied using cyclic voltammetry, chronopotentiometry and chronoamperometry, while reduction to hydrogen was confirmed with gas chromatography.

  4. A=11Li (68AJ02)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    68AJ02) (See the Isobar Diagram for 11Li) 11Li has been identified in the 5.3 GeV proton bombardment of uranium. It is particle stable (PO66H). See also (GA66C, CO67A

  5. A=10Li (74AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10B: see (HA68V), the mass excess of 10Li, (M - A) 33.10 0.06 MeV (AB73D). The breakup energy into 9Li + n is then -0.06 0.06 MeV. Using the calculated values suggested...

  6. A=8Li (59AJ76)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    one event corresponding to the transition to an excited state at 0.7 0.2 MeV. 3. 7Li(n, )8Li Qm 2.035 The thermal capture cross section is 33 5 mb (HU47A), 42 10 mb...

  7. Nanoscale imaging of fundamental Li battery chemistry: solid...

    Office of Scientific and Technical Information (OSTI)

    Nanoscale imaging of fundamental Li battery chemistry: solid-electrolyte interphase ... Citation Details In-Document Search Title: Nanoscale imaging of fundamental Li battery ...

  8. Enabling Future Li-Ion Battery Recycling | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Future Li-Ion Battery Recycling Title Enabling Future Li-Ion Battery Recycling Publication Type Presentation Year of Publication 2014 Authors Gaines, LL Abstract Presentation made...

  9. Key Parameters Governing the Energy Density of Rechargeable Li...

    Office of Scientific and Technical Information (OSTI)

    of Rechargeable LiS Batteries Citation Details In-Document Search Title: Key Parameters Governing the Energy Density of Rechargeable LiS Batteries Authors: Gao, Jie ; ...

  10. Electrode Materials for Rechargeable Li-ion Batteries: a New...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrode Materials for Rechargeable Li-ion Batteries: a New Synthetic Approach ... multiple cycles which enables Li-ion batteries with exceptionally high-power.

    This ...

  11. Atsun Solar Electric Technology Co Ang Li Tiansheng | Open Energy...

    Open Energy Info (EERE)

    Co (Ang Li Tiansheng) Place: Zaozhuang, Shandong Province, China Product: Chinese PV cell and module maker. References: Atsun Solar Electric Technology Co (Ang Li...

  12. A=9Li (1974AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4AJ01) (See Energy Level Diagrams for 9Li) GENERAL: See also Table 9.1 [Table of Energy Levels] (in PDF or PS). Model calculations: (1966BA26). Special reactions: (1965DO13, 1966GA15, 1966KL1C, 1967AU1B, 1967CA1J, 1967HA10, 1968DO1C, 1972VO06, 1973KO1D, 1973MU12, 1973WI15). Other topics: (1972CA37, 1972PN1A, 1973JU2A). Ground state properties: (1966BA26, , 1969JA1M). Mass of 9Li: From the Q-value of 18O(7Li, 16O)9Li, the atomic mass excess of 9Li is 24.9654 ± 0.005 MeV (1969NE1E; prelim.

  13. Li2Se as a Neutron Scintillator

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Du, Mao-Hua; Shi, Hongliang; Singh, David J.

    2015-06-23

    We show that Li2Se:Te is a potential neutron scintillator material based on density functional calculations. Li2Se exhibits a number of properties favorable for efficient neutron detection, such as a high Li concentration for neutron absorption, a small effective atomic mass and a low density for reduced sensitivity to background gamma rays, and a small band gap for a high light yield. Our calculations show that Te doping should lead to the formation of deep acceptor complex VLi-TeSe, which can facilitate efficient light emission, similar to the emission activation in Te doped ZnSe.

  14. A=6Li (2002TI10)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2002TI10) (See Energy Level Diagrams for 6Li) GENERAL: References to articles on general properties of 6He published since the previous review (1988AJ01) are grouped into categories and isted, along with brief descriptions of each item, in the General Tables for 6Li located on our website at (www.tunl.duke.edu/NuclData/General_Tables/6li.shtml). See also Table Prev. Table 6.4 preview 6.4 [Table of Energy Levels] (in PDF or PS). Ground State Properties: μ = +0.8220473(6) nm, +0.8220567(3) nm:

  15. Antiperovskite Li 3 OCl superionic conductor films for solid-state Li-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lü, Xujie; Howard, John W.; Chen, Aiping; Zhu, Jinlong; Li, Shuai; Wu, Gang; Dowden, Paul; Xu, Hongwu; Zhao, Yusheng; Jia, Quanxi

    2016-02-02

    We prepared antiperovskite Li3OCl superionic conductor films via pulsed laser deposition using a composite target. A significantly enhanced ionic conductivity of 2.0 × 10-4 S cm-1 at room temperature is achieved, and this value is more than two orders of magnitude higher than that of its bulk counterpart. Moreover, the applicability of Li3OCl as a solid electrolyte for Li-ion batteries is demonstrated.

  16. Microsoft Word - li_z.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Cloud Liquid Water Path and Its Potential for Rain Detection Z. Li, R. Chen, and F-L Chang Earth System Science Interdisciplinary Center, University of Maryland College Park,...

  17. A=13Li (1991AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    91AJ01) (Not illustrated) 13Li has not been observed: see (1986AJ01). The calculated value of its mass excess is 60.34 MeV [see (1981AJ01)]: 13Li would then be unstable with respect to 11Li + 2n by 3.34 MeV. (1985PO10) calculate [in a (0 + 1)ℏω model space] that the first four states of 13Li at 0, 1.42, 2.09 and 2.77 MeV have, respectively, Jπ = 3/2-, 7/2-, 1/2-, 5/2-. See also (1987PE1C, 1989OG1B) and (1988POZS, 1988ZV1A

  18. A=15Li (1991AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    91AJ01) (Not illustrated) 15Li has not been observed. Its atomic mass excess is calculated to be 81.60 MeV: see (1981AJ01). It is then unstable with respect to decay into 14Li + n and 13Li + 2n by 1.2 and 5.1 MeV, respectively. (1985PO10) calculate [in a (0 + 1)ℏω model space] that the first four states of 15Li at 0, 0.73, 2.39 and 2.77 MeV have, respectively, Jπ = 3/2-, 1/2-, 7/2- and 5/2-. See also (1988POZS; theor.)

  19. A=8Li (74AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cross section, comparable to the geometric value, is understood in terms of the ( + t) cluster nature of 7Li (RO62C). Cross sections for this reaction have recently been...

  20. A=11Li (1990AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    increase in matter radii with increasing A and do not support the idea of a neutron halo in 11Li (1988POZS; prelim.). See, however, (1988TA1A). Fragmentation cross sections of...

  1. A=7Li (59AJ76)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    59AJ76) (See the Energy Level Diagram for 7Li) GENERAL: See also Table 7.1 [Table of Energy Levels] (in PDF or PS). Theory: See (AU55, DA55, LA55A, AB56, FE56, KU56, ME56, FE57C, FR57, LE57F, MA57E, MA57J, SO57, HA58D, SK58). 1. 3H(α, γ)7Li Qm = 2.465 For Eα = 0.5 to 1.9 MeV, capture radiation is observed to 7Li(0) and 7Li*(0.48), with intensity ratio 5 : 2. The smooth rise of the cross section suggests a direct capture process. The angular distribution is not isotropic, indicating l > 0

  2. Construction Consultants, L.I., Inc.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mr. Eric Baumack Senior Project Manager Construction Consultants L.I., Inc. 36 East 2 nd Street Riverhead, New York 11901 WEL-2015-05 Dear Mr. Baumack: The Office of Enterprise Assessments' Office of Enforcement has completed an investigation into an electrical shock incident involving a worker employed by a subcontractor to Construction Consultants L.I., Inc. (CCLI) at the Brookhaven National Laboratory (BNL). CCLI is a first-tier subcontractor to Brookhaven Science Associates, LLC (BSA),

  3. Excitation functions of {sup 6,7}Li+{sup 7}Li reactions at low energies

    SciTech Connect (OSTI)

    Prepolec, L.; Soic, N.; Blagus, S.; Miljanic, D.; Siketic, Z.; Skukan, N.; Uroic, M.; Milin, M.

    2009-08-26

    Differential cross sections of {sup 6,7}Li+{sup 7}Li nuclear reactions have been measured at forward angles (10 deg. and 20 deg.), using particle identification detector telescopes, over the energy range 2.75-10.00 MeV. Excitation functions have been obtained for low-lying residual-nucleus states. The well pronounced peak in the excitation function of {sup 7}Li({sup 7}Li,{sup 4}He){sup 10}Be(3.37 MeV,2{sup +}) at beam energy about 8 MeV, first observed by Wyborny and Carlson in 1971 at 0 deg., has been observed at 10 deg., but is less evident at 20 deg. The cross section obtained for the {sup 7}Li({sup 7}Li,{sup 4}He){sup 10}Be(g.s,0{sup +}) reaction is about ten times smaller. The well pronounced peak in the excitation function of {sup 7}Li({sup 7}Li,{sup 4}He){sup 10}Be(3.37 MeV,2{sup +}) reaction could correspond to excited states in {sup 14}C, at excitation energies around 30 MeV.

  4. A=5Li (1979AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9AJ01) (See Energy Level Diagrams for 5Li) GENERAL: See also (1974AJ01) and Table 5.3 [Table of Energy Levels] (in PDF or PS) here. Model calculations: (1975KR1A). Special states: (1974GO13, 1974IR04, 1976IR1B). Astrophysical questions: (1974RA1C, 1978ME1C). Special reactions: (1975BR1A, 1976VA29, 1978ME1C). Reactions involving pions: (1973AR1B, 1974AM01). Applied topics: (1975HU1A). Other topics: (1974GO13, 1974IR04, 1976IR1B, 1978GO1D). Ground state of 5Li: (1975BE31). 1. 3He(d, γ)5Li Qm =

  5. A=5Li (59AJ76)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    59AJ76) (See the Energy Level Diagram for 5Li) See Table 5.3 [Table of Energy Levels] (in PDF or PS). 1. 3H(3He, n)5Li Qm = 10.297 Not reported. 2. 3He(d, γ)5Li Qm = 16.555 The excitation curve measured from Ed = 0.2 to 2.85 MeV shows a broad maximum at Ed = 0.45 ± 0.04 MeV (Eγ = 16.6 ± 0.2, σ = 50 ± 10 μb, Γγ = 11 ± 2 eV). Above this maximum, non-resonant capture is indicated by a slow rise of the cross section. The radiation appears to be isotropic to ± 10% at Ed = 0.58 MeV,

  6. A=6Li (1979AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    79AJ01) (See Energy Level Diagrams for 6Li) GENERAL: See also (1974AJ01) and Table 6.2 [Table of Energy Levels] (in PDF or PS) here. Shell model: (1974KA11, 1975DI04, 1975GO1B, 1975VE01, 1976CE03, 1976GH1A). Collective, rotational and deformed models: (1974BO25). Cluster and α-particle models: (1972KR1A, 1973DO09, 1973LI23, 1974BA30, 1974GR24, 1974JA1K, 1974KA11, 1974NO03, 1974PA1B, 1974SH08, 1974WO1B, 1975BL1C, 1975GO08, 1975GR26, 1975HA48, 1975KR1A, 1975LE1A, 1975LI1C, 1975MI09, 1975NO03,

  7. Re-evaluation of the eutectic region of the LiBr-KBr-LiF system

    SciTech Connect (OSTI)

    Redey, L.; Guidotti, R.A.

    1996-05-01

    The separator pellet in a thermal battery consists of electrolyte immobilized by a binder (typically, MgO powder). The melting point of the electrolyte determines the effective operating window for its use in a thermal battery. The development of a two-hour thermal battery required the use of a molten salt that had a lower melting point and larger liquidus range than the LiCl-KCl eutectic which melts at 352 C. Several candidate eutectic electrolyte systems were evaluated for their suitability for this application. One was the LiCl-LiBr-KBr eutectic used at Argonne National Laboratories for high-temperature rechargeable batteries for electric-vehicle applications. Using a custom-designed high-temperature conductivity cell, the authors were able to readily determine the liquidus region for the various compositions studied around the original eutectic for the LiBr-KBr-LiF system. The actual eutectic composition was found to be 60.0 m/o LiBr-37.5 m/o KBr-2.5 m/o LiF with a melting point of 324 {+-} 0.5 C.

  8. Low energy detectors: 6Li-glass scintillators (Conference) |...

    Office of Scientific and Technical Information (OSTI)

    Low energy detectors: 6Li-glass scintillators Citation Details In-Document Search Title: Low energy detectors: 6Li-glass scintillators You are accessing a document from the ...

  9. Predicting Reaction Sequences for Li-S Batteries - Joint Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 2, 2014, Research Highlights Predicting Reaction Sequences for Li-S Batteries Computed ... polysulfide species will be used to identify more stable electrolytes for Li-S batteries. ...

  10. Hydrogen storage in LiH: A first principle study

    SciTech Connect (OSTI)

    Banger, Suman Nayak, Vikas Verma, U. P.

    2014-04-24

    First principles calculations have been performed on the Lithium hydride (LiH) using the full potential linearized augmented plane wave (FP-LAPW) method within the framework of density functional theory. We have extended our calculations for LiH+2H and LiH+6H in NaCl structure. The structural stability of three compounds have been studied. It is found that LiH with 6 added Hydrogen atoms is most stable. The obtained results for LiH are in good agreement with reported experimental data. Electronic structures of three compounds are also studied. Out of three the energy band gap in LiH is ∼3.0 eV and LiH+2H and LiH+6H are metallic.

  11. Shanghai Shen Li High Tech Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Shen Li High Tech Co Ltd Jump to: navigation, search Name: Shanghai Shen-Li High Tech Co Ltd Place: Shanghai, Shanghai Municipality, China Zip: 201400 Product: Focused on the...

  12. Enforcement Letter, Construction Consultants L.I., Inc. | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Construction Consultants L.I., Inc. Enforcement Letter, Construction Consultants L.I., Inc. December 4, 2015 Worker Safety and Health Enforcement Letter issued to Construction Consultants L.I., Inc. On December 4, 2015, the U.S. Department of Energy (DOE) Office of Enterprise Assessments' Office of Enforcement issued an Enforcement Letter (WEL-2015-05) to Construction Consultants L.I., Inc., relating to an electrical shock suffered by a subcontractor while working on a meteorological

  13. Predictive Models of Li-ion Battery Lifetime (Presentation) (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Predictive Models of Li-ion Battery Lifetime (Presentation) Citation Details In-Document Search Title: Predictive Models of Li-ion Battery Lifetime (Presentation) Predictive models of Li-ion battery reliability must consider a multiplicity of electrochemical, thermal and mechanical degradation modes experienced by batteries in application environments. Complicating matters, Li-ion batteries can experience several path dependent degradation trajectories dependent on storage

  14. Liberia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    volume of work justifies the need for dedicated staff. The counterpart Off-Grid Power and Renewable Energy Unit is expected to be established concurrently. The Grid and Off-Grid...

  15. Probing the failure mechanism of nanoscale LiFePO₄ for Li-ion batteries

    SciTech Connect (OSTI)

    Gu, Meng; Shi, Wei; Zheng, Jianming; Yan, Pengfei; Zhang, Ji-guang; Wang, Chongmin

    2015-05-18

    LiFePO4 is a high power rate cathode material for lithium ion battery and shows remarkable capacity retention, featuring a 91% capacity retention after 3300 cycles. In this work, we use high-resolution transmission electron microscopy (HRTEM), energy dispersive x-ray spectroscopy (EDS), and electron energy loss spectroscopy (EELS) to study the gradual capacity fading mechanism of LiFePO4 materials. We found that upon prolonged electrochemical cycling of the battery, the LiFePO4 cathode shows surface amorphization and loss of oxygen species, which directly contribute to the gradual capacity fading of the battery. The finding is of great importance for the design and improvement of new LiFePO4 cathode for high-energy and high-power rechargeable battery for electric transportation.

  16. Thermal Stability of LiPF 6 Salt and Li-ion Battery Electrolytes...

    Office of Scientific and Technical Information (OSTI)

    In the presence of water (300 ppm) in the carrier gas, its decomposition onset temperature is lowered as a result of direct thermal reaction between LiPF 6 and water vapor to form ...

  17. A=10Li (1988AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MeV) corresponds to the ground state. 10Lig.s. would then be unbound with respect to breakup into 9Li + n by 0.80 0.25 MeV: see (1979AJ01). See also (1986GI10, 1987AB15),...

  18. A=10Li (1979AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    width of the ground state is 1.2 0.3 MeV. 10Lig.s. is unbound with respect to breakup into 9Li + n by 0.80 0.25 MeV (1975WI26). See also (1974BA15, 1974CE1A, 1974TH01,...

  19. A=10Li (1984AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MeV) corresponds to the ground state. 10Lig.s. would the be unbound with respect to breakup into 9Li + n by 0.80 0.25 MeV (1975WI26). However (1979AB11, 1980AB16), on the...

  20. 6Li foil thermal neutron detector

    SciTech Connect (OSTI)

    Ianakiev, Kiril D; Swinhoe, Martyn T; Favalli, Andrea; Chung, Kiwhan; Macarthur, Duncan W

    2010-01-01

    In this paper we report on the design of a multilayer thermal neutron detector based on {sup 6}Li reactive foil and thin film plastic scintillators. The {sup 6}Li foils have about twice the intrinsic efficiency of {sup 10}B films and about four times higher light output due to a unique combination of high energy of reaction particles, low self absorption, and low ionization density of tritons. The design configuration provides for double sided readout of the lithium foil resulting in a doubling of the efficiency relative to a classical reactive film detector and generating a pulse height distribution with a valley between neutron and gamma signals similar to {sup 3}He tubes. The tens of microns thickness of plastic scintillator limits the energy deposited by gamma rays, which provides the necessary neutron/gamma discrimination. We used MCNPX to model a multilayer Li foil detector design and compared it with the standard HLNCC-II (18 {sup 3}He tubes operated at 4 atm). The preliminary results of the {sup 6}Li configuration show higher efficiency and one third of the die-away time. These properties, combined with the very short dead time of the plastic scintillator, offer the potential of a very high performance detector.

  1. Epitaxial thin film growth of LiH using a liquid-Li atomic template

    SciTech Connect (OSTI)

    Oguchi, Hiroyuki; Ikeshoji, Tamio; Orimo, Shin-ichi; Ohsawa, Takeo; Shiraki, Susumu; Hitosugi, Taro; Kuwano, Hiroki

    2014-11-24

    We report on the synthesis of lithium hydride (LiH) epitaxial thin films through the hydrogenation of a Li melt, forming abrupt LiH/MgO interface. Experimental and first-principles molecular dynamics studies reveal a comprehensive microscopic picture of the crystallization processes, which sheds light on the fundamental atomistic growth processes that have remained unknown in the vapor-liquid-solid method. We found that the periodic structure that formed, because of the liquid-Li atoms at the film/MgO-substrate interface, serves as an atomic template for the epitaxial growth of LiH crystals. In contrast, films grown on the Al{sub 2}O{sub 3} substrates indicated polycrystalline films with a LiAlO{sub 2} secondary phase. These results and the proposed growth process provide insights into the preparation of other alkaline metal hydride thin films on oxides. Further, our investigations open the way to explore fundamental physics and chemistry of metal hydrides including possible phenomena that emerge at the heterointerfaces of metal hydrides.

  2. Correlation of anisotropy and directional conduction in β-Li3PS4 fast Li+ conductor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Yan; Cai, Lu; Liu, Zengcai; dela Cruz, Clarina R.; Liang, Chengdu; An, Ke

    2015-07-06

    Our letter reports the correlation of anisotropy and directional conduction in the fast Li+ conductor β-Li3PS4, one of the low-symmetry crystalline electrolyte candidates. The material has both high conductivity and good stability that serves well for the large-scale energy storage applications of all-solid-state lithium ion batteries. The anisotropic physical properties, demonstrated here by the thermal expansion coefficients, are crucial for compatibility in the solid-state system and battery performance. Neutron and X-ray powder diffraction measurements were done to determine the crystal structure and thermal stability. Moreover, the crystallographic b-axis was revealed as a fast expansion direction, while negligible thermal expansion wasmore » observed along the a-axis around the battery operating temperatures. The anisotropic behavior has its structural origin from the Li+ conduction channels with incomplete Li occupancy and a flexible connection of LiS4 and PS4 tetrahedra within the framework. This indicates a strong correlation in the direction of the ionic transport in the low-symmetry Li+ conductor.« less

  3. Making Li-air batteries rechargeable: material challenges

    SciTech Connect (OSTI)

    Shao, Yuyan; Ding, Fei; Xiao, Jie; Zhang, Jian; Xu, Wu; Park, Seh Kyu; Zhang, Jiguang; Wang, Yong; Liu, Jun

    2013-02-25

    A Li-air battery could potentially provide three to five times higher energy density/specific energy than conventional batteries, thus enable the driving range of an electric vehicle comparable to a gasoline vehicle. However, making Li-air batteries rechargeable presents significant challenges, mostly related with materials. Herein, we discuss the key factors that influence the rechargeability of Li-air batteries with a focus on nonaqueous system. The status and materials challenges for nonaqueous rechargeable Li-air batteries are reviewed. These include electrolytes, cathode (electocatalysts), lithium metal anodes, and oxygen-selective membranes (oxygen supply from air). The perspective of rechargeable Li-air batteries is provided.

  4. Electrolyte effects in Li(Si)/FeS{sub 2} thermal batteries

    SciTech Connect (OSTI)

    Guidotti, R.A.; Reinhardt, F.W.

    1994-10-01

    The most common electrochemical couple for thermally activated (``thermal``) batteries is the Li-alloy/FeS{sub 2} system. The most common Li-alloys used for anodes are 20% Li-80% Al and 44% Li-56% Si (by weight); liquid Li immobilized with iron powder has also been used. The standard electrolyte that has been used in thermal batteries over the years is the LiCl-KCl eutectic that melts at 352{degrees}C. The LiCl-LiBr-LiF eutectic had the best rate and power characteristics. This electrolyte melts at 436{degrees}C and shows very low polarization because of the absence of Li+ gradients common with the LiCl-KCl eutectic. The low-melting electrolytes examined included a KBr-LiBr-LiCl eutectic (melting at 321{degrees}C), a LiBr-KBr-LiF eutectic (melting at 313{degrees}C), and a CsBr-LiBr-KBr eutectic (melting at 238{degrees}C). The CsBr-based salt had poor conductivity and was not studied further. The LiBr-KBr-LiF eutectic outperformed the KBr-LiBr-LiCl eutectic and was selected for more extensive testing. Because of their lower melting points and larger liquidi relative to the LiCl-KCl eutectic, the low-melting electrolytes are prime candidates for long-life applications (i.e., for activated lives of one hour or more). This paper will detail the relative performance of the Li(Si)/FeS{sub 2} couple using primarily the LiCl-KCl (standard) eutectic, the LiCl-LiBr-LiF (all-Li) eutectic, and the LiBr-KBr-LiF (low-melting) eutectic electrolytes. Most of the tests were conducted with 5-cell batteries; validation tests were also carried out with appropriate full-sized batteries.

  5. Solution-processable glass LiI-Li4SnS4 superionic conductors for all-solid-state Li-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kern Ho Park; Oh, Dae Yang; Choi, Young Eun; Nam, Young Jin; Han, Lili; Kim, Ju -Young; Xin, Huolin; Lin, Feng; Oh, Seung M.; Jung, Yoon Seok

    2015-12-22

    The new, highly conductive (4.1 × 10–4 S cm–1 at 30 °C), highly deformable, and dry-air-stable glass 0.4LiI-0.6Li4SnS4 is prepared using a homogeneous methanol solution. Furthermore, the solution process enables the wetting of any exposed surface of the active materials with highly conductive solidified electrolytes (0.4LiI-0.6Li4SnS4), resulting in considerable improvements in electrochemical performances of these electrodes over conventional mixture electrodes.

  6. A=5Li (1984AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    84AJ01) (See Energy Level Diagrams for 5Li) GENERAL: See also (1979AJ01) and Table 5.3 [Table of Energy Levels] (in PDF or PS) here. Model calculations:(1978RE1A, 1979MA1J, 1980HA1M, 1981BE10, 1982FI13). Special states:(1981BE10, 1981KU1H, 1982EM1A, 1982FI13, 1982FR1D). Complex reactions involving 5Li:(1979BR02, 1979RU1B). Reactions involving pions:(1978BR1V, 1979SA1W, 1983AS02). Reactions involving antiprotons:(1981YA1B). Hypernuclei:(1980IW1A, 1981KO1V, 1981KU1H, 1983GI1C). Other

  7. A=5Li (66LA04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    66LA04) (See Energy Level Diagrams for 5Li) GENERAL: See Table 5.4 [Table of Energy Levels] (in PDF or PS). See also (BA59N, MI59B, PE60C, PH60A, VA61K, DI62B, IN62, KU63I, BA64HH, GR64C, SA64G, ST64). 1. 3He(d, γ)5Li Qm = 16.388 The excitation curve measured from Ed = 0.2 to 2.85 MeV shows a broad maximum at Ed = 0.45 ± 0.04 MeV (Eγ = 16.6 ± 0.2 MeV, σ = 50 ± 10 μb, Γγ = 11 ± 2 eV). Above this maximum, non-resonant capture is indicated by a slow rise of the cross section. The

  8. A=8Li (1984AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4AJ01) (See Energy Level Diagrams for 8Li) GENERAL: See also (1979AJ01) and Table 8.2 [Table of Energy Levels] (in PDF or PS). Special states: (1980OK01). Complex reactions involving 8Li: (1978BO1B, 1978DU1B, 1979BO22, 1979IV1A, 1980AN1T, 1980BO31, 1980GR10, 1980WI1L, 1981BO1X, 1981MO20, 1982BO35, 1982BO1Y, 1982GO1E, 1982GU1H, 1982MO1N). Muon and neutrino interactions: (1978BA1G). Reactions involving pions and other mesons: (1977VE1C, 1979BA16, 1980HA29, 1981JU1A, 1981NI03, 1982HA57).

  9. A=8Li (1988AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8AJ01) (See Energy Level Diagrams for 8Li) GENERAL: See also (1984AJ01) and Table 8.2 [Table of Energy Levels] (in PDF or PS) here. Nuclear models: (1983KU17, 1983SH38, 1984MO1H, 1984REZZ, 1984VA06, 1988WO04). Special states: (1982PO12, 1983KU17, 1984REZZ, 1984VA06, 1986XU02). Electromagnetic transitions: (1983KU17). Astrophysics: (1987MA2C). Complex reactions involving 8Li: (1983FR1A, 1983GU1A, 1983OL1A, 1983WI1A, 1984GR08, 1984HI1A, 1984LA27, 1985JA1B, 1985MA02, 1985MA13, 1985MO17, 1986AV1B,

  10. A=9Li (1984AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4AJ01) (See Energy Level Diagrams for 9Li) GENERAL: See also (1979AJ01) and Table 9.1 [Table of Energy Levels] (in PDF or PS). Model calculations: (1979LA06). Complex reactions involving 9Li: (1978DU1B, 1979AL22, 1979BO22, 1979JA1C, 1980BO31, 1980WI1L, 1981BO1X, 1981MO20, 1982BO1Y). Muon and neutrino capture and reactions: (1980MU1B). Reactions involving pions and other mesons (See also reaction 3.): (1978FU09, 1979BO21, 1979PE1C, 1979WI1E, 1980NI03, 1980ST15, 1981YA1A). Hypernuclei: (1978DA1A,

  11. A=9Li (1988AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8AJ01) (See Energy Level Diagrams for 9Li) GENERAL: See also (1984AJ01) and Table 9.1 [Table of Energy Levels] (in PDF or PS). Model calculations: (1983KU17, 1984CH24, 1984VA06). Special states: (1983KU17, 1984VA06). Electromagnetic interactions: (1983KU17). Astrophysical questions: (1987MA2C). Complex reactions involving 9Li: (1983OL1A, 1983WI1A, 1984GR08, 1985JA1B, 1985MA02, 1985MO17, 1986CS1A, 1986HA1B, 1986SA30, 1986WE1C, 1987BA38, 1987CH26, 1987JA06, 1987KO1Z, 1987SH1K, 1987TAZU, 1987WA09,

  12. FIRST_Research Perspective_Li

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1. Structure factor obtained from MD (a) and SAXS (b) at different temperatures: comparison of spatial heterogeneity from snapshots (c) of DILs (top) and MILs (bottom) FIRST Center Research Perspective: Nanoscale Heterogeneity and Dynamics of Room Temperature Ionic Liquids Song Li Vanderbilt University Jianchang Guo, Kee Sung Han, Jose L. Bañuelos, Edward W. Hagaman, Robert W. Shaw Oak Ridge National Laboratory Research Summary: An increase of the alkyl chain length of the cation of room

  13. Li2OHCl crystalline electrolyte for stable metallic lithium anodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hood, Zachary D.; Wang, Hui; Samuthira Pandian, Amaresh; Keum, Jong Kahk; Liang, Chengdu

    2016-01-22

    In a classic example of stability from instability, we show that Li2OHCl solid electrolyte forms a stable solid electrolyte interface (SEI) with metallic lithium anode. The Li2OHCl solid electrolyte can be readily achieved through simple mixing of air-stable LiOH and LiCl precursors with a mild processing temperature under 400 °C. Additionally, we show that continuous, dense Li2OHCl membranes can be fabricated at temperatures less than 400 °C, standing in great contrast to current processing temperatures of over 1600 °C for most oxide-based solid electrolytes. The ionic conductivity and Arrhenius activation energy were explored for the LiOH-LiCl system of crystalline solidmore » electrolytes where Li2OHCl with increased crystal defects was found to have the highest ionic conductivity and reasonable Arrhenius activation energy. The Li2OHCl solid electrolyte displays stability against metallic lithium, even in extreme conditions past the melting point of lithium metal. Furthermore, to understand this excellent stability, we show that SEI formation is critical in stabilizing the interface between metallic lithium and the Li2OHCl solid electrolyte.« less

  14. Predictive Materials Modeling for Li-Air Battery Systems | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leadership Computing Facility Predictive Materials Modeling for Li-Air Battery Systems PI Name: Larry Curtiss PI Email: curtiss@anl.gov Institution: Argonne National Laboratory Allocation Program: INCITE Allocation Hours at ALCF: 50 Million Year: 2015 Research Domain: Materials Science A rechargeable lithium-air (Li-air) battery can potentially store five to ten times the energy of a lithium-ion (Li-ion) battery of the same weight. Realizing this enormous potential presents a challenging

  15. Nanoscale imaging of fundamental Li battery chemistry: solid...

    Office of Scientific and Technical Information (OSTI)

    Nanoscale imaging of fundamental Li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters Prev Next Title: Nanoscale ...

  16. Prediction of superconductivity in Li-intercalated bilayer phosphorene

    SciTech Connect (OSTI)

    Huang, G. Q.; Xing, Z. W.; Xing, D. Y.

    2015-03-16

    It is shown that bilayer phosphorene can be transformed from a direct-gap semiconductor to a BCS superconductor by intercalating Li atoms. For the Li-intercalated bilayer phosphorene, we find that the electron occupation of Li-derived band is small and superconductivity is intrinsic. With increasing the intercalation of Li atoms, both increased metallicity and strong electron-phonon coupling are favorable for the enhancement of superconductivity. The obtained electron-phonon coupling λ can be larger than 1 and the superconducting temperature T{sub c} can be increased up to 16.5 K, suggesting that phosphorene may be a good candidate for a nanoscale superconductor.

  17. Construction of a Li Ion Battery (LIB) Cathode Production Plant...

    Broader source: Energy.gov (indexed) [DOE]

    Process for Low Cost Domestic Production of LIB Cathode Materials Process for Low Cost Domestic Production of LIB Cathode Materials Construction of a Li Ion Battery (LIB) Cathode ...

  18. Li ion Motors Corp formerly EV Innovations Inc | Open Energy...

    Open Energy Info (EERE)

    Vegas, Nevada Zip: 89110 Sector: Vehicles Product: Las Vegas - based manufacturer of lithium-powered plug-in vehicles. References: Li-ion Motors Corp (formerly EV Innovations...

  19. Electrical conduction of LiF interlayers in organic diodes

    SciTech Connect (OSTI)

    Bory, Benjamin F.; Janssen, Ren A. J.; Meskers, Stefan C. J.; Gomes, Henrique L.; Leeuw, Dago M. de

    2015-04-21

    An interlayer of LiF in between a metal and an organic semiconductor is commonly used to improve the electron injection. Here, we investigate the effect of moderate bias voltages on the electrical properties of Al/LiF/poly(spirofluorene)/Ba/Al diodes by systematically varying the thickness of the LiF layer (2-50?nm). Application of forward bias V below the bandgap of LiF (V?LiF/poly(spirofluorene) hetero-junction. Electrons are trapped on the poly(spirofluorene) side of the junction, while positively charged defects accumulate in the LiF with number densities as high as 10{sup 25}/m{sup 3}. Optoelectronic measurements confirm the built-up of aggregated, ionized F centres in the LiF as the positive trapped charges. The charged defects result in efficient transport of electrons from the polymer across the LiF, with current densities that are practically independent of the thickness of the LiF layer.

  20. Predictive Models of Li-ion Battery Lifetime (Presentation) Smith...

    Office of Scientific and Technical Information (OSTI)

    Predictive Models of Li-ion Battery Lifetime (Presentation) Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G.; Shi, Y.; Pesaran, A. 25 ENERGY STORAGE; 33 ADVANCED PROPULSION...

  1. Degradation Mechanisms in Li-Ion Battery Electrolytes Uncovered...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Degradation Mechanisms in Li-Ion Battery Electrolytes Uncovered by In-Situ Scanning ... to evaluate stability and degradation in battery electrolytes Developed a rapid method ...

  2. Notices FOR FURTHER INFORMATION CONTACT: Michael Li, Policy Advisor...

    Office of Environmental Management (EM)

    12, 2016 Notices FOR FURTHER INFORMATION CONTACT: Michael Li, Policy Advisor, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy, 1000 Independence Ave. ...

  3. LiDAR (Lewicki & Oldenburg, 2005) | Open Energy Information

    Open Energy Info (EERE)

    Technique LiDAR Activity Date Usefulness useful DOE-funding Unknown References Jennifer L. Lewicki, Curtis M. Oldenburg (2005) Strategies To Detect Hidden Geothermal Systems...

  4. LiDAR (Lewicki & Oldenburg, 2004) | Open Energy Information

    Open Energy Info (EERE)

    Technique LiDAR Activity Date Usefulness useful DOE-funding Unknown References Jennifer L. Lewicki, Curtis M. Oldenburg (2004) Strategies For Detecting Hidden Geothermal Systems...

  5. Characterization of Li-ion Batteries using Neutron Diffraction...

    Broader source: Energy.gov (indexed) [DOE]

    Materials Characterization Capabilities at the High Temperature Materials Laboratory and HTML User Program Success Stories Characterization of Materials for Li-ion Batteries: ...

  6. Properties of (Ga,Mn)As codoped with Li

    SciTech Connect (OSTI)

    Miyakozawa, Shohei; Chen, Lin; Matsukura, Fumihiro; Ohno, Hideo

    2014-06-02

    We grow Li codoped (Ga,Mn)As layers with nominal Mn composition up to 0.15 by molecular beam epitaxy. The layers before and after annealing are characterized by x-ray diffraction, transport, magnetization, and ferromagnetic resonance measurements. The codoping with Li reduces the lattice constant and electrical resistivity of (Ga,Mn)As after annealing. We find that (Ga,Mn)As:Li takes similar Curie temperature to that of (Ga,Mn)As, but with pronounced magnetic moments and in-plane magnetic anisotropy, indicating that the Li codoping has nontrivial effects on the magnetic properties of (Ga,Mn)As.

  7. Characterization of Materials for Li-ion Batteries: Success Stories...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Success Stories from the High Temperature Materials Laboratory (HTML) User Program Characterization of Materials for Li-ion Batteries: Success Stories from the High...

  8. Measuring Li+ inventory losses in LiCoO2/graphite cells using Raman microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Snyder, Chelsea Marie; Apblett, Christopher A.; Grillet, Anne; Thomas Edwin Beechem; Duquette, David

    2016-03-25

    Here, the contribution from loss of Li+ inventory to capacity fade is described for slow rates (C/10) and long-term cycling (up to 80 cycles). It was found through electrochemical testing and ex-situ Raman analysis that at these slow rates, the entirety of capacity loss up to 80 cycles can be explained by loss of Li+ inventory in the cell. The Raman spectrum of LiCoO2 is sensitive to the state of lithiation and can therefore be leveraged to quantify the state of lithiation for individual particles. With these Raman derived estimates, the lithiation state of the cathode in the discharged statemore » is compared to electrochemical data as a function of cycle number. High correlation is found between Raman quantifications of cycleable lithium and the capacity fade. Additionally, the linear relationship between discharge capacity and cell overpotential suggests that the loss of capacity stems from an impedance rise of the electrodes, which based on Li inventory losses, is caused by SEI formation and repair.« less

  9. Predicted Structure, Thermo-Mechanical Properties and Li Ion Transport in LiAlF4 Glass

    SciTech Connect (OSTI)

    Stechert, T. R.; Rushton, M. J. D.; Grimes, R. W.; Dillon, A. C.

    2012-08-15

    Materials with the LiAlF{sub 4} composition are of interest as protective electrode coatings in Li ion battery applications due to their high cationic conductivity. Here classical molecular dynamics calculations are used to produce amorphous model structures by simulating a quench from the molten state. These are analysed in terms of their individual pair correlation functions and atomic coordination environments. This indicates that amorphous LiAlF{sub 4} is formed of a network of corner sharing AlF{sub 6} octahedra. Li ions are distributed within this network, primarily associated with non-bridging fluorine atoms. The nature of the octahedral network is further analysed through intra- and interpolyhedral bond angle distributions and the relative populations of bridging and non-bridging fluorine ions are calculated. Network topology is considered through the use of ring statistics, which indicates that, although topologically well connected, LiAlF{sub 4} contains an appreciable number of corner-linked branch-like AlF{sub 6} chains. Thermal expansion values are determined above and below the predicted glass transition temperature of 1340 K. Finally, movement of Li ions within the network is examined with predictions of the mean squared displacements, diffusion coefficients and Li ion activation energy. Different regimes for lithium ion movement are identified, with both diffusive and sessile Li ions observed. For migrating ions, a typical trajectory is illustrated and discussed in terms of a hopping mechanism for Li transport.

  10. Characterization of low-melting electrolytes for potential geothermal borehole power supplies: The LiBr-KBr-LiF eutectic

    SciTech Connect (OSTI)

    Guidotti, R.A.; Reinhardt, F.W.

    1998-05-01

    The suitability of modified thermal-battery technology for use as a potential power source for geothermal borehole applications is under investigation. As a first step, the discharge processes that take place in LiSi/LiBr-KBr-LiF/FeS{sub 2} thermal cells were studied at temperatures of 350 C and 400 C using pelletized cells with immobilized electrolyte. Incorporation of a reference electrode allowed the relative contribution of each electrode to the overall cell polarization to be determined. The results of single-cell tests are presented, along with preliminary data for cells based on a lower-melting CsBr-LiBr-KBr eutectic salt.

  11. Primordial Li abundance and massive particles

    SciTech Connect (OSTI)

    Latin-Capital-Letter-Eth apo, H.

    2012-10-20

    The problem of the observed lithium abundance coming from the Big Bang Nucleosynthesis is as of yet unsolved. One of the proposed solutions is including relic massive particles into the Big Bang Nucleosynthesis. We investigated the effects of such particles on {sup 4}HeX{sup -}+{sup 2}H{yields}{sup 6}Li+X{sup -}, where the X{sup -} is the negatively charged massive particle. We demonstrate the dominance of long-range part of the potential on the cross-section.

  12. A=3Li (2010PU04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2010PU04) GENERAL: The previous A = 3 evaluations (1975FI08, 1987TI07) identified reactions 1 through 4 below as possible candidates for the observation of a bound or resonant state of three protons. An additional possibility would be the double charge exchange reaction 3H(π+, π-)3Li. There is a report of this reaction (2001PA47), but the pion energy was high, 500 MeV, and the focus of the experiment was on the role of the Δ component in the 3H ground state, not on the possible presence of a

  13. Update on Performance Improvement of Sandia-Built Li/(CFx)n and...

    Office of Scientific and Technical Information (OSTI)

    Update on Performance Improvement of Sandia-Built Li(CFx)n and LiFePO4 Cells. Citation Details In-Document Search Title: Update on Performance Improvement of Sandia-Built Li...

  14. Update on Performance Improvement of Sandia-Built Li/(CFx)n and...

    Office of Scientific and Technical Information (OSTI)

    Update on Performance Improvement of Sandia-Built Li(CFx)n and LiFePO4 Cells. Citation Details In-Document Search Title: Update on Performance Improvement of Sandia-Built Li(CFx)n ...

  15. Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA...

    Broader source: Energy.gov (indexed) [DOE]

    MB) More Documents & Publications Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA Li-Ion Battery Cell Manufacturing 2010 DOE, Li-Ion Battery Cell Manufacturing

  16. Predicting Chemical Pathways for Li-O2 Batteries - Joint Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 6, 2014, Research Highlights Predicting Chemical Pathways for Li-O2 Batteries ... figure) and (LiO2)6 (red curve, upper figure) to Li2O2 using quantum chemical theory. ...

  17. Selected test results from the LiFeBatt iron phosphate Li-ion battery.

    SciTech Connect (OSTI)

    Ingersoll, David T.; Hund, Thomas D.

    2008-09-01

    In this paper the performance of the LiFeBatt Li-ion cell was measured using a number of tests including capacity measurements, capacity as a function of temperature, ohmic resistance, spectral impedance, high power partial state of charge (PSOC) pulsed cycling, pulse power measurements, and an over-charge/voltage abuse test. The goal of this work was to evaluate the performance of the iron phosphate Li-ion battery technology for utility applications requiring frequent charges and discharges, such as voltage support, frequency regulation, and wind farm energy smoothing. Test results have indicated that the LiFeBatt battery technology can function up to a 10C{sub 1} discharge rate with minimal energy loss compared to the 1 h discharge rate (1C). The utility PSOC cycle test at up to the 4C{sub 1} pulse rate completed 8,394 PSOC pulsed cycles with a gradual loss in capacity of 10 to 15% depending on how the capacity loss is calculated. The majority of the capacity loss occurred during the initial 2,000 cycles, so it is projected that the LiFeBatt should PSOC cycle well beyond 8,394 cycles with less than 20% capacity loss. The DC ohmic resistance and AC spectral impedance measurements also indicate that there were only very small changes after cycling. Finally, at a 1C charge rate, the over charge/voltage abuse test resulted in the cell venting electrolyte at 110 C after 30 minutes and then open-circuiting at 120 C with no sparks, fire, or voltage across the cell.

  18. A=07Li (66LA04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    66LA04) (See Energy Level Diagrams for 7Li) GENERAL: See (HU57D, BA59K, BA59N, BR59M, FE59E, MA59E, MA59H, KU60A, PE60E, PH60A, SH60C, TA60L, BA61H, BA61N, BL61C, CL61D, KH61, TA61G, TO61B, CL62E, CR62A, IN62, CH63, CL63C, KL63, SC63I, BE64H, GR64C, MA64HH, NE64C, OL64A, SA64G, BE65F, FA65A, JA65H, NE65, PR65). See also Table 7.1 [Table of Energy Levels] (in PDF or PS). Ground state: Q = -45 ± 5 mb (KA61F, VA63F, WH64); μ = +3.2564 nm (FU65E). 1. 4He(t, γ)7Li Qm = 2.467 Excitation functions

  19. Enabling the Future of Li-Ion Batteries | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enabling the Future of Li-Ion Batteries Title Enabling the Future of Li-Ion Batteries Publication Type Presentation Year of Publication 2015 Authors Gaines, LL Abstract...

  20. Significant Cost Improvement of Li-Ion Cells Through Non-NMP...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Significant Cost Improvement of Li-Ion Cells Through Non-NMP Electrode Coating, Direct Separator Coating, and Fast Formation Technologies Significant Cost Improvement of Li-Ion ...

  1. Localization of vacancies and mobility of lithium ions in Li{sub 2}ZrO{sub 3} as obtained by {sup 6,7}Li NMR

    SciTech Connect (OSTI)

    Baklanova, Ya. V., E-mail: baklanovay@ihim.uran.ru [Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, 91 Pervomaiskaya str., 620990 Ekaterinburg (Russian Federation); Arapova, I. Yu.; Buzlukov, A.L.; Gerashenko, A.P.; Verkhovskii, S.V.; Mikhalev, K.N. [Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences, 18 Kovalevskaya str., 620990 Ekaterinburg (Russian Federation); Denisova, T.A.; Shein, I.R.; Maksimova, L.G. [Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, 91 Pervomaiskaya str., 620990 Ekaterinburg (Russian Federation)

    2013-12-15

    The {sup 6,7}Li NMR spectra and the {sup 7}Li spinlattice relaxation rate were measured on polycrystalline samples of Li{sub 2}ZrO{sub 3}, synthesized at 1050 K and 1300 K. The {sup 7}Li NMR lines were attributed to corresponding structural positions of lithium Li1 and Li2 by comparing the EFG components with those obtained in the first-principles calculations of the charge density in Li{sub 2}ZrO{sub 3}. For both samples the line width of the central {sup 7}Li transition and the spinlattice relaxation time decrease abruptly at the temperature increasing above ?500 K, whereas the EFG parameters are averaged (??{sub Q}?=42 (5) kHz) owing to thermally activated diffusion of lithium ions. - Graphical abstract: Path of lithium ion hopping in lithium zirconate Li{sub 2}ZrO{sub 3}. - Highlights: Polycrystalline samples Li{sub 2}ZrO{sub 3} with monoclinic crystal structure synthesized at different temperatures were investigated by {sup 6,7}Li NMR spectroscopy. Two {sup 6,7}Li NMR lines were attributed to the specific structural positions Li1 and Li2. The distribution of vacancies was clarified for both lithium sites. The activation energy and pathways of lithium diffusion in Li{sub 2}ZrO{sub 3} were defined.

  2. Polymer electrolytes for a rechargeable li-Ion battery

    SciTech Connect (OSTI)

    Argade, S.D.; Saraswat, A.K.; Rao, B.M.L.; Lee, H.S.; Xiang, C.L.; McBreen, J.

    1996-10-01

    Lithium-ion polymer electrolyte battery technology is attractive for many consumer and military applications. A Li{sub x}C/Li{sub y}Mn{sub 2}O{sub 4} battery system incorporating a polymer electrolyte separator base on novel Li-imide salts is being developed under sponsorship of US Army Research Laboratory (Fort Monmouth NJ). This paper reports on work currently in progress on synthesis of Li-imide salts, polymer electrolyte films incorporating these salts, and development of electrodes and cells. A number of Li salts have been synthesized and characterized. These salts appear to have good voltaic stability. PVDF polymer gel electrolytes based on these salts have exhibited conductivities in the range 10{sup -4} to 10{sub -3} S/cm.

  3. Solution-processable glass LiI-Li4SnS4 superionic conductors for all-solid-state Li-ion batteries

    SciTech Connect (OSTI)

    Kern Ho Park; Oh, Dae Yang; Choi, Young Eun; Nam, Young Jin; Han, Lili; Kim, Ju -Young; Xin, Huolin; Lin, Feng; Oh, Seung M.; Jung, Yoon Seok

    2015-12-22

    The new, highly conductive (4.1 × 10–4 S cm–1 at 30 °C), highly deformable, and dry-air-stable glass 0.4LiI-0.6Li4SnS4 is prepared using a homogeneous methanol solution. Furthermore, the solution process enables the wetting of any exposed surface of the active materials with highly conductive solidified electrolytes (0.4LiI-0.6Li4SnS4), resulting in considerable improvements in electrochemical performances of these electrodes over conventional mixture electrodes.

  4. Structure of neutron-rich Isotopes {sup 8}Li and {sup 9}Li and allowance for it in elastic scattering

    SciTech Connect (OSTI)

    Ibraeva, E. T.; Zhusupov, M. A.; Imambekov, O.; Sagindykov, Sh. Sh.

    2008-07-15

    The differential cross sections for elastic proton scattering on the unstable neutron-rich nuclei {sup 8}Li and {sup 9}Li at E = 700 and 60 MeV per nucleon were considered. The {sup 8}Li nucleus was treated on the basis of the three-body {alpha}-t-n model, while the {sup 9}Li nucleus was considered within the {alpha}-t-n and {sup 7}Li-n-n models. The cross sections in question were calculated within Glauber diffraction theory. A comparison of the results with available experimental data made it possible to draw conclusions on the quality of the wave functions and potential used in the calculations.

  5. LiCl Dehumidifier LiBr absorption chiller hybrid air conditioning system with energy recovery

    DOE Patents [OSTI]

    Ko, Suk M.

    1980-01-01

    This invention relates to a hybrid air conditioning system that combines a solar powered LiCl dehumidifier with a LiBr absorption chiller. The desiccant dehumidifier removes the latent load by absorbing moisture from the air, and the sensible load is removed by the absorption chiller. The desiccant dehumidifier is coupled to a regenerator and the desiccant in the regenerator is heated by solar heated hot water to drive the moisture therefrom before being fed back to the dehumidifier. The heat of vaporization expended in the desiccant regenerator is recovered and used to partially preheat the driving fluid of the absorption chiller, thus substantially improving the overall COP of the hybrid system.

  6. Investigation of the Decomposition Mechanism of Lithium Bis(oxalate)borate (LiBOB) Salt in the Electrolyte of an Aprotic LiO2 Battery

    SciTech Connect (OSTI)

    Lau, Kah Chun; Lu, Jun; Low, John; Peng, Du; Wu, Huiming; Albishri, Hassan M.; Al-Hady, D. Abd; Curtiss, Larry A.; Amine, Khalil

    2014-04-01

    The stability of the lithium bis(oxalate) borate (LiBOB) salt against lithium peroxide (Li2O2) formation in an aprotic LiO2 (Liair) battery is investigated. From theoretical and experimental findings, we find that the chemical decomposition of LiBOB in electrolytes leads to the formation lithium oxalate during the discharge of a LiO2 cell. According to density functional theory (DFT) calculations, the formation of lithium oxalate as the reaction product is exothermic and therefore is thermodynamically feasible. This reaction seems to be independent of solvents used in the LiO2 cell, and therefore LiBOB is probably not suitable to be used as the salt in LiO2 cell electrolytes.

  7. New solid-state synthesis routine and mechanism for LiFePO{sub 4} using LiF as lithium precursor

    SciTech Connect (OSTI)

    Wang Deyu; Li Hong; Wang Zhaoxiang; Wu Xiaodong; Sun Yucheng; Huang Xuejie; Chen Liquan . E-mail: lqchen@aphy.iphy.ac.cn

    2004-12-01

    Li{sub 2}CO{sub 3} and LiOH.H{sub 2}O are widely used as Li-precursors to prepare LiFePO{sub 4} in solid-phase reactions. However, impurities are often found in the final product unless the sintering temperature is increased to 800 deg. C. Here, we report that lithium fluoride (LiF) can also be used as Li-precursor for solid-phase synthesis of LiFePO{sub 4} and very pure olivine phase was obtained even with sintering at a relatively low temperature (600 deg. C). Consequently, the product has smaller particle size (about 500nm), which is beneficial for Li-extraction/insertion in view of kinetics. As for cathode material for Li-ion batteries, LiFePO{sub 4} obtained from LiF shows high Li-storage capacity of 151mAhg{sup -1} at small current density of 10mAg{sup -1} (1/15C) and maintains capacity of 54.8mAhg{sup -1} at 1500mAg{sup -1} (10C). The solid-state reaction mechanisms using LiF and Li{sub 2}CO{sub 3} precursors are compared based on XRD and TG-DSC.

  8. Material review of Li ion battery separators

    SciTech Connect (OSTI)

    Weber, Christoph J. Geiger, Sigrid; Falusi, Sandra; Roth, Michael

    2014-06-16

    Separators for Li Ion batteries have a strong impact on cell production, cell performance, life, as well as reliability and safety. The separator market volume is about 500 million m{sup 2} mainly based on consumer applications. It is expected to grow strongly over the next decade for mobile and stationary applications using large cells. At present, the market is essentially served by polyolefine membranes. Such membranes have some technological limitations, such as wettability, porosity, penetration resistance, shrinkage and meltdown. The development of a cell failure due to internal short circuit is potentially closely related to separator material properties. Consequently, advanced separators became an intense area of worldwide research and development activity in academia and industry. New separator technologies are being developed especially to address safety and reliability related property improvements.

  9. A=5Li (1974AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4AJ01) (See Energy Level Diagrams for 5Li) GENERAL: See also (1966LA04) and Table 5.5 [Table of Energy Levels] (in PDF or PS) here. Shell model calculations: (1966FR1B, 1968GO01, 1969GO1G, 1970RA1D, 1971RA15, 1972LE1L, 1973HA49). Cluster calculations: (1965NE1B, 1971HE05). Special levels: (1970HE1D, 1971HE05, 1971RA15, 1973JO1J). Electromagnetic transitions:(1973HA49). General reviews: (1966DE1E). Special reactions: (1971CH31). Other topics: (1968GO01, 1970RA1J, 1971CH50, 1971ZA1D, 1972CA37,

  10. A=5Li (1988AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8AJ01) (See Energy Level Diagrams for 5Li) GENERAL: See also (1984AJ01) and Table 5.3 [Table of Energy Levels] (in PDF or PS) here. Model discussions: (1984ZW1A, 1985BA68, 1985FI1E, 1985KW02). Special states: (1982PO12, 1983FE07, 1984BE1B, 1984FI20, 1984GL1C, 1984VA1C, 1984ZW1A, 1985BA68, 1985FI1E, 1985PO18, 1985PO19, 1985WI1A, 1987SV1A, 1988BA86, 1988KW02). Electromagnetic transitions: (1985FI1E, 1987KR16). Astrophysical questions: (1984BA74, 1984SU1A, 1985BO1E, 1986HU1D). Complex reactions

  11. A=6Li (1974AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4AJ01) (See Energy Level Diagrams for 6Li) GENERAL: See also (1966LA04) and Table 6.2 [Table of Energy Levels] (in PDF or PS). Shell model: (1961KO1A, 1965CO25, 1966BA26, 1966GA1E, 1966HA18, 1966WI1E, 1967BO1C, 1967CO32, 1967PI1B, 1967WO1B, 1968BO1N, 1968CO13, 1968GO01, 1968LO1C, 1968VA1H, 1969GU10, 1969RA1C, 1969SA1C, 1969VA1C, 1970LA1D, 1970SU13, 1970ZO1A, 1971CO28, 1971JA06, 1971LO03, 1971NO02, 1972LE1L, 1972LO1M, 1972VE07, 1973HA49, 1973JO1K, 1973KU03). Cluster and α-particle model:

  12. A=6Li (1984AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4AJ01) (See Energy Level Diagrams for 6Li) GENERAL: See also (1979AJ01) and Table 6.2 [Table of Energy Levels] (in PDF or PS). Shell model: (1978CH1D, 1978ST19, 1979CA06, 1980MA41, 1981BO1Y, 1982BA52, 1982FI13, 1982LO09). Cluster and α-particle models: (1978OS07, 1978PL1A, 1978RE1A, 1978SI14, 1979BE39, 1979CA06, 1979LU1A, 1979WI1B, 1980BA04, 1980KU1G, 1981BE1K, 1981HA1Y, 1981KR1J, 1981KU13, 1981VE04, 1981ZH1D, 1982AH09, 1982CH10, 1982GO1G, 1982JI1A, 1982KA24, 1982KR1B, 1982KR09, 1982KU05,

  13. A=6Li (1988AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8AJ01) (See Energy Level Diagrams for 6Li) GENERAL: See also (1984AJ01) and Table 6.2 [Table of Energy Levels] (in PDF or PS). Shell model: (1983LE14, 1983VA31, 1984AS07, 1984PA08, 1984REZZ, 1984VA06, 1984ZW1A, 1985ER06, 1985FI1E, 1985LO1A, 1986AV08, 1986LE21, 1987KI1C, 1988WO04). Cluster and α-particle models: (1981PL1A, 1982WE15, 1983CA13, 1983DZ1A, 1983FO03, 1983GA12, 1983GO17, 1983SA39, 1983SM04, 1984BE37, 1984CO08, 1984DU17, 1984GL02, 1984JO1A, 1984KH05, 1984KR10, 1984KU03, 1984LA33,

  14. A=6Li (59AJ76)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    59AJ76) (See the Energy Level Diagram for 6Li) GENERAL: See also Table 6.2 [Table of Energy Levels] (in PDF or PS). Theory: See (MO54F, AD55, AU55, BA55S, IR55, LA55, OT55, FE56, ME56, NE56D, FR57, LE57F, LY57, SO57, TA57, PI58, SK58). 1. (a) 3H(3He, d)4He Qm = 14.319 Eb = 15.790 (b) 3H(3He, p)5He Qm = 11.136 (c) 3H(3He, p)4He + n Qm = 12.093 The relative intensities (43 ± 2, 6 ± 2, 51 ± 2) of reactions (a), (b) and (c), do not vary for E(3He) = 225 to 600 keV. The deuterons are isotropic

  15. A=7Li (1974AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4AJ01) (See Energy Level Diagrams for 7Li) GENERAL: See also (1966LA04) and Table 7.1 [Table of Energy Levels] (in PDF or PS). Shell model: (1961KO1A, 1965CO25, 1965KU09, 1965VO1A, 1966BA26, 1966HA18, 1966WI1E, 1967BO1C, 1967BO22, 1967CO32, 1967FA1A, 1969GU03, 1969TA1H, 1969VA1C, 1970ZO1A, 1971CO28, 1972LE1L, 1973HA49, 1973KU03). Cluster model: (1965NE1B, 1968HA1G, 1968KU1B, 1969ME1C, 1969SM1A, 1969VE1B, 1969WI21, 1970BA1Q, 1972HA06, 1972HI16, 1972JA23, 1972KU12, 1972LE1L, 1973KU03, 1973KU12).

  16. A=7Li (1979AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9AJ01) (See Energy Level Diagrams for 7Li) GENERAL: See also (1974AJ01) and Table 7.2 [Table of Energy Levels] (in PDF or PS). Shell model: (1974KA11, 1975DI04, 1977ST04, 1978BO31). Collective, rotational or deformed models: (1974BO25, 1976BR26). Cluster and α-particle models: (1973HO1A, 1974GR24, 1974KA11, 1975KU1H, 1975GR26, 1975MI09, 1975PA11, 1975RO1B, 1977BE50, 1977MI03, 1977SA22, 1978RA09). Astrophysical questions: (1973BA1H, 1973CA1B, 1973CO1B, 1973IB1A, 1973SM1A, 1973TI1A, 1973TR1B,

  17. A=7Li (1984AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4AJ01) (See Energy Level Diagrams for 7Li) GENERAL: See also (1979AJ01) and Table 7.2 [Table of Energy Levels] (in PDF or PS). Shell model: (1978FU13, 1978MI13, 1979MA11, 1981BO1Y, 1982BA52, 1982FI13). Cluster and α-particle models: (1978MI13, 1979MA11, 1979VE08, 1980KA16, 1980SU04, 1981BE27, 1981EL06, 1981FI1A, 1981HA1Y, 1981KR1J, 1981RA1M, 1981SR01, 1982DE12, 1982FI13, 1982MU10, 1983DU1B, 1983KA1K). Special states: (1978MI13, 1979BU14, 1978DU1C, 1979KI10, 1980GO1Q, 1980SH1N, 1981BE27,

  18. A=7Li (1988AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8AJ01) (See Energy Level Diagrams for 7Li) GENERAL: See also (1984AJ01) and Table 7.2 [Table of Energy Levels] (in PDF or PS) here. Shell model: (1983BU1B, 1983KU17, 1983SH1D, 1983VA31, 1984CH24, 1984REZZ, 1984VA06, 1984ZW1A, 1985FI1E, 1985GO11, 1986AV08, 1987KA09, 1987KI1C, 1988WO04). Cluster and α-particle models: (1981PL1A, 1983FU1D, 1983HO22, 1983PA06, 1983SH1D, 1983SR1C, 1984BA53, 1984DA07, 1984DU13, 1984DU17, 1984JO1A, 1984KA06, 1984KA04, 1984LO09, 1984MI1F, 1984SH26, 1985FI1E, 1985FU01,

  19. A=8Li (1979AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9AJ01) (See Energy Level Diagrams for 8Li) GENERAL: See also (1974AJ01) and Table 8.1 [Table of Energy Levels] (in PDF or PS). Nuclear models: (1975KH1A, 1977ST24). Special states: (1974IR04, 1976IR1B, 1978KH03). Electromagnetic interactions: (1974KU06, 1976KU07). Special reactions: (1973SI38, 1974BA70, 1974BA1N, 1974BO08, 1975FE1A, 1975ZE01, 1976BE67, 1976BO08, 1976BU16, 1977FE1B, 1977PR05, 1977ST1J, 1977YA1B, 1978DI04). Muon and neutrino interactions: (1977BA1P). Pion and kaon reactions (See

  20. A=9Li (1979AJ01)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9AJ01) (See Energy Level Diagrams for 9Li) GENERAL: See also (1974AJ01) and Table 9.1 [Table of Energy Levels] (in PDF or PS). Model calculations: (1974IR04, 1976IR1B, 1977JA14). Special reactions: (1975AB1D, 1975ZE01, 1976AL1F, 1976BE67, 1976BU16, 1977YA1B). Pion and kaon reactions (See also reaction 3.): (1973CA1C, 1976TR1A, 1977BA1Q, 1977DO06, 1977SH1C). Other topics: (1970KA1A, 1973TO16, 1974IR04, 1975BE56, 1976IR1B). Ground state properties: (1975BE31). μ = 3.4359 ± 0.0010 nm (1976CO1L;

  1. Effects of electrolyte salts on the performance of Li-O2 batteries

    SciTech Connect (OSTI)

    Nasybulin, Eduard N.; Xu, Wu; Engelhard, Mark H.; Nie, Zimin; Burton, Sarah D.; Cosimbescu, Lelia; Gross, Mark E.; Zhang, Jiguang

    2013-02-05

    It is well known that the stability of nonaqueous electrolyte is critical for the rechargeable Li-O2 batteries. Although stability of many solvents used in the electrolytes has been investigated, considerably less attention has been paid to the stability of electrolyte salt which is the second major component. Herein, we report the systematic investigation of the stability of seven common lithium salts in tetraglyme used as electrolytes for Li-O2 batteries. The discharge products of Li-O2 reaction were analyzed by X-ray diffraction, X-ray photoelectron spectroscopy and nuclear magnetic resonance spectroscopy. The performance of Li-O2 batteries was strongly affected by the salt used in the electrolyte. Lithium tetrafluoroborate (LiBF4) and lithium bis(oxalato)borate (LiBOB) decompose and form LiF and lithium borates, respectively during the discharge of Li-O2 batteries. Several other salts, including lithium bis(trifluoromethane)sulfonamide (LiTFSI), lithium trifluoromethanesulfonate (LiTf), lithium hexafluorophosphate (LiPF6), lithium perchlorate (LiClO4) , and lithium bromide (LiBr) led to the discharge products which mainly consisted of Li2O2 and only minor signs of decomposition of LiTFSI, LiTf, LPF6 and LiClO4 were detected. LiBr showed the best stability during the discharge process. As for the cycling performance, LiTf and LiTFSI were the best among the studied salts. In addition to the instability of lithium salts, decomposition of tetraglyme solvent was a more significant factor contributing to the limited cycling stability. Thus a more stable nonaqueous electrolyte including organic solvent and lithium salt still need to be further developed to reach a fully reversible Li-O2 battery.

  2. Optically pumped cerium-doped LiSrAlF.sub.6 and LiCaAlF.sub.6

    DOE Patents [OSTI]

    Marshall, Christopher D.; Payne, Stephen A.; Krupke, William F.

    1996-01-01

    Ce.sup.3+ -doped LiSrAlF.sub.6 crystals are pumped by ultraviolet light which is polarized along the c axis of the crystals to effectively energize the laser system. In one embodiment, the polarized fourth harmonic light output from a conventional Nd:YAG laser operating at 266 nm is arranged to pump Ce:LiSrAlF.sub.6 with the pump light polarized along the c axis of the crystal. The Ce:LiSrAlF.sub.6 crystal may be placed in a laser cavity for generating tunable coherent ultraviolet radiation in the range of 280-320 nm. Additionally, Ce-doped crystals possessing the LiSrAlF.sub.6 type of chemical formula, e.g. Ce-doped LiCaAlF.sub.6 and LiSrGaF.sub.6, can be used. Alternative pump sources include an ultraviolet-capable krypton or argon laser, or ultraviolet emitting flashlamps. The polarization of the pump light will impact operation. The laser system will operate efficiently when light in the 280-320 nm gain region is injected or recirculated in the system such that the beam is also polarized along the c axis of the crystal. The Ce:LiSrAlF.sub.6 laser system can be configured to generate ultrashort pulses, and it may be used to pump other devices, such as an optical parametric oscillator.

  3. Optically pumped cerium-doped LiSrAlF{sub 6} and LiCaAlF{sub 6}

    DOE Patents [OSTI]

    Marshall, C.D.; Payne, S.A.; Krupke, W.F.

    1996-05-14

    Ce{sup 3+}-doped LiSrAlF{sub 6} crystals are pumped by ultraviolet light which is polarized along the c axis of the crystals to effectively energize the laser system. In one embodiment, the polarized fourth harmonic light output from a conventional Nd:YAG laser operating at 266 nm is arranged to pump Ce:LiSrAlF{sub 6} with the pump light polarized along the c axis of the crystal. The Ce:LiSrAlF{sub 6} crystal may be placed in a laser cavity for generating tunable coherent ultraviolet radiation in the range of 280-320 nm. Additionally, Ce-doped crystals possessing the LiSrAlF{sub 6} type of chemical formula, e.g. Ce-doped LiCaAlF{sub 6} and LiSrGaF{sub 6}, can be used. Alternative pump sources include an ultraviolet-capable krypton or argon laser, or ultraviolet emitting flashlamps. The polarization of the pump light will impact operation. The laser system will operate efficiently when light in the 280-320 nm gain region is injected or recirculated in the system such that the beam is also polarized along the c axis of the crystal. The Ce:LiSrAlF{sub 6} laser system can be configured to generate ultrashort pulses, and it may be used to pump other devices, such as an optical parametric oscillator. 10 figs.

  4. Ammonium Additives to Dissolve Li2S through Hydrogen Binding for High

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Li-S Batteries - Joint Center for Energy Storage Research July 1, 2016, Research Highlights Ammonium Additives to Dissolve Li2S through Hydrogen Binding for High Energy Li-S Batteries (a) Solubility of Li2S in DMSO solvent with different amounts of NH4NO3 as additive. (b) 1H chemical shifts as a function of Li2S concentration in DMSO-d6 with NH4NO3 additive. (c) DFT-derived structure of Li2S-NH4-NO3-8DMSO system shows the dissolution process of Li2S is enhanced through hydrogen

  5. Electrochemical Investigation of Al–Li/LixFePO4 Cells in Oligo(ethylene glycol) Dimethyl Ether/LiPF6

    SciTech Connect (OSTI)

    Wang, X.J.; Zhou, Y.N.; Lee, H.S.; Nam, K.W.; Yang, X.Q.; Haas, O.

    2011-02-01

    1 M LiPF{sub 6} dissolved in oligo(ethylene glycol) dimethyl ether with a molecular weight, 500 g mol{sup -1} (OEGDME500, 1 M LiPF{sub 6}), was investigated as an electrolyte in experimental Al-Li/LiFePO{sub 4} cells. More than 60 cycles were achieved using this electrolyte in a Li-ion cell with an Al-Li alloy as an anode sandwiched between two Li x FePO{sub 4} electrodes (cathodes). Charging efficiencies of 96-100% and energy efficiencies of 86-89% were maintained during 60 cycles at low current densities. A theoretical investigation revealed that the specific energy can be increased up to 15% if conventional LiC{sub 6} anodes are replaced by Al-Li alloy electrodes. The specific energy and the energy density were calculated as a function of the active mass per electrode surface (charge density). The results reveal that for a charge density of 4 mAh cm{sup -2} about 160 mWh g{sup -1} can be reached with Al-Li/LiFePO{sub 4} batteries. Power limiting diffusion processes are discussed, and the power capability of Al-Li/LiFePO{sub 4} cells was experimentally evaluated using conventional electrolytes.

  6. Transport and Failure in Li-ion Batteries | Stanford Synchrotron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Li-ion Batteries Monday, February 13, 2012 - 1:30pm SSRL Conference Room 137-322 Stephen J. Harris, General Motors R&D While battery performance is well predicted by the...

  7. Batteries - Next-generation Li-ion batteries Breakout session

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to enable Li-metal * Inter-digitated electrodes for improved fast-charge capability * Nano-engineered electrode films to allow for thicker films Research Suggestions * See above ...

  8. Qiaojia River Power Co Ltd Li County | Open Energy Information

    Open Energy Info (EERE)

    Changde City, Hainan Province, China Zip: 415500 Sector: Hydro Product: Hunan-based small hydro developer. References: Qiaojia River Power Co., Ltd, Li County1 This article is a...

  9. LiDAR (Lewicki & Oldenburg) | Open Energy Information

    Open Energy Info (EERE)

    Technique LiDAR Activity Date Usefulness useful DOE-funding Unknown References Jennifer L. Lewicki, Curtis M. Oldenburg (Unknown) Near-Surface Co2 Monitoring And Analysis To...

  10. Low energy detectors: 6Li-glass scintillators (Conference) |...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Low energy detectors: 6Li-glass scintillators Authors: Lee, Hye Young 1 ; Taddeucci, Terry N 1 + Show Author Affiliations Los Alamos ...

  11. Beijing ChangLi Union Energy Company | Open Energy Information

    Open Energy Info (EERE)

    Municipality, China Product: China-based technology company that research in zinc-air batteries (fuel cells). References: Beijing ChangLi Union Energy Company1 This article is a...

  12. Dendrite-Free Li Deposition Using Trace-Amounts of Water as an Electrolyte

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additive - Joint Center for Energy Storage Research April 25, 2015, Research Highlights Dendrite-Free Li Deposition Using Trace-Amounts of Water as an Electrolyte Additive Dendrite growth leads to low CE and safety issues of Li anode. Trace amount of water enables dendrite-free Li deposition. Scientific Achievement Residual water (H2O) present in nonaqueous electrolytes has been widely regarded as a detrimental factor for lithium (Li) batteries. However, dendrite-free Li film can be obtained

  13. Heteroclite electrochemical stability of an I based Li7P2S8I superionic conductor

    SciTech Connect (OSTI)

    Rangasamy, Ezhiylmurugan; Liu, Zengcai; Gobet, Mallory; Pilar, Kartik; Sahu, Gayatri; Greenbaum, Steve; Liang, Chengdu

    2015-01-01

    Stability from Instability: A Li7P2S8I solid state Li-ion conductor derived from -Li3PS4 and LiI demonstrates exceptional electrochemical stability. The oxidation instability of I is subverted nullified via its incorporation into the coordinated structure. The inclusion of I also creates stability with metallic Li anode while simultaneously improving the interfacial kinetics. Low temperature membrane processability enables facile fabrication of dense membranes, making it suitable for industrial adoption.

  14. LiDAR Technology | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LiDAR Technology LiDAR Technology Enables the Location of Historic Energy Production Sites Understanding the impact that newly developed novel methods for extracting resources from the Earth has on our environment is important, but this requires baseline data against which potential changes can be measured. In Pennsylvania, as in other parts of the United States, commercial activity has already left environmental impacts that are not readily discernible. Charcoal from a completed burn (image

  15. Predictive Materials Modeling for Li-Air Battery Systems | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leadership Computing Facility electron density obtained from a density functional theory Shown here is the electron density obtained from a density functional theory (DFT) calculation of lithium oxide (Li2O) performed with the GPAW code. This visualization was the result of a simulation run on Intrepid, a supercomputer at the Argonne Leadership Computing Facility. Kah Chun Lau, Aaron Knoll and Larry A. Curtiss, Argonne National Laboratory Predictive Materials Modeling for Li-Air Battery

  16. ARM - Campaign Instrument - twin-otter-li-prof

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentstwin-otter-li-prof Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : Twin Otter Lidar Profiles (TWIN-OTTER-LI-PROF) Instrument Categories Aerosols, Atmospheric Profiling, Cloud Properties Campaigns Tropical Warm Pool - International Cloud Experiment (TWP-ICE) [ Download Data ] Tropical Western Pacific, 2006.01.21 - 2006.02.13 Primary Measurements Taken The following measurements are those considered

  17. Fluoro-Carbonate Solvents for Li-Ion Cells

    SciTech Connect (OSTI)

    NAGASUBRAMANIAN,GANESAN

    1999-09-17

    A number of fluoro-carbonate solvents were evaluated as electrolytes for Li-ion cells. These solvents are fluorine analogs of the conventional electrolyte solvents such as dimethyl carbonate, ethylene carbonate, diethyl carbonate in Li-ion cells. Conductivity of single and mixed fluoro carbonate electrolytes containing 1 M LiPF{sub 6} was measured at different temperatures. These electrolytes did not freeze at -40 C. We are evaluating currently, the irreversible 1st cycle capacity loss in carbon anode in these electrolytes and the capacity loss will be compared to that in the conventional electrolytes. Voltage stability windows of the electrolytes were measured at room temperature and compared with that of the conventional electrolytes. The fluoro-carbon electrolytes appear to be more stable than the conventional electrolytes near Li voltage. Few preliminary electrochemical data of the fluoro-carbonate solvents in full cells are reported in the literature. For example, some of the fluorocarbonate solvents appear to have a wider voltage window than the conventional electrolyte solvents. For example, methyl 2,2,2 trifluoro ethyl carbonate containing 1 M LiPF{sub 6} electrolyte has a decomposition voltage exceeding 6 V vs. Li compared to <5 V for conventional electrolytes. The solvent also appears to be stable in contact with lithium at room temperature.

  18. Probing the failure mechanism of nanoscale LiFePO{sub 4} for Li-ion batteries

    SciTech Connect (OSTI)

    Gu, Meng; Yan, Pengfei; Wang, Chongmin; Shi, Wei; Zheng, Jianming; Zhang, Ji-guang

    2015-05-18

    LiFePO{sub 4} is a high power rate cathode material for lithium ion battery and shows remarkable capacity retention, featuring a 91% capacity retention after 3300 cycles. In this work, we use high-resolution transmission electron microscopy and electron energy loss spectroscopy to study the gradual capacity fading mechanism of LiFePO{sub 4} materials. We found that upon prolonged electrochemical cycling of the battery, the LiFePO{sub 4} cathode shows surface amorphization and loss of oxygen species, which directly contribute to the gradual capacity fading of the battery. The finding can guide the design and improvement of LiFePO{sub 4} cathode for high-energy and high-power rechargeable battery for electric transportation.

  19. THE HIGH TEMPERATURE CHEMICAL REACTIVITY OF LI2O

    SciTech Connect (OSTI)

    Kessinger, G.; Missimer, D.

    2009-11-13

    The ultimate purpose of this study was to investigate the use of a Li-Ca mixture for direct reduction of actinide oxides to actinide metals at temperatures below 1500 C. For such a process to be successful, the products of the reduction reaction, actinide metals, Li{sub 2}O, and CaO, must all be liquid at the reaction temperature so the resulting actinide metal can coalesce and be recovered as a monolith. Since the established melting temperature of Li{sub 2}O is in the range 1427-1700 C and the melting temperature of CaO is 2654 C, the Li{sub 2}O-CaO (lithium oxidecalcium oxide) pseudo-binary system was investigated in an attempt to identify the presence of low-melting eutectic compositions. The results of our investigation indicate that there is no evidence of ternary Li-Ca-O phases or solutions melting below 1200 C. In the 1200-1500 C range utilizing MgO crucibles, there is some evidence for the formation of a ternary phase; however, it was not possible to determine the phase composition. The results of experiments performed with ZrO{sub 2} crucibles in the same temperature range did not show the formation of the possible ternary phase seen in the earlier experiment involving MgO crucibles, so it was not possible to confirm the possibility that a ternary Li-Ca-O or Li-Mg-O phase was formed. It appears that the Li{sub 2}O-CaO materials reacted, to some extent, with all of the container materials, alumina (Al{sub 2}O{sub 3}), magnesia (MgO), zirconia (ZrO{sub 2}), and 95% Pt-5% Au; however, to clarify the situation additional experiments are required. In addition to the primary purpose of this study, the results of this investigation led to the conclusions that: (1) The melting temperature of Li{sub 2}O may be as low as 1250 C, which is considerably lower than the previously published values in the range 1427-1700 C; (2) Lithium oxide (Li{sub 2}O) vaporizes congruently; (3) Lithium carbonate and Li2O react with 95% Pt-5% Au, and also reacts with pure Pt; and (4

  20. Efimov physics in {sup 6}Li atoms

    SciTech Connect (OSTI)

    Braaten, Eric; Hammer, H.-W.; Kang, Daekyoung; Platter, Lucas

    2010-01-15

    A new narrow three-atom loss resonance associated with an Efimov trimer crossing the three-atom threshold has recently been discovered in a many-body system of ultracold {sup 6}Li atoms in the three lowest hyperfine spin states at a magnetic field near 895 G. O'Hara and coworkers have used measurements of the three-body recombination rate in this region to determine the complex three-body parameter associated with Efimov physics. Using this parameter as the input, we calculate the universal predictions for the spectrum of Efimov states and for the three-body recombination rate in the universal region above 600 G where all three scattering lengths are large. We predict an atom-dimer loss resonance at 672+-2 G associated with an Efimov trimer disappearing through an atom-dimer threshold. We also predict an interference minimum in the three-body recombination rate at 759+-1 G where the three-spin mixture may be sufficiently stable to allow experimental study of the many-body system.

  1. A=6Li (66LA04)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    66LA04) (See Energy Level Diagrams for 6Li) GENERAL: See Table 6.4 [Table of Energy Levels] (in PDF or PS). See also (AU55, LA55, ME56, FR57, HU57D, LE57F, PI58, BA59K, BR59M, FE59E, SK59, UB59, AN60, JA60G, KO60E, PH60A, TA60L, WA60F, BA61N, KO61A, SH61B, TA61G, VA61, CO62B, CR62A, DI62B, FO62E, GA62C, IN62, IN62A, IN62B, JA62, ME62A, NA62C, SA62C, ST62B, WA62H, BO63B, BU63D, DA63D, EL63D, HA63K, JA63C, JO63B, KL63, KU63B, KU63I, MO63C, OL63B, SA63K, SC63E, SC63I, VL63A, WA63, GR64C, JI64,

  2. Structural and Electrochemical Characterization of Pure LiFePO 4 and Nanocomposite C- LiFePO 4 Cathodes for Lithium Ion Rechargeable Batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kumar, Arun; Thomas, R.; Karan, N. K.; Saavedra-Arias, J. J.; Singh, M. K.; Majumder, S. B.; Tomar, M. S.; Katiyar, R. S.

    2009-01-01

    Pure limore » thium iron phosphate ( LiFePO 4 ) and carbon-coated LiFePO 4 (C- LiFePO 4 ) cathode materials were synthesized for Li-ion batteries. Structural and electrochemical properties of these materials were compared. X-ray diffraction revealed orthorhombic olivine structure. Micro-Raman scattering analysis indicates amorphous carbon, and TEM micrographs show carbon coating on LiFePO 4 particles. Ex situ Raman spectrum of C- LiFePO 4 at various stages of charging and discharging showed reversibility upon electrochemical cycling. The cyclic voltammograms of LiFePO 4 and C- LiFePO 4 showed only a pair of peaks corresponding to the anodic and cathodic reactions. The first discharge capacities were 63, 43, and 13 mAh/g for C/5, C/3, and C/2, respectively for LiFePO 4 where as in case of C- LiFePO 4 that were 163, 144, 118, and 70 mAh/g for C/5, C/3, C/2, and 1C, respectively. The capacity retention of pure LiFePO 4 was 69% after 25 cycles where as that of C- LiFePO 4 was around 97% after 50 cycles. These results indicate that the capacity and the rate capability improved significantly upon carbon coating.« less

  3. Structural and Electrochemical Characterization of PureLiFePO4and Nanocomposite C-LiFePO4Cathodes for Lithium Ion Rechargeable Batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kumar, Arun; Thomas, R.; Karan, N. K.; Saavedra-Arias, J. J.; Singh, M. K.; Majumder, S. B.; Tomar, M. S.; Katiyar, R. S.

    2009-01-01

    Pure lithium iron phosphate (LiFePO4) and carbon-coatedLiFePO4(C-LiFePO4) cathode materials were synthesized for Li-ion batteries. Structural and electrochemical properties of these materials were compared. X-ray diffraction revealed orthorhombic olivine structure. Micro-Raman scattering analysis indicates amorphous carbon, and TEM micrographs show carbon coating onLiFePO4particles. Ex situ Raman spectrum of C-LiFePO4at various stages of charging and discharging showed reversibility upon electrochemical cycling. The cyclic voltammograms ofLiFePO4and C-LiFePO4showed only a pair of peaks corresponding to the anodic and cathodic reactions. The first discharge capacities were 63, 43, and 13?mAh/g for C/5, C/3, and C/2, respectively forLiFePO4where as in case of C-LiFePO4that were 163, 144,more118, and 70?mAh/g for C/5, C/3, C/2, and 1C, respectively. The capacity retention of pureLiFePO4was 69% after 25 cycles where as that of C-LiFePO4was around 97% after 50 cycles. These results indicate that the capacity and the rate capability improved significantly upon carbon coating.less

  4. Influence of Li ions on the oxygen reduction reaction of platinum electrocatalyst

    SciTech Connect (OSTI)

    Liu, H; Xing, YC

    2011-06-01

    A Li-air battery can provide a much higher theoretical energy density than a Li-ion battery. The use of aqueous acidic electrolytes may prevent lithium oxide deposition from aprotic electrolytes and lithium carbonate precipitation from alkaline electrolytes. The present communication reports a study on the effect of Li ions on the oxygen reduction reaction (ORR) in sulfuric acid electrolytes. It was found that the Li ions have negligible interactions with the active surface of Pt catalysts. However, significantly lower ORR activities were found when Li ions are present in the sulfuric acid. The intrinsic kinetic activities were found to decrease with the increase of Li ion concentrations, but level off when the Li ion concentrations are larger than 1.0 M. The low activities of Pt catalysts in Li ion containing electrolytes were attributed to a constraining effect of Li ions on the diffusion of oxygen in the electrolyte solution. (C) 2011 Elsevier B.V. All rights reserved.

  5. DISCOVERY OF SUPER-Li-RICH RED GIANTS IN DWARF SPHEROIDAL GALAXIES

    SciTech Connect (OSTI)

    Kirby, Evan N.; Fu, Xiaoting; Deng, Licai; Guhathakurta, Puragra

    2012-06-10

    Stars destroy lithium (Li) in their normal evolution. The convective envelopes of evolved red giants reach temperatures of millions of kelvin, hot enough for the {sup 7}Li(p, {alpha}){sup 4}He reaction to burn Li efficiently. Only about 1% of first-ascent red giants more luminous than the luminosity function bump in the red giant branch exhibit A(Li) > 1.5. Nonetheless, Li-rich red giants do exist. We present 15 Li-rich red giants-14 of which are new discoveries-among a sample of 2054 red giants in Milky Way dwarf satellite galaxies. Our sample more than doubles the number of low-mass, metal-poor ([Fe/H] {approx}< -0.7) Li-rich red giants, and it includes the most-metal-poor Li-enhanced star known ([Fe/H] = -2.82, A(Li){sub NLTE} = 3.15). Because most of the stars have Li abundances larger than the universe's primordial value, the Li in these stars must have been created rather than saved from destruction. These Li-rich stars appear like other stars in the same galaxies in every measurable regard other than Li abundance. We consider the possibility that Li enrichment is a universal phase of evolution that affects all stars, and it seems rare only because it is brief.

  6. High performance anode for advanced Li batteries

    SciTech Connect (OSTI)

    Lake, Carla

    2015-11-02

    The overall objective of this Phase I SBIR effort was to advance the manufacturing technology for ASI’s Si-CNF high-performance anode by creating a framework for large volume production and utilization of low-cost Si-coated carbon nanofibers (Si-CNF) for the battery industry. This project explores the use of nano-structured silicon which is deposited on a nano-scale carbon filament to achieve the benefits of high cycle life and high charge capacity without the consequent fading of, or failure in the capacity resulting from stress-induced fracturing of the Si particles and de-coupling from the electrode. ASI’s patented coating process distinguishes itself from others, in that it is highly reproducible, readily scalable and results in a Si-CNF composite structure containing 25-30% silicon, with a compositionally graded interface at the Si-CNF interface that significantly improve cycling stability and enhances adhesion of silicon to the carbon fiber support. In Phase I, the team demonstrated the production of the Si-CNF anode material can successfully be transitioned from a static bench-scale reactor into a fluidized bed reactor. In addition, ASI made significant progress in the development of low cost, quick testing methods which can be performed on silicon coated CNFs as a means of quality control. To date, weight change, density, and cycling performance were the key metrics used to validate the high performance anode material. Under this effort, ASI made strides to establish a quality control protocol for the large volume production of Si-CNFs and has identified several key technical thrusts for future work. Using the results of this Phase I effort as a foundation, ASI has defined a path forward to commercialize and deliver high volume and low-cost production of SI-CNF material for anodes in Li-ion batteries.

  7. High Performance Cathodes for Li-Air Batteries

    SciTech Connect (OSTI)

    Xing, Yangchuan

    2013-08-22

    The overall objective of this project was to develop and fabricate a multifunctional cathode with high activities in acidic electrolytes for the oxygen reduction and evolution reactions for Li-air batteries. It should enable the development of Li-air batteries that operate on hybrid electrolytes, with acidic catholytes in particular. The use of hybrid electrolytes eliminates the problems of lithium reaction with water and of lithium oxide deposition in the cathode with sole organic electrolytes. The use of acid electrolytes can eliminate carbonate formation inside the cathode, making air breathing Li-air batteries viable. The tasks of the project were focused on developing hierarchical cathode structures and bifunctional catalysts. Development and testing of a prototype hybrid Li-air battery were also conducted. We succeeded in developing a hierarchical cathode structure and an effective bifunctional catalyst. We accomplished integrating the cathode with existing anode technologies and made a pouch prototype Li-air battery using sulfuric acid as catholyte. The battery cathodes contain a nanoscale multilayer structure made with carbon nanotubes and nanofibers. The structure was demonstrated to improve battery performance substantially. The bifunctional catalyst developed contains a conductive oxide support with ultra-low loading of platinum and iridium oxides. The work performed in this project has been documented in seven peer reviewed journal publications, five conference presentations, and filing of two U.S. patents. Technical details have been documented in the quarterly reports to DOE during the course of the project.

  8. Degradation Reactions in SONY-Type Li-Ion Batteries

    SciTech Connect (OSTI)

    Nagasubramanian, G.; Roth, E. Peter

    1999-05-04

    Thermal instabilities were identified in SONY-type lithium-ion cells and correlated with interactions of cell constituents and reaction products. Three temperature regions of interaction were identified and associated with the state of charge (degree of Li intercalation) of the cell. Anodes were shown to undergo exothermic reactions as low as 100°C involving the solid electrolyte interface (SEI) layer and the LiPF6 salt in the electrolyte (EC: PC: DEC/LiPF6). These reactions could account for the thermal runaway observed in these cells beginning at 100°C. Exothermic reactions were also observed in the 200°C-300°C region between the intercalated lithium anodes, the LiPF6 salt and the PVDF. These reactions were followed by a high- temperature reaction region, 300°C-400°C, also involving the PVDF binder and the intercalated lithium anodes. The solvent was not directly involved in these reactions but served as a moderator and transport medhun. Cathode exotherrnic reactions with the PVDF binder were observed above 200oC and increased with the state of charge (decreasing Li content). This offers an explanation for the observed lower thermal runaway temperatures for charged cells.

  9. Study of novel nonflammable electrolytes in Sandia-built Li-ion...

    Office of Scientific and Technical Information (OSTI)

    Study of novel nonflammable electrolytes in Sandia-built Li-ion cells. Citation Details In-Document Search Title: Study of novel nonflammable electrolytes in Sandia-built Li-ion ...

  10. A Reactive Force Field study of Li/C Systems for Electrical Energy...

    Office of Scientific and Technical Information (OSTI)

    A Reactive Force Field study of LiC Systems for Electrical Energy Storage Citation Details In-Document Search Title: A Reactive Force Field study of LiC Systems for Electrical ...

  11. Model-Experimental Studies on Next-generation Li-ion Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Experimental Studies on Next-generation Li-ion Materials Model-Experimental Studies on Next-generation Li-ion Materials 2009 DOE Hydrogen Program and Vehicle Technologies Program ...

  12. Digital Sofcell Shanghai ShenLi Goeta solid oxide fuel cell joint...

    Open Energy Info (EERE)

    ShenLi Goeta solid oxide fuel cell joint venture Jump to: navigation, search Name: Digital Sofcell - Shanghai ShenLi - Goeta solid oxide fuel cell joint venture Place: China...

  13. X-ray line polarization spectroscopy of Li-like satellite line...

    Office of Scientific and Technical Information (OSTI)

    X-ray line polarization spectroscopy of Li-like satellite line spectra Citation Details In-Document Search Title: X-ray line polarization spectroscopy of Li-like satellite line ...

  14. LiDAR At Chocolate Mountains Area (Alm, Et Al., 2010) | Open...

    Open Energy Info (EERE)

    aerial Li-DAR survey flown over the project areas, securing over 177,000 square kilometers of <30cm accuracy digital elevation data. LiDAR data were analyzed to characterize...

  15. Molecular Design Leads to Record Performance for Li2S Cathodes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Li2S and Li-S functional groups in PVP binder (left). Optical microscopy and visual images of the fine grain structure of cathode-PVP composite (top, right) and the coarse-grain ...

  16. Xiang Ge Li La Xian Mai Di He Hydro Power Development Co Ltd...

    Open Energy Info (EERE)

    Xiang Ge Li La Xian Mai Di He Hydro Power Development Co Ltd Jump to: navigation, search Name: Xiang Ge Li La Xian Mai Di He Hydro Power Development Co., Ltd. Place: Yunnan...

  17. Dendrite-free Li deposition using trace-amounts of water as an...

    Office of Scientific and Technical Information (OSTI)

    Dendrite-free Li deposition using trace-amounts of water as an electrolyte additive ... Title: Dendrite-free Li deposition using trace-amounts of water as an electrolyte additive ...

  18. Miniature all-solid-state heterostructure nanowire Li-ion batteries...

    Office of Scientific and Technical Information (OSTI)

    Miniature all-solid-state heterostructure nanowire Li-ion batteries as a tool for ... Title: Miniature all-solid-state heterostructure nanowire Li-ion batteries as a tool for ...

  19. Formation of Interfacial Layer and Long-Term Cyclability of Li...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Formation of Interfacial Layer and Long-Term Cyclability of Li-O2 Batteries Surface ... Identified key factors that affect the long term cycle life of Li-O2 batteries under full ...

  20. Effect of the Anion Activity on the Stability of Li Metal Anodes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Li Metal Anodes in Lithium-Sulfur Batteries The lithium metal anode (bottom) ... Significance and Impact Identified one reason behind Li-S batteries failing to hold a ...

  1. First-Principles Study of Redox End-Members in Li-Sulfur Batteries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First-Principles Study of Redox End-Members in Li-Sulfur Batteries Images for Redox ... and surface characteristics of solid-phase redox end-members in Li-S batteries. ...

  2. Electrochemical Performances of LiMnPO4 Synthesized from Non...

    Office of Scientific and Technical Information (OSTI)

    Li1.1MnPO4 exhibits the most stable cycling ability probably because of the existence of a trace amount of Li3PO4 impurity that functions as a solid-state electrolyte on...

  3. Guide to Developing Air-Cooled Lithium Bromide (LiBr) Absorption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guide to Developing Air-Cooled Lithium Bromide (LiBr) Absorption for CHP Applications, April 2005 Guide to Developing Air-Cooled Lithium Bromide (LiBr) Absorption for CHP...

  4. Operando NMR and XRD study of chemically synthesized LiCx oxidation...

    Office of Scientific and Technical Information (OSTI)

    Title: Operando NMR and XRD study of chemically synthesized LiCx oxidation in a dry room environment We test the stability of pre-lithiated graphite anodes for Li-ion batteries in ...

  5. The significance of Li-ion batteries in electric vehicle life...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The significance of Li-ion batteries in electric vehicle life-cycle energy and emissions and recycling's role in its reduction Title The significance of Li-ion batteries in...

  6. Alternating magnetic anisotropy of Li2(Li1–xTx)N (T = Mn, Fe, Co, and Ni)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jesche, A.; Ke, L.; Jacobs, J. L.; Harmon, B.; Houk, R. S.; Canfield, P. C.

    2015-05-11

    Substantial amounts of the transition metals Mn, Fe, Co, and Ni can be substituted for Li in single crystalline Li2(Li1–xTx)N. Isothermal and temperature-dependent magnetization measurements reveal local magnetic moments with magnitudes significantly exceeding the spin-only value. The additional contributions stem from unquenched orbital moments that lead to rare-earth-like behavior of the magnetic properties. Accordingly, extremely large magnetic anisotropies have been found. Most notably, the magnetic anisotropy alternates as easy plane→easy axis→easy plane→easy axis when progressing from T = Mn → Fe → Co → Ni. This behavior can be understood based on a perturbation approach in an analytical, single-ion model.more » As a result, the calculated magnetic anisotropies show surprisingly good agreement with the experiment and capture the basic features observed for the different transition metals.« less

  7. Alternating magnetic anisotropy of Li 2 ( Li 1 - x T x ) N ( T = Mn , Fe , Co , and Ni )

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jesche, A.; Ke, L.; Jacobs, J. L.; Harmon, B.; Houk, R. S.; Canfield, P. C.

    2015-05-01

    Substantial amounts of the transition metals Mn, Fe, Co, and Ni can be substituted for Li in single crystalline Li?(Li1-xTx)N. Isothermal and temperature-dependent magnetization measurements reveal local magnetic moments with magnitudes significantly exceeding the spin-only value. The additional contributions stem from unquenched orbital moments that lead to rare-earth-like behavior of the magnetic properties. Accordingly, extremely large magnetic anisotropies have been found. Most notably, the magnetic anisotropy alternates as easy plane?easy axis?easy plane?easy axis when progressing from T = Mn ? Fe ? Co ? Ni. This behavior can be understood based on a perturbation approach in an analytical, single-ion model.moreThe calculated magnetic anisotropies show surprisingly good agreement with the experiment and capture the basic features observed for the different transition metals.less

  8. Alternating magnetic anisotropy of Li2(Li1xTx)N(T=Mn,Fe,Co,andNi)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jesche, A.; Ke, L.; Jacobs, J. L.; Harmon, B.; Houk, R. S.; Canfield, P. C.

    2015-05-11

    Substantial amounts of the transition metals Mn, Fe, Co, and Ni can be substituted for Li in single crystalline Li2(Li1xTx)N. Isothermal and temperature-dependent magnetization measurements reveal local magnetic moments with magnitudes significantly exceeding the spin-only value. The additional contributions stem from unquenched orbital moments that lead to rare-earth-like behavior of the magnetic properties. Accordingly, extremely large magnetic anisotropies have been found. Most notably, the magnetic anisotropy alternates as easy plane?easy axis?easy plane?easy axis when progressing from T = Mn ? Fe ? Co ? Ni. This behavior can be understood based on a perturbation approach in an analytical, single-ion model.moreAs a result, the calculated magnetic anisotropies show surprisingly good agreement with the experiment and capture the basic features observed for the different transition metals.less

  9. Redox Mediators that Promote Three-Dimensional Growth of Li2S on Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current Collectors in Lithium-Sulfur Batteries - Joint Center for Energy Storage Research 21, 2015, Research Highlights Redox Mediators that Promote Three-Dimensional Growth of Li2S on Carbon Current Collectors in Lithium-Sulfur Batteries Controlling the electrodeposition of Li2S onto C using a redox mediator, BPI. With BPI, sulfur utilization improves in Li-S cells due to remote reduction of polysulfides to Li2S. Scientific Achievement Developed, from computation and experiment, redox

  10. Anode Materials for Rechargeable Li-Ion Batteries

    SciTech Connect (OSTI)

    Fultz, B.

    2001-01-12

    This research is on materials for anodes and cathodes in electrochemical cells. The work is a mix of electrochemical measurements and analysis of the materials by transmission electron microscopy and x-ray diffractometry. At present, our experimental work involves only materials for Li storage, but we have been writing papers from our previous work on hydrogen-storage materials.

  11. Performance of LiAlloy/Ag(2)CrO(4) Couples in Molten CsBr-LiBr-KBr Eutectic

    SciTech Connect (OSTI)

    GUIDOTTI,RONALD A.; REINHARDT,FREDERICK W.

    1999-10-18

    The performance of Li-alloy/CsBr-LiBr-KBr/Ag{sub 2}CrO{sub 4} systems was studied over a temperature range of 250 C to 300 C, for possible use as a power source for geothermal borehole applications. Single cells were discharged at current densities of 15.8 and 32.6 mA/cm{sup 2} using Li-Si and Li-Al anodes. When tested in 5-cell batteries, the Li-Si/CsBr-LiBr-KBr/Ag{sub 2}CrO{sub 4} system exhibited thermal runaway. Thermal analytical tests showed that the Ag{sub 2}CrO{sub 4} cathode reacted exothermically with the electrolyte on activation. Consequently, this system would not be practical for the envisioned geothermal borehole applications.

  12. Effect of the Anion Activity on the Stability of Li Metal Anodes in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium-Sulfur Batteries - Joint Center for Energy Storage Research March 29, 2016, Research Highlights Effect of the Anion Activity on the Stability of Li Metal Anodes in Lithium-Sulfur Batteries The lithium metal anode (bottom) corrodes after just 35 cycles in the LiFSI electrolyte, while the lithium anode (top) stays relatively stable in the LiTFSI electrolyte after more than 200 cycles. Scientific Achievement Discovered why the salt LiTFSI - when added to the electrolyte of a Li-S

  13. First-Principles Calculations, Electrochemical and X-ray Absorption Studies of Li-Ni-PO4 Surface-Treated xLi2MnO3 (1 x)LiMO2 (M = Mn, Ni, Co) Electrodes for Li-Ion Batteries

    SciTech Connect (OSTI)

    Wolverton, Christopher; Croy, J R; Balasubramanian, M; Kang, Sun-Ho; Lopez-Rivera, C. M.; Thackeray, Michael M.

    2012-01-01

    It has been previously hypothesized that the enhanced rate capability of Li-Ni-PO{sub 4}-treated xLi{sub 2}MnO{sub 3} {center_dot} (1-x)LiMO{sub 2} positive electrodes (M = Mn, Ni, Co) in Li-ion batteries might be associated with a defect Ni-doped Li{sub 3}PO{sub 4} surface structure [i.e., Li{sub 3-2y}Ni{sub y}PO{sub 4} (0 < y < 1)], thereby promoting fast Li{sup +}-ion conduction at the xLi{sub 2}MnO{sub 3} {center_dot} (1-x)LiMO{sub 2} particle surface. In this paper, the solubility of divalent metals (Fe, Mn, Ni, Mg) in {gamma}-Li{sub 3}PO{sub 4} is predicted with the first-principles GGA+U method in an effort to understand the enhanced rate capability. The predicted solubility (x) is extremely small; this finding is consistent with experimental evidence: 1) X-ray diffraction data obtained from Li-Ni-PO{sub 4}-treated xLi{sub 2}MnO{sub 3} {center_dot} (1-x)LiMO{sub 2} electrodes that show that, after annealing at 550 C, a Li{sub 3}PO{sub 4}-like structure forms as a second phase at the electrode particle surface, and 2) X-ray absorption spectroscopy, which indicate that the nickel ions are accommodated in the transition metal layers of the Li{sub 2}MnO{sub 3} component during the annealing process. However, electrochemical studies of Li{sub 3-2y}Ni{sub y}PO{sub 4}-treated xLi{sub 2}MnO{sub 3} {center_dot} (1-x)LiMO{sub 2} electrodes indicate that their rate capability increases as a function of y over the range y = 0 (Li{sub 3}PO{sub 4}) to y = 1 (LiNiPO{sub 4}), strongly suggesting that, at some level, the nickel ions play a role in reducing electrochemical impedance and increasing electrode stability at the electrode particle surface.

  14. In situ 7Li and 133Cs NMR Investigations of the Role of Cs+ Additive in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium-Metal Deposition Processes - Joint Center for Energy Storage Research February 1, 2016, Research Highlights In situ 7Li and 133Cs NMR Investigations of the Role of Cs+ Additive in Lithium-Metal Deposition Processes In situ 7Li NMR spectra from live Li-metal batteries with and without Cs+ additives. At discharge voltage point "C," more microstructured lithium (260 ppm) is recharged back onto the opposite Li electrode to form smoothly deposited Li-metal structures (248 ppm)

  15. Method for treating electrolyte to remove Li.sub.2 O

    DOE Patents [OSTI]

    Tomczuk, Zygmunt; Miller, William E.; Johnson, Gerald K.; Willit, James L.

    1998-01-01

    A method of removing Li.sub.2 O present in an electrolyte predominantly of LiCl and KCl. The electrolyte is heated to a temperature not less than about 500.degree. C. and then Al is introduced into the electrolyte in an amount in excess of the stoichiometric amount needed to convert the Li.sub.2 O to a Li-Al alloy and lithium aluminate salt. The salt and aluminum are maintained in contact with agitation for a time sufficient to convert the Li.sub.2 O.

  16. Method for treating electrolyte to remove Li{sub 2}O

    SciTech Connect (OSTI)

    Tomczuk, Z.; Miller, W.E.; Johnson, G.K.; Willit, J.L.

    1998-01-20

    A method is described for removing Li{sub 2}O present in an electrolyte predominantly of LiCl and KCl. The electrolyte is heated to a temperature not less than about 500 C and then Al is introduced into the electrolyte in an amount in excess of the stoichiometric amount needed to convert the Li{sub 2}O to a Li-Al alloy and lithium aluminate salt. The salt and aluminum are maintained in contact with agitation for a time sufficient to convert the Li{sub 2}O.

  17. Electrochemical Investigation of Li-Al Anodes in Oligo (ethylene glycol) Dimethyl ether/LiPF6

    SciTech Connect (OSTI)

    Y Zhou; X Wang; H Lee; K Nam; X Yang; O Haas

    2011-12-31

    LiPF{sub 6} dissolved in oligo(ethylene glycol) dimethyl ether with a molecular weight 5 g mol{sup -1} was investigated as a new electrolyte (OEGDME5, 1 M LiPF{sub 6}) for metal deposition and battery applications. At 25 C a conductivity of .48 x 1{sup -3} S cm{sup -1} was obtained and at 85 C, 3.78 x 1{sup -3} S cm{sup -1}. The apparent activation barrier for ionic transport was evaluated to be 3.7 kJ mol{sup -1}. OEGDME5, 1 M LiPF{sub 6} allows operating temperature above 1 C with very attractive conductivity. The electrolyte shows excellent performance at negative and positive potentials. With this investigation, we report experimental results obtained with aluminum electrodes using this electrolyte. At low current densities lithium ion reduction and re-oxidation can be achieved on aluminum electrodes at potentials about 28 mV more positive than on lithium electrodes. In situ X-ray diffraction measurements collected during electrochemical lithium deposition on aluminum electrodes show that the shift to positive potentials is due to the negative Gibbs free energy change of the Li-Al alloy formation reaction.

  18. mRNA Transcript Abundance during Plant Growth and the Influence of Li+ Exposure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Duff, M. C.; Kuhne, W. W.; Halverson, N. V.; Chang, C. -S.; Kitamura, E.; Hawthorn, L.; Martinez, N. E.; Stafford, C.; Milliken, C. E.; Caldwell, E. F.; et al

    2014-10-23

    Lithium (Li) toxicity in plants is, at a minimum, a function of Li+ concentration, exposure time, species and growth conditions. Most plant studies with Li+ focus on short-term acute exposures. This study examines short- and long-term effects of Li+ exposure in Arabidopsis with Li+ uptake studies and measured shoot mRNA transcript abundance levels in treated and control plants. Stress, pathogen-response and arabinogalactan protein genes were typically more up-regulated in older (chronic, low level) Li+-treatment plants and in the much younger plants from acute high-level exposures. The gene regulation behavior of high-level Li+ resembled prior studies due to its influence on:more »inositol synthesis, 1-aminocyclopropane-1-carboxylate synthases and membrane ion transport. In contrast, chronically-exposed plants had gene regulation responses that were indicative of pathogen, cold, and heavy-metal stress, cell wall degradation, ethylene production, signal transduction, and calcium-release modulation. Acute Li+ exposure phenocopies magnesium-deficiency symptoms and is associated with elevated expression of stress response genes that could lead to consumption of metabolic and transcriptional energy reserves and the dedication of more resources to cell development. In contrast, chronic Li+ exposure increases expression signal transduction genes. The identification of new Li+-sensitive genes and a gene-based “response plan” for acute and chronic Li+ exposure are delineated.« less

  19. mRNA Transcript Abundance during Plant Growth and the Influence of Li+ Exposure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Duff, M. C.; Kuhne, W. W.; Halverson, N. V.; Chang, C. -S.; Kitamura, E.; Hawthorn, L.; Martinez, N. E.; Stafford, C.; Milliken, C. E.; Caldwell, E. F.; et al

    2014-10-23

    Lithium (Li) toxicity in plants is, at a minimum, a function of Li+ concentration, exposure time, species and growth conditions. Most plant studies with Li+ focus on short-term acute exposures. This study examines short- and long-term effects of Li+ exposure in Arabidopsis with Li+ uptake studies and measured shoot mRNA transcript abundance levels in treated and control plants. Stress, pathogen-response and arabinogalactan protein genes were typically more up-regulated in older (chronic, low level) Li+-treatment plants and in the much younger plants from acute high-level exposures. The gene regulation behavior of high-level Li+ resembled prior studies due to its influence on:more » inositol synthesis, 1-aminocyclopropane-1-carboxylate synthases and membrane ion transport. In contrast, chronically-exposed plants had gene regulation responses that were indicative of pathogen, cold, and heavy-metal stress, cell wall degradation, ethylene production, signal transduction, and calcium-release modulation. Acute Li+ exposure phenocopies magnesium-deficiency symptoms and is associated with elevated expression of stress response genes that could lead to consumption of metabolic and transcriptional energy reserves and the dedication of more resources to cell development. In contrast, chronic Li+ exposure increases expression signal transduction genes. The identification of new Li+-sensitive genes and a gene-based “response plan” for acute and chronic Li+ exposure are delineated.« less

  20. Lithium oxide in the Li(Si)/FeS/sub 2/ thermal battery system

    SciTech Connect (OSTI)

    Searcy, J.Q.; Neiswander, P.A.; Armijo, J.R.; Bild, R.W.

    1981-11-01

    The formation of lithium oxide (Li/sub 2/O) in Li(Si)/FeS/sub 2/ thermal batteries during the required shelf life of twenty-five years has been identified in previous work as a reaction deleterious to thermal battery performance. This paper gives the results of a study designed to determine performance degradation caused by Li/sub 2/O and to determine an acceptable level of Li/sub 2/O that can be used to define required dryness of battery parts and allowable leak rates. Pellets preconditioned with Li/sub 2/O were used in single cells or in batteries. Their performance was compared with discharges made using pellets with no Li/sub 2/O added. The actual Li/sub 2/O present in anode pellets at various stages during fabrication was determined by using 14 MeV neutron activation analysis. Results are reported. This work shows that thermal battery production controls should be designed in such a manner that not more than 15 wt.% of the Li(Si) is oxidized at the end of the desired self life. Furthermore, the formation of a Li/sub 2/O layer equivalent to the oxidation of 6.0 wt.% of the anode on the surface facing the current collector must be prevented. Battery designers must allow for a drop in coulombic efficiency as the Li(Si) reacts, and the effect on performance of Li/sub 2/O in the separator must be considered.

  1. Effect of LiAlO{sub 2} nanoparticle filler concentration on the electrical properties of PEOLiClO{sub 4} composite

    SciTech Connect (OSTI)

    Masoud, E.M.; El-Bellihi, A.-A.; Bayoumy, W.A.; Mousa, M.A.

    2013-03-15

    Highlights: ? Structural modification of nano LiAlO{sub 2} filler increased conductivity. ? Good ionic conductivity for (LiAlO{sub 2}){sub 1.5}(PEO){sub 11}(LiClO{sub 4}) at room temperature. ? Nano LiAlO{sub 2} filler enhanced both ion migration and orientation. ? High dielectric properties for (LiAlO{sub 2}){sub 1.5}(PEO){sub 11}(LiClO{sub 4}) at room temperature. - Abstract: Nano-composite polymer electrolytes are receiving attention as potential candidates to be used as electrolyte membranes in lithium polymer batteries and other devices. In this work, polyethylene oxideLiClO{sub 4} based composite polymer electrolyte was prepared by solution casting method. The effect of LiAlO{sub 2} nanoparticle ceramic filler concentration on the structure and electrical conduction of the composite was studied. Nano-LiAlO{sub 2} was synthesized by solgel method. The samples were characterized using X-ray diffraction, Fourier Transmission-Infra Red, Differential Scanning Calorimetry, and tested by dielectric properties, Direct and Alternating current measurements as well as by impedance spectroscopy. All samples showed a behavior referring to an ionic conduction. Generally, the melting temperature of the polymer electrolyte decreased with filler concentration. Both thermal property and filler concentration influenced conductivity value. At room temperature, the highest ionic conductivity was 9.76 10{sup ?5} ohm{sup ?1} cm{sup ?1} for sample with a composition of (LiAlO{sub 2}){sub 1.5}(polyethylene oxide){sub 11}(LiClO{sub 4}). All results were correlated and discussed.

  2. First-principles investigation of the electronic and Li-ion diffusion properties of LiFePO{sub 4} by sulfur surface modification

    SciTech Connect (OSTI)

    Xu, Guigui E-mail: zghuang@fjnu.edu.cn; Zhong, Kehua; Zhang, Jian-Min; Huang, Zhigao E-mail: zghuang@fjnu.edu.cn

    2014-08-14

    We present a first-principles calculation for the electronic and Li-ion diffusion properties of the LiFePO{sub 4} (010) surface modified by sulfur. The calculated formation energy indicates that the sulfur adsorption on the (010) surface of the LiFePO{sub 4} is energetically favored. Sulfur is found to form Fe-S bond with iron. A much narrower band gap (0.67 eV) of the sulfur surface-modified LiFePO{sub 4} [S-LiFePO{sub 4} (010)] is obtained, indicating the better electronic conductive properties. By the nudged elastic band method, our calculations show that the activation energy of Li ions diffusion along the one-dimensional channel on the surface can be effectively reduced by sulfur surface modification. In addition, the surface diffusion coefficient of S-LiFePO{sub 4} (010) is estimated to be about 10{sup −11} (cm{sup 2}/s) at room temperature, which implies that sulfur modification will give rise to a higher Li ion carrier mobility and enhanced electrochemical performance.

  3. Predictive Materials Modeling for Li-Air Battery Systems | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leadership Computing Facility The electron density obtained from a density functional theory (DFT) calculation of lithium oxide performed with the GPAW code Shown here is the electron density obtained from a density functional theory (DFT) calculation of lithium oxide (Li2O) performed with the GPAW code. This visualization was the result of a simulation run on Intrepid, a supercomputer at the Argonne Leadership Computing Facility. Kah Chun Lau, Aaron Knoll and Larry A. Curtiss, Argonne

  4. Predictive Models of Li-ion Battery Lifetime

    SciTech Connect (OSTI)

    Smith, Kandler; Wood, Eric; Santhanagopalan, Shriram; Kim, Gi-heon; Shi, Ying; Pesaran, Ahmad

    2015-06-15

    It remains an open question how best to predict real-world battery lifetime based on accelerated calendar and cycle aging data from the laboratory. Multiple degradation mechanisms due to (electro)chemical, thermal, and mechanical coupled phenomena influence Li-ion battery lifetime, each with different dependence on time, cycling and thermal environment. The standardization of life predictive models would benefit the industry by reducing test time and streamlining development of system controls.

  5. Conduction below 100 °C in nominal Li6ZnNb4O14

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Yunchao; Paranthaman, Mariappan Parans; Gill, Lance W.; Edward W. Hagaman; Wang, Yangyang; Sokolov, Alexei P.; Dai, Sheng; Ma, Cheng; Chi, Miaofang; Veith, Gabriel M.; et al

    2015-09-15

    The increasing demand for a safe rechargeable battery with a high energy density per cell is driving a search for a novel solid electrolyte with a high Li+ or Na+ conductivity that is chemically stable in a working Li-ion or Na-ion battery. Li6ZnNb4O14 has been reported to exhibit a σ Li > 10-2 S cm-1 at 250 °C, but to disproportionate into multiple phases on cooling from 850 °C to room temperature. An investigation of the room-temperature Li-ion conductivity in a porous pellet of a multiphase product of a nominal Li6ZnNb4O14 composition is shown to have bulk σ Li 3.3more » x 10-5 S cm-1 at room temperature that increases to 1.4 x 10-4 S cm-1 by 50 °C. 7Li MAS NMR spectra were fitted to two Lorentzian lines, one of which showed a dramatic increase with increasing temperature. As a result, a test for water stability indicates that Li+ may move to the particle and grain surfaces to react with adsorbed water as occurs in the garnet Li+ conductors.« less

  6. First-principles calculated decomposition pathways for LiBH4 nanoclusters

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, Zhi -Quan; Chen, Wei -Chih; Chuang, Feng -Chuan; Majzoub, Eric H.; Ozolins, Vidvuds

    2016-05-18

    Here, we analyze thermodynamic stability and decomposition pathways of LiBH4 nanoclusters using grand-canonical free-energy minimization based on total energies and vibrational frequencies obtained from density-functional theory (DFT) calculations. We consider (LiBH4)n nanoclusters with n = 2 to 12 as reactants, while the possible products include (Li)n, (B)n, (LiB)n, (LiH)n, and Li2BnHn; off-stoichiometric LinBnHm (m ≤ 4n) clusters were considered for n = 2, 3, and 6. Cluster ground-state configurations have been predicted using prototype electrostatic ground-state (PEGS) and genetic algorithm (GA) based structural optimizations. Free-energy calculations show hydrogen release pathways markedly differ from those in bulk LiBH4. While experiments havemore » found that the bulk material decomposes into LiH and B, with Li2B12H12 as a kinetically inhibited intermediate phase, (LiBH4)n nanoclusters with n ≤ 12 are predicted to decompose into mixed LinBn clusters via a series of intermediate clusters of LinBnHm (m ≤ 4n). The calculated pressure-composition isotherms and temperature-pressure isobars exhibit sloping plateaus due to finite size effects on reaction thermodynamics. Generally, decomposition temperatures of free-standing clusters are found to increase with decreasing cluster size due to thermodynamic destabilization of reaction products.« less

  7. Solvate Structures and Computational/Spectroscopic Characterization of LiBF4 Electrolytes

    SciTech Connect (OSTI)

    Seo, D. M.; Boyle, Paul D.; Allen, Joshua L.; Han, Sang D.; Jonsson, Erlendur; Johansson, Patrik; Henderson, Wesley A.

    2014-07-21

    Crystal structures have been determined for both LiBF4 and HBF4 solvates—(acetonitrile)2:LiBF4, (ethylene glycol diethyl ether)1:LiBF4, (diethylene glycol diethyl ether)1:LiBF4, (tetrahydrofuran)1:LiBF4, (methyl methoxyacetate)1:LiBF4, (suc-cinonitrile)1:LiBF4, (N,N,N',N",N"-pentamethyldiethylenetriamine)1:HBF4, (N,N,N',N'-tetramethylethylenediamine)3/2:HBF4 and (phenanthroline)2:HBF4. These, as well as other known LiBF4 solvate structures, have been characterized by Raman vibrational spectroscopy to unambiguously assign the anion Raman band positions to specific forms of BF4-...Li+ cation coordination. In addition, complementary DFT calculations of BF4-...Li+ cation complexes have provided additional insight into the challenges associated with accurately interpreting the anion interactions from experimental Raman spectra. This information provides a crucial tool for the characterization of the ionic association interactions within electrolytes.

  8. Crystal Chemistry of Electrochemically and Chemically Lithiated Layered αI-LiVOPO4

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    He, Guang; Bridges, Craig A.; Manthiram, Arumugam

    2015-09-14

    LiVOPO4 is an attractive cathode for lithium-ion batteries with a high operating voltage and the potential to achieve the reversible insertion of two lithium ions between VOPO4 and Li2VOPO4. Among the three known forms of LiVOPO4 (α, β, and αI), the αI-LiVOPO4 has a layered structure that could promote better ionic mobility and reversibility than others. However, a comprehensive study of its lithiated product is not available as αI-LiVOPO4 is metastable and difficult to prepare by conventional approaches. We present here a facile synthesis of highly crystalline αI-LiVOPO4 and αI-LiVOPO4/rGO nanocomposite by a microwave-assisted solvothermal method and its electrochemical/chemical lithiation.more » The LiVOPO4/rGO cathodes exhibit a high reversible capacity of 225 mAh g–1, indicating the insertion of more than one lithium into VOPO4. Both electrochemical and chemical lithiation imply a solid-solution reaction mechanism on inserting the second lithium into αI-LiVOPO4, but a two-phase reaction feature could also occur under certain conditions such as insufficient time for equilibration of Li+ diffusion in the structure. The fully lithiated new αI-Li2VOPO4 phase was characterized by combined Rietveld refinement of neutron diffraction and X-ray diffraction data and by bond-valence sum maps. The results suggest that αI-Li2VOPO4 retains the tetragonal P4/nmm symmetry of the parent αI-LiVOPO4 structure, where the second lithium ions are located in the lithium layers rather than in the VOPO4 layers« less

  9. Dendrite-Free Li Deposition Using Trace-Amounts of Water as an Electrolyte Additive

    SciTech Connect (OSTI)

    Qian, Jiangfeng; Xu, Wu; Bhattacharya, Priyanka; Engelhard, Mark H.; Henderson, Wesley A.; Zhang, Yaohui; Zhang, Jiguang

    2015-07-01

    Residual water presents in nonaqueous electrolytes has been widely regarded as a detrimental factor for lithium (Li) batteries. This is because water is highly reactive with the commonly used LiPF6 salt and leads to the formation of HF that corrodes battery materials. In this work, we demonstrate that a controlled trace-amount of water (25-100 ppm) can be an effective electrolyte additive for achieving dendrite-free Li metal deposition in LiPF6-based electrolytes and avoid its detrimental effect at the same time. Detailed analyses reveal that the trace amount of HF formed by the decomposition reaction of LiPF6 with water will be electrochemically reduced during initial Li deposition process to form a uniform and dense LiF-rich SEI layer on the surface of the substrate. This LiF-rich SEI layer leads to a uniform distribution of the electric field on the substrate surface and enables uniform and dendrite-free Li deposition. Meanwhile the detrimental effect of HF is diminished due to the consumption of HF in the LiF formation process. Microscopic analysis reveals that the as-deposited dendrite-free Li films exhibit a self-aligned and highly-compacted Li nanorods structure which is consistent with their charming blue color or known as structure color. These findings clearly demonstrate a novel approach to control the nucleation and grow process of Li metal films using well-controlled trace-amount of water. They also shine the light on the effect of water on other electrodeposition processes.

  10. Thermoluminescence of Eu activated LiF nanophosphors

    SciTech Connect (OSTI)

    Kumar, Satinder; Sharma, A. K.; Lochab, S. P.; Kumar, Ravi

    2012-06-05

    Nanocrystalline lithium fluoride (LiF) phosphors prepared by the chemical co-precipitation method at 8.00 pH value have been activated with Eu (0.01, 0.03, 0.07 and 0.1%nt;) as single dopants. The formation of nanocrystalline structure has been confirmed by X-ray diffraction. Thermolumniscence (TL) properties of LiF: Eu nano-phosphors irradiated with gamma rays at different doses of 100 Gy - 10 kGy have been further studied. There is only one main glow peak at around 122 deg. C; which shifts to higher temperature with an increase in doping concentration at all studied irradiation doses. However, the glow peak shifts to lower temperature with an increase in irradiation dose from 100 Gy to 10 kGy. The LiF nano-crystallites synthesized at 8.00 pH and activated with 0.03%nt; Eu are found to have maximum TL sensitivity at studied gamma doses.

  11. Predictive Models of Li-ion Battery Lifetime (Presentation)

    SciTech Connect (OSTI)

    Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G.; Shi, Y.; Pesaran, A.

    2014-09-01

    Predictive models of Li-ion battery reliability must consider a multiplicity of electrochemical, thermal and mechanical degradation modes experienced by batteries in application environments. Complicating matters, Li-ion batteries can experience several path dependent degradation trajectories dependent on storage and cycling history of the application environment. Rates of degradation are controlled by factors such as temperature history, electrochemical operating window, and charge/discharge rate. Lacking accurate models and tests, lifetime uncertainty must be absorbed by overdesign and warranty costs. Degradation models are needed that predict lifetime more accurately and with less test data. Models should also provide engineering feedback for next generation battery designs. This presentation reviews both multi-dimensional physical models and simpler, lumped surrogate models of battery electrochemical and mechanical degradation. Models are compared with cell- and pack-level aging data from commercial Li-ion chemistries. The analysis elucidates the relative importance of electrochemical and mechanical stress-induced degradation mechanisms in real-world operating environments. Opportunities for extending the lifetime of commercial battery systems are explored.

  12. Spectroscopy of LiΛ9 by electroproduction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Urciuoli, G. M.; Cusanno, F.; Marrone, S.; Acha, A.; Ambrozewicz, P.; Aniol, K. A.; Baturin, P.; Bertin, P. Y.; Benaoum, H.; Blomqvist, K. I.; et al

    2015-03-01

    Background: In the absence of accurate data on the free two-body hyperon-nucleon interaction, the spectra of hypernuclei can provide information on the details of the effective hyperon-nucleon interaction. Purpose: To obtain a high-resolution spectrum for the 9Be(e,e'K+)9ΛLi reaction. Method: Electroproduction of the hypernucleus 9ΛLi has been studied for the first time with sub-MeV energy resolution in Hall A at Jefferson Lab on a 9Be target. In order to increase the counting rate and to provide unambiguous kaon identification, two superconducting septum magnets and a Ring Imaging CHerenkov detector (RICH) were added to the Hall A standard equipment. Results: The crossmore » section to low-lying states of 9ΛLi is concentrated within 3 MeV of the ground state and can be fitted with four peaks. The positions of the doublets agree with theory while a disagreement could exist with respect to the relative strengths of the peaks in the doublets. A Λ separation energy, BΛ, of 8.36±0.08 (stat.) ±0.08 (syst.) MeV was measured, in agreement with an earlier experiment.« less

  13. Searching for Sustainable and "Greener" Li-ion Batteries

    ScienceCinema (OSTI)

    Tarascon, Jean-Marie [University of Picardie at Aimens, France

    2010-01-08

    Lithium-ion batteries are strong candidates for powering upcoming generations of hybrid electric vehicles and plug-in hybrid electric vehicles. But improvements in safety must be achieved while keeping track of materials resources and abundances, as well as materials synthesis and recycling processes, all of which could inflict a heavy energy cost. Thus, electrode materials that have a minimum footprint in nature and are made via eco-efficient processes are sorely needed. The arrival of electrode materials based on minerals such as LiFePO4 (tryphilite) is a significant, but not sufficient, step toward the long-term demand for materials sustainability. The eco-efficient synthesis of LiFePO4 nanopowders via hydrothermal/ solvo-thermal processes using latent bases, structure directing templates, or other bio-related approaches will be presented in this talk. However, to secure sustainability and greeness, organic electrodes appear to be ideal candidates.... We took a fresh look at organic based electrodes; the results of this research into sequentially metal-organic-framework electrodes and Li-based organic electrodes (LixCyOz) will be reported and discussed.

  14. Note: {sup 6}Li III light intensity observation for {sup 6}Li{sup 3+} ion beam operation at Hyper-Electron Cyclotron Resonance ion source

    SciTech Connect (OSTI)

    Muto, Hideshi; Ohshiro, Yukimitsu; Yamaka, Shoichi; Yamaguchi, Hidetoshi; Shimoura, Susumu; Watanabe, Shin-ichi; Oyaizu, Michihiro; Kobayashi, Kiyoshi; Kotaka, Yasuteru; Nishimura, Makoto; Kase, Masayuki; Kubono, Shigeru; Hattori, Toshiyuki

    2014-12-15

    The light intensity of {sup 6}Li III line spectrum at λ = 516.7 nm was observed during {sup 6}Li{sup 3+} beam tuning at the Hyper-Electron Cyclotron Resonance (ECR) ion source. Separation of ion species of the same charge to mass ratio with an electromagnetic mass analyzer is known to be an exceptionally complex process. However, {sup 6}Li III line intensity observation conducted in this study gives new insights into its simplification of this process. The light intensity of {sup 6}Li III line spectrum from the ECR plasma was found to have a strong correlation with the extracted {sup 6}Li{sup 3+} beam intensity from the RIKEN Azimuthal Varying Field cyclotron.

  15. Liberia-National Adaptation Plan Global Support Programme (NAP...

    Open Energy Info (EERE)

    Global Environment Facility (GEF), United Nations Framework Convention on Climate Change (UNFCCC), Global Water Partnership (GWP), German Society for International Cooperation...

  16. Liberia-NREL Biomass Resource Assessment | Open Energy Information

    Open Energy Info (EERE)

    are more than enough to cover the country's annual electricity consumption of 297 GWh and oil consumption of 206 dam3. While the contribution of food crop residues, animal manure,...

  17. Performance and discharge characteristics of Ca/LiCl, LiNO/sub 3//LiNO/sub 3/, AgNO/sub 3//Ni thermal battery cells

    SciTech Connect (OSTI)

    McMains, G.E.; Fletcher, A.N.; Miles, M.H.

    1984-02-01

    Thermal battery cells utilizing molten LiNO/sub 3/ as an oxidizing electrolyte with calcium anodes have been characterized for high rate discharge conditions. The presence of small amounts of AgNO/sub 3/ greatly improves the cathode reaction. Half-cell studies of anode characteristics show little variation of anode potential with temperature. Gassing at the anode-electrolyte interface increases with temperature and current density. Overall anode consumption rates increase with increasing temperature, while anode coulombic efficiencies drop at high rates of discharge (300 mA/cm/sup -2/). Cathode half-cell data reveal that high rate reduction of AgNO/sub 3/ dissolved in LiNO/sub 3/ yields masses of dendritic growth at low temperatures (260/sup 0/-275/sup 0/C) while at higher temperatures (>400/sup 0/C) correspondingly fewer dendritic structures are observed. Cell experiments show anticipated current-voltage-temperature relationships, effectively mirroring half-cell experiments. Cell voltages sustain over 2V at 75 mA/cm/sup -2/ for periods which vary according to temperature of discharge.

  18. Graphene Modified LiFePO4 Cathode Materials for High Power Lithium ion Batteries

    SciTech Connect (OSTI)

    Zhou, X.; Wang, F.; Zhu, Y.; Liu, Z.

    2011-01-24

    Graphene-modified LiFePO{sub 4} composite has been developed as a Li-ion battery cathode material with excellent high-rate capability and cycling stability. The composite was prepared with LiFePO{sub 4} nanoparticles and graphene oxide nanosheets by spray-drying and annealing processes. The LiFePO{sub 4} primary nanoparticles embedded in micro-sized spherical secondary particles were wrapped homogeneously and loosely with a graphene 3D network. Such a special nanostructure facilitated electron migration throughout the secondary particles, while the presence of abundant voids between the LiFePO{sub 4} nanoparticles and graphene sheets was beneficial for Li{sup +} diffusion. The composite cathode material could deliver a capacity of 70 mAh g{sup -1} at 60C discharge rate and showed a capacity decay rate of <15% when cycled under 10C charging and 20C discharging for 1000 times.

  19. Crystal structure and chemical bonding of novel Li-containing polar intermetallic compound La{sub 11}Li{sub 12}Ge{sub 16}

    SciTech Connect (OSTI)

    Jung, Yaho; Nam, Gnu; Jeon, Jieun; Kim, Youngjo; You, Tae-Soo

    2012-12-15

    A novel Li-containing polar intermetallic compound La{sub 11}Li{sub 12}Ge{sub 16} has been synthesized using the high-temperature reaction method and characterized by both powder and single-crystal X-ray diffractions. The title compound crystallized in the orthorhombic crystal system (space group Immm, Z=2, Pearson symbol oI78) with fifteen crystallographically unique atomic positions in the asymmetric unit, and the lattice parameters are refined as a=4.5244(4) A, b=6.9932(6) A, and c=53.043(5) A. The complex crystal structure of the title compound can be described as a 2:1 intergrowth of two closely related compounds: La{sub 2}Li{sub 2}Ge{sub 3} (Ce{sub 2}Li{sub 2}Ge{sub 3}-type) and La{sub 3}Li{sub 4}Ge{sub 4} (Zr{sub 3}Cu{sub 4}Si{sub 4}-type) acting like 'building-blocks' along the c-axis. Six La sites are categorized into three distinct types based on the local coordination environment showing the coordination numbers of 12-14. Three unique Li sites are placed in the centers of local tetrahedra formed by four Ge atoms which eventually construct Ge{sub 2} dimers or 1-dimensional cis-/trans-Ge chains. Theoretical investigations using the tight-binding linear muffin-tin orbital (LMTO) method provide rationales for an improved structural stability and for unique local coordination geometries established by anionic elements including [LiGe{sub 4}] tetrahedra, cis-/trans-Ge chain and Ge{sub 2} dimers. - Graphical abstract: Reported is a novel ternary Li-containing polar intermetallic compound La{sub 11}Li{sub 12}Ge{sub 16}. The complex crystal structure can be viewed as a simple combination of two closely related known compounds acting as 'building-blocks', La{sub 2}Li{sub 2}G{sub 3} and La{sub 3}Li{sub 4}Ge{sub 4}, in a 2:1 stoichiometric ratio. Highlights: Black-Right-Pointing-Pointer A novel Li-containing polar intermetallic compound La{sub 11}Li{sub 12}Ge{sub 16} was synthesized. Black-Right-Pointing-Pointer The complex crystal structure was easily explained as

  20. Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt001_es_koo_2012_p.pdf (2.94 MB) More Documents & Publications Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA Li-Ion Battery Cell Manufacturing 2010 DOE, Li-Ion Battery Cell Manufacturing

  1. Atomistic Modeling of the Electrode-Electrolyte Interface in Li-Ion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Systems: Electrolyte Structuring | Argonne Leadership Computing Facility Atomistic Modeling of the Electrode-Electrolyte Interface in Li-Ion Energy Storage Systems: Electrolyte Structuring Authors: Ryan Jorn, Revati Kumar, Daniel P. Abraham, Gregory A. Voth The solid electrolyte interface (SEI) forms as a result of side reactions between the electrolyte and electrode surfaces in Li-ion batteries and can adversely impact performance by impeding Li-ion transport and diminishing

  2. Polysulfide-Blocking Polymer Membrane for Li-S Batteries - Joint Center for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Research August 3, 2015, Research Highlights Polysulfide-Blocking Polymer Membrane for Li-S Batteries The microporous network allows the passage of smaller moieties such as solvent molecules, LiTFSI, and lithium ions while forbidding the passage of larger polysulfides (Li2Sx). Scientific Achievement Polymers of Intrinsic Microporosity are harnessed as an ion-selective membrane, effectively blocking polysulfide crossover due to its microporous molecular-sieving network.

  3. Influence of lithium salts on the discharge chemistry of Li-air cells

    SciTech Connect (OSTI)

    Veith, Gabriel M; Nanda, Jagjit; Delmau, Laetitia Helene; Dudney, Nancy J

    2012-01-01

    In this work we show that the use of a high boiling point ether solvent (tetraglyme) promotes the formation of Li2O2 in a lithium-air cell. In addition, another major constituent in the discharge product of a Li-air cell contains halides, from the lithium salt, and the tetraglyme used as the solvent. This information is critical to the development of Li-air electrolytes which are stable and promote the formation of the desired Li2O2 products.

  4. Possibility of creating weldable alloys on the basis of the system Al-Cu-Li

    SciTech Connect (OSTI)

    Fridlyander, I.N.; Drits, A.M.; Krymova, T.V.

    1992-03-01

    The weldability of alloys of the system Al-Cu-Li is studied and promising alloying ranges are established for weldable alloys: 5.5-6.5% Cu, 0.8-1.4% Li and 2.5-3.5% Cu, 1.9-2.5% Li. The positive effect of adding small amounts of scandium on the weldability and mechanical properties of alloys of the system Al-Cu-Li is demonstrated. Properties at normal and cryogenic temperatures are given for a new weldable alloy 1460. 7 refs., 6 figs., 2 tabs.

  5. Chemical and Electrochemical Lithiation of LiVOPO4 Cathodes for Lithium-ion Batteries

    SciTech Connect (OSTI)

    Harrison, Katharine L; Bridges, Craig A; Segre, C; VernadoJr, C Daniel; Applestone, Danielle; Bielawski, Christopher W; Paranthaman, Mariappan Parans; Manthiram, Arumugam

    2014-01-01

    The theoretical capacity of LiVOPO4 could be increased from 159 to 318 mAh/g with the insertion of a second Li+ ion into the lattice to form Li2VOPO4, significantly enhancing the energy density of lithium-ion batteries. The changes accompanying the second Li+ insertion into -LiVOPO4 and -LiVOPO4 are presented here at various degrees of lithiation, employing both electrochemical and chemical lithiation. Inductively coupled plasma, X-ray absorption spectroscopy, and Fourier transform spectroscopy measurements indicate that a composition of Li2VOPO4 could be realized with an oxidation state of V3+ by the chemical lithiation process. The accompanying structural changes are evidenced by X-ray and neutron powder diffraction. Spectroscopic and diffraction data collected with the chemically lithiated samples as well as diffraction data on the electrochemically lithiated samples reveal that significant amount of lithium can be inserted into -LiVOPO4 before a more dramatic structural change occurs. In contrast, lithiation of -LiVOPO4 is more consistent with the formation of a two-phase mixture throughout most of the lithiation range. The phases observed with the ambient-temperature lithiation processes presented here are significantly different from those reported in the literature.

  6. LiDAR At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Glass Buttes Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: LiDAR At Glass Buttes Area (DOE GTP) Exploration Activity Details...

  7. LiDAR At Gabbs Valley Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Gabbs Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: LiDAR At Gabbs Valley Area (DOE GTP) Exploration Activity Details...

  8. Platforms and Methods for In Situ Characterization of Li-ion...

    Office of Scientific and Technical Information (OSTI)

    Platforms and Methods for In Situ Characterization of Li-ion Battery Materials. Citation Details In-Document Search Title: Platforms and Methods for In Situ Characterization of...

  9. Composition and Manufacturing Effects on Electrical Properties of Li/FeS2 Thermal Battery Cathodes

    SciTech Connect (OSTI)

    Reinholz, Emilee Lolita

    2015-10-01

    The purpose of this thesis was to better understand the relationship between processing, microstructure, and electrical conductivity of LiFeS2 thermal battery cathodes.

  10. Analysis of Heat Dissipation in Li-Ion Cells & Modules for Modeling of Thermal Runaway (Presentation)

    SciTech Connect (OSTI)

    Kim, G.-H.; Pesaran, A.

    2007-05-15

    The objectives of this study are: (1) To develop 3D Li-Ion battery thermal abuse ''reaction'' models for cell and module analysis; (2) To understand the mechanisms and interactions between heat transfer and chemical reactions during thermal runaway for Li-Ion cells and modules; (3) To develop a tool and methodology to support the design of abuse-tolerant Li-Ion battery systems for PHEVs/HEVs; and (4) To help battery developers accelerate delivery of abuse-tolerant Li-Ion battery systems in support of the FreedomCAR's Energy Storage Program.

  11. Development of Cell/Pack Level Models for Automotive Li-Ion Batteries...

    Broader source: Energy.gov (indexed) [DOE]

    Level Models for Automotive Li-Ion Batteries with Experimental Validation Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) Vehicle Technologies Office ...

  12. Li2S encapsulated by nitrogen-doped carbon for lithium sulfur batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Lin; Liu, Yuzi; Ashuri, Maziar; Liu, Caihong; Shaw, Leon L.

    2014-09-26

    Using high-energy ball milling of the Li2S plus carbon black mixture followed by carbonization of pyrrole, we have established a facile approach to synthesize Li2S-plus-C composite particles of average size 400 nm, encapsulated by a nitrogen-doped carbon shell. Such an engineered core–shell structure exhibits an ultrahigh initial discharge specific capacity (1029 mAh/g), reaching 88% of the theoretical capacity (1,166 mAh/g of Li2S) and thus offering the highest utilization of Li2S in the cathode among all of the reported works for the encapsulated Li2S cathodes. This Li2S/C composite core with a nitrogen-doped carbon shell can still retain 652 mAh/g after prolongedmore » 100 cycles. These superior properties are attributed to the nitrogen-doped carbon shell that can improve the conductivity to enhance the utilization of Li2S in the cathode. As a result, fine particle sizes and the presence of carbon black within the Li2S core may also play a role in high utilization of Li2S in the cathode.« less

  13. Investigation of the Rechargeability of Li-O2 Batteries in Non-aqueous Electrolyte

    SciTech Connect (OSTI)

    Xiao, Jie; Hu, Jian Z.; Wang, Deyu; Hu, Dehong; Xu, Wu; Graff, Gordon L.; Nie, Zimin; Liu, Jun; Zhang, Jiguang

    2011-07-01

    In order to understand the nature of the limited cycle life and poor energy efficiency associated with the secondary Li-O2 batteries the discharge products of primary Li-O2 cells at different depth of discharge (DOD) are systematically analyzed in this work. It is revealed that if discharged to 2.0 V a small amount of Li2O2 coexist with Li2CO3 and RO-(C=O)-OLi) in alkyl carbonate-based electrolyte. Further discharging the air electrodes to below 2.0 V the amount of Li2CO3 and LiRCO3 increases significantly due to the severe electrolyte decomposition. There is no Li2O detected in this alkyl carbonate electrolyte regardless of DOD. It is also found that the alkyl carbonate based electrolyte begins to decompose at 4.0 V during charging under the combined influences from the high surface area carbon, the nickel metal current collector and the oxygen atmosphere. Accordingly the impedance of the Li-O2 cell continues to increase after each discharge and recharge process indicating a repeated plating of insoluble lithium salts on the carbon surface. Therefore the whole carbon electrode becomes completely insulated only after a few cycles and loses the function of providing active tri-phase regions for the Li-oxygen batteries.

  14. LiDAR At Twenty-Nine Palms Area (Sabin, Et Al., 2010) | Open...

    Open Energy Info (EERE)

    Sabin, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: LiDAR At Twenty-Nine Palms Area (Sabin, Et Al., 2010) Exploration Activity...

  15. Miniature All-solid-state Heterostructure Nanowire Li-ion Batteries...

    Office of Scientific and Technical Information (OSTI)

    All-solid-state Heterostructure Nanowire Li-ion Batteries as a Toll for Engineering and Structural Diagnostics of Nanoscale Electrochemical Processes Citation Details In-Document...

  16. Impedance studies of the thin film LiMn2O4/electrolyteinterface

    SciTech Connect (OSTI)

    Striebel, Kathryn A.; Sakai, E.; Cairns, Elton J.

    2001-04-07

    Room-temperature impedance measurements of a thin-film LiMn2O4/LiPF6-EC-DMC interface have been used to identify the spontaneous formation Li2Mn2O4 at the interface at room temperature at voltages of 3.7 and higher. The impedance of the LiMn2O4 films exhibited two time constants: at about 14 kHz and 60 to 200 Hz. The high frequency loop is dependent on film morphology and was attributed to the substrate/oxide interface. The low frequency behavior was dependent on both state-of-charge (SOC) and time at a given SOC. At full charge the impedance in this electrolyte was stable at room temperature over several days. At high lithium contents, film OCV and impedance tended to grow logarithmically with time, with lower rates for lower Mn3+ content in the film. The increased impedance was removed by oxidation of the film to 4.5V vs. Li/Li+. The observations are consistent with a reversible disproportionation of part of the LiMn2O4 into Li2Mn2O4 and a lithium-deficient spinel. With extended constant current cycling part of the Li2Mn2O4 degrades to the Mn2O3 and the process is no longer reversible.

  17. First-Principles Study of Novel Conversion Reactions for High-Capacity Li-Ion Battery Anodes in the Li-Mg-B-N-H System

    SciTech Connect (OSTI)

    Mason, T.H.; Graetz, J.; Liu, X.; Hong, J.; Majzoub, E.H.

    2011-07-28

    Anodes for Li-ion batteries are primarily carbon-based due to their low cost and long cycle life. However, improvements to the Li capacity of carbon anodes, LiC{sub 6} in particular, are necessary to obtain a larger energy density. State-of-the-art light-metal hydrides for hydrogen storage applications often contain Li and involve reactions requiring Li transport, and light-metal ionic hydrides are candidates for novel conversion materials. Given a set of known solid-state and gas-phase reactants, we have determined the phase diagram in the Li-Mg-B-N-H system in the grand canonical ensemble, as a function of lithium chemical potential. We present computational results for several new conversion reactions with capacities between 2400 and 4000 mAh g{sup -1} that are thermodynamically favorable and that do not involve gas evolution. We provide experimental evidence for the reaction pathway on delithiation for the compound Li{sub 4}BN{sub 3}H{sub 10}. While the predicted reactions involve multiple steps, the maximum volume increase for these materials on lithium insertion is significantly smaller than that for Si.

  18. Investigation on the Charging Process of Li2O2-Based Air Electrodes in Li-O2 Batteries with Organic Carbonate Electrolytes

    SciTech Connect (OSTI)

    Xu, Wu; Viswanathan, Vilayanur V.; Wang, Deyu; Towne, Silas A.; Xiao, Jie; Nie, Zimin; Hu, Dehong; Zhang, Jiguang

    2011-04-15

    The charge processes of Li-O2 batteries were investigated by analyzing the gas evolution by in situ gas chromatography-mass spectroscopy (GC/MS) technique. The mixture of Li2O2/Fe3O4/Super P carbon/polyvinylidene fluoride (PVDF) was used as the starting air electrode material and 1M LiTFSI in carbonate-based solvents was used as electrolyte. It was found that Li2O2 is reactive to 1-methyl-2-pyrrolidinone and PVDF binder used in the electrode preparation. During the 1st charge (up to 4.6 V), O2 was the main component in the gases released. The amount of O2 measured by GC/MS was consistent with the amount of Li2O2 decomposed in the electrochemical process as measured by the charge capacity, indicative of the good chargeability of Li2O2. However, after the cell was discharged to 2.0 V in O2 atmosphere and re-charged to ~ 4.6 V in the second cycle, CO2 was dominant in the released gases. Further analysis of the discharged air electrode by X-ray diffraction and Fourier transform infrared spectroscopy indicated that lithium-containing carbonate species (lithium alkyl carbonate and/or Li2CO3) were the main reaction products. Therefore, compatible electrolyte and electrodes as well as the electrode preparation procedures need to be developed for long term operation of rechargeable Li-O2 or Li-air batteries.

  19. Fatigue crack growth behavior of Al-Li alloy 1441

    SciTech Connect (OSTI)

    Prakash, R.V.; Parida, B.K.

    1995-12-31

    Fatigue crack growth behavior of Al-Li alloy 1441 having a marginally lower lithium content, compared to 80xx and 20xx series Al-Li alloys is presented in this paper. This investigation was conducted on single edge tension--SE(T)--specimens, under constant amplitude as well as under MiniLCA flight spectrum loading with the specific objective of determining the effects of stress ratio, orientation, thickness and cladding. Three thicknesses were considered: 1.2 mm(clad and unclad), 2.0 mm(clad and unclad) and 8.0 mm unclad. Constant amplitude fatigue tests were conducted at stress ratios of {minus}0.3, 0.1 and 0.7. Testing was performed under ambient conditions and along three orientations, namely L-T, T-L and L+45 degrees. Crack growth characteristics of this alloy are compared with that of BS:L73 (2014-T4 equivalent) for assessing the possibility of replacing BS:L73. Significant effect of stress ratio on crack growth rate was observed in all thicknesses. However, in case of 1.2 and 2.0 mm thick sheets, the effect was minimal at intermediate-crack growth regime. The orientation of the specimen does not adversely affect the fatigue crack growth behavior of 8.0 mm and 2.0 mm thick specimens. However, for 1.2 mm unclad sheet crack growth resistance in L-T direction was found to be superior to that along T-L direction. In majority of test cases considered, no significant effect was observed on crack growth rate due to thickness or cladding. Crack growth characteristics of Al-Li alloy 1441 and Al-Cu alloy BS:L73 under constant amplitude as well as MiniLCA spectrum loading are similar in the low and intermediate-crack growth rate regime. Based on these observations, it is felt that this Al-Li alloy has the potential for future aerospace applications.

  20. LiWall Fusion - The New Concept of Magnetic Fusion

    SciTech Connect (OSTI)

    L.E. Zakharov

    2011-01-12

    Utilization of the outstanding abilities of a liquid lithium layer in pumping hydrogen isotopes leads to a new approach to magnetic fusion, called the LiWall Fusion. It relies on innovative plasma regimes with low edge density and high temperature. The approach combines fueling the plasma by neutral injection beams with the best possible elimination of outside neutral gas sources, which cools down the plasma edge. Prevention of cooling the plasma edge suppresses the dominant, temperature gradient related turbulence in the core. Such an approach is much more suitable for controlled fusion than the present practice, relying on high heating power for compensating essentially unlimited turbulent energy losses.

  1. Lattice Mn3+ Behaviors in Li4Ti5O12/LiNi0.5Mn1.5O4 Full Cells

    SciTech Connect (OSTI)

    Zheng, Jianming; Xiao, Jie; Nie, Zimin; Zhang, Jiguang

    2013-05-28

    High voltage spinels LiNi0.5Mn1.5O4 (LNMO) with different contents of residual Mn3+ ions have been evaluated in full cells using Li4Ti5O12 (LTO) as standard anode. Greatly improved cycling stability has been observed for all spinels in LTO-limited full cell, compared with those in LNMO-limited ones, while the underlying mechanisms are quite different. It has been discovered that the participation of active Mn3+ in the extended cycling and thus its observable contribution to Li+ diffusion kinetics depend on the limiting electrode and the sufficiency of Li+ ions. Potential Mn dissolution has also been discussed to identify the key factors that need to be considered to construct full cells employing high voltage spinel as the cathode.

  2. Investigation of Mechanical Activation on Li-N-H Systems Using 6Li Magic Angle Spinning Nuclear Magnetic Resonance at Ultra-High Field

    SciTech Connect (OSTI)

    Hu, Jian Zhi; Kwak, Ja Hun; Yang, Zhenguo; Osborn, William; Markmaitree, Tippawan; Shaw, Leonard D.

    2008-07-15

    Abstract The significantly enhanced spectral resolution in the 6Li MAS NMR spectra of Li-N-H systems at ultra-high field of 21.1 tesla is exploited, for the first time, to study the detailed electronic and chemical environmental changes associated with mechanical activation of Li-N-H system using high energy balling milling. Complementary to ultra-high field studies, the hydrogen discharge dynamics are investigated using variable temperature in situ 1H MAS NMR at 7.05 tesla field. The significantly enhanced spectral resolution using ultra-high filed of 21.1 tesla was demonstrated along with several major findings related to mechanical activation, including the upfield shift of the resonances in 6Li MAS spectra induced by ball milling, more efficient mechanical activation with ball milling at liquid nitrogen temperature than with ball milling at room temperature, and greatly enhanced hydrogen discharge exhibited by the liquid nitrogen ball milled samples.

  3. High Voltage Electrolytes for Li-ion Batteries | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es024_jow_2012_o.pdf (6.21 MB) More Documents & Publications High Voltage Electrolytes for Li-ion Batteries High Voltage Electrolytes for Li-ion Batteries Progress in Electrolyte Component R&D within the ABR Program, 2009 thru 2013

  4. High Voltage Electrolytes for Li-ion Batteries | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es024_jow_2011_p.pdf (1.87 MB) More Documents & Publications High Voltage Electrolytes for Li-ion Batteries High Voltage Electrolytes for Li-ion Batteries Molecular dynamics simulation and ab intio studies of electrolytes and electrolyte/electrode interfaces

  5. Phase transitions of LiAlO{sub 2} at high pressure and high temperature

    SciTech Connect (OSTI)

    Lei Li; He Duanwei Zou Yongtao; Zhang Wei; Wang Zhao; Jiang Ming; Du Maolu

    2008-08-15

    This work presents a comprehensive study on phase transitions in LiAlO{sub 2} system at high pressures and temperatures (0.5-5.0 GPa and 300-1873 K, respectively), as well as the phase stability for polymeric phases of LiAlO{sub 2} in the studied P-T space by X-ray diffraction (XRD). Besides the previously described polymorphic hexagonal {alpha}-phase, orthorhombic {beta}-phase and tetragonal {delta}-phase, a possible new phase of LiAlO{sub 2} was observed after the tetragonal {gamma}-LiAlO{sub 2} sample was treated at 5.0 GPa and 389 K. The stable regimes of these high-pressure phases were defined through the observation of coexistence points of the polymeric phases. Our results revealed that LiAlO{sub 2} could experience structural phase transitions from {gamma}-LiAlO{sub 2} to its polymorphs at lower pressures and temperatures compared to the reported results. Hexagonal {alpha}-LiAlO{sub 2} with highly (003) preferential orientation was prepared at 5.0 GPa and 1873 K. - Graphical abstract: Constructing the pressure-temperature phase diagram for LiAlO{sub 2}.

  6. Chemical stability and Ce doping of LiMgAlF6 neutron scintillator

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Du, M. H.

    2014-11-13

    We perform density functional calculations to investigate LiMgAlF6 as a potential neutron scintillator material. The calculations of enthalpy of formation and phase diagram show that single-phase LiMgAlF6 can be grown but it should be more difficult than growing LiCaAlF6 and LiSrAlF6. Moreover, the formation energy calculations for substitutional Ce show that the concentration of Ce on the Al site is negligible but a high concentration (>1 at.%) of Ce on the Mg site is attainable provided that the Fermi level is more than 5 eV lower than the conduction band minimum. Acceptor doping should promote Ce incorporation in LiMgAlF6.

  7. Scanning tunneling microscopy reveals LiMnAs is a room temperature anti-ferromagnetic semiconductor

    SciTech Connect (OSTI)

    Wijnheijmer, A. P.; Koenraad, P. M.; Marti, X.; Holy, V.; Cukr, M.; Novak, V.; Jungwirth, T.

    2012-03-12

    We performed scanning tunneling microscopy and spectroscopy on a LiMnAs(001) thin film epitaxially grown on an InAs(001) substrate by molecular beam epitaxy. While the in situ cleavage exposed only the InAs(110) non-polar planes, the cleavage continued into the LiMnAs thin layer across several facets. We combined both topography and current mappings to confirm that the facets correspond to LiMnAs. By spectroscopy we show that LiMnAs has a band gap. The band gap evidenced in this study, combined with the known Neel temperature well above room temperature, confirms that LiMnAs is a promising candidate for exploring the concepts of high temperature semiconductor spintronics based on antiferromagnets.

  8. Correlation of anisotropy and directional conduction in β-Li3PS4 fast Li+ conductor

    SciTech Connect (OSTI)

    Chen, Yan; Cai, Lu; Liu, Zengcai; dela Cruz, Clarina R.; Liang, Chengdu; An, Ke

    2015-07-06

    Our letter reports the correlation of anisotropy and directional conduction in the fast Li+ conductor β-Li3PS4, one of the low-symmetry crystalline electrolyte candidates. The material has both high conductivity and good stability that serves well for the large-scale energy storage applications of all-solid-state lithium ion batteries. The anisotropic physical properties, demonstrated here by the thermal expansion coefficients, are crucial for compatibility in the solid-state system and battery performance. Neutron and X-ray powder diffraction measurements were done to determine the crystal structure and thermal stability. Moreover, the crystallographic b-axis was revealed as a fast expansion direction, while negligible thermal expansion was observed along the a-axis around the battery operating temperatures. The anisotropic behavior has its structural origin from the Li+ conduction channels with incomplete Li occupancy and a flexible connection of LiS4 and PS4 tetrahedra within the framework. This indicates a strong correlation in the direction of the ionic transport in the low-symmetry Li+ conductor.

  9. Characterization of the LiSi/CsBr-LiBr-KBr/FeS(2) System for Potential Use as a Geothermal Borehole Power Source

    SciTech Connect (OSTI)

    GUIDOTTI, RONALD A.; REINHARDT, FREDERICK W.

    1999-10-18

    We are continuing to study the suitability of modified thermal-battery technology as a potential power source for geothermal borehole applications. Previous work focused on the LiSi/FeS{sub 2} couple over a temperature range of 350 C to 400 C with the LiBr-KBr-LiF eutectic, which melts at 324.5 C. In this work, the discharge processes that take place in LiSi/CsBr-LiBr-KBr eutectic/FeS{sub 2} thermal cells were studied at temperatures between 250 C and 400 C using pelletized cells with immobilized electrolyte. The CsBr-LiBr-KBr eutectic was selected because of its lower melting point (228.5 C). Incorporation of a quasi-reference electrode allowed the determination of the relative contribution of each electrode to the overall cell polarization. The results of single-cell tests and limited battery tests are presented, along with preliminary data for battery stacks tested in a simulated geothermal borehole environment.

  10. Pt and Pd catalyzed oxidation of Li2O2 and DMSO during Li–O2 battery charging

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gittleson, Forrest S.; Ryu, Won-Hee; Schwab, Mark; Tong, Xiao; Taylor, André D.

    2016-01-01

    Rechargeable Li-O2 and Li-air batteries require electrode and electrolyte materials that synergistcally promote long-term cell operation. We investigate the role of noble metals Pt and Pd as catalysts for the Li-O2 oxidation process and their compatibility with a dimethyl sulfoxide (DMSO) based electrolyte. Lastly, we identify a basis for low potential Li2O2 evolution followed by oxidative decomposition of the electrolyte to form carbonate side products.

  11. A reactive force field study of Li/C systems for electrical energy storage

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Raju, Muralikrishna; Ganesh, P.; Kent, Paul R. C.; van Duin, Adri C.T.

    2015-04-02

    Graphitic carbon is still the most ubiquitously used anode material in Li-ion batteries. In spite of its ubiquity, there are few theoretical studies that fully capture the energetics and kinetics of Li in graphite and related nanostructures at experimentally relevant length, time-scales, and Li-ion concentrations. In this paper, we describe the development and application of a ReaxFF reactive force field to describe Li interactions in perfect and defective carbon-based materials using atomistic simulations. We develop force field parameters for Li–C systems using van der Waals-corrected density functional theory (DFT). Grand canonical Monte Carlo simulations of Li intercalation in perfect graphitemore » with this new force field not only give a voltage profile in good agreement with known experimental and DFT results but also capture the in-plane Li ordering and interlayer separations for stage I and II compounds. In defective graphite, the ratio of Li/C (i.e., the capacitance increases and voltage shifts) both in proportion to the concentration of vacancy defects and metallic lithium is observed to explain the lithium plating seen in recent experiments. We also demonstrate the robustness of the force field by simulating model carbon nanostructures (i.e., both 0D and 1D structures) that can be potentially used as battery electrode materials. Whereas a 0D defective onion-like carbon facilitates fast charging/discharging rates by surface Li adsorption, a 1D defect-free carbon nanorod requires a critical density of Li for intercalation to occur at the edges. Our force field approach opens the opportunity for studying energetics and kinetics of perfect and defective Li/C structures containing thousands of atoms as a function of intercalation. As a result, this is a key step toward modeling of realistic carbon materials for energy applications.« less

  12. A reactive force field study of Li/C systems for electrical energy storage

    SciTech Connect (OSTI)

    Raju, Muralikrishna; Ganesh, P.; Kent, Paul R. C.; van Duin, Adri C.T.

    2015-04-02

    Graphitic carbon is still the most ubiquitously used anode material in Li-ion batteries. In spite of its ubiquity, there are few theoretical studies that fully capture the energetics and kinetics of Li in graphite and related nanostructures at experimentally relevant length, time-scales, and Li-ion concentrations. In this paper, we describe the development and application of a ReaxFF reactive force field to describe Li interactions in perfect and defective carbon-based materials using atomistic simulations. We develop force field parameters for Li–C systems using van der Waals-corrected density functional theory (DFT). Grand canonical Monte Carlo simulations of Li intercalation in perfect graphite with this new force field not only give a voltage profile in good agreement with known experimental and DFT results but also capture the in-plane Li ordering and interlayer separations for stage I and II compounds. In defective graphite, the ratio of Li/C (i.e., the capacitance increases and voltage shifts) both in proportion to the concentration of vacancy defects and metallic lithium is observed to explain the lithium plating seen in recent experiments. We also demonstrate the robustness of the force field by simulating model carbon nanostructures (i.e., both 0D and 1D structures) that can be potentially used as battery electrode materials. Whereas a 0D defective onion-like carbon facilitates fast charging/discharging rates by surface Li adsorption, a 1D defect-free carbon nanorod requires a critical density of Li for intercalation to occur at the edges. Our force field approach opens the opportunity for studying energetics and kinetics of perfect and defective Li/C structures containing thousands of atoms as a function of intercalation. As a result, this is a key step toward modeling of realistic carbon materials for energy applications.

  13. Comparison of LiMnPO4 made by Combustion and Hydrothermal Syntheses

    SciTech Connect (OSTI)

    Chen, Jiajun; Doeff, Marca M.; Wang, Ruigang

    2008-05-15

    Among the olivine-structured metal phosphate family, LiMnPO{sub 4} exhibits a high discharge potential (4V), which is still compatible with common electrolytes, making it interesting for use in the next generation of Li ion batteries. The extremely low electronic conductivity of this material severely limits its electrochemical performance, however. One strategy to overcome this limitation is to make LiMnPO{sub 4} nanoparticulate to decrease the diffusion distance. Another is to add a carbon or other conductive coating in intimate contact with the nanoparticles of the main phase, as is commonly done with LiFePO{sub 4}. The electrochemical performance of LiFePO{sub 4} is highly dependent on the quality of the carbon coatings on the particles [1-2], among other variables. Combustion synthesis allows the co-synthesis of nanoparticles coated with carbon in one step. Hydrothermal synthesis is used industrially to make LiFePO{sub 4} cathode materials [3] and affords a good deal of control over purity, crystallinity, and particle size. A wide range of olivine-structured materials has been successfully prepared by this technique [4], including LiMnPO{sub 4} in this study. In this paper, we report on the new synthesis of nano-LiMnPO{sub 4} by a combustion method. The purity is dependent upon the conditions used for synthesis, including the type of fuel and precursors that are chosen. The fuel to nitrate ratio influences the combustion temperature, which determines the type and amount of carbon found in the LiMnPO{sub 4} composites. This can further be modified by use of carbon structural modifiers added during a subsequent (optional) calcination step. Figure 1 shows a transmission electron microscopy (TEM) image of the spherical nano-sized LiMnPO{sub 4} particles typically formed by combustion synthesis. The average particle size is around 30 nm, in agreement with values obtained by the Rietveld refinement of XRD patterns. The small size of the particles cause the peak

  14. Comparison of LiMnPO4 made by Combustion and Hydrothermal Syntheses

    SciTech Connect (OSTI)

    Chen, Jiajun; Doeff, Marca M.; Wang, Ruigang

    2008-10-12

    Among the olivine-structured metal phosphate family, LiMnPO{sub 4} exhibits a high discharge potential (4V), which is still compatible with common electrolytes, making it interesting for use in the next generation of Li ion batteries. The extremely low electronic conductivity of this material severely limits its electrochemical performance, however. One strategy to overcome this limitation is to make LiMnPO{sub 4} nanoparticulate to decrease the diffusion distance. Another is to add a carbon or other conductive coating in intimate contact with the nanoparticles of the main phase, as is commonly done with LiFePO{sub 4}. The electrochemical performance of LiFePO{sub 4} is highly dependent on the quality of the carbon coatings on the particles, among other variables. Combustion synthesis allows the co-synthesis of nanoparticles coated with carbon in one step. Hydrothermal synthesis is used industrially to make LiFePO{sub 4} cathode materials and affords a good deal of control over purity, crystallinity, and particle size. A wide range of olivine-structured materials has been successfully prepared by this technique, including LiMnPO{sub 4} in this study. In this paper, we report on the new synthesis of nano-LiMnPO{sub 4} by a combustion method. The purity is dependent upon the conditions used for synthesis, including the type of fuel and precursors that are chosen. The fuel to nitrate ratio influences the combustion temperature, which determines the type and amount of carbon found in the LiMnPO{sub 4} composites. This can further be modified by use of carbon structural modifiers added during a subsequent (optional) calcination step. Figure 1 shows a transmission electron microscopy (TEM) image of the spherical nano-sized LiMnPO{sub 4} particles typically formed by combustion synthesis. The average particle size is around 30 nm, in agreement with values obtained by the Rietveld refinement of XRD patterns. The small size of the particles cause the peak broadening evident

  15. SESAME 7363: A new Li(6)D equation of state

    SciTech Connect (OSTI)

    Sheppard, Daniel Glen; Kress, Joel David; Crockett, Scott; Collins, Lee A.; Greeff, Carl William

    2015-09-21

    A new Equation of State (EOS) for Lithium 6 Deuteride (6LiD) was created, sesame 7363. This EOS was released to the user community under “eos-developmental” as sesame 97363. The construction of this new EOS is a modification of a previously released EOS, sesame 73601. Sesame 7360 is too stiff (5-10% excess pressure) at high compressions and high temperatures (ρ = 4-110g/cm3, T = 30-10,000 eV) compared to orbital-free density-functional theory. Sesame 7363 is softer and gives a better representation of the physics over this range without compromising the agreement with the experimental and simulation data that sesame 7360 was based on.

  16. Comparison of LiFePO4 from different sources

    SciTech Connect (OSTI)

    Striebel, Kathryn; Shim, Joongpyo; Srinivasan, Venkat; Newman, John

    2003-11-25

    The lithium iron phosphate chemistry is plagued by the poor conductivity and slow lithium diffusion in the solid phase. In order to alleviate these problems, various research groups have adopted different strategies including decreasing the particle sizes, increasing the carbon content, and adding dopants. In this study we obtained LiFePO4 electrodes from six different sources and used a combined model-experimental approach to compare the performance. Samples ranged from one with no carbon coating to one with 15 percent coating. In addition, particle sizes varied by as much as a order of magnitude between samples. The study detailed in this manuscript allows us to provide insight into the relative importance of the conductivity of the samples compared to the particle size, the impact of dopant on performance and ideas for making materials in order to maximize the power capability of this chemistry.

  17. Elastic Hadron Scattering on Li Isotopes at Intermediate Energies

    SciTech Connect (OSTI)

    Zhusupov, M.A.; Imambekov, O.; Ibraeva, E.T.

    2005-01-01

    The elastic scattering of hadrons (protons, charged pions, and positively charged kaons) on {sup 6,7,8}Li nuclei is analyzed on the basis of Glauber-Sitenko diffraction theory. A few nuclear-wave-function versions found within two- and three-particle potential cluster models are used in the calculations. It is shown that the application of these wave functions in diffraction theory makes it possible to describe adequately the experimental differential cross sections and analyzing powers in hadron scattering at intermediate energies. In this study, particular attention is given to a comparison of the scattering of different particles on the same target nucleus, as well as to a comparison of scattering of particles of the same sort on different target nuclei.

  18. Multicell Li/SOCl/sub 2/ reserve battery

    SciTech Connect (OSTI)

    Baldwin, A.R.; Garoutte, K.F.

    1984-01-01

    Recent development work on reserve lithium thionyl chloride (RLTC) batteries at SNLA and Honeywell has included safety and performance evaluations. The RLTC battery is being considered for applications that have traditionally been fulfilled by state-of-the-art thermal batteries and reserve silver oxide zinc electrochemical systems. These applications typically demand a reserve battery having a rapid voltage rise, high reliability, operational safety and useful active lifetime ranging from minutes to hours. The RLTC work reported here was directed toward a power battery capable of meeting or exceeding the design requirements. Performance and safety test data indicate that the RLTC battery may be better suited than thermal batteries for some long-life applications. Table II presents a comparison between a Li(Si)/FeS/sub 2/ thermal battery and an RLTC battery, both of which were designed to fulfill the requirements.

  19. Stability of the solid electrolyte Li{sub 3}OBr to common battery solvents

    SciTech Connect (OSTI)

    Schroeder, D.J.; Hubaud, A.A.; Vaughey, J.T.

    2014-01-01

    Graphical abstract: The stability of the anti-perovskite phase Li{sub 3}OBr has been assessed in a variety of battery solvents. - Highlights: Lithium stable solid electrolyte Li{sub 3}OBr unstable to polar organic solvents. Solvation with no dissolution destroys long-range structure. Ion exchange with protons observed. - Abstract: Recently a new class of solid lithium ion conductors was reported based on the anti-perovskite structure, notably Li{sub 3}OCl and Li{sub 3}OBr. For many beyond lithium-ion battery uses, the solid electrolyte is envisioned to be in direct contact with liquid electrolytes and lithium metal. In this study we evaluated the stability of the Li{sub 3}OBr phase against common battery solvents electrolytes, including diethylcarbonate (DEC) and dimethylcarbonate (DMC), as well as a LiPF{sub 6} containing commercial electrolyte. In contact with battery-grade organic solvents, Li{sub 3}OBr was typically found to be insoluble but lost its crystallinity and reacted with available protons and in some cases with the solvent. A low temperature heat treatment was able to restore crystallinity of the samples; however evidence of proton ion exchange was conserved.

  20. Elastic Properties of the Solid Electrolyte Li7La3Zr2O12 (LLZO)

    SciTech Connect (OSTI)

    Yu, Seungho; Schmidt, Robert D.; Garcia-mendez, Regina; Herbert, Erik G.; Dudney, Nancy J.; Wolfenstine, Jeff; Sakamoto, Jeff; Seigel, Donald

    2015-12-16

    The oxide known as LLZO, with nominal composition Li7La3Zr2O12, is a promising solid electrolyte for Li-based batteries due to its high Li-ion conductivity and chemical stability with respect to lithium. Solid electrolytes may also enable the use of metallic Li anodes by serving as a physical barrier that suppresses dendrite initiation and propagation during cycling. Prior linear elasticity models of the Li electrode/solid electrolyte interface suggest that the stability of this interface is highly dependent on the elastic properties of the solid separator. For example, dendritic suppression is predicted to be enhanced as the electrolyte s shear modulus increases. In the present study a combination of first-principles calculations, acoustic impulse excitation measurements, and nanoindentation experiments are used to determine the elastic constants and moduli for highconductivity LLZO compositions based on Al and Ta doping. The calculated and measured isotropic shear moduli are in good agreement and fall within the range of 56-61 GPa. These values are an order of magnitude larger than that for Li metal and far exceed the minimum value ( 8.5 GPa) believed to be necessary to suppress dendrite initiation. These data suggest that LLZO exhibits sufficient stiffness to warrant additional development as a solid electrolyte for Li batteries.

  1. Elastic Properties of the Solid Electrolyte Li7La3Zr2O12 (LLZO)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yu, Seungho; Schmidt, Robert D.; Garcia-mendez, Regina; Herbert, Erik G.; Dudney, Nancy J.; Wolfenstine, Jeff; Sakamoto, Jeff; Seigel, Donald

    2015-12-16

    The oxide known as LLZO, with nominal composition Li7La3Zr2O12, is a promising solid electrolyte for Li-based batteries due to its high Li-ion conductivity and chemical stability with respect to lithium. Solid electrolytes may also enable the use of metallic Li anodes by serving as a physical barrier that suppresses dendrite initiation and propagation during cycling. Prior linear elasticity models of the Li electrode/solid electrolyte interface suggest that the stability of this interface is highly dependent on the elastic properties of the solid separator. For example, dendritic suppression is predicted to be enhanced as the electrolyte s shear modulus increases. Inmore » the present study a combination of first-principles calculations, acoustic impulse excitation measurements, and nanoindentation experiments are used to determine the elastic constants and moduli for highconductivity LLZO compositions based on Al and Ta doping. The calculated and measured isotropic shear moduli are in good agreement and fall within the range of 56-61 GPa. These values are an order of magnitude larger than that for Li metal and far exceed the minimum value ( 8.5 GPa) believed to be necessary to suppress dendrite initiation. These data suggest that LLZO exhibits sufficient stiffness to warrant additional development as a solid electrolyte for Li batteries.« less

  2. Summary of mechanical properties data and correlations for Li/sub 2/O, Li/sub 4/SiO/sub 4/, LiAlO/sub 2/, and Be

    SciTech Connect (OSTI)

    Billone, M.C.; Grayhack, W.T.

    1988-04-01

    The data base for thermal expansion, elastic constants, compressive and tensile failure strengths and secondary thermal creep of leading solid-breeder (Li/sub 2/O, Li/sub 4/SiO/sub 4/, and LiAlO/sub 2/) and multiplier (Be) materials is reviewed, porosity, grain size, and stress (for thermal creep). Because the data base is rather sparse in some areas, general properties of ceramics and metals are used to help guide the formulation of the correlations. The primary purpose of the data base summary and correlation development is to pave the way for stress analysis sensitivity studies. These studies will help determine which properties are important enough to structural lifetime and deformation assessments to require more data. 18 refs., 5 figs., 20 tabs.

  3. Revealing the Restructured Surface of Li[Mn2]O4

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Amos, Charles D.; Roldan, Manuel A.; Varela, Maria; Goodenough, John B.; Ferreira, Paulo J.

    2016-03-29

    The spinel Revealing the Restructured Surface of Li[Mn2]O4 is a candidate cathode for a Li-ion battery, but its capacity fades over a charge/discharge cycle of Li1–x[Mn2]O4 (0 < x < 1) that is associated with a loss of Mn to the organic-liquid electrolyte. It is known that the disproportionation reaction 2Mn3+ = Mn2+ + Mn4+ occurs at the surface of a Mn spinel, and it is important to understand the atomic structure and composition of the surface of Revealing the Restructured Surface of Li[Mn2]O4 in order to understand how Mn loss occurs. We report a study of the surface reconstructionmore » of Revealing the Restructured Surface of Li[Mn2]O4 by aberration-corrected scanning transmission electron microscopy. The atomic structure coupled with Mn-valence and the distribution of the atomic ratio of oxygen obtained by electron energy loss spectroscopy reveals a thin, stable surface layer of Mn3O4, a subsurface region of Li1+x[Mn2]O4 with retention of bulk Li[Mn2]O4. We conclude that this observation is compatible with the disproportionation reaction coupled with oxygen deficiency and a displacement of surface Li+ from the Mn3O4 surface phase. These results provide a critical step toward understanding how Mn is lost from Li[Mn2]O4, once inside a battery.« less

  4. Organic-Acid-Assisted Fabrication of Low-Cost Li-Rich Cathode Material (Li[Li1/6Fe1/6Ni1/6Mn1/2]O-2) for Lithium-Ion Battery

    SciTech Connect (OSTI)

    Zhao, Taolin; Chen, Shi; Li, Li; Zhang, Xiaoxiao; Wu, Huiming; Wu, Tianpin; Sun, Cheng-Jun; Chen, Renjie; Wu, Feng; Lu, Jun; Amine, Khalil

    2014-12-24

    A novel Li-rich cathode Li[Li1/6Fe1/6Ni1/6Mn1/2]O-2 (0.4Li(2)MnO(3-)0.6LiFe(1/3)Ni(1/3)Mn(1/3)O(2)) was synthesized by a solgel method, which uses citric acid (SC), tartaric acid (ST), or adipic acid (SA) as a chelating agent. The structural, morphological, and electrochemical properties of the prepared samples were characterized by various methods. X-ray diffraction showed that single-phase materials are formed mainly with typical alpha-NaFeO2 layered structure (R3 m), and the SC sample has the lowest Li/Ni cation disorder. The morphological study indicated homogeneous primary particles in good distribution size (100 nm) with small aggregates. The Fe, Ni, and Mn valences were determined by X-ray absorption near-edge structure analysis. In coin cell tests, the initial reversible discharge capacity of an SA electrode was 289.7 mAh g(-1) at the 0.1C rate in the 1.54.8 V voltage range, while an SC electrode showed a better cycling stability with relatively high capacity retention. At the 2C rate, the SC electrode can deliver a discharge capacity of 150 mAh g(-1) after 50 cycles. Differential capacity vs voltage curves were employed to further investigate the electrochemical reactions and the structural change process during cycling. This low-cost, Fe-based compound prepared by the solgel method has the potential to be used as the high capacity cathode material for Liion batteries.

  5. Fusion reactions in collisions induced by Li isotopes on Sn targets

    SciTech Connect (OSTI)

    Fisichella, M.; Shotter, A. C.; Di Pietro, A.; Figuera, P.; Lattuada, M.; Marchetta, C.; Musumarra, A.; Pellegriti, M. G.; Ruiz, C.; Scuderi, V.; Strano, E.; Torresi, D.; Zadro, M.

    2012-10-20

    Fusion cross sections for the {sup 6}Li+{sup 120}Sn and {sup 7}Li+{sup 119}Sn systems have been measured. We aim to search for possible effects due to the different neutron transfer Q-values, by comparing the fusion cross sections for the two systems below the barrier. This experiment is the first step of a wider systematic aiming to study the above problems in collisions induced by stable and unstable Li isotopes on tin all forming the same compound nucleus.

  6. Method for improving voltage regulation of batteries, particularly Li/FeS/sub 2/ thermal batteries

    SciTech Connect (OSTI)

    Godshall, N.A.

    1988-08-02

    In a battery composition useful as the cathode of a Li/-FeS/sub 2/ thermal battery, consisting essentially of substantially pure FeS/sub 2/, the improvement is described wherein sufficient lithium is added to the composition whereby the resultant composition falls into a three-phase thermodynamically invariant region of the Li/Fe/S phase diagram and has the formula Li/sub x/FeS/sub 2/ with the proviso that 0.05 less than or equal toxless than or equal to 1.5.

  7. Crystal chemical modeling of the Li ion distribution in Li{sub x}Mn{sub 2}O{sub 4}

    SciTech Connect (OSTI)

    Rohrer, C.L.; Rohrer, G.S.

    1996-12-31

    The Monte Carlo bond valence method was used to model the local atomic structure of Li{sub x}Mn{sub 2}O{sub 4} (x = 0.25 and x = 1.0). The results predict that Mn{sup +3} and Mn{sup +4} are randomly distributed at the octahedral positions and that the Mn{sup +3}-O bond distance is 2.02 {Angstrom} while the Mn{sup +4}-O distance is 1.91 {Angstrom}. As the Li content decreases, the cell contracts due to the higher concentration of shorter bonds. Based on maps that show the distribution of crystal chemically equivalent sites, we conclude that the Li ion diffusion paths go through 48f sites, that Li might be more mobile for the case of x = 1.0 than for x = 0.25 (due to the expanded cell volume), and that for x > 1, the 16c position is the most likely Li site.

  8. Alternating magnetic anisotropy of Li2(Li1xTx)N (T = Mn, Fe, Co, and Ni)

    SciTech Connect (OSTI)

    Jesche, A.; Ke, L.; Jacobs, J. L.; Harmon, B.; Houk, R. S.; Canfield, P. C.

    2015-05-11

    Substantial amounts of the transition metals Mn, Fe, Co, and Ni can be substituted for Li in single crystalline Li2(Li1xTx)N. Isothermal and temperature-dependent magnetization measurements reveal local magnetic moments with magnitudes significantly exceeding the spin-only value. The additional contributions stem from unquenched orbital moments that lead to rare-earth-like behavior of the magnetic properties. Accordingly, extremely large magnetic anisotropies have been found. Most notably, the magnetic anisotropy alternates as easy plane?easy axis?easy plane?easy axis when progressing from T = Mn ? Fe ? Co ? Ni. This behavior can be understood based on a perturbation approach in an analytical, single-ion model. As a result, the calculated magnetic anisotropies show surprisingly good agreement with the experiment and capture the basic features observed for the different transition metals.

  9. Alternating magnetic anisotropy of Li2(Li1–xTx)N (T = Mn, Fe, Co, and Ni)

    SciTech Connect (OSTI)

    Jesche, A.; Ke, L.; Jacobs, J. L.; Harmon, B.; Houk, R. S.; Canfield, P. C.

    2015-05-11

    Substantial amounts of the transition metals Mn, Fe, Co, and Ni can be substituted for Li in single crystalline Li2(Li1–xTx)N. Isothermal and temperature-dependent magnetization measurements reveal local magnetic moments with magnitudes significantly exceeding the spin-only value. The additional contributions stem from unquenched orbital moments that lead to rare-earth-like behavior of the magnetic properties. Accordingly, extremely large magnetic anisotropies have been found. Most notably, the magnetic anisotropy alternates as easy plane→easy axis→easy plane→easy axis when progressing from T = Mn → Fe → Co → Ni. This behavior can be understood based on a perturbation approach in an analytical, single-ion model. As a result, the calculated magnetic anisotropies show surprisingly good agreement with the experiment and capture the basic features observed for the different transition metals.

  10. New Improved Equations For Na-K, Na-Li And Sio2 Geothermometers...

    Open Energy Info (EERE)

    Improved Equations For Na-K, Na-Li And Sio2 Geothermometers By Outlier Detection And Rejection Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  11. Structure and Electrochemistry of Vanadium-Modified LiFePO4 ...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Structure and Electrochemistry of Vanadium-Modified LiFePO4 Authors: Hong, Jian ; Wang, Xiao-Liang ; Wang, Qi ; Omenya, Fredrick O. ; ...

  12. Understanding Li-ion battery processes at the atomic- to nano...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Understanding Li-ion battery processes at the atomic- to nano-scale Authors: Sullivan, J P ; Huang, Jianyu ; Shaw, M J ; Subramanian, A ; ...

  13. Nanocrystallization of LiCoO2 Cathodes for Thin Film Batteries Utilizing Pulse Thermal Processing

    SciTech Connect (OSTI)

    2009-04-01

    This factsheet describes a study whose focus is on the nanocrystallization of the LiCoO2 cathode thin films on polyimide substrates and evaluate the microstructural evolution and resistance as a function of PTP processing conditions.

  14. Structural Analysis of Southern Dixie Valley using LiDAR and...

    Open Energy Info (EERE)

    and characterize young faults, high resolution LiDAR and 1:12,000-scale low-sun-angle (LSA) aerial photography was acquired for the NAS Fallon study area. The LSA photos were...

  15. Microsoft Word - aac2012_Li_1_WG4-SLAC-PUB-15212.doc

    Office of Scientific and Technical Information (OSTI)

    et al., "Results from Plasma Wakefield Experiments at FACET", IPAC'11, San Sebastian, Spain, 2011, SLAC-PUB-14560. 5. E. Adli et al., to be published. 6. S.Z. Li and M.J. Hogan,...

  16. Study on LiCl waste salt treatment process by layer melt crystallization

    SciTech Connect (OSTI)

    Cho, Yung-Zun; Lee, Tae-Kyo; Choi, Jung-Hoon; Eun, Hee-Chul; Park, Hwan-Seo; Kim, In-Tae; Park, Geun-Il

    2013-07-01

    Layer melt crystallization operated in a static mode has been applied to separate Group I and II chlorides from surrogate LiCl waste salt. The effects of operating conditions such as crystal growing rate(or flux) and initial impurity concentration on separation (or concentration) of cesium, strontium and barium involved in a LiCl melts were analyzed. In a layer crystallization process, separation was impaired by occlusion of impurities and by residual melt adhering to LiCl crystal after at the end of the process. The crystal growth rate strongly affects the crystal structure, therefore the separation efficiency, while the effect of the initial Cs and Sr concentration in LiCl molten salt was nearly negligible. (authors)

  17. Spectroscopic characterization of discharge products in Li-Air cells with aprotic carbonate electrolytes

    SciTech Connect (OSTI)

    Veith, Gabriel M; Nanda, Jagjit; Howe, Jane Y; Dudney, Nancy J

    2011-01-01

    Raman, infrared and X-ray photoelectron spectroscopies were used to characterize the thick coating of reaction products on carbon and MnO2 coated carbon cathodes produced during discharge of Li-air cells. The results show that neither Li2O2 or Li2O are major components of the insoluble discharge products; instead the products are largely composed of fluorine, lithium, and carbon, with surprisingly little oxygen. The complex reaction chemistry also appears to involve the formation of ethers or alkoxide products at the expense of the carbonate solvent molecules (ethylene carbonate and dimethylcarbonate). The irreversible discharge reaction is likely electrochemically promoted with Li-anion species and dissolved oxygen. Exactly how the molecular O2 participates in the reaction is unclear and requires further study. The addition of a conformal coating of MnO2 on the carbon lowers the cell s operating voltage, but does not alter the overall discharge chemistry.

  18. Ultrathin Li3VO4 Nanoribbon/Graphene Sandwich-Like Nanostructures...

    Office of Scientific and Technical Information (OSTI)

    Title: Ultrathin Li3VO4 NanoribbonGraphene Sandwich-Like Nanostructures with Ultrahigh Lithium ion Storage Properties Two-dimensional (2D) "graphene-like" inorganic materials, ...

  19. Proceedings of the AD HOC Workshop on Ceramics for Li/FeS{sub 2} batteries

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    Representatives from industry, the U.S. Advanced Battery Consortium (USABC), DOE, national laboratories, and other govt agencies met to develop recommendations and actions for accelerating the development of ceramic components critical to the successful introduction of the Li/FeS{sub 2} bipolar battery for electric vehicles. Most of the workshop is devoted to electrode materials, bipolar designs, separators, and bipolar plates. The bulk of this document is viewographs and is divided into: ceramics, USABC overview, SAFT`s Li/FeS{sub 2} USABC program, bipolar Li/FeS{sub 2} component development, design requirements for bipolar plates, separator design requirements, compatibility of ceramic insulators with lithium, characterization of MgO for use in separators, resistivity measurements of separators, sintered AlN separators for LiMS batteries, etc.

  20. Vehicle Technologies Office Merit Review 2015: A 12V Start-Stop Li Polymer Battery Pack

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by LG Chem Power at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about A 12V start-stop Li polymer...

  1. Li electrodeposition dynamics visualized in-situ via a TEM liquid...

    Office of Scientific and Technical Information (OSTI)

    visualized in-situ via a TEM liquid cell. Citation Details In-Document Search Title: Li electrodeposition dynamics visualized in-situ via a TEM liquid cell. Abstract not provided. ...

  2. Dendrite-Free Li Deposition Using Trace-Amounts of Water as an...

    Office of Scientific and Technical Information (OSTI)

    Using Trace-Amounts of Water as an Electrolyte Additive Citation Details In-Document Search Title: Dendrite-Free Li Deposition Using Trace-Amounts of Water as an Electrolyte ...

  3. Effect of an Ultrathin Coating on Stabilizing Li-ion Battery...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effect of an Ultrathin Coating on Stabilizing Li-ion Battery Cathodes Sunday, January 31, 2016 Improvements in the high-voltage cycling stability of lithium ion battery cathode ...

  4. Search for Solar Axion Emission from 7Li and D(p,gamma)3He Nuclear...

    Office of Scientific and Technical Information (OSTI)

    Solar Axion Emission from 7Li and D(p,gamma)3He Nuclear Decays with the CAST gamma-ray Calorimeter Andriamonje, S.; Aune, S.; DAPNIA, Saclay; Autiero, D.; CERN Lyon, IPN; Barth,...

  5. Can Vanadium Be Substituted into LiFePO[subscript 4]? (Journal...

    Office of Scientific and Technical Information (OSTI)

    the solid solution LiFesub 1-3y2Vsub yPOsub 4, the a and b lattice parameters and cell volume decrease with increasing vanadium content, while the c lattice parameter...

  6. Second-Use Li-Ion Batteries to Aid Automotive and Utility Industries (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-01-01

    Repurposing Li-ion batteries at the end of useful life in electric drive vehicles could eliminate owners' disposal concerns and offer low-cost energy storage for certain applications.

  7. Enhanced Cycling Stability of Rechargeable Li-O2 Batteries Using...

    Office of Scientific and Technical Information (OSTI)

    reversibility. As a results, the cyclability of Li-O2 can be largely improved. Authors: Liu, Bin ; Xu, Wu ; Yan, Pengfei ; Sun, Xiuliang ; Bowden, Mark E. ; Read, Jeffrey ; Qian, ...

  8. X-ray line polarization spectroscopy of Li-like satellite line...

    Office of Scientific and Technical Information (OSTI)

    We apply the magnetic-sublevel atomic kinetics model POLAR to the calculation of polarization properties of satellite lines in Li-like Si driven by subpicosecond-duration laser ...

  9. Insights into capacity loss mechanisms in Li-ion all-solid-state...

    Office of Scientific and Technical Information (OSTI)

    Insights into capacity loss mechanisms in Li-ion all-solid-state batteries with Al anodes Citation Details In-Document Search Title: Insights into capacity loss mechanisms in...

  10. Search for Solar Axion Emission from 7Li and D(p,gamma)3He Nuclear...

    Office of Scientific and Technical Information (OSTI)

    Search for Solar Axion Emission from 7Li and D(p,gamma)3He Nuclear Decays with the CAST gamma-ray Calorimeter Citation Details In-Document Search Title: Search for Solar Axion...

  11. Enhancement of GTRF Modeling Fidelity T. Li, P. Nath, N.K. Crane...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crane and T.-L. Sham Sandia National Laboratories March 31, 2012 CASL-8-2012-0237-000 CASL-U-2012-0237-000 Enhancement of GTRF Modeling Fidelity T. Li, P. Nath, N.K. Crane and ...

  12. Notices FOR FURTHER INFORMATION CONTACT: Michael Li, Policy Advisor, Office of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Federal Register / Vol. 81, No. 29 / Friday, February 12, 2016 / Notices FOR FURTHER INFORMATION CONTACT: Michael Li, Policy Advisor, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy, 1000 Independence Ave. SW., Washington, DC 20585. Phone number 202-287-5189, and email Michael.li@ ee.doe.gov. SUPPLEMENTARY INFORMATION: Purpose of the Board: To make recommendations to the Assistant Secretary for the Office of Energy Efficiency and Renewable Energy regarding goals and

  13. Effect of an Ultrathin Coating on Stabilizing Li-ion Battery Cathodes |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stanford Synchrotron Radiation Lightsource Effect of an Ultrathin Coating on Stabilizing Li-ion Battery Cathodes Sunday, January 31, 2016 Improvements in the high-voltage cycling stability of lithium ion battery cathode materials are needed to enable the wide-spread adoption of renewable energy technologies such as electric vehicles. One cathode material which exhibits significant advantages over the commonly-used commercial material LiCoO2 in terms of higher capacity, increased thermal

  14. Degradation Mechanisms in Li-Ion Battery Electrolytes Uncovered by In-Situ

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scanning Transmission Electron Microscopy - Joint Center for Energy Storage Research 27, 2014, Research Highlights Degradation Mechanisms in Li-Ion Battery Electrolytes Uncovered by In-Situ Scanning Transmission Electron Microscopy (Top) e- beam-induced breakdown of electrolyte mixture. (Bottom Left) Two distinct degradation processes observed in the LiAsF6 in DMC electrolyte. Plots of particle diameter evolution using multitarget particle tracking for two electron doses. Once primary growth

  15. Direct Observation of the Redistribution of Sulfur and Polysufides in Li-S

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Batteries by In Situ X-Ray Fluorescence Microscopy - Joint Center for Energy Storage Research March 30, 2015, Research Highlights Direct Observation of the Redistribution of Sulfur and Polysufides in Li-S Batteries by In Situ X-Ray Fluorescence Microscopy (Top) The morphology and chemical state changes of a sulfur electrode were observed in real time throughout an entire first electro-chemical cycle. The contamination of polysulfides on the Li anode was also investigated. (Bottom) A

  16. Understanding the Structural and Electronic Evolution of Li2MnO3 During

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Irradiation Via Electron Microscopy - Joint Center for Energy Storage Research November 17, 2014, Research Highlights Understanding the Structural and Electronic Evolution of Li2MnO3 During Electron Irradiation Via Electron Microscopy In-situ electron beam irradiation induces localized pockets of damage (a) and (b) characterized by the Mn atoms migrating to occupy Li sites, as shown in the annular bright field image of (c). This effect is clearly visible in an intensity line profile

  17. Enhanced Charge Transport in Dissolved Polysulfide Li-S Cells with

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supramolecular Redox Mediators - Joint Center for Energy Storage Research September 15, 2015, Research Highlights Enhanced Charge Transport in Dissolved Polysulfide Li-S Cells with Supramolecular Redox Mediators Schematic of nanostructured PBI 1 redox mediators in a Li-S battery, SEM image of the nanofiber morphology, reduced overpotential and 31 percent increase in S utilization at C/8, and cycling at C/4. Scientific Achievement A highly collaborative team of theorists and experimentalists

  18. Rational Design of High-Performance Li2S Cathodes - Joint Center for Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Research September 11, 2013, Research Highlights Rational Design of High-Performance Li2S Cathodes Using ab initio simulations, poly(vinylpyrrolidone) (PVP) binder was found to possess strong affinity for both Li2S and lithium polysulfides. This bifunctional binder not only helps to form a uniform dispersion of active material and carbon in the electrode slurry, but also minimizes the loss of polysulfides into the electrolyte during cycling. Scientific Achievement Achieved record

  19. Structural and Chemical Evolution of Li- and Mn-rich Layered Cathode Material

    SciTech Connect (OSTI)

    Zheng, Jianming; Xu, Pinghong; Gu, Meng; Xiao, Jie; Browning, Nigel D.; Yan, Pengfei; Wang, Chong M.; Zhang, Jiguang

    2015-02-24

    Lithium (Li)- and manganese-rich (LMR) layered-structure materials are very promising cathodes for high energy density lithium-ion batteries. However, their voltage fading mechanism and its relationships with fundamental structural changes are far from being sufficiently understood. Here we report the detailed phase transformation pathway in the LMR cathode (Li[Li0.2Ni0.2Mn0.6]O2) during cycling for the samples prepared by hydro-thermal assistant method. It is found the transformation pathway of LMR cathode is closely correlated to its initial structure and preparation conditions. The results reveal that LMR cathode prepared by HA approach experiences a phase transformation from the layered structure to a LT-LiCoO2 type defect spinel-like structure (Fd-3m space group) and then to a disordered rock-salt structure (Fm-3m space group). The voltage fade can be well correlated with the Li ion insertion into octahedral sites, rather than tetrahedral sites, in both defect spinel-like structure and disordered rock-salt structure. The reversible Li insertion/removal into/from the disordered rock-salt structure is ascribed to the Li excess environment that can satisfy the Li percolating in the disordered rock-salt structure despite the increased kinetic barrier. Meanwhile, because of the presence of a great amount of oxygen vacancies, a significant decrease of Mn valence is detected in the cycled particle, which is below that anticipated for a potentially damaging Jahn-Teller distortion (+3.5). Clarification of the phase transformation pathway, cation redistribution, oxygen vacancy and Mn valence change undoubtedly provides insights into a profound understanding on the voltage fade, and capacity degradation of LMR cathode. The results also inspire us to further enhance the reversibility of LMR cathode via improving its surface structural stability.

  20. Vehicle Technologies Office Merit Review 2016: Efficient Rechargeable Li/O2

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Batteries Utilizing Stable Inorganic Molten Salt Electrolytes | Department of Energy Efficient Rechargeable Li/O2 Batteries Utilizing Stable Inorganic Molten Salt Electrolytes Vehicle Technologies Office Merit Review 2016: Efficient Rechargeable Li/O2 Batteries Utilizing Stable Inorganic Molten Salt Electrolytes Presentation given by Liox at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  1. Via E-Mail Michael Li Electricity Policy Specialist U.S. Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    November 1, 2010 Via E-Mail Michael Li Electricity Policy Specialist U.S. Department of Energy Office of Electricity Delivery and Energy Reliability 1000 Independence Avenue, SW Washington, DC 20585 smartgridpolicy@hq.doe.gov Re: Smart Grid RFI: Addressing Policy And Logistical Challenges Dear Mr. Li: On behalf of the Association of Home Appliance Manufacturers (AHAM), I would like to provide our comments on the Smart Grid RFI: Addressing Policy and Logistical Challenges, 75 Fed. Reg. 57,006

  2. Department of Li/sup /minus// and H/sup /minus// ion sources

    SciTech Connect (OSTI)

    Walther, S.R.

    1988-12-01

    Sources of Li/sup /minus// and H/sup /minus// ions are needed for diagnostic neutral beam and for current drive in fusion plasmas. Previous efforts to generate Li/sup /minus// beams have focused on electron capture in a gas or production on a low work function surface in a plasma. Volume production of Li/sup /minus// by dissociative attachment of optically pumped lithium molecules has also been studied. This thesis presents the first experimental results for volume production of a Li/sup /minus// ion beam from a plasma discharge. A theoretical model for volume production of Li/sup /minus// ions and separate model for Li/sub 2/ production in the lithium discharge are developed to explain the experimental results. The model is in good agreement with the experiment and shows favorable parameter scalings for further improvement of the Li/sup /minus// ion source. A /sup 6/Li/degree/ diagnostic neutral beam based on this ion source is proposed for measurement of magnetic pitch angle in the International Thermonuclear Experimental Reactor (ITER). Previous efforts in developing H/sup /minus// ion sources have concentrated on volume production in a plasma discharge. Experiments to improve the H/sup /minus// current density from a magnetically filtered multicusp ion source by seeding the discharge with cesium or barium have been conducted. A substantial (> factor of five) increase in H/sup /minus// output is achieved for both cesium and barium addition. Further experiments with barium have shown that the increase is due to H/sup /minus// production on the anode walls. The experiments with cesium are consistent with this formation mechanism. These results show that this new type of 'converterless' surface production H/sup /minus// source provides greatly improved performance when compared to a volume H/sup /minus// source. 92 refs., 47 figs.

  3. Application of quantum chemical methods to problems of chemical storage of solar energy: The dissociation of LiH and LiB

    SciTech Connect (OSTI)

    Lehner, M. ); Jungen, M. )

    1991-01-01

    Quantum chemical calculations on the dissociation of LiH and LiB in the gas phase under the influence of highly concentrated solar radiation and high temperature are presented. These two molecules possess low lying excited electronic states. Thermochemical and photochemical contributions to the reaction rate are compared. With these two examples the authors would like to introduce some methods of quantum chemistry to the field of chemical conversion and storage of solar energy and illustrate how the mechanism and rate of a reaction can depend on molecular structure on the one hand and on temperature and radiation intensity on the other hand.

  4. Synthesis and Characterization of Lithium Bis(fluoromalonato)borate (LiBFMB) for Lithium Ion Battery Applications

    SciTech Connect (OSTI)

    Liao, Chen; Han, Kee Sung; Baggetto, Loic; Hillesheim, Daniel A; Custelcean, Radu; Lee, Dr. Eun-Sung; Guo, Bingkun; Bi, Zhonghe; Jiang, Deen; Veith, Gabriel M; Hagaman, Edward {Ed} W; Brown, Gilbert M; Bridges, Craig A; Paranthaman, Mariappan Parans; Manthiram, Arumugam; Dai, Sheng; Sun, Xiao-Guang

    2014-01-01

    A new orthochelated salt, lithium bis(monofluoromalonato)borate (LiBFMB), has been synthesized and purified for the first time for application in lithium ion batteries. The presence of fluorine in the borate anion of LiBFMB increases its oxidation potential and also facilitates ion dissociation, as reflected by the ratio of ionic conductivity measured by electrochemical impedance spectroscopy ( exp) and that by ion diffusivity coefficients obtained using pulsed field gradient nuclear magnetic resonance (PFG-NMR) technique ( NMR). Half-cell tests using 5.0 V lithium nickel manganese oxide (LiNi0.5Mn1.5O4) as a cathode and EC/DMC/DEC as a solvent reveals that the impedance of the LiBFMB cell is much larger than those of LiPF6 and LiBOB based cells, which results in lower capacity and poor cycling performance of the former. XPS spectra of the cycled cathode electrode suggest that because of the stability of the LiBFMB salt, the solid electrolyte interphase (SEI) formed on the cathode surface is significantly different from those of LiPF6 and LiBOB based electrolytes, resulting in more solvent decomposition and thicker SEI layer. Initial results also indicate that using high dielectric constant solvent PC alters the surface chemistry, reduces the interfacial impedance, and enhances the performance of LiBFMB based 5.0V cell.

  5. Operando NMR and XRD study of chemically synthesized LiCx oxidation in a dry room environment

    SciTech Connect (OSTI)

    Sacci, Robert L.; Gill, Lance W.; Hagaman, Edward W.; Dudney, Nancy J.

    2015-04-07

    We test the stability of pre-lithiated graphite anodes for Li-ion batteries in a dry room battery processing room. The reaction between LiCx and laboratory air was followed using operando NMR and x-ray diffraction as these methods are sensitive to change in Li stoichiometry in graphite. There is minimal reactivity between LiC6 and N2, CO2 or O2; however, LiC6 reacts with moisture to form lithium (hydr)oxide. The reaction rate follows zero-order kinetics with respects to intercalated lithium suggesting that lithium transport through the graphite is fast. The reaction mechanism occurs by sequential formation of higher stages LiC12, then LiC18, and then LiC24 as the hydrolysis proceeds to the formation of LixOHy and graphite end products. Slowing down the formation rate of the LixOHy passivation layer stabilizes of the higher stages.

  6. Operando NMR and XRD study of chemically synthesized LiCx oxidation in a dry room environment

    SciTech Connect (OSTI)

    Sacci, Robert L.; Gill, Lance W.; Hagaman, Edward W.; Dudney, Nancy J.

    2015-08-01

    We test the stability of pre-lithiated graphite anodes for Li-ion batteries in a dry room battery processing room. The reaction between LiCx and laboratory air was followed using operando NMR and x-ray diffraction as these methods are sensitive to change in Li stoichiometry in graphite. There is minimal reactivity between LiC6 and N2, CO2 or O2; however, LiC6 reacts with moisture to form lithium (hydr)oxide. The reaction rate follows zero-order kinetics with respects to intercalated lithium suggesting that lithium transport through the graphite is fast. The reaction mechanism occurs by sequential formation of higher stages LiC12, then LiC18, and then LiC24 as the hydrolysis proceeds to the formation of LixOHy and graphite end products. Slowing down the formation rate of the LixOHy passivation layer stabilizes of the higher stages.

  7. Optimization of LiFePO4 Nanoparticle Suspensions with Polyethyleneimine for Aqueous Processing

    SciTech Connect (OSTI)

    Li, Jianlin; Armstrong, Beth L; Kiggans, Jim; Daniel, Claus; Wood III, David L

    2012-01-01

    Addition of dispersants to aqueous based lithium-ion battery electrode formulations containing LiFePO{sub 4} is critical to obtaining a stable suspension. The resulting colloidal suspensions enable dramatically improved coating deposition when processing electrodes. This research examines the colloidal chemistry modifications based on polyethyleneimine (PEI) addition and dispersion characterization required to produce high quality electrode formulations and coatings for LiFePO{sub 4} active cathode material. The isoelectric point, a key parameter in characterizing colloidal dispersion stability, of LiFePO{sub 4} and super P C45 were determined to be pH = 4.3 and 3.4, respectively. PEI, a cationic surfactant, was found to be an effective dispersant. It is demonstrated that 1.0 wt % and 0.5 wt % PEI were required to stabilize the LiFePO{sub 4} and super P C45 suspension, respectively. LiFePO{sub 4} cathode suspensions with 1.5 wt % PEI demonstrated the best dispersibility of all components, as evidenced by viscosity and agglomerate size of the suspensions and elemental distribution within dry cathodes. The addition of PEI significantly improved the LiFePO{sub 4} performance.

  8. Li K-Edge XANES Spectra of Lithium Niobate and Lithium Tantalite

    SciTech Connect (OSTI)

    Mizota, H.; Ito, Y.; Tochio, T.; Handa, K.; Takekawa, S.; Kitamura, K.

    2007-02-02

    The x-ray emission with the single crystal of lithium niobate (LiNbO3) or lithium tantalite (LiTaO3) by thermal changes in a vacuum system is closely concerned with the electronic state of each crystal. Therefore, lithium K-edge x-ray absorption near edge structures (XANES) spectra of these materials were measured in the region from 50 eV to 90 eV by means of total electron yield method (T.E.Y.), using the extremely soft x-ray. Samples were powder of lithium carbonate (Li2CO3) and single crystal of lithium fluoride (LiF), LiNbO3 and LiTaO3 in order to compare the shapes of these XANES spectra. Various peak structures appear in these spectra in the range from 55 eV to 80 eV and each spectrum has different shapes as a result of the difference of bond length and bond angles for the atoms which are in less than 60 nm from the absorbing atom. The relationship between these spectra and the electronic states was discussed by FEFF 8.

  9. Preparation of MgH{sub 2} composite with a composition of 40%MgH{sub 2} + 30%LiBH{sub 4} + 30%(2LiBH{sub 4} + MgF{sub 2})

    SciTech Connect (OSTI)

    Hong, Seong-Hyeon; Song, Myoung Youp

    2012-09-15

    Graphical abstract: Hydrogen content vs. desorption time curves for consecutive 1st desorptions of 40 wt%MgH{sub 2} + 30 wt%LiBH{sub 4} + 30 wt%(2LiBH{sub 4} + MgF{sub 2}) at 533–873 K. Highlights: ► Addition of MgF{sub 2} and LiBH{sub 4} with a higher hydrogen storage capacity to MgH{sub 2}. ► Preparation of 40%MgH{sub 2} + 30%LiBH{sub 4} + 30% (2LiBH{sub 4} + MgF{sub 2}) composite. ► Examination of desorption properties of the composite. ► Total desorbed hydrogen quantity for consecutive 1st desorptions of 7.07 wt%. ► Reactions of LiBH{sub 4} → LiH + B + (3/2)H{sub 2}, and 2LiBH{sub 4} + MgF{sub 2} → 2LiF + MgB{sub 2} + 4H{sub 2}. -- Abstract: A mixture of containing two chemical equivalents of lithium borohyride and one equivalent of magnesium fluoride is known to yield hydrogen in an amount of about 7.6 wt% of the mixture when heated to about 150 °C at atmospheric pressure by the following reaction; 2LiBH{sub 4} + MgF{sub 2} = 2LiF + MgB{sub 2} + 4H{sub 2}. In order to increase hydrogen storage capacity of Mg-based materials, a mixture with a composition of 2LiBH{sub 4} + MgF{sub 2} and LiBH{sub 4}with a higher hydrogen storage capacity of 18.4 wt% were added to MgH{sub 2}. MgH{sub 2} composite with a composition of 40 wt%MgH{sub 2} + 30 wt%LiBH{sub 4} + 30 wt%(2LiBH{sub 4} + MgF{sub 2}) was prepared by reactive mechanical grinding. The hydrogen storage properties of the sample were then examined. Hydrogen content vs. desorption time curves for consecutive 1st desorptions of 40 wt%MgH{sub 2} + 30 wt%LiBH{sub 4} + 30 wt%(2LiBH{sub 4} + MgF{sub 2}) at 533–873 K showed that the total desorbed hydrogen quantity for consecutive 1st desorptions is 7.07 wt%.

  10. Cylindrical target Li-beam-driven hohlraum experiments

    SciTech Connect (OSTI)

    Derzon, M.S.; Aubert, J.; Chandler, G.A.

    1998-06-01

    The authors performed a series of experiments on the Particle Beam Fusion Accelerator II (PBFA II) in May, 1994, and obtained a brightness temperature of 61 {+-} 2 eV for an ion-beam heated hohlraum. The hohlraum was a 4-mm-diameter, right-circular cylinder with a 1.5-mm-thick gold wall, a low-density CH foam fill, and a 1.5- or 3-mm-diameter diagnostic aperture in the top. The nominal parameters of the radially-incident PBFA II Li ion beam were 9 MeV peak energy ({approximately}10 MeV at the gas cell) at the target at a peak power of 2.5 {+-} 0.3 TW/cm{sup 2} and a 15 ns pulse width. Azimuthal variations in intensity of a factor of 3, with respect to the mean, were observed. Nonuniformities in thermal x-ray emission across the area of the diagnostic hole were also observed. Time-dependent hole-closure velocities were measured: the time-averaged velocity of {approximately}2 cm/{micro}s is in good agreement with sound speed estimates. Unfolded x-ray spectra and brightness temperatures as a function of time are reported and compared to simulations. Hole closure corrections are discussed with comparisons between XRD and bolometer measurements. Temperature scaling with power on target is also presented.

  11. LiF/ZnS Neutron Multiplicity Counter

    SciTech Connect (OSTI)

    Stave, Sean C.; Bliss, Mary; Kouzes, Richard T.; Lintereur, Azaree T.; Robinson, Sean M.; Siciliano, Edward R.; Wood, Lynn S.

    2015-06-01

    Abstract: Alternatives to the use of 3He for the detection of thermal neutrons are being investigated. One of the most challenging applications for 3He alternatives is in neutron multiplicity counters. Neutron multiplicity counters are used to provide rapid assay of samples which contain an unknown amount of plutonium in a potentially unknown configuration. With appropriate detector design, the neutron single, double, and triple coincidence events can be used to extract information of three unknown parameters such as the 240Pu-effective mass, the sample self-multiplication, and the (α,n) rate. A project at PNNL has investigated replacing 3He-based tubes with LiF/ZnS neutron-scintillator sheets and wavelength shifting plastic for light pipes. A four-panel demonstrator module has been constructed, tested, and compared with detailed modeling results. The findings indicate that a full-scale system can be constructed with the same overall size as the most efficient 3He-based system and with improved performance. Remaining design challenges include electronics and robust neutron/gamma-ray discrimination based on pulse shape analysis at high rates. A review of the current effort and the most recent findings will be presented.

  12. Lithium transition metal fluorophosphates (Li{sub 2}CoPO{sub 4}F and Li{sub 2}NiPO{sub 4}F) as cathode materials for lithium ion battery from atomistic simulation

    SciTech Connect (OSTI)

    Lee, Sanghun Park, Sung Soo

    2013-08-15

    Lithium transition metal fluorophosphates (Li{sub 2}MPO{sub 4}F, M: Co and Ni) have been investigated from atomistic simulation. In order to predict the characteristics of these materials as cathode materials for lithium ion batteries, structural property, defect chemistry, and Li{sup +} ion transportation property are characterized. The coreshell model with empirical force fields is employed to reproduce the unit-cell parameters of crystal structure, which are in good agreement with the experimental data. In addition, the formation energies of intrinsic defects (Frenkel and antisite) are determined by energetics calculation. From migration energy calculations, it is found that these flurophosphates have a 3D Li{sup +} ion diffusion network forecasting good Li{sup +} ion conducting performances. Accordingly, we expect that this study provides an atomic scale insight as cathode materials for lithium ion batteries. - Graphical abstract: Lithium transition metal fluorophosphates (Li{sub 2}CoPO{sub 4}F and Li{sub 2}NiPO{sub 4}F). Display Omitted - Highlights: Lithium transition metal fluorophosphates (Li{sub 2}MPO{sub 4}F, M: Co and Ni) are investigated from classical atomistic simulation. The unit-cell parameters from experimental studies are reproduced by the coreshell model. Li{sup +} ion conducting Li{sub 2}MPO{sub 4}F has a 3D Li{sup +} ion diffusion network. It is predicted that Li/Co or Li/Ni antisite defects are well-formed at a substantial concentration level.

  13. Solid Solution Phases in the Olivine-Type LiMnPO4/MnPO4 System

    SciTech Connect (OSTI)

    Chen, Guoying; Richardson, Thomas J.

    2009-04-07

    Nonstoichiometry is reported in the LiMnPO{sub 4}/MnPO{sub 4} system for the first time. As lithium is removed from crystalline LiMnPO{sub 4} by chemical or electrochemical methods, the resulting two phase mixture consists of stoichiometric LiMnPO{sub 4} and a delithiated phase, Li{sub y}MnPO{sub 4}, whose lattice parameters depend upon the global extent of delithiation and on the crystalline domain size of the delithiated phase. This behavior is reproduced during electrochemical insertion of lithium. Again, no evidence for nonstoichiometry was found in the vicinity of LiMnPO{sub 4}. Attempts to create single phase solid solutions by heating mixtures of the two phases failed due to the thermal instability of Li{sub y}MnPO{sub 4}.

  14. Development of bulk-type all-solid-state lithium-sulfur battery using LiBH{sub 4} electrolyte

    SciTech Connect (OSTI)

    Unemoto, Atsushi, E-mail: unemoto@imr.tohoku.ac.jp; Ikeshoji, Tamio [WPI-Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Yasaku, Syun; Matsuo, Motoaki [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Nogami, Genki; Tazawa, Masaru; Taniguchi, Mitsugu [Mitsubishi Gas Chemicals Co., Ltd., 182 Tayuhama Shinwari, Kita-ku, Niigata 950-3112 (Japan); Orimo, Shin-ichi [WPI-Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2014-08-25

    Stable battery operation of a bulk-type all-solid-state lithium-sulfur battery was demonstrated by using a LiBH{sub 4} electrolyte. The electrochemical activity of insulating elemental sulfur as the positive electrode was enhanced by the mutual dispersion of elemental sulfur and carbon in the composite powders. Subsequently, a tight interface between the sulfur-carbon composite and the LiBH{sub 4} powders was manifested only by cold-pressing owing to the highly deformable nature of the LiBH{sub 4} electrolyte. The high reducing ability of LiBH{sub 4} allows using the use of a Li negative electrode that enhances the energy density. The results demonstrate the interface modification of insulating sulfur and the architecture of an all-solid-state Li-S battery configuration with high energy density.

  15. Controlled Nucleation and Growth Process of Li2S2/Li2S in Lithium-Sulfur Batteries

    SciTech Connect (OSTI)

    Zheng, Jianming; Gu, Meng; Wang, Chong M.; Zuo, Pengjian; Koech, Phillip K.; Zhang, Jiguang; Liu, Jun; Xiao, Jie

    2013-09-20

    Lithium-sulfur battery is a promising next-generation energy storage system because of its potentially three to five times higher energy density than that of traditional lithium ion batteries. However, the dissolution and precipitation of soluble polysulfides during cycling initiate a series of key-chain reactions that significantly shorten battery life. Herein, we demonstrate that through a simple but effective strategy, significantly improved cycling performance is achieved for high sulfur loading electrodes through controlling the nucleation and precipitation of polysulfieds on the electrode surface. More than 400 or 760 stable cycling are successfully displayed in the cells with locked discharge capacity of 625 mAh g-1 or 500 mAh g-1, respectively. The nucleation and growth process of dissolved polysulfides has been electrochemically altered to confine the thickness of discharge products passivated on the cathode surface, increasing the utilization rate of sulfur while avoiding severe morphology changes on the electrode. More importantly, the exposure of new lithium metal surface to the S-containing electrolyte is also greatly reduced through this strategy, largely minimizing the anode corrosion caused by polysulfides. This work interlocks the electrode morphologies and its evolution with electrochemical interference to modulate cell performances by using Li-S system as a platform, providing different but critical directions for this community.

  16. First principles treatment of structural, optical, and thermoelectric properties of Li{sub 7}MnN{sub 4} as electrode for a Li secondary battery

    SciTech Connect (OSTI)

    Khan, Wilayat; Reshak, A.H.

    2015-01-15

    The electronic structure, electronic charge density and linear optical properties of the metallic Li{sub 7}MnN{sub 4} compound, having cubic symmetry, are calculated using the full potential linearized augmented plane wave (FP-LAPW) method. The calculated band structure and density of states using the local density, generalized gradient and EngelVosko approximations, depict the metallic nature of the cubic Li{sub 7}MnN{sub 4} compound. The bands crossing the Fermi level in the calculated band structure are mainly from the Mn-d states with small support of N-p states. In addition, the Mn-d states at the Fermi level enhance the density of states, which is very useful for the electronic transport properties. The valence electronic charge density depicts strong covalent bond between Mn and two N atoms and polar covalent bond between Mn and Li atoms. The frequency dependent linear optical properties like real and imaginary part of the dielectric function, optical conductivity, reflectivity and energy loss function are calculated on the basis of the computed band structure. Both intra-band and inter-band transitions contribute to the calculated optical parameters. Using the BoltzTraP code, the thermoelectric properties like electrical and thermal conductivity, Seebeck coefficient, power coefficient and heat capacity of the Li{sub 7}MnN{sub 4} are also calculated as a function of temperature and studied.

  17. A model for HAZ hardness profiles in Al-Li-X alloys: Application to the Al-Li-Cu Alloy 2095

    SciTech Connect (OSTI)

    Rading, G.O.; Shamsuzzoha, M.; Berry, J.T.

    1998-10-01

    In a previous paper details were presented of a theoretical model describing the evolution of the hardness profiles in the heat-affected zones (HAZ) of Al-Li-X weldments. The intent of the model was to qualitatively predict the general shape of such a profile, which indicates points of double inflection. In the present paper, experimental results are presented to validate the model. Panels of Al-Li-Cu Alloy 2095 in the peak aged (T8) condition were welded by the gas tungsten arc (GTA) process using AA 2319 filler metal. Conventional transmission electron microscopy (TEM) studies were conducted on specimens taken from specific points across the HAZ to estimate the relative ratios of T{sub 1} (Al{sub 2}CuLi) and {delta}{prime} (Al{sub 3}Li) precipitates, as well as incoherent grain boundary phases. Electron probe microanalysis (EPMA) was used to determine the variation of concentrations of elements across the HAZ, while the hardness profile was determined using Vickers microhardness measurements. The hardness profile and the associated pattern of phases present agree well with the information predicted qualitatively by the previously described model.

  18. Synthesis of spherical LiMnPO{sub 4}/C composite microparticles

    SciTech Connect (OSTI)

    Bakenov, Zhumabay; Taniguchi, Izumi

    2011-08-15

    Highlights: {yields} We could prepare LiMnPO{sub 4}/C composites by a novel preparation method. {yields} The LiMnPO{sub 4}/C composites were spherical particles with a mean diameter of 3.65 {mu}m. {yields} The LiMnPO{sub 4}/C composite cathode exhibited 112 mAh g{sup -1} at 0.05 C. {yields} It also showed a good rate capability up to 5 C at room temperature and 55 {sup o}C. -- Abstract: Spherical LiMnPO{sub 4}/C composite microparticles were prepared by a combination of spray pyrolysis and spray drying followed by heat treatment and examined as a cathode material for lithium batteries. The structure, morphology and electrochemical performance of the resulting spherical LiMnPO{sub 4}/C microparticles were characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electronic microscopy and standard electrochemical techniques. The final sample was identified as a single phase orthorhombic structure of LiMnPO{sub 4} and spherical powders with a geometric mean diameter of 3.65 {mu}m and a geometric standard deviation of 1.34. The electrochemical cells contained the spherical LiMnPO{sub 4}/C microparticles exhibited first discharge capacities of 112 and 130 mAh g{sup -1} at 0.05 C at room temperature and 55 {sup o}C, respectively. These also showed a good rate capability up to 5 C at room temperature and 55 {sup o}C.

  19. Guide to Developing Air-Cooled Lithium Bromide (LiBr) Absorption for CHP Applications, April 2005

    Office of Energy Efficiency and Renewable Energy (EERE)

    Development status of air-cooled lithium bromide (LiBr)-water absorption chillers for cooling, heating, and power (CHP) system applications in light-commercial buildings.

  20. Novel Energy Sources -Material Architecture and Charge Transport in Solid State Ionic Materials for Rechargeable Li ion Batteries

    SciTech Connect (OSTI)

    Katiyar, Ram S; Gómez, M; Majumder, S B; Morell, G; Tomar, M S; Smotkin, E; Bhattacharya, P; Ishikawa, Y

    2009-01-19

    Since its introduction in the consumer market at the beginning of 1990s by Sony Corporation ‘Li-ion rechargeable battery’ and ‘LiCoO2 cathode’ is an inseparable couple for highly reliable practical applications. However, a separation is inevitable as Li-ion rechargeable battery industry demand more and more from this well serving cathode. Spinel-type lithium manganate (e.g., LiMn2O4), lithium-based layered oxide materials (e.g., LiNiO2) and lithium-based olivine-type compounds (e.g., LiFePO4) are nowadays being extensively studied for application as alternate cathode materials in Li-ion rechargeable batteries. Primary goal of this project was the advancement of Li-ion rechargeable battery to meet the future demands of the energy sector. Major part of the research emphasized on the investigation of electrodes and solid electrolyte materials for improving the charge transport properties in Li-ion rechargeable batteries. Theoretical computational methods were used to select electrodes and electrolyte material with enhanced structural and physical properties. The effect of nano-particles on enhancing the battery performance was also examined. Satisfactory progress has been made in the bulk form and our efforts on realizing micro-battery based on thin films is close to give dividend and work is progressing well in this direction.

  1. Li2S encapsulated by nitrogen-doped carbon for lithium sulfur batteries

    SciTech Connect (OSTI)

    Chen, Lin; Liu, Yuzi; Ashuri, Maziar; Liu, Caihong; Shaw, Leon L.

    2014-09-26

    Using high-energy ball milling of the Li2S plus carbon black mixture followed by carbonization of pyrrole, we have established a facile approach to synthesize Li2S-plus-C composite particles of average size 400 nm, encapsulated by a nitrogen-doped carbon shell. Such an engineered core–shell structure exhibits an ultrahigh initial discharge specific capacity (1029 mAh/g), reaching 88% of the theoretical capacity (1,166 mAh/g of Li2S) and thus offering the highest utilization of Li2S in the cathode among all of the reported works for the encapsulated Li2S cathodes. This Li2S/C composite core with a nitrogen-doped carbon shell can still retain 652 mAh/g after prolonged 100 cycles. These superior properties are attributed to the nitrogen-doped carbon shell that can improve the conductivity to enhance the utilization of Li2S in the cathode. As a result, fine particle sizes and the presence of carbon black within the Li2S core may also play a role in high utilization of Li2S in the cathode.

  2. Cluster-continuum quantum mechanical models to guide the choice of anions for Li{sup +}-conducting ionomers

    SciTech Connect (OSTI)

    Shiau, Huai-Suen; Janik, Michael J.; Liu, Wenjuan; Colby, Ralph H.

    2013-11-28

    A quantum-mechanical investigation on Li poly(ethylene oxide)-based ionomers was performed in the cluster-continuum solvation model (CCM) that includes specific solvation in the first shell surrounding the cation, all surrounded by a polarizable continuum. A four-state model, including a free Li cation, Li{sup +}-anion pair, triple ion, and quadrupole was used to represent the states of Li{sup +} within the ionomer in the CCM. The relative energy of each state was calculated for Li{sup +} with various anions, with dimethyl ether representing the ether oxygen solvation. The population distribution of Li{sup +} ions among states was estimated by applying Boltzmann statistics to the CCM energies. Entropy difference estimates are needed for populations to better match the true ionomer system. The total entropy change is considered to consist of four contributions: translational, rotational, electrostatic, and solvent immobilization entropies. The population of ion states is reported as a function of Bjerrum length divided by ion-pair separation with/without entropy considered to investigate the transition between states. Predicted concentrations of Li{sup +}-conducting states (free Li{sup +} and positive triple ions) are compared among a series of anions to indicate favorable features for design of an optimal Li{sup +}-conducting ionomer; the perfluorotetraphenylborate anion maximizes the conducting positive triple ion population among the series of anions considered.

  3. Magnetic-field effects in transitions of X Li molecules (X: even isotopes of group II atoms)

    SciTech Connect (OSTI)

    Gopakumar, Geetha; Abe, Minori; Hada, Masahiko; Kajita, Masatoshi

    2011-10-15

    We analyze the Zeeman shift in the (v,N)=(0,0){yields}(1,0) transition frequency of X Li molecules (X: even isotopes of group II atoms), which is of interest in metrology. The Zeeman shift in the transition frequency between stretching states is found to be less than 1 mHz with a magnetic field of 1 G. X {sup 6}Li molecules are more advantageous than X {sup 7}Li molecules for measuring the transition frequency without the Zeeman shift because of the smaller g factor of the Li nuclear spin.

  4. ALD of Al2O3 for Highly Improved Performance in Li-Ion Batteries

    SciTech Connect (OSTI)

    Dillon, A.; Jung, Y. S.; Ban, C.; Riley, L.; Cavanagh, A.; Yan, Y.; George, S.; Lee, S. H.

    2012-01-01

    Significant advances in energy density, rate capability and safety will be required for the implementation of Li-ion batteries in next generation electric vehicles. We have demonstrated atomic layer deposition (ALD) as a promising method to enable superior cycling performance for a vast variety of battery electrodes. The electrodes range from already demonstrated commercial technologies (cycled under extreme conditions) to new materials that could eventually lead to batteries with higher energy densities. For example, an Al2O3 ALD coating with a thickness of ~ 8 A was able to stabilize the cycling of unexplored MoO3 nanoparticle anodes with a high volume expansion. The ALD coating enabled stable cycling at C/2 with a capacity of ~ 900 mAh/g. Furthermore, rate capability studies showed the ALD-coated electrode maintained a capacity of 600 mAh/g at 5C. For uncoated electrodes it was only possible to observe stable cycling at C/10. Also, we recently reported that a thin ALD Al2O3 coating with a thickness of ~5 A can enable natural graphite (NG) electrodes to exhibit remarkably durable cycling at 50 degrees C. The ALD-coated NG electrodes displayed a 98% capacity retention after 200 charge-discharge cycles. In contrast, bare NG showed a rapid decay. Additionally, Al2O3 ALD films with a thickness of 2 to 4 A have been shown to allow LiCoO2 to exhibit 89% capacity retention after 120 charge-discharge cycles performed up to 4.5 V vs Li/Li+. Bare LiCoO2 rapidly deteriorated in the first few cycles. The capacity fade is likely caused by oxidative decomposition of the electrolyte at higher potentials or perhaps cobalt dissolution. Interestingly, we have recently fabricated full cells of NG and LiCoO2 where we coated both electrodes, one or the other electrode as well as neither electrode. In creating these full cells, we observed some surprising results that lead us to obtain a greater understanding of the ALD coatings. We have also recently coated a binder free LiNi0.04Mn0

  5. Thermal stability study of LiAsF[sub 6] electrolytes using accelerating rate calorimetry

    SciTech Connect (OSTI)

    Gee, M.A.; Laman, F.C. )

    1993-04-01

    Binary and ternary electrolytes containing solvent mixtures of cyclic esters and cyclic ethers and lithium hexafluoroarsenate (LiAsF[sub 6]) as the electrolyte salt have been popular for some time for use in secondary lithium batteries because of their good conductivity and lithium cycling efficiency. The main concern regarding safety of lithium batteries is the initiation of self-heating when the cell is under abusive conditions which in the extreme case can lead to a thermal runaway. There are a number of processes contributing to the self-heating; such as reactions between the electrolyte and electrode materials and thermal decomposition of the electrolyte. Heating resulting from chemical reactions and thermal decompositions can also involve reaction products. Accelerating rate calorimetry is a simple technique which allows the study of self-heating, in particular the thermal decomposition of the electrolyte. In the work reported her, the effect of the addition of a cyclic ether to an electrolyte consisting of LiAsF[sub 6] salt dissolved in a mixture of cyclic esters and the replacement of LiAsF[sub 6] by lithium triflate salt (LiCF[sub 3]SO[sub 3]) on the thermal stability of the electrolyte, were determined. To establish the effect of at least one abusive condition such as battery overcharge, the thermal stabilities of the oxidized forms of two electrolytes containing LiAsF[sub 6] electrolyte salt and cyclic ester/ether solvent mixtures were also measured.

  6. Desorption induced by atomic and molecular ion collisions on LiF

    SciTech Connect (OSTI)

    Pereira, J. A. M.; Silveira, E. F. da

    1999-06-10

    Atomic and molecular nitrogen ion beams, produced by the PUC-Rio Van de Graaff accelerator, were used to bombard lithium fluoride thin films. Desorption of secondary ions was measured by means of a time-of-flight mass spectrometer equipped with a double grid acceleration system. The outputs of the experiment are the axial kinetic energy distribution and the desorption yield of the emitted ions. This information allowed determination of the relative contribution to desorption due to collision cascades (nuclear sputtering) and to electronic excitation (electronic sputtering). It was observed that F{sup -} ions are desorbed as a result of collision cascades and that the F{sup -} ion yields depends linearly on the number of constuents in the projectile, i.e., Y(N{sub 2}{sup +})=2Y(N{sup +}). The emission of clusters such as (LiF)Li{sup +} was found to be caused by electronic excitation and the (LiF)Li{sup +} yield revealed a nonlinear dependence: Y(N{sub 2}{sup +})>2Y(N{sup +}). Both processes were found to contribute to Li{sup +} desorption. These effects are discussed in terms of the density of deposited energy which depends on the projectile velocity and on the electronic stopping power.

  7. Pushing the Theoretical Limit of Li-CFx Batteries: A Tale of Bi-functional Electrolyte

    SciTech Connect (OSTI)

    Rangasamy, Ezhiylmurugan; Li, Juchuan; Sahu, Gayatri; Dudney, Nancy J; Liang, Chengdu

    2014-01-01

    In a typical battery, electrodes deliver capacities less or equal the theoretical maxima of the electrode materials.1 The inert electrolyte functions solely as the ionic conductor without contribution to the cell capacity because of its distinct mono-function in the concept of conventional batteries. Here we demonstrate that the most energy-dense Li-CFx battery2 delivers a capacity exceeding the theoretical maximum of CFx with a solid electrolyte of Li3PS4 (LPS) that has dual functions: as the inert electrolyte at the anode and the active component at the cathode. Such a bi-functional electrolyte reconciles both inert and active characteristics through a synergistic discharge mechanism of CFx and LPS. Li3PS4 is known as an inactive solid electrolyte with a broad electrochemical window over 5 V.3 The synergy at the cathode is through LiF, the discharge product of CFx, which activates the electrochemical discharge of LPS at a close electrochemical potential of CFx. Therefore, the solid-state Li-CFx batteries output 126.6% energy beyond their theoretic limits without compromising the stability of the cell voltage. The extra energy comes from the electrochemical discharge of LPS, the inert electrolyte. This bi-functional electrolyte revolutionizes the concept of conventional batteries and opens a new avenue for the design of batteries with an unprecedentedly high energy density.

  8. Characterization of high-voltage cathodes in CsBr-LiBr-KBr eutectic electrolyte

    SciTech Connect (OSTI)

    GUIDOTTI,RONALD A.; REINHARDT,FREDERICK W.

    2000-04-20

    The transition-metal oxides LiMn{sub 2}O{sub 4}, MnO{sub 2}, CrO{sub 2}, and LiCoO{sub 2} were evaluated for possible use as high-voltage cathodes for potential geothermal power applications. These were coupled with Li(Si) anodes and a low-melting CsBr-LiBr-KBr eutectic electrolyte that melts at 228.5 C. Single-cell tests at 250 C and 300 C at 15.8 and 31.6 mA/cm{sup 2} showed that MnO{sub 2} performed the best overall and had the lowest polarization. A 5-cell battery test using LiMn{sub 2}O{sub 4} cathodes was only modestly successful due to possible parasitic chemical reactions between the cathode and electrolyte at the much higher temperature (500 C) during discharge. The overall energy densities for these cathode were still less than for FeS{sub 2}.

  9. Recent developments in Li(Si)/FeS/sub 2/ thermal battery technology

    SciTech Connect (OSTI)

    Searcy, J.Q.; Quinn, R.K.; Saxton, H.J.

    1982-01-01

    The Li(Si)/FeS/sub 2/ electrochemical system has been under development for thermal battery applications as an alternative to Ca/CaCrO/sub 4/ for several years at Sandia National Laboratories (SNL). The new technology differs from the old in that the anode is a pressed powder (44 wt % lithium in Li(Si) alloy) as opposed to sheet calcium or bimetal; and a separator composed of LiCl.KCl eutectic electrolyte and MgO binder is required with a separate cathode pellet composed of FeS/sub 2/ and electrolyte to replace the DEB pellet; and current collectors which may actually function as temperature moderators are always used. The applications require high reliability (typically, a success probability of 0.995) and a twenty-five year shelf-life. Consequently, a substantial materials effort has been necessary to assess degradation and deleterious reactions during storage and to determine necessary production specifications and controls. Experience with several applications has indicated that Li(Si)/FeS/sub 2/ thermal batteries are easier to develop and produce than those which use Ca/CaCrO/sub 4/. Furthermore, the new system is more capable and more forgiving. Therefore, an effort has been initiated to develop the new technology for all SNL thermal battery applications. This paper reviews both the materials-related development and the progress toward utilization of Li(Si)/FeS/sub 2/ for all SNL thermal battery applications.

  10. mRNA Transcript Abundance during Plant Growth and the Influence of Li+ Exposure

    SciTech Connect (OSTI)

    Duff, M. C. [Savannah River National Laboratory, Aiken, SC (United States); Kuhne, W. W. [Savannah River National Laboratory, Aiken, SC (United States); Halverson, N. [Savannah River National Laboratory, Aiken, SC (United States); Chang, C. -S. [Georgia Regents University Cancer Center, Augusta, GA (United States). Integrated Genomics Core; Kitamura, E. [Georgia Regents University Cancer Center, Augusta, GA (United States). Integrated Genomics Core; Hawthorn, L. [Georgia Regents University Cancer Center, Augusta, GA (United States). Integrated Genomics Core; Milliken, C. E. [Savannah River National Laboratory, Aiken, SC (United States); Caldwell, E. F. [Savannah River National Laboratory, Aiken, SC (United States); Stieve-Caldwell, E. [Savannah River National Laboratory, Aiken, SC (United States); Martinez, N. E. [Savannah River National Laboratory, Aiken, SC (United States); Colorado State University, Ft. Collins, CO (United States). Dept. of Environmental and Radiological Health Sciences; Stafford, C. [Savannah River National Laboratory, Aiken, SC (United States); Univ. of South Carolina Medical School, Columbia, SC (United States)

    2014-12-01

    Lithium (Li) toxicity in plants is, at a minimum, a function of Li+ concentration, exposure time, species and growth conditions. Most plant studies with Li+ focus on short-term acute exposures. This study examines short- and long-term effects of Li+ exposure in Arabidopsis with Li+ uptake studies and measured shoot mRNA transcript abundance levels in treated and control plants. Stress, pathogen-response and arabinogalactan protein genes were typically more up-regulated in older (chronic, low level) Li+-treatment plants and in the much younger plants from acute high-level exposures. The gene regulation behavior of high-level Li+ resembled prior studies due to its influence on: inositol synthesis, 1-aminocyclopropane-1-carboxylate synthases and membrane ion transport. In contrast, chronically-exposed plants had gene regulation responses that were indicative of pathogen, cold, and heavy-metal stress, cell wall degradation, ethylene production, signal transduction, and calcium-release modulation. Acute Li+ exposure phenocopies magnesium-deficiency symptoms and is associated with elevated expression of stress response genes that could lead to consumption of metabolic and transcriptional energy reserves and the dedication of more resources to cell development. In contrast, chronic Li+ exposure increases expression signal transduction genes. The identification of new Li+-sensitive genes and a gene-based response plan for acute and chronic Li+ exposure are delineated.

  11. mRNA Transcript Abundance during Plant Growth and the Influence of Li+ Exposure

    SciTech Connect (OSTI)

    Duff, M. C.; Kuhne, W. W.; Halverson, N. V.; Chang, C. -S.; Kitamura, E.; Hawthorn, L.; Martinez, N. E.; Stafford, C.; Milliken, C. E.; Caldwell, E. F.; Stieve-Caldwell, E.

    2014-10-23

    Lithium (Li) toxicity in plants is, at a minimum, a function of Li+ concentration, exposure time, species and growth conditions. Most plant studies with Li+ focus on short-term acute exposures. This study examines short- and long-term effects of Li+ exposure in Arabidopsis with Li+ uptake studies and measured shoot mRNA transcript abundance levels in treated and control plants. Stress, pathogen-response and arabinogalactan protein genes were typically more up-regulated in older (chronic, low level) Li+-treatment plants and in the much younger plants from acute high-level exposures. The gene regulation behavior of high-level Li+ resembled prior studies due to its influence on: inositol synthesis, 1-aminocyclopropane-1-carboxylate synthases and membrane ion transport. In contrast, chronically-exposed plants had gene regulation responses that were indicative of pathogen, cold, and heavy-metal stress, cell wall degradation, ethylene production, signal transduction, and calcium-release modulation. Acute Li+ exposure phenocopies magnesium-deficiency symptoms and is associated with elevated expression of stress response genes that could lead to consumption of metabolic and transcriptional energy reserves and the dedication of more resources to cell development. In contrast, chronic Li+ exposure increases expression signal transduction genes. The identification of new Li+-sensitive genes and a gene-based “response plan” for acute and chronic Li+ exposure are delineated.

  12. Thermochemistry of phosphorus oxynitrides: PON and LiNaPON glasses

    SciTech Connect (OSTI)

    Tessier, F.; Navrotsky, A.; Le Sauze, A.; Marchand, R.

    2000-01-01

    High-temperature solution calorimetry has been very useful in elucidating the energetics of many oxide materials. Recently, a sodium molybdate melt, 3Na{sub 2}O{center{underscore}dot}4MoO{sub 3}, has been shown to be very effective for nitride calorimetry. This methodology has now been used to determine the energetics of formation of phosphorus oxynitride PON samples and of a series of LiNaPON oxynitride glasses. The magnitude of the energetics of nitrogen/oxygen substitution within PON and LiNaPON glasses has been correctly evaluated by using N-N, O-O, P-N, and P-O bond strengths. The in-situ precipitation of metallic particles from corresponding oxides in LiNaPON glasses has been predicted from high-temperature solution calorimetry results and appropriate thermodynamic cycles. The results constitute the first set of energetic data on nitridophosphates.

  13. Pure LiF nanophosphors for high exposures of gamma-rays

    SciTech Connect (OSTI)

    Sharma, A. K.; Kumar, Satinder; Dogra, R.; Lochab, S. P.; Kumar, Ravi

    2012-06-05

    Nanocrystalline lithium fluoride (LiF) phosphors have been prepared by the chemical co-precipitation method at different pH values (7.0, 8.0, 9.0 and 10.00). The formation of nanocrystalline structure has been confirmed by X-ray diffraction and transmission electron microscope. Thermoluminescence (TL) properties of LiF phosphors irradiated with gamma rays at different doses of 10 Gy - 70 kGy have been further studied. The analysis of TL glow curve revealed the existence of three well resolved glow peaks, first low temperature peak at around 82 deg. C, second at 125 deg. C and third one at higher temperature around 303 deg. C. The LiF nano-crystallites synthesized at 8.00 pH with maximum TL sensitivity at studied gamma doses ranging from threshold to high exposures are potential candidate for dosimetry applications.

  14. Thermoluminescence Characteristics of Nanocrystalline LiF Phosphors Synthesized at Different pH Values

    SciTech Connect (OSTI)

    Sharma, A. K.; Dogra, R.; Kumar, Shalendra; Mishra, S. K.; Lochab, S. P.; Kumar, Ravi

    2011-07-15

    Nanocrystalline lithium fluoride (LiF) phosphors have been prepared by the chemical co-precipitation method at different pH values (7.0, 8.0, 9.0). The formation of nanocrystalline structure has been confirmed by X-ray diffraction and transmission electron microscope. The thermolumniscence (TL) properties of LiF phosphors irradiated with gamma rays at different doses have been studied. The analysis of TL glow curve has revealed the existence of two well resolved glow peaks, one low temperature peak at around 145 deg. C and other one at higher temperature around 375 deg. C. The LiF nano-crystallites synthesized at 8.00 pH have been found to show maximum TL intensity at studied gamma doses (0.1 Gy-15 Gy).

  15. A diabatic representation of the two lowest electronic states of Li{sub 3}

    SciTech Connect (OSTI)

    Ghassemi, Elham Nour; Larson, Jonas; Institut für Theoretische Physik, Universität zu Köln, Köln De-50937 ; Larson, Åsa

    2014-04-21

    Using the Multi-Reference Configuration Interaction method, the adiabatic potential energy surfaces of Li{sub 3} are computed. The two lowest electronic states are bound and exhibit a conical intersection. By fitting the calculated potential energy surfaces to the cubic E ⊗ ε Jahn-Teller model we extract the effective Jahn-Teller parameters corresponding to Li{sub 3}. These are used to set up the transformation matrix which transforms from the adiabatic to a diabatic representation. This diabatization method gives a Hamiltonian for Li{sub 3} which is free from singular non-adiabatic couplings and should be accurate for large internuclear distances, and it thereby allows for bound dynamics in the vicinity of the conical intersection to be explored.

  16. The aging behavior and the mechanical properties of the Mg-Li-Al-Cu alloy

    SciTech Connect (OSTI)

    Saito, N.; Mabuchi, M.; Nakanishi, M.; Kubota, K.; Higashi, K.

    1997-03-01

    The purpose of the present work is to improve the elongation of the b.c.c. single phase Mg-Li-Al alloys by the addition of the fourth alloying element. As the fourth alloying element, the authors have chosen copper because it is slightly soluble in magnesium and is expected to act as the nucleation sites for precipitates in this alloy; many nucleation sites for the precipitates are introduced into the Mg-Li-Al alloy so that the precipitates particles are finely and uniformly dispersed. Hence, it is expected that a good combination between high tensile strength and high elongation is obtained. The authors have investigated the relationship between aging behavior and the mechanical properties of the Mg-37.5 at%Li-0.7 at%Al-0.4 at5 Cu alloy.

  17. Characterization of LiMn2O4 cathodes by electrochemical strain microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Alikin, D. O.; Ievlev, A. V.; Luchkin, S. Yu.; Turygin, A. P.; Shur, V. Ya.; Kalinin, S. V.; Kholkin, A. L.

    2016-03-15

    Electrochemical strain microscopy (ESM) is a scanning probe microscopy(SPM) method in which the local electrodiffusion is probed via application of AC voltage to the SPM tip and registration of resulting electrochemical strain. In this study, we implemented ESM to measure local strain in bulk LiMn2O4 cathodes of a commercial Li-battery in different states of charge to investigate distribution of Li-ion mobility and concentration. Ramped AC ESM imaging and voltage spectroscopy were used to find the most reliable regime of measurements allowing separating and diminishing different contributions to ESM. This is not a trivial task due to complex geometry of themore » sample and various obstacles resulting in less predictable contributions of different origins into ESM response: electrostatic tip–surface interactions, charge injection, electrostriction, and flexoelectricity. Finally, understanding and control of these contributions is an important step towards quantitative interpretation of ESM data.« less

  18. Hartree-Fock calculation of the differential photoionization cross sections of small Li clusters

    SciTech Connect (OSTI)

    Galitskiy, S. A.; Artemyev, A. N.; Jänkälä, K.; Lagutin, B. M.; Demekhin, Ph. V.

    2015-01-21

    Cross sections and angular distribution parameters for the single-photon ionization of all electron orbitals of Li{sub 2−8} are systematically computed in a broad interval of the photoelectron kinetic energies for the energetically most stable geometry of each cluster. Calculations of the partial photoelectron continuum waves in clusters are carried out by the single center method within the Hartree-Fock approximation. We study photoionization cross sections per one electron and analyze in some details general trends in the photoionization of inner and outer shells with respect to the size and geometry of a cluster. The present differential cross sections computed for Li{sub 2} are in a good agreement with the available theoretical data, whereas those computed for Li{sub 3−8} clusters can be considered as theoretical predictions.

  19. The ARIES-RS power core -- Recent development in Li/V designs

    SciTech Connect (OSTI)

    Sze, D.K.; Billone, M.C.; Hua, T.Q.

    1997-04-01

    The ARIES-RS fusion power plant design study is based on reversed-shear (RS) physics with a Li/V (lithium breeder and vanadium structure) blanket. The reversed-shear discharge has been documented in many large tokamak experiments. The plasma in the RS mode has a high beta, low current, and low current drive requirements. Therefore, it is an attractive physics regime for a fusion power plant. The blanket system based on a Li/V has high temperature operating capability, good tritium breeding, excellent high heat flux removal capability, long structural life time, low activation, low after heat and good safety characteristics. For these reasons, the ARIES-RS reactor study selected Li/V as the reference blanket. The combination of attractive physics and attractive blanket engineering is expected to result in a superior power plant design. This paper summarizes the power core design of the ARIES-RS power plant study.

  20. Materials for Better Li-based Storage Systems for a "Green Energy Society"

    ScienceCinema (OSTI)

    Jean-Marie Tarascon

    2010-01-08

    Li-ion batteries are strongly considered for powering the upcoming generations of HEVs and PHEVs, but there are still the issues of safety and costs in terms of materials resources and abundances, synthesis, and recycling processes. Notions of materials having minimum footprint in nature, made via eco-efficient processes, must be integrated in our new research towards the next generation of sustainable and "greener" Li-ion batteries. In this July 13, 2009 talk sponsored by Berkeley Lab's Environental Energy Technologies Division, Jean-Marie Tarascon, a professor at the University of Picardie (Amiens), discuss Eco-efficient synthesis via hydrothermal/solvothermal processes using latent bases as well as structure directing templates or other bio-related approaches of LiFePO4 nanopowders.

  1. Detailed Hydrographic Feature Extraction from High-Resolution LiDAR Data

    SciTech Connect (OSTI)

    Danny L. Anderson

    2012-05-01

    Detailed hydrographic feature extraction from high-resolution light detection and ranging (LiDAR) data is investigated. Methods for quantitatively evaluating and comparing such extractions are presented, including the use of sinuosity and longitudinal root-mean-square-error (LRMSE). These metrics are then used to quantitatively compare stream networks in two studies. The first study examines the effect of raster cell size on watershed boundaries and stream networks delineated from LiDAR-derived digital elevation models (DEMs). The study confirmed that, with the greatly increased resolution of LiDAR data, smaller cell sizes generally yielded better stream network delineations, based on sinuosity and LRMSE. The second study demonstrates a new method of delineating a stream directly from LiDAR point clouds, without the intermediate step of deriving a DEM. Direct use of LiDAR point clouds could improve efficiency and accuracy of hydrographic feature extractions. The direct delineation method developed herein and termed “mDn”, is an extension of the D8 method that has been used for several decades with gridded raster data. The method divides the region around a starting point into sectors, using the LiDAR data points within each sector to determine an average slope, and selecting the sector with the greatest downward slope to determine the direction of flow. An mDn delineation was compared with a traditional grid-based delineation, using TauDEM, and other readily available, common stream data sets. Although, the TauDEM delineation yielded a sinuosity that more closely matches the reference, the mDn delineation yielded a sinuosity that was higher than either the TauDEM method or the existing published stream delineations. Furthermore, stream delineation using the mDn method yielded the smallest LRMSE.

  2. Hydrogen sorption studies of materials used in Li(Si)/FeS/sub 2/ thermal batteries

    SciTech Connect (OSTI)

    Assink, R.A.; Schneider, D.A.; Guidotti, R.A.

    1988-06-01

    Hydrogen formation occurs during long-term storage of Li(Si)/FeS/sub 2/ thermal batteries as a result of residual moisture reacting with the Li(Si) anode. A study of the rates of hydrogen sorption by materials used in Li(Si)/FeS/sub 2/ thermal batteries was undertaken in order to obtain a measure of their reactivity to hydrogen in the thermal battery environment. The sorption of hydrogen by pellets of the anode material, separator mix, catholyte mix, and heat powder was monitored for periods of up to a month at a temperature of 60/degree/C. The anode material was 44% Li/56% Si alloy; the separator was 65% LiCl-KCl eutectic/35% MgO; the catholyte was 75% FeS/sub 2//25% electrolyte binder mix (with the composition 88% LiCl-KCl eutectic/12% SiO/sub 2/; and the heat powder was 88% Fe/12% KClO/sub 4/. Individual components of the mixes exhibiting significant sorption of hydrogen were examined, and the FeS/sub 2/ was the only material found to be actively sorbing hydrogen. The kinetics of the sorption process were enhanced by a smaller particle size of FeS/sub 2/, a higher hydrogen pressure, and a higher level of oxidized iron impurities. The hydrogen was not removed by vacuum heating at 200/degree/C. A hydrogen sorption study of the insulation materials used in the battery showed the ceramic-fiber blanket to be a significant sorbent for hydrogen. 7 refs., 10 figs., 5 tabs.

  3. Ab initio calculations of the electronic structure of silicon nanocrystals doped with shallow donors (Li, P)

    SciTech Connect (OSTI)

    Kurova, N. V. Burdov, V. A.

    2013-12-15

    The results of ab initio calculations of the electronic structure of Si nanocrystals doped with shallow donors (Li, P) are reported. It is shown that phosphorus introduces much more significant distortions into the electronic structure of the nanocrystal than lithium, which is due to the stronger central cell potential of the phosphorus ion. It is found that the Li-induced splitting of the ground state in the conduction band of the nanocrystal into the singlet, doublet, and triplet retains its inverse structure typical for bulk silicon.

  4. Michael Li Electricity Policy Specialist U.S. Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6-390 Village Blvd. Princeton, NJ 08540 609.452.8060 | www.nerc.com November 1, 2010 Michael Li Electricity Policy Specialist U.S. Department of Energy Office of Electricity Delivery and Energy Reliability 1000 Independence Avenue, SW Room 8H033 Washington, DC 20585 RE: "Smart Grid RFI: Addressing Policy and Logistical Challenges" Dear Mr. Li: I am writing in response to the Department of Energy's ("DOE") Request for Information (RFI) regarding the "Smart Grid RFI:

  5. A Functional Impurity for Li-O2 Battery Cathode - Joint Center for Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Research December 2, 2015, Research Highlights A Functional Impurity for Li-O2 Battery Cathode Galvanostatic discharge curves of activated carbon cathodes (a) with different K-impurity levels (i.e. KAC4 to KAC16) at 0.1 mA/cm2 and the corresponding SEM images (b to e) of the discharged cathode. Scientific Achievement Demonstrated that alkali metal can be used as a catalyst Li-O2 cell cathode design and opens the possibility of future optimization of functional K-doping in carbon

  6. A high performance hybrid battery based on aluminum anode and LiFePO4 cathode

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sun, Xiao-Guang; Bi, Zhonghe; Liu, Hansan; Bridges, Craig A.; Paranthaman, Mariappan Parans; Dai, Sheng; Brown, Gilbert M.

    2015-12-07

    A unique battery hybrid utilizes an aluminum anode, a LiFePO4 cathode and an acidic ionic liquid electrolyte based on 1-ethyl-3-methylimidazolium chloride (EMImCl) and aluminum trichloride (AlCl 3) (EMImCl-AlCl 3, 1-1.1 in molar ratio) with or without LiAlCl4 is proposed. This hybrid ion battery delivers an initial high capacity of 160 mAh g-1 at a current rate of C/5. It also shows good rate capability and cycling performance.

  7. Report for in-situ 7Li NMR experiment in PNNL Phase -1

    SciTech Connect (OSTI)

    Hu, Jian Zhi

    2014-08-19

    To understand the detailed local structural evolution, an in-situ 7Li NMR study was performed. An operando identification of the lithium germanide phases under various cycling regimens permitted understanding of the kinetics of phase transition between different structural phases, including the amorphous phases, and how these correlated with capacity retention. Combining data from TEM and in-situ 7Li NMR, we discovered that the phase inter-conversion during cycling was mediated by co-existing amorphous and crystalline phases, and that the high capacity observed was correlated with an over-lithiated lithium germanide phase.

  8. Vehicle Technologies Office Merit Review 2016: Advanced High Energy Li-Ion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell for PHEV and EV Applications | Department of Energy Advanced High Energy Li-Ion Cell for PHEV and EV Applications Vehicle Technologies Office Merit Review 2016: Advanced High Energy Li-Ion Cell for PHEV and EV Applications Presentation given by 3M at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries es210_singh_2016_o_web.pdf (1.96 MB) More Documents & Publications Vehicle Technologies Office

  9. Progress in the material development of LiCaAlF sub 6 :Cr sup 3+ laser crystals

    SciTech Connect (OSTI)

    Michelle D. Shinn.; Chase, L.L.; Caird, J.A.; Payne, S.A.; Atherton, L.J.; Kway, W.L.

    1990-03-01

    High Cr{sup 3+} doping levels, up to 8 mole percent, and low losses have been obtained with the tunable solid-state laser material LiCaAlF{sub 6}:Cr{sup 3+} (Cr:LiCAF). Measurements and calculations show that high pumping and extraction efficiencies are possible with the improved material. 13 refs., 4 figs., 1 tab.

  10. A synthesis of LiFePO{sub 4} starting from FePO{sub 4} under reducing atmosphere

    SciTech Connect (OSTI)

    Prosini, Pier Paolo; Cento, Cinzia; Masci, Amedeo; Carewska, Maria; Gislon, Paola

    2014-06-19

    A fast and easy way to produce LiFePO{sub 4} starting from FePO{sub 4}, used as iron and phosphorus source, is proposed. 5% hydrogen is employed as a reducing agent and various compounds containing lithium as lithiation agents. The selected lithiation agents included: LiCl, CH{sub 3}COOLi, LiOH, Li{sub 2}S, LiH, and Li{sub 2}CO{sub 3}. Solid state synthesis is used for the LiFePO{sub 4} preparation and the so obtained materials are structurally characterized by XRD. The materials are used to fabricate composite electrode and their specific capacity is evaluated by low rate galvanostatic charge/discharge cycles (C/10 rate). Among the various lithium salts, the acetate give rise to the LiFePO{sub 4} with the best electrochemical performance. The morphology of this material is further investigated by SEM microscopy and the specific capacity is evaluated as a function of the discharge rate and the cycle number.

  11. Compatibility of Lithium Salts with Solvent of the Non-Aqueous Electrolyte in LiO2 Batteries

    SciTech Connect (OSTI)

    Du, Peng; Lu, Jun; Lau, Kah Chun; Luo, Xiangyi; Bareno, Javier; Zhang, Xiaoyi; Ren, Yang; Zhang, Zhengcheng; Curtiss, Larry A.; Sun, Yang-Kook; Amine, Khalil

    2013-02-20

    The stability of lithium salts, especially in the presence of reduced oxygen species, O2 and H2O (even in a small amount), plays an important role in the cyclability and capacity of LiO2 cells. This combined experimental and computational study provides evidence that the stability of the electrolyte used in LiO2 cells strongly depends on the compatibility of lithium salts with solvent. In the case of the LiPF61NM3 electrolyte, the decomposition of LiPF6 occurs in the cell as evidenced by in situ XRD, FT-IR and XPS analysis, which triggers the decomposition of 1NM3 solvent due to formation of HF from the decomposition of LiPF6. These reactions lead to degradation of the electrolyte and cause poor cyclability of the cell. The same reactions are not observed when LiTFSI and LiCF3SO3 are used as the lithium salts in 1NM3 solvent, or LiPF6 is used in TEGDME solvent.

  12. Lasing in diode-pumped fluoride nanostructure F{sub 2}{sup -}:LiF colour centre ceramics

    SciTech Connect (OSTI)

    Basiev, T T; Doroshenko, M E; Konyushkin, V A; Osiko, V V; Ivanov, L I; Simakov, S V

    2007-11-30

    The spectral and lasing properties of a new nanostructure F{sub 2}{sup -}:LiF colour centre ceramics are studied and compared with those for single crystal samples. The slope lasing efficiency up to 26% is achieved in the diode-pumped F{sub 2}{sup -}:LiF laser ceramics. (letters)

  13. Operando NMR and XRD study of chemically synthesized LiCx oxidation in a dry room environment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sacci, Robert L.; Gill, Lance W.; Hagaman, Edward W.; Dudney, Nancy J.

    2015-04-07

    We test the stability of pre-lithiated graphite anodes for Li-ion batteries in a dry room battery processing room. The reaction between LiCx and laboratory air was followed using operando NMR and x-ray diffraction as these methods are sensitive to change in Li stoichiometry in graphite. There is minimal reactivity between LiC6 and N2, CO2 or O2; however, LiC6 reacts with moisture to form lithium (hydr)oxide. The reaction rate follows zero-order kinetics with respects to intercalated lithium suggesting that lithium transport through the graphite is fast. The reaction mechanism occurs by sequential formation of higher stages LiC12, then LiC18, and thenmore » LiC24 as the hydrolysis proceeds to the formation of LixOHy and graphite end products. Slowing down the formation rate of the LixOHy passivation layer stabilizes of the higher stages.« less

  14. Excellent stability of a lithium-ion-conducting solid electrolyte upon reversible Li+/H+ exchange in aqueous solutions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ma, Cheng; Rangasamy, Ezhiylmurugan; Liang, Chengdu; Sakamoto, Jeffrey; More, Karren Leslie; Chi, Miaofang

    2014-10-21

    Batteries with an aqueous catholyte and a Li metal anode have attracted interest owing to their exceptional energy density and high charge/discharge rate. The long-term operation of such batteries requires that the solid electrolyte separator between the anode and aqueous solutions must be compatible with Li and stable over a wide pH range. Unfortunately, no such compound has yet been reported. In this study, an excellent stability in neutral and strongly basic solutions was observed when using the cubic Li7La3Zr2O12 garnet as a Li-stable solid electrolyte. The material underwent a Li+/H+ exchange in aqueous solutions. Nevertheless, its structure remained unchangedmore » even under a high exchange rate of 63.6%. When treated with a 2 M LiOH solution, the Li+/H+ exchange was reversed without any structural change. Furthermore, these observations suggest that cubic Li7La3Zr2O12 is a promising candidate for the separator in aqueous lithium batteries.« less

  15. First Principles Prediction of Nitrogen-doped Carbon Nanotubes as a High-Performance Cathode for Li-S Batteries

    SciTech Connect (OSTI)

    Wang, Zhiguo; Niu, Xinyue; Xiao, Jie; Wang, Chong M.; Liu, Jun; Gao, Fei

    2013-07-16

    The insulating nature of sulfur and the solubility of the polysulfide in organic electrolyte are two main factors that limit the application of lithium sulfur (Li-S) battery systems. Enhancement of Li conductivity, identification of a strong adsorption agent of polysulfides and the improvement of the whole sulfur-based electrode are of great technological importance. The diffusion of Li atoms on the outer-wall, inner-wall and inter-wall spaces in nitrogen-doped double-walled carbon nanotubes (CNTs) and penetrations of Li and S atoms through the walls are studied using density functional theory. We find that N-doping does not alternate the diffusion behaviors of Li atoms throughout the CNTs, but the energy barrier for Li atoms to penetrate the wall is greatly decreased by N-doping (from ~9.0 eV to ~ 1.0 eV). On the other hand, the energy barrier for S atoms to penetrate the wall remains very high, which is caused by the formation of the chemical bonds between the S and nearby N atoms. The results indicate that Li atoms are able to diffuse freely, whereas S atoms can be encapsulated inside the N-doped CNTs, suggesting that the N-doped CNTs can be potentially used in high performance Li-S batteries.

  16. Stabilities and defect-mediated lithium-ion conduction in a ground state cubic Li3 N structure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nguyen, Manh Cuong; Hoang, Khang; Wang, Cai-Zhuang; Ho, Kai-Ming

    2016-01-07

    A stable ground state structure with cubic symmetry of Li3N (c-Li3N) is found by ab initio initially symmetric random-generated crystal structure search method. Gibbs free energy, calculated within quasi-harmonic approximation, shows that c-Li3N is the ground state structure for a wide range of temperature. The c-Li3N structure has a negative thermal expansion coefficient at temperatures lower than room temperature, due mainly to two transverse acoustic phonon modes. This c-Li3N phase is a semiconductor with an indirect band gap of 1.90 eV within hybrid density functional calculation. We also investigate the migration and energetics of native point defects in c-Li3N, includingmore » lithium and nitrogen vacancies, interstitials, and anti-site defects. Lithium interstitials are found to have a very low migration barrier (~0.12 eV) and the lowest formation energy among all possible defects. Thus, the ionic conduction in c-Li3N is expected to occur via an interstitial mechanism, in contrast to that in the well-known α-Li3N phase which occurs via a vacancy mechanism.« less

  17. Effect of fuel rate and annealing process of LiFePO{sub 4} cathode material for Li-ion batteries synthesized by flame spray pyrolysis method

    SciTech Connect (OSTI)

    Halim, Abdul; Setyawan, Heru; Machmudah, Siti; Nurtono, Tantular; Winardi, Sugeng

    2014-02-24

    In this study the effect of fuel rate and annealing on particle formation of LiFePO{sub 4} as battery cathode using flame spray pyrolysis method was investigated numerically and experimentally. Numerical study was done using ANSYS FLUENT program. In experimentally, LiFePO{sub 4} was synthesized from inorganic aqueous solution followed by annealing. LPG was used as fuel and air was used as oxidizer and carrier gas. Annealing process attempted in inert atmosphere at 700C for 240 min. Numerical result showed that the increase of fuel rate caused the increase of flame temperature. Microscopic observation using Scanning Electron Microscopy (SEM) revealed that all particles have sphere and polydisperse. Increasing fuel rate caused decreasing particle size and increasing particles crystallinity. This phenomenon attributed to the flame temperature. However, all produced particles still have more amorphous phase. Therefore, annealing needed to increase particles crystallinity. Fourier Transform Infrared (FTIR) analysis showed that all particles have PO4 function group. Increasing fuel rate led to the increase of infrared spectrum absorption corresponding to the increase of particles crystallinity. This result indicated that phosphate group vibrated easily in crystalline phase. From Electrochemical Impedance Spectroscopy (EIS) analysis, annealing can cause the increase of Li{sup +} diffusivity. The diffusivity coefficient of without and with annealing particles were 6.8439910{sup ?10} and 8.5988810{sup ?10} cm{sup 2} s{sup ?1}, respectively.

  18. Multiphoton photoluminescence contrast in switched Mg:LiNbO{sub 3} and Mg:LiTaO{sub 3} single crystals

    SciTech Connect (OSTI)

    Reichenbach, P., E-mail: philipp.reichenbach@iapp.de; Kmpfe, T.; Thiessen, A.; Haumann, A.; Eng, L. M. [Institut fr Angewandte Photophysik, Technische Universitt Dresden, George-Bhr-Str. 1, 01069 Dresden (Germany); Woike, T. [Institut fr Strukturphysik, Technische Universitt Dresden, Zellescher Weg 16, 01069 Dresden (Germany)

    2014-09-22

    We observed a multiphoton luminescence contrast between virgin and single-switched domains in Mg-doped LiNbO{sub 3} (LNO) and LiTaO{sub 3} (LTO) single crystals with different doping levels of 07?mol. % and 08?mol. %, respectively. A luminescence contrast in the range of 3% was measured between as-grown and electrically inverted domain areas in Mg:LNO samples, while the contrast reaches values of up to 30% for the Mg:LTO case. Under annealing, an exponential decay of the domain contrast was observed. The activation energy of about 1?eV being determined for the decay allowed a comparison with reported activation energies of associated defects, clearly illustrating a strong connection between thermal contrast decay and the H{sup +} and Li{sup +}-ion mobility. Finally, performing similar experiments on oxidized samples undoubtedly demonstrated that the origin of the reported luminescence contrast is strongly connected with lithium ions.

  19. Method for improving voltage regulation of batteries, particularly Li/FeS.sub.2 thermal batteries

    DOE Patents [OSTI]

    Godshall, Ned A.

    1988-01-01

    Batteries are improved, especially with respect to voltage regulation properties, by employing as anode and cathode compositions, those which fall in a thermodynamically invariant region of the metallurgical phase diagram of the combination of the constituent components. The invention is especially useful in the Li/FeS.sub.2 system.

  20. Method for improving voltage regulation of batteries, particularly Li/FeS/sub 2/ thermal batteries

    DOE Patents [OSTI]

    Godshall, N.A.

    1986-06-10

    Batteries are improved, especially with respect to voltage regulation properties, by employing as anode and cathode compositions, those which fall in a thermodynamically invariant region of the metallurgical phase diagram of the combination of the constituent components. The invention is especially useful in the Li/FeS/sub 2/ system.

  1. REVERSIBLE HYDROGEN STORAGE IN A LiBH{sub 4}-C{sub 60} NANOCOMPOSITE

    SciTech Connect (OSTI)

    Teprovich, J.; Zidan, R.; Peters, B.; Wheeler, J.

    2013-08-06

    Reversible hydrogen storage in a LiBH{sub 4}:C{sub 60} nanocomposite (70:30 wt. %) synthesized by solvent-assisted mixing has been demonstrated. During the solvent-assisted mixing and nanocomposite formation, a chemical reaction occurs in which the C{sub 60} cages are significantly modified by polymerization as well as by hydrogenation (fullerane formation) in the presence of LiBH{sub 4}. We have determined that two distinct hydrogen desorption events are observed upon rehydrogenation of the material, which are attributed to the reversible formation of a fullerane (C{sub 60}H{sub x}) as well as a LiBH4 species. This system is unique in that the carbon species (C{sub 60}) actively participates in the hydrogen storage process which differs from the common practice of melt infiltration of high surface area carbon materials with LiBH{sub 4} (nanoconfinment effect). This nanocomposite demonstrated good reversible hydrogen storage properties as well as the ability to absorb hydrogen under mild conditions (pressures as low as 10 bar H{sub 2} or temperatures as low as 150?C). The nanocomposite was characterized by TGA-RGA, DSC, XRD, LDI-TOF-MS, FTIR, 1H NMR, and APPI MS.

  2. TEM characterization of diffusion bonding of superplastic 8090 Al-Li alloy

    SciTech Connect (OSTI)

    Urena, A.; Gomez de Salazar, J.M.; Quinones, J.; Martin, J.J.

    1996-02-15

    In recent years there has been a growing interest in developing a joining process compatible with other fabrication technologies used in the aeronautical industry for superplastic aluminum-lithium alloys, and it is shown in numerous publications. There have been important advances in the research of the aluminum-lithium alloys diffusion bonding, and specially for the AA8090. However, joining of aluminum alloys by diffusion bonding encounters inherent problems which have not been solved yet. Most of these limitations come from the formation of protective oxide film (Al{sub 2}O{sub 3}) which covers the aluminum based materials. In spite of these unresolved difficulties, most of the investigators, among them are the present authors, have agreed that aluminum alloys which contain lithium as alloying element, present a higher weldability than Li-free aluminum ones. To explain this enhanced diffusion weldability in Li-doped alloys, it has been argued that Li favors the partial elimination of the unsoluble and tenacious alumina film, which acts as a diffusion barrier, through the formation of more soluble and brittle complex spinel (Al-Li-O). Nevertheless, the elimination of these oxides is not complete, resulting, in the most advantageous conditions, in a discontinuous distribution of oxide particles along the bonding interface which controls the final properties of the bond.

  3. Temperature Dependence of Aliovalent-vanadium Doping in LiFePO4 Cathodes

    SciTech Connect (OSTI)

    Harrison, Katharine L; Bridges, Craig A; Paranthaman, Mariappan Parans; Idrobo Tapia, Juan C; Manthiram, Arumugam; Goodenough, J. B.; Segre, C; Katsoudas, John; Maroni, V. A.

    2013-01-01

    Vanadium-doped olivine LiFePO4 cathode materials have been synthesized by a novel low-temperature microwave-assisted solvothermal (MW-ST) method at 300 oC. Based on chemical and powder neutron/X-ray diffraction analysis, the compositions of the synthesized materials were found to be LiFe1-3x/2Vx x/2PO4 (0 x 0.2) with the presence of a small number of lithium vacancies charge-compensated by V4+, not Fe3+, leading to an average oxidation state of ~ 3.2+ for vanadium. Heating the pristine 15 % V-doped sample in inert or reducing atmospheres led to a loss of vanadium from the olivine lattice with the concomitant formation of a Li3V2(PO4)3 impurity phase; after phase segregation, a partially V-doped olivine phase remained. For comparison, V-doped samples were also synthesized by conventional ball milling and heating, but only ~ 10 % V could be accommodated in the olivine lattice in agreement with previous studies. The higher degree of doping realized with the MW-ST samples demonstrates the temperature dependence of the aliovalent-vanadium doping in LiFePO4.

  4. Redox probing study of the potential dependence of charge transport through Li2O2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Knudsen, Kristian B.; Luntz, Alan C.; Jensen, Søren H.; Vegge, Tejs; Hjelm, Johan

    2015-11-20

    In the field of energy storage devices the pursuit for cheap, high energy density, reliable secondary batteries is at the top of the agenda. The Li–O2 battery is one of the possible technologies that, in theory, should be able to close the gap, which exists between the present state-of-the-art Li-ion technologies and the demand placed on batteries by technologies such as electrical vehicles. Here we present a redox probing study of the charge transfer across the main deposition product lithium peroxide, Li2O2, in the Li–O2 battery using outer-sphere redox shuttles. The change in heterogeneous electron transfer exchange rate as amore » function of the potential and the Li2O2 layer thickness (~depth-of-discharge) was determined using electrochemical impedance spectroscopy. In addition, the attenuation of the electron transfer exchange rate with film thickness is dependent on the probing potential, providing evidence that hole transport is the dominant process for charge transfer through Li2O2 and showing that the origin of the sudden death observed upon discharge is due to charge transport limitations.« less

  5. Structure and Stoichiometry in Supervalent Doped Li7La3 Zr2O12

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mukhopadhyay, Saikat; Thompson, Travis; Sakamoto, Jeff; Huq, Ashfia; Wolfenstine, Jeff; Allen, Jan L.; Bernstein, Noam; Stewart, Derek A.; Johannes, M. D.

    2015-04-20

    The oxide garnet material Li7La3 Zr2O12 shows remarkably high ionic conductivity when doped with supervalent ions that are charge compensated by Li vacancies and is currently one of the best candidates for development of a technologically relevant solid electrolyte. Determination of optimal dopant concentration, however, has remained a persistent problem due to the extreme difficulty of establishing the actual (as compared to nominal) stoichiometry of intentionally doped materials and by the fact that it is still not entirely clear what level of lattice expansion/contraction best promotes. ionic diffusion. By combining careful synthesis, neutron diffraction, high-resolution X-ray diffraction (XRD), Raman measurements,more » and density functional theory calculations, we show that structure and stoichiometry are intimately related such that the former can in many cases be used as a gauge of the latter. We show that different Li-vacancy creating supervalent ions (Al3+ vs Ta5+) affect the structure very differently, both in terms of the lattice constant, which is easily measurable, and hi terms of the local structure, which can be difficult or impossible to access experimentally but may have important ramifications for conduction. We carefully correlate the lattice constant to dopant type/concentration via Vegard's law and then further correlate these quantities to relevant local structural parameters. In conclusion, our work opens the possibility of developing a codopant scheme that optimizes the Li vacancy concentration and the lattice size simultaneously.« less

  6. Aliovalent titanium substitution in layered mixed Li Ni-Mn-Co oxides for lithium battery applications

    SciTech Connect (OSTI)

    Kam, Kinson; Doeff, Marca M.

    2010-12-01

    Improved electrochemical characteristics are observed for Li[Ni1/3Co1/3-yMyMn1/3]O2 cathode materials when M=Ti and y<0.07, compared to the baseline material, with up to 15percent increased discharge capacity.

  7. Operando Lithium Dynamics in the Li-Rich Layered Oxide Cathode Material via Neutron Diffraction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Haodong; An, Ke; Venkatachalam, Subramanian; Qian, Danna; Zhang, Minghao; Meng, Ying Shirley

    2016-04-06

    Neutron diffraction under operando battery cycling is used to study the lithium and oxygen dynamics of high Li-rich Li(Lix/3Ni(3/8-3x/8)Co(1/4-x/4)Mn(3/8+7x/24)O2 (x = 0.6, HLR) and low Li-rich Li(Lix/3Ni(1/3-x/3)Co(1/3-x/3)Mn(1/3+x/3)O2 (x = 0.24, LLR) compounds that exhibit different degrees of oxygen activation at high voltage. The measured lattice parameter changes and oxygen position show largely contrasting changes for the two cathodes where the LLR exhibits larger movement of oxygen and lattice contractions in comparison to the HLR that maintains relatively constant lattice parameters and oxygen position during the high voltage plateau until the end of charge. Density functional theory calculations show the presencemore » of oxygen vacancy during the high voltage plateau; changes in the lattice parameters and oxygen position are consistent with experimental observations. Lithium migration kinetics for the Li-rich material is observed under operando conditions for the first time to reveal the rate of lithium extraction from the lithium layer, and transition metal layer is related to the different charge and discharge characteristics. At the beginning of charging, the lithium extraction predominately occurs within the lithium layer. The lithium extraction from the lithium layer slows down and extraction from the transition metal layer evolves at a faster rate once the high voltage plateau is reached.« less

  8. Structural and spectroscopic properties of pure and doped LiCe(PO{sub 3}){sub 4}

    SciTech Connect (OSTI)

    Abdelhedi, M.; Horchani-Naifer, K.; Dammak, M.; Ferid, M.

    2015-10-15

    Graphical abstract: Emission and excitation and spectra of Eu{sup 3+} doped LiCe(PO{sub 3}){sub 4} host lattice with 1, 2, 3 and 4 mol%. - Highlights: • Europium–doped LiCe(PO{sub 3}){sub 4} were prepared by flux method. • It was analyzed by infrared and Raman spectroscopy, and luminescence spectroscopy. • LiCe(PO{sub 3}){sub 4} doped with Eu{sup 3+} ions as luminophore host materials to produce an intense red. - Abstract: Single crystals of LiCe(PO{sub 3}){sub 4} polyphosphate have been synthesized by the flux method and its structural and luminescence properties have been investigated. This compound crystallizes in the space group C2/c with unit cell dimensions a = 16.52(7) Å, b = 7.09(4) Å, c = 9.83 (4)Å, β = 126.29(4)°, Z = 8 and V = 927.84(3) Å{sup 3}. The obtained polytetraphosphate exhibits very small crystals and the dopant Eu{sup 3+} ions were successfully incorporated into the sites of Ce{sup 3+} ions of the host lattice. The spectroscopy properties confirm the potentiality of present LiCe(PO{sub 3}){sub 4} doped with Eu{sup 3+} ions as luminophore host materials to produce an intense red luminescence at 628 nm corresponding to {sup 5}D{sub 0} → {sup 7}F{sub 2} emission level and have significant importance in the development of emission optical systems.

  9. Domain formation and polarization reversal under atomic force microscopy-tip voltages in ion-sliced LiNbO{sub 3} films on SiO{sub 2}/LiNbO{sub 3} substrates

    SciTech Connect (OSTI)

    Gainutdinov, R. V.; Volk, T. R.; Zhang, H. H.

    2015-10-19

    We report on studies on writing of micro- and nanodomains and specified domain patterns by AFM-tip voltages U{sub DC} in thin (0.5 μm thick) ion-sliced LiNbO{sub 3} films embedded to SiO{sub 2}/LiNbO{sub 3} substrates. A peculiar feature is an overlapping of domains as the distance between them decreases. Piezoelectric hysteresis loops were measured in a wide range of U{sub DC} pulse durations. Domain dynamics and characteristics of hysteresis loops reveal marked distinctions from those observed so far in LiNbO{sub 3} films and bulk crystals.

  10. Interfacial reaction dependent performance of hollow carbon nanosphere - sulfur composite as a cathode for Li-S battery

    SciTech Connect (OSTI)

    Zheng, Jianming; Yan, Pengfei; Gu, Meng; Wagner, Michael J.; Hays, Kevin A.; Chen, Junzheng; Li, Xiaohong S.; Wang, Chong M.; Zhang, Ji -Guang; Liu, Jun; Xiao, Jie

    2015-05-26

    Lithium-sulfur (Li-S) battery is a promising energy storage system due to its high energy density, cost effectiveness and environmental friendliness of sulfur. However, there are still a number of challenges, such as low Coulombic efficiency and poor long-term cycling stability, impeding the commercialization of Li-S battery. The electrochemical performance of Li-S battery is closely related with the interfacial reactions occurring between hosting substrate and active sulfur species which are poorly conducting at fully oxidized and reduced states. Here, we correlate the relationship between the performance and interfacial reactions in the Li-S battery system, using a hollow carbon nanosphere (HCNS) with highly graphitic character as hosting substrate for sulfur. With an appropriate amount of sulfur loading, HCNS/S composite exhibits excellent electrochemical performance because of the fast interfacial reactions between HCNS and the polysulfides. However, further increase of sulfur loading leads to increased formation of highly resistive insoluble reaction products (Li2S2/Li2S) which limits the reversibility of the interfacial reactions and results in poor electrochemical performance. In conclusion, these findings demonstrate the importance of the interfacial reaction reversibility in the whole electrode system on achieving high capacity and long cycle life of sulfur cathode for Li-S batteries.

  11. Improved Electrochemical Performance of Carbon-Coated LiFeBO3 Nanoparticles for Lithium-Ion Batteries

    SciTech Connect (OSTI)

    Li, Zhaoping; Wang, Yiping; Hu, Querui; Yang, Ying; Wu, Zhuangchun; Ban, Chunmei

    2015-09-01

    Carbon-coated LiFeBO3 nanoparticles have been successfully prepared by surfactant-assisted ball milling and a size selection process based on centrifugal separation. We observed monodispersed LiFeBO3 nanoparticles with dimensions of 10–20 nm by transmission electron microscope. The introduced surfactant acts as the dispersant as well as the carbon source for LiFeBO3 nanoparticles. Greatly improved discharge capacities of 190.4 mA h g–1 at 0.1 C and 106.6 mA h g–1 at 1 C rate have been achieved in the LiFeBO3 nanoparticles when cycling the cells between 1.0 V and 4.8 V. Meanwhile, the as-prepared micro-size LiFeBO3 electrodes show lower discharge capacities of 142 mA h g–1 and 93.3 mA h g–1 at 0.1 C and 1 C rates. Moreover, the post-treated LiFeBO3 nanostructure has drastically enhanced the electrochemical performance due to the short diffusion length and ameliorated electrical contract between LiFeBO3 nano particles.

  12. Interfacial reaction dependent performance of hollow carbon nanosphere - sulfur composite as a cathode for Li-S battery

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Jianming; Yan, Pengfei; Gu, Meng; Wagner, Michael J.; Hays, Kevin A.; Chen, Junzheng; Li, Xiaohong S.; Wang, Chong M.; Zhang, Ji -Guang; Liu, Jun; et al

    2015-05-26

    Lithium-sulfur (Li-S) battery is a promising energy storage system due to its high energy density, cost effectiveness and environmental friendliness of sulfur. However, there are still a number of challenges, such as low Coulombic efficiency and poor long-term cycling stability, impeding the commercialization of Li-S battery. The electrochemical performance of Li-S battery is closely related with the interfacial reactions occurring between hosting substrate and active sulfur species which are poorly conducting at fully oxidized and reduced states. Here, we correlate the relationship between the performance and interfacial reactions in the Li-S battery system, using a hollow carbon nanosphere (HCNS) withmore » highly graphitic character as hosting substrate for sulfur. With an appropriate amount of sulfur loading, HCNS/S composite exhibits excellent electrochemical performance because of the fast interfacial reactions between HCNS and the polysulfides. However, further increase of sulfur loading leads to increased formation of highly resistive insoluble reaction products (Li2S2/Li2S) which limits the reversibility of the interfacial reactions and results in poor electrochemical performance. In conclusion, these findings demonstrate the importance of the interfacial reaction reversibility in the whole electrode system on achieving high capacity and long cycle life of sulfur cathode for Li-S batteries.« less

  13. Nanoscale imaging of fundamental Li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters

    SciTech Connect (OSTI)

    Sacci, Robert L; Black, Jennifer M; Wisinger, Nina; Dudney, Nancy J.; More, Karren Leslie; Unocic, Raymond R

    2015-01-01

    The performance characteristics of Li-ion batteries are intrinsically linked to evolving nanoscale interfacial electrochemical reactions. To probe the mechanisms of solid electrolyte interphase formation and Li electrodeposition from a standard battery electrolyte, we use in situ electrochemical scanning transmission electron microscopy for controlled potential sweep-hold electrochemical measurements with simultaneous BF and ADF STEM image acquisition. Through a combined quantitative electrochemical measurement and quantitative STEM imaging approach, based upon electron scattering theory, we show that chemically sensitive ADF STEM imaging can be used to estimate the density of evolving SEI constituents and distinguish contrast mechanisms of Li-bearing components in the liquid cell.

  14. Electrolyte Solvation and Ionic Association. V. Acetonitrile-Lithium Bis(fluorosulfonyl)imide (LiFSI) Mixtures

    SciTech Connect (OSTI)

    Han, Sang D.; Borodin, Oleg; Seo, D. M.; Zhou, Zhi B.; Henderson, Wesley A.

    2014-09-30

    Electrolytes with the salt lithium bis(fluorosulfonyl)imide (LiFSI) have been evaluated relative to comparable electrolytes with other lithium salts. Acetonitrile (AN) has been used as a model electrolyte solvent. The information obtained from the thermal phase behavior, solvation/ionic association interactions, quantum chemical (QC) calculations and molecular dynamics (MD) simulations (with an APPLE&P many-body polarizable force field for the LiFSI salt) of the (AN)n-LiFSI mixtures provides detailed insight into the coordination interactions of the FSI- anions and the wide variability noted in the electrolyte transport property (i.e., viscosity and ionic conductivity).

  15. Nanoscale imaging of fundamental Li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters

    SciTech Connect (OSTI)

    Sacci, Robert L; Black, Jennifer M.; Wisinger, Nina; Dudney, Nancy J.; More, Karren Leslie; Unocic, Raymond R.

    2015-02-23

    The performance characteristics of Li-ion batteries are intrinsically linked to evolving nanoscale interfacial electrochemical reactions. To probe the mechanisms of solid electrolyte interphase formation and Li electrodeposition from a standard battery electrolyte, we use in situ electrochemical scanning transmission electron microscopy for controlled potential sweep-hold electrochemical measurements with simultaneous BF and ADF STEM image acquisition. Through a combined quantitative electrochemical measurement and quantitative STEM imaging approach, based upon electron scattering theory, we show that chemically sensitive ADF STEM imaging can be used to estimate the density of evolving SEI constituents and distinguish contrast mechanisms of Li-bearing components in the liquid cell.

  16. Magnetic and electrode properties, structure and phase relations of the layered triangular-lattice tellurate Li{sub 4}NiTeO{sub 6}

    SciTech Connect (OSTI)

    Zvereva, Elena A.; Nalbandyan, Vladimir B.; Evstigneeva, Maria A.; Koo, Hyun-Joo; Whangbo, Myung-Hwan; Ushakov, Arseni V.; Medvedev, Boris S.; Medvedeva, Larisa I.; Gridina, Nelly A.; Yalovega, Galina E.; Churikov, Alexei V.; Vasiliev, Alexander N.; Büchner, Bernd

    2015-05-15

    We examined the magnetic properties of layered oxide Li{sub 4}NiTeO{sub 6} by magnetic susceptibility, magnetization and ESR measurements and density functional calculations, and characterized phase relations, crystal structure and electrochemical properties of Li{sub 4}NiTeO{sub 6}. The magnetization and ESR data indicate the absence of a long-range magnetic order down to 1.8 K, and the magnetic susceptibility data the presence of dominant antiferromagnetic interactions. These observations are well accounted for by density functional calculations, which show that the spin exchanges of the LiNiTeO{sub 6} layers in Li{sub 4}NiTeO{sub 6} are strongly spin frustrated. The electrochemical charging of Li{sub 4}NiTeO{sub 6} takes place at constant potential of ca. 4.2 V vs. Li/Li{sup +} indicating two-phase process as confirmed by X-rays. The starting phase is only partially recovered on discharge due to side reactions. - Graphical abstract: No long-range magnetic order due to frustration in 2D triangular lattice antiferromagnet Li{sub 4}NiTeO{sub 6}. - Highlights: • Li{sub 4}NiTeO{sub 6} is 2D triangular lattice magnet with no long-range order down to 1.8 K. • Intralayer exchange interactions are antiferromagnetic and strongly spin frustrated. • The electrochemical Li extraction proceeds in a two-phase mode at 4.2 V vs. Li/Li{sup +}. • The electrochemical charge–discharge is only partially reversible. • Li{sub 2}O–NiO{sub y}–TeO{sub x} phase relations are reported; Li{sub 4}NiTeO{sub 6} is essentially stoichiometric.

  17. Prediction of {sup 2}D Rydberg energy levels of {sup 6}Li and {sup 7}Li based on very accurate quantum mechanical calculations performed with explicitly correlated Gaussian functions

    SciTech Connect (OSTI)

    Bubin, Sergiy; Sharkey, Keeper L.; Adamowicz, Ludwik

    2013-04-28

    Very accurate variational nonrelativistic finite-nuclear-mass calculations employing all-electron explicitly correlated Gaussian basis functions are carried out for six Rydberg {sup 2}D states (1s{sup 2}nd, n= 6, Horizontal-Ellipsis , 11) of the {sup 7}Li and {sup 6}Li isotopes. The exponential parameters of the Gaussian functions are optimized using the variational method with the aid of the analytical energy gradient determined with respect to these parameters. The experimental results for the lower states (n= 3, Horizontal-Ellipsis , 6) and the calculated results for the higher states (n= 7, Horizontal-Ellipsis , 11) fitted with quantum-defect-like formulas are used to predict the energies of {sup 2}D 1s{sup 2}nd states for {sup 7}Li and {sup 6}Li with n up to 30.

  18. Effect of Morphology and Manganese Valence on the Voltage Fade and Capacity Retention of Li[Li 2/12Ni3/12Mn7/12]O2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Verde, Michael G.; Liu, Haodong; Carroll, Kyler J.; Baggetto, Loïc; Veith, Gabriel M.; Meng, Y. Shirley

    2014-10-02

    We have determined the electrochemical characteristics of the high voltage, high capacity Li-ion battery cathode material Li[Li 2/12Ni3/12Mn7/12]O2 prepared using three different synthesis routes: sol-gel, hydroxide co-precipitation, and carbonate co-precipitation. Each route leads to distinct morphologies and surface areas while maintaining the same crystal structures. X-ray photoelectron spectroscopy (XPS) measurements reveal differences in their surface chemistries upon cycling, which correlate with voltage fading. As expected, we observed the valence state of Mn on the surface to decrease upon lithiation, and this reduction is specifically correlated to discharging below 3.6V. Furthermore, the data shows a correlation of the formation of Li2CO3more » with Mn oxidation state from the« less

  19. High Rate and High Capacity Li-Ion Electrodes for Vehicular Applications

    SciTech Connect (OSTI)

    Dillon, A. C.

    2012-01-01

    Significant advances in both energy density and rate capability for Li-ion batteries are necessary for implementation in electric vehicles. We have employed two different methods to improve the rate capability of high capacity electrodes. For example, we previously demonstrated that thin film high volume expansion MoO{sub 3} nanoparticle electrodes ({approx}2 {micro}m thick) have a stable capacity of {approx}630 mAh/g, at C/2 (charge/dicharge in 2 hours). By fabricating thicker conventional electrodes, an improved reversible capacity of {approx}1000 mAh/g is achieved, but the rate capability decreases. To achieve high-rate capability, we applied a thin Al{sub 2}O{sub 3} atomic layer deposition coating to enable the high volume expansion and prevent mechanical degradation. Also, we recently reported that a thin ALD Al{sub 2}O{sub 3} coating can enable natural graphite (NG) electrodes to exhibit remarkably durable cycling at 50 C. Additionally, Al{sub 2}O{sub 3} ALD films with a thickness of 2 to 4 {angstrom} have been shown to allow LiCoO{sub 2} to exhibit 89% capacity retention after 120 charge-discharge cycles performed up to 4.5 V vs. Li/Li{sup +}. Capacity fade at this high voltage is generally caused by oxidative decomposition of the electrolyte or cobalt dissolution. We have recently fabricated full cells of NG and LiCoO{sub 2} and coated both electrodes, one or the other electrode as well as neither electrode. In creating these full cells, we observed some surprising results that lead us to obtain a greater understanding of the ALD coatings. In a different approach we have employed carbon single-wall nanotubes (SWNTs) to synthesize binder-free, high-rate capability electrodes, with 95 wt.% active materials. In one case, Fe{sub 3}O{sub 4} nanorods are employed as the active storage anode material. Recently, we have also employed this method to demonstrate improved conductivity and highly improved rate capability for a LiNi{sub 0.4}Mn{sub 0.4}Co{sub 0.2}O{sub 2

  20. Spintronic properties of Li1.5Mn0.5Z (Z=As, Sb) compounds in...

    Office of Scientific and Technical Information (OSTI)

    Publisher's Accepted Manuscript: Spintronic properties of Li1.5Mn0.5Z (ZAs, Sb) compounds in the Cu2Sb structure This content will become publicly available on January 26, 2017 ...

  1. Vehicle Technologies Office Merit Review 2015: Real-time Metrology for Li-ion Battery R&D and Manufacturing

    Broader source: Energy.gov [DOE]

    Presentation given by Applied Spectra at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about real-time metrology for Li...

  2. Vehicle Technologies Office Merit Review 2014: Advanced High Energy Li-Ion Cell for PHEV and EV Applications

    Broader source: Energy.gov [DOE]

    Presentation given by 3M at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced high energy Li-ion cell for PHEV...

  3. Vehicle Technologies Office Merit Review 2015: Efficient Rechargeable Li/O2 Batteries Utilizing Stable Inorganic Molten Salt Electrolytes

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Liox at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about efficient rechargeable Li/O2 batteries...

  4. Astrophysical S factor for the radiative-capture reaction p{sup 6}Li {yields} {sup 7}Be{gamma}

    SciTech Connect (OSTI)

    Dubovichenko, S. B.; Burtebaev, N. Zazulin, D. M.; Kerimkulov, Zh. K.; Amar, A. S. A.

    2011-07-15

    A new measurement of differential cross sections for elastic p{sup 6}Li scattering in the energy range 0.35-1.2 MeV was performed. A partial-wave analysis of the data obtained in this way was carried out, and potentials simulating the p{sup 6}Li interaction were constructed. Various experiments devoted to studying elastic p{sup 6}Li scattering over the broad energy range of 0.5-50 MeV were analyzed on the basis of the optical model. By using the potentials obtained from the partial-wave analysis, the possibility of describing the astrophysical S factor for radiative proton capture on {sup 6}Li at low energies was considered within the potential cluster model involving forbidden states.

  5. Effect of entropy of lithium intercalation in cathodes and anodes on Li-ion battery thermal management

    SciTech Connect (OSTI)

    Viswanathan, Vilayanur V; Choi, Daiwon; Wang, Donghai; Xu, Wu; Towne, Silas A; Williford, Ralph E; Zhang, Jiguang; Liu, Jun; Yang, Zhenguo

    2010-06-01

    The entropy changes (ΔS) in various cathode and anode materials, as well as complete Li-ion batteries, were measured using an electrochemical thermodynamic measurement system (ETMS). LiCoO2 has a much larger entropy change than electrodes based on LiNixCoyMnzO2 and LiFePO4, while lithium titanate based anode has lower entropy change compared to graphite anodes. Reversible heat generation rate was found to be a significant portion of the total heat generation rate. The appropriate combinations of cathode and anode were investigated to minimize reversible heat.

  6. Neutron scattering study on cathode LiMn{sub 2}O{sub 4} and solid electrolyte 5(Li{sub 2}O)(P{sub 2}O{sub 5})

    SciTech Connect (OSTI)

    Kartini, E. Putra, Teguh P. Jahya, A. K. Insani, A.; Adams, S.

    2014-09-30

    Neutron scattering is very important technique in order to investigate the energy storage materials such as lithium-ion battery. The unique advantages, neutron can see the light atoms such as Hydrogen, Lithium, and Oxygen, where those elements are negligible by other corresponding X-ray method. On the other hand, the energy storage materials, such as lithium ion battery is very important for the application in the electric vehicles, electronic devices or home appliances. The battery contains electrodes (anode and cathode), and the electrolyte materials. There are many challenging to improve the existing lithium ion battery materials, in order to increase their life time, cyclic ability and also its stability. One of the most scientific challenging is to investigate the crystal structure of both electrode and electrolyte, such as cathodes LiCoO{sub 2}, LiMn{sub 2}O{sub 4} and LiFePO{sub 4}, and solid electrolyte Li{sub 3}PO{sub 4}. Since all those battery materials contain Lithium ions and Oxygen, the used of neutron scattering techniques to study their structure and related properties are very important and indispensable. This article will review some works of investigating electrodes and electrolytes, LiMn{sub 2}O{sub 4} and 5(Li{sub 2}O)(P{sub 2}O{sub 5}), by using a high resolution powder diffraction (HRPD) at the multipurpose research reactor, RSG-Sywabessy of the National Nuclear Energy Agency (BATAN), Indonesia.

  7. Thermal neutron detection using a silicon pad detector and {sup 6}LiF removable converters

    SciTech Connect (OSTI)

    Barbagallo, Massimo; Cosentino, Luigi; Marchetta, Carmelo; Pappalardo, Alfio; Scire, Carlotta; Scire, Sergio; Schillaci, Maria; Vecchio, Gianfranco; Finocchiaro, Paolo; Forcina, Vittorio; Peerani, Paolo; Vaccaro, Stefano

    2013-03-15

    A semiconductor detector coupled with a neutron converter is a good candidate for neutron detection, especially for its compactness and reliability if compared with other devices, such as {sup 3}He tubes, even though its intrinsic efficiency is rather lower. In this paper we show a neutron detector design consisting of a 3 cm Multiplication-Sign 3 cm silicon pad detector coupled with one or two external {sup 6}LiF layers, enriched in {sup 6}Li at 95%, placed in contact with the Si active surfaces. This prototype, first characterized and tested at INFN Laboratori Nazionali del Sud and then at JRC Ispra, was successfully shown to detect thermal neutrons with the expected efficiency and an outstanding gamma rejection capability.

  8. The High-Resolution Lightweight Telescope for the EUV (HiLiTE)

    SciTech Connect (OSTI)

    Martinez-Galarce, D S; Boerner, P; Soufli, R; De Pontieu, B; Katz, N; Title, A; Gullikson, E M; Robinson, J C; Baker, S L

    2008-06-02

    The High-resolution Lightweight Telescope for the EUV (HiLiTE) is a Cassegrain telescope that will be made entirely of Silicon Carbide (SiC), optical substrates and metering structure alike. Using multilayer coatings, this instrument will be tuned to operate at the 465 {angstrom} Ne VII emission line, formed in solar transition region plasma at {approx}500,000 K. HiLiTE will have an aperture of 30 cm, angular resolution of {approx}0.2 arc seconds and operate at a cadence of {approx}5 seconds or less, having a mass that is about 1/4 that of one of the 20 cm aperture telescopes on the Atmospheric Imaging Assembly (AIA) instrument aboard NASA's Solar Dynamics Observatory (SDO). This new instrument technology thus serves as a path finder to a post-AIA, Explorer-class missions.

  9. Electrochemical study of uranium cations in LiCl-KCl melt using a rotating disk electrode

    SciTech Connect (OSTI)

    Bae, Sang-Eun; Kim, Dae-Hyun; Kim, Jong-Yoon; Park, Tae-Hong; Cho, Young Hwan; Yeon, Jei-Won; Song, Kyuseok

    2013-07-01

    A rotating disk electrode (RDE) measurement technique was employed to investigate the electrochemical REDOX reactions of actinide (An) and lanthanide (Ln) ions in LiCl-KCl molten salt. By using RDE, it is possible to access more exact values of the diffusion coefficient, Tafel slope, and exchange current density. In this work, we constructed RDE setup and electrodes for RDE measurements in high temperature molten salt and measured the electrochemical parameters of the An and Ln ions. The RDE setup is composed of a Pine model MSRX rotator equipped with a rod type of W electrode. The active electrode area was confined to the planar part of the W rod by making meniscus at the LiCl-KCl melt surface.

  10. Experimental and theoretical investigations of functionalized boron nitride as electrode materials for Li-ion batteries

    SciTech Connect (OSTI)

    Zhang, Fan; Nemeth, Karoly; Bareño, Javier; Dogan, Fulya; Bloom, Ira D.; Shaw, Leon L.

    2016-01-01

    The feasibility of synthesizing functionalized h-BN (FBN) via the reaction between molten LiOH and solid h-BN is studied for the first time and its first ever application as an electrode material in Li-ion batteries is evaluated. Density functional theory (DFT) calculations are performed to provide mechanistic understanding of the possible electrochemical reactions derived from the FBN. Various materials characterizations reveal that the melt-solid reaction can lead to exfoliation and functionalization of h-BN simultaneously, while electrochemical analysis proves that the FBN can reversibly store charges through surface redox reactions with good cycle stability and coulombic efficiency. DFT calculations have provided physical insights into the observed electrochemical properties derived from the FBN.

  11. NANOSTRUCTURED METAL OXIDES FOR ANODES OF LI-ION RECHARGEABLE BATTERIES

    SciTech Connect (OSTI)

    Au, M.

    2009-12-04

    The aligned nanorods of Co{sub 3}O{sub 4} and nanoporous hollow spheres (NHS) of SnO{sub 2} and Mn{sub 2}O{sub 3} were investigated as the anodes for Li-ion rechargeable batteries. The Co{sub 3}O{sub 4} nanorods demonstrated 1433 mAh/g reversible capacity. The NHS of SnO{sub 2} and Mn{sub 2}O{sub 3} delivered 400 mAh/g and 250 mAh/g capacities respectively in multiple galvonastatic discharge-charge cycles. It was found that high capacity of NHS of metal oxides is sustainable attributed to their unique structure that maintains material integrity during cycling. The nanostructured metal oxides exhibit great potential as the new anode materials for Li-ion rechargeable batteries with high energy density, low cost and inherent safety.

  12. Deuteron scattering on {sup 6}Li at an energy of 25 MeV

    SciTech Connect (OSTI)

    Burtebayev, N.; Artemov, S. V.; Duisebayev, B. A.; Kerimkulov, Zh. K.; Kuranov, S. B.; Sakuta, S. B.

    2010-05-15

    At an energy of 25 MeV and in the angular range 7{sup o}-175{sup o} in the laboratory frame, angular distributions were measured for elastic deuteron scattering on {sup 6}Li nuclei and for the respective inelastic-scattering processes accompanied by the transitions to the ground state (1+) of the {sup 6}Li nucleus and to its excited state at E{sub x} = 2.186 MeV (J{sup {pi}} = 3{sup +}). The resulting data were analyzed on the basis of the optical model of the nucleus and the coupled-reaction-channel method with allowance for the mechanism of alpha-particle-cluster exchange. It is shown that only upon including, in the analysis, channel coupling and the exchange mechanism can the experimental cross sections for elastic and inelastic scattering be reproduced over the entire range of angles.

  13. Nanoscale Silicon as Anode for Li-ion Batteries: The Fundamentals, Promise, and Challenges

    SciTech Connect (OSTI)

    Gu, Meng; He, Yang; Zheng, Jianming; Wang, Chong M.

    2015-09-24

    Silicon (Si), associated with its natural abundance, low discharge voltage vs. Li/Li+, and extremely high theoretical discharge capacity (~ 4200 mAh g-1,), has been extensively explored as anode for lithium ion battery. One of the key challenges for using Si as anode is the large volume change upon lithiation and delithiation, which causes a fast capacity fading. Over the last few years, dramatic progress has been made for addressing this issue. In this paper, we summarize the progress towards tailoring of Si as anode for lithium ion battery. The paper is organized such that it covers the fundamentals, the promise offered based on nanoscale designing, and the remaining challenges that need to be attacked to allow using of Si based materials as anode for battery.

  14. A β-VOPO4/ε-VOPO4 composite Li-ion battery cathode

    SciTech Connect (OSTI)

    Chen, Zehua; Chen, Qiyuan; Wang, Haiyan; Zhang, Ruibo; Zhou, Hui; Chen, Liquan; Whittingham, M. Stanley

    2014-09-01

    VOPO4 is an example of a Li-ion battery cathode that can achieve over 300 Ah/kg when two Li-ions are intercalated. A two phase β-VOPO4/ε-VOPO4 composite was found to improve the cycling capacity of ε-VOPO4 from tetragonal H2VOPO4, particularly as the rate is increased. In the potential range of 2.0–4.5 V, this composite showed an initial electrochemical capacity of 208 mAh/g at 0.08 mA/cm2, 190 mAh/g at 0.16 mA/cm2, and 160 mAh/g at 0.41 mA/cm2.

  15. Synthesis of rock-salt type lithium borohydride and its peculiar Li{sup +} ion conduction properties

    SciTech Connect (OSTI)

    Miyazaki, R.; Maekawa, H.; Takamura, H.

    2014-05-01

    The high energy density and excellent cycle performance of lithium ion batteries makes them superior to all other secondary batteries and explains why they are widely used in portable devices. However, because organic liquid electrolytes have a higher operating voltage than aqueous solution, they are used in lithium ion batteries. This comes with the risk of fire due to their flammability. Solid electrolytes are being investigated to find an alternative to organic liquid. However, the nature of the solid-solid point contact at the interface between the electrolyte and electrode or between the electrolyte grains is such that high power density has proven difficult to attain. We develop a new method for the fabrication of a solid electrolyte using LiBH{sub 4,} known for its super Li{sup +} ion conduction without any grain boundary contribution. The modifications to the conduction pathway achieved by stabilizing the high pressure form of this material provided a new structure with some LiBH{sub 4}, more suitable to the high rate condition. We synthesized the H.P. form of LiBH{sub 4} under ambient pressure by doping LiBH{sub 4} with the KI lattice by sintering. The formation of a KI - LiBH{sub 4} solid solution was confirmed both macroscopically and microscopically. The obtained sample was shown to be a pure Li{sup +} conductor despite its small Li{sup +} content. This conduction mechanism, where the light doping cation played a major role in ion conduction, was termed the Parasitic Conduction Mechanism. This mechanism made it possible to synthesize a new ion conductor and is expected to have enormous potential in the search for new battery materials.

  16. Preliminary Analysis on Linac Oscillation Data LI05-19 and Wake Field Energy Loss in FACET Commissioning 2012

    SciTech Connect (OSTI)

    Sun, Yipeng; /SLAC

    2012-07-23

    In this note, preliminary analysis on linac ocsillation data in FACET linac LI05-09 plus LI11-19 is presented. Several quadrupoles are identified to possibly have different strength, compared with their designed strength in the MAD optics model. The beam energy loss due to longitudinal wake fields in the S-band linac is also analytically calculated, also by LITRACK numerical simulations.

  17. {sup 7}Li(n,{gamma}){sup 8}Li reaction and the S{sub 17} factor at E{sub c.m.}>500 keV

    SciTech Connect (OSTI)

    Nagai, Y.; Shima, T.; Tomyo, A.; Igashira, M.; Takaoka, T.; Kikuchi, T.; Mengoni, A.; Otsuka, T.

    2005-05-01

    The partial cross sections from the neutron capture state to the ground and first excited states in {sup 8}Li have been separately determined for the first time at stellar neutron energy. The direct and weak cascade {gamma} rays from the capture and first excited states to the ground state were measured by means of anti-Compton NaI(Tl) and anti-Compton HPGe spectrometers, respectively. The {gamma}-ray branching ratio and the cross sections thus determined agree with that for thermal neutrons assuming a 1/v neutron velocity dependence. By comparing the cross sections with calculations based on the nonresonant direct capture mechanism it is shown that the cross sections are sensitive to the interaction potential of the incident neutron with the {sup 7}Li target nucleus. This analysis confirms the possibility of deriving the parameters necessary for the calculation of the astrophysical S factor S{sub 17}(E) for the {sup 7}Be(p,{gamma}){sup 8}B reaction in the upper energy range above 500 keV.

  18. Fail-Safe Design for Large Capacity Li-Ion Battery Systems - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Find More Like This Return to Search Fail-Safe Design for Large Capacity Li-Ion Battery Systems National Renewable Energy Laboratory Contact NREL About This Technology Publications: PDF Document Publication Fail Safe Design for Large Capacity Lithium-ion Batteries.pdf (2,324 KB) Technology Marketing Summary Lithium-ion batteries (LIBs) are a promising candidate for energy storage of electric drive vehicles due to their high power and energy density. The total electric

  19. Diagnostic studies on Li-battery cells and cell components | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy 09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. esp_02_abraham.pdf (2.83 MB) More Documents & Publications Vehicle Technologies Office: 2008 Energy Storage R&D Annual Progress Report Diagnostic Studies on Li-Battery Cells and Cell Components Mitigating Performance Degradation of High-Energy Lithium-Ion Cells

  20. Biphasic Electrode Suspensions for Li-Ion Semi-Solid Flow Cells with High

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Density, Fast Charge Transport, and Low-Dissipation Flow - Joint Center for Energy Storage Research June 5, 2015, Research Highlights Biphasic Electrode Suspensions for Li-Ion Semi-Solid Flow Cells with High Energy Density, Fast Charge Transport, and Low-Dissipation Flow Images for Biphasic Electrode Suspensions Scientific Achievement We created biphasic electrode suspensions composed of dispersed active particles and uniformly percolated conductive particles, different from the

  1. Theoretical exploration of various lithium peroxide crystal structures in a Li-air battery

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lau, Kah; Qiu, Dantong; Luo, Xiangyi; Greeley, Jeffrey; Curtiss, Larry; Lu, Jun; Amine, Khalil

    2015-01-14

    We describe a series of metastable Li₂O₂ crystal structures involving different orientations and displacements of the O₂²⁻ peroxy ions based on the known Li₂O₂ crystal structure. Within the vicinity of the chemical potential ΔG ~ 0.20 eV/Li from the thermodynamic ground state of the Li₂O₂ crystal structure (i.e., Föppl structure), all of these newly found metastable Li₂O₂ crystal structures are found to be insulating and high-k materials, and they have a common unique signature of an O₂²⁻ O-O vibration mode (ω ~ 799–865 cm⁻¹), which is in the range of that commonly observed in Li-air battery experiments, regardless of themore » random O₂²⁻ orientations and the symmetry in the crystal lattice. From XRD patterns analysis, the commercially available Li₂O₂ powder is confirmed to be the thermodynamic ground state Föppl-like structure. However, for Li₂O₂ compounds that are grown electrochemically under the environment of Li-O₂ cells, we found that the XRD patterns alone are not sufficient for structural identification of these metastable Li₂O₂ crystalline phases due to the poor crystallinity of the sample. In addition, the commonly known Raman signal of O₂²⁻ vibration mode is also found to be insufficient to validate the possible existence of these newly predicted Li₂O₂ crystal structures, as all of them similarly share the similar O₂²⁻ vibration mode. However considering that the discharge voltage in most Li-O₂ cells are typically several tenths of an eV below the thermodynamic equilibrium for the formation of ground state Föppl structure, the formation of these metastable Li₂O₂ crystal structures appears to be thermodynamically feasible.« less

  2. Microsoft PowerPoint - 17_Li_ARM07_Aerosol_Breakout.ppt [Compatibility Mode]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Separating Real Aerosol Effects from p g Artifacts Using Space-borne, Air-borne and Ground Measurements and Under- and Ground Measurements and Under standing Physical Processes Using a CRM Zhanqing Li Uni ersit of Mar land University of Maryland Contributors T. Yuan, M.-J. Jeong, R. Zhang and J. Fan Objectives j * Evaluate various effects on remote sensing products from satellite and g p f m ground sensors. * Separate artifacts from the real Separate artifacts from the real effects. * Eventually

  3. Use of phosphoranimines to reduce organic carbonate content in Li-ion battery electrolytes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dufek, Eric J.; Klaehn, John R.; McNally, Joshua S.; Rollins, Harry W.; Jamison, David K.

    2016-05-09

    In this study, the use of phosphoranimines (PAs), a class of linear, monomeric phosphazenes, as electrolytes for Li-ion battery applications has been investigated as a route to improve safety and stability for Li-ion batteries. Of the potential PAs for use in battery applications, this work focuses on the initial synthetic preparation and analysis of N-trimethylsilyl-P,P-bis((2-methoxyethoxy)ethoxy)-P-ethylphosphoranimine (PA-5). PA-5 has high LiPF6 solubility in excess of 2 M, high thermal stability with a melting point below -80°C and high thermal stability as a neat compound to at least 250°C. As part of electrolyte blends, the inclusion of PA-5 shifts the onset ofmore » thermal degradation by close to 40°C at 35% loading and by 20°C at a 10% loading, improves the low temperature performance of the electrolyte, and when used as a primary solvent leads to increases in the flash point (by 20°C) when compared to more traditional EC:EMC blends. Cycling capabilities of full-coin cells with graphite negative electrodes and Li1+w[Ni0.5Mn0.3Co0.2]1-wO2 positive electrodes using PA-5:EC:EMC electrolyte blends are comparable with the performance seen for traditional EC:EMC blends. Analysis of the impact of the use of additives such as vinylene carbonate in PA-5:EC:EMC blended electrolyte results in enhanced capacity retention and improved coulombic efficiency.« less

  4. Mechanical and electrochemical response of a LiCoO2 cathode using reconstructed microstructures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mendoza, Hector; Roberts, Scott Alan; Brunini, Victor; Grillet, Anne

    2016-01-01

    As LiCoO2 cathodes are charged, delithiation of the LiCoO2 active material leads to an increase in the lattice spacing, causing swelling of the particles. When these particles are packed into a bicontinuous, percolated network, as is the case in a battery electrode, this swelling leads to the generation of significant mechanical stress. In this study we performed coupled electrochemical-mechanical simulations of the charging of a LiCoO2 cathode in order to elucidate the mechanisms of stress generation and the effect of charge rate and microstructure on these stresses. Energy dispersive spectroscopy combined with scanning electron microscopy imaging was used to createmore » 3D reconstructions of a LiCoO2 cathode, and the Conformal Decomposition Finite Element Method is used to automatically generate computational meshes on this reconstructed microstructure. Replacement of the ideal solution Fickian diffusion model, typically used in battery simulations, with a more general non-ideal solution model shows substantially smaller gradients of lithium within particles than is typically observed in the literature. Using this more general model, lithium gradients only appear at states of charge where the open-circuit voltage is relatively constant. While lithium gradients do affect the mechanical stress state in the particles, the maximum stresses are always found in the fully-charged state and are strongly affected by the local details of the microstructure and particle-to-particle contacts. These coupled electrochemical-mechanical simulations begin to yield insight into the partitioning of volume change between reducing pore space and macroscopically swelling the electrode. Lastly, preliminary studies that include the presence of the polymeric binder suggest that it can greatly impact stress generation and that it is an important area for future research.« less

  5. Theoretical exploration of various lithium peroxide crystal structures in a Li-air battery

    SciTech Connect (OSTI)

    Lau, Kah; Qiu, Dantong; Luo, Xiangyi; Greeley, Jeffrey; Curtiss, Larry; Lu, Jun; Amine, Khalil

    2015-01-14

    We describe a series of metastable Li₂O₂ crystal structures involving different orientations and displacements of the O₂²⁻ peroxy ions based on the known Li₂O₂ crystal structure. Within the vicinity of the chemical potential ΔG ~ 0.20 eV/Li from the thermodynamic ground state of the Li₂O₂ crystal structure (i.e., Föppl structure), all of these newly found metastable Li₂O₂ crystal structures are found to be insulating and high-k materials, and they have a common unique signature of an O₂²⁻ O-O vibration mode (ω ~ 799–865 cm⁻¹), which is in the range of that commonly observed in Li-air battery experiments, regardless of the random O₂²⁻ orientations and the symmetry in the crystal lattice. From XRD patterns analysis, the commercially available Li₂O₂ powder is confirmed to be the thermodynamic ground state Föppl-like structure. However, for Li₂O₂ compounds that are grown electrochemically under the environment of Li-O₂ cells, we found that the XRD patterns alone are not sufficient for structural identification of these metastable Li₂O₂ crystalline phases due to the poor crystallinity of the sample. In addition, the commonly known Raman signal of O₂²⁻ vibration mode is also found to be insufficient to validate the possible existence of these newly predicted Li₂O₂ crystal structures, as all of them similarly share the similar O₂²⁻ vibration mode. However considering that the discharge voltage in most Li-O₂ cells are typically several tenths of an eV below the thermodynamic equilibrium for the formation of ground state Föppl structure, the formation of these metastable Li₂O₂ crystal structures appears to be thermodynamically feasible.

  6. Conduction below 100 °C in nominal Li6ZnNb4O14

    SciTech Connect (OSTI)

    Li, Yunchao; Paranthaman, Mariappan Parans; Gill, Lance W.; Edward W. Hagaman; Wang, Yangyang; Sokolov, Alexei P.; Dai, Sheng; Ma, Cheng; Chi, Miaofang; Veith, Gabriel M.; Manthiram, Arumugam; Goodenough, John B.

    2015-09-15

    The increasing demand for a safe rechargeable battery with a high energy density per cell is driving a search for a novel solid electrolyte with a high Li+ or Na+ conductivity that is chemically stable in a working Li-ion or Na-ion battery. Li6ZnNb4O14 has been reported to exhibit a σ Li > 10-2 S cm-1 at 250 °C, but to disproportionate into multiple phases on cooling from 850 °C to room temperature. An investigation of the room-temperature Li-ion conductivity in a porous pellet of a multiphase product of a nominal Li6ZnNb4O14 composition is shown to have bulk σ Li 3.3 x 10-5 S cm-1 at room temperature that increases to 1.4 x 10-4 S cm-1 by 50 °C. 7Li MAS NMR spectra were fitted to two Lorentzian lines, one of which showed a dramatic increase with increasing temperature. As a result, a test for water stability indicates that Li+ may move to the particle and grain surfaces to react with adsorbed water as occurs in the garnet Li+ conductors.

  7. Impedance spectroscopy study of SiO2-Li2O:Nd2O3 glasses

    SciTech Connect (OSTI)

    Pereia, R.; Gozzo, C B; Guedes, I.; Boatner, Lynn A; Terezo, A J; Costa, M M

    2014-01-01

    In the present study, neodymium-doped lithium silicate glasses have been prepared by the conventional melt-quenching technique. The dielectric properties, electric modulus and electrical conductivity of SiO2-Li2O (SiLi-0Nd) and SiO2-Li2O:Nd2O3 (SiLi-1.35Nd) have been studied from 1 Hz to 1 MHz in the 333 423 K temperature range. At a given temperature and frequency, we observe that the resistivity increases while the conductivity accordingly decreases when neodymium ions are added to the glass matrix. The activation energy of two distinct regions was evaluated from the ln( dc)=f(1/T) plot and was found to be E1(T<363K)=0.61(0.66)eV and E2(T>363K)=1.26(1.09)eV for SiLi-0Nd (SiLi-1,35Nd). The dielectric constant ( Re) decreases while the dielectric loss (tan ( )) increases under Nd2O3 doping. We also observe that for both glasses, Re and tan ( ) tend to increase with increasing temperature and decrease with increasing frequency.

  8. Unified description of 6Li structure and deuterium-4He dynamics with chiral two- and three-nucleon forces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hupin, Guillaume; Quaglioni, Sofia; Navratil, Petr

    2015-05-29

    Here, we provide a unified ab initio description of the 6Li ground state and elastic scattering of deuterium (d) on 4He (α) using two- and three-nucleon forces from chiral effective field theory. We analyze the influence of the three-nucleon force and reveal the role of continuum degrees of freedom in shaping the low-lying spectrum of 6Li. The calculation reproduces the empirical binding energy of 6Li, yielding an asymptotic D- to S-state ratio of the 6Li wave function in the d+α configuration of –0.027, in agreement with a determination from 6Li–4He elastic scattering, but overestimates the excitation energy of the 3+more » state by 350 keV. The bulk of the computed differential cross section is in good agreement with data. These results endorse the application of the present approach to the evaluation of the 2H(α,γ)6Li radiative capture, responsible for the big-bang nucleosynthesis of 6Li.« less

  9. Inclusion property of Cs, Sr, and Ba impurities in LiCl crystal formed by layer-melt crystallization

    SciTech Connect (OSTI)

    Choi, Jung-Hoon; Cho, Yung-Zun; Lee, Tae-Kyo; Eun, Hee-Chul; Kim, Jun-Hong; Park, Hwan-Seo; Kim, In-Tae; Park, Geun-Il

    2013-07-01

    Pyroprocessing is one of the promising technologies enabling the recycling of spent nuclear fuels from a commercial light water reactor (LWR). In general, pyroprocessing uses dry molten salts as electrolytes. In particular, LiCl waste salt after pyroprocessing contains highly radioactive I/II group fission products mainly composed of Cs, Sr, and Ba impurities. Therefore, it is beneficial to reuse LiCl salt in the pyroprocessing as an electrolyte for economic and environmental issues. Herein, to understand the inclusion property of impurities within LiCl crystal, the physical properties such as lattice parameter change, bulk modulus, and substitution enthalpy of a LiCl crystal having 0-6 at% Cs{sup +} or Ba{sup 2+} impurities under existence of 1 at% Sr{sup 2+} impurity were calculated via the first-principles density functional theory. The substitution enthalpy of LiCl crystals having 1 at% Sr{sup 2+} showed slightly decreased value than those without Sr{sup 2+} impurity. Therefore, through the substitution enthalpy calculation, it is expected that impurities will be incorporated within LiCl crystal as co-existed form rather than as a single component form. (authors)

  10. Effects of laser energy and wavelength on the analysis of LiFePO₄ using laser assisted atom probe tomography

    SciTech Connect (OSTI)

    Santhanagopalan, Dhamodaran; Schreiber, Daniel K.; Perea, Daniel E.; Martens, Richard L.; Janssen, Yuri; Khalifah, Peter; Meng, Ying Shirley

    2014-09-21

    The effects of laser wavelength (355 nm and 532 nm) and laser pulse energy on the quantitative analysis of LiFePO₄ by atom probe tomography are considered. A systematic investigation of ultraviolet (UV, 355 nm) and green (532 nm) laser assisted field evaporation has revealed distinctly different behaviors. With the use of a UV laser, the major issue was identified as the preferential loss of oxygen (up to 10 at%) while other elements (Li, Fe and P) were observed to be close to nominal ratios. Lowering the laser energy per pulse to 1 pJ/pulse from 50 pJ/pulse increased the observed oxygen concentration to nearer its correct stoichiometry, which was also well correlated with systematically higher concentrations of ¹⁶O₂⁺ ions. Green laser assisted field evaporation led to the selective loss of Li (33% deficiency) and a relatively minor O deficiency. The loss of Li is likely a result of selective dc evaporation of Li between or after laser pulses. Comparison of the UV and green laser data suggests that the green wavelength energy was absorbed less efficiently than the UV wavelength because of differences in absorption at 355 and 532 nm for LiFePO₄. Plotting of multihit events on Saxey plots also revealed a strong neutral O₂ loss from molecular dissociation, but quantification of this loss was insufficient to account for the observed oxygen deficiency.

  11. Three-dimensional graphene/LiFePO{sub 4} nanostructures as cathode materials for flexible lithium-ion batteries

    SciTech Connect (OSTI)

    Ding, Y.H., E-mail: yhding@xtu.edu.cn [College of Chemical Engineering, Xiangtan University, Hunan 411105 (China); Institute of Rheology Mechanics, Xiangtan University, Hunan 411105 (China); Ren, H.M. [Institute of Rheology Mechanics, Xiangtan University, Hunan 411105 (China); Huang, Y.Y. [BTR New Energy Materials Inc., Shenzhen 518000 (China); Chang, F.H.; Zhang, P. [Institute of Rheology Mechanics, Xiangtan University, Hunan 411105 (China)

    2013-10-15

    Graphical abstract: Graphene/LiFePO{sub 4} composites as a high-performance cathode material for flexible lithium-ion batteries have been prepared by using a co-precipitation method to synthesize graphene/LiFePO4 powders as precursors and then followed by a solvent evaporation process. - Highlights: Flexible LiFePO{sub 4}/graphene films were prepared first time by a solvent evaporation process. The flexible electrode exhibited a high discharge capacity without conductive additives. Graphene network offers the electrode adequate strength to withstand repeated flexing. - Abstract: Three-dimensional graphene/LiFePO{sub 4} nanostructures for flexible lithium-ion batteries were successfully prepared by solvent evaporation method. Structural characteristics of flexible electrodes were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Electrochemical performance of graphene/LiFePO{sub 4} was examined by a variety of electrochemical testing techniques. The graphene/LiFePO{sub 4} nanostructures showed high electrochemical properties and significant flexibility. The composites with low graphene content exhibited a high capacity of 163.7 mAh g{sup ?1} at 0.1 C and 114 mAh g{sup ?1} at 5 C without further incorporation of conductive agents.

  12. Effects of laser energy and wavelength on the analysis of LiFePO₄ using laser assisted atom probe tomography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Santhanagopalan, Dhamodaran; Schreiber, Daniel K.; Perea, Daniel E.; Martens, Richard L.; Janssen, Yuri; Khalifah, Peter; Meng, Ying Shirley

    2014-09-21

    The effects of laser wavelength (355 nm and 532 nm) and laser pulse energy on the quantitative analysis of LiFePO₄ by atom probe tomography are considered. A systematic investigation of ultraviolet (UV, 355 nm) and green (532 nm) laser assisted field evaporation has revealed distinctly different behaviors. With the use of a UV laser, the major issue was identified as the preferential loss of oxygen (up to 10 at%) while other elements (Li, Fe and P) were observed to be close to nominal ratios. Lowering the laser energy per pulse to 1 pJ/pulse from 50 pJ/pulse increased the observed oxygenmore » concentration to nearer its correct stoichiometry, which was also well correlated with systematically higher concentrations of ¹⁶O₂⁺ ions. Green laser assisted field evaporation led to the selective loss of Li (33% deficiency) and a relatively minor O deficiency. The loss of Li is likely a result of selective dc evaporation of Li between or after laser pulses. Comparison of the UV and green laser data suggests that the green wavelength energy was absorbed less efficiently than the UV wavelength because of differences in absorption at 355 and 532 nm for LiFePO₄. Plotting of multihit events on Saxey plots also revealed a strong neutral O₂ loss from molecular dissociation, but quantification of this loss was insufficient to account for the observed oxygen deficiency.« less

  13. Effects of laser energy and wavelength on the analysis of LiFePO? using laser assisted atom probe tomography

    SciTech Connect (OSTI)

    Santhanagopalan, Dhamodaran; Khalifah, Peter; Schreiber, Daniel K.; Perea, Daniel E.; Martens, Richard L.; Janssen, Yuri; Meng, Ying Shirley

    2015-01-01

    The effects of laser wavelength (355 nm and 532 nm) and laser pulse energy on the quantitative analysis of LiFePO? by atom probe tomography are considered. A systematic investigation of ultraviolet (UV, 355 nm) and green (532 nm) laser assisted field evaporation has revealed distinctly different behaviors. With the use of a UV laser, the major issue was identified as the preferential loss of oxygen (up to 10 at%) while other elements (Li, Fe and P) were observed to be close to nominal ratios. Lowering the laser energy per pulse to 1 pJ/pulse from 50 pJ/pulse increased the observed oxygen concentration to nearer its correct stoichiometry, which was also well correlated with systematically higher concentrations of ?O?? ions. Green laser assisted field evaporation led to the selective loss of Li (33% deficiency) and a relatively minor O deficiency. The loss of Li is likely a result of selective dc evaporation of Li between or after laser pulses. Comparison of the UV and green laser data suggests that the green wavelength energy was absorbed less efficiently than the UV wavelength because of differences in absorption at 355 and 532 nm for LiFePO?. Plotting of multihit events on Saxey plots also revealed a strong neutral O? loss from molecular dissociation, but quantification of this loss was insufficient to account for the observed oxygen deficiency.

  14. Preparation, temperature dependent structural, molecular dynamics simulations studies and electrochemical properties of LiFePO{sub 4}

    SciTech Connect (OSTI)

    Rao, R. Prasada; Reddy, M.V.; Adams, S.; Chowdari, B.V.R.

    2015-06-15

    Highlights: • LiFePO{sub 4} compound was prepared by carbothermal reduction method. • In-situ XRD studies were carried out on LiFePO{sub 4} at various temperatures. • Dedicated imperial potentials used to explain the variation of lattice constants. • It exhibited reversible capacity of 140 (±5) mAh g{sup −1}, stable up to 400 cycles. - Abstract: LiFePO{sub 4} was prepared using carbothermal reduction method. In-situ temperature dependent structural studies were carried using X-ray diffraction. Molecular dynamics simulations were conducted for the LiFePO{sub 4} using empirical potentials developed using bond valence approach to investigate the structural variations. Electrochemical behaviour of LiFePO{sub 4} was evaluated using cyclic voltammetry and galvanostatic cycling studies at room temperature. Charge–discharge cycling studies showed a reversible capacities 140 (±5) mAh g{sup −1} at the end of 50th cycle and these capacity values were stable up to 400 cycles and almost nil capacity fade between 50 and 400 cycles, showing excellent capacity retention, low capacity fading. The cyclic voltammetry studies showed a main cathodic and anodic redox peaks at 3.34 and 3.5 V vs. Li, respectively.

  15. Structural transitions of ternary imide Li{sub 2}Mg(NH){sub 2} for hydrogen storage

    SciTech Connect (OSTI)

    Liang, C.; Gao, M. X.; Pan, H. G. Liu, Y. F.

    2014-08-25

    Phase transitions and energetic properties of Li{sub 2}Mg(NH){sub 2} with different crystal structures are investigated by experiments and first-principles calculations. The Li{sub 2}Mg(NH){sub 2} with the primitive cubic and orthorhombic structure is obtained by dynamically dehydrogenating a Mg(NH{sub 2}){sub 2}-2LiH mixture up to 280?C under an initial vacuum and 9.0?bars H{sub 2}, respectively. It is found that the obtained orthorhombic Li{sub 2}Mg(NH){sub 2} is converted to a primitive cubic structure as the dehydrogenation temperature is further increased to 400?C or performed by a 36?h of high-energetic ball milling. Moreover, the primitive cubic phase can be converted to an orthorhombic phase after heating at 280?C under 9.0?bars H{sub 2} for 1?h. Thermodynamic calculations show that the orthorhombic phase is the ground state structure of Li{sub 2}Mg(NH){sub 2}. The mechanism for phase transitions of Li{sub 2}Mg(NH){sub 2} is also discussed from the angle of energy.

  16. Enhanced autonomic shutdown of Li-ion batteries by polydopamine coated polyethylene microspheres

    SciTech Connect (OSTI)

    Baginska, Marta; Blaiszik, Benjamin J.; Rajh, Tijana; Sottos, Nancy R.; White, Scott R.

    2014-07-17

    Thermally triggered autonomic shutdown of a Lithium-ion (Li-ion) battery is demonstrated using polydopamine (PDA)-coated polyethylene microspheres applied onto a battery anode. The microspheres are dispersed in a buffered 10 mM dopamine salt solution and the pH is raised to initiate the polymerization and coat the microspheres. Coated microspheres are then mixed with an aqueous binder, applied onto a battery anode surface, dried, and incorporated into Li-ion coin cells. FTIR and Raman spectroscopy are used to verify the presence of the polydopamine on the surface of the microspheres. Scanning electron microscopy is used to examine microsphere surface morphology and resulting anode coating quality. Charge and discharge capacity, as well as impedance, are measured for Li-ion coin cells as a function of microsphere content. Autonomous shutdown is achieved by applying 1.7 mg cm–2 of PDA-coated microspheres to the electrode. Furthermore, the PDA coating significantly reduces the mass of microspheres for effective shutdown compared to our prior work with uncoated microspheres.

  17. Improved layered mixed transition metal oxides for Li-ion batteries

    SciTech Connect (OSTI)

    Doeff, Marca M.; Conry, Thomas; Wilcox, James

    2010-03-05

    Recent work in our laboratory has been directed towards development of mixed layered transition metal oxides with general composition Li[Ni, Co, M, Mn]O2 (M=Al, Ti) for Li ion battery cathodes. Compounds such as Li[Ni1/3Co1/3Mn1/3]O2 (often called NMCs) are currently being commercialized for use in consumer electronic batteries, but the high cobalt content makes them too expensive for vehicular applications such as electric vehicles (EV), plug-in hybrid electric vehicles (PHEVs), or hybrid electric vehicles (HEVs). To reduce materials costs, we have explored partial or full substitution of Co with Al, Ti, and Fe. Fe substitution generally decreases capacity and results in poorer rate and cycling behavior. Interestingly, low levels of substitution with Al or Ti improve aspects of performance with minimal impact on energy densities, for some formulations. High levels of Al substitution compromise specific capacity, however, so further improvements require that the Ni and Mn content be increased and Co correspondingly decreased. Low levels of Al or Ti substitution can then be used offset negative effects induced by the higher Ni content. The structural and electrochemical characterization of substituted NMCs is presented in this paper.

  18. Studies on the thermal breakdown of common Li-ion battery electrolyte components

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lamb, Joshua; Orendorff, Christopher J.; Roth, Emanuel Peter; Langendorf, Jill Louise

    2015-08-06

    While much attention is paid to the impact of the active materials on the catastrophic failure of lithium ion batteries, much of the severity of a battery failure is also governed by the electrolytes used, which are typically flammable themselves and can decompose during battery failure. The use of LiPF6 salt can be problematic as well, not only catalyzing electrolyte decomposition, but also providing a mechanism for HF production. This work evaluates the safety performance of the common components ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) in the context of the gasses producedmore » during thermal decomposition, looking at both the quantity and composition of the vapor produced. EC and DEC were found to be the largest contributors to gas production, both producing upwards of 1.5 moles of gas/mole of electrolyte. DMC was found to be relatively stable, producing very little gas regardless of the presence of LiPF6. EMC was stable on its own, but the addition of LiPF6 catalyzed decomposition of the solvent. As a result, while gas analysis did not show evidence of significant quantities of any acutely toxic materials, the gasses themselves all contained enough flammable components to potentially ignite in air.« less

  19. Studies on the thermal breakdown of common Li-ion battery electrolyte components

    SciTech Connect (OSTI)

    Lamb, Joshua; Orendorff, Christopher J.; Roth, Emanuel Peter; Langendorf, Jill Louise

    2015-08-06

    While much attention is paid to the impact of the active materials on the catastrophic failure of lithium ion batteries, much of the severity of a battery failure is also governed by the electrolytes used, which are typically flammable themselves and can decompose during battery failure. The use of LiPF6 salt can be problematic as well, not only catalyzing electrolyte decomposition, but also providing a mechanism for HF production. This work evaluates the safety performance of the common components ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) in the context of the gasses produced during thermal decomposition, looking at both the quantity and composition of the vapor produced. EC and DEC were found to be the largest contributors to gas production, both producing upwards of 1.5 moles of gas/mole of electrolyte. DMC was found to be relatively stable, producing very little gas regardless of the presence of LiPF6. EMC was stable on its own, but the addition of LiPF6 catalyzed decomposition of the solvent. As a result, while gas analysis did not show evidence of significant quantities of any acutely toxic materials, the gasses themselves all contained enough flammable components to potentially ignite in air.

  20. Enhanced autonomic shutdown of Li-ion batteries by polydopamine coated polyethylene microspheres

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Baginska, Marta; Blaiszik, Benjamin J.; Rajh, Tijana; Sottos, Nancy R.; White, Scott R.

    2014-07-17

    Thermally triggered autonomic shutdown of a Lithium-ion (Li-ion) battery is demonstrated using polydopamine (PDA)-coated polyethylene microspheres applied onto a battery anode. The microspheres are dispersed in a buffered 10 mM dopamine salt solution and the pH is raised to initiate the polymerization and coat the microspheres. Coated microspheres are then mixed with an aqueous binder, applied onto a battery anode surface, dried, and incorporated into Li-ion coin cells. FTIR and Raman spectroscopy are used to verify the presence of the polydopamine on the surface of the microspheres. Scanning electron microscopy is used to examine microsphere surface morphology and resulting anodemore » coating quality. Charge and discharge capacity, as well as impedance, are measured for Li-ion coin cells as a function of microsphere content. Autonomous shutdown is achieved by applying 1.7 mg cm–2 of PDA-coated microspheres to the electrode. Furthermore, the PDA coating significantly reduces the mass of microspheres for effective shutdown compared to our prior work with uncoated microspheres.« less

  1. Interaction of CuS and sulfur in Li-S battery system

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sun, Ke; Su, Dong; Zhang, Qing; Bock, David C.; Marschilok, Amy C.; Takeuchi, Kenneth J.; Takeuchi, Esther S.; Gan, Hong

    2015-10-27

    Lithium-Sulfur (Li-S) battery has been a subject of intensive research in recent years due to its potential to provide much higher energy density and lower cost than the current state of the art lithiumion battery technology. In this work, we have investigated Cupric Sulfide (CuS) as a capacitycontributing conductive additive to the sulfur electrode in a Li-S battery. Galvanostatic charge/discharge cycling has been used to compare the performance of both sulfur electrodes and S:CuS hybrid electrodes with various ratios. We found that the conductive CuS additive enhanced the utilization of the sulfur cathode under a 1C rate discharge. However, undermore » a C/10 discharge rate, S:CuS hybrid electrodes exhibited lower sulfur utilization in the first discharge and faster capacity decay in later cycles than a pure sulfur electrode due to the dissolution of CuS. The CuS dissolution is found to be the result of strong interaction between the soluble low order polysulfide Li2S3 and CuS. As a result, we identified the presence of conductive copper-containing sulfides at the cycled lithium anode surface, which may degrade the effectiveness of the passivation function of the solid-electrolyte-interphase (SEI) layer, accounting for the poor cycling performance of the S:CuS hybrid cells at low rate.« less

  2. Interaction of CuS and sulfur in Li-S battery system

    SciTech Connect (OSTI)

    Sun, Ke; Su, Dong; Zhang, Qing; Bock, David C.; Marschilok, Amy C.; Takeuchi, Kenneth J.; Takeuchi, Esther S.; Gan, Hong

    2015-10-27

    Lithium-Sulfur (Li-S) battery has been a subject of intensive research in recent years due to its potential to provide much higher energy density and lower cost than the current state of the art lithiumion battery technology. In this work, we have investigated Cupric Sulfide (CuS) as a capacitycontributing conductive additive to the sulfur electrode in a Li-S battery. Galvanostatic charge/discharge cycling has been used to compare the performance of both sulfur electrodes and S:CuS hybrid electrodes with various ratios. We found that the conductive CuS additive enhanced the utilization of the sulfur cathode under a 1C rate discharge. However, under a C/10 discharge rate, S:CuS hybrid electrodes exhibited lower sulfur utilization in the first discharge and faster capacity decay in later cycles than a pure sulfur electrode due to the dissolution of CuS. The CuS dissolution is found to be the result of strong interaction between the soluble low order polysulfide Li2S3 and CuS. As a result, we identified the presence of conductive copper-containing sulfides at the cycled lithium anode surface, which may degrade the effectiveness of the passivation function of the solid-electrolyte-interphase (SEI) layer, accounting for the poor cycling performance of the S:CuS hybrid cells at low rate.

  3. Li-Ion polymer cells thermal property changes as a function of cycle-life

    SciTech Connect (OSTI)

    Maleki, Hossein; Wang, Hsin; Porter, Wallace D; Hallmark, Jerry

    2014-01-01

    The impact of elevated temperature chargeedischarge cycling on thermal conductivity (K-value) of Lithium Ion Polymer (LIP) cells of various chemistries from three different manufacturers was investigated. These included high voltage (Graphite/LiCoO2:3.0e4.35 V), wide voltage (Si:C/LiCoO2:2.7e4.35 V) and conventional (Graphite/LiCoO2:3.0e4.2 V) chemistries. Investigation results show limited variability within the in-plane and through-plane K-values for the fresh cells with graphite-based anodes from all three suppliers. After 500 cycles at 45 C, in-plane and through-plane K-values of the high voltage cells reduced less vs. those for the wide voltage cells. Such results suggest that high temperature cycling could have a greater impact on thermal properties of Si:C cells than on the LIP cells with graphite (Gr) anode cells we tested. This difference is due to the excess swelling of Si:C-anode based cells vs. Gr-anode cells during cycling, especially at elevated temperatures. Thermal modeling is used to evaluate the impact of K-value changes, due to cycles at 45 C, on the cells internal heat propagation under internal short circuit condition that leads to localized meltdown of the separator.

  4. Retention and release of tritium in aluminum clad, Al-Li alloys

    SciTech Connect (OSTI)

    Louthan, M.R. Jr.

    1991-12-31

    Tritium retention in and release from aluminum clad, aluminum-lithium alloys is modeled from experimental and operational data developed during the thirty plus years of tritium production at the Savannah River Site. The model assumes that tritium atoms, formed by the {sup 6}Li(n,{alpha}){sup 3}He reaction, are produced in solid solution in the Al-Li alloy. Because of the low solubility of hydrogen isotopes in aluminum alloys, the irradiated Al-Li rapidly becomes supersaturated in tritium. Newly produced tritium atoms are trapped by lithium atoms to form a lithium tritide. The effective tritium pressure required for trap or tritide stability is the equilibrium decomposition pressure of tritium over a lithium tritide-aluminum mixture. The temperature dependence of tritium release is determined by the permeability of the cladding to tritium and the local equilibrium at the trap sites. This model is used to calculate tritium release from aluminum clad, aluminum-lithium alloys. 9 refs., 3 figs.

  5. Retention and release of tritium in aluminum clad, Al-Li alloys

    SciTech Connect (OSTI)

    Louthan, M.R. Jr.

    1991-01-01

    Tritium retention in and release from aluminum clad, aluminum-lithium alloys is modeled from experimental and operational data developed during the thirty plus years of tritium production at the Savannah River Site. The model assumes that tritium atoms, formed by the {sup 6}Li(n,{alpha}){sup 3}He reaction, are produced in solid solution in the Al-Li alloy. Because of the low solubility of hydrogen isotopes in aluminum alloys, the irradiated Al-Li rapidly becomes supersaturated in tritium. Newly produced tritium atoms are trapped by lithium atoms to form a lithium tritide. The effective tritium pressure required for trap or tritide stability is the equilibrium decomposition pressure of tritium over a lithium tritide-aluminum mixture. The temperature dependence of tritium release is determined by the permeability of the cladding to tritium and the local equilibrium at the trap sites. This model is used to calculate tritium release from aluminum clad, aluminum-lithium alloys. 9 refs., 3 figs.

  6. Can Vanadium Be Substituted into LiFePO[subscript 4]?

    SciTech Connect (OSTI)

    Omenya, Fredrick; Chernova, Natasha A.; Upreti, Shailesh; Zavalij, Peter Y.; Nam, Kyung-Wan; Yang, Xiao-Qing; Whittingham, M. Stanley

    2015-10-15

    Vanadium is shown to substitute for iron in the olivine LiFePO{sub 4} up to at least 10 mol %, when the synthesis is carried out at 550 C. In the solid solution LiFe{sub 1-3y/2}V{sub y}PO{sub 4}, the a and b lattice parameters and cell volume decrease with increasing vanadium content, while the c lattice parameter increases slightly. However, when the synthesis is performed at 650 C, a NASICON phase, Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}, is also formed, showing that solid solution is a function of the synthesis temperature. X-ray absorption near-edge structure indicates vanadium is in the 3+ oxidation state and in an octahedral environment. Magnetic studies reveal a shift of the antiferromagnetic ordering transition toward lower temperatures with increasing vanadium substitution, confirming solid solution formation. The addition of vanadium enhances the electrochemical performance of the materials especially at high current densities.

  7. Discharge Performance of Li-O2 Batteries Using a Multiscale Modeling Approach

    SciTech Connect (OSTI)

    Bao, Jie; Xu, Wu; Bhattacharya, Priyanka; Stewart, Mark L.; Zhang, Jiguang; Pan, Wenxiao

    2015-06-10

    To study the discharge performance of Li–O2 batteries, we propose a multiscale modeling framework that links models in an upscaling fashion from the nanoscale to mesoscale and finally to the device scale. We have effectively reconstructed the microstructure of a Li–O2 air electrode in silico, conserving the porosity, surface-to-volume ratio, and pore size distribution of the real air electrode structure. The mechanism of rate-dependent morphology of Li2O2 growth is incorporated into the mesoscale model. The correlation between the active-surface-to-volume ratio and averaged Li2O2 concentration is derived to link different scales. The proposed approach’s accuracy is first demonstrated by comparing the predicted discharge curves of Li–O2 batteries with experimental results at the high current density. Next, the validated modeling approach effectively captures the significant improvement in discharge capacity due to the formation of Li2O2 particles. Finally, it predicts the discharge capacities of Li–O2 batteries with different air electrode microstructure designs and operating conditions.

  8. Optimized Operating Range for Large-Format LiFePO4/Graphite Batteries

    SciTech Connect (OSTI)

    Jiang, Jiuchun; Shi, Wei; Zheng, Jianming; Zuo, Pengjian; Xiao, Jie; Chen, Xilin; Xu, Wu; Zhang, Jiguang

    2014-06-01

    e investigated the long-term cycling performance of large format 20Ah LiFePO4/graphite batteries when they are cycled in various state-of-charge (SOC) ranges. It is found that batteries cycled in the medium SOC range (ca. 20~80% SOC) exhibit superior cycling stability than batteries cycled at both ends (0-20% or 80-100%) of the SOC even though the capcity utilized in the medium SOC range is three times as large as those cycled at both ends of the SOC. Several non-destructive techniques, including a voltage interruption approach, model-based parameter identification, electrode impedance spectra analysis, ΔQ/ΔV analysis, and entropy change test, were used to investigate the performance of LiFePO4/graphite batteries within different SOC ranges. The results reveal that batteries at the ends of SOC exhibit much higher polarization impedance than those at the medium SOC range. These results can be attributed to the significant structural change of cathode and anode materials as revealed by the large entropy change within these ranges. The direct correlation between the polarization impedance and the cycle life of the batteries provides an effective methodology for battery management systems to control and prolong the cycle life of LiFePO4/graphite and other batteries.

  9. Evolution of Elastic X-ray Scattering in Laser-Shocked Warm Dense Li

    SciTech Connect (OSTI)

    Kugland, N L; Gregori, G; Bandyopadhyay, S; Brenner, C; Brown, C; Constantin, C; Glenzer, S H; Khattak, F; Kritcher, A L; Niemann, C; Otten, A; Pasley, J; Pelka, A; Roth, M; Spindloe, C; Riley, D

    2009-06-02

    We have studied the dynamics of warm dense Li with near-elastic x-ray scattering. Li foils were heated and compressed using shock waves driven by 4 ns long laser pulses. Separate 1 ns long laser pulses were used to generate a bright source of 2.96 keV Cl Ly-{alpha} photons for x-ray scattering, and the spectrum of scattered photons was recorded at a scattering angle of 120{sup o} using a HOPG crystal operated in the von Hamos geometry. A variable delay between the heater and backlighter laser beams measured the scattering time evolution. Comparison with radiation hydrodynamics simulations shows that the plasma is highly coupled during the first several nanoseconds, then relaxes to a moderate coupling state at later times. Near-elastic scattering amplitudes have been successfully simulated using the screened one-component plasma model. Our main finding is that the near-elastic scattering amplitudes are quite sensitive to the mean ionization state {bar Z}, and by extension to the choice of ionization model in the radiation-hydrodynamics simulations used to predict plasma properties within the shocked Li.

  10. Improved Li storage performance in SnO2 nanocrystals by a synergetic doping

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wan, Ning; Lu, Xia; Wang, Yuesheng; Zhang, Weifeng; Bai, Ying; Hu, Yong -Sheng; Dai, Sheng

    2016-01-06

    Tin dioxide (SnO2) is a widely investigated lithium (Li) storage material because of its easy preparation, two-step storage mechanism and high specific capacity for lithium-ion batteries (LIBs). In this contribution, a phase-pure cobalt-doped SnO2 (Co/SnO2) and a cobalt and nitrogen co-doped SnO2 (Co-N/SnO2) nanocrystals are prepared to explore their Li storage behaviors. It is found that the morphology, specific surface area, and electrochemical properties could be largely modulated in the doped and co-doped SnO2 nanocrystals. Gavalnostatic cycling results indicate that the Co-N/SnO2 electrode delivers a specific capacity as high as 716 mAh g–1 after 50 cycles, and the same outstandingmore » rate performance can be observed in subsequent cycles due to the ionic/electronic conductivity enhancement by co-doping effect. Further, microstructure observation indicates the existence of intermediate phase of Li3N with high ionic conductivity upon cycling, which probably accounts for the improvements of Co-N/SnO2 electrodes. Furthermore, we find that the method of synergetic doping into SnO2 with Co and N, with which the electrochemical performances is enhanced remarkably, undoubtedly, will have an important influence on the material itself and community of LIBs as well.« less

  11. Correlating Local Structure with Electrochemical Activity in Li2MnO3

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nanda, Jagjit; Sacci, Robert L.; Veith, Gabriel M.; Dixit, Hemant M.; Cooper, Valentino R.; Pezeshki, Alan M.; Ruther, Rose E.

    2015-07-31

    Li2MnO3 is of interest as one component of the composite lithium-rich oxides, which are under development for high capacity, high voltage cathodes in lithium ion batteries. Despite such practical importance, the mechanism of electrochemical activity in Li2MnO3 is contested in the literature, as are the effects of long-term electrochemical cycling. Here, Raman spectroscopy and mapping are used to follow the chemical and structural changes that occur in Li2MnO3. Both conventional slurry electrodes and thin films are studied as a function of the state of charge (voltage) and cycle number. Thin films have similar electrochemical properties as electrodes prepared from slurries,more » but allow for spectroscopic investigations on uniform samples without carbon additives. Spectral changes correlate well with electrochemical activity and support a mechanism whereby capacity is lost upon extended cycling due to the formation of new manganese oxide phases. Raman mapping of both thin film and slurry electrodes charged to different voltages reveals significant variation in the local structure. Poor conductivity and slow kinetics associated with a two-phase reaction mechanism contribute to the heterogeneity.« less

  12. X-ray Absorption Spectroscopy Characterization of a Li/S Cell

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ye, Yifan; Kawase, Ayako; Song, Min-Kyu; Feng, Bingmei; Liu, Yi-Sheng; Marcus, Matthew A.; Feng, Jun; Cairns, Elton J.; Guo, Jinghua; Zhu, Junfa

    2016-01-11

    The X-ray absorption spectroscopy technique has been applied to study different stages of the lithium/sulfur (Li/S) cell life cycle. We investigated how speciation of S in Li/S cathodes changes upon the introduction of CTAB (cetyltrimethylammonium bromide, CH3(CH2)15N+(CH3)3Br₋) and with charge/discharge cycling. The introduction of CTAB changes the synthesis reaction pathway dramatically due to the interaction of CTAB with the terminal S atoms of the polysulfide ions in the Na2Sx solution. For the cycled Li/S cell, the loss of electrochemically active sulfur and the accumulation of a compact blocking insulating layer of unexpected sulfur reaction products on the cathode surface duringmore » the charge/discharge processes make the capacity decay. Lastly, a modified coin cell and a vacuum-compatible three-electrode electro-chemical cell have been introduced for further in-situ/in-operando studies.« less

  13. Viscosity and density of aqueous solutions of LiBr, LiCl, ZnBr[sub 2], CaCl[sub 2], and LiNO[sub 3]; 1: Single salt solutions

    SciTech Connect (OSTI)

    Wimby, J.M.; Berntsson, T.S. . Dept. of Heat and Power Technology)

    1994-01-01

    New experimental data for the viscosity and density of the binary systems lithium chloride + water, lithium bromide + water, calcium chloride + water, lithium nitrate + water, and zinc bromide + water are presented. Densities are presented in tabular form and as 10-parameter correlations, while kinematic and dynamic viscosities are presented in tabular form. Data are presented in the concentration range from intermediate dilution to close to room temperature crystallization concentration. The temperature ranges are 20--70 C for density and 25--90 C for viscosity. When available, literature data are compared with the new data, and some disagreement is found. New thermogravimetric curves are presented for the dehydration of CaCl[sub 2], ZnBr[sub 2], and LiBr in order to enable evaluation of drying as a composition determination technique.

  14. Investigation of carbon-coated lithiated Li{sub 4+x}Ti{sub 5}O{sub 12}/C for lithium-ion batteries

    SciTech Connect (OSTI)

    Pan, Mengjie; Zhang, Lin; Gong, Lijun; Liu, Hongbo; Chen, Yuxi

    2015-11-15

    Highlights: • Lithiated Li{sub 4+x}Ti{sub 5}O{sub 12}/C with pre-stored active Li ions has been synthesized. • The first-cycle coulombic efficiency of Li{sub 4+x}Ti{sub 5}O{sub 12}/C is over 100%. • Li{sub 4+x}Ti{sub 5}O{sub 12}/C displays excellent cyclic stability and capacity retention. • TiO{sub 2} nanoparticles and carbon coating are necessary for formation of Li{sub 4+x}Ti{sub 5}O{sub 12}/C. - Abstract: Carbon-coated Li{sub 4}Ti{sub 5}O{sub 12} and lithiated Li{sub 4+x}Ti{sub 5}O{sub 12} anode materials have been synthesized using nanosized anatase TiO{sub 2} and commercial TiO{sub 2} with mixed structure as Ti sources, respectively. Microstructural investigation indicates that Li{sub 4}Ti{sub 5}O{sub 12} and Li{sub 4+x}Ti{sub 5}O{sub 12} are covered by amorphous carbon layers with thickness of 2–3 nm. Their electrochemical performance has been evaluated, which indicates that an amount of active Li ions have been pre-stored in the Li{sub 4+x}Ti{sub 5}O{sub 12} lattice during solid-state synthesis, resulting in its first-cycle coulombic efficiency over 100%. Further, Li{sub 4+x}Ti{sub 5}O{sub 12}/C exhibits higher cyclic capacities than Li{sub 4}Ti{sub 5}O{sub 12}/C at different current density. The reversible charge capacity retention of Li{sub 4+x}Ti{sub 5}O{sub 12}/C reaches 98.5% after 100 cycles, which indicates that Li{sub 4+x}Ti{sub 5}O{sub 12}/C is promising candidate anode material for long lifetime lithium-ion batteries. The formation mechanism of Li{sub 4+x}Ti{sub 5}O{sub 12}/C has been discussed, in which the nanosized anatase TiO{sub 2} with high chemical activity and the carbon coating play key roles for the formation of Li{sub 4+x}Ti{sub 5}O{sub 12}/C.

  15. Screening study of lithiated catholyte mixes for a long-life Li(Si)/FeS/sub 2/ thermal battery

    SciTech Connect (OSTI)

    Giuidotti, R.A.; Reinhardt, F.W.; Hammetter, W.F.

    1988-12-01

    The inability of the standard catholyte used by Sandia National Laboratories to meet all of the discharge requirements of a 60-min Li(Si)/FeS/sub 2/ thermal battery necessitated the evaluation of lithiated catholytes as a replacement. Over 100 experimental mixes were examined as part of a screening study using a 5-cell battery as a test vehicle. Parameters studied included: catholyte composition (extent of lithiation), lithiation agents (Li/sub 2/S, Li alloys, Li/sub 2/O), processing technique (single step vs. multiple step, heating conditions), type of electrolyte-binder mix used in the catholyte (SiO/sub 2/-based vs. MgO-based), and the effect of Fe/sub 2/O/sub 3/ impurity in the mix. The deformation behavior at 530/degree/C of pellets of the more promising lithiated catholytes was measured, to evaluate their behavior under simulated battery-discharge conditions. A thermoanalytical study was also conducted to help identify deleterious chemical reactions which occur during heating of the precursor mixes, and to define the chemistry associated with the lithiation processes. The better lithiated catholytes were subjected to performance-verification tests and were then tested in the 10-cell 60-min thermal battery. The best overall results were obtained with Li/sub 2/O-lithiated catholytes, with optimum performance occurring at a Li/FeS/sub 2/ mole ratio of /approximately/0.16. The initial voltage transient which normally occurs upon activation of Li(Si)/FeS/sub 2/ thermal batteries was totally eliminated and the pulse performance of the battery near the end of life was significantly improved. 24 refs., 40 figs., 12 tabs.

  16. Combined effect of chemical pressure and valence electron concentration through the electron-deficient Li substitution on the RE{sub 4}LiGe{sub 4} (RE=La, Ce, Pr, and Sm) system

    SciTech Connect (OSTI)

    Nam, Gnu; Jeon, Jieun; Kim, Youngjo; Kwon Kang, Sung; Ahn, Kyunghan; You, Tae-Soo

    2013-09-15

    Four members of the RE{sub 4}LiGe{sub 4} (RE=La, Ce, Pr, and Sm) system have been prepared by high-temperature reaction method and characterized by X-ray diffractions. All compounds crystallize in the orthorhombic Gd{sub 5}Si{sub 4}-type structure (space group Pnma, Pearson code oP16) with bonding interactions for interslab Ge{sub 2} dimers. The Li substitution for rare-earth elements in the RE{sub 4}LiGe{sub 4} system leads to a combined effect of the increased chemical pressure and the decreased valance electron concentration (VEC), which eventually results in the structure transformation from the Sm{sub 5}Ge{sub 4}-type with all broken interslab Ge–Ge bond for the parental RE{sub 5}Ge{sub 4} to the Gd{sub 5}Si{sub 4}-type structure for the ternary RE{sub 4}LiGe{sub 4} (RE=La, Ce, Pr, and Sm) system. Site-preference between rare-earth metals and Li is proven to generate energetically the most favorable atomic arrangements according to coloring-problem, and the rationale is provided using both the size-factor and the electronic-factor related, respectively, to site-volume and electronegativity as well as QVAL values. Tight-binding, linear-muffin-tin-orbital (TB-LMTO) calculations are performed to investigate electronic densities of states (DOS) and crystal orbital Hamilton population (COHP) curves. The influence of reduced VEC for chemical bonding including the formation of interslab Ge{sub 2} dimers is also discussed. The magnetic property measurements prove that the non-magnetic Li substitution leads to the ferromagnetic (FM)-like ground state for Ce{sub 4}LiGe{sub 4} and the co-existence of antiferromagntic (AFM) and FM ground states for Sm{sub 4}LiGe{sub 4}. - Graphical abstract: Reported is a combined effect of the chemical pressure and the reduced VEC caused by the smaller monovalent non-magnetic Li substitution for the larger trivalent magnetic rare-earth metals in the RE{sub 4}LiGe{sub 4} (RE=La, Ce, Pr, and Sm) system. This results in the structure

  17. Nanoscale Phase Separation, Cation Ordering, and Surface Oxygen Chemistry in Pristine Li1.2Ni0.2Mn0.6O2 for Li-Ion Batteries

    SciTech Connect (OSTI)

    Gu, Meng; Genc, Arda; Belharouak, Ilias; Wang, Dapeng; Amine, Khalil; Thevuthasan, Suntharampillai; Baer, Donald R.; Zhang, Jiguang; Browning, Nigel D.; Liu, Jun; Wang, Chong M.

    2013-05-14

    Li-rich layered material Li1.2Ni0.2Mn0.6O2 possesses high voltage and high specific capacity, which makes it an attractive candidate for the transportation industry and sustainable energy storage systems. The rechargeable capacity of the Li-ion battery is linked largely to the structural stability of the cathode materials during the charge-discharge cycles. However, the structure and cation distribution in pristine (un-cycled) Li1.2Ni0.2Mn0.6O2 have not yet been fully characterized. Using a combination of aberration-corrected scanning/transmission electron microscopy, X-ray dispersive energy spectroscopy (XEDS), electron energy loss spectroscopy (EELS), and complementary multislice image simulation, we have probed the crystal structure, cation/anion distribution, and electronic structure of Li1.2Ni0.2Mn0.6O2 nanoparticle. We discovered that the electronic structure and valence state of transition metal ions show significant variations, which have been identified to be attributed to the oxygen deficiency near the particle surfaces. Characterization of the nanoscale phase separation and cation ordering in the pristine material are critical for understanding the capacity and voltage fading of this material for battery application.

  18. Nanostructured Metal Carbides for Aprotic Li-O2 Batteries. New Insights into Interfacial Reactions and Cathode Stability

    SciTech Connect (OSTI)

    Kundu, Dipan; Black, Robert; Adams, Brian; Harrison, Katharine; Zavadil, Kevin R.; Nazar, Linda F.

    2015-05-01

    The development of nonaqueous Li–oxygen batteries, which relies on the reversible reaction of Li + O2 to give lithium peroxide (Li2O2), is challenged by several factors, not the least being the high charging voltage that results when carbon is typically employed as the cathode host. We report here on the remarkably low 3.2 V potential for Li2O2 oxidation on a passivated nanostructured metallic carbide (Mo2C), carbon-free cathode host. Furthermore, online mass spectrometry coupled with X-ray photoelectron spectroscopy unequivocally demonstrates that lithium peroxide is simultaneously oxidized together with the LixMoO3-passivated conductive interface formed on the carbide, owing to their close redox potentials. We found that the process rejuvenates the surface on each cycle upon electrochemical charge by releasing LixMoO3 into the electrolyte, explaining the low charging potential.

  19. The use Na, Li, K cations for modification of ZSM-5 zewolite to control hydrocarbon cold-start emission

    SciTech Connect (OSTI)

    Golubeva V.; Rohatgi U.; Korableva, A.; Anischenko, O.; Kustov, L.; Nissenbaum, V; Viola, M.B.

    2012-08-29

    This paper addresses the problem of controlling hydrocarbon emissions from cold-start of engines by investigating the adsorbents which could adsorb the hydrocarbons at cold temperatures and hold them to 250-300 ?. The materials, that has been studied, are based on the modification of ZSM-5 (SiO{sub 2}/Al{sub 2}O{sub 3} = 35) zeolite with Li, K, Na cations. It has been shown that the introduction of Li, Na and K in an amount that is equivalent to the content of Al in zeolite results in occurrence of toluene temperature desorption peaks at high-temperatures. The toluene temperature desorption curves for 5%Li-ZSM-5 and 2.3%Na-ZSM-5 zeolites are identical and have peak toluene desorption rate between 200 to 400 ?. Upon analysis of toluene adsorption isotherms for 2.3%Na-ZSM-5 and 5%Li-ZSM-5, it was concluded that the toluene diffusion inside of the modified zeolites channels is extremely slow and the sorption capacity of 2.3%Na-ZSM-5 is higher than with 5%Li-ZSM-5. The 2.3%Na-ZSM-5 didn't change toluene temperature programmed desorption (TPD) rate of curve after the treatment in environment with 10% ?{sub 2}? at 750-800 ? for about 28 h. The 2.3%Na-ZSM-5 zeolite is very promising as adsorbent to control the cold-start hydrocarbon emissions.

  20. Optic phonon bandwidth and lattice thermal conductivity: The case of Li2X ( X=O , S, Se, Te)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mukhopadhyay, S.; Lindsay, L.; Parker, D. S.

    2016-06-07

    Here, we examine the lattice thermal conductivities ( l) of Li2X (X=O, S, Se, Te) using a first-principles Peierls-Boltzmann transport methodology. We find low l values ranging between 12 and 30 W/m-K despite light Li atoms, a large mass difference between constituent atoms and tightly bunched acoustic branches, all features that give high l in other materials including BeSe (630 W/m-1K-1), BeTe (370 W/m-1K-1) and cubic BAs (3150 W/m-1K-1). Together these results suggest a missing ingredient in the basic guidelines commonly used to understand and predict l. Unlike typical simple systems (e.g., Si, GaAs, SiC), the dominant resistance to heat-carryingmore » acoustic phonons in Li2Se and Li2Te comes from interactions of these modes with two optic phonons. These interactions require significant bandwidth and dispersion of the optic branches, both present in Li2X materials. Finally, these considerations are important for the discovery and design of new materials for thermal management applications, and give a more comprehensive understanding of thermal transport in crystalline solids.« less

  1. Multicomponent phase diagrams for battery applications. II. Oxygen impurities in the Li(Si)/FeS/sub 2/ battery cathode

    SciTech Connect (OSTI)

    Aselage, T.L.; Hellstrom, E.E.

    1987-08-01

    The effect on the voltage response of the Li(Si)/FeS/sub 2/ thermal battery due to Fe/sub 2/O/sub 3/, FeSO/sub 4/, and Fe/sub 2/(SO/sub 4/)/sub 3/ impurities in the FeS/sub 2/ cathode has been studied. Calculations were made of the pertinent equilibrium phase relations in the Li-Fe-S-O system at 400/sup 0/C, and of the voltage of each of the four-phase regions vs. a Li(Si) anode (44 weight percent Li). The calculations showed that these impurities in the FeS/sub 2/ cathode can all cause voltages that are higher than the steady-state voltage of the battery. The study showed that equilibrating FeS/sub 2/ cathode material that contains oxygen impurities with a small amount of a compound containing Li shifts the overall cathode composition into one of three four-phase regions that exhibits the steady-state battery voltage.

  2. Successes and failures of Hubbard-corrected density functional theory. The case of Mg doped LiCoO2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Santana Palacio, Juan A.; Kim, Jeongnim; Kent, Paul R.; Reboredo, Fernando A.

    2014-10-28

    We have evaluated the successes and failures of the Hubbard-corrected density functional theory approach to study Mg doping of LiCoO2. We computed the effect of the U parameter on the energetic, geometric, and electronic properties of two possible doping mechanisms: (1) substitution of Mg onto a Co (or Li) site with an associated impurity state and (2) formation of impurity-state-free complexes of substitutional Mg and point defects in LiCoO2. We find that formation of impurity states results in changes on the valency of Co in LiCoO2. Variation of the Co U shifts the energy of the impurity state, resulting inmore » energetic, geometric, and electronic properties that depend significantly on the specific value of U. In contrast, the properties of the impurity-state-free complexes are insensitive to U. These results identify reasons for the strong dependence on the doping properties on the chosen value of U and for the overall difficulty of achieving agreement with the experimentally known energetic and electronic properties of doped transition metal oxides such as LiCoO2.« less

  3. Estimates of crystalline LiF thermal conductivity at high temperature and pressure by a Green-Kubo method

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jones, R. E.; Ward, D. K.

    2016-07-18

    Here, given the unique optical properties of LiF, it is often used as an observation window in high-temperature and -pressure experiments; hence, estimates of its transmission properties are necessary to interpret observations. Since direct measurements of the thermal conductivity of LiF at the appropriate conditions are difficult, we resort to molecular simulation methods. Using an empirical potential validated against ab initio phonon density of states, we estimate the thermal conductivity of LiF at high temperatures (1000–4000 K) and pressures (100–400 GPa) with the Green-Kubo method. We also compare these estimates to those derived directly from ab initio data. To ascertainmore » the correct phase of LiF at these extreme conditions, we calculate the (relative) phase stability of the B1 and B2 structures using a quasiharmonic ab initio model of the free energy. We also estimate the thermal conductivity of LiF in an uniaxial loading state that emulates initial stages of compression in high-stress ramp loading experiments and show the degree of anisotropy induced in the conductivity due to deformation.« less

  4. Selected test results from the neosonic polymer Li-ion battery.

    SciTech Connect (OSTI)

    Ingersoll, David T.; Hund, Thomas D.

    2010-07-01

    The performance of the Neosonic polymer Li-ion battery was measured using a number of tests including capacity, capacity as a function of temperature, ohmic resistance, spectral impedance, hybrid pulsed power test, utility partial state of charge (PSOC) pulsed cycle test, and an over-charge/voltage abuse test. The goal of this work was to evaluate the performance of the polymer Li-ion battery technology for utility applications requiring frequent charges and discharges, such as voltage support, frequency regulation, wind farm energy smoothing, and solar photovoltaic energy smoothing. Test results have indicated that the Neosonic polymer Li-ion battery technology can provide power levels up to the 10C{sub 1} discharge rate with minimal energy loss compared to the 1 h (1C) discharge rate. Two of the three cells used in the utility PSOC pulsed cycle test completed about 12,000 cycles with only a gradual loss in capacity of 10 and 13%. The third cell experienced a 40% loss in capacity at about 11,000 cycles. The DC ohmic resistance and AC spectral impedance measurements also indicate that there were increases in impedance after cycling, especially for the third cell. Cell No.3 impedance Rs increased significantly along with extensive ballooning of the foil pouch. Finally, at a 1C (10 A) charge rate, the over charge/voltage abuse test with cell confinement similar to a multi cell string resulted in the cell venting hot gases at about 45 C 45 minutes into the test. At 104 minutes into the test the cell voltage spiked to the 12 volt limit and continued out to the end of the test at 151 minutes. In summary, the Neosonic cells performed as expected with good cycle-life and safety.

  5. Thermal Properties of LiCl-KCl Molten Salt for Nuclear Waste Separation

    SciTech Connect (OSTI)

    Sridharan, Kumar; Allen, Todd; Anderson, Mark; Simpson, Mike

    2012-11-30

    This project addresses both practical and fundamental scientific issues of direct relevance to operational challenges of the molten LiCl-KCl salt pyrochemical process, while providing avenues for improvements in the process. In order to understand the effects of the continually changing composition of the molten salt bath during the process, the project team will systematically vary the concentrations of rare earth surrogate elements, lanthanum, cerium, praseodymium, and neodymium, which will be added to the molten LiCl-KCl salt. They will also perform a limited number of focused experiments by the dissolution of depleted uranium. All experiments will be performed at 500 deg C. The project consists of the following tasks. Researchers will measure density of the molten salts using an instrument specifically designed for this purpose, and will determine the melting points with a differential scanning calorimeter. Knowledge of these properties is essential for salt mass accounting and taking the necessary steps to prevent melt freezing. The team will use cyclic voltammetry studies to determine redox potentials of the rare earth cations, as well as their diffusion coefficients and activities in the molten LiCl-KCl salt. In addition, the team will perform anodic stripping voltammetry to determine the concentration of the rare earth elements and their solubilities, and to develop the scientific basis for an on-line diagnostic system for in situ monitoring of the cation species concentration (rare earths in this case). Solubility and activity of the cation species are critically important for the prediction of the salt's useful lifetime and disposal.

  6. The development of Sn-Li coolant/breeding material for APEX/ALPS applications.

    SciTech Connect (OSTI)

    Sze, D.-K.

    1999-07-08

    A Sn-Li alloy has been identified to be a coolant/breeding material for D-T fusion applications. The key feature of this material is its very low vapor pressure, which will be very useful for free surface concepts employed in APEX, ALPS and inertial confinement fission. The vapor is dominated by lithium, which has very low Z. Initial assessment of the material indicates acceptable tritium breeding capability, high thermal conductivity, expected low tritium volubility, and expected low chemical reactivities with water and air. Some key concerns are the high activation and material compatibility issues. The initial assessment of this material, for fission applications, is presented in this paper.

  7. Transport and Failure in Li-ion Batteries | Stanford Synchrotron Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lightsource Transport and Failure in Li-ion Batteries Monday, February 13, 2012 - 1:30pm SSRL Conference Room 137-322 Stephen J. Harris, General Motors R&D While battery performance is well predicted by the macrohomogeneous model of Newman and co-workers, predicting degradation and failure remains a challenge. It may be that, like most materials, failure depends on local imperfections and inhomogeneities. We use tomographic data to evaluate the homogeneity of the tortuosity of the

  8. Resonant Coherent Excitation of Fast Hydrogen Atoms in Front of a LiF(001) Surface

    SciTech Connect (OSTI)

    Auth, C.; Mertens, A.; Winter, H.; Borisov, A.G.; Garcia de Abajo, F.J.

    1997-12-01

    We have scattered protons and hydrogen atoms with energies of some keV from a LiF(001) surface under a grazing angle of incidence. From the intensity of Lyman-{alpha} radiation (transition from n=2 to n=1, {lambda}=121.6 nm ) as a function of projectile energy for different azimuthal orientations of the crystal surface, we find clear evidence for a resonant coherent excitation of n=2 states of hydrogen atoms in the oscillating electric field in front of the insulator surface. {copyright} {ital 1997} {ital The American Physical Society}

  9. Three-Body Recombination of {sup 6}Li Atoms with Large Negative Scattering Lengths

    SciTech Connect (OSTI)

    Braaten, Eric; Kang, Daekyoung; Platter, Lucas; Hammer, H.-W.

    2009-08-14

    The three-body recombination rate at threshold for distinguishable atoms with large negative pair scattering lengths is calculated in the zero-range approximation. The only parameters in this limit are the 3 scattering lengths and the Efimov parameter, which can be complex-valued. We provide semianalytic expressions for the cases of 2 or 3 equal scattering lengths, and we obtain numerical results for the general case of 3 different scattering lengths. Our general result is applied to the three lowest hyperfine states of {sup 6}Li atoms. Comparisons with recent experiments provide indications of loss features associated with Efimov trimers near the 3-atom threshold.

  10. A method for treating electrolyte to remove Li{sub 2}O

    SciTech Connect (OSTI)

    Tomczuk, Z.; Miller, W.E.; Johnson, G.K.; Willit, J.L.

    1998-04-01

    Electrorefining has been used in processes for recovering uranium and plutonium metals from spent nuclear fuel. The electrorefining is performed in an electrochemical cell in which the chopped fuel elements from the reactor forms the anode, the electrolyte, preferably, is the fused eutectic salt of the LiCl-KCl which contain UCl{sub 3} and PuCl{sub 3}. Purified metal collected at the cathode collects at the bottom of the cell. This invention provides a method for removing lithium oxide from the electrolyte salt, with the end formation of a solid lithium-aluminium alloy.

  11. Non-statistically populated autoionizing levels of Li-like carbon: Hidden-crossings

    SciTech Connect (OSTI)

    Deveney, E.F.; Krause, H.F.; Jones, N.L.

    1995-12-31

    The intensities of the Auger-electron lines from autoionizing (AI) states of Li-like (1s2s2l) configurations excited in ion-atom collisions vary as functions of the collision parameters such as, for example, the collision velocity. A statistical population of the three-electron levels is at best incomplete and underscores the intricate dynamical development of the electronic states. The authors compare several experimental studies to calculations using ``hidden-crossing`` techniques to explore some of the details of these Auger-electron intensity variation phenomena. The investigations show promising results suggesting that Auger-electron intensity variations can be used to probe collision dynamics.

  12. TEM Study of Fracturing in Spherical and Plate-like LiFePO4Particles

    SciTech Connect (OSTI)

    Gabrisch, H.; Wilcox, J.; Doeff, M.M.

    2007-12-20

    An investigation of fracturing in LiFePO{sub 4} particles as a function of the particle morphology and history is presented. Two types of samples, one subjected to electrochemical cycling and another to chemical delithiation are compared. We observe the formation of micro fractures parallel to low indexed lattice planes in both samples. The fracture surfaces are predominantly parallel to (100) planes in the chemically delithiated powder and (100) and (010) planes in the electrochemically cycled powder. A consideration of the threshold stresses for dislocation glide shows that particle geometry plays an important role in the observed behavior.

  13. Multiple particle emission after {sup 11}Li beta-decay: exploring new decay channels

    SciTech Connect (OSTI)

    Madurga, M.; Borge, M. J. G.; Fynbo, H. O. U.; Prezado, Y.; Tengblad, O.; Jonson, B.; Nyman, G.; Riisager, K.

    2007-11-30

    We present here a study of the three-body, n{alpha}{sup 6}He particle break-up of {sup 11}Be(10.6) following {sup 11}Li {beta}-decay. The emitted charged particles were detected in coincidence using a cubic set-up of highly segmented silicon detectors, allowing us to measure simultaneously energy and trajectory. The three body break-up of {sup 11}Be(10.5) through the intermediate state {sup 10}Be(9.6) was modeled using the multiple-level single-channel R-Matrix formalism.

  14. Elastic scattering for the system {sup 6}Li+p at near barrier energies with MAGNEX

    SciTech Connect (OSTI)

    Soukeras, V.; Pakou, A.; Sgouros, O.; Cappuzzello, F.; Bondi, M.; Nicolosi, D.; Acosta, L.; Marquinez-Duran, G.; Martel, I.; Agodi, C.; Carbone, D.; Cavallaro, M.; Cunsolo, A.; Di Pietro, A.; Fernández-García, J. P.; Figuera, P.; Fisichella, M.; Alamanos, N.; De Napoli, M.; Foti, A.; and others

    2015-02-24

    Elastic scattering measurements have been performed for the {sup 6}Li+p system in inverse kinematics at the energies of 16, 20, 25 and 29 MeV. The heavy ejectile was detected by the large acceptance MAGNEX spectrometer at the Laboratori Nazionali del Sud (LNS) in Catania, in the angular range between ∼2{sup 0} and 12{sup 0} in the laboratory system, giving us the possibility to span almost a full angular range in the center of mass system. Results will be presented and discussed for one of the energies.

  15. Observation of Electron-Beam-Induced Phase Evolution Mimicking the Effect of the ChargeDischarge Cycle in Li-Rich Layered Cathode Materials Used for Li Ion Batteries

    SciTech Connect (OSTI)

    Lu, Ping; Yan, Pengfei; Romero, Eric; Spoerke, Erik David; Zhang, Ji-Guang; Wang, Chong-Min

    2015-01-27

    Capacity loss, and voltage decrease upon electrochemical charge-discharge cycling observed in lithium-rich layered cathode oxides (Li[LixMnyTM1-x-y]O2, TM = Ni, Co or Fe) have recently been attributed to the formation of a surface reconstructed layer (SRL) that evolves from a thin (<2 nm), defect spinel layer upon the first charge, to a relatively thick (~5nm), spinel or rock-salt layer upon continuous charge-discharge cycling. Here we report observations of a SRL and structural evolution of the SRL on the Li[Li0.2Ni0.2Mn0.6]O2 (LNMO) particles, which are identical to those reported due to the charge-discharge cycle but are a result of electron-beam irradiation during scanning transmission electron microscopy (STEM) imaging. Sensitivity of the lithium-rich layered oxides to high-energy electrons leads to the formation of thin, defect spinel layer on surfaces of the particles when exposed to a 200kV electron beam for as little as 30 seconds under normal high-resolution STEM imaging conditions. Further electron irradiation produces a thicker layer of the spinel phase, ultimately producing a rock-salt layer at a higher electron exposure. Atomic-scale chemical mapping by electron dispersive X-ray spectroscopy in STEM indicates the electron-beam-induced SRL formation on LNMO is accomplished by migration of the transition metal ions to the Li sites without breaking down the lattice. The observation through this study provides an insight for understanding the mechanism of forming the SRL and also possibly a mean to study structural evolution in the Li-rich layered oxides without involving the electrochemistry.

  16. Kinetic investigation of catalytic disproportionation of superoxide ions in the non-aqueous electrolyte used in Li-air batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Qiang; Yang, Xiao -Qing; Zheng, Doug; McKinnon, Meaghan E.; Qu, Deyang

    2014-10-28

    Superoxide reacts with carbonate solvents in Liair batteries. Tris(pentafluorophenyl)borane is found to catalyze a more rapid superoxide (O2-) disproportionation reaction than the reaction between superoxide and propylene carbonate (PC). With this catalysis, the negative impact of the reaction between the electrolyte and O2-produced by the O2 reduction can be minimized. A simple kinetic study using ESR spectroscopy was reported to determine reaction orders and rate constants for the reaction between PC and superoxide, and the disproportionation of superoxide catalyzed by Tris(pentafluorophenyl)borane and Li ions. The reactions are found to be first order and the rate constants are 0.033 s-1 M-1,more0.020 s-1 M-1and 0.67 s-1M-1 for reactions with PC, Li ion and Tris(pentafluorophenyl)borane, respectively.less

  17. Nanoscale imaging of fundamental Li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sacci, Robert L; Black, Jennifer M.; Wisinger, Nina; Dudney, Nancy J.; More, Karren Leslie; Unocic, Raymond R.

    2015-02-23

    The performance characteristics of Li-ion batteries are intrinsically linked to evolving nanoscale interfacial electrochemical reactions. To probe the mechanisms of solid electrolyte interphase formation and Li electrodeposition from a standard battery electrolyte, we use in situ electrochemical scanning transmission electron microscopy for controlled potential sweep-hold electrochemical measurements with simultaneous BF and ADF STEM image acquisition. Through a combined quantitative electrochemical measurement and quantitative STEM imaging approach, based upon electron scattering theory, we show that chemically sensitive ADF STEM imaging can be used to estimate the density of evolving SEI constituents and distinguish contrast mechanisms of Li-bearing components in the liquidmore » cell.« less

  18. Nanostructured metal carbides for aprotic Li-O2 batteries. New insights into interfacial reactions and cathode stability

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kundu, Dipan; Black, Robert; Adams, Brian; Harrison, Katharine; Zavadil, Kevin R.; Nazar, Linda F.

    2015-05-01

    The development of nonaqueous Li–oxygen batteries, which relies on the reversible reaction of Li + O2 to give lithium peroxide (Li2O2), is challenged by several factors, not the least being the high charging voltage that results when carbon is typically employed as the cathode host. We report here on the remarkably low 3.2 V potential for Li2O2 oxidation on a passivated nanostructured metallic carbide (Mo2C), carbon-free cathode host. Furthermore, online mass spectrometry coupled with X-ray photoelectron spectroscopy unequivocally demonstrates that lithium peroxide is simultaneously oxidized together with the LixMoO3-passivated conductive interface formed on the carbide, owing to their close redoxmore » potentials. We found that the process rejuvenates the surface on each cycle upon electrochemical charge by releasing LixMoO3 into the electrolyte, explaining the low charging potential.« less

  19. Vector analyzing power of {pi}{sup +7}Li scattering in the region of the {delta}{sub 33} resonance

    SciTech Connect (OSTI)

    Ibraeva, E. T.; Zhusupov, M. A.; Zaykin, A. Yu.; Imambekov, O.

    2006-04-15

    Within Glauber diffraction theory, the vector analyzing power iT{sub 11} is calculated at three energies of positively charged pions, 134, 164, and 194 MeV, incident to {sup 7}Li nuclei. These energy values lie in the region of the {delta}{sub 33} resonance in {pi}{sup {+-}}N interaction, the resonance maximum being at 180 MeV. The calculation of iT{sub 11} was performed with several model {sup 7}Li wave functions, including the {alpha}t-cluster and shell-model ones. The properties of {pi}{sup +7}Li scattering are found to be sensitive to the structural features of the target nucleus. A comparison of the results of the calculations with experimental data shows that the wave functions in question and the potentials used to calculate them are quite appropriate.

  20. Selective Separation of Cs and Sr from LiCl-Based Salt for Electrochemical Processing of Oxide Spent Nuclear Fuel

    SciTech Connect (OSTI)

    P Sachdev

    2008-07-01

    Electrochemical processing technology is currently being used for the treatment of metallic spent fuel from the Experimental Breeder Reactor-II at Idaho National Laboratory. The treatment of oxide-based spent nuclear fuel via electrochemical processing is possible provided there is a front-end oxide reduction step. During this reduction process, certain fission products, including Cs and Sr, partition into the salt phase and form chlorides. Both solid state and molten LiCl-zeolite-A ion exchange tests were conducted for selectively removing Cs and Sr from LiCl-based salt. The solid-state tests produced in excess of 99% removal of Cs and Sr. The molten state tests failed due to phase transformation of the zeolite structure when in contact with the molten LiCl salt.