Powered by Deep Web Technologies
Note: This page contains sample records for the topic "guthrie waste water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Federal Energy and Water Management Award Winners Kate Anderson, Scott Clark, Matthew Ellis, Vincent Guthrie, Mark Hunsickler  

Broader source: Energy.gov (indexed) [DOE]

efforts efforts in FY 2012 that contributed to its net-zero objectives and reduced its energy intensity by 14.7 percent and water intensity by 8 percent from their respective baselines. The site team partnered with multiple organizations to develop innovative solutions, including the National Renewable Energy Laboratory to execute a Net-Zero Assessment and Recommendations report, and the Pacific Northwest National Laboratory to develop water balancing report and strategy related to Fort Carson's net-zero water strategy. The Fort Carson team also coordinated with the U.S. Army Corps of Engineers to investigate opportunities to use wastewater effluent to expand its existing non-potable irrigation system. Fort Carson also implemented lighting retrofits,

2

Federal Energy and Water Management Award Winners Kate Anderson...  

Energy Savers [EERE]

Scott Clark, Matthew Ellis, Vincent Guthrie, Mark Hunsickler Federal Energy and Water Management Award Winners Kate Anderson, Scott Clark, Matthew Ellis, Vincent Guthrie,...

3

Re: High res video George Guthrie 0 mcnutt 05/231201008:59 PM  

E-Print Network [OSTI]

-- -- - From: "Marcia K McNutt" c:mcnutt@usgs.gov> To: Guthrie , George c:George.Guthrie@NETL.DOE.GOV> Cc : c: "George Guthrie" c:George . Guthrie@NETL . DOE.GOV> To : mcnutt@usgs.gov Date: OS/23/2010 08 :34 PM Subject: High r e s video Marcia We have researchers at NETL who a re ass essing what we could do

Fleskes, Joe

4

Guthrie County Rural E C A | Open Energy Information  

Open Energy Info (EERE)

Guthrie County Rural E C A Guthrie County Rural E C A Place Iowa Utility Id 7750 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Heat Plus Large Power < 500 kVA Commercial Large Power Time of Day Commercial Large Power Time of Day > 1000 kVA Industrial Multi Phase Residential Outdoor Lighting HPS 150 W Lighting Single Phase Residential Average Rates Residential: $0.1160/kWh Commercial: $0.0941/kWh Industrial: $0.0611/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

5

ENVIRONMENTAL ASSESSMENT Waste Water Treatment Modifications for  

E-Print Network [OSTI]

Actions - Isolate and restore sand filter beds (~10 acres) - Remove UV light sanitation system ­ evaluateENVIRONMENTAL ASSESSMENT FOR Waste Water Treatment Modifications for Improved Effluent Compliance adhering to them. · Develop recharge basins for disposal of treated waste water. Polythiocarbonate

Homes, Christopher C.

6

Flexible Distributed Energy and Water from Waste for the Food...  

Energy Savers [EERE]

Flexible Distributed Energy and Water from Waste for the Food and Beverage Industry - Fact Sheet, 2014 Flexible Distributed Energy and Water from Waste for the Food and Beverage...

7

ENVIRONMENTAL ASSESSMENT FOR WASTE WATER TREATMENT MODIFICATIONS  

Broader source: Energy.gov (indexed) [DOE]

WASTE WATER TREATMENT MODIFICATIONS WASTE WATER TREATMENT MODIFICATIONS FOR IMPROVED EFFLUENT COMPLIANCE BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK BROOKHAVEN SITE OFFICE JUNE 24, 2011 DOE/EA-1854 i Table of Contents 1.0 INTRODUCTION ............................................................................................................... 1 2.0 SUMMARY ........................................................................................................................ 1 3.0 PURPOSE AND NEED ....................................................................................................17 4.0 ALTERNATIVES ..............................................................................................................17 4.1 Alternative 1 - Groundwater Recharge System (Preferred Alternative) .............. 17

8

Waste-Water Treatment: The Tide Is Turning  

Science Journals Connector (OSTI)

...combine to form water. The resins...by waste-water treatment standards. In electrodialysis, an electric...human use. Electrodialysis and reverse...brackish waste water, and these...problem in sewage treatment. The cost...

Robert W. Holcomb

1970-07-31T23:59:59.000Z

9

Method of treating waste water  

DOE Patents [OSTI]

A process of treating water to remove metal ion contaminants contained therein, said metal ion contaminants selected from the group consisting of metals in Groups 8, 1b, 2b, 4a, 5a, or 6a of the periodic table, lanthanide metals, and actinide metals including transuranic element metals, by adjusting the pH of a metal ion contaminant-containing water source to within the range of about 6.5 to about 14.0, admixing the water source with a mixture of an alkali or alkaline earth ferrate and a water soluble salt, e.g., a zirconium salt, in an amount sufficient to form a precipitate within the water source, the amount the mixture of ferrate and water soluble salt effective to reduce the metal ion contaminant concentration in the water source, permitting the precipitate in the admixture to separate and thereby yield a supernatant liquid having a reduced metal ion contaminant concentration, and separating the supernatant liquid having the reduced metal ion contaminant concentration from the admixture is provided. A composition of matter including an alkali or alkaline earth ferrate and a water soluble salt, e.g., a zirconium salt, is also provided.

Deininger, James P. (Colorado Springs, CO); Chatfield, Linda K. (Colorado Springs, CO)

1995-01-01T23:59:59.000Z

10

Method of treating waste water  

DOE Patents [OSTI]

A process of treating water to remove transuranic elements contained therein by adjusting the pH of a transuranic element-containing water source to within the range of about 6.5 to about 14.0, admixing the water source with an alkali or alkaline earth ferrate in an amount sufficient to form a precipitate within the water source, the amount of ferrate effective to reduce the transuranic element concentration in the water source, permitting the precipitate in the admixture to separate and thereby yield a supernatant liquid having a reduced transuranic element concentration, and separating the supernatant liquid having the reduced transuranic element concentration from the admixture is provided. Additionally, a water soluble salt, e.g., a zirconium salt, can be added with the alkali or alkaline earth ferrate in the process to provide greater removal efficiencies. A composition of matter including an alkali or alkaline earth ferrate and a water soluble salt, e.g., a zirconium salt, is also provided.

Deininger, J. Paul (Colorado Springs, CO); Chatfield, Linda K. (Colorado Springs, CO)

1991-01-01T23:59:59.000Z

11

New Advanced System Utilizes Industrial Waste Heat to Power Water...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Water Reuse ADVANCED MANUFACTURING OFFICE New Advanced System Utilizes Industrial Waste Heat to Power Water Purification Introduction As population growth and associated factors...

12

Process for removing sulfate anions from waste water  

DOE Patents [OSTI]

A liquid emulsion membrane process for removing sulfate anions from waste water is disclosed. The liquid emulsion membrane process includes the steps of: (a) providing a liquid emulsion formed from an aqueous strip solution and an organic phase that contains an extractant capable of removing sulfate anions from waste water; (b) dispersing the liquid emulsion in globule form into a quantity of waste water containing sulfate anions to allow the organic phase in each globule of the emulsion to extract and absorb sulfate anions from the waste water and (c) separating the emulsion including its organic phase and absorbed sulfate anions from the waste water to provide waste water containing substantially no sulfate anions.

Nilsen, David N. (Lebanon, OR); Galvan, Gloria J. (Albany, OR); Hundley, Gary L. (Corvallis, OR); Wright, John B. (Albany, OR)

1997-01-01T23:59:59.000Z

13

Flexible Distributed Energy & Water from Waste for the Food ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Water from Waste for the Food and Beverage Industry - Fact Sheet, 2014 2011 CHPIndustrial Distributed Energy R&D Portfolio Review - Summary Report Biogas Opportunities Roadmap...

14

Water and Energy Wasted During Residential Shower Events: Findings from a Pilot Field Study of Hot Water Distribution Systems  

E-Print Network [OSTI]

study to determine waste of water and energy in residential30 percent. The average waste of energy in the hot water ispaper examines the waste of water and energy associated with

Lutz, Jim

2012-01-01T23:59:59.000Z

15

Pilot Phase of a Field Study to Determine Waste of Water and Energy in Residential Hot-Water Distribution Systems  

E-Print Network [OSTI]

understanding the waste of energy and water in residentialStudy to Determine Waste of Water and Energy in ResidentialStudy to Determine Waste of Water and Energy in Residential

Lutz, Jim

2012-01-01T23:59:59.000Z

16

Waste not Discharged to Surface Waters (North Carolina) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Waste not Discharged to Surface Waters (North Carolina) Waste not Discharged to Surface Waters (North Carolina) Waste not Discharged to Surface Waters (North Carolina) < Back Eligibility Commercial Industrial Construction Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State North Carolina Program Type Siting and Permitting The rules in this Subchapter apply to all persons proposing to construct, alter, extend, or operate any sewer system, treatment works, disposal system, contaminates soil treatment system, animal waste management system, stormwater management system or residual disposal/utilization system which does not discharge to surface waters of the state, including systems which discharge waste onto or below land surface.

17

Use of Chemical Oxygen Demand Values of Bacterial Cells in Waste-Water Purification  

Science Journals Connector (OSTI)

...Bacterial Cells in Waste-Water Purification A. F. Gaudy Jr. M. N...Bacterial Cells in Waste-Water Purification A. F. GAUDY, JR., M...bacterial cells in waste-water purification. Appl. Microbiol. 12:254-260...

A. F. Gaudy Jr.; M. N. Bhatla; E. T. Gaudy

1964-05-01T23:59:59.000Z

18

Economic Analysis of a Waste Water Resource Heat Pump Air-Conditioning System in North China  

E-Print Network [OSTI]

This paper describes the situation of waste water resource in north China and the characteristics and styles of a waste water resource heat pump system, and analyzes the economic feasibility of a waste water resource heat pump air...

Chen, H.; Li, D.; Dai, X.

2006-01-01T23:59:59.000Z

19

E-Print Network 3.0 - anaerobic waste water Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Recovery Jun Wei LIM... waste. Keywords Anaerobic digestion; food waste; brown water; biogas; co-digestion INTRODUCTION... of brown water and food ... Source: Ecole Polytechnique,...

20

Water recovery using waste heat from coal fired power plants.  

SciTech Connect (OSTI)

The potential to treat non-traditional water sources using power plant waste heat in conjunction with membrane distillation is assessed. Researchers and power plant designers continue to search for ways to use that waste heat from Rankine cycle power plants to recover water thereby reducing water net water consumption. Unfortunately, waste heat from a power plant is of poor quality. Membrane distillation (MD) systems may be a technology that can use the low temperature waste heat (<100 F) to treat water. By their nature, they operate at low temperature and usually low pressure. This study investigates the use of MD to recover water from typical power plants. It looks at recovery from three heat producing locations (boiler blow down, steam diverted from bleed streams, and the cooling water system) within a power plant, providing process sketches, heat and material balances and equipment sizing for recovery schemes using MD for each of these locations. It also provides insight into life cycle cost tradeoffs between power production and incremental capital costs.

Webb, Stephen W.; Morrow, Charles W.; Altman, Susan Jeanne; Dwyer, Brian P.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "guthrie waste water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

NORDIC WASTE WATER TREATMENT SLUDGE TREATMENT  

E-Print Network [OSTI]

biogas, electricity and fertilizer from 30 000 tons of annually waste. The plant was opened in March 2008 together it an- nually produces 18,9 GWh biogas and around 10 GWh of elec- tricity. The Cambi THP ­process

22

Solid waste energy recovery for brackish water desalination  

SciTech Connect (OSTI)

Introduced is the concept of combining solid-waste energy recovery with brackish water desalination for water supply improvement. The history of such plants is briefly detailed, and performance and operating cost data of several existing desalination plants is given. It is concluded that the combination of solid waste energy recovery utilizing modular combustion units and brackish water desalination using the reverse osmosis process can cancel out the energy-related negative aspects of both technologies. Furthermore, with innovative planning and adequate political, financial and technical leadership, communities that meet criteria outlined in the report can convert a waste disposal problem into a resource for the betterment of the community and its surrounding neighbors.

Bailie, R.E.

1982-07-01T23:59:59.000Z

23

Development of electrochemical denitrification from waste water containing ammonium nitrate  

SciTech Connect (OSTI)

The authors developed processes to dentrify waste water containing ammonium nitrate discharged from the nuclear fuel manufacturing works and to recover nitric acid and ammonia. For denitrification they applied the operating method and the conditions of operation to make 0.4mM or less from NH{sub 4}NO{sub 3} waste water of 1.5 M by 3 stages of electrodialysis cells. To recover nitric acid and ammonium water, they separated HNO{sub 3} solution of 6 M and NH{sub 4}OH solution with one unit of electrolysis cell, then absorbed NH{sub 3} gas from NH{sub 4}OH solution with water and applied the condition of operation to recover 8 M NH{sub 4}OH solution. The authors demonstrated that treatment and recovery can be carried out stably with actual waste water with a system through the combination of previously mentioned electrodialysis cells, electrolysis cells and an ammonia gas absorber. At present they are planning a plant where NH{sub 4}NO{sub 3} waste water of 4,500 mol can be treated per day.

Sawa, Toshio; Hirose, Yasuo; Ishii, Yoshinori; Takatsudo, Atsushi; Wakasugi, Kazuhico; Hayashi, Hiroshi

1995-12-31T23:59:59.000Z

24

Taking the Waste Out of Wastewater for Human Water Security and Ecosystem Sustainability  

Science Journals Connector (OSTI)

...than finding infrastructure solutions to water scarcity...freshwater resources: Soft-path solutions for the 21st century . Science...Horvath A. , Energy and air emission effects of water...Waste Disposal, Fluid Water Pollution Water Purification Water Quality...

Stanley B. Grant; Jean-Daniel Saphores; David L. Feldman; Andrew J. Hamilton; Tim D. Fletcher; Perran L. M. Cook; Michael Stewardson; Brett F. Sanders; Lisa A. Levin; Richard F. Ambrose; Ana Deletic; Rebekah Brown; Sunny C. Jiang; Diego Rosso; William J. Cooper; Ivan Marusic

2012-08-10T23:59:59.000Z

25

Anaerobic Co-digestion of Brown Water and Food Waste for Energy Recovery  

E-Print Network [OSTI]

LIM J.W. Anaerobic Co-digestion of Brown Water and Food Waste for Energy Recovery Jun Wei LIM waste (FW) and their mixture (MW) in batch digesters was evaluated under mesophilic conditions. BW waste. Keywords Anaerobic digestion; food waste; brown water; biogas; co-digestion INTRODUCTION

Paris-Sud XI, Université de

26

Process for treating waste water having low concentrations of metallic contaminants  

DOE Patents [OSTI]

A process for treating waste water having a low level of metallic contaminants by reducing the toxicity level of metallic contaminants to an acceptable level and subsequently discharging the treated waste water into the environment without removing the treated contaminants.

Looney, Brian B; Millings, Margaret R; Nichols, Ralph L; Payne, William L

2014-12-16T23:59:59.000Z

27

Assessment of the suitability of agricultural waste water for geothermal power plant cooling in the Imperial Valley. I. Water quality  

SciTech Connect (OSTI)

Evaluation of the quality of agricultural waste water is the first step in assessing the sitability of agricultural waste water for geothermal power plant cooling. In this study samples of agricultural waste water from the New and Alamo rivers located in the Imperial Valley of California are analyzed. Determinations of standard water quality parameters, solids content, and inorganic compositions of the solids are made. The results are compared with data on samples of irrigation water and steam condensate also obtained from sites in the Imperial Valley. The data are evaluated in relation to cooling tower operation, waste generation, and waste disposal.

Morris, W.F.; Rigdon, L.P.

1981-09-01T23:59:59.000Z

28

Method of draining water through a solid waste site without leaching  

DOE Patents [OSTI]

The present invention is a method of preventing water from leaching solid waste sites by preventing atmospheric precipitation from contacting waste as the water flows through a solid waste site. The method comprises placing at least one drain hole through the solid waste site. The drain hole is seated to prevent waste material from entering the drain hole, and the solid waste site cover material is layered and graded to direct water to flow toward the drain hole and to soil beneath the waste site.

Treat, R.L.; Gee, G.W.; Whyatt, G.A.

1993-02-02T23:59:59.000Z

29

Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes  

SciTech Connect (OSTI)

While it is important to make the equipment (or 'plant') in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10 to 30 percent of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Five houses near Syracuse NY were monitored. Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

Henderson, H.; Wade, J.

2014-04-01T23:59:59.000Z

30

Water and Energy Wasted During Residential Shower Events: Findings from a  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water and Energy Wasted During Residential Shower Events: Findings from a Water and Energy Wasted During Residential Shower Events: Findings from a Pilot Field Study of Hot Water Distribution Systems Speaker(s): James Lutz Date: October 18, 2011 - 12:00pm Location: 90-3122 Heating water is one of the most energy-consumptive activities in a household, accounting for about 49 percent of California's residential natural gas consumption. Data collected during a pilot field study in California indicate that significant amounts of water and energy are wasted while waiting for hot water to be delivered to the point of end use. We calculate the water and energy wasted during shower events from data collected using a wireless sensor network that monitored water flows and temperatures in three single-family residences. The total calculated water

31

Solar trough concentration for fresh water production and waste water treatment  

Science Journals Connector (OSTI)

The present paper examines the concept of utilizing trough type solar concentration plants for water production, remediation and waste treatment. Solar trough plants are a mature technology which deserves to be diffused throughout the European Union and in the partner countries of the Mediterranean Area. The present study is intended to find applications of the solar through concentration technology beyond heat and refrigeration. At the present stage, a number of possibilities have been identified; the main ones which will be considered here are related to clean water production by processes such as solar distillation, atmospheric condensation, and waste processing. Although the technical feasibility of the proposed applications is not in discussion, before attempting to put such applications into practice, well discuss their potential economical and environmental benefits in comparison to existing solutions.

A. Scrivani; T. El Asmar; U. Bardi

2007-01-01T23:59:59.000Z

32

Waste and Water Top 2013 Accomplishments for Los Alamos EM Program |  

Broader source: Energy.gov (indexed) [DOE]

Waste and Water Top 2013 Accomplishments for Los Alamos EM Program Waste and Water Top 2013 Accomplishments for Los Alamos EM Program Waste and Water Top 2013 Accomplishments for Los Alamos EM Program December 24, 2013 - 12:00pm Addthis Unusually heavy rain in early September caused flash flooding in canyons surrounding Los Alamos. Unusually heavy rain in early September caused flash flooding in canyons surrounding Los Alamos. LOS ALAMOS, N.M. - Los Alamos National Laboratory's biggest environmental cleanup accomplishments during 2013 centered around waste and water. The laboratory's 3706 TRU Waste Campaign, an accelerated shipping effort spurred by a massive wildfire in 2011, completed another record-breaking year in 2013, removing a cumulative 1,825 cubic meters of transuranic (TRU) waste and exceeding every previous shipping record.

33

Long-term Water Balance Monitoring of Engineered Covers for Waste Containment Robert C. Reedy1  

E-Print Network [OSTI]

Long-term Water Balance Monitoring of Engineered Covers for Waste Containment Robert C. Reedy1 infiltration into underlying waste. The purpose of this study is to evaluate a variety of monitoring and temperature data, can reliably monitor water storage changes. The non- invasive nature of EM measurements

Scanlon, Bridget R.

34

Method and apparatus for waste destruction using supercritical water oxidation  

DOE Patents [OSTI]

The invention relates to an improved apparatus and method for initiating and sustaining an oxidation reaction. A hazardous waste, is introduced into a reaction zone within a pressurized containment vessel. An oxidizer, preferably hydrogen peroxide, is mixed with a carrier fluid, preferably water, and the mixture is heated until the fluid achieves supercritical conditions of temperature and pressure. The heating means comprise cartridge heaters placed in closed-end tubes extending into the center region of the pressure vessel along the reactor longitudinal axis. A cooling jacket surrounds the pressure vessel to remove excess heat at the walls. Heating and cooling the fluid mixture in this manner creates a limited reaction zone near the center of the pressure vessel by establishing a steady state density gradient in the fluid mixture which gradually forces the fluid to circulate internally. This circulation allows the fluid mixture to oscillate between supercritical and subcritical states as it is heated and cooled.

Haroldsen, Brent Lowell (1251 Sprague St., Manteca, CA 95336); Wu, Benjamin Chiau-pin (2270 Goldenrod La., San Ramon, CA 94583)

2000-01-01T23:59:59.000Z

35

Evaluation of Technologies to Remove Suspended Solids from Waste Water  

SciTech Connect (OSTI)

The Effluent Treatment Facility (ETF) at the Savannah River Site utilizes pH adjustment, submicron filtration, Hg removal resin, activated carbon, reverse osmosis, cationic exchange, and evaporation to remove contaminants from radioactive waste water. After startup, the ETF had difficulty achieving design capacity. The primary problem was fouling of the ceramic microfilters. Typical filter flow rates were only 20 percent of design capacity.A research program was conducted to identify and evaluate technologies for improving suspended solids removal from radioactive wastewater at the Savannah River Site. Technolgies investigated were a ceramic microfilter, a tubular polymeric ultrafilter, two porous metal filters, a polymeric centrifugal ultrafilter, a deep bed filter, a backwashable cartridge filter, a fabric filter, and a centriguge.

Poirier, M.R.

1999-03-15T23:59:59.000Z

36

Alkaline subcritical water gasification of dairy industry waste (Whey)  

Science Journals Connector (OSTI)

The near-critical water gasification of dairy industry waste in the form of Whey, a product composed of mixtures of carbohydrates (mainly lactose) and amino acids such as glycine and glutamic acid, has been studied. The gasification process involved partial oxidation with hydrogen peroxide in the presence of NaOH. The reactions were studied over the temperature range from 300C to 390C, corresponding pressures of 9.524.5MPa and reaction times from 0min to 120min. Hydrogen production was affected by the presence of NaOH, the concentration of H2O2, temperature, reaction time and feed concentration. Up to 40% of the theoretical hydrogen gas production was achieved at 390C. Over 80% of the Whey nitrogen content was found as ammonia, mainly in the liquid effluent.

Rattana Muangrat; Jude A. Onwudili; Paul T. Williams

2011-01-01T23:59:59.000Z

37

Coupled Model for Heat and Water Transport in a High Level Waste Repository  

Broader source: Energy.gov (indexed) [DOE]

Coupled Model for Heat and Water Transport in a High Level Waste Coupled Model for Heat and Water Transport in a High Level Waste Repository in Salt Coupled Model for Heat and Water Transport in a High Level Waste Repository in Salt This report summarizes efforts to simulate coupled thermal-hydrological-chemical (THC) processes occurring within a generic hypothetical high-level waste (HLW) repository in bedded salt; chemical processes of the system allow precipitation and dissolution of salt with elevated temperatures that drive water and water vapor flow around hot waste packages. Characterizing salt backfill processes is an important objective of the exercise. An evidence-based algorithm for mineral dehydration is also applied in the modeling. The Finite Element Heat and Mass transfer code (FEHM) is used to simulate coupled thermal,

38

Campus Energy, Water, and Waste Reduction Policy Page 1 of 7 Virginia Polytechnic Institute and State University No. 5505 Rev.: 2  

E-Print Network [OSTI]

Campus Energy, Water, and Waste Reduction Policy Page 1 of 7 Virginia Polytechnic Institute __________________________________________________________________________________ Subject: Campus Energy, Water, and Waste Reduction Policy the highest standards in energy/water usage and waste reduction with consideration of the impact

Virginia Tech

39

A New ACS Audio Course to help you understand and solve industrial and municipal waste-water problems ....  

Science Journals Connector (OSTI)

A New ACS Audio Course to help you understand and solve industrial and municipal waste-water problems .... ...

1982-08-01T23:59:59.000Z

40

Practical guidelines for small-volume additions of uninhibited water to waste storage tanks  

SciTech Connect (OSTI)

Allowable volumes of uninhibited water additions to waste tanks are limited to volumes in which hydroxide and nitrite inhibitors reach required concentrations by diffusion from the bulk waste within five days. This diffusion process was modeled conservatively by Fick`s second law of diffusion. The solution to the model was applied to all applicable conditions which exist in the waste tanks. Plant engineers adapted and incorporated the results into a practical working procedure for controlling and monitoring the addition of uninhibited water. Research, technical support, and field engineers worked together to produce an effective solution to a potential waste tank corrosion problem.

Hsu, T.C.; Wiersma, B.J.; Zapp, P.E.; Pike, J.A.

1994-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "guthrie waste water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Practical guidelines for small volume additions of uninhibited water to waste storage tanks  

SciTech Connect (OSTI)

Allowable volumes of uninhibited water additions to waste tanks are limited to volumes in which hydroxide and nitrite inhibitors reach required concentrations by diffusion from the bulk waste within five days. This diffusion process was modeled conservatively by Fick`s second law of diffusion. The solution to the model was applied to all applicable conditions which exist in the waste tanks. Plant engineers adapted and incorporated the results into a practical working procedure for controlling and monitoring the addition of uninhibited water. Research, technical support, and field engineers worked together to produce an effective solution to a potential waste tank corrosion problem.

Hsu, T.C.; Wiersma, B.J.; Zapp, P.E.; Pike, J.A. [Westinghouse Savannah River Co., Aiken, SC (United States)

1995-11-01T23:59:59.000Z

42

Waste-to-Energy Biomass Digester with Decreased Water Consumption...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Applications and Industries Disposal of solid animal waste and generation of biogas Suitable for large-scale animal feeding operations that dry-scrape manure Especially...

43

WATER ACTIVITY DATA ASSESSMENT TO BE USED IN HANFORD WASTE SOLUBILITY CALCULATIONS  

SciTech Connect (OSTI)

The purpose of this report is to present and assess water activity versus ionic strength for six solutes:sodium nitrate, sodium nitrite, sodium chloride, sodium carbonate, sodium sulfate, and potassium nitrate. Water activity is given versus molality (e.g., ionic strength) and temperature. Water activity is used to estimate Hanford crystal hydrate solubility present in the waste.

DISSELKAMP RS

2011-01-06T23:59:59.000Z

44

Cattle Feedlot Waste Management Practices -For Water and Air Pollution Control  

E-Print Network [OSTI]

Cattle Feedlot Waste Management Practices - For Water and Air Pollution Control John M. Sweeten in the potential for both water and air pollution. To prevent potential problems from developinginto real problems* Water Pollution and Wastewater Management This bulletin outlines some of the basic regulatory

Mukhtar, Saqib

45

Economic Analysis and Comparison of Waste Water Resource Heat Pump Heating and Air-Conditioning System  

E-Print Network [OSTI]

ICEBO2006, Shenzhen, China Renewable Energy Resources and a Greener Future, Vol.VIII-8-1 Economic Analysis and Comparison of Waste Water Resource Heat Pump Heating and Air-conditioning System Chunlei Zhang Suilin Wang Hongbing Chen...

Zhang, C.; Wang, S.; Chen, H.; Shi, Y.

2006-01-01T23:59:59.000Z

46

Water distillation using waste engine heat from an internal combustion engine  

E-Print Network [OSTI]

To meet the needs of forward deployed soldiers and disaster relief personnel, a mobile water distillation system was designed and tested. This system uses waste engine heat from the exhaust flow of an internal combustion ...

Mears, Kevin S

2006-01-01T23:59:59.000Z

47

E-Print Network 3.0 - advanced waste water Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of the Swedish report "Frbrnning av avfall en Summary: in the plants, 90-95% of the dioxins in the waste are broken down into carbon dioxide, water and hydrogen... RVF - The...

48

Analysis of recoverable waste heat of circulating cooling water in hot-stamping power system  

Science Journals Connector (OSTI)

This article studies the possibility of using heat pump instead of cooling tower to decrease temperature and recover waste heat of circulating cooling water of power system. Making use of heat transfer theory ......

Panpan Qin; Hui Chen; Lili Chen; Chong Wang

2013-08-01T23:59:59.000Z

49

wisconsin's vanishing waters tech transfer success stories reducing food waste College of Agricultural & Life Sciences  

E-Print Network [OSTI]

wisconsin's vanishing waters · tech transfer success stories · reducing food waste College to grow potatoes that serves as a model for other crops and leading cutting-edge research on biofuels

Balser, Teri C.

50

Ground-water monitoring compliance plan for the Hanford Site Solid Waste Landfill  

SciTech Connect (OSTI)

Washington state regulations required that solid waste landfill facilities have ground-water monitoring programs in place by May 27, 1987. This document describes the well locations, installation, characterization studies and sampling and analysis plan to be followed in implementing the ground-water monitoring program at the Hanford Site Solid Waste Landfill (SWL). It is based on Washington Administrative Code WAC 173-304-490. 11 refs., 19 figs., 4 tabs.

Fruland, R.M.

1986-10-01T23:59:59.000Z

51

A new technique to monitor ground-water quality at municipal solid waste landfills  

E-Print Network [OSTI]

A NEW TECHNIQUE TO MONITOR GROUND-WATER EQUALITY AT MUNICIPAL SOLID WASTE LANDFILLS A Thesis by STEVEN CHARLES HART Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE May 1989 Major Subject: Geology A NEW TECHNIIIUE TO MONITOR GROUND-WATER IIUALITY AT MUNICIPAL SOLID WASTE LANDFILLS A Thesis by STEVEN CHARLES HART Approved as to style and content by: Christo her C. Mathewson (Chair...

Hart, Steven Charles

2012-06-07T23:59:59.000Z

52

A method to hydrologically isolate water soluble wastes  

E-Print Network [OSTI]

drainage from the gravel layer and below the buried saline waste. Treatments were tested for effectiveness in both a wet and dry moisture regime using simulated monthly rainfall applications. Upward migration of soluble salts was monitored by measuring...

Rooney, Daniel James

2012-06-07T23:59:59.000Z

53

Organic Tank Safety Project: development of a method to measure the equilibrium water content of Hanford organic tank wastes and demonstration of method on actual waste  

SciTech Connect (OSTI)

Some of Hanford`s underground waste storage tanks contain Organic- bearing high level wastes that are high priority safety issues because of potentially hazardous chemical reactions of organics with inorganic oxidants in these wastes such as nitrates and nitrites. To ensure continued safe storage of these wastes, Westinghouse Hanford Company has placed affected tanks on the Organic Watch List and manages them under special rules. Because water content has been identified as the most efficient agent for preventing a propagating reaction and is an integral part of the criteria developed to ensure continued safe storage of Hanford`s organic-bearing radioactive tank wastes, as part of the Organic Tank Safety Program the Pacific Northwest National Laboratory developed and demonstrated a simple and easily implemented procedure to determine the equilibrium water content of these potentially reactive wastes exposed to the range of water vapor pressures that might be experienced during the wastes` future storage. This work focused on the equilibrium water content and did not investigate the various factors such as @ ventilation, tank surface area, and waste porosity that control the rate that the waste would come into equilibrium, with either the average Hanford water partial pressure 5.5 torr or other possible water partial pressures.

Scheele, R.D.; Bredt, P.R.; Sell, R.L.

1996-09-01T23:59:59.000Z

54

HEAT RECOVERY FROM WASTE WATER BY MEANS OF A RECUPERATIVE HEAT EXCHANGER AND A HEAT PUMP  

Science Journals Connector (OSTI)

ABSTRACT The useful heat of warm waste water is generally transferred to cold water using a recuperative heat exchanger. Depending on its design, the heat exchanger is able to utilise up to 90% of the waste heat potential available. The electric energy needed to operate such a system is more than compensated for by an approximately 50-fold gain of useful heat. To increase substantially the waste heat potential available and the amount of heat recovered, the system for recuperative heat exchange can be complemented by a heat pump. Such a heat recovery system on the basis of waste water is being operated in a public indoor swimming pool. Here the recuperative heat exchanger accounts for about 60%, the heat pump for about 40% of the toal heat reclaimed. The system consumes only 1 kWh of electric energy to supply 8 kWh of useful heat. In this way the useful heat of 8 kWh is compensated for by the low consumption of primary energy of 2.8 kWh. Due to the installation of an automatic cleaning device, the heat transfer surfaces on the waste water side avoid deposits so that the troublesome maintenance work required in other cases on the heat exchangers is not required. KEYWORDS Shower drain water, recuperative heat recovery, heat recovery by means of a heat pump, combination of both types of heat recovery, automatic cleaning device for the heat exchangers, ratio of useful heat supply vs. electric energy consumption, economic consideration.

K. Biasin; F.D. Heidt

1988-01-01T23:59:59.000Z

55

To be published in Waste Management (2010) Bodnan et al. MINERALOGY AND PORE WATER CHEMISTRY OF A BOILER ASH  

E-Print Network [OSTI]

) or for burning relatively homogeneous wastes such as sewage sludge (Van de Velden et al., 2008, Toledo et alTo be published in Waste Management (2010) ­ Bodénan et al. MINERALOGY AND PORE WATER CHEMISTRY a municipal solid waste fluidized-bed incinerator, subject to 18 months of dynamic leaching in a large

Boyer, Edmond

56

The mutagenic potential of soil and runoff water from land treatment of three hazardous industrial wastes  

E-Print Network [OSTI]

THE MUTAGENIC POTENTIAL OF SOIL AND RUNOFF WATER FROM LAND TREATMENT OF THREE HAZARDOUS INDUSTRIAL WASTES A Thesis by PHEBE DAYOL Submitted to the Graduate College of Te xa s ASM Un i ver s i ty in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE August 1987 Major Subject: Soil Science THE MUTAGENIC POTENTIAL OF SOIL AND RUNOFF WATER FROM LAND TREATMENT OF THREE HAZARDOUS INDUSTRIAL WASTES A Thesis by PHEBE DAVDL Approved. s to style and content by: Kirk W...

Davol, Phebe

2012-06-07T23:59:59.000Z

57

Combination gas-producing and waste-water disposal well. [DOE patent application  

DOE Patents [OSTI]

The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

Malinchak, R.M.

1981-09-03T23:59:59.000Z

58

Water Waste Management and Mercury Trading: An Optimization Approach  

E-Print Network [OSTI]

with air pollutants has encouraged introduction of effluent trading concept for water pollution control, IL 60208, USA. E-mail: mehrotra@iems.nwu.edu Abstract Effluent trading to manage water pollution based ap- proach to assist decision making in pollutant trading which is beyond heuristics

Hazen, Gordon

59

Forage, soil and water quality responses to animal waste application  

E-Print Network [OSTI]

result in a net surplus of P and potential nutrient escape to surface waters (Dudzinsky et al. , 1983). Dairy effluent poses a lesser risk of phosphorus loading than does poultry litter since the concentration of nutrients in dairy effluent averages...

Johnson, Andrew Floyd

1995-01-01T23:59:59.000Z

60

Pilot Phase of a Field Study to Determine Waste of Water and Energy in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Phase of a Field Study to Determine Waste of Water and Energy in Phase of a Field Study to Determine Waste of Water and Energy in Residential Hot-Water Distribution Systems Title Pilot Phase of a Field Study to Determine Waste of Water and Energy in Residential Hot-Water Distribution Systems Publication Type Report LBNL Report Number LBNL-4985E Year of Publication 2011 Authors Lutz, James D., Peter J. Biermayer, and Derek A. King Subsidiary Authors Energy Analysis Department Document Number LBNL-4985E Pagination 29 Date Published January 1 Publisher Lawrence Berkeley National Laboratory City Berkeley ISBN Number LBNL-4985E Abstract This paper provides an overview of the pilot phase of a field study to determine the feasibility of a method of directly measuring the waste of water and energy caused by current hot water distribution systems (HWDS) in California residences using wireless sensor network technologies. The experience gained in the pilot phase study using wireless sensor networks demonstrates that it is clearly feasible to use this technology for measuring water and gas flows and temperatures.The goal was to demonstrate a method to reliably collect water flow and temperature data from every indoorhot water end use point, at the water heater in one second intervals when water was flowing. The overall success of the pilot phase study indicates that this technique can work. However, the pilot phase study did reveal shortcomings in many areas. The recommendations in this paper address those shortcomings and provide ways to improve the outcomes of any follow-on field study. The project's tasks were to test and evaluate the proposed hardware, installation protocols, data collection, and processing procedures. The techniques developed in this project provide a way to accurately measure temperature and flow of indoor water use events at one second resolution. The technologies used in this pilot phase study are viable for use in a larger field study to determine the energy and water efficiency of hot water distribution systems in California homes. The lessons learned from this experience will improve procedures, programming and wireless sensor network specifications.

Note: This page contains sample records for the topic "guthrie waste water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Keywordscondensation tube, surface modification, waste heat and condensation water recovery system  

E-Print Network [OSTI]

merge to form water thin film on tube condenser surface. The condensing mechanism will change from high efficiency dropwise condensation to low efficiency filmwise condensation. In this proposal, surface system is one of the most important facilities in power plants. High efficiency waste heat

Leu, Tzong-Shyng "Jeremy"

62

Modelling water flow and transport of contaminants from mine wastes stored in open pits  

E-Print Network [OSTI]

and petroleum energy resources. In addition, the search for safe storage of hazardous wastes, where the primary significantly to the economy of many countries throughout the world. Mining operations also generate significant motivated by a variety of practical issues including locating and evaluating water supplies and geothermal

Aubertin, Michel

63

SOME TCD LICENSEES 2011-12 27. Waste-Water Distribution Device  

E-Print Network [OSTI]

Development Stage: Licensed Company Contact: Molloy Precast In rural areas wastewater from houses is treatedSOME TCD LICENSEES 2011-12 27. Waste-Water Distribution Device Researcher: Laurence Gill and disposed on-site through a process of septic tank treatment followed by discharge to the subsoil. An even

O'Mahony, Donal E.

64

Decontamination of Nuclear Liquid Wastes Status of CEA and AREVA R and D: Application to Fukushima Waste Waters - 12312  

SciTech Connect (OSTI)

Liquid wastes decontamination processes are mainly based on two techniques: Bulk processes and the so called Cartridges processes. The first technique has been developed for the French nuclear fuel reprocessing industry since the 60's in Marcoule and La Hague. It is a proven and mature technology which has been successfully and quickly implemented by AREVA at Fukushima site for the processing of contaminated waters. The second technique, involving cartridges processes, offers new opportunities for the use of innovative adsorbents. The AREVA process developed for Fukushima and some results obtained on site will be presented as well as laboratory scale results obtained in CEA laboratories. Examples of new adsorbents development for liquid wastes decontamination are also given. A chemical process unit based on co-precipitation technique has been successfully and quickly implemented by AREVA at Fukushima site for the processing of contaminated waters. The asset of this technique is its ability to process large volumes in a continuous mode. Several chemical products can be used to address specific radioelements such as: Cs, Sr, Ru. Its drawback is the production of sludge (about 1% in volume of initial liquid volume). CEA developed strategies to model the co-precipitation phenomena in order to firstly minimize the quantity of added chemical reactants and secondly, minimize the size of co-precipitation units. We are on the way to design compact units that could be mobilized very quickly and efficiently in case of an accidental situation. Addressing the problem of sludge conditioning, cementation appears to be a very attractive solution. Fukushima accident has focused attention on optimizations that should be taken into account in future studies: - To better take account for non-typical aqueous matrixes like seawater; - To enlarge the spectrum of radioelements that can be efficiently processed and especially short lives radioelements that are usually less present in standard effluents resulting from nuclear activities; - To develop reversible solid adsorbents for cartridge-type applications in order to minimize wastes. (authors)

Fournel, B.; Barre, Y.; Lepeytre, C.; Peycelon, H. [CEA Marcoule, DTCD, BP17171, 30207 Bagnols sur Ceze (France); Grandjean, A. [Institut de Chimie Separative de Marcoule, UMR5257 CEA-CNRS-UM2-ENSCM, BP17171, 30207 Bagnols sur Ceze (France); Prevost, T.; Valery, J.F. [AREVA NC, Paris La Defense (France); Shilova, E.; Viel, P. [CEA Saclay, DSM/IRAMIS/SPCSI, 91191 Gif sur Yvette (France)

2012-07-01T23:59:59.000Z

65

Kinematic wave model for water movement in municipal solid waste  

E-Print Network [OSTI]

conductivity and capillary potential suggested by Clapp and Hornberger [1978] have been employed. However, as pointed out by Bendz et at. (1997), the process assumptions on which the Richards equation and the ensuing CDE rely for their applicability have... and Environ- mental Impact, edited by T. H. Christensen, R. Cossu, and R. Steg- mann, pp. 29-49, Academic, San Diego, Calif., 1989. Clapp, R. B., and G. M. Hornberger, Empirical equations for some soil hydraulic properties, Water Resour. Res., 14, 601...

Bendz, David; Singh, Vijay P.; Rosqvist, H??kan; Bengtsson, Lars

66

Flexible Distributed Energy & Water from Waste for Food and Beverage Industry  

SciTech Connect (OSTI)

Food and beverage plants inherently consume a large quantity of water and generate a high volume of wastewater rich in organic content. On one hand, water discharge regulations are getting more stringent over the time, necessitating the use of different technologies to reduce the amount of wastewater and improve the effluent water quality. On the other hand, growing energy and water costs are driving the plants to extract and reuse valuable energy and water from the wastewater stream. An integrated waste-tovalue system uses a combination of anaerobic digester (AD), reciprocating gas engine/boiler, membrane bioreactor (MBR), and reverse osmosis (RO) to recover valuable energy as heat and/or electricity as well as purify the water for reuse. While individual anaerobic digestion and membrane bioreactors are being used in increasing numbers, there is a growing need to integrate them together in a waste-to-value system for enhanced energy and water recovery. However, currently operation of these systems relies heavily on the plant operator to perform periodic sampling and off-line lab analysis to monitor the system performance, detect any abnormal condition due to variations in the wastewater and decide on appropriate remedial action needed. This leads to a conservative design and operation of these systems to avoid any potential upsets that can destabilize the system.

Shi, Ruijie

2013-12-30T23:59:59.000Z

67

Treatment of nitrate-rich water in a baffled membrane bioreactor (BMBR) employing waste derived materials  

Science Journals Connector (OSTI)

Abstract Nitrate removal in submerged membrane bioreactors (MBRs) is limited as intensive aeration (for maintaining adequate dissolved oxygen levels and for membrane scouring) deters the formation of anoxic zones essential for biological denitrification. The present study employs baffled membrane bioreactor (BMBR) to overcome this constraint. Treatment of nitrate rich water (synthetic and real groundwater) was investigated. Sludge separation was achieved using ceramic membrane filters prepared from waste sugarcane bagasse ash. A complex external carbon source (leachate from anaerobic digestion of food waste) was used to maintain an appropriate C/N ratio. Over 90% COD and 95% NO3N reduction was obtained. The bagasse ash filters produced a clear permeate, free of suspended solids. Sludge aggregates were observed in the reactor and were linked to the high extracellular polymeric substances (EPS) content. Lower sludge volume index (40mL/g compared to 150mL/g for seed sludge), higher settling velocity (47m/h compared to 10m/h for seed sludge) and sludge aggregates (0.7mm aggregates compared to <0.2mm for seed sludge) was observed. The results demonstrate the potential of waste-derived materials viz. food waste leachate and bagasse ash filters in water treatment.

Subhankar Basu; Saurabh K. Singh; Prahlad K. Tewari; Vidya S. Batra; Malini Balakrishnan

2014-01-01T23:59:59.000Z

68

Recycled Water Reuse Permit Renewal Application for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond  

SciTech Connect (OSTI)

ABSTRACT This renewal application for the Industrial Wastewater Reuse Permit (IWRP) WRU-I-0160-01 at Idaho National Laboratory (INL), Materials and Fuels Complex (MFC) Industrial Waste Ditch (IWD) and Industrial Waste Pond (IWP) is being submitted to the State of Idaho, Department of Environmental Quality (DEQ). This application has been prepared in compliance with the requirements in IDAPA 58.01.17, Recycled Water Rules. Information in this application is consistent with the IDAPA 58.01.17 rules, pre-application meeting, and the Guidance for Reclamation and Reuse of Municipal and Industrial Wastewater (September 2007). This application is being submitted using much of the same information contained in the initial permit application, submitted in 2007, and modification, in 2012. There have been no significant changes to the information and operations covered in the existing IWRP. Summary of the monitoring results and operation activity that has occurred since the issuance of the WRP has been included. MFC has operated the IWP and IWD as regulated wastewater land treatment facilities in compliance with the IDAPA 58.01.17 regulations and the IWRP. Industrial wastewater, consisting primarily of continuous discharges of nonhazardous, nonradioactive, routinely discharged noncontact cooling water and steam condensate, periodic discharges of industrial wastewater from the MFC facility process holdup tanks, and precipitation runoff, are discharged to the IWP and IWD system from various MFC facilities. Wastewater goes to the IWP and IWD with a permitted annual flow of up to 17 million gallons/year. All requirements of the IWRP are being met. The Operations and Maintenance Manual for the Industrial Wastewater System will be updated to include any new requirements.

No Name

2014-10-01T23:59:59.000Z

69

Electrodialysis-based separation process for salt recovery and recycling from waste water  

SciTech Connect (OSTI)

A method for recovering salt from a process stream containing organic contaminants is provided, comprising directing the waste stream to a desalting electrodialysis unit so as to create a concentrated and purified salt permeate and an organic contaminants-containing stream, and contacting said concentrated salt permeate to a water-splitting electrodialysis unit so as to convert the salt to its corresponding base and acid. 6 figs.

Tsai, S.P.

1997-07-08T23:59:59.000Z

70

Electrodialysis-based separation process for salt recovery and recycling from waste water  

DOE Patents [OSTI]

A method for recovering salt from a process stream containing organic contaminants is provided, comprising directing the waste stream to a desalting electrodialysis unit so as to create a concentrated and purified salt permeate and an organic contaminants containing stream, and contacting said concentrated salt permeate to a water-splitting electrodialysis unit so as to convert the salt to its corresponding base and acid.

Tsai, Shih-Perng (Naperville, IL)

1997-01-01T23:59:59.000Z

71

Food Losses and Waste in China and Their Implication for Water and Land  

Science Journals Connector (OSTI)

Such losses also imply that 26 11 million hectares of land were used in vain, equivalent to the total arable land of Mexico. ... The fact remains that all food produced, regardless if it is eaten, lost, wasted, and converted, has consumed water, energy, occupied land, and contributed to greenhouse gas (GHG) emissions. ... Following rapid economic development new policies and reforms to open China to the global market, living standards have improved in recent years. ...

Junguo Liu; Jan Lundqvist; Josh Weinberg; Josephine Gustafsson

2013-08-13T23:59:59.000Z

72

Appropriate Technologies and Systems to respond to Climate Change, Improved Water Resources Management, Waste Management and Sanitation  

E-Print Network [OSTI]

Resources Management, Waste Management and Sanitation A Review of Water Information Systems in the English to adequately manage the resource and institute measures to equitably allocate water among the various competing in the management of the resource. This paper examines the water information systems of St. Lucia, Jamaica

Barthelat, Francois

73

The mobility of water soluble organic compounds in soils from the land application of petroleum waste sludge  

E-Print Network [OSTI]

THE MOBILITY OF WATER SOLUBLE ORGANIC COMPOUNDS IN SOILS FROM THE LAND APPLICATION OF PETROLEUM WASTE SLUDGE A Thesis by GORDON BARCUS EVANS, JR. Submitted to the Graduate College of Texas A&l1 University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE December 1979 Major Subject: Soil Science THE MOBILITY OF WATER SOLUBLE ORGANIC COMPOUNDS IN SOILS FROM THE LAND APPLICATION OF PETROLEUM WASTE SLUDGE A Thesis by GORDON BARCUS EVANS, JR. Approved...

Evans, Gordon Barcus

1979-01-01T23:59:59.000Z

74

Liquefaction of cellulosic wastes. 6: Oxygen compounds in pyrolytic oil and water fractions  

SciTech Connect (OSTI)

Liquid hydrocarbon oil and water have been produced from the liquefaction of cellulosic matter present in municipal solid wastes. The produced pyrolytic oil and water fraction seemed to be contaminated with considerable amounts of oxygen compounds as compared with fuels derived from a petroleum origin. The oxygen compounds included organic acids (fatty and naphthenic acids), phenols, and carbonyl compounds. These classes of oxygen compounds were extracted selectively from the pyrolytic oils and water using chemical extraction methods. Methyl esters of fatty acids and 2,4-dinitrophenylhydrazones of carbonyl compounds were identified by gas chromatography and thin layer chromatography, respectively. It was suggested that the identified oxygen compounds could be produced from the pyrolysis of volatiles (e.g., levoglucosane, which is the primary product of cellulose depolymerization) via different mechanistic pathways.

Gharieb, H.K.; Faramawy, S.; El-Amrousi, F.A.; El-Sabagh, S.M. [Egyptian Petroleum Research Inst., Cairo (Egypt)

1998-07-01T23:59:59.000Z

75

Annual water quality data report for the Waste Isolation Pilot Plant  

SciTech Connect (OSTI)

This is the fourth Annual Water Quality Data Report for the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP project is operated by the United States Department of Energy (DOE) for the purpose of providing a research and development facility to demonstrate the safe disposal of transuranic radioactive wastes generated by the defense activities of the United States Government. This report presents water quality data collected from January 1988 through December 1988 from 16 designated pre-operational (WIPP facility) monitoring wells, two additional wells, and 10 privately-owned wells in the vicinity of the WIPP. Additionally, water samples were collected from the Air Intake Shaft during shaft construction activities at the WIPP. This report lists pertinent information regarding the monitoring wells sampled, sampling zone, dates pumped, and types of samples collected during 1988. Comparative data from previous samplings of all wells can be found in Uhland and Randall (1986), Uhland et al. (1987), Randall et al. (1988), as well as in this report. The data reported by the Water Quality Sampling Program in this and previous reports indicate that serial sampling is a very useful tool in determining sample representativeness from wells in the WIPP vicinity. Serial sample field chemistry data are demonstrated to be highly accurate and precise as indicated by the excellent overall average percent spike recovery values and low RPD values reported for the sampling events. Serial sample field chemistry data and laboratory water quality parameter analyses gathered by the WQSP since January 1985 are the foundation for a pre-operational water quality baseline at the WIPP. 32 refs., 66 figs., 96 tabs.

Lyon, M.L. (International Technology Corp., Torrance, CA (USA)) [International Technology Corp., Torrance, CA (USA)

1989-04-01T23:59:59.000Z

76

State waste discharge permit application 400 Area secondary cooling water. Revision 2  

SciTech Connect (OSTI)

This document constitutes the Washington Administrative Code 173-216 State Waste Discharge Permit Application that serves as interim compliance as required by Consent Order DE 91NM-177, for the 400 Area Secondary Cooling Water stream. As part of the Hanford Federal Facility Agreement and Consent Order negotiations, the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site that affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173-216 of the Washington Administrative Code, the State Waste Discharge Permitting Program. As a result of this decision, the Washington State Department of Ecology and the US Department of Energy, Richland Operations Office entered into Consent Order DE 91NM-177. The Consent Order DE 91NM-177 requires a series of permitting activities for liquid effluent discharges. Based upon compositional and flow rate characteristics, liquid effluent streams on the Hanford Site have been categorized into Phase 1, Phase 2, and Miscellaneous streams. This document only addresses the 400 Area Secondary Cooling Water stream, which has been identified as a Phase 2 stream. The 400 Area Secondary Cooling Water stream includes contribution streams from the Fuels and Materials Examination Facility, the Maintenance and Storage Facility, the 481-A pump house, and the Fast Flux Test Facility.

NONE

1996-01-01T23:59:59.000Z

77

BIO?REFINERIES: BIOPROCESS TECHNOLOGIES FOR WASTE?WATER TREATMENT, ENERGY AND PRODUCT VALORIZATION  

Science Journals Connector (OSTI)

Increasing pressure is being exerted on communities and nations to source energy from forms other than fossil fuels. Also potable water is becoming a scarce resource in many parts of the world and there remains a large divide in the demand and utilization of plant products derived from genetically modified organisms (GMOs) and non?GMOs. The most extensive user and manager of terrestrial ecosystems is agriculture which is also the de facto steward of natural resources. As stated by Miller (2008) no other industry or institution comes close to the comparative advantage held for this vital responsibility while simultaneously providing food fiber and other biology?based products including energy. Since modern commercial agriculture is transitioning from the production of bulk commodities to the provision of standardized products and specific?attribute raw materials for differentiated markets we can argue that processes such as mass cultivation of microalgae and the concept of bio?refineries be seen as part of a new agronomy. EBRU is currently exploring the integration of bioprocess technologies using microalgae as biocatalysts to achieve waste?water treatment water polishing and endocrine disruptor (EDC) removal sustainable energy production and exploitation of the resultant biomass in agriculture as foliar fertilizer and seed coatings and for commercial extraction of bulk commodities such as bio?oils and lecithin. This presentation will address efforts to establish a fully operational solar?driven microalgae bio?refinery for use not only in waste remediation but to transform waste and biomass to energy fuels and other useful materials (valorisation) with particular focus on environmental quality and sustainability goals.

A. Keith Cowan

2010-01-01T23:59:59.000Z

78

Control System Development for Integrated Biological Waste Water Treatment Process of a Paper Production Plant  

Science Journals Connector (OSTI)

Abstract A bioreactor, integrated with an anoxic reactor and a settler for waste water treatment from a paper production plant is under investigation to implement a control system for enhancing effluent quality. In order to reveal the operation of the integrated process to achieve a specific goal, a methodology for control system development is proposed. In this paper, preliminary results of some steps of the methodology are presented, in order to address the oxygen uptake rate control. A dynamic model is developed for future analysis for the conceptual design of different generated control configurations.

Alicia Romn-Martnez; Pastor Lanuza-Perez; Margarito Cepeda-Rodrguez; Elvia M. Mata-Padrn

2013-01-01T23:59:59.000Z

79

Contested environmental policy infrastructure: Socio-political acceptance of renewable energy, water, and waste facilities  

SciTech Connect (OSTI)

The construction of new infrastructure is hotly contested. This paper presents a comparative study on three environmental policy domains in the Netherlands that all deal with legitimising building and locating infrastructure facilities. Such infrastructure is usually declared essential to environmental policy and claimed to serve sustainability goals. They are considered to serve (proclaimed) public interests, while the adverse impact or risk that mainly concerns environmental values as well is concentrated at a smaller scale, for example in local communities. The social acceptance of environmental policy infrastructure is institutionally determined. The institutional capacity for learning in infrastructure decision-making processes in the following three domains is compared: 1.The implementation of wind power as a renewable energy innovation; 2.The policy on space-water adaptation, with its claim to implement a new style of management replacing the current practice of focusing on control and 'hard' infrastructure; 3.Waste policy with a focus on sound waste management and disposal, claiming a preference for waste minimization (the 'waste management hierarchy'). All three cases show a large variety of social acceptance issues, where the appraisal of the impact of siting the facilities is confronted with the desirability of the policies. In dealing with environmental conflict, the environmental capacity of the Netherlands appears to be low. The policies are frequently hotly contested within the process of infrastructure decision-making. Decision-making on infrastructure is often framed as if consensus about the objectives of environmental policies exists. These claims are not justified, and therefore stimulating the emergence of environmental conflicts that discourage social acceptance of the policies. Authorities are frequently involved in planning infrastructure that conflicts with their officially proclaimed policy objectives. In these circumstances, they are often confronted with local actors who support alternatives that are in fact better in tune with the new policy paradigm.

Wolsink, Maarten, E-mail: M.P.Wolsink@uva.n [Department of Geography, Planning and International Development Studies, University of Amsterdam, Nieuwe Prinsengracht 130, 1018 VZ Amsterdam (Netherlands)

2010-09-15T23:59:59.000Z

80

Commercial Light Water Reactor -Tritium Extraction Facility Process Waste Assessment (Project S-6091)  

SciTech Connect (OSTI)

The Savannah River Site (SRS) has been tasked by the Department of Energy (DOE) to design and construct a Tritium Extraction Facility (TEF) to process irradiated tritium producing burnable absorber rods (TPBARs) from a Commercial Light Water Reactor (CLWR). The plan is for the CLWR-TEF to provide tritium to the SRS Replacement Tritium Facility (RTF) in Building 233-H in support of DOE requirements. The CLWR-TEF is being designed to provide 3 kg of new tritium per year, from TPBARS and other sources of tritium (Ref. 1-4).The CLWR TPBAR concept is being developed by Pacific Northwest National Laboratory (PNNL). The TPBAR assemblies will be irradiated in a Commercial Utility light water nuclear reactor and transported to the SRS for tritium extraction and processing at the CLWR-TEF. A Conceptual Design Report for the CLWR-TEF Project was issued in July 1997 (Ref. 4).The scope of this Process Waste Assessment (PWA) will be limited to CLWR-TEF processing of CLWR irradiated TPBARs. Although the CLWR- TEF will also be designed to extract APT tritium-containing materials, they will be excluded at this time to facilitate timely development of this PWA. As with any process, CLWR-TEF waste stream characteristics will depend on process feedstock and contaminant sources. If irradiated APT tritium-containing materials are to be processed in the CLWR-TEF, this PWA should be revised to reflect the introduction of this contaminant source term.

Hsu, R.H.; Delley, A.O.; Alexander, G.J.; Clark, E.A.; Holder, J.S.; Lutz, R.N.; Malstrom, R.A.; Nobles, B.R. [Westinghouse Savannah River Co., Aiken, SC (United States); Carson, S.D. [Sandia National Laboratories, New Mexico, NM (United States); Peterson, P.K. [Sandia National Laboratories, New Mexico, NM (United States)

1997-11-30T23:59:59.000Z

Note: This page contains sample records for the topic "guthrie waste water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Joint Assessment of Renewable Energy and Water Desalination Research Center (REWDC) Program Capabilities and Facilities In Radioactive Waste Management  

SciTech Connect (OSTI)

The primary goal of this visit was to perform a joint assessment of the Renewable Energy and Water Desalination Center's (REWDC) program in radioactive waste management. The visit represented the fourth technical and scientific interaction with Libya under the DOE/NNSA Sister Laboratory Arrangement. Specific topics addressed during the visit focused on Action Sheet P-05-5, ''Radioactive Waste Management''. The Team, comprised of Mo Bissani (Team Lead), Robert Fischer, Scott Kidd, and Jim Merrigan, consulted with REWDC management and staff. The team collected information, discussed particulars of the technical collaboration and toured the Tajura facility. The tour included the waste treatment facility, waste storage/disposal facility, research reactor facility, hot cells and analytical labs. The assessment team conducted the first phase of Task A for Action Sheet 5, which involved a joint assessment of the Radioactive Waste Management Program. The assessment included review of the facilities dedicated to the management of radioactive waste at the Tourja site, the waste management practices, proposed projects for the facility and potential impacts on waste generation and management.

Bissani, M; Fischer, R; Kidd, S; Merrigan, J

2006-04-03T23:59:59.000Z

82

Heating and cooling of municipal buildings with waste heat from ground water  

SciTech Connect (OSTI)

The feasibility of using waste heat from municipal water wells to replace natural gas for heating of the City Hall, Fire Station, and Community Hall in Wilmer, Texas was studied. At present, the 120/sup 0/F well water is cooled by dissipating the excess heat through evaporative cooling towers before entering the distribution system. The objective of the study was to determine the pumping cycle of the well and determine the amount of available heat from the water for a specified period. This data were correlated with the heating and cooling demand of the City's buildings, and a conceptual heat recovery system will be prepared. The system will use part or all of the excess heat from the water to heat the buildings, thereby eliminating the use of natural gas. The proposed geothermal retrofit of the existing natural gas heating system is not economical because the savings in natural gas does not offset the capital cost of the new equipment and the annual operating and maintenance costs. The fuel savings and power costs are a virtual trade-off over the 25-year period. The installation and operation of the system was estimated to cost $105,000 for 25 years which is an unamortized expense. In conclusion, retrofitting the City of Wilmer's municipal buildings is not feasible based on the economic analysis and fiscal projections as presented.

Morgan, D.S.; Hochgraf, J.

1980-10-01T23:59:59.000Z

83

Removal of Radionuclides from Waste Water at Fukushima Daiichi Nuclear Power Plant: Desalination and Adsorption Methods - 13126  

SciTech Connect (OSTI)

Waste water containing high levels of radionuclides due to the Fukushima Daiichi Nuclear Power Plant accident, has been treated by the adsorption removal and reverse-osmosis (RO) desalination to allow water re-use for cooling the reactors. Radionuclides in the waste water are collected in the adsorbent medium and the RO concentrate (RO brine) in the water treatment system currently operated at the Fukushima Daiichi site. In this paper, we have studied the behavior of radionuclides in the presently applied RO desalination system and the removal of radionuclides in possible additional adsorption systems for the Fukushima Daiichi waste water treatment. Regarding the RO desalination system, decontamination factors (DFs) of the elements present in the waste water were obtained by lab-scale testing using an RO unit and simulated waste water with non-radioactive elements. The results of the lab-scale testing using representative elements showed that the DF for each element depended on its hydrated ionic radius: the larger the hydrated ionic radius of the element, the higher its DF is. Thus, the DF of each element in the waste water could be estimated based on its hydrated ionic radius. For the adsorption system to remove radionuclides more effectively, we studied adsorption behavior of typical elements, such as radioactive cesium and strontium, by various kinds of adsorbents using batch and column testing. We used batch testing to measure distribution coefficients (K{sub d}s) for cesium and strontium onto adsorbents under different brine concentrations that simulated waste water conditions at the Fukushima Daiichi site. For cesium adsorbents, K{sub d}s with different dependency on the brine concentration were observed based on the mechanism of cesium adsorption. As for strontium, K{sub d}s decreased as the brine concentration increased for any adsorbents which adsorbed strontium by intercalation and by ion exchange. The adsorbent titanium oxide had higher K{sub d}s and it was used for the column testing to obtain breakthrough curves under various conditions of pH and brine concentration. The breakthrough point had a dependency on pH and the brine concentration. We found that when the pH was higher or the brine concentration was lower, the longer it took to reach the breakthrough point. The inhibition of strontium adsorption by alkali earth metals would be diminished for conditions of higher pH and lower brine concentration. (authors)

Kani, Yuko; Kamosida, Mamoru; Watanabe, Daisuke [Hitachi Research Laboratory, Hitachi, Ltd., 7-2-1 Omika-cho, Hitachi, Ibaraki, 319-1221 (Japan)] [Hitachi Research Laboratory, Hitachi, Ltd., 7-2-1 Omika-cho, Hitachi, Ibaraki, 319-1221 (Japan); Asano, Takashi; Tamata, Shin [Hitachi Works, Hitachi-GE Nuclear Energy, Ltd. (Japan)] [Hitachi Works, Hitachi-GE Nuclear Energy, Ltd. (Japan)

2013-07-01T23:59:59.000Z

84

Trench water chemistry at commercially operated low-level radioactive waste disposal sites. [Trench waters from Maxey Flats, Kentucky and West Valley, New York  

SciTech Connect (OSTI)

Water samples from the disposal trenches of two low-level radioactive-waste-disposal sites were analyzed for their inorganic, organic, and radionuclide contents. Since oxidation of the trench waters can occur during their movement along the groundwater flow path, experiments were performed to measure the chemical and physical changes that occur in these waters upon oxidation. Low concentrations of chelating agents, shown to exist in trench waters, may be responsible for keeping radionuclides, particularly /sup 60/Co, in solution. 4 figures, 5 tables.

Pietrzak, R.F.; Dayal, R.; Kinsley, M.T.; Clinton, J.; Czyscinski, K.S.; Weiss, A.J.

1982-01-01T23:59:59.000Z

85

Reduced pressure and temperature reclamation of water using the GE Integrated Water-waste Management System for potential space flight application  

E-Print Network [OSTI]

SYSTEM FOR POTENTIAL SPACE FLIGHT APPLICATION A Thesis by HASAN IMTIAZ CHOWDHURY Approved as to style and content by: G. P. Peterson (Chair of Committee) T. D. Rogers (Member) R. D. pence (Member) W. Bradley (Head of Department) December... 1989 ABSTRACT Reduced Pressure and Temperature Reclamation of Water Using the GE Integrated Water-waste Management System for Potential Space Flight Application. (December 1989) Hasan Imtiaz Chowdhury, B. S. , Prairie View AlkM University Chair...

Chowdhury, Hasan Imtiaz

1989-01-01T23:59:59.000Z

86

Application of inorganic aluminum salts to intensification of the clarification of cinder and oil-containing waste water  

SciTech Connect (OSTI)

The effects of inorganic coagulants together with polyacrylamide (PAA) were tested in waste water containing oil and finely dispersed cinder. It has been established that concentrated solutions of aluminum salts have the maximal clarification efficiency (82%). It has been shown that the residual alkali content of water is higher when concentrated (20%) solutions of aluminum salts are used than in the case of the use of dilute (1%) solutions. The expediency of the use of aluminum salts for the treatment of waste water with a low initial alkalinity (below 1.0 meq/liter) has been established. It has been established that aluminum sulfate is maximally effective when the alkali content of the water being purified is less than 1.8 or greater than 4.5 meq/liter.

Shub, V.B.; Khukhryanskaya, I.A.

1987-10-10T23:59:59.000Z

87

Flexible Distributed Energy & Water from Waste for the Food & Beverage Industry- Presentation by GE Global Research, June 2011  

Broader source: Energy.gov [DOE]

Presentation on Flexible Distributed Energy & Water from Waste for the Food & Beverage Industry, given by Aditya Kumar of GE Global Research, at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

88

Impact of earthen waste storage on nitrate concentration of surface water  

Science Journals Connector (OSTI)

One of the major sources of nitrogen is animal waste stored in earthen waste storage or unlined storage ponds. Quantifying seepage and mass transport of ... is the first critical step in estimating the long-term ...

Tasuku Kato; Motoko Shimura

2007-09-01T23:59:59.000Z

89

Control of water infiltration into near surface low-level waste disposal units. Final report on field experiments at a humid region site, Beltsville, Maryland  

SciTech Connect (OSTI)

This study`s objective was to assess means for controlling water infiltration through waste disposal unit covers in humid regions. Experimental work was carried out in large-scale lysimeters 21.34 m x 13.72 m x 3.05 m (70 ft x 45 ft x 10 ft) at Beltsville, Maryland. Results of the assessment are applicable to disposal of low-level radioactive waste (LLW), uranium mill tailings, hazardous waste, and sanitary landfills. Three kinds of waste disposal unit covers or barriers to water infiltration were investigated: (1) resistive layer barrier, (2) conductive layer barrier, and (3) bioengineering management.

Schulz, R.K.; Ridky, R.W.; O`Donnell, E.

1997-09-01T23:59:59.000Z

90

Interim site characterization report and ground-water monitoring program for the Hanford site solid waste landfill  

SciTech Connect (OSTI)

Federal and state regulations governing the operation of landfills require utilization of ground-water monitoring systems to determine whether or not landfill operations impact ground water at the point of compliance (ground water beneath the perimeter of the facility). A detection-level ground-water monitoring system was designed, installed, and initiated at the Hanford Site Solid Waste Landfill (SWL). Chlorinated hydrocarbons were detected at the beginning of the ground-water monitoring program and continue to be detected more than 1 year later. The most probable source of the chlorinated hydrocarbons is washwater discharged to the SWL between 1985 and 1987. This is an interim report and includes data from the characterization work that was performed during well installation in 1987, such as field observations, sediment studies, and geophysical logging results, and data from analyses of ground-water samples collected in 1987 and 1988, such as field parameter measurements and chemical analyses. 38 refs., 27 figs., 8 tabs.

Fruland, R.M.; Hagan, R.A.; Cline, C.S.; Bates, D.J.; Evans, J.C.; Aaberg, R.L.

1989-07-01T23:59:59.000Z

91

Control of water infiltration into near surface LLW (low level waste) disposal units: Annual report, October 1985-September 1986  

SciTech Connect (OSTI)

In the humid eastern part of the United States, trench covers have, in general, failed to prevent some of the incident precipitation from percolating downward to buried wastes. It is the purpose of the present work to investigate and demonstrate a procedure or technique that will control water infiltration to buried wastes regardless of above or below ground disposal. Results to date show the proposed procedure to be very promising and are applicable to shallow land burial as well as above ground disposal (e.g., Tumulus). In essence, the technique combines engineered or positive control of run-off, along with a vegetative cover, and is named ''bioengineering management''. To investigate control of infiltration, lysimeters are being used to make complete water balance measurements. The studies have been underway at the Maxey Flats, Kentucky, low-level waste disposal facility for the past three seasonal years. When the original Maxey Flats site closure procedure is followed, it is necessary to pump large amounts of water out of the lysimeters to prevent the water table from rising closer than 2 meters from the surface. Using the bioengineering management procedure, no pumping is required. As a result of the encouraging initial findings in the rather small-scale lysimeters at Maxey Flats, a large-scale facility for demonstration of the bioengineering management technique has been constructed at Beltsville, Maryland. This facility is now operational with the demonstration and data collection underway. 6 refs., 15 figs.

Schulz, R.K.; Ridky, R.W.; O'Donnell, E.

1987-04-01T23:59:59.000Z

92

Modeling water seepage into heated waste emplacement drifts at Yucca Mountain  

E-Print Network [OSTI]

into drifts at Yucca Mountain, Journal of ContaminantEMPLACEMENT DRIFTS AT YUCCA MOUNTAIN Jens Birkholzer, Sumitfor nuclear waste at Yucca Mountain, Nevada. Heating of rock

Birkholzer, Jens; Mukhopadhyay, Sumitra; Tsang, Yvonne

2003-01-01T23:59:59.000Z

93

2011 Federal Energy and Water Management Award Winners | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

community leaders, and local schools. David Guthrie U.S Department of the Interior U.S. Fish and Wildlife Service Arlington, Virginia David Guthrie is the energy coordinator for...

94

Recovery of solid fuel from municipal solid waste by hydrothermal treatment using subcritical water  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Hydrothermal treatment using subcritical water was studied to recover solid fuel from MSW. Black-Right-Pointing-Pointer More than 75% of carbon in MSW was recovered as char. Black-Right-Pointing-Pointer Heating value of char was comparable to that of brown coal and lignite. Black-Right-Pointing-Pointer Polyvinyl chloride was decomposed at 295 Degree-Sign C and 8 MPa and was removed by washing. - Abstract: Hydrothermal treatments using subcritical water (HTSW) such as that at 234 Degree-Sign C and 3 MPa (LT condition) and 295 Degree-Sign C and 8 MPa (HT condition) were investigated to recover solid fuel from municipal solid waste (MSW). Printing paper, dog food (DF), wooden chopsticks, and mixed plastic film and sheets of polyethylene, polypropylene, and polystyrene were prepared as model MSW components, in which polyvinylchloride (PVC) powder and sodium chloride were used to simulate Cl sources. While more than 75% of carbon in paper, DF, and wood was recovered as char under both LT and HT conditions, plastics did not degrade under either LT or HT conditions. The heating value (HV) of obtained char was 13,886-27,544 kJ/kg and was comparable to that of brown coal and lignite. Higher formation of fixed carbon and greater oxygen dissociation during HTSW were thought to improve the HV of char. Cl atoms added as PVC powder and sodium chloride to raw material remained in char after HTSW. However, most Cl originating from PVC was found to converse into soluble Cl compounds during HTSW under the HT condition and could be removed by washing. From these results, the merit of HTSW as a method of recovering solid fuel from MSW is considered to produce char with minimal carbon loss without a drying process prior to HTSW. In addition, Cl originating from PVC decomposes into soluble Cl compound under the HT condition. The combination of HTSW under the HT condition and char washing might improve the quality of char as alternative fuel.

Hwang, In-Hee, E-mail: hwang@eng.hokudai.ac.jp [Laboratory of Solid Waste Disposal Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060 8628 (Japan); Aoyama, Hiroya; Matsuto, Toshihiko; Nakagishi, Tatsuhiro; Matsuo, Takayuki [Laboratory of Solid Waste Disposal Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060 8628 (Japan)

2012-03-15T23:59:59.000Z

95

Special Analysis for the Disposal of the Idaho National Laboratory Unirradiated Light Water Breeder Reactor Rods and Pellets Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada  

SciTech Connect (OSTI)

The purpose of this special analysis (SA) is to determine if the Idaho National Laboratory (INL) Unirradiated Light Water Breeder Reactor (LWBR) Rods and Pellets waste stream (INEL103597TR2, Revision 2) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The INL Unirradiated LWBR Rods and Pellets waste stream consists of 24 containers with unirradiated fabricated rods and pellets composed of uranium oxide (UO2) and thorium oxide (ThO2) fuel in zirconium cladding. The INL Unirradiated LWBR Rods and Pellets waste stream requires an SA because the 229Th, 230Th, 232U, 233U, and 234U activity concentrations exceed the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

Shott, Gregory [NSTec

2014-08-31T23:59:59.000Z

96

Chemical pollution and toxicity of water samples from stream receiving leachate from controlled municipal solid waste (MSW) landfill  

Science Journals Connector (OSTI)

Abstract The present study was aimed to determine the impact of municipal waste landfill on the pollution level of surface waters, and to investigate whether the choice and number of physical and chemical parameters monitored are sufficient for determining the actual risk related to bioavailability and mobility of contaminants. In 20072012, water samples were collected from the stream flowing through the site at two sampling locations, i.e. before the stream?s entry to the landfill, and at the stream outlet from the landfill. The impact of leachate on the quality of stream water was observed in all samples. In 20072010, high values of TOC and conductivity in samples collected down the stream from the landfill were observed; the toxicity of these samples was much greater than that of samples collected up the stream from the landfill. In 20102012, a significant decrease of conductivity and TOC was observed, which may be related to the modernization of the landfill. Three tests were used to evaluate the toxicity of sampled water. As a novelty the application of Phytotoxkit F for determining water toxicity should be considered. Microtox showed the lowest sensitivity of evaluating the toxicity of water samples, while Phytotoxkit F showed the highest. High mortality rates of Thamnocephalus platyurus in Thamnotoxkit F test can be caused by high conductivity, high concentration of TOC or the presence of compounds which are not accounted for in the water quality monitoring program.

A. Melnyk; K. Kukli?ska; L. Wolska; J. Namie?nik

2014-01-01T23:59:59.000Z

97

Chemical pre-treatment of waste water from the Morcinek Mine in Poland  

SciTech Connect (OSTI)

This report presents a treatment strategy for brine that is recovered from the Morcinek mine near the city of Kartowice in Upper Silesia, Poland. The purpose of the study is to provide sufficient chemical composition and solubility data to permit selection of equipment for a pilot scale waste water processing plant. The report delineates: (1) the pre-treatment steps necessary before the brine is delivered to a reverse osmosis unit; (2) the composition of the brine solution at various stages in the pretreatment process and during the reverse osmosis step; (3) the types and amounts of chemicals that need to be added to the brine during pre-treatment. Analysis of the composition of the brine slurry from the submerged combustion evaporator that follows the reverse osmosis unit and the composition of brine elements that might be carried into the exhaust stack of the evaporator will be dealt with later. The pretreatment process will consist of four steps: (1) aeration and addition of sodium carbonate, (2) multimedia filtration, (3) addition of hydrochloric acid, and (4) ultrafiltration. On the basis of one m{sup 3} of the brine that has a density of 1.03 g/cm{sup 3}, approximately 800 grams (1.7 lbs.) of sodium carbonate monohydrate (Na{sub 2}CO{sub 3}{center_dot}H{sub 2}O) and 60 grams (0.12 lbs.) of concentrated hydrochloric acid (HCI) will need to be added to the brine during pre-treatment. The goal of the pre-treatment is to produce a fluid that is always undersaturated with respect to all mineral phases. However, only the minimum amount of pre-treatment chemicals should be added in order to minimize costs. Therefore the overall goal is to generate a fluid that approaches but does not exceed saturation at the end of the reverse osmosis process. The suggested amounts of chemicals reported here are therefore the minimum amounts that need to be added during pre-treatment to keep all salts in solution during the reverse osmosis process.

Bourcier, W.; Jackson, K.J.

1994-06-01T23:59:59.000Z

98

Determination of naphthenic acids in California crudes and refinery waste waters by fluoride ion chemical ionization mass spectrometry  

SciTech Connect (OSTI)

A method based on negative ion chemical ionization mass spectrometry using fluoride (F/sup -/) ions produced from NF/sub 3/ reagent gas has been applied to the analysis of naphthenic acids in California crude oils and refinery waste waters. Since complex mixtures of naphthenic acids cannot be separated into individual components, only the determination of relative distribution of acids classified by the hydrogen deficiency was possible. The identities and relative distribution of paraffinic and mono-, di-, tri, and higher polycyclic acids were obtained from the intensities of the carboxylate (RCOO/sup -/) ions.

Dzidic, I.; Somerville, A.C.; Raia, J.C.; Hart, H.V.

1988-07-01T23:59:59.000Z

99

PAFC fed by biogas produced by the anaerobic fermentation of the waste waters of a beet-sugar refinery  

SciTech Connect (OSTI)

Beet-washing waters of a beet-sugar refinery carry a high COD (Chemical Oxygen Demand), and their conditioning to meet legal constraints before disposal considerably contributes to the operation costs of the refinery. Their fermentation in an anaerobic digestor could instead produce readily disposable non-polluting waters, fertilizers and biogas, useful to feed a phosphoric acid fuel cell (PAFC) heat and power generator system. A real refinery case is considered in this work, where the electrical characteristics V = V(I) of a laboratory PAFC stack, fueled with a dry simulated reforming gas (having the same H{sub 2} and CO{sub 2} content as the biogas obtainable by the above said anaerobic digestion), are determined. The encouraging results show that a possible market niche for fuel cells, in the food-industry waste partial recovery and residual disposal, deserves attention.

Ascoli, A.; Elias, G. [Univ. Diegli Studi di Milano (Italy); Bigoni, L. [CISE Tecnologie Innovative S.p.A., Segrate (Italy); Giachero, R. [Du Pont Pharma Italia, Firenze (Italy)

1996-10-01T23:59:59.000Z

100

Use of Orange Peel Waste for Arsenic Remediation of Drinking Water  

Science Journals Connector (OSTI)

Arsenic is a toxic element and is found in natural waters throughout the globe. The purpose of present study is to demonstrate the As (V) uptake by orange peel from real ground water samples through adsorption...

Mazhar I. Khaskheli; Saima Q. Memon; Ali N. Siyal

2011-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "guthrie waste water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Power estimation and reliability evaluation of municipal waste water and self-excited induction generator-based micro hydropower generation system  

Science Journals Connector (OSTI)

This paper presents power estimation and reliability evaluation of the micro hydro power generation system based on municipal waste water. Self-excited induction generator was used in the developed power plant, situated at IIT (BHU) campus, Varanasi, India. The hydro potential of the waste water flowing through sewage system of the Banaras Hindu University has been determined for annual flow duration and daily flow duration curves by ordering the recorded waste water from maximum to minimum flows. This paper estimates output power and determines reliability indices like: failure rate, repair rate, MTTF, MTTR and MTBF of the MWW-based developed generation plant. Design parameters of the SEIG with suitable values of the capacitor have been used and recommended for improvement of the power generation quality and reliability of the system.

Lokesh Varshney; R.K. Saket; Saeid Eslamian

2013-01-01T23:59:59.000Z

102

Application of Membranes to Treatment of Water Based Exploration and Production Wastes  

E-Print Network [OSTI]

Page 1. 1 Schematic of a rotary drilling rig??????????????????????????????. 4 1. 2 Subsurface reach and rig sizes in the last thirty years?????????????????? 5 1. 3 Waste disposal statistics??????????????????????????????????.. 12 1... equipment and rotary system equipment. A drilling rig is a machine used to drill the wellbore [2], it usually entails every equipment in the drilling process apart from the living quarters. Onshore drilling rig types includes the conventional rig...

Olatubi, Oluwaseun Alfred

2010-10-12T23:59:59.000Z

103

Hanford Dangerous Waste Permit  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from tank waste. * Decreases the volume of water to create room in double-shell tanks, allowing them to accept waste from noncompliant single- shell tanks. * Treats up to 1...

104

Assessment of sludge management options in a waste water treatment plant  

E-Print Network [OSTI]

This thesis is part of a larger project which began in response to a request by the Spanish water agengy, Cadagua, for advice on life cycle assessment (LCA) and environmental impacts of Cadagua operated wastewater treatment ...

Lim, Jong hyun, M. Eng. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

105

Environmental impact of APC residues from municipal solid waste incineration: Reuse assessment based on soil and surface water protection criteria  

SciTech Connect (OSTI)

Highlights: > The Dutch Building Material Decree (BMD) was used to APC residues from MSWI. > BMD is a straightforward tool to calculate expectable loads to the environment of common pollutants. > Chloride load to the environment lead to classification of building material not allowed. > At least a pre-treatment (e.g. washing) is required in order to remove soluble salts. > The stabilization with phosphates or silicates eliminate the problem of heavy metals. - Abstract: Waste management and environmental protection are mandatory requirements of modern society. In our study, air pollution control (APC) residues from municipal solid waste incinerators (MSWI) were considered as a mixture of fly ash and fine particulate solids collected in scrubbers and fabric filters. These are hazardous wastes and require treatment before landfill. Although there are a number of treatment options, it is highly recommended to find practical applications rather than just dump them in landfill sites. In general, for using a construction material, beyond technical specifications also soil and surface water criteria may be used to ensure environmental protection. The Dutch Building Materials Decree (BMD) is a valuable tool in this respect and it was used to investigate which properties do not meet the threshold criteria so that APC residues can be further used as secondary building material. To this end, some scenarios were evaluated by considering release of inorganic species from unmoulded and moulded applications. The main conclusion is that the high amount of soluble salts makes the APC residues a building material prohibited in any of the conditions tested. In case of moulding materials, the limits of heavy metals are complied, and their use in Category 1 would be allowed. However, also in this case, the soluble salts lead to the classification of 'building material not allowed'. The treatments with phosphates or silicates are able to solve the problem of heavy metals, but difficulties with the soluble salts are still observed. This analysis suggests that for APC residues to comply with soil and surface water protection criteria to be further used as building material at least a pre-treating for removing soluble salts is absolutely required.

Quina, Margarida J., E-mail: guida@eq.uc.pt [Research Centre on Chemical Processes Engineering and Forest Products, Department of Chemical Engineering, University of Coimbra, Rua Silvio Lima, 3030-790 Coimbra (Portugal); Bordado, Joao C.M. [Department of Chemical and Biological Engineering, IBB, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Quinta-Ferreira, Rosa M. [Research Centre on Chemical Processes Engineering and Forest Products, Department of Chemical Engineering, University of Coimbra, Rua Silvio Lima, 3030-790 Coimbra (Portugal)

2011-09-15T23:59:59.000Z

106

An evaluation of hydrologic, geotechnical, and chemical behavior of processed oil shale solid waste 2; The use of time domain reflectometry (TDR) for monitoring in-situ volumetric water content in processed oil shale  

SciTech Connect (OSTI)

This paper describes the use of time domain reflectometry (TDR) for monitoring volumetric water contents in processed oil shale solid waste. TDR measures soil water content via a correlation between the dielectric constant (K) of the 3 phase (soil-water-air) system and the volumetric water content ({theta}{sub v}). An extensive bench top research program has been conducted to evaluate and verify the use of this technique in processed oil shale solid waste. This study utilizes columns of processed oil shale packed to known densities and varying water contents and compares the columetric water content measured via TDR and the volumetric water content measured through gravimetric determination.

Reeves, T.L.; Elgezawi, S.M. (Wyoming Univ., Laramie, WY (USA). Dept. of Civil Engineering); Kaser, T.G. (GIGO Computer and Electronic, Laramie, WY (US))

1989-01-01T23:59:59.000Z

107

PROCESSING TIP . . . WATER CONSERVATION MAKES SENSE,  

E-Print Network [OSTI]

with an understanding of the concepts of Water Loss, Water Waste, Efficient Water Use, Intended Water Use and how each Water Use Total Water Use Intended Water Use Water Loss Efficient Water Use Water Waste Adapted from Use) can be further sub-divided into two categories: · Efficient Water Use, and · Water Waste. All

Navara, Kristen

108

Hillslope erosion at the Maxey Flats radioactive waste disposal site, northeastern Kentucky. Water Resources Investigation  

SciTech Connect (OSTI)

Maxey Flats, a disposal site for low-level radioactive waste, is on a plateau that rises 300 to 400 feet above the surrounding valleys in northeastern Kentucky. Hillslope gradients average 30 to 40 percent on three sides of the plateau. The shortest distance from a hillslope to a burial trench is 140 feet on the west side of the site. The report presents the results of a 2-year study of slope erosion processes at the Maxey Flats disposal site, and comments on the long-term integrity of the burial trenches with respect to slope retreat. Thus, the report is of much broader scope in terms of earth-surface processes than the period of data collection would suggest. As such, the discussion and emphasis is placed on infrequent, large-magnitude events that are known to occur over the time scale of interest but have not been specifically documented at the site.

Carey, W.P.; Lyverse, M.A.; Hupp, C.R.

1990-01-01T23:59:59.000Z

109

A novel, integrated treatment system for coal waste waters. Quarterly report, March 2, 1994--June 1, 1994  

SciTech Connect (OSTI)

The aims of this study are to develop, characterize and optimize a novel treatment scheme that would be effective simultaneously against the toxic organics and the heavy metals present in coal conversion waste waters. A specific goal of the study is to remove and recover cationic and anionic heavy metals from aqueous solutions and coal conversion waste waters using modified-clay adsorbents developed in this study. To this end, a multi-step adsorption/desorption process has been carried out with hectorite-CBDA-DT (HCDT) as the adsorbent and Cr(VI) as the adsorbate. Adsorption was carried out at pH 4.0 in 0.02 M buffer, while desorption was effected at the same pH and in the same buffer with either 0.5 M NaCl or 0.02 M Na{sub 2}SO{sub 4} as the desorbates. Multi-step involves cycling the same adsorbent through these two sets of operating conditions with a washing step after each adsorption/desorption sequence. The authors results indicate that, during the first two cycles, the potency of the adsorbent remains unchanged, but it diminishes after the third and the fourth cycles. The total decrease in potency is, however, only 15% even after 4 cycles of adsorption/desorption. Addition of 20% isopropyl alcohol (IPA) to the reaction medium, however, diminishes the potency even more after 4 cycles of adsorption and desorption. Both the desorbates yielded identical results, and the overall mass balance on Cr(VI) was between 95 and 102%. Continuous leaching experiments on HCDT revealed that DT bound to HCDT is mobilized to the extent of only 10% after 44 hrs in aqueous medium while in 20% IPA-water mixtures the extent of dissolution of DT from the surface is close to 16%. Thus, the loss of potency of HCDT is attributed partly to the loss of DT from the surface and partly to the incomplete washing of the adsorbent between each adsorption/desorption step.

Wang, H.Y. [Univ. of Michigan, Ann Arbor, MI (United States); Wang, H.Y.; Srinivasan, K.R.

1994-09-01T23:59:59.000Z

110

TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Hazardous Waste Management  

E-Print Network [OSTI]

or unwanted chemicals can become a big problem. Some common disposal practices not only threaten ground water but also may be illegal. Small, unusable amounts of these products often wind up spilled, buried, dumped, or flushed onto a property. Minimizing... rules require that environmentally protective conditions be met before some disposal practices are permit- ted. Other previously common disposal prac- tices are now illegal because of their potential risks to human health and the environment. This new...

Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.; Kantor, A. S.

1997-08-29T23:59:59.000Z

111

Waste disposal package  

DOE Patents [OSTI]

This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

Smith, M.J.

1985-06-19T23:59:59.000Z

112

Radioactive Waste Radioactive Waste  

E-Print Network [OSTI]

#12;Radioactive Waste at UF Bldg 831 392-8400 #12;Radioactive Waste · Program is designed to;Radioactive Waste · Program requires · Generator support · Proper segregation · Packaging · labeling #12;Radioactive Waste · What is radioactive waste? · Anything that · Contains · or is contaminated

Slatton, Clint

113

Ceramicrete stabilization of radioactive-salt-containing liquid waste and sludge water. Final CRADA report.  

SciTech Connect (OSTI)

It was found that the Ceramicrete Specimens incorporated the Streams 1 and 2 sludges with the adjusted loading about 41.6 and 31.6%, respectively, have a high solidity. The visible cracks in the matrix materials and around the anionite AV-17 granules included could not obtain. The granules mentioned above fixed by Ceramicrete matrix very strongly. Consequently, we can conclude that irradiation of Ceramecrete matrix, goes from the high radioactive elements, not result the structural degradation. Based on the chemical analysis of specimens No.462 and No.461 used it was shown that these matrix included the formation elements (P, K, Mg, O), but in the different samples their correlations are different. These ratios of the content of elements included are about {+-} 10%. This information shows a great homogeneity of matrix prepared. In the list of the elements founded, expect the matrix formation elements, we detected also Ca and Si (from the wollastonite - the necessary for Ceramicrete compound); Na, Al, S, O, Cl, Fe, Ni also have been detected in the Specimen No.642 from the waste forms: NaCl, Al(OH){sub 3}, Na{sub 2}SO{sub 4}. Fe(OH){sub 3}, nickel ferrocyanide and Ni(NO{sub 3})2. The unintelligible results also were found from analysis of an AV-17 granules, in which we obtain the great amount of K. The X-ray radiographs of the Ceramicrete specimens with loading 41.4 % of Stream 1 and 31.6% of Stream 2, respectively showed that the realization of the advance technology, created at GEOHKI, leads to formation of excellent ceramic matrix with high amount of radioactive streams up to 40% and more. Really, during the interaction with start compounds MgO and KH{sub 2}PO{sub 4} with the present of H{sub 3}BO{sub 3} and Wollastonite this process run with high speed under the controlled regimes. That fact that the Ceramicrete matrix with 30-40% of Streams 1 and 2 have a crystalline form, not amorphous matter, allows to permit that these matrix should be very stable, reliable for incorporation of a radionuclides.

Ehst, D.; Nuclear Engineering Division

2010-08-04T23:59:59.000Z

114

A novel, integrated treatment system for coal waste waters. Quarterly report, September 2, 1993--December 1, 1993  

SciTech Connect (OSTI)

The aims of this study are to develop, characterize and optimize a novel treatment scheme that would be effective simultaneously against the toxic organics and the heavy metals present in coal conversion waste waters. In this report, the following findings have been reported and discussed. Adsorption of {beta}-naphthoic acid (NA) onto hectorite-CBDA containing different amounts of adsorbed CBDA is pH dependent, stronger at pH 4.5 and much weaker at pH 8.6. Partitioning into the hydrophobic patches of hectorite-CBDA and binding as counter ion to CBDA bilayers appear to be the dominant mechanisms of adsorption of NA to hectorite-CBDA. Anionic CR(VI) adsorbs very weakly to MONT-DT at pH 8.5 and this result verifies our earlier finding that the positive surface charge on MONT-DT decreases with increasing pH above pH 7.0. Potentiometric titrations of DT in water-isopropyl alcohol (EPA) binary solutions containing different volume fractions of IPA reveal that the pKa of DT is 7.6 {+-} 0.1 independent of EPA volume fraction. It is also shown that DT forms emulsions at pH lower than 4.0 and these emulsions tend to break up as pH is raised above 6.5. The formation of DT emulsions is reversible with respect to pH, but the process appears to be slow with a time constant of about 30 minutes.

Wang, H.Y.; Srinivasan, K.R.

1993-12-31T23:59:59.000Z

115

Artificial Neural Networks Modelling of PID and Model Predictive Controlled Waste Water Treatment Plant Based on the Benchmark Simulation Model No.1  

Science Journals Connector (OSTI)

The paper presents techniques for the design and training of Artificial Neural Networks (ANN) models for the dynamic simulation of the controlled Benchmark Simulation Model no. 1 (BSM1) Waste Water Treatment Plant (WWTP). The developed ANN model of the WWTP and its associated control system is used for the assessment of the plant behaviour in integrated urban waste water system simulations. Both embedded PID (Proportional-Integral-Derivative) control and Model Predictive Control (MPC) structures for the WWTP are investigated. The control of the Dissolved Oxygen (DO) mass concentration in the aerated reactors and nitrate (NO) mass concentration in the anoxic compartments are presented. The ANN based simulators reveal good accuracy for predicting important process variables and an important reduction of the simulation time, compared to the first principle WWTP simulator.

Vasile-Mircea Cristea; Cristian Pop; Paul Serban Agachi

2009-01-01T23:59:59.000Z

116

Methane generation from waste materials  

DOE Patents [OSTI]

An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

Samani, Zohrab A. (Las Cruces, NM); Hanson, Adrian T. (Las Cruces, NM); Macias-Corral, Maritza (Las Cruces, NM)

2010-03-23T23:59:59.000Z

117

SYNTHESIS OF SULFUR-BASED WATER TREATMENT AGENT FROM SULFUR DIOXIDE WASTE STREAMS  

SciTech Connect (OSTI)

We propose a process that uses sulfur dioxide from coal combustion as a raw material to synthesize polymeric ferric sulfate (PFS), a water treatment agent. The process uses sodium chlorate as an oxidant and ferrous sulfate as an absorbent. The major chemical mechanisms in this reaction system include oxidation, hydrolysis, and polymerization. Oxidation determines sulfur conversion efficiency while hydrolysis and polymerization control the quality of product. Many factors, including SO{sub 2} inlet concentration, flow rate of simulated flue gas, reaction temperature, addition rate of oxidant and stirring rate, may affect the efficiencies of SO{sub 2} removal. Currently, the effects of SO{sub 2} inlet concentration, the flow rate of simulated flue gas and addition rate of flue gas on removal efficiencies of SO{sub 2}, are being investigated. Experiments shown in this report have demonstrated that the conversion efficiencies of sulfur dioxide with ferrous sulfate as an absorbent are in the range of 60-80% under the adopted process conditions. However, the conversion efficiency of sulfur dioxide may be improved by optimizing reaction conditions to be investigated. Partial quality indices of the synthesized products, including Fe{sup 2+} concentration and total iron concentration, have been evaluated.

Robert C. Brown; Maohong Fan

2001-12-01T23:59:59.000Z

118

Results of multiyear studies on the dynamics of pollution of lake Baikal by polycyclic aromatic hydrocarbons in the area waste water discharge from the Baikal Pulp and Paper Plant  

Science Journals Connector (OSTI)

New data on the concentration and spatial distribution of the benz(a)pyrene and polycyclic aromatic hydrocarbons in bottom sediments in the testing area ... Baikal Pulp and Paper Plant (BPPP) waste water discharg...

A. M. Nikonorov; A. A. Matveev; S. A. Reznikov; V. S. Arakelyan

2012-03-01T23:59:59.000Z

119

Evaluation of isotope migration: land burial. Water chemistry at commercially operated low-level radioactive waste disposal sites. Quarterly progress report, October-December 1979  

SciTech Connect (OSTI)

Decreasing radionuclide sorption, K/sub d/, was observed for /sup 241/Am, /sup 85/Sr, and /sup 60/Co when organic substances were added to well water and shale from the Maxey Flats, Kentucky, disposal site. Ethylenediaminetetraacetic acid (EDTA) caused the greatest decrease in K/sub d/. Several reference clays were also used for comparison. Only montmorillonite maintained its sorption capability in the presence of EDTA. Experiments were performed to establish the existence of organoradionuclide complexes in trench waters from the low level radioactive waste disposal sites. Fractionations of trench waters were accomplished by gel filtration chromatography. Preliminary results indicated that cesium isotopes in the trench water from West Valley, New York, may be associated with organic molecules as species with molecular weight less than 700, and that it is unlikely an EDTA complex.

Weiss, A.J.; Colombo, P.

1980-02-01T23:59:59.000Z

120

CX-001682: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

82: Categorical Exclusion Determination 82: Categorical Exclusion Determination CX-001682: Categorical Exclusion Determination Oklahoma State Energy Program (SEP) American Recovery and Reinvestment Act (ARRA) - Phase 1 - Wind Turbine for Guthrie Waste Water Treatment Plant CX(s) Applied: A9, A11 Date: 04/01/2010 Location(s): Guthrie, Oklahoma Office(s): Energy Efficiency and Renewable Energy, Golden Field Office The State of Oklahoma plans to provide $725,000 in Recovery Act funding to the City of Guthrie to construct and operate a wind turbine at the City's Waste Water Treatment Plant. The project is divided into two phases. The first phase will complete a study addressing an engineering analysis, site characterization, and environmental review of the proposed project to meet the City's request for that information.

Note: This page contains sample records for the topic "guthrie waste water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

A novel, integrated treatment system for coal waste waters. Quarterly report, June 2, 1993--September 1, 1993  

SciTech Connect (OSTI)

The aims of this study are to develop, characterize and optimize a novel treatment scheme that would be effective simultaneously against the toxic organics and the heavy metals present in coal conversion waste waters. In this report, the following findings have been reported and discussed. Acid-base titration of Duomeen-T (DT), a diamine surfactant, that has been used in this study to modify smectite surfaces to form smectite-DT complexes has been undertaken. In aqueous medium containing 5% by volume iso propyl alcohol (IPA), DT shows a broad distribution of pKa with a mean value of 7.55. This finding suggests that DT is a much weaker base than a typical diamine and helps explain the fact that Cu(II) adsorbs specifically onto DT with maximal affinity in the pH range 7.2--7.5. Electrokinetic sonic amplitude (ESA) measurements on DT-smectite complexes also reveal that the mean pKa of the adsorbed DT is around 7.0. This finding supports our earlier observations that Cu(II) and Cd(II) cations bind strongly through specific interaction to DT-smectite surface in the pH range 7.0--8.0. Our results also show that DT is fully protonated at pH 4.5, and it is at this pH that Cr(VI) is maximally adsorbed as counterions to the DT-smectite surface. These and our earlier results provide a firm basis to conclude that a heterogeneous mixture of diamine surfactants can be used to adsorb and desorb cationic and anionic heavy metals from their respective aqueous solutions as a function of the solution pH.

Wang, H.Y.; Srinivasan, K.R.

1993-12-31T23:59:59.000Z

122

Influence of Coal Ash/Organic Waste Application on Distribution of Trace Metals in Soil, Plant, and Water  

Science Journals Connector (OSTI)

This study was conducted to evaluate effects of coal ash mixture (coal ash, biosolids and yard waste compost ratio of ... fruits, and its leaching potential into groundwater. Coal ash mixture was applied at rates...

Yuncong Li; Min Zhang; Peter Stoffella; Zhenli He

2003-01-01T23:59:59.000Z

123

Review and Status of Solid Waste Management Practices in Multan, Pakistan  

E-Print Network [OSTI]

of throwing waste in water bodies, burning it as annearby residents. Burning of the waste at landfills and in

Shoaib, Muhammad; Mirza, Umar Karim; Sarwar, Muhammad Avais

2006-01-01T23:59:59.000Z

124

Mitigation of Hydrogen Gas Generation from the Reaction of Uranium Metal with Water in K Basin Sludge and Sludge Waste Forms  

SciTech Connect (OSTI)

Prior laboratory testing identified sodium nitrate and nitrite to be the most promising agents to minimize hydrogen generation from uranium metal aqueous corrosion in Hanford Site K Basin sludge. Of the two, nitrate was determined to be better because of higher chemical capacity, lower toxicity, more reliable efficacy, and fewer side reactions than nitrite. The present lab tests were run to determine if nitrates beneficial effects to lower H2 generation in simulated and genuine sludge continued for simulated sludge mixed with agents to immobilize water to help meet the Waste Isolation Pilot Plant (WIPP) waste acceptance drainable liquid criterion. Tests were run at ~60C, 80C, and 95C using near spherical high-purity uranium metal beads and simulated sludge to emulate uranium-rich KW containerized sludge currently residing in engineered containers KW-210 and KW-220. Immobilization agents tested were Portland cement (PC), a commercial blend of PC with sepiolite clay (Aquaset II H), granulated sepiolite clay (Aquaset II G), and sepiolite clay powder (Aquaset II). In all cases except tests with Aquaset II G, the simulated sludge was mixed intimately with the immobilization agent before testing commenced. For the granulated Aquaset II G clay was added to the top of the settled sludge/solution mixture according to manufacturer application directions. The gas volumes and compositions, uranium metal corrosion mass losses, and nitrite, ammonia, and hydroxide concentrations in the interstitial solutions were measured. Uranium metal corrosion rates were compared with rates forecast from the known uranium metal anoxic water corrosion rate law. The ratios of the forecast to the observed rates were calculated to find the corrosion rate attenuation factors. Hydrogen quantities also were measured and compared with quantities expected based on non-attenuated H2 generation at the full forecast anoxic corrosion rate to arrive at H2 attenuation factors. The uranium metal corrosion rates in water alone and in simulated sludge were near or slightly below the metal-in-water rate while nitrate-free sludge/Aquaset II decreased rates by about a factor of 3. Addition of 1 M nitrate to simulated sludge decreased the corrosion rate by a factor of ~5 while 1 M nitrate in sludge/Aquaset II mixtures decreased the corrosion rate by ~2.5 compared with the nitrate-free analogues. Mixtures of simulated sludge with Aquaset II treated with 1 M nitrate had uranium corrosion rates about a factor of 8 to 10 lower than the water-only rate law. Nitrate was found to provide substantial hydrogen mitigation for immobilized simulant sludge waste forms containing Aquaset II or Aquaset II G clay. Hydrogen attenuation factors of 1000 or greater were determined at 60C for sludge-clay mixtures at 1 M nitrate. Hydrogen mitigation for tests with PC and Aquaset II H (which contains PC) were inconclusive because of suspected failure to overcome induction times and fully enter into anoxic corrosion. Lessening of hydrogen attenuation at ~80C and ~95C for simulated sludge and Aquaset II was observed with attenuation factors around 100 to 200 at 1 M nitrate. Valuable additional information has been obtained on the ability of nitrate to attenuate hydrogen gas generation from solution, simulant K Basin sludge, and simulant sludge with immobilization agents. Details on characteristics of the associated reactions were also obtained. The present testing confirms prior work which indicates that nitrate is an effective agent to attenuate hydrogen from uranium metal corrosion in water and simulated K Basin sludge to show that it is also effective in potential candidate solidified K Basin waste forms for WIPP disposal. The hydrogen mitigation afforded by nitrate appears to be sufficient to meet the hydrogen generation limits for shipping various sludge waste streams based on uranium metal concentrations and assumed waste form loadings.

Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

2011-06-08T23:59:59.000Z

125

Hydrothermal Processing of Wet Wastes  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Mill Waste, Plastic Bottles Aquatic Water Hyacinths, Kelp (Marine), Red Algae (Marine), Green Algae (Brackish), Green Algae (Marine), Green Algae (Fresh), Diatoms, Cyanobacteria...

126

Assessment of compliance with ground water protection standards in the 2008 performance assessment for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada  

Science Journals Connector (OSTI)

Abstract Extensive work has been carried out by the U.S. Department of Energy (DOE) in the development of a proposed geologic repository at Yucca Mountain (YM), Nevada, for the disposal of high-level radioactive waste. In support of this development and an associated license application to the U.S. Nuclear Regulatory Commission (NRC), the DOE completed an extensive performance assessment (PA) for the proposed YM repository in 2008. This presentation describes the assessment of compliance with ground water protection standards in the 2008 YM PA. The following topics are addressed: (i) regulatory background, (ii) analysis structure including characterization of uncertainty, and (iii) analysis results for each of the ground water protection standards. The present article is part of a special issue of Reliability Engineering and System Safety devoted to the 2008 YM PA; additional articles in the issue describe other aspects of the 2008 YM PA.

C.W. Hansen; G.A. Behie; K.M. Brooks; Y. Chen; J.C. Helton; S.P. Hommel; K.P. Lee; B. Lester; P.D. Mattie; S. Mehta; S.P. Miller; C.J. Sallaberry; S.D. Sevougian; M. Wasiolek

2014-01-01T23:59:59.000Z

127

Preparation of sorbents containing ettringite phase from concrete sludge and their performance in removing borate and fluoride ions from waste water  

Science Journals Connector (OSTI)

Concrete sludge is an industrial waste slurry containing hydrated cement, aggregates and water. Solid sorbents containing ettringite, Ca6Al2(SO4)3(OH)1226H2O, were prepared from concrete sludge by adding various amounts of aluminum sulfate to enhance ettringite formation. Anion exchange performance of the sorbents was examined using model waste waters containing boron or fluoride ions. The removal behavior depended on the calcium/aluminum ratio and the heat treatment temperature after drying. For the same Ca/Al ratio, improved removal performance was observed for sorbents treated at higher temperatures. The highest removal capacity was found when the sorbent was prepared with a molar ratio of Ca/Al of 3.2 and heat treatment at 175C. The final concentrations of boron and fluoride were 6.3mg-B/L, and less than 4mg-F/L for initial concentrations of 100mg-B/L and 300mg-F/L. Treatment of the sorbents at higher temperature dehydrated the ettringite phase to form metaettringite phase. The sorbents prepared in the present study can be used in a boron and fluoride removal process that meets the effluent standard in Japan.

Yusuke Tsunashima; Atsushi Iizuka; Junichiro Akimoto; Teruhisa Hongo; Akihiro Yamasaki

2012-01-01T23:59:59.000Z

128

Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania)  

Broader source: Energy.gov (indexed) [DOE]

Municipal Waste Planning, Recycling and Waste Reduction Act Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Pennsylvania Program Type Environmental Regulations

129

Contact glow discharge electrolysis for liquid waste processing  

E-Print Network [OSTI]

for an alka- line water electrolysis at a small pin verticaldischarge electrolysis applied to waste water treatment.water treatment induced by plasma with contact glow discharge electrolysis.

Sharma, Neeraj

2014-01-01T23:59:59.000Z

130

Method for processing aqueous wastes  

DOE Patents [OSTI]

A method for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply.

Pickett, John B. (3922 Wood Valley Dr., Aiken, SC 29803); Martin, Hollis L. (Rt. 1, Box 188KB, McCormick, SC 29835); Langton, Christine A. (455 Sumter St. SE., Aiken, SC 29801); Harley, Willie W. (110 Fairchild St., Batesburg, SC 29006)

1993-01-01T23:59:59.000Z

131

Hazardous Wastes Management (Alabama) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hazardous Wastes Management (Alabama) Hazardous Wastes Management (Alabama) Hazardous Wastes Management (Alabama) < Back Eligibility Commercial Construction Developer Industrial Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Alabama Program Type Environmental Regulations Safety and Operational Guidelines This legislation gives regulatory authority to the Department of Environmental Management to monitor commercial sites for hazardous wastes; fees on waste received at such sites; hearings and investigations. The legislation also states responsibilities of generators and transporters of hazardous waste as well as responsibilities of hazardous waste storage and treatment facility and hazardous waste disposal site operators. There

132

Waste to energy by industrially integrated supercritical water gasification Effects of alkali salts in residual by-products from the pulp and paper industry  

Science Journals Connector (OSTI)

Supercritical water gasification (SCWG) is a method by which biomass can be converted intoa hydrogen-rich gas product. Wet industrial waste streams, which contain both organic and inorganic material, are well suited for treatment by SCWG. In this study, the gasification of two streams of biomass resulting from the pulp and paper industry, black liquor and paper sludge, has been investigated. The purpose is to convert these to useful products, both gaseous and solids, which can be used either in the papermaking process or in external applications. Simple compounds, such as glucose, have been fully gasified in SCWG, but gasification of more complex compounds, such as biomass and waste, have not reached as high conversions. The investigated paper sludge was not easily gasified. Improving gasification results with catalysts is an option and the use of alkali salts for this purpose was studied. The relationship between alkali concentration, temperature, and gasification yields was studied with the addition of KOH, K2CO3, NaOH and black liquor to the paper sludge. Addition of black liquor to the paper sludge resulted in similarly enhancing effects as when the alkali salts were added, which made it possible to raise the dry matter content and gasification yield without expensive additives.

I. Rnnlund; L. Myren; K. Lundqvist; J. Ahlbeck; T. Westerlund

2011-01-01T23:59:59.000Z

133

Stabilization of compactible waste  

SciTech Connect (OSTI)

This report summarizes the results of series of experiments performed to determine the feasibility of stabilizing compacted or compactible waste with polymers. The need for this work arose from problems encountered at disposal sites attributed to the instability of this waste in disposal. These studies are part of an experimental program conducted at Brookhaven National Laboratory (BNL) investigating methods for the improved solidification/stabilization of DOE low-level wastes. The approach taken in this study was to perform a series of survey type experiments using various polymerization systems to find the most economical and practical method for further in-depth studies. Compactible dry bulk waste was stabilized with two different monomer systems: styrene-trimethylolpropane trimethacrylate (TMPTMA) and polyester-styrene, in laboratory-scale experiments. Stabilization was accomplished by wetting or soaking compactible waste (before or after compaction) with monomers, which were subsequently polymerized. Three stabilization methods are described. One involves the in-situ treatment of compacted waste with monomers in which a vacuum technique is used to introduce the binder into the waste. The second method involves the alternate placement and compaction of waste and binder into a disposal container. In the third method, the waste is treated before compaction by wetting the waste with the binder using a spraying technique. A series of samples stabilized at various binder-to-waste ratios were evaluated through water immersion and compression testing. Full-scale studies were conducted by stabilizing two 55-gallon drums of real compacted waste. The results of this preliminary study indicate that the integrity of compacted waste forms can be readily improved to ensure their long-term durability in disposal environments. 9 refs., 10 figs., 2 tabs.

Franz, E.M.; Heiser, J.H. III; Colombo, P.

1990-09-01T23:59:59.000Z

134

Ground-water flow and transport modeling of the NRC-licensed waste disposal facility, West Valley, New York  

SciTech Connect (OSTI)

This report describes a simulation study of groundwater flow and radionuclide transport from disposal at the NRC licensed waste disposal facility in West Valley, New York. A transient, precipitation driven, flow model of the near-surface fractured till layer and underlying unweathered till was developed and calibrated against observed inflow data into a recently constructed interceptor trench for the period March--May 1990. The results suggest that lateral flow through the upper, fractured till layer may be more significant than indicated by previous, steady state flow modeling studies. A conclusive assessment of the actual magnitude of lateral flow through the fractured till could however not be made. A primary factor contributing to this uncertainty is the unknown contribution of vertical infiltration through the interceptor trench cap to the total trench inflow. The second part of the investigation involved simulation of the migration of Sr-90, Cs-137 and Pu-239 from the one of the fuel hull disposal pits. A first-order radionuclide leach rate with rate coefficient of 10{sup {minus}6}/day was assumed to describe radionuclide release into the disposal pit. The simulations indicated that for wastes buried below the fractured till zone, no significant migration would occur. However, under the assumed conditions, significant lateral migration could occur for radionuclides present in the upper, fractured till zone. 23 refs., 68 figs., 12 tabs.

Kool, J.B.; Wu, Y.S. (HydroGeoLogic, Inc., Herndon, VA (United States))

1991-10-01T23:59:59.000Z

135

Nuclear Waste: Knowledge Waste?  

Science Journals Connector (OSTI)

...4). Although disposal of HLW remains...for long-term disposal is through deep...successful waste-disposal program has eluded...geologic repository at Yucca Mountain, Nevada. Authorized...Administration withdrew funding for Yucca Mountain...

Eugene A. Rosa; Seth P. Tuler; Baruch Fischhoff; Thomas Webler; Sharon M. Friedman; Richard E. Sclove; Kristin Shrader-Frechette; Mary R. English; Roger E. Kasperson; Robert L. Goble; Thomas M. Leschine; William Freudenburg; Caron Chess; Charles Perrow; Kai Erikson; James F. Short

2010-08-13T23:59:59.000Z

136

Records of wells and chemical analyses of water from wells for the period June 13, 1984 to December 4, 1986 at the Maxey Flats radioactive waste disposal site, Kentucky  

SciTech Connect (OSTI)

Lithologic data are presented for 113 wells drilled at the Maxey Flats Radioactive Waste Disposal Site for the period June 13, 1984 to December 4, 1986. Water levels, tritium concentrations, and specific conductance are also presented for wells yielding sufficient water for measuring and sampling. At least one sample was collected from most wells for the determination of gross alpha and beta activity. These activities and the results for gamma emitting radionuclides (Cobalt 60 and Cesium 137) are also presented.

Lyverse, M.A.

1987-01-01T23:59:59.000Z

137

Estimation of natural ground water recharge for the performance assessment of a low-level waste disposal facility at the Hanford Site  

SciTech Connect (OSTI)

In 1994, the Pacific Northwest Laboratory (PNL) initiated the Recharge Task, under the PNL Vitrification Technology Development (PVTD) project, to assist Westinghouse Hanford Company (WHC) in designing and assessing the performance of a low-level waste (LLW) disposal facility for the US Department of Energy (DOE). The Recharge Task was established to address the issue of ground water recharge in and around the LLW facility and throughout the Hanford Site as it affects the unconfined aquifer under the facility. The objectives of this report are to summarize the current knowledge of natural ground water recharge at the Hanford Site and to outline the work that must be completed in order to provide defensible estimates of recharge for use in the performance assessment of this LLW disposal facility. Recharge studies at the Hanford Site indicate that recharge rates are highly variable, ranging from nearly zero to greater than 100 mm/yr depending on precipitation, vegetative cover, and soil types. Coarse-textured soils without plants yielded the greatest recharge. Finer-textured soils, with or without plants, yielded the least. Lysimeters provided accurate, short-term measurements of recharge as well as water-balance data for the soil-atmosphere interface and root zone. Tracers provided estimates of longer-term average recharge rates in undisturbed settings. Numerical models demonstrated the sensitivity of recharge rates to different processes and forecast recharge rates for different conditions. All of these tools (lysimetry, tracers, and numerical models) are considered vital to the development of defensible estimates of natural ground water recharge rates for the performance assessment of a LLW disposal facility at the Hanford Site.

Rockhold, M.L.; Fayer, M.J.; Kincaid, C.T.; Gee, G.W.

1995-03-01T23:59:59.000Z

138

Reduction of Water Consumption  

E-Print Network [OSTI]

Cooling systems using water evaporation to dissipate waste heat, will require one pound of water per 1,000 Btu. To reduce water consumption, a combination of "DRY" and "WET" cooling elements is the only practical answer. This paper reviews...

Adler, J.

139

An Investigation of the Use of Fully Ceramic Microencapsulated Fuel for Transuranic Waste Recycling in Pressurized Water Reactors  

SciTech Connect (OSTI)

An investigation of the utilization of TRistructural- ISOtropic (TRISO)-coated fuel particles for the burning of plutonium/neptunium (Pu/Np) isotopes in typical Westinghouse four-loop pressurized water reactors is presented. Though numerous studies have evaluated the burning of transuranic isotopes in light water reactors (LWRs), this work differentiates itself by employing Pu/Np-loaded TRISO particles embedded within a silicon carbide (SiC) matrix and formed into pellets, constituting the fully ceramic microencapsulated (FCM) fuel concept that can be loaded into standard LWR fuel element cladding. This approach provides the capability of Pu/Np burning and, by virtue of the multibarrier TRISO particle design and SiC matrix properties, will allow for greater burnup of Pu/Np material, plus improved fuel reliability and thermal performance. In this study, a variety of heterogeneous assembly layouts, which utilize a mix of FCM rods and typical UO2 rods, and core loading patterns were analyzed to demonstrate the neutronic feasibility of Pu/Np-loaded TRISO fuel. The assembly and core designs herein reported are not fully optimized and require fine-tuning to flatten power peaks; however, the progress achieved thus far strongly supports the conclusion that with further rod/assembly/core loading and placement optimization, Pu/Np-loaded TRISO fuel and core designs that are capable of balancing Pu/Np production and destruction can be designed within the standard constraints for thermal and reactivity performance in pressurized water reactors.

Gentry, Cole A [ORNL] [ORNL; Godfrey, Andrew T [ORNL] [ORNL; Terrani, Kurt A [ORNL] [ORNL; Gehin, Jess C [ORNL] [ORNL; Powers, Jeffrey J [ORNL] [ORNL; Maldonado, G Ivan [ORNL] [ORNL

2014-01-01T23:59:59.000Z

140

Solid Waste Regulation No. 8 - Solid Waste Composting Facilities (Rhode  

Broader source: Energy.gov (indexed) [DOE]

Regulation No. 8 - Solid Waste Composting Facilities Regulation No. 8 - Solid Waste Composting Facilities (Rhode Island) Solid Waste Regulation No. 8 - Solid Waste Composting Facilities (Rhode Island) < Back Eligibility Commercial Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Rhode Island Program Type Environmental Regulations Provider Department of Environmental Management Facilities which compost putrescible waste and/or leaf and yard waste are subject to these regulations. The regulations establish permitting, registration, and operational requirements for composting facilities. Operational requirements for putrescible waste facilities include siting, distance, and buffer requirements, as well as standards for avoiding harm to endangered species and contamination of air and water sources. Specific

Note: This page contains sample records for the topic "guthrie waste water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Estimating Waste Inventory and Waste Tank Characterization |...  

Office of Environmental Management (EM)

Estimating Waste Inventory and Waste Tank Characterization Estimating Waste Inventory and Waste Tank Characterization Summary Notes from 28 May 2008 Generic Technical Issue...

142

Nuclear Waste: Knowledge Waste?  

Science Journals Connector (OSTI)

...06520, USA. Nuclear power is re-emerging...proclaiming a nuclear renaissance...example, plant safety...liabilities, terrorism at plants and in transport...high-level nuclear wastes (HLW...factor in risk perceptions...supporting nuclear power in the abstract...

Eugene A. Rosa; Seth P. Tuler; Baruch Fischhoff; Thomas Webler; Sharon M. Friedman; Richard E. Sclove; Kristin Shrader-Frechette; Mary R. English; Roger E. Kasperson; Robert L. Goble; Thomas M. Leschine; William Freudenburg; Caron Chess; Charles Perrow; Kai Erikson; James F. Short

2010-08-13T23:59:59.000Z

143

Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste  

E-Print Network [OSTI]

waste (i.e, mixture of biohazardous and chemical or radioactive waste), call Environment, Health2/2009 Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste Description Biohazard symbol Address: UCSD 200 West Arbor Dr. San Diego, CA 92103 (619

Tsien, Roger Y.

144

The Relationship between Water and Energy: Optimizing Water and Energy  

E-Print Network [OSTI]

understanding that the highest value opportunities for water conservation usually exist where there is the strongest interaction of water and energy. Steam management systems, process cooling, high quality water production and waste water treatment represent...

Finley, T.; Fennessey, K.; Light, R.

2007-01-01T23:59:59.000Z

145

Rock alteration in alkaline cement waters over 15 years and its relevance to the geological disposal of nuclear waste  

Science Journals Connector (OSTI)

Abstract The interaction of groundwater with cement in a geological disposal facility (GDF) for intermediate level radioactive waste will produce a high pH leachate plume. Such a plume may alter the physical and chemical properties of the GDF host rock. However, the geochemical and mineralogical processes which may occur in such systems over timescales relevant for geological disposal remain unclear. This study has extended the timescale for laboratory experiments and shown that, after 15years two distinct phases of reaction may occur during alteration of a dolomite-rich rock at high pH. In these experiments the dissolution of primary silicate minerals and the formation of secondary calcium silicate hydrate (CSH) phases containing varying amounts of aluminium and potassium (C(A)(K)SH) during the early stages of reaction (up to 15months) have been superseded as the systems have evolved. After 15years significant dedolomitisation (MgCa(CO3)2+2OH??Mg(OH)2+CaCO3+CO32?(aq)) has led to the formation of magnesium silicates, such as saponite and talc, containing variable amounts of aluminium and potassium (Mg(Al)(K)silicates), and calcite at the expense of the early-formed C(A)(K)SH phases. This occured in high pH solutions representative of two different periods of cement leachate evolution with little difference in the alteration processes in either a KOH and NaOH or a Ca(OH)2 dominated solution but a greater extent of alteration in the higher pH KOH/NaOH leachate. The high pH alteration of the rock over 15years also increased the rocks sorption capacity for U(VI). The results of this study provide a detailed insight into the longer term reactions occurring during the interaction of cement leachate and dolomite-rich rock in the geosphere. These processes have the potential to impact on radionuclide transport from a geodisposal facility and are therefore important in underpinning any safety case for geological disposal.

Elizabeth B.A. Moyce; Christopher Rochelle; Katherine Morris; Antoni E. Milodowski; Xiaohui Chen; Steve Thornton; Joe S. Small; Samuel Shaw

2014-01-01T23:59:59.000Z

146

Handbook of industrial and hazardous wastes treatment. 2nd ed.  

SciTech Connect (OSTI)

This expanded Second Edition offers 32 chapters of industry- and waste-specific analyses and treatment methods for industrial and hazardous waste materials - from explosive wastes to landfill leachate to wastes produced by the pharmaceutical and food industries. Key additional chapters cover means of monitoring waste on site, pollution prevention, and site remediation. Including a timely evaluation of the role of biotechnology in contemporary industrial waste management, the Handbook reveals sound approaches and sophisticated technologies for treating: textile, rubber, and timber wastes; dairy, meat, and seafood industry wastes; bakery and soft drink wastes; palm and olive oil wastes; pesticide and livestock wastes; pulp and paper wastes; phosphate wastes; detergent wastes; photographic wastes; refinery and metal plating wastes; and power industry wastes. This final chapter, entitled 'Treatment of power industry wastes' by Lawrence K. Wang, analyses the stream electric power generation industry, where combustion of fossil fuels coal, oil, gas, supplies heat to produce stream, used then to generate mechanical energy in turbines, subsequently converted to electricity. Wastes include waste waters from cooling water systems, ash handling systems, wet-scrubber air pollution control systems, and boiler blowdown. Wastewaters are characterized and waste treatment by physical and chemical systems to remove pollutants is presented. Plant-specific examples are provided.

Lawrence Wang; Yung-Tse Hung; Howard Lo; Constantine Yapijakis (eds.)

2004-06-15T23:59:59.000Z

147

Arkansas Water Resources Center  

E-Print Network [OSTI]

Involved in the Selection of Alternatives.. 7 Gasification/liquefaction with Subsequent Transportation. 7 of the Slurry Waste- water as a Function of Residence T

Soerens, Thomas

148

E-Print Network 3.0 - agency hazardous waste Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ash Memorandum Conrad Simon Summary: water monitoring comparable to those required for handling hazardous wastes under Subtitle C, the Agency... waste from classification and...

149

Water Current University of Nebraska Water Center/Environmental Programs  

E-Print Network [OSTI]

, nonpoint source issues, recycling, composting, remediation, hazardous waste and many other waste- and water Ground Water," for the Nebraska Depart- ment of Agriculture. The results of this study will be made avaWater Current University of Nebraska Water Center/Environmental Programs wASTEmanagement problem

Nebraska-Lincoln, University of

150

Review of International Methods of Test to Rate the Efficiency of Water Heaters  

E-Print Network [OSTI]

hot water distribution losses and waste heat recovery.Distribution losses are those heat losses that occur betweenDistribution losses Smart controls Wasted water Solar Heat

Lutz, Jim

2012-01-01T23:59:59.000Z

151

Palestinians and Israelis talk water  

Science Journals Connector (OSTI)

... cover topics from water resources and culture, through law and standards to reuse and desalination of waste water. Always professional and polite, they do not shy away from disagreement ... named hydro-hysteria. Thanks to new technologies for waste water treatment, reuse and desalination, water is no longer a zero-sum game. A new ...

Haim Watzman

2010-08-11T23:59:59.000Z

152

Solid waste management: a public policy study  

E-Print Network [OSTI]

not be discharged into surface water in violation of the National Pollutant Discharge Elimination System of the Clean Water Act; and no facility may contaminate an underground drinking waste source beyond the plant boundary. 2. Air: No open burning... of residential, commercial, institutional, or industrial solid waste may take place. Certain periodic burning activities are exempt. 3. Farmland: No solid waste facility border may lie within one meter (three feet) of land used for crop. If polychlorinated...

Jayawant, Mandar Prabhatkumar

2012-06-07T23:59:59.000Z

153

[Waste water heat recovery system  

SciTech Connect (OSTI)

The production capabilities for and field testing of the heat recovery system are described briefly. Drawings are included.

Not Available

1993-04-28T23:59:59.000Z

154

Aluminum phosphate ceramics for waste storage  

SciTech Connect (OSTI)

The present disclosure describes solid waste forms and methods of processing waste. In one particular implementation, the invention provides a method of processing waste that may be particularly suitable for processing hazardous waste. In this method, a waste component is combined with an aluminum oxide and an acidic phosphate component in a slurry. A molar ratio of aluminum to phosphorus in the slurry is greater than one. Water in the slurry may be evaporated while mixing the slurry at a temperature of about 140-200.degree. C. The mixed slurry may be allowed to cure into a solid waste form. This solid waste form includes an anhydrous aluminum phosphate with at least a residual portion of the waste component bound therein.

Wagh, Arun; Maloney, Martin D

2014-06-03T23:59:59.000Z

155

Description of the Canadian Particulate-Fill WastePackage (WP) System for Spent-Nuclear Fuel (SNF) and its Applicability to Ligh-Water Reactor SNF WPS with Depleted Uranium-Dioxide Fill  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3502 3502 Chemical Technology Division DESCRIPTION OF THE CANADIAN PARTICULATE-FILL WASTE-PACKAGE (WP) SYSTEM FOR SPENT-NUCLEAR FUEL(SNF) AND ITS APPLICABILITY TO LIGHT- WATER REACTOR SNF WPS WITH DEPLETED URANIUM-DIOXIDE FILL Charles W. Forsberg Oak Ridge National Laboratory * P.O. Box 2008 Oak Ridge, Tennessee 37831-6180 Tel: (423) 574-6783 Fax: (423) 574-9512 Email: forsbergcw@ornl.gov October 20, 1997 _________________________ Managed by Lockheed Martin Energy Research Corp. under contract DE-AC05-96OR22464 for the * U.S. Department of Energy. iii CONTENTS LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

156

LLNL Waste Minimization Program Plan  

SciTech Connect (OSTI)

This document is the February 14, 1990 version of the LLNL Waste Minimization Program Plan (WMPP). The Waste Minimization Policy field has undergone continuous changes since its formal inception in the 1984 HSWA legislation. The first LLNL WMPP, Revision A, is dated March 1985. A series of informal revision were made on approximately a semi-annual basis. This Revision 2 is the third formal issuance of the WMPP document. EPA has issued a proposed new policy statement on source reduction and recycling. This policy reflects a preventative strategy to reduce or eliminate the generation of environmentally-harmful pollutants which may be released to the air, land surface, water, or ground water. In accordance with this new policy new guidance to hazardous waste generators on the elements of a Waste Minimization Program was issued. In response to these policies, DOE has revised and issued implementation guidance for DOE Order 5400.1, Waste Minimization Plan and Waste Reduction reporting of DOE Hazardous, Radioactive, and Radioactive Mixed Wastes, final draft January 1990. This WMPP is formatted to meet the current DOE guidance outlines. The current WMPP will be revised to reflect all of these proposed changes when guidelines are established. Updates, changes and revisions to the overall LLNL WMPP will be made as appropriate to reflect ever-changing regulatory requirements. 3 figs., 4 tabs.

Not Available

1990-02-14T23:59:59.000Z

157

Evaluation of isotope migration - land burial. Water chemistry at commercially operated low-level radioactive waste disposal sites. Status report, October 1979-September 1980. [Maxey Flats, KY and Barnwell, SC  

SciTech Connect (OSTI)

A field and laboratory program was initiated to study the existing commercial low-level radioactive waste disposal sites. This investigation will provide source term data for radionuclides and other solutes in trench waters at the sites and will describe the physical, chemical, and biological properties of the geochemical system that control the movement of radionuclides. In the past year, the disposal sites at Maxey Flats, Kentucky, and Barnwell, South Carolina, were sampled, Maxey Flats for the fourth time, Barnwell for the second. Results of trench water inorganic, organic, and radiochemical analyses are similar to those reported for previous samplings. No overall systematic changes in any disposal trenches were observed during the relatively brief sampling interval. However, changes in some radionuclide and inorganic components were observed in several trenches. Tritium was the most abundant of the radionuclides and was found in all the trench waters. Analyses of water collected from a series of experimental interceptor trenches at Maxey Flats showed them to have a chemical composition intermediate between disposal trench water and local groundwater. Preliminary results of batch sorption tests using site-specific materials from the Barnwell disposal site are reported. Tritium content as a function of depth has been determined in four sediment cores collected from beneath the disposal trenches at the Barnwell facility. Gel filtration chromatography experiments using trench waters from the West Valley, New York, disposal site showed an association between /sup 137/Cs and a portion of the trench water dissolved organic content (DOC). Experiments with spiked trench water (/sup 137/Cs and EDTA) indicated that the organic fraction referred to above was not EDTA.

Czyscinski, K.S.; Weiss, A.J.

1981-01-01T23:59:59.000Z

158

Remaining Sites Verification Package for the 100-F-26:15 Miscellaneous Pipelines Associated with the 132-F-6, 1608-F Waste Water Pumping Station, Waste Site Reclassification Form 2007-031  

SciTech Connect (OSTI)

The 100-F-26:15 waste site consisted of the remnant portions of underground process effluent and floor drain pipelines that originated at the 105-F Reactor. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

L. M. Dittmer

2008-03-18T23:59:59.000Z

159

Waste Hoist  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Primary Hoist: 45-ton Rope-Guide Friction Hoist Completely enclosed (for contamination control), the waste hoist at WIPP is a modern friction hoist with rope guides. With a 45-ton...

160

Nuclear Waste  

Science Journals Connector (OSTI)

Nuclear waste is radioactive material no longer considered valuable...238U, 235U, and 226Ra (where the latter decays to 222Rn gas by emitting an alpha particle) or formed through fission of fissile radioisotopes ...

Rob P. Rechard

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "guthrie waste water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site  

SciTech Connect (OSTI)

Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal.

England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

1991-01-01T23:59:59.000Z

162

A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site  

SciTech Connect (OSTI)

Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal.

England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

1991-12-31T23:59:59.000Z

163

Louisiana Water Control Law (Louisiana)  

Broader source: Energy.gov [DOE]

The Louisiana Department of Environmental Quality administers the proper protection and maintenance of the state's waters, and regulate the discharges of waste materials, pollutants, and other...

164

Guthrie County, Iowa: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

0909°, -94.479976° 0909°, -94.479976° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7530909,"lon":-94.479976,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

165

WASTE TO WATTS Waste is a Resource!  

E-Print Network [OSTI]

WASTE TO WATTS Waste is a Resource! energy forum Case Studies from Estonia, Switzerland, Germany Bossart,· ABB Waste-to-Energy Plants Edmund Fleck,· ESWET Marcel van Berlo,· Afval Energie Bedrijf From Waste to Energy To Energy from Waste #12;9.00-9.30: Registration 9.30-9.40: Chairman Ella Stengler opens

Columbia University

166

Record of Decision for the Department of Energy's Waste Management...  

National Nuclear Security Administration (NNSA)

acceptance criteria and stable waste form requirements. * Maintenance and enhancement of pollution control systems to reduce toxicity of air and surface water effluents. * Reuse...

167

Ground-water levels and tritium concentrations at the Maxey Flats low-level radioactive-waste-disposal site near Morehead, Kentucky, June 1984 to April 1989. Water - resources investigation  

SciTech Connect (OSTI)

The report, one in a series of reports by the USGS, summarizes ground-water level and tritium data that were collected by the USGS from June 1984 through April 1989. The report also describes the occurrence and distribution of tritium in water from selected wells. Data for ground-water levels in wells and disposal tranches and the concentrations of tritium in water from monitoring wells at the site are presented. Precipitation data were collected in conjunction with the water-level data to relate precipitation to ground-water recharge. Specific conductance data, routinely determined for ground-water samples, also were collected to compare changes in specific conductance to changes in tritium concentrations. All data are stored locally on the U.S. Geological Survey's National Water Information System (NWIS).

Wilson, K.S.; Lyons, B.E.

1991-01-01T23:59:59.000Z

168

Influence of assumptions about household waste composition in waste management LCAs  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Uncertainty in waste composition of household waste. Black-Right-Pointing-Pointer Systematically changed waste composition in a constructed waste management system. Black-Right-Pointing-Pointer Waste composition important for the results of accounting LCA. Black-Right-Pointing-Pointer Robust results for comparative LCA. - Abstract: This article takes a detailed look at an uncertainty factor in waste management LCA that has not been widely discussed previously, namely the uncertainty in waste composition. Waste composition is influenced by many factors; it can vary from year to year, seasonally, and with location, for example. The data publicly available at a municipal level can be highly aggregated and sometimes incomplete, and performing composition analysis is technically challenging. Uncertainty is therefore always present in waste composition. This article performs uncertainty analysis on a systematically modified waste composition using a constructed waste management system. In addition the environmental impacts of several waste management strategies are compared when applied to five different cities. We thus discuss the effect of uncertainty in both accounting LCA and comparative LCA. We found the waste composition to be important for the total environmental impact of the system, especially for the global warming, nutrient enrichment and human toxicity via water impact categories.

Slagstad, Helene, E-mail: helene.slagstad@ntnu.no [Department of Hydraulic and Environmental Engineering, Norwegian University of Science and Technology, N-7491 Trondheim (Norway); Brattebo, Helge [Department of Hydraulic and Environmental Engineering, Norwegian University of Science and Technology, N-7491 Trondheim (Norway)

2013-01-15T23:59:59.000Z

169

Waste Disposal (Illinois)  

Broader source: Energy.gov [DOE]

This article lays an outline of waste disposal regulations, permits and fees, hazardous waste management and underground storage tank requirements.

170

Tritium waste package  

DOE Patents [OSTI]

A containment and waste package system for processing and shipping tritium xide waste received from a process gas includes an outer drum and an inner drum containing a disposable molecular sieve bed (DMSB) seated within outer drum. The DMSB includes an inlet diffuser assembly, an outlet diffuser assembly, and a hydrogen catalytic recombiner. The DMSB absorbs tritium oxide from the process gas and converts it to a solid form so that the tritium is contained during shipment to a disposal site. The DMSB is filled with type 4A molecular sieve pellets capable of adsorbing up to 1000 curies of tritium. The recombiner contains a sufficient amount of catalyst to cause any hydrogen add oxygen present in the process gas to recombine to form water vapor, which is then adsorbed onto the DMSB.

Rossmassler, Rich (Cranbury, NJ); Ciebiera, Lloyd (Titusville, NJ); Tulipano, Francis J. (Teaneck, NJ); Vinson, Sylvester (Ewing, NJ); Walters, R. Thomas (Lawrenceville, NJ)

1995-01-01T23:59:59.000Z

171

Tritium waste package  

DOE Patents [OSTI]

A containment and waste package system for processing and shipping tritium oxide waste received from a process gas includes an outer drum and an inner drum containing a disposable molecular sieve bed (DMSB) seated within the outer drum. The DMSB includes an inlet diffuser assembly, an outlet diffuser assembly, and a hydrogen catalytic recombiner. The DMSB absorbs tritium oxide from the process gas and converts it to a solid form so that the tritium is contained during shipment to a disposal site. The DMSB is filled with type 4A molecular sieve pellets capable of adsorbing up to 1000 curies of tritium. The recombiner contains a sufficient amount of catalyst to cause any hydrogen and oxygen present in the process gas to recombine to form water vapor, which is then adsorbed onto the DMSB. 1 fig.

Rossmassler, R.; Ciebiera, L.; Tulipano, F.J.; Vinson, S.; Walters, R.T.

1995-11-07T23:59:59.000Z

172

Energy Action Month October 2014 Campaign Materials | Department...  

Office of Environmental Management (EM)

eam2014army20x16.pdf More Documents & Publications Federal Energy and Water Management Award Winners Kate Anderson, Scott Clark, Matthew Ellis, Vincent Guthrie,...

173

In-situ vitrification of waste materials  

DOE Patents [OSTI]

A method for the in-situ vitrification of waste materials in a disposable can that includes an inner container and an outer container is disclosed. The method includes the steps of adding frit and waste materials to the inner container, removing any excess water, heating the inner container such that the frit and waste materials melt and vitrify after cooling, while maintaining the outer container at a significantly lower temperature than the inner container. The disposable can is then cooled to ambient temperatures and stored. A device for the in-situ vitrification of waste material in a disposable can is also disclosed. 7 figs.

Powell, J.R.; Reich, M.; Barletta, R.

1997-10-14T23:59:59.000Z

174

Water treatment method  

DOE Patents [OSTI]

A method is described for reducing the concentration of any undesirable metals dissolved in contaminated water, such as waste water. The method involves uniformly reacting the contaminated water with an excess amount of solid particulate calcium sulfite to insolubilize the undesirable metal ions, followed by removal thereof and of the unreacted calcium sulfite.

Martin, F.S.; Silver, G.L.

1991-04-30T23:59:59.000Z

175

State of ISRAEL Water Resources Management  

E-Print Network [OSTI]

Supply System #12;State of ISRAEL Complexity of the water distribution system · Different Sources to the main system: ground water, surface water, desalinated water · Utilization of the different sources. Water wells purification and aquifers water quality improvement. Increasing capacity of waste water

Einat, Aharonov

176

Tritium waste disposal technology in the US  

SciTech Connect (OSTI)

Tritium waste disposal methods in the US range from disposal of low specific activity waste along with other low-level waste in shallow land burial facilities, to disposal of kilocurie amounts in specially designed triple containers in 65' deep augered holes located in an aird region of the US. Total estimated curies disposed of are 500,000 in commercial burial sites and 10 million curies in defense related sites. At three disposal sites in humid areas, tritium has migrated into the ground water, and at one arid site tritium vapor has been detected emerging from the soil above the disposal area. Leaching tests on tritium containing waste show that tritium in the form of HTO leaches readily from most waste forms, but that leaching rates of tritiated water into polymer impregnated concrete are reduced by as much as a factor of ten. Tests on improved tritium containment are ongoing. Disposal costs for tritium waste are 7 to 10 dollars per cubic foot for shallow land burial of low specific activity tritium waste, and 10 to 20 dollars per cubic foot for disposal of high specific activity waste. The cost of packaging the high specific activity waste is 150 to 300 dollars per cubic foot. 18 references.

Albenesius, E.L.; Towler, O.A.

1983-01-01T23:59:59.000Z

177

Electric Storage Water Heaters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy can be wasted even when a hot water tap isn't running. This is called standby heat loss. The American Council for an Energy Efficient Economy provides a helpful...

178

Solid Waste Program (Alabama) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Program (Alabama) Program (Alabama) Solid Waste Program (Alabama) < Back Eligibility Commercial Construction Developer General Public/Consumer Industrial Residential Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Alabama Program Type Environmental Regulations This article states the authority of the department, regulations for the control of unauthorized dumping, disposal fees, violations and penalties. Solid waste refers to any garbage, rubbish, construction or demolition debris, ash, or sludge from a waste treatment facility, water supply plant, or air pollution control facility, and any other discarded materials, including solid, liquid, semisolid, or contained gaseous material resulting

179

Method of preparing nuclear wastes for tansportation and interim storage  

DOE Patents [OSTI]

Nuclear waste is formed into a substantially water-insoluble solid for temporary storage and transportation by mixing the calcined waste with at least 10 weight percent powdered anhydrous sodium silicate to form a mixture and subjecting the mixture to a high humidity environment for a period of time sufficient to form cementitious bonds by chemical reaction. The method is suitable for preparing an interim waste form from dried high level radioactive wastes.

Bandyopadhyay, Gautam (Naperville, IL); Galvin, Thomas M. (Darien, IL)

1984-01-01T23:59:59.000Z

180

Waste Treatment and Immobilation Plant HLW Waste Vitrification...  

Office of Environmental Management (EM)

Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility Full Document and Summary Versions...

Note: This page contains sample records for the topic "guthrie waste water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

WASTE DISPOSAL WORKSHOPS: ANTHRAX CONTAMINATED WASTE  

E-Print Network [OSTI]

WASTE DISPOSAL WORKSHOPS: ANTHRAX CONTAMINATED WASTE January 2010 Prepared for the Interagency left intentionally blank.] #12;Prepared for the U.S. Department of Energy PNNL-SA-69994 under Contract DE-AC05-76RL01830 Waste Disposal Workshops: Anthrax-Contaminated Waste AM Lesperance JF Upton SL

182

Partnering to Save Water  

Broader source: Energy.gov (indexed) [DOE]

Partnering Partnering to Save Water Phill Consiglio Southern California Edison What We Are Going to Discuss * A Little Bit About Water * The Energy Cost of Water * Water Technologies * What We Have Done * Where We Are Going A Little Bit About Water *The Earth Has A Finite Supply Of Fresh Water. - Water Is Stored In Aquifers, Surface Waters And The Atmosphere - Sometimes Oceans Are Mistaken For Available Water, But The Amount Of Energy Needed To Convert Saline Water To Potable Water Is Prohibitive Today *This Has Created A Water Crisis Due To: - Inadequate Access To Safe Drinking Water For About 884 Million People - Inadequate Access To Water For Sanitation And Waste Disposal For 2.5 Billion People - Groundwater Overdrafting (Excessive Use) Leading To Diminished Agricultural Yields

183

Numerical simulation of hydrothermal salt separation process and analysis and cost estimating of shipboard liquid waste disposal  

E-Print Network [OSTI]

Due to environmental regulations, waste water disposal for US Navy ships has become a requirement which impacts both operations and the US Navy's budget. In 2006, the cost for waste water disposal Navy-wide was 54 million ...

Hunt, Andrew Robert

2007-01-01T23:59:59.000Z

184

Waste Processing | Department of Energy  

Office of Environmental Management (EM)

Processing Waste Processing Workers process and repackage waste at the Transuranic Waste Processing Centers Cask Processing Enclosure. Workers process and repackage waste at...

185

Biological pretreatment of produced water for reuse applications.  

E-Print Network [OSTI]

??Co-produced water from the oil and gas industry represents a significant waste stream in the United States. Produced water is characterized by high levels of (more)

Kwon, Soondong, 1973-

2008-01-01T23:59:59.000Z

186

Waste Hoist  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Primary Hoist: 45-ton Rope-Guide Friction Hoist Largest friction hoist in the world when it was built in 1985 Completely enclosed (for contamination control), the waste hoist at WIPP is a modern friction hoist with rope guides (uses a balanced counterweight and tail ropes). With a 45-ton capacity, it was the largest friction hoist in the world when it was built in 1986. Hoist deck footprint: 2.87m wide x 4.67m long Hoist deck height: 2.87m wide x 7.46m high Access height to the waste hoist deck is limited by a high-bay door at 4.14m high Nominal configuration is 2-cage (over/under), with bottom (equipment) cage interior height of 4.52m The photo, at left, shows the 4.14m high-bay doors at the top collar of the waste hoist shaft. The perpendicular cross section of the opening is 3.5m x 4.14m, but the bottom cage cross section is 2.87m x 4.5m (and 4.67m into the plane of the photo).

187

Evaluation of isotope migration - land burial. Water chemistry at commercially operated low-level radioactive waste disposal sites. Quarterly progress report, April-June 1980  

SciTech Connect (OSTI)

This report presents the analytical results for tritium content of soil cores taken at the Barnwell, South Carolina, disposal site, field measurements at Barnwell, concentrations of free chelating agents in selected trench waters, and the analyses of water samples collected at the Maxey Flats, Kentucky, disposal site. Tritium contents in soil cores taken below the trenches show a decrease in tritium with depth to a minimum value at approximately ten meters, followed by an increase below this depth. This deeper maximum probably represents the downward movement of the previous years seasonal maxima for water infiltration into the trenches. This amount of downward migration from the trench bottom is approximately what would be expected based on the hydraulic conductivity of these sediments. Field measurements of trench waters at the Barnwell, South Carolina, disposal site indicate that the waters are chemically oxidizing regimes relative to those at Maxey Flats and West Valley. Analyses were performed to determine the amounts of free chelating agents DTPA, EDTA, and NTA in selected trenches at the Maxey Flats, West Valley, Barnwell, and Sheffield, disposal sites. Amounts of free chelating agents were generally below 1 ..mu..g/g, with one sample as high as 28 ..mu..g/g. No drastic changes in trench water compositions were observed relative to previous sampling at Maxey Flats. The experimental interceptor trenches contain detectable amounts of strontium and plutonium. Tritium contents vary from typical disposal trench levels (E7-E8 pCi/L) in trench IT-2E, downward four oders of magnitude in trench IT-5 in a decreasing trend along the line of experimental trenches.

Czyscinski, K.S.; Weiss, A.J.

1980-08-01T23:59:59.000Z

188

Evaluation of isotope migration - land burial water chemistry at commercially operated low-level radioactive waste disposal sites. Quarterly progress report, January-March 1980  

SciTech Connect (OSTI)

This report presents results for tritium analysis for soil cores taken at West Valley, NY, and Barnwell, SC. Tritium movement at West Valley appears to be diffusion controlled. The Barnwell core data suggests that coring has intersected a water flow path below the trench. An apparatus has been designed for flow-through column k/sub k/ determinations and is described. Gel filteration experiments with spiked trench water from West Valley have been contained using a longer column than used in previous work. Increased resolution of DOC components has been observed.

Czyscinski, K.S.; Weiss, A.J.

1980-05-01T23:59:59.000Z

189

Influence of pH, Oxygen, and Humic Substances on Ability of Sunlight To Damage Fecal Coliforms in Waste Stabilization Pond Water  

Science Journals Connector (OSTI)

...Duration, 255 min; radiant energy received = 4.52 MJ m2 shown...light Probability of no Radiant energy Dissolved oxygenForm of oxygen...spectra for oxygen dependant and independant inactivation of Eschenchia...transformations involving electronic energy transfer in natural waters...

Thomas P. Curtis; D. Duncan Mara; Salomao A. Silva

1992-04-01T23:59:59.000Z

190

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Broader source: Energy.gov (indexed) [DOE]

9, 2010 9, 2010 CX-003355: Categorical Exclusion Determination Oklahoma State Energy Program American Recovery and Reinvestment Act- Phase 2 - Wind Turbine for Guthrie Waste Water Treatment Plant CX(s) Applied: B5.1 Date: 08/09/2010 Location(s): Guthrie, Oklahoma Office(s): Energy Efficiency and Renewable Energy, Golden Field Office August 9, 2010 CX-003354: Categorical Exclusion Determination Oklahoma State Energy Program American Recovery and Reinvestment Act - Heating, Ventilating, and Air Conditioning and Window Replacement in Administration Building CX(s) Applied: B5.1 Date: 08/09/2010 Location(s): Shawnee, Oklahoma Office(s): Energy Efficiency and Renewable Energy, Golden Field Office August 9, 2010 CX-003353: Categorical Exclusion Determination Oklahoma State Energy Program American Recovery and Reinvestment Act -

191

Categorical Exclusion Determinations: A11 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

1, 2010 1, 2010 CX-001682: Categorical Exclusion Determination Oklahoma State Energy Program (SEP) American Recovery and Reinvestment Act (ARRA) - Phase 1 - Wind Turbine for Guthrie Waste Water Treatment Plant CX(s) Applied: A9, A11 Date: 04/01/2010 Location(s): Guthrie, Oklahoma Office(s): Energy Efficiency and Renewable Energy, Golden Field Office April 1, 2010 CX-006950: Categorical Exclusion Determination Energy Efficiency and Conservation Strategy and Analysis, Retrofits and Recycling Program CX(s) Applied: A9, A11, B5.1 Date: 04/01/2010 Location(s): Dearborn, Michigan Office(s): Energy Efficiency and Renewable Energy, Savannah River Operations Office March 31, 2010 CX-002036: Categorical Exclusion Determination Pinellas County, Florida CX(s) Applied: A9, A11, B5.1

192

Annual Report on Waste Generation and Waste Minimization Progress, 1991--1992  

SciTech Connect (OSTI)

This report is DOE`s first annual report on waste generation and waste minimization progress. Data presented in this report were collected from all DOE sites which met minimum threshold criteria established for this report. The fifty-seven site submittals contained herein represent data from over 100 reporting sites within 25 states. Radioactive, hazardous and sanitary waste quantities and the efforts to minimize these wastes are highlighted within the fifty-seven site submittals. In general, sites have made progress in moving beyond the planning phase of their waste minimization programs. This is evident by the overall 28 percent increase in the total amount of materials recycled from 1991 to 1992, as well as individual site initiatives. During 1991 and 1992, DOE generated a total of 279,000 cubic meters of radioactive waste and 243,000 metric tons of non-radioactive waste. These waste amounts include significant portions of process wastewater required to be reported to regulatory agencies in the state of Texas and the state of Tennessee. Specifically, the Pantex Plant in Texas treats an industrial wastewater that is considered by the Texas Water Commission to be a hazardous waste. In 1992, State regulated wastewater from the Pantex Plant represented 3,620 metric tons, 10 percent of the total hazardous waste generated by DOE. Similarly, mixed low-level wastewater from the TSCA Incinerator Facility at the Oak Ridge K-25 Site in Tennessee represented 55 percent of the total radioactive waste generated by DOE in 1992.

Not Available

1994-02-01T23:59:59.000Z

193

Viral Pollution of Surface Waters Due to Chlorinated Primary Effluents  

Science Journals Connector (OSTI)

...gerous wastes into the water environment is likely...logical approach to better water conservation as well as minimizing...combinations ofantiserum pools. Application to typing...Health factors and reused waters. J. Am. Water Works...

Syed A. Sattar; J. C. N. Westwood

1978-09-01T23:59:59.000Z

194

Drilling Waste Management Fact Sheet: Slurry Injection of Drilling Wastes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Slurry Injection Slurry Injection Fact Sheet - Slurry Injection of Drilling Wastes Underground Injection of Drilling Wastes Several different approaches are used for injecting drilling wastes into underground formations for permanent disposal. Salt caverns are described in a separate fact sheet. This fact sheet focuses on slurry injection technology, which involves grinding or processing solids into small particles, mixing them with water or some other liquid to make a slurry, and injecting the slurry into an underground formation at pressures high enough to fracture the rock. The process referred to here as slurry injection has been given other designations by different authors, including slurry fracture injection (this descriptive term is copyrighted by a company that provides slurry injection services), fracture slurry injection, drilled cuttings injection, cuttings reinjection, and grind and inject.

195

Numerical simulation of ground-water flow in the Culebra dolomite at the Waste Isolation Pilot Plant (WIPP) site: Second interim report  

SciTech Connect (OSTI)

This hydrogeologic modeling study has been performed as part of the regional hydrologic characterization of the Waste Isolation Pilot Plant (WIPP) Site in southeastern New Mexico. The study resulted in an estimation of the transmissivity distrubution, hydraulic potentials, flow field, and fluid densities in the Culebra Dolomite Member of the Permian Rustler Formation at the WIPP site. The three-dimensional finite-difference code SWIFT-II was employed for the numerical modeling, using variable-fluid-density and a single-porosity formulation. The modeled area includes and extends beyond the WIPP controlled zone (Zone 3). The work performed consisted of modeling the hydrogeology of the Culebra using two approaches: (1) steady-state modeling to develop the best estimate of the undisturbed head distribution, i.e., of the situation before sinking if the WIPP shafts, which began in 1981; and (2) superimposed transient modeling of local hydrologic responses to excavation of the three WIPP shafts at the center of the WIPP site, as well as to various well tests. Boundary conditions (prescribed constant fluid pressures and densities) were estimated using hydraulic-head and fluid-density data obtained from about 40 wells at and near the WIPP site. The transient modeling used the calculated steady-state freshwater heads as initial conditions. 107 refs., 112 figs., 22 tabs.

LaVenue, A.M.; Haug, A.; Kelley, V.A.

1988-03-01T23:59:59.000Z

196

Central Waste Complex (CWC) Waste Analysis Plan  

SciTech Connect (OSTI)

The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for waste accepted for storage at the Central Waste Complex (CWC), which is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include the source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge.

ELLEFSON, M.D.

1999-12-01T23:59:59.000Z

197

Evaluation of isotope migration: land burial. Water chemistry at commercially operated low-level radioactive waste disposal sites. Quarterly progress report, April-June 1981  

SciTech Connect (OSTI)

Results are reported for radionuclide sorption experiments performed under anaerobic conditions and as a function of solution/solid ratio for trench shale and waters collected at the Maxey Flats disposal site in Kentucky. The observed degree of sorption (equilibrium K/sub d/) varied unpredictably as a function of solution to solid ratio. Measurements of pH and Eh were performed before and after the determinations to determine if redox conditions were altered significantly during the experiments. The experimental procedure appears capable of maintaining anaerobic conditions during most of the determinations. Changes in solution/solid ratio appear to affect the observed equilibrium sorption more than any variations in redox state during the determinations. However, our final evaluation of the proposed test procedure for measuring sorption of radionuclides from anoxic groundwater is that the test is not completely reliable. Since further improvements in the experimental procedure are not planned, this type of batch sorption test for anoxic waters will be terminated. Organo-radionuclide complex stability experiments in controlled environment chambers were completed. The results indicate that the temporal stability of chelated radionuclides in low redox geochemical environments are not easily predicted from comparisons of appropriate association constants and solubility products. Empirical information is required to reliably predict the behavior of chelated radionuclides under field conditions. Controlled oxidation experiments using disposal site trench waters were initiated. Preliminary results suggest that high contents of dissolved ferrous iron in trench waters can act as redox buffers to preserve low redox conditions during subsurface migration. Data on coprecipitation of radionuclides on ferric oxyhydroxide will be reported when analyses are completed.

Czyscinski, K S; Pietrzak, R F; Weiss, A J

1981-11-01T23:59:59.000Z

198

Radioactive Waste Management (Minnesota)  

Broader source: Energy.gov [DOE]

This section regulates the transportation and disposal of high-level radioactive waste in Minnesota, and establishes a Nuclear Waste Council to monitor the federal high-level radioactive waste...

199

Radioactive Waste Management  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish policies and guidelines by which the Department of Energy (DOE) manages tis radioactive waste, waste byproducts, and radioactively contaminated surplus facilities.

1984-02-06T23:59:59.000Z

200

Transuranic Waste Requirements  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The guide provides criteria for determining if a waste is to be managed in accordance with DOE M 435.1-1, Chapter III, Transuranic Waste Requirements.

1999-07-09T23:59:59.000Z

Note: This page contains sample records for the topic "guthrie waste water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Waste?to?Energy  

Broader source: Energy.gov [DOE]

Waste?to?Energy Roadmapping Workshop Waste?to?Energy Presentation by Jonathan Male, Director of the Bioenery Technolgies Office, Department of Energy

202

Effects of biodrying process on municipal solid waste properties  

Science Journals Connector (OSTI)

In this paper, the effect of biodrying process on municipal solid waste (MSW) properties was studied. The results obtained indicated that after 14d, biodrying reduced the water content of waste, allowing the production of biodried waste with a net heating value (NHV) of 16,7792,074kJkg?1 wet weight, i.e. 41% higher than that of untreated waste. The low moisture content of the biodried material reduced, also, the potential impacts of the waste, i.e. potential self-ignition and potential odors production. Low waste impacts suggest to landfill the biodried material obtaining energy via biogas production by waste re-moistening, i.e. bioreactor. Nevertheless, results of this work indicate that biodrying process because of the partial degradation of the organic fraction contained in the waste (losses of 290gkg?1 VS), reduced of about 28% the total producible biogas.

F. Tambone; B. Scaglia; S. Scotti; F. Adani

2011-01-01T23:59:59.000Z

203

Nuclear Waste Disposal: Amounts of Waste  

Science Journals Connector (OSTI)

The term nuclear waste...embraces all residues from the use of radioactive materials, including uses in medicine and industry. The most highly radioactive of these are the spent fuel or reprocessed wastes from co...

2005-01-01T23:59:59.000Z

204

Results of Water and Sediment Toxicity Tests and Chemical Analyses Conducted at the Central Shops Burning Rubble Pit Waste Unit, January 1999  

SciTech Connect (OSTI)

The Central Shops Burning Rubble Pit Operable Unit consists of two inactive rubble pits (631-1G and 631-3G) that have been capped, and one active burning rubble pit (631-2G), where wooden pallets and other non-hazardous debris are periodically burned. The inactive rubble pits may have received hazardous materials, such as asbestos, batteries, and paint cans, as well as non-hazardous materials, such as ash, paper, and glass. In an effort to determine if long term surface water flows of potentially contaminated water from the 631-1G, 631-3G, and 631-2G areas have resulted in an accumulation of chemical constituents at toxic levels in the vicinity of the settling basin and wetlands area, chemical analyses for significant ecological preliminary constituents of concern (pCOCs) were performed on aqueous and sediment samples. In addition, aquatic and sediment toxicity tests were performed in accordance with U.S. EPA methods (U.S. EPA 1989, 1994). Based on the results of the chemical analyses, unfiltered water samples collected from a wetland and settling basins located adjacent to the CSBRP Operable Unit exceed Toxicity Reference Values (TRVs) for aluminum, barium, chromium, copper, iron, lead, and vanadium at one or more of the four locations that were sampled. The water contained very high concentrations of clay particles that were present as suspended solids. A substantial portion of the metals were present as filterable particulates, bound to the clay particles, and were therefore not biologically available. Based on dissolved metal concentrations, the wetland and settling basin exceeded TRVs for aluminum and barium. However, the background reference location also exceeded the TRV for barium, which suggests that this value may be too low, based on local geochemistry. The detection limits for both total and dissolved mercury were higher than the TRV, so it was not possible to determine if the TRV for mercury was exceeded. Dissolved metal levels of chromium, copper, iron, lead and vanadium were below the TRVs. Metal concentrations in the sediment exceeded the TRVs for arsenic, chromium, copper, and mercury but not for antimony and lead. The results of the water toxicity tests indicated no evidence of acute toxicity in any of the samples. The results of the chronic toxicity tests indicated possible reproductive impairment at two locations. However, the results appear to be anomalous, since the toxicity was unrelated to concentration, and because the concentrations of pCOCs were similar in the toxic and the non-toxic samples. The results of the sediment toxicity tests indicated significant mortality in all but one sample, including the background reference sediment. When the results of the CSBRP sediment toxicity tests were statistically compared to the result from the background reference sediment, there was no significant mortality. These results suggest that the surface water and sediment at the CSBRP Operable Unit are not toxic to the biota that inhabit the wetland and the settling basin.

Specht, W.L.

1999-06-02T23:59:59.000Z

205

E-Print Network 3.0 - alkaline tank waste Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ty of wasted feed affect tank water quality. As pelleted feeds are introduced... the tanks to wash out the waste by-products. Additionally, the oxygen concentration within the...

206

Waste Isolation Pilot Plant No-migration variance petition. Addendum: Volume 7, Revision 1  

SciTech Connect (OSTI)

This report describes various aspects of the Waste Isolation Pilot Plant (WIPP) including design data, waste characterization, dissolution features, ground water hydrology, natural resources, monitoring, general geology, and the gas generation/test program.

Not Available

1990-03-01T23:59:59.000Z

207

WasteTraining Booklet Waste & Recycling Impacts  

E-Print Network [OSTI]

WasteTraining Booklet #12;Waste & Recycling Impacts Environment: The majority of our municipal jobs while recycling 10,000 tons of waste creates 36 jobs. Environment: Recycling conserves resources. It takes 95% less energy to make aluminum from recycled aluminum than from virgin materials, 60% less

Saldin, Dilano

208

Ground-water levels and tritium concentrations at the Maxey Flats low-level radioactive waste disposal site near Morehead, Kentucky, June 1984 to April 1989  

SciTech Connect (OSTI)

The Maxey Flats disposal site, Kentucky encompasses about 280 acres near the edge of a flat-topped ridge. The ridge is underlain by fractured shale and sandstone beds of the Nancy Member and the Farmers Member of the Borden Formation of Mississippian age. Groundwater flow in the strata beneath the site occurs through fractures, and flow patterns are difficult to delineate. The potentiometric surface also is difficult to delineate because several saturated and unsaturated zones are present in the rocks. Generally, ground-water levels in wells intersecting permeable fractures fluctuated seasonally and were lowest from December through June and highest from July through November. Water levels in the disposal trenches fluctuations less than those in wells, and for most trenches the fluctuations were less than 0.5 foot. From June 1984 to April 1989, tritium concentrations in groundwater ranged from 0 to 2,402,200 picocuries/ml. The greatest and most variable tritium concentrations were in wells along the northwest side of the site. The major conduit of groundwater flow from the trenches in the northwestern part of the site is a fractured sandstone bed that forms the base of most trenches. Elsewhere along the site perimeter, elevated levels of tritium were not detected in wells, and mean tritium were not detected in wells, and mean tritium concentrations showed little change between 1986 and 1988.

Wilson, K.S.; Lyons, B.E. (Geological Survey, Reston, VA (United States))

1991-01-01T23:59:59.000Z

209

Solid Waste Reduction, Recovery, and Recycling | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Reduction, Recovery, and Recycling Reduction, Recovery, and Recycling Solid Waste Reduction, Recovery, and Recycling < Back Eligibility Investor-Owned Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Wisconsin Program Type Environmental Regulations Provider Department of Natural Resources This statute expresses the strong support of the State of Wisconsin for the reduction of the amount of solid waste generated, the reuse, recycling and composting of solid waste, and resource recovery from solid waste. The statute also notes that research, development and innovation in the design, management and operation of solid waste reduction, reuse, recycling,

210

Hazardous Waste Management (North Carolina) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

(North Carolina) (North Carolina) Hazardous Waste Management (North Carolina) < Back Eligibility Commercial Industrial Construction Fuel Distributor Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State North Carolina Program Type Environmental Regulations Safety and Operational Guidelines Siting and Permitting Provider Department of Environment and Natural Resources These rules identify and list hazardous waste and set standards for the generators and operators of such waste as well as owners or operators of waste facilities. They also stats standards for surface impoundments and location standards for facilities. An applicant applying for a permit for a hazardous waste facility shall

211

List of Municipal Solid Waste Incentives | Open Energy Information  

Open Energy Info (EERE)

Waste Incentives Waste Incentives Jump to: navigation, search The following contains the list of 172 Municipal Solid Waste Incentives. CSV (rows 1 - 172) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Advanced Clean Energy Project Grants (Texas) State Grant Program Texas Commercial Industrial Utility Biomass Municipal Solid Waste No Advanced Energy Fund (Ohio) Public Benefits Fund Ohio Commercial Industrial Institutional Residential Utility Biomass CHP/Cogeneration Fuel Cells Fuel Cells using Renewable Fuels Geothermal Electric Hydroelectric energy Landfill Gas Microturbines Municipal Solid Waste Photovoltaics Solar Space Heat Solar Thermal Electric Solar Water Heat Wind energy Yes Alternative Energy Law (AEL) (Iowa) Renewables Portfolio Standard Iowa Investor-Owned Utility Anaerobic Digestion

212

Georgia Waste Control Law (Georgia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Waste Control Law (Georgia) Waste Control Law (Georgia) Georgia Waste Control Law (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Georgia Program Type Environmental Regulations Provider Georgia Department of Natural Resources The Waste Control Law makes it unlawful to dump waste in any lakes, streams

213

Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste  

SciTech Connect (OSTI)

This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation.

NONE

1994-12-31T23:59:59.000Z

214

Recycling of CdTe photovoltaic waste  

DOE Patents [OSTI]

A method for extracting and reclaiming metals from scrap CdTe photovoltaic cells and manufacturing waste by leaching the waste with a leaching solution comprising nitric acid and water, skimming any plastic material from the top of the leaching solution, separating the glass substrate from the liquid leachate and electrolyzing the leachate to separate Cd from Te, wherein the Te is deposits onto a cathode while the Cd remains in solution.

Goozner, Robert E. (Charlotte, NC); Long, Mark O. (Charlotte, NC); Drinkard, Jr., William F. (Charlotte, NC)

1999-01-01T23:59:59.000Z

215

Final report on the investigation of water purification and waste concentration by the Vacuum Freezing Multiple Phase Transformation Process and its eutectic extension, September 1986-September 1987  

SciTech Connect (OSTI)

This study is a continuation of the study of the Volume Freezing Multiple Phase Transformation (VFMPT) process for desalination and water reuse. During the first grant period, bench-scale experiments were completed for the VFMPT process and initial design of a prototype VFMPT plant was completed. During the course of the second grant, the vacuum freezing and vapor liquefaction operations were tested in a prototype unit referred to as the 40 Inch Long unit. It was concluded that a two rotating screws half submerged in the pool would be a very energy efficient method for providing the necessary surface areas. A flowsheet was developed for the VFMPT plant with detailed mass and energy balances and energy requirements determined.

Cheng, C.Y.; Cheng, W.C.

1988-01-01T23:59:59.000Z

216

Field testing of waste forms using lysimeters  

SciTech Connect (OSTI)

The Low-Level Waste Data Base Development - EPICOR-II Resin/Liner Investigation Program funded by the US Nuclear Regulatory Commission is obtaining information on performance of radioactive waste in a disposal environment. Waste forms manufactured from ion exchange resins used to clean up water from the accident at Three Mile Island Nuclear Power Station are being examined in field tests. This paper presents a description of the field testing and results from the first year of operation. 8 refs., 8 figs., 4 tabs.

McConnell, J.W. Jr.; Rogers, R.D.

1987-01-01T23:59:59.000Z

217

The Savannah River Site's liquid radioactive waste operations involves the man  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Site's liquid radioactive waste operations involves the management of space in the Site's Site's liquid radioactive waste operations involves the management of space in the Site's 49 underground waste tanks, including the removal of waste materials. Once water is removed from the waste tanks, two materials remain: salt and sludge waste. Removing salt waste, which fills approximately 90 percent of the tank space in the SRS tank farms, is a major step toward closing the Site's waste tanks that currently contain approximately 38 million gallons of waste. Due to the limited amount of tank space available in new-style tanks, some salt waste must be dispositioned in the interim to ensure sufficient tank space for continued sludge washing and to support the initial start-up and salt processing operations at the Salt Waste Processing Facility (SWPF).

218

Recycling of sodium waste  

Science Journals Connector (OSTI)

Recycling of sodium waste ... Methods for handling and recycling a dangerous and costly chemical. ...

Bettina Hubler-Blank; Michael Witt; Herbert W. Roesky

1993-01-01T23:59:59.000Z

219

Central Waste Complex (CWC) Waste Analysis Plan  

SciTech Connect (OSTI)

The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for waste accepted for storage at the Central Waste Complex (CWC), which is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include the source special nuclear and by-product material components of mixed waste, radionuclides are not within the scope of this document. The information on radionuclides is provided only for general knowledge. This document has been revised to meet the interim status waste analysis plan requirements of Washington Administrative Code (WAC) 173 303-300(5). When the final status permit is issued, permit conditions will be incorporated and this document will be revised accordingly.

ELLEFSON, M.D.

2000-01-06T23:59:59.000Z

220

GEOTECHNICAL/GEOCHEMICAL CHARACTERIZATION OF ADVANCED COAL PROCESS WASTE STREAMS  

SciTech Connect (OSTI)

Thirteen solid wastes, six coals and one unreacted sorbent produced from seven advanced coal utilization processes were characterized for task three of this project. The advanced processes from which samples were obtained included a gas-reburning sorbent injection process, a pressurized fluidized-bed coal combustion process, a coal-reburning process, a SO{sub x}, NO{sub x}, RO{sub x}, BOX process, an advanced flue desulfurization process, and an advanced coal cleaning process. The waste samples ranged from coarse materials, such as bottom ashes and spent bed materials, to fine materials such as fly ashes and cyclone ashes. Based on the results of the waste characterizations, an analysis of appropriate waste management practices for the advanced process wastes was done. The analysis indicated that using conventional waste management technology should be possible for disposal of all the advanced process wastes studied for task three. However, some wastes did possess properties that could present special problems for conventional waste management systems. Several task three wastes were self-hardening materials and one was self-heating. Self-hardening is caused by cementitious and pozzolanic reactions that occur when water is added to the waste. All of the self-hardening wastes setup slowly (in a matter of hours or days rather than minutes). Thus these wastes can still be handled with conventional management systems if care is taken not to allow them to setup in storage bins or transport vehicles. Waste self-heating is caused by the exothermic hydration of lime when the waste is mixed with conditioning water. If enough lime is present, the temperature of the waste will rise until steam is produced. It is recommended that self-heating wastes be conditioned in a controlled manner so that the heat will be safely dissipated before the material is transported to an ultimate disposal site. Waste utilization is important because an advanced process waste will not require ultimate disposal when it is put to use. Each task three waste was evaluated for utilization potential based on its physical properties, bulk chemical composition, and mineral composition. Only one of the thirteen materials studied might be suitable for use as a pozzolanic concrete additive. However, many wastes appeared to be suitable for other high-volume uses such as blasting grit, fine aggregate for asphalt concrete, road deicer, structural fill material, soil stabilization additives, waste stabilization additives, landfill cover material, and pavement base course construction.

Edwin S. Olson; Charles J. Moretti

1999-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "guthrie waste water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Reference waste package environment report  

SciTech Connect (OSTI)

One of three candidate repository sites for high-level radioactive waste packages is located at Yucca Mountain, Nevada, in rhyolitic tuff 700 to 1400 ft above the static water table. Calculations indicate that the package environment will experience a maximum temperature of {similar_to}230{sup 0}C at 9 years after emplacement. For the next 300 years the rock within 1 m of the waste packages will remain dehydrated. Preliminary results suggest that the waste package radiation field will have very little effect on the mechanical properties of the rock. Radiolysis products will have a negligible effect on the rock even after rehydration. Unfractured specimens of repository rock show no change in hydrologic characteristics during repeated dehydration-rehydration cycles. Fractured samples with initially high permeabilities show a striking permeability decrease during dehydration-rehydration cycling, which may be due to fracture healing via deposition of silica. Rock-water interaction studies demonstrate low and benign levels of anions and most cations. The development of sorptive secondary phases such as zeolites and clays suggests that anticipated rock-water interaction may produce beneficial changes in the package environment.

Glassley, W.E.

1986-10-01T23:59:59.000Z

222

Infectious waste feed system  

DOE Patents [OSTI]

An infectious waste feed system for comminuting infectious waste and feeding the comminuted waste to a combustor automatically without the need for human intervention. The system includes a receptacle for accepting waste materials. Preferably, the receptacle includes a first and second compartment and a means for sealing the first and second compartments from the atmosphere. A shredder is disposed to comminute waste materials accepted in the receptacle to a predetermined size. A trough is disposed to receive the comminuted waste materials from the shredder. A feeding means is disposed within the trough and is movable in a first and second direction for feeding the comminuted waste materials to a combustor.

Coulthard, E. James (York, PA)

1994-01-01T23:59:59.000Z

223

Radioactive Waste Management Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07.

1999-07-09T23:59:59.000Z

224

Waste treatment by reverse osmosis and membrane processing. (Latest citations from the NTIS Bibliographic database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the technology of reverse osmosis and membrane processing in sewage and industrial waste treatment. Citations discuss ultrafiltration, industrial water reuse, hazardous waste treatment, municipal wastes, and materials recovery. Waste reduction and recycling in electroplating, metal finishing, and circuit board manufacturing are considered. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1994-11-01T23:59:59.000Z

225

Waste treatment by reverse osmosis and membrane processing. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the technology of reverse osmosis and membrane processing in sewage and industrial waste treatment. Citations discuss ultrafiltration, industrial water reuse, hazardous waste treatment, municipal wastes, and materials recovery. Waste reduction and recycling in electroplating, metal finishing, and circuit board manufacturing are considered. (Contains a minimum of 245 citations and includes a subject term index and title list.)

Not Available

1994-03-01T23:59:59.000Z

226

The role of science in solving the world's emerging water problems  

Science Journals Connector (OSTI)

...toxic waste have created a serious ground water contamination problem in many...waste still lies in the soil. Ground water contamination is extremely expensive...future to support significant remediation efforts. Soil salinization will...

William A. Jury; Henry Vaux; Jr

2005-01-01T23:59:59.000Z

227

Water Hammer Elimination: A Case Study  

E-Print Network [OSTI]

the water hammer elimination efforts taken at a petrochemical complex in Southeast Asia. The condensate return system in this plant failed once, causing an unplanned shutdown. The water hammer in the condensate system was partially controlled by wasting part...

Venkatesan, V. V.; Harun, S. D.; Karthikeyan, P. S.

2005-01-01T23:59:59.000Z

228

Water Treatment using Electrocoagulation Ritika Mohan  

E-Print Network [OSTI]

Reverse Osmosis (HEROTM). Semiconductor industrial waste water amounts to approximately 105 ­ 106 gal of brine amounting to almost 103 104 gal/day water. The difference between conventional Reverse Osmosis

Fay, Noah

229

Biomass Gasification in Supercritical Water  

Science Journals Connector (OSTI)

Biomass Gasification in Supercritical Water ... A packed bed of carbon within the reactor catalyzed the gasification of these organic vapors in the water; consequently, the water effluent of the reactor was clean. ... A method for removing plugs from the reactor was developed and employed during an 8-h gasification run involving potato wastes. ...

Michael Jerry Antal, Jr.; Stephen Glen Allen; Deborah Schulman; Xiaodong Xu; Robert J. Divilio

2000-10-14T23:59:59.000Z

230

Gaines County Solid Waste Management Act (Texas) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gaines County Solid Waste Management Act (Texas) Gaines County Solid Waste Management Act (Texas) Gaines County Solid Waste Management Act (Texas) < Back Eligibility Commercial Construction Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Tribal Government Utility Program Info State Texas Program Type Environmental Regulations Provider Gaines County Solid Waste Management District This Act establishes the Gaines County Solid Waste Management District, a governmental body to develop and carry out a regional water quality protection program through solid waste management and regulation of waste disposal. The District has the power to prepare, adopt plans for, purchase, obtain permits for, construct, acquire, own, operate, maintain, repair, improve, and extend inside and outside the boundaries of the district any works,

231

Waste Acceptance Testing of Secondary Waste Forms: Cast Stone, Ceramicrete and DuraLith  

SciTech Connect (OSTI)

To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions has initiated secondary-waste-form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is conducting tests on four candidate waste forms to evaluate their ability to meet potential waste acceptance criteria for immobilized secondary wastes that would be placed in the IDF. All three waste forms demonstrated compressive strengths above the minimum 3.45 MPa (500 psi) set as a target for cement-based waste forms. Further, none of the waste forms showed any significant degradation in compressive strength after undergoing thermal cycling (30 cycles in a 10 day period) between -40 C and 60 C or water immersion for 90 days. The three leach test methods are intended to measure the diffusion rates of contaminants from the waste forms. Results are reported in terms of diffusion coefficients and a leachability index (LI) calculated based on the diffusion coefficients. A smaller diffusion coefficient and a larger LI are desired. The NRC, in its Waste Form Technical Position (NRC 1991), provides recommendations and guidance regarding methods to demonstrate waste stability for land disposal of radioactive waste. Included is a recommendation to conduct leach tests using the ANS 16.1 method. The resulting leachability index (LI) should be greater than 6.0. For Hanford secondary wastes, the LI > 6.0 criterion applies to sodium leached from the waste form. For technetium and iodine, higher targets of LI > 9 for Tc and LI > 11 for iodine have been set based on early waste-disposal risk and performance assessment analyses. The results of these three leach tests conducted for a total time between 11days (ASTM C1308) to 90 days (ANS 16.1) showed: (1) Technetium diffusivity: ANSI/ANS 16.1, ASTM C1308, and EPA 1315 tests indicated that all the waste forms had leachability indices better than the target LI > 9 for technetium; (2) Rhenium diffusivity: Cast Stone 2M specimens, when tested using EPA 1315 protocol, had leachability indices better than the target LI > 9 for technetium based on rhenium as a surrogate for technetium. All other waste forms tested by ANSI/ANS 16.1, ASTM C1308, and EPA 1315 test methods had leachability indices that were below the target LI > 9 for Tc based on rhenium release. These studies indicated that use of Re(VII) as a surrogate for 99Tc(VII) in low temperature secondary waste forms containing reductants will provide overestimated diffusivity values for 99Tc. Therefore, it is not appropriate to use Re as a surrogate 99Tc in future low temperature waste form studies. (3) Iodine diffusivity: ANSI/ANS 16.1, ASTM C1308, and EPA 1315 tests indicated that the three waste forms had leachability indices that were below the target LI > 11 for iodine. Therefore, it may be necessary to use a more effective sequestering material than silver zeolite used in two of the waste forms (Ceramicrete and DuraLith); (4) Sodium diffusivity: All the waste form specimens tested by the three leach methods (ANSI/ANS 16.1, ASTM C1308, and EPA 1315) exceeded the target LI value of 6; (5) All three leach methods (ANS 16.1, ASTM C1308 and EPA 1315) provided similar 99Tc diffusivity values for both short-time transient diffusivity effects as well as long-term ({approx}90 days) steady diffusivity from each of the three tested waste forms (Cast Stone 2M, Ceramicrete and DuraLith). Therefore, any one of the three methods can be used to determine the contaminant diffusivities from a selected waste form.

Mattigod, Shas V.; Westsik, Joseph H.; Chung, Chul-Woo; Lindberg, Michael J.; Parker, Kent E.

2011-08-12T23:59:59.000Z

232

Review of International Methods of Test to Rate the Efficiency of Water Heaters  

E-Print Network [OSTI]

air source to be added Discharge Includes: Source energy multiplier Distribution losses Smart controls Wasted water Solar Heat pump

Lutz, Jim

2012-01-01T23:59:59.000Z

233

Metalworkers clean up their waste  

SciTech Connect (OSTI)

This article describes how using methods such as chemical precipitation, filtration, and ion exchange, metal parts manufacturers are reducing the pollutants in their wastewater so it can be reused or safely discharged. Metalworking manufacturer are recovering useful materials, lowering their disposal costs, and reducing pollution by treating their wastewater with methods such as chemical precipitation and ion exchange so that it can be reused or safely discharged. They are also reducing wastes by recycling metalworking coolants. The major wastewater treatment technologies identified by the Environmental Protection Agency are chemical precipitation, or adding flocculants to bind waste particles together; membrane ultrafiltration and reverse osmosis, in which waste is trapped when the water passes through a membrane; and ion exchange, in which specially formulated resins capture dissolved metal salts. Other treatment techniques cited by Elwood Forsht, chief of the chemicals and metals branch at the EPA, include electrowinning, which uses electrolysis to concentrate metallic ions in wastewater, and coolant recycling, a method that removes metal particles by centrifugal force and kills bacteria by pasteurization. Many metalworking operations create wastewater, including drilling, welding, soldering, surface finishing, electroplating, acid treatment, anodizing, assembly, and machining. Companies use wastewater treatment technologies to recycle their wastewater or clean it so that it meets EPA standards and can be discharged into a municipal waste system, thus avoiding high disposal costs.

Valenti, M.

1994-10-01T23:59:59.000Z

234

Waste-to-Energy: Waste Management and Energy Production Opportunities...  

Office of Environmental Management (EM)

Waste-to-Energy: Waste Management and Energy Production Opportunities Waste-to-Energy: Waste Management and Energy Production Opportunities July 24, 2014 9:00AM to 3:30PM EDT U.S....

235

Bioelectrochemical Integration of Waste Heat Recovery, Waste...  

Broader source: Energy.gov (indexed) [DOE]

and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes Air Products and Chemicals, Inc. - Allentown, PA A microbial reverse electrodialysis...

236

Bioelectrochemical Integration of Waste Heat Recovery, Waste...  

Broader source: Energy.gov (indexed) [DOE]

(ex: organic Rankine cycle) High installed KW capital Low temperature waste heat (<100C) is not practicable Further efficiency loss in electrolytic conversion to...

237

Radioactive Waste Management Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. The purpose of the Manual is to catalog those procedural requirements and existing practices that ensure that all DOE elements and contractors continue to manage DOE's radioactive waste in a manner that is protective of worker and public health and safety, and the environment. Does not cancel other directives.

1999-07-09T23:59:59.000Z

238

Radioactive Waste: 1. Radioactive waste from your lab is  

E-Print Network [OSTI]

Radioactive Waste: 1. Radioactive waste from your lab is collected by the RSO. 2. Dry radioactive waste must be segregated by isotope. 3. Liquid radioactive waste must be separated by isotope. 4. Liquid frequently and change them if contaminated. 5. Use radioactive waste container to collect the waste. 6. Check

Jia, Songtao

239

Geochemical aspects of radioactive waste disposal  

SciTech Connect (OSTI)

The book addresses various topics related to the geochemistry of waste disposal: natural radioactivity, kinds of radioactive waste, details of possible disposal sites, low-level waste, uranium mill tailing, natural analogs, waste forms, and engineered barriers. Emphasis throughout is on the importance of natural analogs, the behavior of elements resembling those to be put in a waste repository as they occur in natural situations where the temperature, pressure, and movement of ground water are similar to those expected near a repository. The author is convinced that conclusions drawn from the study of analog elements are directly applicable to predictions about radionuclide behavior, and that the observed near-immobility of most of these elements in comparable geologic environments is good evidence that radioactive waste can be disposed of underground with negligible effects on the biosphere. Much of his own research has been in this area, and the best parts of the book are the descriptions of his work on trace elements in the salt minerals at the Waste Isolation Pilot Plant in southeastern New Mexico, on the movement of radionuclides and their daughter elements from the famous Precambrian reactor at Oklahoma in Gabon, and on the distribution of analog elements in rocks near the contacts of igneous intrusions.

Brookins, D.G.

1984-01-01T23:59:59.000Z

240

Onsite Wastewater Treatment Systems: Graywater Use and Water Quality  

E-Print Network [OSTI]

their homes in their landscapes. This reuse of graywater can reduce the amount of wastewater entering sewers or treatment systems, reduce the amount of fresh water used on landscapes and help preserve limited fresh water supplies. Onsite wastewater...-washing machines ? The code excludes water that has washed materials soiled with human waste, such as diapers, and water that has been in contact with toilet waste. This water, known as blackwater, includes flush water from toilets and urinals and wastewater...

Lesikar, Bruce J.; Mechell, Justin; Alexander, Rachel

2008-08-28T23:59:59.000Z

Note: This page contains sample records for the topic "guthrie waste water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Application of membrane technology to power generation waters  

SciTech Connect (OSTI)

Three membrane technlogies (reverse osmosis, ultrafiltration, and electrodialysis) for wastewater treatment and reuse at electric generating power plants were examined. Recirculating condenser water, ash sluice water, coal pile drainage, boiler blowdown and makeup treatment wastes, chemical cleaning wastes, wet SO/sub 2/ scrubber wastes, and miscellaneous wastes were studied. In addition, membrane separation of toxic substances in wastewater was also addressed. Waste characteristics, applicable regulations, feasible membrane processes, and cost information were analyzed for each waste stream. A users' guide to reverse osmosis was developed and is provided in an appendix.

Tang, T.L.D.; Chu, T.J.; Boroughs, R.D.

1980-03-01T23:59:59.000Z

242

Characteristics of potential repository wastes. Volume 1  

SciTech Connect (OSTI)

This document, and its associated appendices and microcomputer (PC) data bases, constitutes the reference OCRWM data base of physical and radiological characteristics data of radioactive wastes. This Characteristics Data Base (CDB) system includes data on spent nuclear fuel and high-level waste (HLW), which clearly require geologic disposal, and other wastes which may require long-term isolation, such as sealed radioisotope sources. The data base system was developed for OCRWM by the CDB Project at Oak Ridge National Laboratory. Various principal or official sources of these data provided primary information to the CDB Project which then used the ORIGEN2 computer code to calculate radiological properties. The data have been qualified by an OCRWM-sponsored peer review as suitable for quality-affecting work meeting the requirements of OCRWM`s Quality Assurance Program. The wastes characterized in this report include: light-water reactor (LWR) spent fuel and immobilized HLW.

Not Available

1992-07-01T23:59:59.000Z

243

Reclamation of waste polystyrene by sulfonation  

SciTech Connect (OSTI)

Waste polystyrene containing additives was converted into a polymeric flocculant by a chemical modification. Specifically, waste polystyrene and waste high-impact polystyrene (HI-PS) containing rubber components or a coloring agent were sulfonated to produce a water-soluble polymer whose molecular weight ranged from 400,000 to 700,000. The polymer provides superior purification of the supernatant after flocculating a kaolin suspension than a conventional polymeric flocculant such as a partially hydrolyzed polyacrylamide (hereafter abbreviate PAA). Moreover, using the polymer and a PAA together provides a higher sedimentation rate and a purer supernatant in the treatment of actual wastewater than using each one separately. A new reclamation technology to convert waste plastic into a functional polymer is reported.

Inagaki, Yasuhito; Kuromiya, Miyuki; Noguchi, Tsutomu; Watanabe, Haruo [Sony Corp. Research Center, Yokohama (Japan). Center for Environmental Technology] [Sony Corp. Research Center, Yokohama (Japan). Center for Environmental Technology

1999-06-08T23:59:59.000Z

244

Oil removal for produced water treatment and micellar cleaning of ultrafiltration membranes.  

E-Print Network [OSTI]

??Produced water is a major waste produced from oil and natural gas wells in the state of Texas. This water could be a possible source (more)

Beech, Scott Jay

2006-01-01T23:59:59.000Z

245

Probabilistic Risk Assessment for dairy waste management systems  

E-Print Network [OSTI]

Probabilistic Risk Assessment (PRA) techniques were used to evaluate the risk of contamination of surface and ground water with wastewater from an open lot dairy in Erath County, Texas. The dairy supported a complex waste management system...

Leigh, Edward Marshall

2012-06-07T23:59:59.000Z

246

Hanford Dangerous Waste Permit  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

trucks for scale. The DSTs have limited capacity and are aging. Maintaining these tanks is important to ensure that waste is ready to supply the Waste Treatment Plant. The...

247

Hazardous Waste Management (Oklahoma)  

Broader source: Energy.gov [DOE]

This article states regulations for the disposal of hazardous waste. It also provides information about permit requirements for the transport, treatment and storage of such waste. It also mentions...

248

Nuclear waste solids  

Science Journals Connector (OSTI)

Glass and polycrystalline materials for high-level radioactive waste immobilization are discussed. Borosilicate glass has been selected as the waste form for defence high-level radwaste in the US. Since releas...

L. L. Hench; D. E. Clark; A. B. Harker

1986-05-01T23:59:59.000Z

249

Idaho National Engineering Laboratory nonradiological waste management information for 1994 and record to date  

SciTech Connect (OSTI)

This document provides detailed data and graphics on airborne and liquid effluent releases, fuel oil and coal consumption, water usage, and hazardous and mixed waste generated for calendar year 1994. This report summarizes industrial waste data records compiled since 1971 for the Idaho National Engineering Laboratory (INEL). The data presented are from the INEL Nonradiological Waste Management Information System.

French, D.L.; Lisee, D.J.; Taylor, K.A.

1995-08-01T23:59:59.000Z

250

Idaho National Engineering Laboratory Nonradiological Waste Management Information for 1992 and record to date  

SciTech Connect (OSTI)

This document provides detailed data and graphics on airborne and liquid effluent releases, fuel oil and coal consumption, water usage, and hazardous and mixed waste generated for calendar year 1992. This report summarizes industrial waste data records compiled since 1971 for the Idaho National Engineering Laboratory (INEL). The data presented are from the INEL Nonradiological Waste Management Information System.

Randall, V.C.; Sims, A.M.

1993-08-01T23:59:59.000Z

251

Idaho National Engineering Laboratory Nonradiological Waste Management Information for 1993 and record to date  

SciTech Connect (OSTI)

This document provides detailed data and graphics on airborne and liquid effluent releases, fuel oil and coal consumption, water usage, and hazardous and mixed waste generated for calendar year 1993. This report summarizes industrial waste data records compiled since 1971 for the Idaho National Engineering Laboratory (INEL). The data presented are from the INEL Nonradiological Waste Management Information System.

Sims, A.M.; Taylor, K.A.

1994-08-01T23:59:59.000Z

252

Global MSW Generation in 2007 estimated at two billion tons Global Waste Management Market Assessment 2007, Key Note Publications Ltd ,  

E-Print Network [OSTI]

-gas emissions, water pollution, air pollution and noise/visual impact (of recycling/waste disposal facilities including construction/demolition, mining, quarrying, manufacturing and municipal waste. Much of the focus

Columbia University

253

Characterization and Leach Testing for PUREX Cladding Waste Sludge (Group 3) and REDOX Cladding Waste Sludge (Group 4) Actual Waste Sample Composites  

SciTech Connect (OSTI)

A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan.(a) The testing program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. The actual wastetesting program included homogenizing the samples by group, characterizing the solids and aqueous phases, and performing parametric leaching tests. Two of the eight defined groupsplutonium-uranium extraction (PUREX) cladding waste sludge (Group 3, or CWP) and reduction-oxidation (REDOX) cladding waste sludge (Group 4, or CWR)are the subjects of this report. Both the Group 3 and 4 waste composites were anticipated to be high in gibbsite, requiring caustic leaching. Characterization of the composite Group 3 and Group 4 waste samples confirmed them to be high in gibbsite. The focus of the Group 3 and 4 testing was on determining the behavior of gibbsite during caustic leaching. The waste-type definition, archived sample conditions, homogenization activities, characterization (physical, chemical, radioisotope, and crystal habit), and caustic leaching behavior as functions of time, temperature, and hydroxide concentration are discussed in this report. Testing was conducted according to TP-RPP-WTP-467.

Snow, Lanee A.; Buck, Edgar C.; Casella, Amanda J.; Crum, Jarrod V.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Fiskum, Sandra K.; Jagoda, Lynette K.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Swoboda, Robert G.

2009-02-13T23:59:59.000Z

254

Georgia Hazardous Waste Management Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hazardous Waste Management Act Hazardous Waste Management Act Georgia Hazardous Waste Management Act < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The Georgia Hazardous Waste Management Act (HWMA) describes a

255

Emerging technologies in hazardous waste management  

SciTech Connect (OSTI)

The meeting was divided into two parts: Waste water management technologies and Soils, residues, and recycle techniques. Technologies included: photocatalytic oxidation; water treatment with hydrogen peroxide; ultraviolet destruction of pollutants; biodegradation; adsorption; affinity dialysis; and proton transfer. Other papers described evaluation of land treatment techniques; mobility of toxic metals in landfills; sorptive behavior in soils; artificial reef construction; and treatment and disposal options for radioactive metals (technetium 99, strontium, and plutonium). Papers have been processed separately for inclusion on the data base.

Tedder, D.W.; Pohland, F.G. (eds.)

1990-01-01T23:59:59.000Z

256

Identifying Mixed Chemical and Radioactive Waste Mixed waste is: any waste material containing both radioactive materials  

E-Print Network [OSTI]

Identifying Mixed Chemical and Radioactive Waste Mixed waste is: any waste material containing both as noted on the list, you do not have a mixed waste and it may be managed as a normal radioactive waste radioactive waste after initially dating the container, the hold for decay time is extended, but you cannot

Straight, Aaron

257

Waste reduction assistance program (WRAP) on-site consultation audit report: Seafood processing plant  

SciTech Connect (OSTI)

The waste audit study was conducted at a seafood processing plant in Alaska. The report discusses process descriptions, waste types and quantities, current waste and materials management practices, and waste reduction alternatives. The company's current practices include use of fish waste, burning of used oil and solvents, and water conservation. Additional opportunities include microfiltration of solvents and oils, recycling of used batteries, inventory control and formation of a waste reduction team. Appendices include a summary of state regulations, a fact sheet on used oil, and a list of vendors and services.

Not Available

1989-07-29T23:59:59.000Z

258

Secondary waste form testing : ceramicrete phosphate bonded ceramics.  

SciTech Connect (OSTI)

The cleanup activities of the Hanford tank wastes require stabilization and solidification of the secondary waste streams generated from the processing of the tank wastes. The treatment of these tank wastes to produce glass waste forms will generate secondary wastes, including routine solid wastes and liquid process effluents. Liquid wastes may include process condensates and scrubber/off-gas treatment liquids from the thermal waste treatment. The current baseline for solidification of the secondary wastes is a cement-based waste form. However, alternative secondary waste forms are being considered. In this regard, Ceramicrete technology, developed at Argonne National Laboratory, is being explored as an option to solidify and stabilize the secondary wastes. The Ceramicrete process has been demonstrated on four secondary waste formulations: baseline, cluster 1, cluster 2, and mixed waste streams. Based on the recipes provided by Pacific Northwest National Laboratory, the four waste simulants were prepared in-house. Waste forms were fabricated with three filler materials: Class C fly ash, CaSiO{sub 3}, and Class C fly ash + slag. Optimum waste loadings were as high as 20 wt.% for the fly ash and CaSiO{sub 3}, and 15 wt.% for fly ash + slag filler. Waste forms for physical characterizations were fabricated with no additives, hazardous contaminants, and radionuclide surrogates. Physical property characterizations (density, compressive strength, and 90-day water immersion test) showed that the waste forms were stable and durable. Compressive strengths were >2,500 psi, and the strengths remained high after the 90-day water immersion test. Fly ash and CaSiO{sub 3} filler waste forms appeared to be superior to the waste forms with fly ash + slag as a filler. Waste form weight loss was {approx}5-14 wt.% over the 90-day immersion test. The majority of the weight loss occurred during the initial phase of the immersion test, indicative of washing off of residual unreacted binder components from the waste form surface. Waste forms for ANS 16.1 leach testing contained appropriate amounts of rhenium and iodine as radionuclide surrogates, along with the additives silver-loaded zeolite and tin chloride. The leachability index for Re was found to range from 7.9 to 9.0 for all the samples evaluated. Iodine was below detection limit (5 ppb) for all the leachate samples. Further, leaching of sodium was low, as indicated by the leachability index ranging from 7.6-10.4, indicative of chemical binding of the various chemical species. Target leachability indices for Re, I, and Na were 9, 11, and 6, respectively. Degradation was observed in some of the samples post 90-day ANS 16.1 tests. Toxicity characteristic leaching procedure (TCLP) results showed that all the hazardous contaminants were contained in the waste, and the hazardous metal concentrations were below the Universal Treatment Standard limits. Preliminary scale-up (2-gal waste forms) was conducted to demonstrate the scalability of the Ceramicrete process. Use of minimal amounts of boric acid as a set retarder was used to control the working time for the slurry. Flexibility in treating waste streams with wide ranging compositional make-ups and ease of process scale-up are attractive attributes of Ceramicrete technology.

Singh, D.; Ganga, R.; Gaviria, J.; Yusufoglu, Y. (Nuclear Engineering Division); ( ES)

2011-06-21T23:59:59.000Z

259

Radioactive Waste Management Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07. Admin Chg 2, dated 6-8-11, cancels DOE M 435.1-1 Chg 1.

1999-07-09T23:59:59.000Z

260

WASTE HANDLING BUILDING FIRE PROTECTION SYSTEM DESCRIPTION DOCUMENT  

SciTech Connect (OSTI)

The Waste Handling Building Fire Protection System provides the capability to detect, control, and extinguish fires and/or mitigate explosions throughout the Waste Handling Building (WHB). Fire protection includes appropriate water-based and non-water-based suppression, as appropriate, and includes the distribution and delivery systems for the fire suppression agents. The Waste Handling Building Fire Protection System includes fire or explosion detection panel(s) controlling various detectors, system actuation, annunciators, equipment controls, and signal outputs. The system interfaces with the Waste Handling Building System for mounting of fire protection equipment and components, location of fire suppression equipment, suppression agent runoff, and locating fire rated barriers. The system interfaces with the Waste Handling Building System for adequate drainage and removal capabilities of liquid runoff resulting from fire protection discharges. The system interfaces with the Waste Handling Building Electrical Distribution System for power to operate, and with the Site Fire Protection System for fire protection water supply to automatic sprinklers, standpipes, and hose stations. The system interfaces with the Site Fire Protection System for fire signal transmission outside the WHB as needed to respond to a fire emergency, and with the Waste Handling Building Ventilation System to detect smoke and fire in specific areas, to protect building high-efficiency particulate air (HEPA) filters, and to control portions of the Waste Handling Building Ventilation System for smoke management and manual override capability. The system interfaces with the Monitored Geologic Repository (MGR) Operations Monitoring and Control System for annunciation, and condition status.

J. D. Bigbee

2000-06-21T23:59:59.000Z

Note: This page contains sample records for the topic "guthrie waste water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Solid Waste Operations Complex (SWOC) Facilities Sprinkler System Hydraulic Calculations  

SciTech Connect (OSTI)

The attached calculations demonstrate sprinkler system operational water requirements as determined by hydraulic analysis. Hydraulic calculations for the waste storage buildings of the Central Waste Complex (CWC), T Plant, and Waste Receiving and Packaging (WRAP) facility are based upon flow testing performed by Fire Protection Engineers from the Hanford Fire Marshal's office. The calculations received peer review and approval prior to release. The hydraulic analysis program HASS Computer Program' (under license number 1609051210) is used to perform all analyses contained in this document. Hydraulic calculations demonstrate sprinkler system operability based upon each individual system design and available water supply under the most restrictive conditions.

KERSTEN, J.K.

2003-07-11T23:59:59.000Z

262

Water quality Water quantity  

E-Print Network [OSTI]

01-1 · Water quality · Water quantity · Remediation strategies MinE 422: Water Resources: Younger, Banwart and Hedin. 2002. Mine Water. Hydrology, Pollution, Remediation. Impacts of mining on water mining ­ Often the largest long term issue ­ Water quality affected, surface/ground water pollution

Boisvert, Jeff

263

Water quality Water quantity  

E-Print Network [OSTI]

· Water quality · Water quantity · Remediation strategies MinE 422: Water Resources: Younger, Banwart and Hedin. 2002. Mine Water. Hydrology, Pollution, Remediation. Impacts of mining on water mining ­ Often the largest long term issue ­ Water quality affected, surface/ground water pollution

Boisvert, Jeff

264

Waste Package Materials Performance Peer Review | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Waste Package Materials Performance Peer Review Waste Package Materials Performance Peer Review Waste Package Materials Performance Peer Review A consensus peer review of the current technical basis and the planned experimental and modeling program for the prediction of the long-term performance of waste package materials being considered for use in a proposed repository at Yucca Mountain, Nevada. Waste Package Materials Performance Peer Review A Compilation of Special Topic Reports Wastepackagematerials_PPRP_final.pdf Evaluation of the Final Report: Waste Package Materials Performance Peer Review Panel Multi-Purpose_Canister_System_Evaluation.pdf More Documents & Publications Preliminary Report on Dual-Purpose Canister Disposal Alternatives (FY13) A Review of Stress Corrosion Cracking/Fatigue Modeling for Light Water

265

Survey of computer codes applicable to waste facility performance evaluations  

SciTech Connect (OSTI)

This study is an effort to review existing information that is useful to develop an integrated model for predicting the performance of a radioactive waste facility. A summary description of 162 computer codes is given. The identified computer programs address the performance of waste packages, waste transport and equilibrium geochemistry, hydrological processes in unsaturated and saturated zones, and general waste facility performance assessment. Some programs also deal with thermal analysis, structural analysis, and special purposes. A number of these computer programs are being used by the US Department of Energy, the US Nuclear Regulatory Commission, and their contractors to analyze various aspects of waste package performance. Fifty-five of these codes were identified as being potentially useful on the analysis of low-level radioactive waste facilities located above the water table. The code summaries include authors, identification data, model types, and pertinent references. 14 refs., 5 tabs.

Alsharif, M.; Pung, D.L.; Rivera, A.L.; Dole, L.R.

1988-01-01T23:59:59.000Z

266

Hazardous Waste: Resource Pack for Trainers and Communicators | Open Energy  

Open Energy Info (EERE)

Hazardous Waste: Resource Pack for Trainers and Communicators Hazardous Waste: Resource Pack for Trainers and Communicators Jump to: navigation, search Tool Summary Name: Hazardous Waste: Resource Pack for Trainers and Communicators Agency/Company /Organization: International Solid Waste Association (ISWA), United Nations Development Programme (UNDP), United Nations Industrial Development Organization (UNIDO) Sector: Energy, Land, Water Focus Area: Renewable Energy, - Waste to Energy Phase: Evaluate Options Topics: Adaptation, Implementation, Low emission development planning, -LEDS Resource Type: Guide/manual, Training materials Website: www.trp-training.info/ Cost: Paid Language: English References: Training Resource Pack[1] "The new TRP+ provides a structured package of notes, technical summaries, visual aids and other training material concerning the (hazardous) waste

267

Water treatment facilities (excluding wastewater facilities). (Latest citations from the Selected Water Resources Abstracts database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the design, construction, costs, and operation of water treatment facilities. Facilities covered include those that provide drinking water, domestic water, and water for industrial use. Types of water treatment covered include reverse osmosis, chlorination, filtration, and ozonization. Waste water treatment facilities are excluded from this bibliography. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-07-01T23:59:59.000Z

268

Transuranic Waste Transportation Working Group Agenda | Department...  

Office of Environmental Management (EM)

Transuranic Waste Transportation Working Group Agenda Transuranic Waste Transportation Working Group Agenda Transuranic Waste Transportation Working Group Agenda More Documents &...

269

Waste Isolation Pilot Plant Transportation Security | Department...  

Office of Environmental Management (EM)

Waste Isolation Pilot Plant Transportation Security Waste Isolation Pilot Plant Transportation Security Waste Isolation Pilot Plant Transportation Security More Documents &...

270

Purifying contaminated water  

SciTech Connect (OSTI)

Process for removing biorefractory compounds from contaminated water (e.g., oil shale retort waste-water) by contacting same with fragmented raw oil shale. Biorefractory removal is enhanced by preactivating the oil shale with at least one member of the group of carboxylic, acids, alcohols, aldehydes, ketones, ethers, amines, amides, sulfoxides, mixed ether-esters and nitriles. Further purification is obtained by stripping, followed by biodegradation and removal of the cells.

Daughton, Christian G. (San Pablo, CA)

1983-01-01T23:59:59.000Z

271

Selective Capture of Cesium and Thallium from Natural Waters...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

evaluated against iron(III) hexacyanoferrate(II) (insoluble Prussian blue) for the sorption of cesium (Cs+) and thallium (Tl+) from natural waters and simulated wastes. The...

272

Tank Waste and Waste Processing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tank Waste and Waste Processing Tank Waste and Waste Processing Tank Waste and Waste Processing Tank Waste and Waste Processing The Defense Waste Processing Facility set a record by producing 267 canisters filled with glassified waste in a year. New bubbler technology and other enhancements will increase canister production in the future. The Defense Waste Processing Facility set a record by producing 267 canisters filled with glassified waste in a year. New bubbler technology and other enhancements will increase canister production in the future. A Savannah River Remediation employee uses a manipulator located inside a shielded enclosure at the Defense Waste Processing Facility where the melter is pouring molten glass inside a canister. A Savannah River Remediation employee uses a manipulator located inside a

273

Bioelectrochemical Integration of Waste Heat Recovery, Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

electrolytic cell, designed to integrate waste heat recovery (i.e a microbial heat recovery cell or MHRC), can operate as a fuel cell and convert effluent streams into...

274

New Waste Calcining Facility (NWCF) Waste Streams  

SciTech Connect (OSTI)

This report addresses the issues of conducting debris treatment in the New Waste Calcine Facility (NWCF) decontamination area and the methods currently being used to decontaminate material at the NWCF.

K. E. Archibald

1999-08-01T23:59:59.000Z

275

Solid Waste Management Plan. Revision 4  

SciTech Connect (OSTI)

The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.

NONE

1995-04-26T23:59:59.000Z

276

Waste Confidence Discussion | Department of Energy  

Office of Environmental Management (EM)

Waste Confidence Discussion Waste Confidence Discussion Long-Term Waste Confidence Update. Waste Confidence Discussion More Documents & Publications Status Update: Extended Storage...

277

EM Waste and Materials Disposition & Transportation | Department...  

Office of Environmental Management (EM)

EM Waste and Materials Disposition & Transportation EM Waste and Materials Disposition & Transportation DOE's Radioactive Waste Management Priorities: Continue to manage waste...

278

Transuranic (TRU) Waste | Department of Energy  

Office of Environmental Management (EM)

Transuranic (TRU) Waste Transuranic (TRU) Waste Transuranic (TRU) Waste Defined by the WIPP Land Withdrawal Act as "waste containing more than 100 nanocuries of alpha-emitting...

279

Tank Farms and Waste Feed Delivery - 12507  

SciTech Connect (OSTI)

The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. Our discussion of the Tank Farms and Waste Feed Delivery will cover progress made to date with Base and Recovery Act funding in reducing the risk posed by tank waste and in preparing for the initiation of waste treatment at Hanford. The millions of gallons of waste are a by-product of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. The underground storage tanks range in capacity from 55,000 gallons to more than 1 million gallons. The tanks were constructed with carbon steel and reinforced concrete. There are eighteen groups of tanks, called 'tank farms', some having as few as two tanks and others up to sixteen tanks. Between 1943 and 1964, 149 single-shell tanks were built at Hanford in the 200 West and East Areas. Heat generated by the waste and the composition of the waste caused an estimated 67 of these single-shell tanks to leak into the ground. Washington River Protection Solutions is the prime contractor responsible for the safe management of this waste. WRPS' mission is to reduce the risk to the environment that is posed by the waste. All of the pumpable liquids have been removed from the single-shell tanks and transferred to the double-shell tanks. What remains in the single-shell tanks are solid and semi-solid wastes. Known as salt-cakes, they have the consistency of wet beach sand. Some of the waste resembles small broken ice, or whitish crystals. Because the original pumps inside the tanks were designed to remove only liquid waste, other methods have been developed to reach the remaining waste. Access to the tank waste is through long, typically skinny pipes, called risers, extending out of the tanks. It is through these pipes that crews are forced to send machines and devices into the tanks that are used to break up the waste or push it toward a pump. These pipes range in size from just a few inches to just over a foot in diameter because they were never intended to be used in this manner. As part of the agreement regulating Hanford cleanup, crews must remove at least 99% of the material in every tank on the site, or at least as much waste that can be removed based on available technology. To date, seven single-shell tanks have been emptied, and work is underway in another 10 tanks in preparation for additional retrieval activities. Two barriers have been installed over single-shell tanks to prevent the intrusion of surface water down to the tanks, with additional barriers planned for the future. Single and double-shell tank integrity analyses are ongoing. Because the volume of the waste generated through plutonium production exceeded the capacity of the single-shell tanks, between 1968 and 1986 Hanford engineers built 28 double-shell tanks. These tanks were studied and made with a second shell to surround the carbon steel and reinforced concrete. The double-shell tanks have not leaked any of their waste. (authors)

Fletcher, Thomas; Charboneau, Stacy; Olds, Erik [US DOE (United States)

2012-07-01T23:59:59.000Z

280

Ferrocyanide tank waste stability  

SciTech Connect (OSTI)

Ferrocyanide wastes were generated at the Hanford Site during the mid to late 1950s as a result of efforts to create more tank space for the storage of high-level nuclear waste. The ferrocyanide process was developed to remove [sup 137]CS from existing waste and newly generated waste that resulted from the recovery of valuable uranium in Hanford Site waste tanks. During the course of research associated with the ferrocyanide process, it was recognized that ferrocyanide materials, when mixed with sodium nitrate and/or sodium nitrite, were capable of violent exothermic reaction. This chemical reactivity became an issue in the 1980s, when safety issues associated with the storage of ferrocyanide wastes in Hanford Site tanks became prominent. These safety issues heightened in the late 1980s and led to the current scrutiny of the safety issues associated with these wastes, as well as current research and waste management programs. Testing to provide information on the nature of possible tank reactions is ongoing. This document supplements the information presented in Summary of Single-Shell Tank Waste Stability, WHC-EP-0347, March 1991 (Borsheim and Kirch 1991), which evaluated several issues. This supplement only considers information particular to ferrocyanide wastes.

Fowler, K.D.

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "guthrie waste water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

6 - Nuclear Waste Regulations  

Science Journals Connector (OSTI)

The most influential national and international bodies providing recommendations on radiation protection are described, including the International Commission on Radiological Protection (ICRP) and the International Atomic Energy Agency (IAEA). Protection philosophies and the ICRP general principles of radiation protection are discussed. Radioactive material regulations and sources of radiation are explained. Criteria of exemption from regulatory control are discussed with examples of exemption levels for naturally occurring and radioactive waste radionuclides. Clearance of both moderate and bulk amounts of materials from regulatory control is also explained, including examples of EU and the UK regulations. Dose limits recommended by the ICRP are given, as well as the main principles of control of radiation hazards. Nuclear waste classification schemes are outlined, including the IAEA classification scheme. A brief explanation of nuclear waste classes including exempt waste, very short-lived waste, very low-level waste, low-level waste, intermediate-level waste and high-level waste is given. Examples of waste classification schemes are given, including that of the UK.

M.I. Ojovan; W.E. Lee

2014-01-01T23:59:59.000Z

282

Hanford Tank Waste Information Enclosure 1 Hanford Tank Waste Information  

E-Print Network [OSTI]

Hanford Tank Waste Information Enclosure 1 1 Hanford Tank Waste Information 1.0 Summary This information demonstrates the wastes in the twelve Hanford Site tanks meet the definition of transuranic (TRU. The wastes in these twelve (12) tanks are not high-level waste (HLW), and contain more than 100 nanocuries

283

Energy from Waste UK Joint Statement on Energy from Waste  

E-Print Network [OSTI]

Energy from Waste UK Joint Statement on Energy from Waste Read more overleaf Introduction Energy from waste provides us with an opportunity for a waste solution and a local source of energy rolled,itcan onlyaddressaportionofthewastestream andisnotsufficientonitsown. Energy obtained from the combustion of residual waste (Energy from

284

Waste Inspection Tomography (WIT)  

SciTech Connect (OSTI)

Waste Inspection Tomography (WIT) provides mobile semi-trailer mounted nondestructive examination (NDE) and assay (NDA) for nuclear waste drum characterization. WIT uses various computed tomography (CT) methods for both NDE and NDA of nuclear waste drums. Low level waste (LLW), transuranic (TRU), and mixed radioactive waste can be inspected and characterized without opening the drums. With externally transmitted x-ray NDE techniques, WIT has the ability to identify high density waste materials like heavy metals, define drum contents in two- and three-dimensional space, quantify free liquid volumes through density and x-ray attenuation coefficient discrimination, and measure drum wall thickness. With waste emitting gamma-ray NDA techniques, WIT can locate gamma emitting radioactive sources in two- and three-dimensional space, identify gamma emitting isotopic species, identify the external activity levels of emitting gamma-ray sources, correct for waste matrix attenuation, provide internal activity approximations, and provide the data needed for waste classification as LLW or TRU. The mobile feature of WIT allows inspection technologies to be brought to the nuclear waste drum storage site without the need to relocate drums for safe, rapid, and cost-effective characterization of regulated nuclear waste. The combination of these WIT characterization modalities provides the inspector with an unprecedented ability to non-invasively characterize the regulated contents of waste drums as large as 110 gallons, weighing up to 1,600 pounds. Any objects that fit within these size and weight restrictions can also be inspected on WIT, such as smaller waste bags and drums that are five and thirty-five gallons.

Bernardi, R.T.

1995-12-01T23:59:59.000Z

285

NETL: Water-Energy Interface - Power Plant Water Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Internet-Based, GIS Catalog of Non-Traditional Sources of Cooling Water for Use at Coal-Fired Power Plants Internet-Based, GIS Catalog of Non-Traditional Sources of Cooling Water for Use at Coal-Fired Power Plants GIS Catalog Graphic Arthur Langhus Layne, LLC will create an internet-based, geographic information system (GIS) catalog of non-traditional sources of cooling water for coal-fired power plants. The project will develop data to identify the availability of oil and gas produced water, abandoned coal mine water, industrial waste water, and low-quality ground water. By pairing non-traditional water sources to power plant water needs, the research will allow power plants that are affected by water shortages to continue to operate at full-capacity without adversely affecting local communities or the environment. The nationwide catalog will identify the location, water withdrawal, and

286

44-BWR WASTE PACKAGE LOADING CURVE EVALUATION  

SciTech Connect (OSTI)

The objective of this calculation is to evaluate the required minimum burnup as a function of initial boiling water reactor (BWR) assembly enrichment that would permit loading of spent nuclear fuel into the 44 BWR waste package configuration as provided in Attachment IV. This calculation is an application of the methodology presented in ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2003). The scope of this calculation covers a range of enrichments from 0 through 5.0 weight percent (wt%) U-235, and a burnup range of 0 through 40 GWd/MTU. This activity supports the validation of the use of burnup credit for commercial spent nuclear fuel applications. The intended use of these results will be in establishing BWR waste package configuration loading specifications. Limitations of this evaluation are as follows: (1) The results are based on burnup credit for actinides and selected fission products as proposed in YMP (2003, Table 3-1) and referred to as the ''Principal Isotopes''. Any change to the isotope listing will have a direct impact on the results of this report. (2) The results of 100 percent of the current BWR projected waste stream being able to be disposed of in the 44-BWR waste package with Ni-Gd Alloy absorber plates is contingent upon the referenced waste stream being sufficiently similar to the waste stream received for disposal. (3) The results are based on 1.5 wt% Gd in the Ni-Gd Alloy material and having no tuff inside the waste package. If the Gd loading is reduced or a process to introduce tuff inside the waste package is defined, then this report would need to be reevaluated based on the alternative materials.

J.M. Scaglione

2004-08-25T23:59:59.000Z

287

Solidification of ion exchange resin wastes  

SciTech Connect (OSTI)

Solidification media investigated included portland type I, portland type III and high alumina cements, a proprietary gypsum-based polymer modified cement, and a vinyl ester-styrene thermosetting plastic. Samples formulated with hydraulic cement were analyzed to investigate the effects of resin type, resin loading, waste-to-cement ratio, and water-to-cement ratio. The solidification of cation resin wastes with portland cement was characterized by excessive swelling and cracking of waste forms, both after curing and during immersion testing. Mixed bed resin waste formulations were limited by their cation component. Additives to improve the mechanical properties of portland cement-ion exchange resin waste forms were evaluated. High alumina cement formulations dislayed a resistance to deterioration of mechanical integrity during immersion testing, thus providing a significant advantage over portland cements for the solidification of resin wastes. Properties of cement-ion exchange resin waste forms were examined. An experiment was conducted to study the leachability of /sup 137/Cs, /sup 85/Sr, and /sup 60/Co from resins modified in portland type III and high alumina cements. The cumulative /sup 137/Cs fraction release was at least an order of magnitude greater than that of either /sup 85/Sr or /sup 60/Co. Release rates of /sup 137/Cs in high alumina cement were greater than those in portland III cement by a factor of two.Compressive strength and leach testing were conducted for resin wastes solidified with polymer-modified gypsum based cement. /sup 137/Cs, /sup 85/Sr, and /sup 60/Co fraction releases were about one, two and three orders of magnitude higher, respectively, than in equivalent portland type III cement formulations. As much as 28.6 wt % dry ion exchange resin was successfully solidified using vinyl ester-styrene compared with a maximum of 25 wt % in both portland and gypsum-based cement.

Not Available

1982-08-01T23:59:59.000Z

288

Technical considerations for evaluating substantially complete containment of high-level waste within the waste package  

SciTech Connect (OSTI)

This report deals with technical information that is considered essential for demonstrating the ability of the high-level radioactive waste package to provide substantially complete containment'' of its contents (vitrified waste form or spent light-water reactor fuel) for a period of 300 to 1000 years in a geological repository environment. The discussion is centered around technical considerations of the repository environment, materials and fabrication processes for the waste package components, various degradation modes of the materials of construction of the waste packages, and inspection and monitoring of the waste package during the preclosure and retrievability period, which could begin up to 50 years after initiation of waste emplacement. The emphasis in this report is on metallic materials. However, brief references have been made to other materials such as ceramics, graphite, bonded ceramic-metal systems, and other types of composites. The content of this report was presented to an external peer review panel of nine members at a workshop held at the Center for Nuclear Waste Regulatory Analyses (CNWRA), Southwest Research Institute, San Antonio, Texas, April 2--4, 1990. The recommendations of the peer review panel have been incorporated in this report. There are two companion reports; the second report in the series provides state-of-the-art techniques for uncertainty evaluations. 97 refs., 1 fig.

Manaktala, H.K. (Southwest Research Inst., San Antonio, TX (USA). Center for Nuclear Waste Regulatory Analyses); Interrante, C.G. (Nuclear Regulatory Commission, Washington, DC (USA). Div. of High-Level Waste Management)

1990-12-01T23:59:59.000Z

289

Recycling of CdTe photovoltaic waste  

DOE Patents [OSTI]

A method for extracting and reclaiming metals from scrap CdTe photovoltaic cells and manufacturing waste by leaching the metals in dilute nitric acid, leaching the waste with a leaching solution comprising nitric acid and water, skimming any plastic material from the top of the leaching solution, separating the glass substrate from the liquid leachate, adding a calcium containing base to the leachate to precipitate Cd and Te, separating the precipitated Cd and Te from the leachate, and recovering the calcium-containing base.

Goozner, Robert E. (Charlotte, NC); Long, Mark O. (Charlotte, NC); Drinkard, Jr., William F. (Charlotte, NC)

1999-04-27T23:59:59.000Z

290

Physical sampling for site and waste characterization  

SciTech Connect (OSTI)

Physical sampling plays a basic role in site and waste characterization program effort. The term ``physical sampling`` used here means collecting tangible, physical samples of soil, water, air, waste streams, or other materials. The industry defines the term ``physical sampling`` broadly to include measurements of physical conditions such as temperature, wind conditions, and pH which are also often taken in a sample collection effort. Most environmental compliance actions are supported by the results of taking, recording, and analyzing physical samples and the measuring of physical conditions taken in association with sample collecting.

Bonnough, T.L.

1994-06-01T23:59:59.000Z

291

Pioneering Nuclear Waste Disposal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

18 18 19 T he WIPP's first waste receipt, 11 years later than originally planned, was a monumental step forward in the safe management of nuclear waste. Far from ending, however, the WIPP story has really just begun. For the next 35 years, the DOE will face many challenges as it manages a complex shipment schedule from transuranic waste sites across the United States and continues to ensure that the repository complies with all regulatory requirements. The DOE will work to maintain the highest level of safety in waste handling and trans- portation. Coordination with sites Disposal operations require coordination with sites that will ship transuranic waste to the WIPP and include periodic certification of waste characterization and handling practices at those facilities. During the WIPP's

292

SRS - Programs - Waste Solidification  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Waste Solidification Waste Solidification The two primary facilities operated within the Waste Solidification program are Saltstone and the Defense Waste Processing Facility (DWPF). Each DWPF canister is 10 feet tall and 2 feet in diameter, and typically takes a little over a day to fill. Each DWPF canister is 10 feet tall and 2 feet in diameter, and typically takes a little over a day to fill. The largest radioactive waste glassification plant in the world, DWPF converts the high-level liquid nuclear waste currently stored at the Savannah River Site (SRS) into a solid glass form suitable for long-term storage and disposal. Scientists have long considered this glassification process, called "vitrification," as the preferred option for immobilizing high-level radioactive liquids into a more stable, manageable form until a federal

293

High level nuclear waste  

SciTech Connect (OSTI)

The DOE Division of Waste Products through a lead office at Savannah River is developing a program to immobilize all US high-level nuclear waste for terminal disposal. DOE high-level wastes include those at the Hanford Plant, the Idaho Chemical Processing Plant, and the Savannah River Plant. Commercial high-level wastes, for which DOE is also developing immobilization technology, include those at the Nuclear Fuel Services Plant and any future commercial fuels reprocessing plants. The first immobilization plant is to be the Defense Waste Processing Facility at Savannah River, scheduled for 1983 project submission to Congress and 1989 operation. Waste forms are still being selected for this plant. Borosilicate glass is currently the reference form, but alternate candidates include concretes, calcines, other glasses, ceramics, and matrix forms.

Crandall, J L

1980-01-01T23:59:59.000Z

294

Underground waste barrier structure  

DOE Patents [OSTI]

Disclosed is an underground waste barrier structure that consists of waste material, a first container formed of activated carbonaceous material enclosing the waste material, a second container formed of zeolite enclosing the first container, and clay covering the second container. The underground waste barrier structure is constructed by forming a recessed area within the earth, lining the recessed area with a layer of clay, lining the clay with a layer of zeolite, lining the zeolite with a layer of activated carbonaceous material, placing the waste material within the lined recessed area, forming a ceiling over the waste material of a layer of activated carbonaceous material, a layer of zeolite, and a layer of clay, the layers in the ceiling cojoining with the respective layers forming the walls of the structure, and finally, covering the ceiling with earth.

Saha, Anuj J. (Hamburg, NY); Grant, David C. (Gibsonia, PA)

1988-01-01T23:59:59.000Z

295

Synthesizing Optimal Waste Blends  

Science Journals Connector (OSTI)

Vitrification of tank wastes to form glass is a technique that will be used for the disposal of high-level waste at Hanford. ... Durability restrictions ensure that the resultant glass meets the quantitative criteria for disposal/long-term storage in a repository. ... If glasses are formulated to minimize the volume of glass that would be produced, then the cost of processing the waste and storing the resultant glass would be greatly reduced. ...

Venkatesh Narayan; Urmila M. Diwekar; Mark Hoza

1996-10-08T23:59:59.000Z

296

Waste Confidence Discussion  

Broader source: Energy.gov (indexed) [DOE]

Long-Term Long-Term Waste Confidence Update Christine Pineda Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission National Transportation Stakeholders Forum May 2012 ♦ Knoxville, Tennessee Long-Term Update Draft Report, "Background and Preliminary Assumptions for an Environmental Impact Statement- Long-Term Waste Confidence Update" Elements of the Long-Term Update - Draft environmental impact statement - Draft Waste Confidence Decision - Proposed Waste Confidence Rule based on the EIS and Decision, if applicable 2 Overview of Draft Report Background and assumptions report is first step in process. Basic topics in the report are:

297

Norcal Waste Systems, Inc.  

SciTech Connect (OSTI)

Fact sheet describes the LNG long-haul heavy-duty trucks at Norcal Waste Systems Inc.'s Sanitary Fill Company.

Not Available

2002-12-01T23:59:59.000Z

298

Section 24: Waste Characterization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy (DOE). 1995b. Transuranic Waste Baseline Inventory Report (Revision 2, December). DOECAO-95-1121. ERMS 531643. Carlsbad Area Office, Carlsbad, NM. PDF Author U.S....

299

Hanford Dangerous Waste Permit  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

training, security) * Closure plan Tank-Related Permit Units New * 149 single-shell tanks (SSTs) * 28 double-shell tanks (DSTs) Existing * 242-A Evaporator * Waste Treatment...

300

Waste Heat Recovery  

Office of Environmental Management (EM)

DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the TechnologySystem ......

Note: This page contains sample records for the topic "guthrie waste water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Electronic Waste Transformation  

Science Journals Connector (OSTI)

Electronic Waste Transformation ... Instead, entrepreneurial individuals and small businesses recover valuable metals such as copper from obsolete equipment through activities such as burning. ...

CHERYL HOGUE

2012-04-01T23:59:59.000Z

302

Waste minimization assessment procedure  

SciTech Connect (OSTI)

Perry Nuclear Power Plant began developing a waste minimization plan early in 1991. In March of 1991 the plan was documented following a similar format to that described in the EPA Waste Minimization Opportunity Assessment Manual. Initial implementation involved obtaining management's commitment to support a waste minimization effort. The primary assessment goal was to identify all hazardous waste streams and to evaluate those streams for minimization opportunities. As implementation of the plan proceeded, non-hazardous waste streams routinely generated in large volumes were also evaluated for minimization opportunities. The next step included collection of process and facility data which would be useful in helping the facility accomplish its assessment goals. This paper describes the resources that were used and which were most valuable in identifying both the hazardous and non-hazardous waste streams that existed on site. For each material identified as a waste stream, additional information regarding the materials use, manufacturer, EPA hazardous waste number and DOT hazard class was also gathered. Once waste streams were evaluated for potential source reduction, recycling, re-use, re-sale, or burning for heat recovery, with disposal as the last viable alternative.

Kellythorne, L.L. (Centerior Energy, Cleveland, OH (United States))

1993-01-01T23:59:59.000Z

303

Vitrification of waste  

DOE Patents [OSTI]

A method is described for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300 C to 800 C to incinerate organic materials, then heated further to a temperature in the range of approximately 1100 C to 1400 C at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

Wicks, G.G.

1999-04-06T23:59:59.000Z

304

Avoidable waste management costs  

SciTech Connect (OSTI)

This report describes the activity based costing method used to acquire variable (volume dependent or avoidable) waste management cost data for routine operations at Department of Energy (DOE) facilities. Waste volumes from environmental restoration, facility stabilization activities, and legacy waste were specifically excluded from this effort. A core team consisting of Idaho National Engineering Laboratory, Los Alamos National Laboratory, Rocky Flats Environmental Technology Site, and Oak Ridge Reservation developed and piloted the methodology, which can be used to determine avoidable waste management costs. The method developed to gather information was based on activity based costing, which is a common industrial engineering technique. Sites submitted separate flow diagrams that showed the progression of work from activity to activity for each waste type or treatability group. Each activity on a flow diagram was described in a narrative, which detailed the scope of the activity. Labor and material costs based on a unit quantity of waste being processed were then summed to generate a total cost for that flow diagram. Cross-complex values were calculated by determining a weighted average for each waste type or treatability group based on the volume generated. This study will provide DOE and contractors with a better understanding of waste management processes and their associated costs. Other potential benefits include providing cost data for sites to perform consistent cost/benefit analysis of waste minimization and pollution prevention (WMIN/PP) options identified during pollution prevention opportunity assessments and providing a means for prioritizing and allocating limited resources for WMIN/PP.

Hsu, K.; Burns, M.; Priebe, S.; Robinson, P.

1995-01-01T23:59:59.000Z

305

Waste Isolation Pilot Plant  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

September 19, 2014 - No second release at WIPP September 12, 2014 - Waste hoist transformer replacement September 09, 2014 - Additional areas cleared in WIPP underground...

306

Vitrification of waste  

DOE Patents [OSTI]

A method for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300.degree. C. to 800.degree. C. to incinerate organic materials, then heated further to a temperature in the range of approximately 1100.degree. C. to 1400.degree. C. at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

Wicks, George G. (Aiken, SC)

1999-01-01T23:59:59.000Z

307

Hot Water DJ: Saving Energy by Pre-mixing Hot Water Md Anindya Prodhan  

E-Print Network [OSTI]

Hot Water DJ: Saving Energy by Pre-mixing Hot Water Md Anindya Prodhan Department of Computer University of Virginia whitehouse@virginia.edu Abstract After space heating and cooling, water heating consumption. Current water heating systems waste up to 20% of their energy due to poor insulation in pipes

Whitehouse, Kamin

308

State Waste Discharge Permit application, 100-N Sewage Lagoon  

SciTech Connect (OSTI)

As part of the Hanford Federal Facility Agreement and Consent Order negotiations (Ecology et al. 1994), the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173--216 (or 173--218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. As a result of this decision, the Washington State Department of Ecology and the US Department of Energy, Richland Operations Office entered into Consent Order No. DE 91NM-177, (Ecology and DOE-RL 1991). This document constitutes the State Waste Discharge Permit application for the 100-N Sewage Lagoon. Since the influent to the sewer lagoon is domestic waste water, the State Waste Discharge Permit application for Public Owned Treatment Works Discharges to Land was used. Although the 100-N Sewage Lagoon is not a Public Owned Treatment Works, the Public Owned Treatment Works application is more applicable than the application for industrial waste water. The 100-N Sewage Lagoon serves the 100-N Area and other Hanford Site areas by receiving domestic waste from two sources. A network of sanitary sewer piping and lift stations transfers domestic waste water from the 100-N Area buildings directly to the 100-N Sewage Lagoon. Waste is also received by trucks that transport domestic waste pumped from on site septic tanks and holding tanks. Three ponds comprise the 100-N Sewage Lagoon treatment system. These include a lined aeration pond and stabilization pond, as well as an unlined infiltration pond. Both piped-in and trucked-in domestic waste is discharged directly into the aeration pond.

Not Available

1994-06-01T23:59:59.000Z

309

Waste Loading Enhancements for Hanford Low-Activity Waste Glasses  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WASTE LOADING ENHANCEMENTS FOR HANFORD LOW-ACTIVITY WASTE GLASSES Albert A. Kruger, Glass Scientist DOE-WTP Project Office Engineering Division US Department of Energy Richland,...

310

Studying the advisability of using gas-turbine unit waste gases for heating feed water in a steam turbine installation with a type T-110/120-12.8 turbine  

Science Journals Connector (OSTI)

Results of calculation studying of a possibility of topping of a steam-turbine unit (STU) with a type T-110/120-12.8 turbine of the Urals Turbine Works (UTZ) by a gas-turbine unit (GTU) of 25-MW capacity the wast...

A. D. Trukhnii; G. D. Barinberg; Yu. A. Rusetskii

2006-02-01T23:59:59.000Z

311

Tank Waste Committee Page 1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of a PA is to examine the final waste disposition at Hanford, such as waste in the tanks at C-Farm. Vince said the quest is to model waste movement over 10,000 years,...

312

Waste Heat Recovery from Refrigeration in a Meat Processing Facility  

E-Print Network [OSTI]

A case study is reviewed on a heat recovery system installed in a meat processing facility to preheat water for the plant hot water supply. The system utilizes waste superheat from the facility's 1,350-ton ammonia refrigeration system. The heat...

Murphy, W. T.; Woods, B. E.; Gerdes, J. E.

1980-01-01T23:59:59.000Z

313

The role of NDE in nuclear waste clean-up  

SciTech Connect (OSTI)

With the end of the cold war, the need for large production capability of nuclear weapons has diminished; but concerns have arisen about the condition of the waste and the waste storage tanks from weapon production. The major concern is the potential for the waste to somehow contaminate the water, soil, and air around a plant. To completely solve the problem associated with the nuclear waste, the waste must be ultimately retrieved from the tanks, treated, separated into low-level and high-level waste streams, and then put into a final disposal form that will encapsulate the waste so that it will not penetrate the environment. Going through the process of safely retrieving, characterizing, treating, and disposing of the waste requires a large amount of nondestructive evaluation (NDE) sensor technology. The purpose of this paper is to provide a brief description of the types of NDE technologies needed to provide a safe and adequate solution to the nuclear-waste storage and disposal issue.

Light, G.M. [Southwest Research Inst., San Antonio, TX (United States)

1995-08-01T23:59:59.000Z

314

Water, water everywhere  

Science Journals Connector (OSTI)

... available water resources, either locally or globally, are by no means exhausted. At present desalination -- the removal of salt from sea water or brackish water -- is very ... or brackish water -- is very expensive, mainly because it consumes so much energy. Desalination provides less than 0.2 per cent of all the water used in the world ...

Philip Ball

2000-01-27T23:59:59.000Z

315

Debate over waste imperils 3-Mile cleanup  

SciTech Connect (OSTI)

The cleanup is a task of extraordinary proportions. Every step in the cleanup must be taken in a highly sensitive political and regulatory environment. A demineralizer or ion exchange filtration unit was installed in order that the fission products could be removed from the water spilled in the auxiliary and fuel handling buildings. GPU later vented krypton gas. Twice now engineers have made cautions entries into the containment building as part of the effort to size up the job. Cleanup will be costly, requiring many workers. Some wastes will require special packaging in hundreds of containers with shielded overpacks, plus bulky items of hardware and equipment that cannot be easily packaged. There will be the damaged fuel assemblies from the reactor core. Removing the fuel from the reactor may be difficult. A troublesome waste disposal question has to do with the material to be generated in cleaning up the containment building's sump water. GPU's man in charge of clean-up strategy is to collect the wastes in a form that permits maximum flexibility with respect to their stage, packaging, transport, and ultimate disposal. If plans for disposal of all the wastes from the cleanup are to be completed, an early commitment by Pennsylvania and other northeastern states to establish a burial ground for low level waste generated within the region is needed. Also a speedy commitment by NRC, DOE, and Congress to a plan for disposal of the first-stage zeolites is needed. Should there be a failure to cope with the wastes that Three Mile Island cleanup generates, the whole nuclear enterprise may suffer.

Carter, L.J.

1980-10-10T23:59:59.000Z

316

WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED,  

E-Print Network [OSTI]

DESCRIPTION DETAILS * Radioactive Waste Source Reduction 1,500 Radioactive Waste $6,000 $2,500 $6,000 Waste Yard Sorting Table surveying to sort clean waste from radioactive waste Radioactive Emissions Emission lives. Radioactive Waste generated through wet chemistry Waste Minimization 30 Mixed waste / Liquid

317

Selected Blog Sites Related to Water Resources and Environmental Resources  

E-Print Network [OSTI]

Selected Blog Sites Related to Water Resources and Environmental Resources Water News: Circle of Michael Campana, water scientist - http://aquadoc.typepad.com/waterwired/ Integrated Water Management.g., `water') Environmental Appeals Court - http://environmentalappealscourt.blogspot.com/ Reviewed by: Waste

James, L. Allan

318

Chapter 19 - Nuclear Waste Fund  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Waste Fund 19-1 Nuclear Waste Fund 19-1 CHAPTER 19 NUCLEAR WASTE FUND 1. INTRODUCTION. a. Purpose. This chapter establishes the financial, accounting, and budget policies and procedures for civilian and defense nuclear waste activities, as authorized in Public Law 97-425, the Nuclear Waste Policy Act, as amended, referred to hereafter as the Act. b. Applicability. This chapter applies to all Departmental elements, including the National Nuclear Security Administration, and activities that are funded by the Nuclear Waste Fund (NWF) or the Defense Nuclear Waste Disposal appropriation. c. Background. The Act established the Office of Civilian Radioactive Waste Management (OCRWM) and assigned it responsibility for the management

319

Solid Waste Rules (New Hampshire)  

Broader source: Energy.gov [DOE]

The solid waste statute applies to construction and demolition debris, appliances, recyclables, and the facilities that collect, process, and dispose of solid waste. DES oversees the management of...

320

Solid Waste Management (North Carolina)  

Broader source: Energy.gov [DOE]

The Solid Waste Program regulates safe management of solid waste through guidance, technical assistance, regulations, permitting, environmental monitoring, compliance evaluation and enforcement....

Note: This page contains sample records for the topic "guthrie waste water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Waste Management | Department of Energy  

Energy Savers [EERE]

Management Waste Management Oak Ridge has an onsite CERCLA disposal facility, the Environmental Management Waste Management Facility, that reduces cleanup and transportation costs....

322

Municipal Waste Combustion (New Mexico)  

Broader source: Energy.gov [DOE]

This rule establishes requirements for emissions from, and design and operation of, municipal waste combustion units. "Municipal waste"means all materials and substances discarded from residential...

323

Waste Disposal | Department of Energy  

Office of Environmental Management (EM)

Disposal Waste Disposal Trucks transport debris from Oak Ridges cleanup sites to the onsite CERCLA disposal area, the Environmental Management Waste Management Facility....

324

22 - Radioactive waste disposal  

Science Journals Connector (OSTI)

Publisher Summary This chapter discusses the disposal of radioactive wastes that arise from a great variety of sources, including the nuclear fuel cycle, beneficial uses of isotopes, and radiation by institutions. Spent fuel contains uranium, plutonium, and highly radioactive fission products. The spent fuel is accumulating, awaiting the development of a high-level waste repository. It is anticipated that a multi-barrier system involving packaging and geologic media will provide protection of the public over the centuries. The favored method of disposal is in a mined cavity deep underground. In some countries, reprocessing the fuel assemblies permits recycling of materials and disposal of smaller volumes of solidified waste. Transportation of wastes is done by casks and containers designed to withstand severe accidents. Low-level wastes come from research and medical procedures and from a variety of activation and fission sources at a reactor site. They generally can be given near-surface burial. Isotopes of special interest are cobalt-60 and cesium-137. Transuranic wastes are being disposed of in the Waste Isolation Pilot Plant. Decommissioning of reactors in the future will contribute a great deal of low-level radioactive waste.

Raymond L. Murray

2001-01-01T23:59:59.000Z

325

Radioactive waste disposal package  

DOE Patents [OSTI]

A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

Lampe, Robert F. (Bethel Park, PA)

1986-01-01T23:59:59.000Z

326

Nuclear waste solutions  

DOE Patents [OSTI]

High efficiency removal of technetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.

Walker, Darrel D. (1684 Partridge Dr., Aiken, SC 29801); Ebra, Martha A. (129 Hasty Rd., Aiken, SC 29801)

1987-01-01T23:59:59.000Z

327

Radioactive waste storage issues  

SciTech Connect (OSTI)

In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.

Kunz, D.E.

1994-08-15T23:59:59.000Z

328

Investigation of oil adsorption capacity of granular organoclay media and the kinetics of oil removal from oil-in-water emulsions  

E-Print Network [OSTI]

Produced water, a byproduct of oil and gas production, includes almost 98% of all waste generated by oil and gas exploration and their production activities. This oil contaminated waste water has a great impact on our environment and is considered...

Islam, Sonia

2007-04-25T23:59:59.000Z

329

Eliminating Medical Waste Liabilities Through Mobile Maceration and Disinfection  

SciTech Connect (OSTI)

Commercial medical waste treatment technologies include incineration, melting, autoclaving, and chemical disinfection. Incineration disinfects, destroys the original nature of medical waste, and reduces the waste volume by converting organic waste content to carbon dioxide and water, leaving only residual inorganic ash. However, medical waste incinerator numbers have plummeted from almost 2,400 in 1995 to 115 in 2003 and to about 62 in 2005, due to negative public perception and escalating compliance costs associated with increasingly strict regulations. High-temperature electric melters have been designed and marketed as incinerator alternatives, but they are also costly and generally must comply with the same incinerator emissions regulations and permitting requirements. Autoclave processes disinfect medical waste at much lower operating temperatures than incinerators operate at, but are sometimes subject to limitations such as waste segregration requirements to be effective. Med-Shred, Inc. has developed a patented mobile shredding and chemical disinfecting process for on-site medical waste treatment. Medical waste is treated on-site at customer facilities by shredding and disinfecting the waste. The treated waste can then be transported in compliance with Health Insurance Portability and Accountability Act of 1996 (HIPAA) requirements to a landfill for disposal as solid municipal waste. A team of Idaho National Laboratory engineers evaluated the treatment process design. The process effectiveness has been demonstrated in mycobacterium tests performed by Analytical Services Incorporated. A process description and the technical and performance evaluation results are presented in the paper. A treatment demonstration and microbiological disinfecting tests show that the processor functions as it was intended.

R. A. Rankin; N. R. Soelberg; K. M. Klingler; C. W. Lagle; L. L. Byers

2006-02-01T23:59:59.000Z

330

Water Management Technologies from Europe  

E-Print Network [OSTI]

oxidation Potato processing plant UV/Ozone for phase I, water contaminated and aerobic biological with herbicide, BOD pretreatment plant for and micro-organisms phase II expansion Contaminated gas Operation of transportable holder water from cross... is injected at an offshore platform. Methanol (hydrate inhibitor) is regenerated onshore by distillation. The corrosion inhibitor was accumulating in the methanol still bottoms. The waste streams were being discharged into coastal water via an outfall...

Woinsky, S. G.

331

Workshops and Public Meetings Related to Water-Energy | Department...  

Energy Savers [EERE]

Workshops and Public Meetings Related to Water-Energy Workshops and Public Meetings Related to Water-Energy Waste-to-Energy Roapmapping Workshop in Arlington, VA - November 5, 2014...

332

ANAEROBIC BIOLOGICAL TREATMENT OF IN-SITU RETORT WATER  

E-Print Network [OSTI]

Phyllis Fox INTRODUCTION Oil shale retorting produces fromWaste Water from Oil Shale Processing" ACS Division of FuelEvaluates Treatments for Oil-Shale Retort Water," Industrial

Ossio, Edmundo

2012-01-01T23:59:59.000Z

333

University of Arizona Water Sustainability Program Conservation Easement Monitoring  

E-Print Network [OSTI]

and ranches as the single greatest threat to wildlife habitat, water supply and the long-term viability regulation of hydrological flows, storage and retention of water, and waste treatment and detoxification

Fay, Noah

334

Pioneering Nuclear Waste Disposal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

T h e W a s t e I s o l a t i o n P i l o t P l a n t DOE 1980. Final Environmental Impact Statement, Waste Isolation Pilot Plant. DOE/EIS-0026, Washington, DC, Office of Environmental Management, U.S. Department of Energy. DOE 1981. Waste Isolation Pilot Plant (WIPP): Record of Decision. Federal Register, Vol. 46, No. 18, p. 9162, (46 Federal Register 9162), January 28, 1981. U.S. Department of Energy. DOE 1990. Final Supplement Environmental Impact Statement, Waste Isolation Pilot Plant. DOE/EIS-0026-FS, Washington, DC, Office of Environmental Management, U.S. Department of Energy. DOE 1990. Record of Decision: Waste Isolation Pilot Plant. Federal Register, Vol. 55, No. 121, 25689-25692, U.S. Department of Energy. DOE 1994. Comparative Study of Waste Isolation Pilot Plant (WIPP) Transportation Alternatives.

335

Salt Waste Processing Initiatives  

Broader source: Energy.gov (indexed) [DOE]

Patricia Suggs Patricia Suggs Salt Processing Team Lead Assistant Manager for Waste Disposition Project Office of Environmental Management Savannah River Site Salt Waste Processing Initiatives 2 Overview * Current SRS Liquid Waste System status * Opportunity to accelerate salt processing - transformational technologies - Rotary Microfiltration (RMF) and Small Column Ion Exchange (SCIX) - Actinide Removal Process/Modular Caustic Side Solvent Extraction (ARP/MCU) extension with next generation extractant - Salt Waste Processing Facility (SWPF) performance enhancement - Saltstone enhancements * Life-cycle impacts and benefits 3 SRS Liquid Waste Total Volume >37 Million Gallons (Mgal) Total Curies 183 MCi (51% ) 175 MCi (49% ) >358 Million Curies (MCi) Sludge 34.3 Mgal (92% ) 3.0 Mgal (8%)

336

HLW Glass Waste Loadings  

Broader source: Energy.gov (indexed) [DOE]

HLW HLW Glass Waste Loadings Ian L. Pegg Vitreous State Laboratory The Catholic University of America Washington, DC Overview Overview  Vitrification - general background  Joule heated ceramic melter (JHCM) technology  Factors affecting waste loadings  Waste loading requirements and projections  WTP DWPF  DWPF  Yucca Mountain License Application requirements on waste loading  Summary Vitrification  Immobilization of waste by conversion into a glass  Internationally accepted treatment for HLW  Why glass?  Amorphous material - able to incorporate a wide spectrum of elements over wide ranges of composition; resistant to radiation damage  Long-term durability - natural analogs Relatively simple process - amenable to nuclearization at large  Relatively simple process - amenable to nuclearization at large scale  There

337

FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION  

SciTech Connect (OSTI)

The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S. (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated. (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass. (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

Carter, J.

2011-01-03T23:59:59.000Z

338

FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION  

SciTech Connect (OSTI)

The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S; (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated; (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass; and (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

Jones, R.; Carter, J.

2010-10-13T23:59:59.000Z

339

Tips: Water Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tips: Water Heating Tips: Water Heating Tips: Water Heating May 2, 2012 - 4:53pm Addthis Keep Your Energy Bills Out of Hot Water. Insulate your water heater to save energy and money, or choose an on-demand hot water heater to save even more. Keep Your Energy Bills Out of Hot Water. Insulate your water heater to save energy and money, or choose an on-demand hot water heater to save even more. Water heating is the second largest energy expense in your home. It typically accounts for about 18% of your utility bill. There are four ways to cut your water heating bills: use less hot water, turn down the thermostat on your water heater, insulate your water heater, or buy a new, more efficient model. Water Heating Tips Install aerating, low-flow faucets and showerheads. Repair leaky faucets promptly; a leaky faucet wastes gallons of

340

Tips: Water Heating | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Water Heating Water Heating Tips: Water Heating May 2, 2012 - 4:53pm Addthis Keep Your Energy Bills Out of Hot Water. Insulate your water heater to save energy and money, or choose an on-demand hot water heater to save even more. Keep Your Energy Bills Out of Hot Water. Insulate your water heater to save energy and money, or choose an on-demand hot water heater to save even more. Water heating is the second largest energy expense in your home. It typically accounts for about 18% of your utility bill. There are four ways to cut your water heating bills: use less hot water, turn down the thermostat on your water heater, insulate your water heater, or buy a new, more efficient model. Water Heating Tips Install aerating, low-flow faucets and showerheads. Repair leaky faucets promptly; a leaky faucet wastes gallons of

Note: This page contains sample records for the topic "guthrie waste water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Thermoelectric recovery of waste heat -- Case studies  

SciTech Connect (OSTI)

The use of waste heat as an energy source for thermoelectric generation largely removes the constraint for the wide scale application of this technology imposed by its relatively low conversion efficiency (typically about 5%). Paradoxically, in some parasitic applications, a low conversion efficiency can be viewed as a distinct advantage. However, commercially available thermoelectric modules are designed primarily for refrigerating applications and are less reliable when operated at elevated temperatures. Consequently, a major factor which determines the economic competitiveness of thermoelectric recovery of waste heat is the cost per watt divided by the mean-time between module failures. In this paper is reported the development of a waste, warm water powered thermoelectric generator, one target in a NEDO sponsored project to economically recover waste heat. As an application of this technology case studies are considered in which thermoelectric generators are operated in both active and parasitic modes to generate electrical power for a central heating system. It is concluded that, in applications when the supply of heat essentially is free as with waste heat, thermoelectrics can compete economically with conventional methods of electrical power generation. Also, in this situation, and when the generating system is operated in a parasitic mode, conversion efficiency is not an important consideration.

Rowe, M.D.; Min, G.; Williams, S.G.K.; Aoune, A. [Cardiff School of Engineering (United Kingdom). Div. of Electronic Engineering; Matsuura, Kenji [Osaka Univ., Suita, Osaka (Japan). Dept. of Electrical Engineering; Kuznetsov, V.L. [Ioffe Physical-Technical Inst., St. Petersburg (Russian Federation); Fu, L.W. [Tsinghua Univ., Beijing (China). Microelectronics Inst.

1997-12-31T23:59:59.000Z

342

Municipal solid waste effective stress analysis  

SciTech Connect (OSTI)

The mechanical behavior of municipal solid waste (MSW) has attracted the attention of many researchers in the field of geo-environmental engineering in recent years and several aspects of waste mechanical response under loading have been elucidated. However, the mechanical response of MSW materials under undrained conditions has not been described in detail to date. The knowledge of this aspect of the MSW mechanical response is very important in cases involving MSW with high water contents, seismic ground motion and in regions where landfills are built with poor operation conditions. This paper presents the results obtained from 26 large triaxial tests performed both in drained and undrained conditions. The results were analyzed taking into account the waste particles compressibility and the deformation anisotropy of the waste samples. The waste particles compressibility was used to modify the Terzaghi effective stress equation, using the Skempton (1961) proposition. It is shown that the use of the modified effective stress equation led to much more compatible shear strength values when comparing Consolidated-Drained (CD) and Consolidated-Undrained (CU), results, explaining the high shear strength values obtained in CU triaxial tests, even when the pore pressure is almost equal to the confining stress.

Shariatmadari, Nader, E-mail: shariatmadari@iust.ac.i [Dept. of Civil Engineering, Iran University of Science and Technology, Narmak, 16846-13114 Teharn (Iran, Islamic Republic of); Machado, Sandro Lemos, E-mail: smachado@ufba.b [Dept. of Materials Science and Technology, Federal University of Bahia, 02 Aristides Novis St., 40210-630 Salvador-BA (Brazil); Noorzad, Ali, E-mail: noorzad@pwut.ac.i [Faculty of Water Engineering, Power and Water University of Technology, Tehranpars, 1719-16765 Tehran (Iran, Islamic Republic of); Karimpour-Fard, Mehran, E-mail: karimpour_mehran@iust.ac.i [Dept. of Civil Engineering, Iran University of Science and Technology, Narmak, 16846-13114 Teharn (Iran, Islamic Republic of)

2009-12-15T23:59:59.000Z

343

Water Resources Water Quality and Water Treatment  

E-Print Network [OSTI]

Water Resources TD 603 Lecture 1: Water Quality and Water Treatment CTARA Indian Institute of Technology, Bombay 2nd November, 2011 #12;OVERVIEW Water Quality WATER TREATMENT PLANTS WATER TREATMENT PLANTS WATER TREATMENT PLANTS WATER TRE OVERVIEW OF THE LECTURE 1. Water Distribution Schemes Hand Pump

Sohoni, Milind

344

WIPP Hazardous Waste Facility Permit Update  

SciTech Connect (OSTI)

The Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit (HWFP) was issued on October 27, 1999 [1]. Since that time, the WIPP has sought modifications to clarify the permit language, provide alternative methods for meeting permit requirements and to update permit conditions. Significant advancements have been made in transuranic (TRU) waste management as the result of modifications to the HWFP. Among these advancements is a modification to obtain a drum age criteria (DAC) value to perform headspace gas sampling on drums to be super-compacted and placed in a 100-gallon overpack drum. In addition, the Section 311 permit modification request that would allow for more efficient waste characterization, and the modification to authorize the shipment and disposal of Remote-Handled (RH) TRU waste were merged together and submitted to the regulator as the Consolidated Permit Modification Request (PMR). The submittal of the Consolidated PMR came at the request of the regulator as part of responses to Notices of Deficiency (NODs) for the separate PMRs which had been submitted in previous years. Section 311 of the fiscal year 2004 Energy and Water Developments Appropriations Act (Public Law 108-137) [2] directs the Department of Energy to submit a permit modification that limits waste confirmation to radiography or visual examination of a statistical subpopulation of containers. Section 311 also specifically directs that disposal room performance standards be to be met by monitoring for volatile organic compounds in the underground disposal rooms. This statute translates into the elimination of other waste confirmation methods such as headspace gas sampling and analysis and solids sampling and analysis. These methods, as appropriate, will continue to be used by the generator sites during hazardous waste determinations or characterization activities. This modification is expected to reduce the overall cost of waste analysis by hundreds of millions of dollars [3]. Combining both the chap. 311 and RH TRU waste permit modification requests allows for both the regulator and DOE to expedite action on the modification requests. The Combined PMR reduces costs by having only one administrative process for both modification requests. (authors)

Kehrman, B.; Most, W. [Washington Regulatory and Environmental Services, 4021 National Parks Highway, Carlsbad, NM 88220 (United States)

2006-07-01T23:59:59.000Z

345

Waste-to-Energy and Fuel Cell Technologies Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Waste-to-Energy and Fuel Cell Waste-to-Energy and Fuel Cell T h l i O i Innovation for Our Energy Future Technologies Overview Presented to: DOD-DOE Waste-to- Energy Workshop Energy Workshop Dr. Robert J. Remick J 13 2011 January 13, 2011 Capital Hilton Hotel Washington, DC NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Global Approach for Using Biogas Innovation for Our Energy Future Anaerobic Digestion of Organic Wastes is a Good Source of Methane. Organic waste + methanogenic bacteria → methane (CH 4 ) Issues: High levels of contamination Time varying output of gas quantity and quality Innovation for Our Energy Future Photo courtesy of Dos Rios Water Recycling Center, San Antonio, TX

346

State Waste Discharge Permit application: 200-E Powerhouse Ash Pit  

SciTech Connect (OSTI)

As part of the Hanford Federal Facility Agreement and Consent Order negotiations, the US Department and Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173-216 (or 173-218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. This document constitutes the State Waste Discharge Permit application for the 200-E Powerhouse Ash Pit. The 200-E Powerhouse Ash Waste Water discharges to the 200-E Powerhouse Ash Pit via dedicated pipelines. The 200-E Ash Waste Water is the only discharge to the 200-E Powerhouse Ash Pit. The 200-E Powerhouse is a steam generation facility consisting of a coal-handling and preparation section and boilers.

Atencio, B.P.

1994-06-01T23:59:59.000Z

347

State Waste Discharge Permit application: 200-W Powerhouse Ash Pit  

SciTech Connect (OSTI)

As part of the Hanford Federal Facility Agreement and Consent Order negotiations; the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173-216 (or 173-218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. This document constitutes the State Waste Discharge Permit application for the 200-W Powerhouse Ash Pit. The 200-W Powerhouse Ash Waste Water discharges to the 200-W Powerhouse Ash Pit via dedicated pipelines. The 200-W Powerhouse Ash Waste Water is the only discharge to the 200-W Powerhouse Ash Pit. The 200-W Powerhouse is a steam generation facility consisting of a coal-handling and preparation section and boilers.

Atencio, B.P.

1994-06-01T23:59:59.000Z

348

Strategy for experimental validation of waste package performance assessment  

SciTech Connect (OSTI)

A strategy for the experimental validation of waste package performance assessment has been developed as part of a program supported by the Repository Technology Program. The strategy was developed by reviewing the results of laboratory analog experiments, in-situ tests, repository simulation tests, and material interaction tests. As a result of the review, a listing of dependent and independent variables that influence the ingress of water into the near-field environment, the reaction between water and the waste form, and the transport of radionuclides from the near-field environment was developed. The variables necessary to incorporate into an experimental validation strategy were chosen by identifying those which had the greatest effect of each of the three major events, i.e., groundwater ingress, waste package reactions, and radionuclide transport. The methodology to perform validation experiments was examined by utilizing an existing laboratory analog approach developed for unsaturated testing of glass waste forms. 185 refs., 9 figs., 2 tabs.

Bates, J.K.; Abrajano, T.A. Jr.; Wronkiewicz, D.J.; Gerding, T.J.; Seils, C.A.

1990-07-01T23:59:59.000Z

349

Method to synthesize dense crystallized sodalite pellet for immobilizing halide salt radioactive waste  

DOE Patents [OSTI]

A method for immobilizing waste chloride salts containing radionuclides such as cesium and strontium and hazardous materials such as barium. A sodalite intermediate is prepared by mixing appropriate amounts of silica, alumina and sodium hydroxide with respect to sodalite and heating the mixture to form the sodalite intermediate and water. Heating is continued to drive off the water to form a water-free intermediate. The water-free intermediate is mixed with either waste salt or waste salt which has been contacted with zeolite to concentrate the radionuclides and hazardous material. The waste salt-intermediate mixture is then compacted and heated under conditions of heat and pressure to form sodalite with the waste salt, radionuclides and hazardous material trapped within the sodalite cage structure. This provides a final product having excellent leach resistant capabilities.

Koyama, Tadafumi (Tokyo, JP)

1994-01-01T23:59:59.000Z

350

Method to synthesize dense crystallized sodalite pellet for immobilizing halide salt radioactive waste  

DOE Patents [OSTI]

This report describes a method for immobilizing waste chloride salts containing radionuclides such as cesium and strontium and hazardous materials such as barium. A sodalite intermediate is prepared by mixing appropriate amounts of silica, alumina and sodium hydroxide with respect to sodalite and heating the mixture to form the sodalite intermediate and water. Heating is continued to drive off the water to form a water-free intermediate. The water-free intermediate is mixed with either waste salt or waste salt which has been contacted with zeolite to concentrate the radionuclides and hazardous material. The waste salt-intermediate mixture is then compacted and heated under conditions of heat and pressure to form sodalite with the waste salt, radionuclides and hazardous material trapped within the sodalite cage structure. This provides a final product having excellent leach resistant capabilities.

Koyama, T.

1992-01-01T23:59:59.000Z

351

Improved method and composition for immobilization of waste in cement-based material  

DOE Patents [OSTI]

A composition and method for fixation or immobilization of aqueous hazardous waste material in cement-based materials (grout) is disclosed. The amount of drainable water in the cured grout is reduced by the addition of an ionic aluminum compound to either the waste material or the mixture of waste material and dry-solid cement- based material. This reduction in drainable water in the cured grout obviates the need for large, expensive amounts of gelling clays in grout materials and also results in improved consistency and properties of these cement-based waste disposal materials.

Tallent, O.K.; Dodson, K.E.; McDaniel, E.W.

1987-10-01T23:59:59.000Z

352

Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill  

E-Print Network [OSTI]

Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill Timothy D. Stark, F.ASCE1 landfills may contain aluminum from residential and commercial solid waste, industrial waste, and aluminum, may react with liquid in a landfill and cause uncontrolled temperature increases, significant changes

353

DEFENSE HIGH LEVEL WASTE GLASS DEGRADATION  

SciTech Connect (OSTI)

The purpose of this Analysis/Model Report (AMR) is to document the analyses that were done to develop models for radionuclide release from high-level waste (HLW) glass dissolution that can be integrated into performance assessment (PA) calculations conducted to support site recommendation and license application for the Yucca Mountain site. This report was developed in accordance with the ''Technical Work Plan for Waste Form Degradation Process Model Report for SR'' (CRWMS M&O 2000a). It specifically addresses the item, ''Defense High Level Waste Glass Degradation'', of the product technical work plan. The AP-3.15Q Attachment 1 screening criteria determines the importance for its intended use of the HLW glass model derived herein to be in the category ''Other Factors for the Postclosure Safety Case-Waste Form Performance'', and thus indicates that this factor does not contribute significantly to the postclosure safety strategy. Because the release of radionuclides from the glass will depend on the prior dissolution of the glass, the dissolution rate of the glass imposes an upper bound on the radionuclide release rate. The approach taken to provide a bound for the radionuclide release is to develop models that can be used to calculate the dissolution rate of waste glass when contacted by water in the disposal site. The release rate of a particular radionuclide can then be calculated by multiplying the glass dissolution rate by the mass fraction of that radionuclide in the glass and by the surface area of glass contacted by water. The scope includes consideration of the three modes by which water may contact waste glass in the disposal system: contact by humid air, dripping water, and immersion. The models for glass dissolution under these contact modes are all based on the rate expression for aqueous dissolution of borosilicate glasses. The mechanism and rate expression for aqueous dissolution are adequately understood; the analyses in this AMR were conducted to provide models and parameter values that can be used to calculate the dissolution rates for the different modes of water contact. The analyses were conducted to identify key aspects of the mechanistic model for glass dissolution to be included in the abstracted models used for PA calculations, evaluate how the models can be used to calculate bounding values of the glass dissolution rates under anticipated water contact modes in the disposal. system, and determine model parameter values for the range of potential waste glass compositions and anticipated environmental conditions. The analysis of a bounding rate also considered the effects of the buildup of glass corrosion products in the solution contacting the glass and potential effects of alteration phase formation. Note that application of the models and model parameter values is constrained to the anticipated range of HLW glass compositions and environmental conditions. The effects of processes inherent to exposure to humid air and dripping water were not modeled explicitly. Instead, the impacts of these processes on the degradation rate were taken into account by using empirically measured parameter values. These include the rates at which water sorbs onto the glass, drips onto the glass, and drips off of the glass. The dissolution rates of glasses that were exposed to humid air and dripping water measured in laboratory tests are used to estimate model parameter values for contact by humid air and dripping water in the disposal system.

W. Ebert

2001-09-20T23:59:59.000Z

354

Treatability studies of actual listed waste sludges from the Oak Ridge Reservation (ORR)  

SciTech Connect (OSTI)

Oak Ridge National Laboratory (ORNL) and Savannah River Technology Center (SRTC) are investigating vitrification for various low-level and mixed wastes on the Oak Ridge Reservation (ORR). Treatability studies have included surrogate waste formulations at the laboratory-, pilot-, and field-scales and actual waste testing at the laboratory- and pilot-scales. The initial waste to be processing through SRTC`s Transportable Vitrification System (TVS) is the K-1407-B and K-1407-C (B/C) Pond sludge waste which is a RCRA F-listed waste. The B/C ponds at the ORR K-25 site were used as holding and settling ponds for various waste water treatment streams. Laboratory-, pilot-, and field- scale ``proof-of-principle`` demonstrations are providing needed operating parameters for the planned field-scale demonstration with actual B/C Pond sludge waste at ORR. This report discusses the applied systems approach to optimize glass compositions for this particular waste stream through laboratory-, pilot-, and field-scale studies with surrogate and actual B/C waste. These glass compositions will maximize glass durability and waste loading while optimizing melt properties which affect melter operation, such as melt viscosity and melter refractory corrosion. Maximum waste loadings minimize storage volume of the final waste form translating into considerable cost savings.

Jantzen, C.M.; Peeler, D.K. [Westinghouse Savannah River Co., Aiken, SC (United States); Gilliam, T.M.; Bleier, A.; Spence, R.D. [Oak Ridge National Lab., TN (United States)

1996-05-06T23:59:59.000Z

355

M-Area Hazardous Waste Management Facility. Fourth Quarter 1994, Groundwater Monitoring Report  

SciTech Connect (OSTI)

The unlined settling basin operated from 1958 until 1985, receiving waste water that contained volatile organic solvents used for metal degreasing and chemical constituents and depleted uranium from fuel fabrication process in M Area. The underground process sewer line transported M-Area process waste waters to the basin. Water periodically overflowed from the basin through the ditch to the seepage area adjacent to the ditch and to Lost Lake.

Chase, J.A.

1995-04-20T23:59:59.000Z

356

The Mixed Waste Management Facility monthly report August 1995  

SciTech Connect (OSTI)

The project is concerned with the design of a mixed waste facility to prepare solid and liquid wastes for processing by electrochemical oxidation, molten salt oxidation, wet oxidation, or UV photolysis. The facility will have a receiving and shipping unit, preparation and processing units, off-gas scrubbing, analytical services, water treatment, and transport and storage facilities. This monthly report give task summaries for 25 tasks which are part of the overall design effort.

Streit, R.D.

1995-09-01T23:59:59.000Z

357

Waste-heat-driven refrigeration plants for freezer trawlers  

SciTech Connect (OSTI)

An analysis is made of the possibility of utilizing waste heat from a proposed gas-turbine fishing-vessel propulsion engine to power a refrigeration plant. On the basis of superior volume, maintenance and reliability, and cost and availability, the ammonia-water absorption system is chosen over the other waste-heat-driven option considered. It is found to be comparable in volume and in maintenance and reliability to the conventional vapor-compression system.

Kellen, A.D.

1986-01-01T23:59:59.000Z

358

Quality Services: Solid Wastes, Part 360: Solid Waste Management Facilities  

Broader source: Energy.gov (indexed) [DOE]

0: Solid Waste Management 0: Solid Waste Management Facilities (New York) Quality Services: Solid Wastes, Part 360: Solid Waste Management Facilities (New York) < Back Eligibility Agricultural Commercial Fuel Distributor Industrial Institutional Investor-Owned Utility Multi-Family Residential Municipal/Public Utility Rural Electric Cooperative Transportation Utility Program Info State New York Program Type Environmental Regulations Provider NY Department of Environmental Conservation These regulations apply to all solid wastes with the exception of hazardous or radioactive waste. Proposed solid waste processing facilities are required to obtain permits prior to construction, and the regulations provide details about permitting, construction, registration, and operation requirements. The regulations contain specific guidance for land

359

TRU Waste Sampling Program: Volume I. Waste characterization  

SciTech Connect (OSTI)

Volume I of the TRU Waste Sampling Program report presents the waste characterization information obtained from sampling and characterizing various aged transuranic waste retrieved from storage at the Idaho National Engineering Laboratory and the Los Alamos National Laboratory. The data contained in this report include the results of gas sampling and gas generation, radiographic examinations, waste visual examination results, and waste compliance with the Waste Isolation Pilot Plant-Waste Acceptance Criteria (WIPP-WAC). A separate report, Volume II, contains data from the gas generation studies.

Clements, T.L. Jr.; Kudera, D.E.

1985-09-01T23:59:59.000Z

360

Hanford Tank Waste Residuals  

Broader source: Energy.gov (indexed) [DOE]

Hanford Hanford Tank Waste Residuals DOE HLW Corporate Board November 6, 2008 Chris Kemp, DOE ORP Bill Hewitt, YAHSGS LLC Hanford Tanks & Tank Waste * Single-Shell Tanks (SSTs) - ~27 million gallons of waste* - 149 SSTs located in 12 SST Farms - Grouped into 7 Waste Management Areas (WMAs) for RCRA closure purposes: 200 West Area S/SX T TX/TY U 200 East Area A/AX B/BX/BY C * Double-Shell Tanks (DSTs) - ~26 million gallons of waste* - 28 DSTs located in 6 DST Farms (1 West/5 East) * 17 Misc Underground Storage Tanks (MUST) * 43 Inactive MUST (IMUST) 200 East Area A/AX B/BX/BY C * Volumes fluctuate as SST retrievals and 242-A Evaporator runs occur. Major Regulatory Drivers * Radioactive Tank Waste Materials - Atomic Energy Act - DOE M 435.1-1, Ch II, HLW - Other DOE Orders * Hazardous/Dangerous Tank Wastes - Hanford Federal Facility Agreement and Consent Order (TPA) - Retrieval/Closure under State's implementation

Note: This page contains sample records for the topic "guthrie waste water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Waste inspection tomography (WIT)  

SciTech Connect (OSTI)

The WIT program will provide an inspection system that offers the nuclear waste evaluator a unique combination of tools for regulatory-driven characterization of low-level waste (LLW), transuranic waste (TRU), and mixed waste drums. WIT provides nondestructive, noninvasive, and environmentally safe inspections using X-ray and gamma ray technologies, with reasonable cost and throughput. Two emission imaging techniques will be employed for characterizing materials in waste containers. The first of these is gamma emission tomography, commonly called single-photon emission computed tomography (SPECT). Rather than using an external radiation source, SPECT uses the emission of radioactive materials within the object of interest for imaging. In this case, emission from actual nuclear waste within a container will provide a three-dimensional image of the radioactive substances in the container. The second emission technique will use high-purity germanium detectors for gamma ray spectroscopy. This technique, called nondestructive assay (NDA), can identify the emitting isotopic species and strength. Work in emission tomography and assay of nuclear waste has been undertaken at Lawrence Livermore National Laboratory using a technique called Passive Tomography. Results from a process development unit are presented.

Bernardi, R.T.; Han, K.S.

1994-12-31T23:59:59.000Z

362

Low-level radioactive waste disposal facility closure  

SciTech Connect (OSTI)

Part I of this report describes and evaluates potential impacts associated with changes in environmental conditions on a low-level radioactive waste disposal site over a long period of time. Ecological processes are discussed and baselines are established consistent with their potential for causing a significant impact to low-level radioactive waste facility. A variety of factors that might disrupt or act on long-term predictions are evaluated including biological, chemical, and physical phenomena of both natural and anthropogenic origin. These factors are then applied to six existing, yet very different, low-level radioactive waste sites. A summary and recommendations for future site characterization and monitoring activities is given for application to potential and existing sites. Part II of this report contains guidance on the design and implementation of a performance monitoring program for low-level radioactive waste disposal facilities. A monitoring programs is described that will assess whether engineered barriers surrounding the waste are effectively isolating the waste and will continue to isolate the waste by remaining structurally stable. Monitoring techniques and instruments are discussed relative to their ability to measure (a) parameters directly related to water movement though engineered barriers, (b) parameters directly related to the structural stability of engineered barriers, and (c) parameters that characterize external or internal conditions that may cause physical changes leading to enhanced water movement or compromises in stability. Data interpretation leading to decisions concerning facility closure is discussed. 120 refs., 12 figs., 17 tabs.

White, G.J.; Ferns, T.W.; Otis, M.D.; Marts, S.T.; DeHaan, M.S.; Schwaller, R.G.; White, G.J. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

1990-11-01T23:59:59.000Z

363

Nonhazardous Solid Waste Management Regulations and Criteria (Mississippi)  

Broader source: Energy.gov (indexed) [DOE]

Nonhazardous Solid Waste Management Regulations and Criteria Nonhazardous Solid Waste Management Regulations and Criteria (Mississippi) Nonhazardous Solid Waste Management Regulations and Criteria (Mississippi) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Mississippi Program Type Environmental Regulations

364

Hazardous and Nonhazardous Solid Waste Applicant Disclosure Regulations  

Broader source: Energy.gov (indexed) [DOE]

Hazardous and Nonhazardous Solid Waste Applicant Disclosure Hazardous and Nonhazardous Solid Waste Applicant Disclosure Regulations (Mississippi) Hazardous and Nonhazardous Solid Waste Applicant Disclosure Regulations (Mississippi) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Mississippi Program Type

365

Mixed Waste Management Facility Groundwater Monitoring Report  

SciTech Connect (OSTI)

During fourth quarter 1997, eleven constituents exceeded final Primary Drinking Water Standards (PDWS) in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility. No constituents exceeded final PDWS in samples from upgradient monitoring wells. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters.

Chase, J.

1998-03-01T23:59:59.000Z

366

Radioactive waste material disposal  

DOE Patents [OSTI]

The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

1995-10-24T23:59:59.000Z

367

Radioactive waste material disposal  

DOE Patents [OSTI]

The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

Forsberg, Charles W. (155 Newport Dr., Oak Ridge, TN 37830); Beahm, Edward C. (106 Cooper Cir., Oak Ridge, TN 37830); Parker, George W. (321 Dominion Cir., Knoxville, TN 37922)

1995-01-01T23:59:59.000Z

368

Waste treatment by reverse osmosis and membrane processing. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the technology of reverse osmosis and membrane processing in sewage and industrial waste treatment. Citations discuss ultrafiltration, industrial water reuse, hazardous waste treatment, municipal wastes, and materials recovery. Waste reduction and recycling in electroplating, metal finishing, and circuit board manufacturing are considered. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1995-09-01T23:59:59.000Z

369

Waste treatment by reverse osmosis and membrane processing. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the technology of reverse osmosis and membrane processing in sewage and industrial waste treatment. Citations discuss ultrafiltration, industrial water reuse, hazardous waste treatment, municipal wastes, and materials recovery. Waste reduction and recycling in electroplating, metal finishing, and circuit board manufacturing are considered. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1996-10-01T23:59:59.000Z

370

Water Conservation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Water Conservation Water Conservation Water Conservation Mission The team facilitates the reduction of water consumption intensity at LM sites in support of requirements of Executive Order (EO) 13423, Strengthening Federal Environmental, Energy, and Transportation Management, and (EO) 13514, Federal Leadership in Environmental, Energy, and Economic Performance, and DOE Order 436.1, Departmental Sustainability, as approved by LM. The Water Conservation Team advocates natural resource sustainability by continually improving water use efficiencies. Scope LM and the contractor evaluate, make recommendations, and implement approved programs to maintain and operate its buildings and facilities in a manner that beneficially reduces water use, loss, and waste at LM sites. The team strives to reduce water use intensity annually. Water efficiency

371

Hazardous Waste Disposal Sites (Iowa)  

Broader source: Energy.gov [DOE]

These sections contain information on fees and monitoring relevant to operators of hazardous waste disposal sites.

372

Generating power with waste wood  

SciTech Connect (OSTI)

Among the biomass renewables, waste wood has great potential with environmental and economic benefits highlighting its resume. The topics of this article include alternate waste wood fuel streams; combustion benefits; waste wood comparisons; waste wood ash; pilot scale tests; full-scale test data; permitting difficulties; and future needs.

Atkins, R.S.

1995-02-01T23:59:59.000Z

373

Long-term changes in nitrogen loads of a stream in the vicinity of an earthen waste storage pond  

Science Journals Connector (OSTI)

It is not sufficiently known for how long earthen waste storage ponds that are no more in use continue to affect surface water quality. In 2006, we carried out an investigation on the water quality and hydrolo...

T. Kato; H. Kuroda; H. Nakasone

2008-09-01T23:59:59.000Z

374

Certification Plan, low-level waste Hazardous Waste Handling Facility  

SciTech Connect (OSTI)

The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. This plan provides guidance from the HWHF to waste generators, waste handlers, and the Waste Certification Specialist to enable them to conduct their activities and carry out their responsibilities in a manner that complies with the requirements of WHC-WAC. Waste generators have the primary responsibility for the proper characterization of LLW. The Waste Certification Specialist verifies and certifies that LBL LLW is characterized, handled, and shipped in accordance with the requirements of WHC-WAC. Certification is the governing process in which LBL personnel conduct their waste generating and waste handling activities in such a manner that the Waste Certification Specialist can verify that the requirements of WHC-WAC are met.

Albert, R.

1992-06-30T23:59:59.000Z

375

Land treatment for seafood processing waste  

SciTech Connect (OSTI)

The purpose of this paper is twofold. The first is to describe selected waste water parameters at two small seafood processing plants in the eastern part of North Carolina. The second is to describe the land treatment system serving these industries and to characterize the quality of the shallow ground water exiting these systems. One of the seafood processing plants is a flounder fileting operation and the other processes crabs. Both plants employ between 10 and 40 individuals, and the processing operation is done mostly by hand.

Rubin, A.R.; McClease, J.D.; Morgan, C.B.

1983-12-01T23:59:59.000Z

376

Tank Waste Strategy Update  

Broader source: Energy.gov (indexed) [DOE]

Tank Waste Subcommittee www.em.doe.gov safety performance cleanup closure E M Environmental Management 1 Tank Waste Subcommittee Ken Picha Office of Environmental Management December 5, 2011 Background Tank Waste Subcommittee (TWS)originally chartered, in response to Secretary's request to perform a technical review of Waste Treatment and Immobilization Plant (WTP) in May 2010. Three tasks: o Verification of closure of WTP External Flowsheet Review Team (EFRT) issues. o WTP Technical Design Review o WTP potential improvements Report completed and briefed to DOE in September 2010 www.em.doe.gov safety performance cleanup closure E M Environmental Management 2 Report completed and briefed to DOE in September 2010 Follow-on scope for TWS identified immediately after briefing to DOE and

377

Waste Treatment Plant Overview  

Broader source: Energy.gov (indexed) [DOE]

Hanford Site, located in southeastern Washington state, Hanford Site, located in southeastern Washington state, was the largest of three defense production sites in the U.S. Over the span of 40 years, it was used to produce 64 metric tons of plutonium, helping end World War II and playing a major role in military defense efforts during the Cold War. As a result, 56 million gallons of radioactive and chemical wastes are now stored in 177 underground tanks on the Hanford Site. To address this challenge, the U.S. Department of Energy contracted Bechtel National, Inc., to design and build the world's largest radioactive waste treatment plant. The Waste Treatment and Immobilization Plant (WTP), also known as the "Vit Plant," will use vitrification to immobilize most of Hanford's dangerous tank waste.

378

Waste Steam Recovery  

E-Print Network [OSTI]

An examination has been made of the recovery of waste steam by three techniques: direct heat exchange to process, mechanical compression, and thermocompression. Near atmospheric steam sources were considered, but the techniques developed are equally...

Kleinfeld, J. M.

1979-01-01T23:59:59.000Z

379

Waste and Recycling  

ScienceCinema (OSTI)

Nuclear engineer Dr. Kathy McCarthy talks about nuclear energy, the challenge of nuclear waste and the research aimed at solutions. For more information about nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

McCarthy, Kathy

2013-05-28T23:59:59.000Z

380

Citrus Waste Biomass Program  

SciTech Connect (OSTI)

Renewable Spirits is developing an innovative pilot plant bio-refinery to establish the commercial viability of ehtanol production utilizing a processing waste from citrus juice production. A novel process based on enzymatic hydrolysis of citrus processing waste and fermentation of resulting sugars to ethanol by yeasts was successfully developed in collaboration with a CRADA partner, USDA/ARS Citrus and Subtropical Products Laboratory. The process was also successfully scaled up from laboratory scale to 10,000 gal fermentor level.

Karel Grohman; Scott Stevenson

2007-01-30T23:59:59.000Z

Note: This page contains sample records for the topic "guthrie waste water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Hanford tank residual waste contaminant source terms and release models  

SciTech Connect (OSTI)

Residual waste is expected to be left in 177 underground storage tanks after closure at the U.S. Department of Energys Hanford Site in Washington State (USA). In the long term, the residual wastes represent a potential source of contamination to the subsurface environment. Residual materials that cannot be completely removed during the tank closure process are being studied to identify and characterize the solid phases and estimate the release of contaminants from these solids to water that might enter the closed tanks in the future. As of the end of 2009, residual waste from five tanks has been evaluated. Residual wastes from adjacent tanks C-202 and C-203 have high U concentrations of 24 and 59 wt%, respectively, while residual wastes from nearby tanks C-103 and C-106 have low U concentrations of 0.4 and 0.03 wt%, respectively. Aluminum concentrations are high (8.2 to 29.1 wt%) in some tanks (C-103, C-106, and S-112) and relatively low (<1.5 wt%) in other tanks (C-202 and C-203). Gibbsite is a common mineral in tanks with high Al concentrations, while non-crystalline U-Na-C-O-PH phases are common in the U-rich residual wastes from tanks C-202 and C-203. Iron oxides/hydroxides have been identified in all residual waste samples studied to date. Contaminant release from the residual wastes was studied by conducting batch leach tests using distilled deionized water, a Ca(OH)2-saturated solution, or a CaCO3-saturated water. Uranium release concentrations are highly dependent on waste and leachant compositions with dissolved U concentrations one or two orders of magnitude higher in the tests with high U residual wastes, and also higher when leached with the CaCO3-saturated solution than with the Ca(OH)2-saturated solution. Technetium leachability is not as strongly dependent on the concentration of Tc in the waste, and it appears to be slightly more leachable by the Ca(OH)2-saturated solution than by the CaCO3-saturated solution. In general, Tc is much less leachable (<10 wt% of the available mass in the waste) than previously predicted. This may be due to the coprecipitation of trace concentrations of Tc in relatively insoluble phases such as Fe oxide/hydroxide solids.

Deutsch, William J.; Cantrell, Kirk J.; Krupka, Kenneth M.; Lindberg, Michael J.; Serne, R. Jeffrey

2011-08-23T23:59:59.000Z

382

Independent Activity Report, Hanford Waste Treatment Plant -...  

Broader source: Energy.gov (indexed) [DOE]

Waste Treatment Plant - February 2011 Independent Activity Report, Hanford Waste Treatment Plant - February 2011 February 2011 Hanford Waste Treatment Plant Construction Quality...

383

Rhenium solubility in borosilicate nuclear waste glass  

E-Print Network [OSTI]

Glasses Developed for Nuclear Waste Immobilization," 91[12],solubility in borosilicate nuclear waste glass Ashutoshfor the researchers in nuclear waste community around the

McCloy, John S.

2014-01-01T23:59:59.000Z

384

Enterprise Assessments Operational Awareness Record, Waste Treatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Observation of Waste Treatment and Immobilization Plant High Level Waste Facility Radioactive Liquid Waste Disposal System Hazards Analysis Activities (EA-WTP-HLW-2014-08-18(a))...

385

Municipal Solid Waste | Open Energy Information  

Open Energy Info (EERE)

Waste Jump to: navigation, search TODO: Add description List of Municipal Solid Waste Incentives Retrieved from "http:en.openei.orgwindex.php?titleMunicipalSolidWaste&oldid...

386

Waste Processing Annual Technology Development Report 2007 |...  

Office of Environmental Management (EM)

Waste Processing Annual Technology Development Report 2007 Waste Processing Annual Technology Development Report 2007 Waste Processing Annual Technology Development Report 2007...

387

Pollution Prevention, Waste Reduction, and Recycling | Department...  

Office of Environmental Management (EM)

Pollution Prevention, Waste Reduction, and Recycling Pollution Prevention, Waste Reduction, and Recycling The Pollution Prevention, Waste Reduction and Recycling Program was...

388

Waste Isolation Pilot Plant | Department of Energy  

Office of Environmental Management (EM)

Waste Isolation Pilot Plant Waste Isolation Pilot Plant Operators prepare drums of contact-handled transuranic waste for loading into transportation containers Operators prepare...

389

M-Area hazardous waste management facility groundwater monitoring report -- first quarter 1994. Volume 1  

SciTech Connect (OSTI)

This report describes the groundwater monitoring and corrective action program at the M-Area Hazardous Waste Management Facility (HWMF) at the Savannah River Site (SRS) during first quarter 1994 as required by South Carolina Hazardous Waste Permit SC1-890-008-989 and section 264.100(g) of the South Carolina Hazardous Waste Management Regulations. During first quarter 1994, 42 point-of-compliance (POC) wells at the M-Area HWMF were sampled for drinking water parameters.

Evans, C.S.; Washburn, F.; Jordan, J.; Van Pelt, R.

1994-05-01T23:59:59.000Z

390

Mixed Waste Management Facility FSS Well Data Groundwater Monitoring Report. Fourth Quarter 1994 and 1994 summary  

SciTech Connect (OSTI)

During fourth quarter 1994, ten constituents exceeded final Primary Drinking Water Standards (PDWS) in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility, the Old Burial Ground, the E-Area Vaults, the proposed Hazardous Waste/Mixed Waste Disposal Vaults, and the F-Area Sewage Sludge Application Site. No constituent exceeded final PDWS in samples from the upgradient monitoring wells. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters.

Chase, J.A.

1995-03-01T23:59:59.000Z

391

Siting of low-level radioactive waste disposal facilities in Texas  

E-Print Network [OSTI]

in the proper geologic environment. The object of disposal is to prevent exposure of the public to radioactive waste in potentially harmful concentrations. The most likely route for buried wastes to reach the public is through the ground- water system... disposal site for low- level radioactive waste is predictability, A disposal site should "be capable of being characterized, modeled, analyzed and monitored" ISiefken, et al. , 1982). Simplicity and homogeneity with respect to hydrogeologic conditions...

Isenhower, Daniel Bruce

2012-06-07T23:59:59.000Z

392

Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania)  

Open Energy Info (EERE)

Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on February 13, 2013. EZFeed Policy Place Pennsylvania Name Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) Policy Category Other Policy Policy Type Environmental Regulations Affected Technologies Biomass/Biogas, Coal with CCS, Concentrating Solar Power, Energy Storage, Fuel Cells, Geothermal Electric, Hydroelectric, Hydroelectric (Small), Natural Gas, Nuclear, Solar Photovoltaics, Wind energy Active Policy Yes Implementing Sector State/Province Program Administrator Pennsylvania Department of Environmental Protection

393

SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT  

SciTech Connect (OSTI)

This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

CRAWFORD TW

2008-07-17T23:59:59.000Z

394

Energy from waste via coal/waste co-firing  

SciTech Connect (OSTI)

The paper reviews the feasibility of waste-to-energy plants using the cocombustion of coal with refuse-derived fuels. The paper discusses the types of wastes available: municipal solid wastes, plastics, tires, biomass, and specialized industrial wastes, such as waste oils, post-consumer carpet, auto shredder residues, and petroleum coke. The five most common combustion systems used in co-firing are briefly described. They are the stoker boiler, suspension-fired boilers, cyclone furnaces, fluidized bed boilers, and cement kilns. The paper also discusses the economic incentives for generating electricity from waste.

Winslow, J.; Ekmann, J.; Smouse, S. [Dept. of Energy, Pittsburgh, PA (United States). Pittsburgh Energy Technology Center; Ramezan, M. [Burns and Roe Services Corp., Pittsburgh, PA (United States); Harding, S.

1996-12-31T23:59:59.000Z

395

Solid Waste and Infectious Waste Regulations (Ohio) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

and Infectious Waste Regulations (Ohio) and Infectious Waste Regulations (Ohio) Solid Waste and Infectious Waste Regulations (Ohio) < Back Eligibility Utility Agricultural Investor-Owned Utility Industrial Municipal/Public Utility Local Government Rural Electric Cooperative Program Info State Ohio Program Type Environmental Regulations Provider Ohio Environmental Protection Agency This chapter of the law that establishes the Ohio Environmental Protection Agency establishes the rules and regulations regarding solid waste. The chapter establishes specific regulations for biomass facilities, which includes permitting, siting, operation, safety guidelines, and closing requirements. Siting regulations include setbacks from waste handling areas for state facilities (1000 feet from jails, schools), requirements for not siting

396

Water Efficiency  

Energy Savers [EERE]

Wheeler - Water Savers, LLC * fwheeler@watersaversllc.com Topics * Performance contracting analysis * Water industry terms * Federal reduction goals * Water balance * Water...

397

LANL reaches waste shipment milestone  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LANL reaches waste shipment milestone LANL reaches waste shipment milestone LANL reaches waste shipment milestone The Lab surpassed 100,000 plutonium-equivalent curies of TRU waste shipped to WIPP, about one-third of the Lab's total. May 31, 2011 A shipment of transuranic waste on its way to the WIPP repository A shipment of transuranic waste on its way to the WIPP repository. Contact Fred deSousa Communicatons Office (505) 665-3430 Email LOS ALAMOS, New Mexico, May 31, 2011 - Los Alamos National Laboratory has reached an important milestone in its campaign to ship transuranic (TRU) waste from Cold War-era nuclear operations to the U.S. Department of Energy's Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. This month, the Lab surpassed 100,000 plutonium-equivalent curies of TRU waste shipped to WIPP, about one-third of the Lab's total.

398

The largest radioactive waste glassification  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

largest radioactive waste glassification largest radioactive waste glassification plant in the nation, the Defense Waste Processing Facility (DWPF) converts the liquid nuclear waste currently stored at the Savannah River Site (SRS) into a solid glass form suitable for long-term storage and disposal. Scientists have long considered this glassification process, called "vitrification," as the preferred option for treating liquid nuclear waste. By immobilizing the radioactivity in glass, the DWPF reduces the risks associated with the continued storage of liquid nuclear waste at SRS and prepares the waste for final disposal in a federal repository. About 38 million gallons of liquid nuclear wastes are now stored in 49 underground carbon-steel tanks at SRS. This waste has about 300 million curies of radioactivity, of which the vast majority

399

Waste Treatment Plant - 12508  

SciTech Connect (OSTI)

The Waste Treatment Plant (WTP) will immobilize millions of gallons of Hanford's tank waste into solid glass using a proven technology called vitrification. The vitrification process will turn the waste into a stable glass form that is safe for long-term storage. Our discussion of the WTP will include a description of the ongoing design and construction of this large, complex, first-of-a-kind project. The concept for the operation of the WTP is to separate high-level and low-activity waste fractions, and immobilize those fractions in glass using vitrification. The WTP includes four major nuclear facilities and various support facilities. Waste from the Tank Farms is first pumped to the Pretreatment Facility at the WTP through an underground pipe-in-pipe system. When construction is complete, the Pretreatment Facility will be 12 stories high, 540 feet long and 215 feet wide, making it the largest of the four major nuclear facilities that compose the WTP. The total size of this facility will be more than 490,000 square feet. More than 8.2 million craft hours are required to construct this facility. Currently, the Pretreatment Facility is 51 percent complete. At the Pretreatment Facility the waste is pumped to the interior waste feed receipt vessels. Each of these four vessels is 55-feet tall and has a 375,000 gallon capacity, which makes them the largest vessels inside the Pretreatment Facility. These vessels contain a series of internal pulse-jet mixers to keep incoming waste properly mixed. The vessels are inside the black-cell areas, completely enclosed behind thick steel-laced, high strength concrete walls. The black cells are designed to be maintenance free with no moving parts. Once hot operations commence the black-cell area will be inaccessible. Surrounded by black cells, is the 'hot cell canyon'. The hot cell contains all the moving and replaceable components to remove solids and extract liquids. In this area, there is ultrafiltration equipment, cesium-ion exchange columns, evaporator boilers and recirculation pumps, and various mechanical process pumps for transferring process fluids. During the first phase of pretreatment, the waste will be concentrated using an evaporation process. Solids will be filtered out, and the remaining soluble, highly radioactive isotopes will be removed using an ion-exchange process. The high-level solids will be sent to the High-Level Waste (HLW) Vitrification Facility, and the low activity liquids will be sent to the Low-Activity Waste (LAW) Vitrification Facility for further processing. The high-level waste will be transferred via underground pipes to the HLW Facility from the Pretreatment Facility. The waste first arrives at the wet cell, which rests inside a black-cell area. The pretreated waste is transferred through shielded pipes into a series of melter preparation and feed vessels before reaching the melters. Liquids from various facility processes also return to the wet cell for interim storage before recycling back to the Pretreatment Facility. (authors)

Harp, Benton; Olds, Erik [US DOE (United States)

2012-07-01T23:59:59.000Z

400

Mixed waste characterization reference document  

SciTech Connect (OSTI)

Waste characterization and monitoring are major activities in the management of waste from generation through storage and treatment to disposal. Adequate waste characterization is necessary to ensure safe storage, selection of appropriate and effective treatment, and adherence to disposal standards. For some wastes characterization objectives can be difficult and costly to achieve. The purpose of this document is to evaluate costs of characterizing one such waste type, mixed (hazardous and radioactive) waste. For the purpose of this document, waste characterization includes treatment system monitoring, where monitoring is a supplement or substitute for waste characterization. This document establishes a cost baseline for mixed waste characterization and treatment system monitoring requirements from which to evaluate alternatives. The cost baseline established as part of this work includes costs for a thermal treatment technology (i.e., a rotary kiln incinerator), a nonthermal treatment process (i.e., waste sorting, macronencapsulation, and catalytic wet oxidation), and no treatment (i.e., disposal of waste at the Waste Isolation Pilot Plant (WIPP)). The analysis of improvement over the baseline includes assessment of promising areas for technology development in front-end waste characterization, process equipment, off gas controls, and monitoring. Based on this assessment, an ideal characterization and monitoring configuration is described that minimizes costs and optimizes resources required for waste characterization.

NONE

1997-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "guthrie waste water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Hazardous Waste/Mixed Waste Treatment Building throughput study  

SciTech Connect (OSTI)

The hazardous waste/mixed waste HW/MW Treatment Building (TB) is the specified treatment location for solid hazardous waste/mixed waste at SRS. This report provides throughput information on the facility based on known and projected waste generation rates. The HW/MW TB will have an annual waste input for the first four years of approximately 38,000 ft{sup 3} and have an annual treated waste output of approximately 50,000 ft{sup 3}. After the first four years of operation it will have an annual waste input of approximately 16,000 ft{sup 3} and an annual waste output of approximately 18,000 ft. There are several waste streams that cannot be accurately predicted (e.g. environmental restoration, decommissioning, and decontamination). The equipment and process area sizing for the initial four years should allow excess processing capability for these poorly defined waste streams. A treatment process description and process flow of the waste is included to aid in understanding the computations of the throughput. A description of the treated wastes is also included.

England, J.L.; Kanzleiter, J.P.

1991-12-18T23:59:59.000Z

402

Swimming in Issues: A Guide to Dealing with Chinas Water Problems  

E-Print Network [OSTI]

, and industrial growth. · Calculate projected waste produced using previously estimated water needs as water for domestic, agricultural, and industrial water use. We used Matlab to analyse data and produce plots. 2Swimming in Issues: A Guide to Dealing with Chinas Water Problems Water, Water, Everywhere February

Morrow, James A.

403

In situ vitrification: application analysis for stabilization of transuranic waste  

SciTech Connect (OSTI)

The in situ vitrification process builds upon the electric melter technology previously developed for high-level waste immobilization. In situ vitrification converts buried wastes and contaminated soil to an extremely durable glass and crystalline waste form by melting the materials, in place, using joule heating. Once the waste materials have been solidified, the high integrity waste form should not cause future ground subsidence. Environmental transport of the waste due to water or wind erosion, and plant or animal intrusion, is minimized. Environmental studies are currently being conducted to determine whether additional stabilization is required for certain in-ground transuranic waste sites. An applications analysis has been performed to identify several in situ vitrification process limitations which may exist at transuranic waste sites. Based on the process limit analysis, in situ vitrification is well suited for solidification of most in-ground transuranic wastes. The process is best suited for liquid disposal sites. A site-specific performance analysis, based on safety, health, environmental, and economic assessments, will be required to determine for which sites in situ vitrification is an acceptable disposal technique. Process economics of in situ vitrification compare favorably with other in-situ solidification processes and are an order of magnitude less than the costs for exhumation and disposal in a repository. Leachability of the vitrified product compares closely with that of Pyrex glass and is significantly better than granite, marble, or bottle glass. Total release to the environment from a vitrified waste site is estimated to be less than 10/sup -5/ parts per year. 32 figures, 30 tables.

Oma, K.H.; Farnsworth, R.K.; Rusin, J.M.

1982-09-01T23:59:59.000Z

404

Waste generator services implementation plan  

SciTech Connect (OSTI)

Recurring waste management noncompliance problems have spurred a fundamental site-wide process revision to characterize and disposition wastes at the Idaho National Engineering and Environmental Laboratory. The reengineered method, termed Waste Generator Services, will streamline the waste acceptance process and provide waste generators comprehensive waste management services through a single, accountable organization to manage and disposition wastes in a timely, cost-effective, and compliant manner. This report outlines the strategy for implementing Waste Generator Services across the INEEL. It documents the culmination of efforts worked by the LMITCO Environmental Management Compliance Reengineering project team since October 1997. These efforts have included defining problems associated with the INEEL waste management process; identifying commercial best management practices; completing a review of DOE Complex-wide waste management training requirements; and involving others through an Integrated Process Team approach to provide recommendations on process flow, funding/charging mechanisms, and WGS organization. The report defines the work that will be performed by Waste Generator Services, the organization and resources, the waste acceptance process flow, the funding approach, methods for measuring performance, and the implementation schedule and approach. Field deployment will occur first at the Idaho Chemical Processing Plant in June 1998. Beginning in Fiscal Year 1999, Waste Generator Services will be deployed at the other major INEEL facilities in a phased approach, with implementation completed by March 1999.

Mousseau, J.; Magleby, M.; Litus, M.

1998-04-01T23:59:59.000Z

405

Los Alamos low-level waste performance assessment status  

SciTech Connect (OSTI)

This report reviews the documented Los Alamos studies done to assess the containment of buried hazardous wastes. Five sections logically present the environmental studies, operational source terms, transport pathways, environmental dosimetry, and computer model development and use. This review gives a general picture of the Los Alamos solid waste disposal and liquid effluent sites and is intended for technical readers with waste management and environmental science backgrounds but without a detailed familiarization with Los Alamos. The review begins with a wide perspective on environmental studies at Los Alamos. Hydrology, geology, and meteorology are described for the site and region. The ongoing Laboratory-wide environmental surveillance and waste management environmental studies are presented. The next section describes the waste disposal sites and summarizes the current source terms for these sites. Hazardous chemical wastes and liquid effluents are also addressed by describing the sites and canyons that are impacted. The review then focuses on the transport pathways addressed mainly in reports by Healy and Formerly Utilized Sites Remedial Action Program. Once the source terms and potential transport pathways are described, the dose assessment methods are addressed. Three major studies, the waste alternatives, Hansen and Rogers, and the Pantex Environmental Impact Statement, contributed to the current Los Alamos dose assessment methodology. Finally, the current Los Alamos groundwater, surface water, and environmental assessment models for these mesa top and canyon sites are described.

Wenzel, W.J.; Purtymun, W.D.; Dewart, J.M.; Rodgers, J.E. (comps.)

1986-06-01T23:59:59.000Z

406

Simulation of energy use in residential water heating systems Carolyn Dianarose Schneyer  

E-Print Network [OSTI]

such as solar-assisted pre-heat and waste water heat recovery components. A total of 7,488 six- day simulations

Victoria, University of

407

Transuranic Waste Tabletop  

Broader source: Energy.gov (indexed) [DOE]

Transuranic (TRU) Waste Transuranic (TRU) Waste (Hazard Class 7 Radioactive) Moderator's Version of Tabletop Prepared for the Department of Energy Office of Transportation and Emergency Management 02B00215-07D.p65 This page intentionally left blank table of contents Transportation Emergency Preparedness Program (TEPP) planning tools planning tools planning tools planning tools T T T T Tr r r r ransur ansur ansur ansur ansuranic (TRU) W anic (TRU) W anic (TRU) W anic (TRU) W anic (TRU) Waste aste aste aste aste (Hazar (Hazar (Hazar (Hazar (Hazard Class 7 Radio d Class 7 Radio d Class 7 Radio d Class 7 Radio d Class 7 Radioactiv activ activ activ active) e) e) e) e) Moder Moder Moder Moder Moderat at at at ator' or' or' or' or's V s V s V s V s Version of T ersion of T ersion of T ersion of T ersion of Tablet ablet ablet ablet abletop

408

Pioneering Nuclear Waste Disposal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 3 T he journey to the WIPP began nearly 60 years before the first barrels of transuranic waste arrived at the repository. The United States produced the world's first sig- nificant quantities of transuranic material during the Manhattan Project of World War II in the early 1940s. The government idled its plutonium- producing reactors and warhead manu- facturing plants at the end of the Cold War and scheduled most of them for dismantlement. However, the DOE will generate more transuranic waste as it cleans up these former nuclear weapons facilities. The WIPP is a cor- nerstone of the effort to clean up these facilities by providing a safe repository to isolate transuranic waste in disposal rooms mined out of ancient salt beds, located 2,150 feet below ground. The need for the WIPP

409

Cutting Wasteful Spending While Protecting Our Priorities | Department of  

Broader source: Energy.gov (indexed) [DOE]

Cutting Wasteful Spending While Protecting Our Priorities Cutting Wasteful Spending While Protecting Our Priorities Cutting Wasteful Spending While Protecting Our Priorities June 28, 2013 - 4:06pm Addthis Aoife McCarthy Press Secretary, Office of Public Affairs It is essential for Republicans and Democrats in Congress to work together on a budget that cuts wasteful spending while supporting jobs, the economy, and middle-class families. The President has been clear that he will not sign individual appropriations bills that simply attempt to enact the House Republican budget into law, which would hurt our economy and make draconian cuts to middle class priorities. Instead of reinforcing the Administration's all-of-the-above approach to energy, the House Republican Energy and Water Appropriations bill drastically undermines the work of the Department of Energy. It undermines

410

NETL: News Release - Converting Coal Wastes to Clean Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

November 28, 2000 November 28, 2000 Converting Coal Wastes to Clean Energy DOE to Scale Up 3 Projects That Upgrade Coal Fines, Wastes PITTSBURGH, PA - Three new technologies that can help the nation's coal industry turn waste into energy are now ready for scale up, the U.S. Department of Energy said today. MORE INFO Solid Fuels & Feedstocks Program Each of the three recover carbon-rich materials that in the past have been discarded during coal mining and cleaning operations. Using innovative approaches, the technologies remove unwanted water and other impurities and upgrade the waste materials into clean-burning fuels for power plants. The three were first selected for smaller-scale research in August 1998 as part of the Energy Department's Fossil Energy "solid fuels and feedstocks"

411

Organic tanks safety program FY96 waste aging studies  

SciTech Connect (OSTI)

Uranium and plutonium production at the Hanford Site produced large quantities of radioactive by-products and contaminated process chemicals, which are stored in underground tanks awaiting treatment and disposal. Having been made strongly alkaline and then subjected to successive water evaporation campaigns to increase storage capacity, the wastes now exist in the physical forms of salt cakes, metal oxide sludges, and partially saturated aqueous brine solutions. The tanks that contain organic process chemicals mixed with nitrate/nitrite salt wastes may be at risk for fuel- nitrate combustion accidents. The purpose of the Waste Aging Task is to elucidate how chemical and radiological processes will have aged or degraded the organic compounds stored in the tanks. Ultimately, the task seeks to develop quantitative measures of how aging changes the energetic properties of the wastes. This information will directly support efforts to evaluate the hazard as well as to develop potential control and mitigation strategies.

Camaioni, D.M.; Samuels, W.D.; Linehan, J.C.; Clauss, S.A.; Sharma, A.K.; Wahl, K.L.; Campbell, J.A.

1996-10-01T23:59:59.000Z

412

FROM WASTE TO WORTH: THE ROLE OF WASTE DIVERSION IN  

E-Print Network [OSTI]

;Canadian Energy-From-Waste Coalition (CEFWC) 1 There is considerable merit to the ideas outlined commitment to foster a green and sustainable economy. The Canadian Energy-From-Waste Coalition (CEFWC sign that the system is failing. #12;Canadian Energy-From-Waste Coalition (CEFWC) 2 Like you, the CEFWC

Columbia University

413

Waste IncIneratIon and Waste PreventIon  

E-Print Network [OSTI]

disposing of waste, it also makes consider- able amounts of energy available in the form of electricity emissions annu- ally. About 50 percent of the energy contained in residual municipal waste comes from- sions from the fossil waste fraction and the fos- sil energy purchased from external sources

414

Utilizing Animal Waste Amendments to Impaired Rangeland Soils to Reduce Runoff  

E-Print Network [OSTI]

Composted biological wastes contain vital plant nutrients that assist in plant growth as well as contain organic matter that promotes good soil conditions; both aid in rangeland restoration. Most importantly, it has the potential to restore water...

Thomas, Diana M.

2011-08-08T23:59:59.000Z

415

Gasification characteristics of combustible wastes in a 5 ton/day fixed bed gasifier  

Science Journals Connector (OSTI)

The gasification characteristics of combustible wastes were determined in ... To capture soot or unburned carbon from the gasification reaction, solid/gas separator and water fluidized...2: 10.7%, CH4: 6.0%, CO2:...

See Hoon Lee; Kyong Bin Choi; Jae Goo Lee

2006-07-01T23:59:59.000Z

416

Mixed Waste Management Facility Groundwater Monitoring Report, Fourth Quarter 1998 and 1998 Summary  

SciTech Connect (OSTI)

During fourth quarter 1998, ten constituents exceeded final Primary Drinking Water Standards (PDWS) in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility. No constituents exceeded final PDWS in samples from the upgradient monitoring wells.

Chase, J.

1999-04-29T23:59:59.000Z

417

Trench Bathtubbing and Surface Plutonium Contamination at a Legacy Radioactive Waste Site  

Science Journals Connector (OSTI)

Radioactive waste containing a few grams of plutonium (Pu) was disposed between 1960 and 1968 in trenches at the Little Forest Burial Ground (LFBG), near Sydney, Australia. A water sampling point installed in a former trench has enabled the radionuclide ...

Timothy E. Payne; Jennifer J. Harrison; Catherine E. Hughes; Mathew P. Johansen; Sangeeth Thiruvoth; Kerry L. Wilsher; Dioni I. Cendn; Stuart I. Hankin; Brett Rowling; Atun Zawadzki

2013-11-20T23:59:59.000Z

418

Application of Specialized Optimization Techniques in Water Quantity and Quality Management with Respect to Planning for the Trinity River Basi  

E-Print Network [OSTI]

for the disposal of wastes. Thus, there is a clear interaction between quantity and quality of water. However, largely due to the agency structure in state and federal government, water quality management and water development activities are usually separated...

Meier Jr., W. L.; Shih, C. S.

419

Skutterudite Thermoelectric Generator For Automotive Waste Heat...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite TE modules were...

420

Waste Heat Recovery Opportunities for Thermoelectric Generators...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat Recovery Opportunities for Thermoelectric Generators Waste Heat Recovery Opportunities for Thermoelectric Generators Thermoelectrics have unique advantages for...

Note: This page contains sample records for the topic "guthrie waste water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

High-Level Waste Requirements  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The guide provides the criteria for determining which DOE radioactive wastes are to be managed as high-level waste in accordance with DOE M 435.1-1.

1999-07-09T23:59:59.000Z

422

Pathology waste includes: Transgenic animals.  

E-Print Network [OSTI]

resistant, have tight fitting covers, be clean, and in good repair. · Pathology waste must be transferred via the Internet: · Visit www.ehs.uci.edu/programs/enviro/. · Fill out the "Biomedical Waste

George, Steven C.

423

Waste Management Coordinating Lead Authors  

E-Print Network [OSTI]

-use and recycling ..............602 10.4.6 Wastewater and sludge treatment.....................602 10.4.7 Waste ............................................591 10.2.2 Wastewater generation ....................................592 10.2.3 Development trends for waste and ......................... wastewater ......................................................593

Columbia University

424

Leaching of Nuclear Waste Glasses  

Science Journals Connector (OSTI)

Resistance to aqueous corrosion is the most important requirement of glasses designed to immobilize high level radioactive wastes. Obtaining a highly durable nuclear waste glass is complicated by the requirement ...

L. L. Hench

1985-01-01T23:59:59.000Z

425

The Discovery of Nuclear Waste  

Science Journals Connector (OSTI)

When did man discover nuclear waste? To answer this question, we first have to ask if nuclear waste really is something that could be called ... Prize in physics. In early writings within nuclear energy research ...

Gran Sundqvist

2002-01-01T23:59:59.000Z

426

Nuclear Waste Disposal Plan Drafted  

Science Journals Connector (OSTI)

Nuclear Waste Disposal Plan Drafted ... Of all the issues haunting nuclear power plants, that of disposing of the radioactive wastes and spent nuclear fuel they generate has been the most vexing. ...

1984-01-09T23:59:59.000Z

427

Hydrothermal Processing of Wet Wastes  

Broader source: Energy.gov [DOE]

Breakout Session 3AConversion Technologies III: Energy from Our WasteWill we Be Rich in Fuel or Knee Deep in Trash by 2025? Hydrothermal Processing of Wet Wastes James R. Oyler, President, Genifuel Corporation

428

Zero Waste, Renewable Energy & Environmental  

E-Print Network [OSTI]

· Dioxins & Furans · The `State of Waste' in the US · WTE Technologies · Thermal Recycling ­ Turnkey dangerous wastes in the form of gases and ash, often creating entirely new hazards, like dioxins and furans

Columbia University

429

Delaware Solid Waste Authority (Delaware)  

Broader source: Energy.gov [DOE]

The Delaware Solid Waste Authority (DSWA) runs three landfills, all of which recover methane and generate electricity with a total capacity of 24 MWs. The DSWA Solid Waste Plan includes goals,...

430

Explosive Waste Treatment Facility  

Broader source: Energy.gov (indexed) [DOE]

106 106 Environment a 1 Assessment for th.e Explosive Waste Treatment Facility at Site 300 Lawrence Livermore National Laboratory MASTER November 1995 U.S. Department of Energy Office of Environmental Restoration and Waste Management Washington, DOC. 20585 Portions of this document maly be illegible in electronic image products. Images are produced from the best available original document. Table of Contents 1 . 0 2.0 3 . 0 4.0 5 . 0 6.0 7 . 0 8 . 0 Document Summary .............................................................. 1 Purpose and Need for Agency Action ............................................. 3 Description of the Proposed Action and Alternatives ............................ 4 3.1.1 Location ............................................................. 4

431

Waste Isolation Pilot Plant  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Waste Isolation Pilot Plant Waste Isolation Pilot Plant AFFIDAVIT FOR SURVIVING RELATIVE STATE _______________ ) ) ss: __________________ COUNTY OF _____________ ) That I, ________________________, am the _________________________ (Indicate relationship) of ___________________________, who is deceased and make the attached request pursuant to 10 CFR, Section 1008. That the information contained on the attached request is true and correct to the best of my knowledge and belief, and I am signing this authorization subject to the penalties provided in 18 U.S.C. 1001. ____________________________ SIGNATURE NOTARIZATION: SUBSCRIBED and SWORN to before me this ______day of __________, 20_____

432

Converter waste disposal study  

SciTech Connect (OSTI)

The importance of waste management and disposal issues to the converting and print industries is demonstrated by the high response rate to a survey of US and Canadian converters and printers. The 30-item questionnaire measured the impact of reuse, recycling, source reduction, incineration, and landfilling on incoming raw-material packaging, process scrap, and waste inks, coatings, and adhesives. The results indicate that significant amounts of incoming packaging materials are reused in-house or through supplier take-back programs. However, there is very little reuse of excess raw materials and process scrap, suggesting the need for greater source reduction within these facilities as the regulatory climate becomes increasingly restrictive.

Schultz, R.B. (RBS Technologies, Inc., Skokie, IL (United States))

1993-07-01T23:59:59.000Z

433

Waste treatment process for removal of contaminants from aqueous, mixed-waste solutions using sequential chemical treatment and crossflow microfiltration, followed by dewatering  

DOE Patents [OSTI]

In processes of this invention aqueous waste solutions containing a variety of mixed waste contaminants are treated to remove the contaminants by a sequential addition of chemicals and adsorption/ion exchange powdered materials to remove the contaminants including lead, cadmium, uranium, cesium-137, strontium-85/90, trichloroethylene and benzene, and impurities including iron and calcium. Staged conditioning of the waste solution produces a polydisperse system of size enlarged complexes of the contaminants in three distinct configurations: water-soluble metal complexes, insoluble metal precipitation complexes, and contaminant-bearing particles of ion exchange and adsorbent materials. The volume of the waste is reduced by separation of the polydisperse system by cross-flow microfiltration, followed by low-temperature evaporation and/or filter pressing. The water produced as filtrate is discharged if it meets a specified target water quality, or else the filtrate is recycled until the target is achieved. 1 fig.

Vijayan, S.; Wong, C.F.; Buckley, L.P.

1994-11-22T23:59:59.000Z

434

Waste treatment process for removal of contaminants from aqueous, mixed-waste solutions using sequential chemical treatment and crossflow microfiltration, followed by dewatering  

DOE Patents [OSTI]

In processes of this invention aqueous waste solutions containing a variety of mixed waste contaminants are treated to remove the contaminants by a sequential addition of chemicals and adsorption/ion exchange powdered materials to remove the contaminants including lead, cadmium, uranium, cesium-137, strontium-85/90, trichloroethylene and benzene, and impurities including iron and calcium. Staged conditioning of the waste solution produces a polydisperse system of size enlarged complexes of the contaminants in three distinct configurations: water-soluble metal complexes, insoluble metal precipitation complexes, and contaminant-bearing particles of ion exchange and adsorbent materials. The volume of the waste is reduced by separation of the polydisperse system by cross-flow microfiltration, followed by low-temperature evaporation and/or filter pressing. The water produced as filtrate is discharged if it meets a specified target water quality, or else the filtrate is recycled until the target is achieved.

Vijayan, Sivaraman (Deep River, CA); Wong, Chi F. (Pembroke, CA); Buckley, Leo P. (Deep River, CA)

1994-01-01T23:59:59.000Z

435

Radioactive Waste Management Complex performance assessment: Draft  

SciTech Connect (OSTI)

A radiological performance assessment of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory was conducted to demonstrate compliance with appropriate radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the general public. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the general public via air, ground water, and food chain pathways. Projections of doses were made for both offsite receptors and individuals intruding onto the site after closure. In addition, uncertainty analyses were performed. Results of calculations made using nominal data indicate that the radiological doses will be below appropriate radiological criteria throughout operations and after closure of the facility. Recommendations were made for future performance assessment calculations.

Case, M.J.; Maheras, S.J.; McKenzie-Carter, M.A.; Sussman, M.E.; Voilleque, P.

1990-06-01T23:59:59.000Z

436

Purge water management system  

DOE Patents [OSTI]

A purge water management system is described for effectively eliminating the production of purge water when obtaining a groundwater sample from a monitoring well. In its preferred embodiment, the purge water management system comprises an expandable container, a transportation system, and a return system. The purge water management system is connected to a wellhead sampling configuration, typically permanently installed at the well site. A pump, positioned with the monitoring well, pumps groundwater through the transportation system into the expandable container, which expands in direct proportion with volume of groundwater introduced, usually three or four well volumes, yet prevents the groundwater from coming into contact with the oxygen in the air. After this quantity of groundwater has been removed from the well, a sample is taken from a sampling port, after which the groundwater in the expandable container can be returned to the monitoring well through the return system. The purge water management system prevents the purge water from coming in contact with the outside environment, especially oxygen, which might cause the constituents of the groundwater to oxidize. Therefore, by introducing the purge water back into the monitoring well, the necessity of dealing with the purge water as a hazardous waste under the Resource Conservation and Recovery Act is eliminated.

Cardoso-Neto, J.E.; Williams, D.W.

1995-01-01T23:59:59.000Z

437

Identification of major rock-water interactions on either side of a hydrologic barrier in the Wanapum Formation, Washington  

E-Print Network [OSTI]

-level radioactive waste storage facility prompted intensive research into the geology, hydrogeology, and ground-water chemistry of the basalt aquifers. The Basalt Waste Isolation Project (BWIP) was undertaken to investigate the suitability of a deep basalt flow...-level radioactive waste storage facility prompted intensive research into the geology, hydrogeology, and ground-water chemistry of the basalt aquifers. The Basalt Waste Isolation Project (BWIP) was undertaken to investigate the suitability of a deep basalt flow...

Dean, Warren Theodore

2012-06-07T23:59:59.000Z

438

Investigation-Derived Waste Management Plan. Revision 2  

SciTech Connect (OSTI)

SRS has implemented a comprehensive environmental program to maintain compliance with environmental regulations and mitigate impacts to the environment. One element of the environmental program is the investigation of inactive waste units. Environmental Investigation-Derived Waste (IDW). IDW may include purge water , soil cuttings, drilling fluids, well pumping test and development water, decontamination solutions, contaminated equipment, and personal protection equipment (PPE). In cases where investigations confirm the presence of contamination and the IDW contains waste constituents in concentrations high enough to be of environmental or health concern, special management procedures are warranted. This IDW Management Plan describes specific SRS initiatives for IDW management. The goal is the development of a plan for prudent management of IDW from environmental investigations that is protective of human health and the environment.

Molen, G.

1995-05-24T23:59:59.000Z

439

Mixed Waste Management Facility groundwater monitoring report, First quarter 1994  

SciTech Connect (OSTI)

During first quarter 1994, nine constituents exceeded final Primary Drinking Water Standards in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility, the Old Burial Ground, the E-Area Vaults, the proposed Hazardous Waste/Mixed Waste Disposal Vaults, and the F-Area Sewage Sludge Application Site. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents. Chloroethene (vinyl chloride), copper, 1,1-dichloroethylene, lead, mercury, nonvolatile beta, or tetrachloroethylene also exceeded standards in one or more wells. Elevated constituents were found in numerous Aquifer Zone IIB{sub 2} (Water Table) and Aquifer Zone IIB{sub 1}, (Barnwell/McBean) wells and in one Aquifer Unit IIA (Congaree) well. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters.

Not Available

1994-06-01T23:59:59.000Z

440

WORLDWIDE FOCUS ON NUCLEAR WASTE  

Science Journals Connector (OSTI)

WORLDWIDE FOCUS ON NUCLEAR WASTE ... Volume grows and years pile up, but world lacks consensus on disposing of nuclear waste ... WHAT TO DO WITH SPENT nuclear fuel and high-level radioactive waste is a problem shared by much of the world. ...

JEFF JOHNSON

2001-06-18T23:59:59.000Z

Note: This page contains sample records for the topic "guthrie waste water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

RETHINKING WASTE, RECYCLING, AND HOUSEKEEPING  

E-Print Network [OSTI]

RETHINKING WASTE, RECYCLING, AND HOUSEKEEPING EFFICIENCY.EFFICIENCY. A l GA leaner Green #12 t R li Management Recycling Staff The Office of Waste Reduction & Recycling started in The Office of Waste Reduction & Recycling started in 1990, we have 14 full time staff positions. ·We collect over 40

Howitt, Ivan

442

Mixed Waste Working Group report  

SciTech Connect (OSTI)

The treatment of mixed waste remains one of this country`s most vexing environmental problems. Mixed waste is the combination of radioactive waste and hazardous waste, as defined by the Resource Conservation and Recovery Act (RCRA). The Department of Energy (DOE), as the country`s largest mixed waste generator, responsible for 95 percent of the Nation`s mixed waste volume, is now required to address a strict set of milestones under the Federal Facility Compliance Act of 1992. DOE`s earlier failure to adequately address the storage and treatment issues associated with mixed waste has led to a significant backlog of temporarily stored waste, significant quantities of buried waste, limited permanent disposal options, and inadequate treatment solutions. Between May and November of 1993, the Mixed Waste Working Group brought together stakeholders from around the Nation. Scientists, citizens, entrepreneurs, and bureaucrats convened in a series of forums to chart a course for accelerated testing of innovative mixed waste technologies. For the first time, a wide range of stakeholders were asked to examine new technologies that, if given the chance to be tested and evaluated, offer the prospect for better, safer, cheaper, and faster solutions to the mixed waste problem. In a matter of months, the Working Group has managed to bridge a gap between science and perception, engineer and citizen, and has developed a shared program for testing new technologies.

Not Available

1993-11-09T23:59:59.000Z

443

Waste-to-Energy Workshop  

Broader source: Energy.gov [DOE]

The Waste to Energy Roadmapping Workshop was held on November 5, 2014, in Arlington, Virginia. This workshop gathered waste-to-energy experts to identify the key technical barriers to the commercial deployment of liquid transportation fuels from wet waste feedstocks.

444

Super recycled water: quenching January 30, 2014  

E-Print Network [OSTI]

purifying" wastewater, plus recycling waste to replace concrete We know water is a precious resource. Currently, we're recycling about 300,000 gallons of industrial wastewater daily at the Sanitary Effluent- 1 - Super recycled water: quenching computers January 30, 2014 Conserving, recycling and "super

445

Feasibility Study Using a Solar Evaporator to Reduce the Metalworking Fluid (MWF) Waste Stream  

SciTech Connect (OSTI)

A solar evaporator was designed, built, and operated to reduce the water-based metalworking fluid waste stream. The evaporator was setup in Waste Managements barrel lot inside one of the confinement areas. The unit processed three batches of waste fluid during the prototype testing. Initial tests removed 13% of the fluid waste stream. Subsequent modifications to the collector improved the rate to almost 20% per week. Evaluation of the risk during operation showed that even a small spill when associated with precipitation, and the unit placement within a confinement area, gave it the potential to contaminate more fluid that what it could save.

Lazarus, Lloyd

2008-12-03T23:59:59.000Z

446

Disposal of Nuclear Wastes  

Science Journals Connector (OSTI)

...generated between now and A.D. 2000 is about 0.04 km3 (0.01...high-level wastes do not be-come a public hazard. The AEC adopts this...pre-sented at the 66th national meeting of the American Institute of...ARH-SA-41 (Atlantic Richfield Hanford Co., Richland, Washington...

Arthur S. Kubo; David J. Rose

1973-12-21T23:59:59.000Z

447

Radioactive Waste Management  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The objective of this Order is to ensure that all Department of Energy (DOE) radioactive waste is managed in a manner that is protective of worker and public health and safety and the environment. Cancels DOE O 5820.2A

1999-07-09T23:59:59.000Z

448

D11 WASTE DISPOSAL FACILITIES FOR TRANSURANIC WASTE  

Broader source: Energy.gov (indexed) [DOE]

10 CFR Ch. X (1-1-12 Edition) Pt. 1022 D11 WASTE DISPOSAL FACILITIES FOR TRANSURANIC WASTE Siting, construction or expansion, and op- eration of disposal facilities for transuranic (TRU) waste and TRU mixed waste (TRU waste also containing hazardous waste as designated in 40 CFR part 261). D12 INCINERATORS Siting, construction, and operation of in- cinerators, other than research and develop- ment incinerators or incinerators for non- hazardous solid waste (as designated in 40 CFR 261.4(b)). PART 1022-COMPLIANCE WITH FLOODPLAIN AND WETLAND EN- VIRONMENTAL REVIEW REQUIRE- MENTS Subpart A-General Sec. 1022.1 Background. 1022.2 Purpose and scope. 1022.3 Policy. 1022.4 Definitions. 1022.5 Applicability. 1022.6 Public inquiries. Subpart B-Procedures for Floodplain and

449

WIPP TRANSURANIC WASTE How has the WIPP TRU Waste Inventory Changed  

E-Print Network [OSTI]

of tank waste from the Hanford site that is currently managed as high-level waste. None of this waste has that these Hanford tank wastes will be treated and will eventually be able to meet the WIPP waste acceptance criteria on the Hanford Tank Waste and K-Basin Sludges that were included in the waste inventory for recertifica- tion

450

Hanford Tank Waste - Near Source Treatment of Low Activity Waste  

SciTech Connect (OSTI)

Treatment and disposition of Hanford Site waste as currently planned consists of I 00+ waste retrievals, waste delivery through up to 8+ miles of dedicated, in-ground piping, centralized mixing and blending operations- all leading to pre-treatment combination and separation processes followed by vitrification at the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The sequential nature of Tank Farm and WTP operations requires nominally 15-20 years of continuous operations before all waste can be retrieved from many Single Shell Tanks (SSTs). Also, the infrastructure necessary to mobilize and deliver the waste requires significant investment beyond that required for the WTP. Treating waste as closely as possible to individual tanks or groups- as allowed by the waste characteristics- is being investigated to determine the potential to 1) defer, reduce, and/or eliminate infrastructure requirements, and 2) significantly mitigate project risk by reducing the potential and impact of single point failures. The inventory of Hanford waste slated for processing and disposition as LAW is currently managed as high-level waste (HLW), i.e., the separation of fission products and other radionuclides has not commenced. A significant inventory ofthis waste (over 20M gallons) is in the form of precipitated saltcake maintained in single shell tanks, many of which are identified as potential leaking tanks. Retrieval and transport (as a liquid) must be staged within the waste feed delivery capability established by site infrastructure and WTP. Near Source treatment, if employed, would provide for the separation and stabilization processing necessary for waste located in remote farms (wherein most ofthe leaking tanks reside) significantly earlier than currently projected. Near Source treatment is intended to address the currently accepted site risk and also provides means to mitigate future issues likely to be faced over the coming decades. This paper describes the potential near source treatment and waste disposition options as well as the impact these options could have on reducing infrastructure requirements, project cost and mission schedule.

Ramsey, William Gene

2013-08-15T23:59:59.000Z

451

Waste acceptance and waste loading for vitrified Oak Ridge tank waste  

SciTech Connect (OSTI)

The Office of Science and Technology of the DOE has funded a joint project between the Oak Ridge National Laboratory (ORNL) and the Savannah River Technology Center (SRTC) to evaluate vitrification and grouting for the immobilization of sludge from ORNL tank farms. The radioactive waste is from the Gunite and Associated Tanks (GAAT), the Melton Valley Storage Tanks (MVST), the Bethel Valley Evaporator Service Tanks (BVEST), and the Old Hydrofractgure Tanks (OHF). Glass formulation development for sludge from these tanks is discussed in an accompanying article for this conference (Andrews and Workman). The sludges contain transuranic radionuclides at levels which will make the glass waste form (at reasonable waste loadings) TRU. Therefore, one of the objectives for this project was to ensure that the vitrified waste form could be disposed of at the Waste Isolation Pilot Plant (WIPP). In order to accomplish this, the waste form must meet the WIPP Waste Acceptance Criteria (WAC). An alternate pathway is to send the glass waste forms for disposal at the Nevada Test Site (NTS). A sludge waste loading in the feed of 6 wt percent will lead to a waste form which is non-TRU and could potentially be disposed of at NTS. The waste forms would then have to meet the requirements of the NTS WAC. This paper presents SRTC`s efforts at demonstrating that the glass waste form produced as a result of vitrification of ORNL sludge will meet all the criteria of the WIPP WAC or NTS WAC.

Harbour, J.R.; Andrews, M.K.

1997-06-06T23:59:59.000Z

452

Evaluation of interim and final waste forms for the newly generated liquid low-level waste flowsheet  

SciTech Connect (OSTI)

The purpose of this review is to evaluate the final forms that have been proposed for radioactive-containing solid wastes and to determine their application to the solid wastes that will result from the treatment of newly generated liquid low-level waste (NGLLLW) and Melton Valley Storage Tank (MVST) supernate at the Oak Ridge National Laboratory (ORNL). Since cesium and strontium are the predominant radionuclides in NGLLLW and MVST supernate, this review is focused on the stabilization and solidification of solid wastes containing these radionuclides in cement, glass, and polymeric materials-the principal waste forms that have been tested with these types of wastes. Several studies have shown that both cesium and strontium are leached by distilled water from solidified cement, although the leachabilities of cesium are generally higher than those of strontium under similar conditions. The situation is exacerbated by the presence of sulfates in the solution, as manifested by cracking of the grout. Additives such as bentonite, blast-furnace slag, fly ash, montmorillonite, pottery clay, silica, and zeolites generally decrease the cesium and strontium release rates. Longer cement curing times (>28 d) and high ionic strengths of the leachates, such as those that occur in seawater, also decrease the leach rates of these radionuclides. Lower cesium leach rates are observed from vitrified wastes than from grout waste forms. However, significant quantities of cesium are volatilized due to the elevated temperatures required to vitrify the waste. Hence, vitrification will generally require the use of cleanup systems for the off-gases to prevent their release into the atmosphere.

Abotsi, G.M.K. [Clark Atlanta Univ., GA (United States); Bostick, D.T.; Beck, D.E. [Oak Ridge National Lab., TN (United States)] [and others

1996-05-01T23:59:59.000Z

453

GRR/Section 14-CA-e - Waste Discharge Requirements | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-CA-e - Waste Discharge Requirements GRR/Section 14-CA-e - Waste Discharge Requirements < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-CA-e - Waste Discharge Requirements 14CAEWasteDischargeRequirements.pdf Click to View Fullscreen Contact Agencies California Environmental Protection Agency Water Resources Control Board Regulations & Policies Title 27 CCR, Division 2 - Environmental Protection - Solid Waste SWRCB Exemptions Triggers None specified Click "Edit With Form" above to add content 14CAEWasteDischargeRequirements.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The State Water Resources Control Board (SWRCB) may require Waste discharge

454

Environmental waste disposal contracts awarded  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental contracts awarded locally Environmental contracts awarded locally Environmental waste disposal contracts awarded locally Three small businesses with offices in Northern New Mexico awarded nuclear waste clean-up contracts. April 3, 2012 Worker moves drums of transuranic (TRU) waste at a staging area A worker stages drums of transuranic waste at Los Alamos National Laboratory's Technical Area 54. the Lap ships such drums to the U.S. Department of Energy's Waste Isolation Pilot Plant (WIPP) in Southern New Mexico. The Lab annually averages about 120 shipments of TRU waste to WIPP. Contact Small Business Office (505) 667-4419 Email "They will be valuable partners in the Lab's ability to dispose of the waste safely and efficiently." Small businesses selected for environmental work at LANL

455

Waste Isolation Pilot Plant - Reports  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reports Reports Waste Isolation Pilot Plant Review Report 2013 Review of the Waste Isolation Pilot Plant Work Planning and Control Activities, April 2013 Review Report 2012 Review of Site Preparedness for Severe Natural Phenomena Events at the Waste Isolation Pilot Plant, November 2012 Activity Reports 2011 Orientation Visit to the Waste Isolation Pilot Plant, September 2011 Review Reports 2007 Independent Oversight Inspection of Emergency Management at the Carlsbad Field Office and Waste Isolation Pilot Plant, December 2007 Review Reports 2002 Inspection of Environment, Safety, and Health and Emergency Management at the Waste Isolation Pilot Plant - Summary Report, August 2002 Inspection of Environment, Safety, and Health Management at the Waste Isolation Pilot Plant - Volume I, August 2002

456

Waste Management | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Management Management Waste Management Nuclear Materials Disposition In fulfilling its mission, EM frequently manages and completes disposition of surplus nuclear materials and spent nuclear fuel. These are not waste. They are nuclear materials no longer needed for national security or other purposes, including spent nuclear fuel, special nuclear materials (as defined by the Atomic Energy Act) and other Nuclear Materials. Read more Tank Waste and Waste Processing The Department has approximately 88 million gallons of liquid waste stored in underground tanks and approximately 4,000 cubic meters of solid waste derived from the liquids stored in bins. The current DOE estimated cost for retrieval, treatment and disposal of this waste exceeds $50 billion to be spent over several decades.

457

Process Waste Assessment, Mechanics Shop  

SciTech Connect (OSTI)

This Process Waste Assessment was conducted to evaluate hazardous wastes generated in the Mechanics Shop. The Mechanics Shop maintains and repairs motorized vehicles and equipment on the SNL/California site, to include motorized carts, backhoes, street sweepers, trash truck, portable emergency generators, trencher, portable crane, and man lifts. The major hazardous waste streams routinely generated by the Mechanics Shop are used oil, spent off filters, oily rags, and spent batteries. The used off and spent off filters make up a significant portion of the overall hazardous waste stream. Waste oil and spent batteries are sent off-site for recycling. The rags and spent on filters are not recycled. They are disposed of as hazardous waste. Mechanics Shop personnel continuously look for opportunities to minimize hazardous wastes.

Phillips, N.M.

1993-05-01T23:59:59.000Z

458

Waste Management | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Cleanup » Waste Management Cleanup » Waste Management Waste Management November 12, 2013 U.S. Department of Energy to Host Press Call on Radioactive Waste Shipment and Disposal On Tuesday, November 12, 2013, the U.S. Department of Energy (DOE) will host a press call to discuss Consolidated Edison Uranium Solidification Project (CEUSP) shipment and disposal plans in Nevada. September 24, 2013 Hanford Tank Waste Retrieval, Treatment and Disposition Framework Completing the Office of River Protection (ORP) mission of stabilizing 56 million gallons of chemical and radioactive waste stored in Hanford's 177 tanks is one of the Energy Department's highest priorities. This Framework document outlines a phased approach for beginning tank waste treatment while continuing to resolve technical issues with the Pretreatment and

459

WASTE/BY-PRODUCT HYDROGEN DOE/DOD Workshop  

E-Print Network [OSTI]

; 6 Waste/Byproduct HydrogenWaste/By product Hydrogen Waste H2 sources include: Waste biomass: biogas Waste/Byproduct Hydrogen Waste/By product Hydrogen Fuel FlexibilityFuel Flexibility Biogas: generated

460

Waste Isolation Pilot Plant Transuranic Waste Baseline inventory report. Volume 3. Revision 1  

SciTech Connect (OSTI)

This report consists of information related to the waste forms at the WIPP facility from the waste originators. Data for retrievably stored, projected and total wastes are given.

NONE

1995-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "guthrie waste water" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

GRR/Section 18-OR-b - Hazardous Waste Permit Process | Open Energy  

Open Energy Info (EERE)

OR-b - Hazardous Waste Permit Process OR-b - Hazardous Waste Permit Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-OR-b - Hazardous Waste Permit Process 18ORBHazardousWastePermitProcess (1).pdf Click to View Fullscreen Contact Agencies United States Environmental Protection Agency Oregon Department of Environmental Quality Oregon Public Health Division Oregon Public Utility Commission Oregon Department of Fish and Wildlife Oregon Water Resources Department Regulations & Policies OAR 340-105: Management Facility Permits OAR 340-120: Hazardous Waste Management ORS 466: Storage, Treatment, and Disposal Triggers None specified Click "Edit With Form" above to add content 18ORBHazardousWastePermitProcess (1).pdf

462

Determination of Radioisotope Content by Measurement of Waste Package Dose Rates - 13394  

SciTech Connect (OSTI)

The objective of this communication is to report the observed correlation between the calculated air kerma rates produced by radioactive waste drums containing untreated ion-exchange resin and activated charcoal slurries with the measured radiation field of each package. Air kerma rates at different distances from the drum surface were calculated with the activity concentrations previously determined by gamma spectrometry of waste samples and the estimated mass, volume and geometry of solid and liquid phases of each waste package. The water content of each waste drum varies widely between different packages. Results will allow determining the total activity of wastes and are intended to complete the previous steps taken to characterize the radioisotope content of wastes packages. (authors)

Souza, Daiane Cristini B.; Gimenes Tessaro, Ana Paula; Vicente, Roberto [Nuclear and Energy Research Institute Brazil, Radioactive Waste Management Department IPEN/GRR, Sao Paulo. SP. (Brazil)] [Nuclear and Energy Research Institute Brazil, Radioactive Waste Management Department IPEN/GRR, Sao Paulo. SP. (Brazil)

2013-07-01T23:59:59.000Z

463

Phosphate ceramic process for macroencapsulation and stabilization of low-level debris wastes  

SciTech Connect (OSTI)

Across the DOE complex, large quantities of contaminated debris and irradiated lead bricks have been accumulated for disposal. Under the US Environmental Protection Agency`s Alternative Treatment Standards, the preferred method of disposal of these wastes is macroencapsulation. Chemically bonded phosphate ceramic (CBPC) is a novel binder that was developed at Argonne National Laboratory to stabilize and solidify various low-level mixed wastes. This binder is extremely strong, dense, and impervious to water. In this investigation, CBPC has been used to demonstrate macroencapsulation of various contaminated debris wastes, including cryofractured debris, lead bricks, lead-lined plastic gloves, and mercury-contaminated crushed glass. This paper describes the fabrication of the waste forms, as well as the results of various characterizations performed on the waste forms. The results show that the simple and low-cost CBPC is an excellent material system for the macroencapsulation of debris wastes.

Singh, D.; Wagh, A.S.; Tlustochowicz, M.; Jeong, S.Y. [Argonne National Lab., IL (United States). Energy Technology Div.] [Argonne National Lab., IL (United States). Energy Technology Div.

1998-12-31T23:59:59.000Z

464

Macroencapsulation of low-level debris waste with the phosphate ceramic process  

SciTech Connect (OSTI)

Across the DOE complex, large quantities of contaminated debris and irradiated lead bricks require disposal. The preferred method for disposing of these wastes is macroencapsulation under U.S. Environmental Protection Agency Alternative Treatment Standards. Chemically bonded phosphate ceramics serve as a novel binder, developed at Argonne National Laboratory, for stabilizing and solidifying various low-level mixed wastes. Extremely strong, dense, and impervious to water intrusion, this material was developed with support from the U.S. Department of Energy`s Office of Science and Technology (DOE OST). In this investigation, CBPCs have been used to demonstrate macroencapsulation of various contaminated debris wastes, including cryofractured debris, lead bricks, and lead-lined plastic gloves. This paper describes the processing steps for fabricating the waste forms and the results of various characterizations performed on the waste forms. The conclusion is that simple and low-cost CBPCs are excellent material systems for macroencapsulating debris wastes.

Singh, D.; Wagh, A.S.; Tlustochowicz, M.; Jeong, S.Y.

1997-03-01T23:59:59.000Z

465

Treatment of halogen-containing waste and other waste materials  

DOE Patents [OSTI]

A process is described for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes. 3 figs.

Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

1997-03-18T23:59:59.000Z

466

Treatment of halogen-containing waste and other waste materials  

DOE Patents [OSTI]

A process for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes.

Forsberg, Charles W. (Oak Ridge, TN); Beahm, Edward C. (Oak Ridge, TN); Parker, George W. (Concord, TN)

1997-01-01T23:59:59.000Z

467

Requirements Governing Water Quality Standards (West Virginia) | Department  

Broader source: Energy.gov (indexed) [DOE]

Requirements Governing Water Quality Standards (West Virginia) Requirements Governing Water Quality Standards (West Virginia) Requirements Governing Water Quality Standards (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Siting and Permitting This rule establishes the requirements governing the discharge or deposit of sewage, industrial wastes and other wastes into waters and establishes water quality standards.

468

POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT  

SciTech Connect (OSTI)

The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of the Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous radiological monitoring of the pool water. The Pool Water Treatment and Cooling System interfaces with the Waste Handling Building System, Site-Generated Radiological Waste Handling System, Site Radiological Monitoring System, Waste Handling Building Electrical System, Site Water System, and the Monitored Geologic Repository Operations Monitoring and Control System.

V. King

2000-06-19T23:59:59.000Z

469

Managing America's Defense Nuclear Waste | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Managing America's Defense Nuclear Waste Managing America's Defense Nuclear Waste Managing America's Defense Nuclear Waste More Documents & Publications National Defense...

470

Experimental and Analytical Studies on Pyroelectric Waste Heat Energy Conversion  

E-Print Network [OSTI]

Waste heat Pyroelectric energy3 Pyroelectric Waste Heat Energy Harvesting Using Heat4 Pyroelectric Waste Heat Energy Harvesting Using Relaxor

Lee, Felix

2012-01-01T23:59:59.000Z

471

Degradation of Dome Cutting Minerals in Hanford Waste - 13100  

SciTech Connect (OSTI)

At the Hanford Tank Farms, recent changes in retrieval technology require cutting new risers in several single-shell tanks. The Hanford Tank Farm Operator is using water jet technology with abrasive silicate minerals such as garnet or olivine to cut through the concrete and rebar dome. The abrasiveness of these minerals, which become part of the high-level waste stream, may enhance the erosion of waste processing equipment. However, garnet and olivine are not thermodynamically stable in Hanford waste, slowly degrading over time. How likely these materials are to dissolve completely in the waste before the waste is processed in the Waste Treatment and Immobilization Plant can be evaluated using theoretical analysis for olivine and collected direct experimental evidence for garnet. Based on an extensive literature study, a large number of primary silicates decompose into sodalite and cancrinite when exposed to Hanford waste. Given sufficient time, the sodalite also degrades into cancrinite. Even though cancrinite has not been directly added to any Hanford tanks during process times, it is the most common silicate observed in current Hanford waste. By analogy, olivine and garnet are expected to ultimately also decompose into cancrinite. Garnet used in a concrete cutting demonstration was immersed in a simulated supernate representing the estimated composition of the liquid retrieving waste from Hanford tank 241-C-107 at both ambient and elevated temperatures. This simulant was amended with extra NaOH to determine if adding caustic would help enhance the degradation rate of garnet. The results showed that the garnet degradation rate was highest at the highest NaOH concentration and temperature. At the end of 12 weeks, however, the garnet grains were mostly intact, even when immersed in 2 molar NaOH at 80 deg. C. Cancrinite was identified as the degradation product on the surface of the garnet grains. In the case of olivine, the rate of degradation in the high-pH regimes of a waste tank is expected to depend on two main parameters: carbonate is expected to slow olivine degradation rates, whereas hydroxide is expected to enhance olivine dissolution rates. Which of these two competing dissolution drivers will have a larger impact on the dissolution rate in the specific environment of a waste tank is currently not identifiable. In general, cancrinite is much smaller and less hard than either olivine or garnet, so would be expected to be less erosive to processing equipment. Complete degradation of either garnet or olivine prior to being processed at the Waste Treatment and Immobilization Plant cannot be confirmed, however. (authors)

Reynolds, Jacob G.; Cooke, Gary A.; Huber, Heinz J. [Washington River Protection Solutions, LLC, P.O. Box 850, Richland, WA 99352 (United States)] [Washington River Protection Solutions, LLC, P.O. Box 850, Richland, WA 99352 (United States)

2013-07-01T23:59:59.000Z

472

Degradation of dome cutting minerals in Hanford waste  

SciTech Connect (OSTI)

At the Hanford Tank Farms, recent changes in retrieval technology require cutting new risers in several single-shell tanks. The Hanford Tank Farm Operator is using water jet technology with abrasive silicate minerals such as garnet or olivine to cut through the concrete and rebar dome. The abrasiveness of these minerals, which become part of the high-level waste stream, may enhance the erosion of waste processing equipment. However, garnet and olivine are not thermodynamically stable in Hanford waste, slowly degrading over time. How likely these materials are to dissolve completely in the waste before the waste is processed in the Waste Treatment and Immobilization Plant can be evaluated using theoretical analysis for olivine and collected direct experimental evidence for garnet. Based on an extensive literature study, a large number of primary silicates decompose into sodalite and cancrinite when exposed to Hanford waste. Given sufficient time, the sodalite also degrades into cancrinite. Even though cancrinite has not been directly added to any Hanford tanks during process times, it is the most common silicate observed in current Hanford waste. By analogy, olivine and garnet are expected to ultimately also decompose into cancrinite. Garnet used in a concrete cutting demonstration was immersed in a simulated supernate representing the estimated composition of the liquid retrieving waste from Hanford tank 241-C-107 at both ambient and elevated temperatures. This simulant was amended with extra NaOH to determine if adding caustic would help enhance the degradation rate of garnet. The results showed that the garnet degradation rate was highest at the highest NaOH concentration and temperature. At the end of 12 weeks, however, the garnet grains were mostly intact, even when immersed in 2 molar NaOH at 80 deg C. Cancrinite was identified as the degradation product on the surface of the garnet grains. In the case of olivine, the rate of degradation in the high-pH regimes of a waste tank is expected to depend on two main parameters: carbonate is expected to slow olivine degradation rates, whereas hydroxide is expected to enhance olivine dissolution rates. Which of these two competing dissolution drivers will have a larger impact on the dissolution rate in the specific environment of a waste tank is currently not identifiable. In general, cancrinite is much smaller and less hard than either olivine or garnet, so would be expected to be less erosive to processing equipment. Complete degradation of either garnet or olivine prior to being processed at the Waste Treatment and Immobilization Plant cannot be confirmed, however.

Reynolds, Jacob G.; Huber, Heinz J.; Cooke, Gary A.

2013-01-11T23:59:59.000Z

473

Construction Waste Management Construction Waste Management  

E-Print Network [OSTI]

This document provides guidelines for multifamily affordable housing providers and their consultants to prepare a green physical needs assessment. It provides recommendations for housing rehabilitation that incorporates green building principles of energy efficiency, water conservation, resource conservation, and healthy indoor environments.

Green Rehabilitation; Multifamily Rental Properties

474

Nuclear waste management. Semiannual progress report, October 1983-March 1984  

SciTech Connect (OSTI)

Progress in the following studies on radioactive waste management is reported: defense waste technology; Nuclear Waste Materials Characterization Center; waste isolation; and supporting studies. 58 figures, 22 tables.

McElroy, J.L.; Powell, J.A.

1984-06-01T23:59:59.000Z