National Library of Energy BETA

Sample records for gulf lignite dakota

  1. POWDERED ACTIVATED CARBON FROM NORTH DAKOTA LIGNITE: AN OPTION...

    Office of Scientific and Technical Information (OSTI)

    CARBON FROM NORTH DAKOTA LIGNITE: AN OPTION FOR DISINFECTION BY-PRODUCT CONTROL IN WATER TREATMENT PLANTS Citation Details In-Document Search Title: POWDERED ACTIVATED...

  2. JV Task 90 - Activated Carbon Production from North Dakota Lignite

    SciTech Connect (OSTI)

    Steven Benson; Charlene Crocker; Rokan Zaman; Mark Musich; Edwin Olson

    2008-03-31

    The Energy & Environmental Research Center (EERC) has pursued a research program for producing activated carbon from North Dakota lignite that can be competitive with commercial-grade activated carbon. As part of this effort, small-scale production of activated carbon was produced from Fort Union lignite. A conceptual design of a commercial activated carbon production plant was drawn, and a market assessment was performed to determine likely revenue streams for the produced carbon. Activated carbon was produced from lignite coal in both laboratory-scale fixed-bed reactors and in a small pilot-scale rotary kiln. The EERC was successfully able to upgrade the laboratory-scale activated carbon production system to a pilot-scale rotary kiln system. The activated carbon produced from North Dakota lignite was superior to commercial grade DARCO{reg_sign} FGD and Rheinbraun's HOK activated coke product with respect to iodine number. The iodine number of North Dakota lignite-derived activated carbon was between 600 and 800 mg I{sub 2}/g, whereas the iodine number of DARCO FGD was between 500 and 600 mg I{sub 2}/g, and the iodine number of Rheinbraun's HOK activated coke product was around 275 mg I{sub 2}/g. The EERC performed both bench-scale and pilot-scale mercury capture tests using the activated carbon made under various optimization process conditions. For comparison, the mercury capture capability of commercial DARCO FGD was also tested. The lab-scale apparatus is a thin fixed-bed mercury-screening system, which has been used by the EERC for many mercury capture screen tests. The pilot-scale systems included two combustion units, both equipped with an electrostatic precipitator (ESP). Activated carbons were also tested in a slipstream baghouse at a Texas power plant. The results indicated that the activated carbon produced from North Dakota lignite coal is capable of removing mercury from flue gas. The tests showed that activated carbon with the greatest iodine number was superior to commercial DARCO FGD for mercury capture. The results of the activated carbon market assessment indicate an existing market for water treatment and an emerging application for mercury control. That market will involve both existing and new coal-fired plants. It is expected that 20% of the existing coal-fired plants will implement activated carbon injection by 2015, representing about 200,000 tons of annual demand. The potential annual demand by new plants is even greater. In the mercury control market, two characteristics are going to dominate the customer's buying habit-performance and price. As continued demonstration testing of activated carbon injection at the various coal-fired power plants progresses, the importance of fuel type and plant configuration on the type of activated carbon best suited is being identified.

  3. Long term contracts, expansion, innovation and stability: North Dakota's lignite mines thrive

    SciTech Connect (OSTI)

    Buchsbaum, L.

    2009-08-15

    North Dakota's lignite coal industry is mainly located in three countries in the central part of the state. Its large surface lignite mines are tied through long-term (20-40 years) contracts to power plants. The article talks about operations at three of the most productive mines - the Freedom mine, Falkirk mine and Center Mine. 4 figs.

  4. North Dakota

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota

  5. Environmental assessment of no remedial action at the inactive uraniferous lignite ashing sites at Belfield and Bowman, North Dakota

    SciTech Connect (OSTI)

    1997-06-01

    The Belfield and Bowman sites were not included on the original congressional list of processing sites to be designated by the Secretary of Energy. Instead, the sites were nominated for designation by the Dakota Resource Council in a letter to the DOE (September 7, 1979). In a letter to the DOE (September 12, 1979), the state of North Dakota said that it did not believe the sites would qualify as processing sites under the Uranium Mill Tailings Radiation Control Act (UMTRCA) because the activities at the sites involved only the ashing of uraniferous lignite coal and the ash was shipped out of state for actual processing. Nevertheless, on October 11, 1979, the state of North Dakota agreed to the designation of the sites because they met the spirit of the law (reduce public exposure to radiation resulting from past uranium operations). Therefore, these sites were designated by the Secretary of Energy for remedial action. Because of the relatively low health impacts determined for these sites, they were ranked as low priority and scheduled to be included in the final group of sites to be remediated.

  6. Dakota :

    SciTech Connect (OSTI)

    Adams, Brian M.; Ebeida, Mohamed Salah; Eldred, Michael S; Jakeman, John Davis; Swiler, Laura Painton; Stephens, John Adam; Vigil, Dena M.; Wildey, Timothy Michael; Bohnhoff, William J.; Eddy, John P.; Hu, Kenneth T.; Dalbey, Keith R.; Bauman, Lara E; Hough, Patricia Diane

    2014-05-01

    The Dakota (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a exible and extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quanti cation with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the Dakota toolkit provides a exible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a theoretical manual for selected algorithms implemented within the Dakota software. It is not intended as a comprehensive theoretical treatment, since a number of existing texts cover general optimization theory, statistical analysis, and other introductory topics. Rather, this manual is intended to summarize a set of Dakota-related research publications in the areas of surrogate-based optimization, uncertainty quanti cation, and optimization under uncertainty that provide the foundation for many of Dakota's iterative analysis capabilities.

  7. ccpi-lignite | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lignite Fuel Enhancement - Project Brief [PDF-255KB] Great River Energy, Underwood, North Dakota PROJECT FACT SHEET Increasing Power Plant Efficiency: Lignite Fuel Enhancement [PDF-730KB] (April 2011) PROGRAM PUBLICATIONS Final Report Lignite Fuel Enhancement [PDF-1.4MB] (June 2010) Quarterly Progress Reports April - June 2007 [PDF-65KB] (July 2007) January - March 2007 [PDF-65KB] (Apr 2007) October - December 2006 [PDF-60KB] (Jan 2007) July - September 2006 [PDF-8MB] (Nov 2006) April - June

  8. DOE Regional Partnership Initiates CO2 Injection in Lignite Coal...

    Broader source: Energy.gov (indexed) [DOE]

    begun injecting CO2 into a deep lignite coal seam in Burke County, North Dakota, to ... indicated that the region's low-rank coal seams have the capacity to store up to 8 ...

  9. Pelletizing lignite

    DOE Patents [OSTI]

    Goksel, Mehmet A.

    1983-11-01

    Lignite is formed into high strength pellets having a calorific value of at least 9,500 Btu/lb by blending a sufficient amount of an aqueous base bituminous emulsion with finely-divided raw lignite containing its inherent moisture to form a moistened green mixture containing at least 3 weight % of the bituminous material, based on the total dry weight of the solids, pelletizing the green mixture into discrete green pellets of a predetermined average diameter and drying the green pellets to a predetermined moisture content, preferrably no less than about 5 weight %. Lignite char and mixture of raw lignite and lignite char can be formed into high strength pellets in the same general manner.

  10. Multiple-use marketing of lignite

    SciTech Connect (OSTI)

    Knudson, C.L.

    1993-09-01

    Marketing of lignite faces difficulties due to moisture and sulfur contents, as well as the sodium content, of the ash. The purpose of this study is to determine the economic viability of multiple-use marketing of lignite as a method to increase the use of North Dakota lignite by recapturing lost niche markets. Multiple-use marketing means using lignite and sulfur-capturing additives to clean agricultural wastewater followed by either direct steam and power generation or briquetting to produce a higher-Btu compliance fuel. Cooperative ownership of the resulting business by a coal company and an agriculture processing company helps ensure that lignite remains the coal of choice, especially when the ``good`` attributes of lignites are maximized, while the agricultural company obtains cleaner wastewater and a long-term supply of coal at a set price. The economic viabilities of the following scenarios were investigated: (1) Agriprocessing wastewater treatment using lignite and an additive followed by (2) the production of compliance fuel for resale or on-site cogeneration of steam and electricity. Laboratory tests were performed utilizing potato-processing plant wastewater with lignite and lime sludge.

  11. COFIRING BIOMASS WITH LIGNITE COAL

    SciTech Connect (OSTI)

    Darren D. Schmidt

    2002-01-01

    The University of North Dakota Energy & Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO{sub x} emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a $1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community.

  12. Lignite Fuel Enhancement

    SciTech Connect (OSTI)

    Charles Bullinger; Nenad Sarunac

    2010-03-31

    Pulverized coal power plants which fire lignites and other low-rank high-moisture coals generally operate with reduced efficiencies and increased stack emissions due to the impacts of high fuel moisture on stack heat loss and pulverizer and fan power. A process that uses plant waste heat sources to evaporate a portion of the fuel moisture from the lignite feedstock in a moving bed fluidized bed dryer (FBD) was developed in the U.S. by a team led by Great River Energy (GRE). The demonstration was conducted with Department of Energy (DOE) funding under DOE Award Number DE-FC26-04NT41763. The objectives of GRE's Lignite Fuel Enhancement project were to demonstrate reduction in lignite moisture content by using heat rejected from the power plant, apply technology at full scale at Coal Creek Station (CCS), and commercialize it. The Coal Creek Project has involved several stages, beginning with lignite drying tests in a laboratory-scale FBD at the Energy Research Center (ERC) and development of theoretical models for predicting dryer performance. Using results from these early stage research efforts, GRE built a 2 ton/hour pilot-scale dryer, and a 75 ton/hour prototype drying system at Coal Creek Station. Operated over a range of drying conditions, the results from the pilot-scale and prototype-scale dryers confirmed the performance of the basic dryer design concept and provided the knowledge base needed to scale the process up to commercial size. Phase 2 of the GRE's Lignite Fuel Enhancement project included design, construction and integration of a full-scale commercial coal drying system (four FBDs per unit) with Coal Creek Units 1 and 2 heat sources and coal handling system. Two series of controlled tests were conducted at Coal Creek Unit 1 with wet and dried lignite to determine effect of dried lignite on unit performance and emissions. Wet lignite was fired during the first, wet baseline, test series conducted in September 2009. The second test series was performed in March/April 2010 after commercial coal drying system was commissioned. Preliminary tests with dried coal were performed in March/April 2010. During the test Unit 2 was in outage and, therefore, test unit (Unit 1) was carrying entire station load and, also, supplying all auxiliary steam extractions. This resulted in higher station service, lower gross power output, and higher turbine cycle heat rate. Although, some of these effects could be corrected out, this would introduce uncertainty in calculated unit performance and effect of dried lignite on unit performance. Baseline tests with dried coal are planned for second half of 2010 when both units at Coal Creek will be in service to establish baseline performance with dried coal and determine effect of coal drying on unit performance. Application of GRE's coal drying technology will significantly enhance the value of lignite as a fuel in electrical power generation power plants. Although existing lignite power plants are designed to burn wet lignite, the reduction in moisture content will increase efficiency, reduce pollution and CO{sub 2} emissions, and improve plant economics. Furthermore, the efficiency of ultra supercritical units burning high-moisture coals will be improved significantly by using dried coal as a fuel. To date, Great River Energy has had 63 confidentiality agreements signed by vendors and suppliers of equipment and 15 utilities. GRE has had agreements signed from companies in Canada, Australia, China, India, Indonesia, and Europe.

  13. DAKOTA 5.0

    Energy Science and Technology Software Center (OSTI)

    001217MLTPL02 DAKOTA Design Analysis Kit for Optimization and Terascale https://www.cs.sandia.gov/dakota/documentation.html

  14. Burleigh County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    North Dakota Lincoln, North Dakota Lincoln-Fort Rice, North Dakota Lyman, North Dakota Phoenix, North Dakota Regan, North Dakota Wilton, North Dakota Wing, North Dakota Retrieved...

  15. Barnes County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    County, North Dakota Dazey, North Dakota Fingal, North Dakota Kathryn, North Dakota Leal, North Dakota Litchville, North Dakota Nome, North Dakota Oriska, North Dakota...

  16. Cavalier County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Calvin, North Dakota Hannah, North Dakota Langdon, North Dakota Loma, North Dakota Milton, North Dakota Munich, North Dakota Nekoma, North Dakota Osnabrock, North Dakota...

  17. Turner County, South Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Davis, South Dakota Dolton, South Dakota Hurley, South Dakota Irene, South Dakota Marion, South Dakota Monroe, South Dakota Parker, South Dakota Viborg, South Dakota Retrieved...

  18. Beadle County, South Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    A. Places in Beadle County, South Dakota Broadland, South Dakota Cavour, South Dakota Hitchcock, South Dakota Huron, South Dakota Iroquois, South Dakota Virgil, South Dakota...

  19. Rolette County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    North Dakota North Rolette, North Dakota Rolette, North Dakota Rolla, North Dakota Shell Valley, North Dakota South Rolette, North Dakota St. John, North Dakota Turtle...

  20. Walworth County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    A. Places in Walworth County, South Dakota Akaska, South Dakota Glenham, South Dakota Java, South Dakota Lowry, South Dakota Mobridge, South Dakota Selby, South Dakota Retrieved...

  1. Bowman County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    A. Places in Bowman County, North Dakota Bowman, North Dakota Gascoyne, North Dakota Hart, North Dakota Rhame, North Dakota Scranton, North Dakota West Bowman, North Dakota...

  2. Wells County, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    North Dakota Cathay, North Dakota Fessenden, North Dakota Hamberg, North Dakota Harvey, North Dakota Hurdsfield, North Dakota Sykeston, North Dakota Retrieved from "http:...

  3. Cass County, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    North Dakota North River, North Dakota Oxbow, North Dakota Page, North Dakota Prairie Rose, North Dakota Reile's Acres, North Dakota Tower City, North Dakota West Fargo, North...

  4. Mountrail County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    North Dakota New Town, North Dakota Palermo, North Dakota Parshall, North Dakota Plaza, North Dakota Ross, North Dakota Southwest Mountrail, North Dakota Stanley, North...

  5. Day County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    A. Places in Day County, South Dakota Andover, South Dakota Bristol, South Dakota Butler, South Dakota Grenville, South Dakota Lily, South Dakota Pierpont, South Dakota...

  6. Pembina County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    in Pembina County, North Dakota Bathgate, North Dakota Canton City, North Dakota Cavalier, North Dakota Crystal, North Dakota Drayton, North Dakota Hamilton, North Dakota...

  7. Subtask 4.4 - North Dakota Lignite Fuel Upgrading

    SciTech Connect (OSTI)

    Michael Swanson

    2009-03-15

    This project will add the capability for the Energy & Environmental Research Center (EERC) to conduct Fischer-Tropsch (FT) catalyst testing at a scale consistent with the benchscale continuous fluid-bed reactor. This capability will enable various vendors to test their FT catalysts on actual coal-derived syngas. The project goals were to also develop some EERC expertise with issues associated with FT liquid production. A study by Dr. Calvin Bartholmew at Brigham Young University (BYU) is further apparent that it is possible to build a single reactor (rather than multiple reactors of different sizes) consisting of three 1-inch-diameter, 10 foot-long tubes to accommodate the anticipated range of catalytic activities and process conditions. However, this single reactor should ideally be designed to operate over a significant range of recycle ratio (e.g., 1-10), temperature (25-400 C), pressure (10-25 bar), flow rate (1-6 scfm), and cooling duty (0.2-1.5 kW). It should have the flexibility of flowing gas to one, two, or three tubes. Based on the recommended design specifications provided by BYU while staying within the approved budget, the EERC decided to build a two fixed-bed reactor system with the capability to add a third reactor at a later time. This system was constructed to be modular and sized such that it can fit into the area around the EERC continuous fluid-bed reactor or also be located in explosion-rated areas such as the gasification tower next to the EERC pilot-scale transport reactor or in the National Center for Hydrogen Technology building high-bay area.

  8. Lignite Fuel Enhancement

    SciTech Connect (OSTI)

    Charles Bullinger

    2007-03-31

    This 11th quarterly Technical Progress Report for the Lignite Fuel Enhancement Project summarizes activities from January 1st through March 31st of 2007. It summarizes the completion of the Prototype testing activity and initial full-scale dryer design, Budget Period 2 activity during that time period. The Design Team completed process design and layouts of air, water, and coal systems. Heyl-Patterson completed dryer drawings and has sent RFPs to several fabricators for build and assembly. Several meetings were held with Barr engineers to finalize arrangement of the drying, air jig, and coal handling systems. Honeywell held meetings do discuss the control system logic and hardware location. By the end of March we had processed nearly 300,000 tons of lignite through the dryer. Outage preparation maintenance activities on a coal transfer hopper restricted operation of the dryer in February and March. The Outage began March 17th. We will not dry coal again until early May when the Outage on Unit No.2 completes. The Budget Period 1 (Phase 1) final report was submitted this quarter. Comments were received from NETL and are being reviewed. The Phase 2 Project Management Plan was submitted to NETL in January 2007. This deliverable also included the Financing Plan. An application for R&D 100 award was submitted in February. The project received an award from the Minnesota Professional Engineering Society's Seven Wonders of Engineering Award and Minnesota ACEC Grand Award in January. To further summarize, the focus this quarter has been on finalizing commercial design and the layout of four dryers behind each Unit. The modification to the coal handling facilities at Coal Creek and incorporation of air jigs to further beneficiate the segregated material the dryers will reject 20 to 30 % of the mercury and sulfur is segregated however this modification will recover the carbon in that stream.

  9. Steele County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    North Dakota M Power LLC Places in Steele County, North Dakota Finley, North Dakota Hope, North Dakota Luverne, North Dakota Sharon, North Dakota Retrieved from "http:...

  10. Faulk County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Onaka, South Dakota Orient, South Dakota Pulaski, South Dakota Rockham, South Dakota Seneca, South Dakota Southwest Faulk, South Dakota Retrieved from "http:en.openei.orgw...

  11. Douglas County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    County, South Dakota Armour, South Dakota Corsica, South Dakota Delmont, South Dakota Harrison, South Dakota New Holland, South Dakota Retrieved from "http:en.openei.orgw...

  12. Charles Mix County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Zone Subtype A. Places in Charles Mix County, South Dakota Castalia, South Dakota Dante, South Dakota Geddes, South Dakota Lake Andes, South Dakota Marty, South Dakota...

  13. Lincoln County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    South Dakota Hudson, South Dakota Lennox, South Dakota Sioux Falls, South Dakota Tea, South Dakota Worthing, South Dakota Retrieved from "http:en.openei.orgw...

  14. LaMoure County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Edgeley, North Dakota Jud, North Dakota Kulm, North Dakota LaMoure, North Dakota Marion, North Dakota Verona, North Dakota Retrieved from "http:en.openei.orgw...

  15. Roberts County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Country Ethanol LLC Places in Roberts County, South Dakota Claire City, South Dakota Corona, South Dakota New Effington, South Dakota Ortley, South Dakota Peever, South Dakota...

  16. Dickey County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Climate Zone Subtype A. Places in Dickey County, North Dakota Ellendale, North Dakota Forbes, North Dakota Fullerton, North Dakota Ludden, North Dakota Monango, North Dakota...

  17. Codington County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Glacial Lakes Energy Places in Codington County, South Dakota Florence, South Dakota Henry, South Dakota Kranzburg, South Dakota South Shore, South Dakota Wallace, South Dakota...

  18. Bon Homme County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Homme County, South Dakota Broin Enterprises Places in Bon Homme County, South Dakota Avon, South Dakota Scotland, South Dakota Springfield, South Dakota Tabor, South Dakota...

  19. DAKOTA 6.0

    Energy Science and Technology Software Center (OSTI)

    001217MLTPL03 Design Analysis Kit for Optimization and Terascale Applications 6.0 http://dakota.sandia.gov

  20. Davison County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    LLC Places in Davison County, South Dakota Ethan, South Dakota Loomis, South Dakota Mitchell, South Dakota Mount Vernon, South Dakota Retrieved from "http:en.openei.orgw...

  1. Hettinger County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    in Hettinger County, North Dakota Central Hettinger, North Dakota Mott, North Dakota New England, North Dakota Regent, North Dakota Retrieved from "http:en.openei.orgw...

  2. Clark County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 6 Climate Zone Subtype A. Places in Clark County, South Dakota Bradley, South Dakota Clark, South Dakota Garden City, South Dakota Naples, South Dakota...

  3. Stark County, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Dakota Gladstone, North Dakota Richardton, North Dakota South Heart, North Dakota Taylor, North Dakota Retrieved from "http:en.openei.orgwindex.php?titleStarkCounty,Nor...

  4. Hanson County, South Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Biodiesel Producers LLC Places in Hanson County, South Dakota Alexandria, South Dakota Emery, South Dakota Farmer, South Dakota Fulton, South Dakota Retrieved from "http:...

  5. Moody County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Colman, South Dakota Egan, South Dakota Flandreau, South Dakota Trent, South Dakota Ward, South Dakota Retrieved from "http:en.openei.orgwindex.php?titleMoodyCounty,Sout...

  6. Dunn County, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    A. Places in Dunn County, North Dakota Dodge, North Dakota Dunn Center, North Dakota Halliday, North Dakota Killdeer, North Dakota Retrieved from "http:en.openei.orgw...

  7. Ransom County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    North Dakota Enderlin, North Dakota Fort Ransom, North Dakota Lisbon, North Dakota Sheldon, North Dakota Retrieved from "http:en.openei.orgwindex.php?titleRansomCounty,N...

  8. Kidder County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Climate Zone Number 7 Climate Zone Subtype A. Places in Kidder County, North Dakota Dawson, North Dakota Kickapoo, North Dakota Pettibone, North Dakota Robinson, North Dakota...

  9. Dakota Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Jump to: navigation, search Name: Dakota Ethanol Place: Wentworth, South Dakota Zip: 57075 Product: Farmer Coop owner of a 189m litres per year ethanol plant Coordinates:...

  10. Enhancing Carbon Reactivity in Mercury Control in Lignite-Fired Systems

    SciTech Connect (OSTI)

    Chad Wocken; Michael Holmes; John Pavlish; Jeffrey Thompson; Katie Brandt; Brandon Pavlish; Dennis Laudal; Kevin Galbreath; Michelle Olderbak

    2008-06-30

    This project was awarded through the U.S. Department of Energy (DOE) National Energy Technology Laboratory Program Solicitation DE-PS26-03NT41718-01. The Energy & Environmental Research Center (EERC) led a consortium-based effort to resolve mercury (Hg) control issues facing the lignite industry. The EERC team-the Electric Power Research Institute (EPRI); the URS Corporation; the Babcock & Wilcox Company; ADA-ES; Apogee; Basin Electric Power Cooperative; Otter Tail Power Company; Great River Energy; Texas Utilities; Montana-Dakota Utilities Co.; Minnkota Power Cooperative, Inc.; BNI Coal Ltd.; Dakota Westmoreland Corporation; the North American Coal Corporation; SaskPower; and the North Dakota Industrial Commission-demonstrated technologies that substantially enhanced the effectiveness of carbon sorbents to remove Hg from western fuel combustion gases and achieve a high level ({ge} 55% Hg removal) of cost-effective control. The results of this effort are applicable to virtually all utilities burning lignite and subbituminous coals in the United States and Canada. The enhancement processes were previously proven in pilot-scale and limited full-scale tests. Additional optimization testing continues on these enhancements. These four units included three lignite-fired units: Leland Olds Station Unit 1 (LOS1) and Stanton Station Unit 10 (SS10) near Stanton and Antelope Valley Station Unit 1 (AVS1) near Beulah and a subbituminous Powder River Basin (PRB)-fired unit: Stanton Station Unit 1 (SS1). This project was one of three conducted by the consortium under the DOE mercury program to systematically test Hg control technologies available for utilities burning lignite. The overall objective of the three projects was to field-test and verify options that may be applied cost-effectively by the lignite industry to reduce Hg emissions. The EERC, URS, and other team members tested sorbent injection technologies for plants equipped with electrostatic precipitators (ESPs) and spray dryer absorbers combined with fabric filters (SDAs-FFs). The work focused on technology commercialization by involving industry and emphasizing the communication of results to vendors and utilities throughout the project.

  11. ACTIVATED CARBON FROM LIGNITE FOR WATER TREATMENT (Technical...

    Office of Scientific and Technical Information (OSTI)

    ACTIVATED CARBON FROM LIGNITE FOR WATER TREATMENT Citation Details In-Document Search Title: ACTIVATED CARBON FROM LIGNITE FOR WATER TREATMENT You are accessing a document from...

  12. Lignite pellets and methods of agglomerating or pelletizing

    DOE Patents [OSTI]

    Baker, Albert F.; Blaustein, Eric W.; Deurbrouck, Albert W.; Garvin, John P.; McKeever, Robert E.

    1981-01-01

    The specification discloses lignite pellets which are relatively hard, dust resistant, of generally uniform size and free from spontaneous ignition and general degradation. Also disclosed are methods for making such pellets which involve crushing as mined lignite, mixing said lignite with a binder such as asphalt, forming the lignite binder mixture into pellets, and drying the pellets.

  13. PILOT-AND FULL-SCALE DEMONSTRATION OF ADVANCED MERCURY CONTROL TECHNOLOGIES FOR LIGNITE-FIRED POWER PLANTS

    SciTech Connect (OSTI)

    Steven A. Benson; Charlene R. Crocker; Kevin C. Galbreath; Jay R. Gunderson; Mike J. Holmes; Jason D. Laumb; Michelle R. Olderbak; John H. Pavlish; Li Yan; Ye Zhuang; Jill M. Zola

    2004-02-01

    North Dakota lignite-fired power plants have shown a limited ability to control mercury emissions in currently installed electrostatic precipitators (ESPs), dry scrubbers, and wet scrubbers (1). This low level of control can be attributed to the high proportions of Hg{sup 0} present in the flue gas. Speciation of Hg in flue gases analyzed as part of the U.S. Environmental Protection Agency (EPA) information collection request (ICR) for Hg data showed that Hg{sup 0} ranged from 56% to 96% and oxidized mercury ranged from 4% to 44%. The Hg emitted from power plants firing North Dakota lignites ranged from 45% to 91% of the total Hg, with the emitted Hg being greater than 85% elemental. The higher levels of oxidized mercury were only found in a fluidized-bed combustion system. Typically, the form of Hg in the pulverized and cyclone-fired units was dominated by Hg{sup 0} at greater than 85%, and the average amount of Hg{sup 0} emitted from North Dakota power plants was 6.7 lb/TBtu (1, 2). The overall objective of this Energy & Environmental Research Center (EERC) project is to develop and evaluate advanced and innovative concepts for controlling Hg emissions from North Dakota lignite-fired power plants by 50%-90% at costs of one-half to three-fourths of current estimated costs. The specific objectives are focused on determining the feasibility of the following technologies: Hg oxidation for increased Hg capture in wet and dry scrubbers, incorporation of additives and technologies that enhance Hg sorbent effectiveness in ESPs and baghouses, the use of amended silicates in lignite-derived flue gases for Hg capture, and the use of Hg adsorbents within a baghouse. The scientific approach to solving the problems associated with controlling Hg emissions from lignite-fired power plants involves conducting testing of the following processes and technologies that have shown promise on a bench, pilot, or field scale: (1) activated carbon injection (ACI) upstream of an ESP combined with sorbent enhancement, (2) Hg oxidation and control using wet and dry scrubbers, (3) enhanced oxidation at a full-scale power plant using tire-derived fuel (TDF) and oxidizing catalysts, and (4) testing of Hg control technologies in the Advanced Hybrid{trademark} filter insert.

  14. McPherson County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Subtype A. Places in McPherson County, South Dakota Central McPherson, South Dakota Eureka, South Dakota Hillsview, South Dakota Leola, South Dakota Long Lake, South Dakota West...

  15. Bioprocessing of lignite coals using reductive microorganisms

    SciTech Connect (OSTI)

    Crawford, D.L.

    1992-03-29

    In order to convert lignite coals into liquid fuels, gases or chemical feedstock, the macromolecular structure of the coal must be broken down into low molecular weight fractions prior to further modification. Our research focused on this aspect of coal bioprocessing. We isolated, characterized and studied the lignite coal-depolymerizing organisms Streptomyces viridosporus T7A, Pseudomonas sp. DLC-62, unidentified bacterial strain DLC-BB2 and Gram-positive Bacillus megaterium strain DLC-21. In this research we showed that these bacteria are able to solubilize and depolymerize lignite coals using a combination of biological mechanisms including the excretion of coal solublizing basic chemical metabolites and extracellular coal depolymerizing enzymes.

  16. Hand County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 6 Climate Zone Subtype A. Places in Hand County, South Dakota Miller, South Dakota Northwest Hand, South Dakota Ree Heights, South Dakota St. Lawrence,...

  17. Buffalo County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Zone Number 6 Climate Zone Subtype A. Places in Buffalo County, South Dakota Fort Thompson, South Dakota North Buffalo, South Dakota Southeast Buffalo, South Dakota Retrieved...

  18. Sioux County, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Number 6 Climate Zone Subtype A. Places in Sioux County, North Dakota Cannon Ball, North Dakota Fort Yates, North Dakota North Sioux, North Dakota Selfridge, North...

  19. Lyman County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 6 Climate Zone Subtype A. Places in Lyman County, South Dakota Black Dog, South Dakota East Lyman, South Dakota Kennebec, South Dakota Lower Brule, South Dakota...

  20. McHenry County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    McHenry, North Dakota Towner, North Dakota Upham, North Dakota Velva, North Dakota Voltaire, North Dakota Retrieved from "http:en.openei.orgwindex.php?titleMcHenryCounty,...

  1. McCook County, South Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Climate Zone Number 6 Climate Zone Subtype A. Places in McCook County, South Dakota Bridgewater, South Dakota Canistota, South Dakota Montrose, South Dakota Salem, South Dakota...

  2. North Dakota/Incentives | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy Tax Credit (North Dakota) Corporate Tax Credit Yes Residential Energy Efficiency Rebates (Offered by 5 Utilities) (North Dakota) Utility Rebate Program Yes...

  3. Dakota Valley Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Dakota Valley Wind Project Facility Dakota Valley Sector Wind energy Facility Type Community Wind Location SD Coordinates 42.548355, -96.524841...

  4. JV Task 117 - Impact of Lignite Properties on Powerspan's NOx Oxidation System

    SciTech Connect (OSTI)

    Scott Tolbert; Steven Benson

    2008-02-29

    Powerspan's multipollutant control process called electrocatalytic oxidation (ECO) technology is designed to simultaneously remove SO{sub 2}, NO{sub x}, PM{sub 2.5}, acid gases (such as hydrogen fluoride [HF], hydrochloric acid [HCl], and sulfur trioxide [SO{sub 3}]), Hg, and other metals from the flue gas of coal-fired power plants. The core of this technology is a dielectric barrier discharge reactor composed of cylindrical quartz electrodes residing in metal tubes. Electrical discharge through the flue gas, passing between the electrode and the tube, produces reactive O and OH radicals. The O and OH radicals react with flue gas components to oxidize NO to NO{sub 2} and HNO{sub 3} and a small portion of the SO{sub 2} to SO{sub 3} and H{sub 2}SO{sub 4}. The oxidized compounds are subsequently removed in a downstream scrubber and wet electrostatic precipitator. A challenging characteristic of selected North Dakota lignites is their high sodium content. During high-sodium lignite combustion and gas cooling, the sodium vaporizes and condenses to produce sodium- and sulfur-rich aerosols. Based on past work, it was hypothesized that the sodium aerosols would deposit on and react with the silica electrodes and react with the silica electrodes, resulting in the formation of sodium silicate. The deposit and reacted surface layer would then electrically alter the electrode, thus impacting its dielectric properties and NO{sub x} conversion capability. The purpose of this project was to determine the impact of lignite-derived flue gas containing sodium aerosols on Powerspan's dielectric barrier discharge (DBD) reactor with specific focus on the interaction with the quartz electrodes. Partners in the project were Minnkota Power Cooperative; Basin Electric Power Cooperative; Montana Dakota Utilities Co.; Minnesota Power; the North Dakota Industrial Commission, the Lignite Energy Council, and the Lignite Research Council; the Energy & Environmental Research Center (EERC); and the U.S. Department of Energy. An electrocatalytic oxidation (ECO) reactor slipstream system was designed by Powerspan and the EERC. The slipstream system was installed by the EERC at Minnkota Power Cooperative's Milton R. Young Station Unit 1 downstream of the electrostatic precipitator where the flue gas temperature ranged from 300 to 350 F. The system was commissioned on July 3, 2007, operated for 107 days, and then winterized upon completion of the testing campaign. Operational performance of the system was monitored, and data were archived for postprocessing. A pair of electrodes were extracted and replaced on a biweekly basis. Each pair of electrodes was shipped to Powerspan to determine NO conversion efficiency in Powerspan's laboratory reactor. Tested electrodes were then shipped to the EERC for scanning electron microscopy (SEM) and x-ray microanalysis. Measurement of NO{sub x} conversion online in operating the slipstream system was not possible because the nitric and sulfuric acid production by the DBD reactor results in conditioning corrosion challenges in the sample extraction system and NO measurement technologies. The operational observations, performance results, and lab testing showed that the system was adversely affected by accumulation of the aerosol materials on the electrode. NO{sub x} conversion by ash-covered electrodes was significantly reduced; however, with electrodes that were rinsed with water, the NOx conversion efficiency recovered to nearly that of a new electrode. In addition, the visual appearance of the electrode after washing did not show evidence of a cloudy reacted surface but appeared similar to an unexposed electrode. Examination of the electrodes using SEM x-ray microanalysis showed significant elemental sodium, sulfur, calcium, potassium, and silica in the ash coating the electrodes. There was no evidence of the reaction of the sodium with the silica electrodes to produce sodium silicate layers. All SEM images showed a clearly marked boundary between the ash and the silica. Sodium and sulfur are the main culprits in the

  5. McLean County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Dakota Mercer, North Dakota North Central McLean, North Dakota Riverdale, North Dakota Ruso, North Dakota South McLean, North Dakota Turtle Lake, North Dakota Underwood, North...

  6. South Dakota geothermal handbook

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are described. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resource are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized. (MHR)

  7. North Dakota Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    North Dakota Recovery Act State Memo North Dakota has substantial natural resources, including ... North Dakota to play an important role in the new energy economy of the future. ...

  8. Spink County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    6 Climate Zone Subtype A. Registered Energy Companies in Spink County, South Dakota Redfield Energy LLC Places in Spink County, South Dakota Ashton, South Dakota Brentford, South...

  9. Edgemont, South Dakota, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    Edgemont, South Dakota, Disposal Site This fact sheet provides information about the Edgemont, South Dakota, Disposal Site. This site is managed by the U.S. Department of Energy Office of Legacy Management under Title II of the Uranium Mill Tailings Radiation Control Act of 1978. Location of the Edgemont, South Dakota, Disposal Site Site Description and History The former Edgemont uranium mill is located in Edgemont, South Dakota, in Fall River County near the southwest corner of South Dakota.

  10. Survey of synfuel technology for lignite

    SciTech Connect (OSTI)

    Sondreal, E.A.

    1982-01-01

    The most important market for lignite will continue to be the electric utility industry, where it is used to fuel large pc-fired boilers serving major regional power grids. However, the growth of this market and thechnology is being challenged by new and more stringent environmental control requirements, including the international concern over acid rain. Environmental and economic issues could either encourage or limit the development of a synfuels market for lignite depending on the cost effectiveness of the technological solutions that are developed. Clearly the United States needs to develop its coal resources to reduce dependence on imported oil. However, demand for coal derived substitute petroleum will be constrained by cost for the forseeable future. Government policy initiatives and new technology will be the keys to removing these constraints in the decades ahead. A crossover point with respect to petroleum and natural gas will be reached at some point in the future, which will allow synthetic fuels to penetrate the markets now served by oil and gas. Those of us who are today concerned with the development of lignite resources can look forward to participating in the major synfuels market that will emerge when those economic conditions are realized.

  11. North Dakota State University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    North Dakota Natural Gas Gross Withdrawals (Million Cubic Feet) North Dakota Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 5,413 4,886 5,408 5,186 5,231 5,259 5,595 5,337 4,737 4,987 5,214 5,404 1992 5,278 4,889 5,203 4,783 4,881 4,865 5,024 5,049 4,841 5,203 4,900 5,063 1993 5,424 5,010 5,517 5,467 5,533 5,365 5,541 5,541 5,308 5,388 5,318 5,539 1994 5,466 5,014 5,459 5,418 5,580 5,282 5,365 5,271 4,982 5,325 5,086 4,984 1995 4,914

  12. ENERGY PLANNING, POLICY AND ECONOMY; 02 PETROLEUM; 01 COAL, LIGNITE...

    Office of Scientific and Technical Information (OSTI)

    Philippines: Asia Pacific energy series: Country report Hoffman, S. 29 ENERGY PLANNING, POLICY AND ECONOMY; 02 PETROLEUM; 01 COAL, LIGNITE, AND PEAT; PHILIPPINES; ECONOMIC...

  13. Minn-Dakota Wind Farm I | Open Energy Information

    Open Energy Info (EERE)

    Minn-Dakota Wind Farm I Jump to: navigation, search Name Minn-Dakota Wind Farm I Facility Minn-Dakota Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  14. Haakon County, South Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    6 Climate Zone Subtype A. Places in Haakon County, South Dakota Midland, South Dakota Philip, South Dakota Retrieved from "http:en.openei.orgwindex.php?titleHaakonCounty,So...

  15. Holden, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    ":"","inlineLabel":"","visitedicon":"" Hide Map Holden is a unorganized territory in Adams County, North Dakota. It falls under North Dakota's At-large congressional district....

  16. South Dakota Department of Natural Resources | Open Energy Information

    Open Energy Info (EERE)

    development in South Dakota related to the exploration and development of oil and gas resources. References "South Dakota Department of Natural Resources" Retrieved...

  17. Rapid City, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    under South Dakota's At-large congressional district.12 Contents 1 US Recovery Act Smart Grid Projects in Rapid City, South Dakota 2 Registered Energy Companies in Rapid...

  18. City of Miller, South Dakota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Miller, South Dakota (Utility Company) Jump to: navigation, search Name: City of Miller Place: South Dakota Phone Number: (605) 853-2705 Website: millersd.orgmillercity-of-mi...

  19. Comments of Dakota Electric Association | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dakota Electric Association Comments of Dakota Electric Association DEA has deployed a ... A private Wide Area Network (WAN) was implemented by DEA in 2001 due to lack of ...

  20. Montana-Dakota Utilities Co (Wyoming) | Open Energy Information

    Open Energy Info (EERE)

    Montana-Dakota Utilities Co (Wyoming) (Redirected from MDU Resources Group Inc (Wyoming)) Jump to: navigation, search Name: Montana-Dakota Utilities Co Place: Wyoming Phone Number:...

  1. South Dakota Recovery Act State Memo | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and geothermal power. Through these investments, South Dakota's businesses, the University of South Dakota, non-profits, and local governments are creating quality jobs today and ...

  2. City of Hillsboro, North Dakota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Hillsboro, North Dakota (Utility Company) Jump to: navigation, search Name: City of Hillsboro Place: North Dakota Phone Number: 605-338-4042 Website: acupofcoffeeaway.comcity-info...

  3. City of Groton, South Dakota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Groton, South Dakota (Utility Company) Jump to: navigation, search Name: City of Groton Place: South Dakota Phone Number: (605) 397-8422 Website: www.grotonsd.govcityelectric...

  4. City of Howard, South Dakota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Howard, South Dakota (Utility Company) Jump to: navigation, search Name: City of Howard Place: South Dakota Phone Number: (605) 772-4391 Website: www.cityofhoward.comindex.asp...

  5. ,"North Dakota Crude Oil Reserves in Nonproducing Reservoirs...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Crude Oil Reserves in Nonproducing Reservoirs ... to Contents","Data 1: North Dakota Crude Oil Reserves in Nonproducing Reservoirs ...

  6. ,"North Dakota Crude Oil + Lease Condensate Proved Reserves ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Crude Oil + Lease Condensate Proved Reserves ... to Contents","Data 1: North Dakota Crude Oil + Lease Condensate Proved Reserves ...

  7. ,"North Dakota Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Industrial Consumption (MMcf)",1,"Monthly","102015" ,"Release Date:","12312015" ,"Next...

  8. ,"South Dakota Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Industrial Consumption (MMcf)",1,"Monthly","102015" ,"Release Date:","12312015" ,"Next...

  9. Recovery Act State Memos South Dakota

    Broader source: Energy.gov (indexed) [DOE]

    prototype for wind and solar ...... 5 * South Dakota ... energy tax credits and grants: 1 For total Recovery Act ... biomass, wind, geothermal, and hydroelectric power. ...

  10. South Dakota/Incentives | Open Energy Information

    Open Energy Info (EERE)

    Type Active Black Hills Power - Commercial Energy Efficiency Programs (South Dakota) Utility Rebate Program Yes Black Hills Power - Residential Customer Rebate Program (South...

  11. QER- Comment of Dakota Resource Council

    Broader source: Energy.gov [DOE]

    Attached are comments from the Dakota Resource Council, a membership-based organization of North Dakotans. Thank you for the opportunity to comment on the Infrastructure Constraints.

  12. The washability of lignites for clay removal

    SciTech Connect (OSTI)

    Oteyaka, B.; Yamik, A.; Ucar, A.; Sahbaz, O.; Demir, U.

    2008-07-01

    In the washability research of the Seyitomer Lignites (Kutahya-Turkey), with lower calorific value (1,863 kcal/kg) and high ash content (51.91%), by heavy medium separation, it was found out that middling clay in the coal had an effect to change the medium density. To prevent this problem, a trommel sieve with 18 and 5 mm aperture diameter was designed, and the clay in the coal was tried to be removed using it before the coal was released to heavy medium. Following that, the obtained coal in -100 + 18 mm and -18 + 5 mm fractions was subjected to sink and float test having 1.4 gcm{sup -3} and 1.7 gcm{sup -3} medium densities (-5 mm fraction will be evaluated in a separate work). Depending on the raw coal, with the floating of -100 + 18 mm and -18 + 5 mm size fraction in 1.4 gcm{sup -3} medium density, clean coal with 60.10% combustible matter recovery, 19.12% ash, and 3,150 kcal/kg was obtained. Also floating of the samples sinking in 1.4 gcm{sup -3} in the medium density (1.7 gcm{sup -3}), middling with 18.70% combustible matter recovery, 41.93% ash, 2,150 kcal/kg, and tailing having 78.31% ash were obtained.

  13. North Dakota Natural Gas Processed in North Dakota (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    North Dakota (Million Cubic Feet) North Dakota Natural Gas Processed in North Dakota (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 111,925 177,995 231,935 301,661 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Processed North Dakota-North Dakota

  14. North Dakota Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    for your school's state, county, city, or district. For more information, please visit the High School Coach page. New Dakota Region High School Regional North Dakota North Dakota...

  15. Market Assessment and Demonstration of Lignite FBC Ash Flowable Fill Applications

    SciTech Connect (OSTI)

    Alan E. Bland

    2003-09-30

    Montana-Dakota Utilities (MDU) and Western Research Institute (WRI) have been developing flowable fill materials formulated using ash from the Montana-Dakota Utilities R. M. Heskett Station in Mandan, North Dakota. MDU and WRI have partnered with the U.S. Department of Energy (DOE) and the North Dakota Industrial Commission (NDIC) to further the development of these materials for lignite-fired fluidized-bed combustion (FBC) facilities. The MDU controlled density fill (CDF) appears to be a viable engineering material and environmentally safe. WRI is pursuing the commercialization of the technology under the trademark Ready-Fill{trademark}. The project objectives were to: (1) assess the market in the Bismarck-Mandan area; (2) evaluate the geotechnical properties and environmental compatibility; and (3) construct and monitor demonstrations of the various grades of flowable fill products in full-scale demonstrations. The scope of initial phase of work entailed the following: Task I--Assess Market for MDU Flowable Fill Products; Task II--Assess Geotechnical and Environmental Properties of MDU Flowable Fill Products; and Task III--Demonstrate and Monitor MDU Flowable Fill Products in Field-Scale Demonstrations. The results of these testing and demonstration activities proved the following: (1) The market assessment indicated that a market exists in the Bismarck-Mandan area for structural construction applications, such as sub-bases for residential and commercial businesses, and excavatable fill applications, such as gas line and utility trench filling. (2) The cost of the MDU flowable fill product must be lower than the current $35-$45/cubic yard price if it is to become a common construction material. Formulations using MDU ash and lower-cost sand alternatives offer that opportunity. An estimated market of 10,000 cubic yards of MDU flowable fill products could be realized if prices could be made competitive. (3) The geotechnical properties of the MDU ash-based flowable fill can be modified to meet the needs of a range of applications from structural fill applications to excavatable applications, such as utility trench fill. (4) Environmental assessments using standard testing indicate that the environmental properties of the fill materials are compatible with numerous construction applications and do not pose a threat to either adjacent groundwater or soils. (5) WRI developed an Environmental Field Simulator (EFS) method for assessing the impact of flowable fill materials on adjacent soils and found that the zone of impact is less than a couple of inches, thereby posing no threat to adjacent soils. (6) Field-scale demonstrations of the MDU flowable fill were constructed and were successful for structural, as well as excavatable applications. Monitoring has demonstrated the geotechnical performance, environmental performance, and compatibility with common embed materials with the MDU flowable fill products. Technical and economic issues were identified that may hinder the commercial acceptance of MDU flowable fill materials, including: (1) the ability to produce a consistent product; (2) the ability to provide a product year round (cold weather retards strength development); and (3) the ability to evaluate and produce commercial quantities of MDU flowable fill using inexpensive materials.

  16. North Dakota Energy Workforce Development

    SciTech Connect (OSTI)

    Carter, Drake

    2014-12-29

    Bismarck State College, along with its partners (Williston State College, Minot State University and Dickinson State University), received funding to help address the labor and social impacts of rapid oilfield development in the Williston Basin of western North Dakota. Funding was used to develop and support both credit and non-credit workforce training as well as four major symposia designed to inform and educate the public; enhance communication and sense of partnership among citizens, local community leaders and industry; and identify and plan to ameliorate negative impacts of oil field development.

  17. North Dakota Natural Gas Plant Liquids Production Extracted in North Dakota

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) North Dakota (Million Cubic Feet) North Dakota Natural Gas Plant Liquids Production Extracted in North Dakota (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 48,504 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent North Dakota-North

  18. South Dakota Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Dakota Primary Renewable Energy Capacity Source Hydro ... Conventional 1,594 44.0 Solar - - Wind 629 17.3 WoodWood ...Landfill Gas - - Other Biomass - 0.0 - No data reported. ...

  19. Categorical Exclusion Determinations: North Dakota | Department...

    Energy Savers [EERE]

    ... Carbon Dioxide Storage Efficiency in Deep Saline Formations CX(s) Applied: A9 Date: 0423... University of North Dakota- Novel Dry Cooling Technology for Power Plants CX(s) Applied: ...

  20. North Dakota Refining Capacity Study

    SciTech Connect (OSTI)

    Dennis Hill; Kurt Swenson; Carl Tuura; Jim Simon; Robert Vermette; Gilberto Marcha; Steve Kelly; David Wells; Ed Palmer; Kuo Yu; Tram Nguyen; Juliam Migliavacca

    2011-01-05

    According to a 2008 report issued by the United States Geological Survey, North Dakota and Montana have an estimated 3.0 to 4.3 billion barrels of undiscovered, technically recoverable oil in an area known as the Bakken Formation. With the size and remoteness of the discovery, the question became 'can a business case be made for increasing refining capacity in North Dakota?' And, if so what is the impact to existing players in the region. To answer the question, a study committee comprised of leaders in the region's petroleum industry were brought together to define the scope of the study, hire a consulting firm and oversee the study. The study committee met frequently to provide input on the findings and modify the course of the study, as needed. The study concluded that the Petroleum Area Defense District II (PADD II) has an oversupply of gasoline. With that in mind, a niche market, naphtha, was identified. Naphtha is used as a diluent used for pipelining the bitumen (heavy crude) from Canada to crude markets. The study predicted there will continue to be an increase in the demand for naphtha through 2030. The study estimated the optimal configuration for the refinery at 34,000 barrels per day (BPD) producing 15,000 BPD of naphtha and a 52 percent refinery charge for jet and diesel yield. The financial modeling assumed the sponsor of a refinery would invest its own capital to pay for construction costs. With this assumption, the internal rate of return is 9.2 percent which is not sufficient to attract traditional investment given the risk factor of the project. With that in mind, those interested in pursuing this niche market will need to identify incentives to improve the rate of return.

  1. City of Park River, North Dakota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Park River, North Dakota (Utility Company) Jump to: navigation, search Name: City of Park River Place: North Dakota Phone Number: 701.284.6150 Website: www.parkrivernd.govoffice2.c...

  2. City of Hope, North Dakota (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Hope, North Dakota (Utility Company) Jump to: navigation, search Name: City of Hope Place: North Dakota Phone Number: 701-945-2772 Website: www.hopend.com Outage Hotline:...

  3. Hope, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Hope is a city in Steele County, North Dakota. It falls under North Dakota's At-large...

  4. Bucyrus, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Bucyrus is a city in Adams County, North Dakota. It falls under North Dakota's At-large congressional...

  5. Hettinger, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Hettinger is a city in Adams County, North Dakota. It falls under North Dakota's At-large congressional...

  6. Reeder, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Reeder is a city in Adams County, North Dakota. It falls under North Dakota's At-large congressional...

  7. Haynes, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Haynes is a city in Adams County, North Dakota. It falls under North Dakota's At-large congressional...

  8. Adams, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Adams is a city in Walsh County, North Dakota. It falls under North Dakota's At-large...

  9. Minn-Dakota Wind Farm II | Open Energy Information

    Open Energy Info (EERE)

    II Jump to: navigation, search Name Minn-Dakota Wind Farm II Facility Minn-Dakota Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  10. North Dakota Wind II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name North Dakota Wind II Wind Farm Facility North Dakota Wind II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  11. Alamo, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Alamo is a city in Williams County, North Dakota. It falls under North Dakota's At-large congressional...

  12. City of Big Stone City, South Dakota (Utility Company) | Open...

    Open Energy Info (EERE)

    City, South Dakota (Utility Company) Jump to: navigation, search Name: City of Big Stone City Place: South Dakota Phone Number: (605) 862-8121 Website: www.bigstonecitysd.govoffice...

  13. Dakota Electric Association- Commercial and Industrial Custom Energy Grant Program

    Broader source: Energy.gov [DOE]

    Dakota Electric will conduct an inspection of the project site prior to approval, and grant applications must earn pre-approval from Dakota Electric before any work begins. To qualify for rebates...

  14. City of White, South Dakota (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    White, South Dakota (Utility Company) Jump to: navigation, search Name: City of White Place: South Dakota Phone Number: 605-629-2601 Website: www.white.govoffice2.comindex Outage...

  15. Traill County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Dakota. Its FIPS County Code is 097. It is classified as ASHRAE 169-2006 Climate Zone Number 7 Climate Zone Subtype A. Places in Traill County, North Dakota Buxton, North...

  16. Aberdeen, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Aberdeen is a city in Brown County, South Dakota. It falls under South Dakota's At-large congressional...

  17. EA-351 DC Energy Dakota, LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Order authorizing DC Energy Dakota, LLC to export electric energy to Canada PDF icon ... EA-351 DC Energy Dakota, LLC EA-344 Twin Cities Power-Canada, LLC EA-354 Endure Energy, ...

  18. West Central Electric Coop Inc (South Dakota) | Open Energy Informatio...

    Open Energy Info (EERE)

    West Central Electric Coop Inc (South Dakota) Jump to: navigation, search Name: West Central Electric Coop Inc Place: South Dakota Phone Number: 605-669-8100 Website: www.wce.coop...

  19. West Fargo, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. West Fargo is a city in Cass County, North Dakota. It falls under North Dakota's At-large...

  20. North Dakota Industrial Commission, Oil and Gas Divisioin | Open...

    Open Energy Info (EERE)

    in Bismarck, North Dakota. About The Oil and Gas Division regulates the drilling and production of oil and gas in North Dakota. Our mission is to encourage and promote the...

  1. Gidaspow, D.; Bezburuah, R.; Ding, J. 01 COAL, LIGNITE, AND PEAT...

    Office of Scientific and Technical Information (OSTI)

    fluidized beds: Kinetic theory approach Gidaspow, D.; Bezburuah, R.; Ding, J. 01 COAL, LIGNITE, AND PEAT; 42 ENGINEERING; 99 GENERAL AND MISCELLANEOUSMATHEMATICS,...

  2. JV Task 98 - Controlling Mercury Emissions for Utilities Firing Lignites from North America

    SciTech Connect (OSTI)

    Steven Benson

    2007-06-15

    This project compiled and summarized the findings and conclusions of research, development, and demonstration projects on controlling mercury from lignite coals. A significant amount of work has been conducted since 1994 on mercury in lignite, mercury measurement in flue gases, sorbent, sorbent enhancement additives, oxidation agent development, and full-scale demonstration of mercury control technologies. This report is focused on providing the lignite industry with an understanding of mercury issues associated with the combustion of lignite, as well as providing vital information on the methods to control mercury emissions in coal-fired power plants.

  3. Alternative Fuels Data Center: North Dakota Transportation Data for

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuels and Vehicles Dakota Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: North Dakota Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: North Dakota Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: North Dakota Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative

  4. Energy Incentive Programs, North Dakota | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dakota Energy Incentive Programs, North Dakota Updated April 2015 North Dakota utilities budgeted about $1 million in 2013 to promote energy efficiency and load management in the state. What public-purpose-funded energy efficiency programs are available in my state? North Dakota has no public-purpose-funded energy efficiency programs. What utility energy efficiency programs are available to me? Otter Tail Power Company offers rebates for efficient air-source heat pumps, electric water heaters,

  5. Energy Incentive Programs, South Dakota | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    South Dakota Energy Incentive Programs, South Dakota Updated April 2015 South Dakota utilities budgeted over $3 million in 2013 to promote energy efficiency and load management in the state. What public-purpose-funded energy efficiency programs are available in my state? South Dakota has no public-purpose-funded energy efficiency programs. What utility energy efficiency programs are available to me? Black Hills Power (BHP) offers prescriptive and custom rebates for energy-efficient electric

  6. EIS-0025: Miles City-New Underwood 230-kV Electrical Transmission Line, Montana, North Dakota, and South Dakota

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Western Area Power Administration prepared this statement to assess the environmental and socioeconomic implications of its proposed action to construct a 3.28-mile, 230-kV transmission line between Miles City and Baker, Montana, Hettinger, North Dakota, and New Underwood, South Dakota, in Custer and Fallon Counties in Montana, Adams, Bowman, and Slope Counties in North Dakota and Meade, Pennington, and Perkins Counties in South Dakota.

  7. North Dakota Shale Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Shale Production (Billion Cubic Feet) North Dakota Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3 3 25 2010's 64 95 203 268 426 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Estimated Production North Dakota Shale Gas Proved Reserves, Reserves Changes,

  8. DAKOTA JAGUAR 2.1 user's Manual.

    SciTech Connect (OSTI)

    Adams, Brian M.; Lefantzi, Sophia; Chan, Ethan; Ruthruff, Joseph R.

    2011-06-01

    JAGUAR (JAva GUi for Applied Research) is a Java software tool providing an advanced text editor and graphical user interface (GUI) to manipulate DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) input specifications. This document focuses on the features necessary for a user to use JAGUAR.

  9. DAKOTA JAGUAR 3.0 user's manual.

    SciTech Connect (OSTI)

    Adams, Brian M.; Bauman, Lara E; Chan, Ethan; Lefantzi, Sophia; Ruthruff, Joseph R.

    2013-05-01

    JAGUAR (JAva GUi for Applied Research) is a Java software tool providing an advanced text editor and graphical user interface (GUI) to manipulate DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) input specifications. This document focuses on the features necessary to use JAGUAR.

  10. EA-1920: Border Winds 2, North Dakota

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing this EA to evaluate the environmental impacts of a proposed wind turbine generation facility in Rolette and Towner Counties in North Dakota. If the proposal is implemented, power generated by this facility would interconnect at an existing substation and would be distributed via an existing transmission line owned and operated by Western.

  11. JV Task - 129 Advanced Conversion Test - Bulgarian Lignite

    SciTech Connect (OSTI)

    Michael Swanson; Everett Sondreal; Daniel Laudal; Douglas Hajicek; Ann Henderson; Brandon Pavlish

    2009-03-27

    The objectives of this Energy & Environmental Research Center (EERC) project were to evaluate Bulgarian lignite performance under both fluid-bed combustion and gasification conditions and provide a recommendation as to which technology would be the most technically feasible for the particular feedstock and also identify any potential operating issues (such as bed agglomeration, etc.) that may limit the applicability of a potential coal conversion technology. Gasification tests were run at the EERC in the 100-400-kg/hr transport reactor development unit (TRDU) on a 50-tonne sample of lignite supplied by the Bulgarian Lignite Power Project. The quality of the test sample was inferior to any coal previously tested in this unit, containing 50% ash at 26.7% moisture and having a higher heating value of 5043 kJ/kg after partial drying in preparation for testing. The tentative conclusion reached on the basis of tests in the TRDU is that oxygen-blown gasification of this high-ash Bulgarian lignite sample using the Kellogg, Brown, and Root (KBR) transport gasifier technology would not provide a syngas suitable for directly firing a gas turbine. After correcting for test conditions specific to the pilot-scale TRDU, including an unavoidably high heat loss and nitrogen dilution by transport air, the best-case heating value for oxygen-blown operation was estimated to be 3316 kJ/m{sup 3} for a commercial KRB transport gasifier. This heating value is about 80% of the minimum required for firing a gas turbine. Removing 50% of the carbon dioxide from the syngas would increase the heating value to 4583 kJ/m{sup 3}, i.e., to about 110% of the minimum requirement, and 95% removal would provide a heating value of 7080 kJ/m{sup 3}. Supplemental firing of natural gas would also allow the integrated gasification combined cycle (IGCC) technology to be utilized without having to remove CO{sub 2}. If removal of all nitrogen from the input gas streams such as the coal transport air were achieved, a heating value very close to that needed to fire a gas turbine would be achieved; however, some operational issues associated with utilizing recycled syngas or carbon dioxide as the transport gas would also have to be resolved. Use of a coal with a quality similar to the core samples provided earlier in the test program would also improve the gasifier performance. Low cold-gas efficiencies on the order of 20% calculated for oxygen-blown tests resulted in part from specific difficulties experienced in trying to operate the pilot-scale TRDU on this very high-ash lignite. These low levels of efficiency are not believed to be representative of what could be achieved in a commercial KRB transport gasifier. Combustion tests were also performed in the EERC's circulating fluidized-bed combustor (CFBC) to evaluate this alternative technology for use of this fuel. It was demonstrated that this fuel does have sufficient heating value to sustain combustion, even without coal drying; however, it will be challenging to economically extract sufficient energy for the generation of steam for electrical generation. The boiler efficiency for the dried coal was 73.5% at 85% sulfur capture (21.4% moisture) compared to 55.3% at 85% sulfur capture (40% moisture). Improved boiler efficiencies for this coal will be possible operating a system more specifically designed to maximize heat extraction from the ash streams for this high-ash fuel. Drying of the coal to approximately 25% moisture probably would be recommended for either power system. Fuel moisture also has a large impact on fuel feedability. Pressurized gasifiers generally like drier fuels than systems operating at ambient pressures. The commercially recommended feedstock moisture for a pressurized transport reactor gasifier is 25% moisture. Maximum moisture content for a CFB system could be approximately 40% moisture as has been demonstrated on the Alstom CFB operating on Mississippi lignite. A preliminary economic evaluation for CO{sub 2} was performed on the alternatives of (1) precombustion separation of CO{sub 2} in an IGCC using the KBR transport gasifier and (2) postcombustion CO{sub 2} capture using a CFBC. It appears that the capture of CO{sub 2} from the high-pressure IGCC precombustion system would be less costly than from the low-pressure postcombustion CFBC system by a factor of 1.5, although the cost difference is not directly comparable because of the model input being limited to a higher coal quality than the Bulgarian lignite. While the decision to pursue precombustion removal of carbon dioxide has been technically proven with the Rectisol{reg_sign} and Selexol{trademark} processes, General Electric and Siemens have not sold any gas turbine systems running on the high-hydrogen syngas. They have successfully demonstrated a gas turbine on syngases containing up to 95% hydrogen. The technological hurdles should not be too difficult given this experience in the gas turbine industry.

  12. Bioprocessing of lignite coals using reductive microorganisms. Final technical report, September 30, 1988--March 29, 1992

    SciTech Connect (OSTI)

    Crawford, D.L.

    1992-03-29

    In order to convert lignite coals into liquid fuels, gases or chemical feedstock, the macromolecular structure of the coal must be broken down into low molecular weight fractions prior to further modification. Our research focused on this aspect of coal bioprocessing. We isolated, characterized and studied the lignite coal-depolymerizing organisms Streptomyces viridosporus T7A, Pseudomonas sp. DLC-62, unidentified bacterial strain DLC-BB2 and Gram-positive Bacillus megaterium strain DLC-21. In this research we showed that these bacteria are able to solubilize and depolymerize lignite coals using a combination of biological mechanisms including the excretion of coal solublizing basic chemical metabolites and extracellular coal depolymerizing enzymes.

  13. Montana-Dakota Utilities- Commercial Energy Efficiency Incentive Program

    Broader source: Energy.gov [DOE]

    Montana-Dakota Utilities (MDU) offers a variety of rebates to commercial customers for the purchase and installation of energy efficient lighting measures, air conditioning equipment, variable...

  14. Montana-Dakota Utilities- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Montana-Dakota Utilities (MDU) offers several residential rebates on energy efficient equipment for natural gas and electric customers. Natural gas customers are eligible for rebates on furnaces...

  15. Central Adams, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Central Adams, North Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.1382966, -102.6799359 Show Map Loading map......

  16. West Adams, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Adams, North Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.1901728, -102.9074546 Show Map Loading map... "minzoom":false,"mappings...

  17. East Adams, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Adams, North Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.1228923, -102.293303 Show Map Loading map... "minzoom":false,"mappingse...

  18. ,"South Dakota Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  19. ,"South Dakota Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    LNG Storage Additions (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota...

  20. City of Brookings, South Dakota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    to: navigation, search Name: Brookings City of Place: South Dakota Phone Number: (605) 692-6325 Website: www.brookingsutilities.com Outage Hotline: (605) 692-6325 References:...

  1. ,"North Dakota Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","102015" ,"Release Date:","12...

  2. ,"South Dakota Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","102015" ,"Release Date:","12...

  3. North Dakota Company Wins Praise for Wind Projects | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Photo courtesy of Basin Electric Power Cooperative Stephen Graff Former Writer & editor for Energy Empowers, EERE Wind energy is taking off in the Dakotas, contributing ...

  4. ,"South Dakota Natural Gas Deliveries to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Deliveries to Electric Power Consumers (MMcf)",1,"Monthly","102015" ,"Release...

  5. ,"South Dakota Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  6. ,"North Dakota Natural Gas Deliveries to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Deliveries to Electric Power Consumers (MMcf)",1,"Monthly","102015" ,"Release...

  7. ,"North Dakota Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

  8. Irene, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Irene, South Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.0830474, -97.1606081 Show Map Loading map... "minzoom":false,"mappingse...

  9. Clay County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    South Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.8829344, -97.0068393 Show Map Loading map... "minzoom":false,"mappingservice":...

  10. Vermillion, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Vermillion, South Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.7794417, -96.9292104 Show Map Loading map... "minzoom":false,"mapp...

  11. Wakonda, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wakonda, South Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.0083269, -97.1067167 Show Map Loading map... "minzoom":false,"mapping...

  12. ,"North Dakota Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Gross Withdrawals and Production",10,"Monthly","22016","1151989" ,"Release ...

  13. Prairie Rose, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Rose, North Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.8174651, -96.8356389 Show Map Loading map... "minzoom":false,"mappingser...

  14. ,"North Dakota Natural Gas Pipeline and Distribution Use Price...

    U.S. Energy Information Administration (EIA) Indexed Site

    ies","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005 ,"Release Date:","9...

  15. Billings County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Billings County, North Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.0560305, -103.3906121 Show Map Loading map......

  16. Dakota County, Nebraska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Nebraska Dakota City, Nebraska Emerson, Nebraska Homer, Nebraska Hubbard, Nebraska Jackson, Nebraska South Sioux City, Nebraska Retrieved from "http:en.openei.orgw...

  17. South Dakota Wind Application Center | Open Energy Information

    Open Energy Info (EERE)

    Dakota. Its stated mission is to "Promote wind energy through project development and education."2 References "SDWAC's "Contact" Page" "SDWAC Homepage" External links...

  18. Energy Department and South Dakota Tribal Leaders Explore Ways...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... We invited all of the South Dakota tribal leaders to join the conversation. The response ... We approach this daunting task with a dual focus on improving infrastructure resilience ...

  19. Redfield, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Redfield, South Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.8758095, -98.5187062 Show Map Loading map... "minzoom":false,"mappin...

  20. West Morton, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    "alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map West Morton is a unorganized territory in Morton County, North Dakota. It falls under North...

  1. North Dakota's At-large congressional district: Energy Resources...

    Open Energy Info (EERE)

    Electric Motorcars Government of North Dakota M Power LLC Nor-son Construction Plains CO2 Reduction Partnership PCOR Tharaldson Ethanol LLC Wanzek Construction Inc Retrieved...

  2. South Dakota's At-large congressional district: Energy Resources...

    Open Energy Info (EERE)

    At-large congressional district Black Hills Corporation Broin Associates Broin Enterprises Capitaline Advisors LLC Dakota Ethanol Deadwood Biofuels LLC Kramer Energy Group...

  3. South Dakota/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    >> South Dakota Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  4. North Dakota/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    >> North Dakota Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  5. Great Bend, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Great Bend, North Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.1538473, -96.8020228 Show Map Loading map... "minzoom":false,"mapp...

  6. Dakota County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Landfill Biomass Facility Pine Bend Biomass Facility Places in Dakota County, Minnesota Apple Valley, Minnesota Burnsville, Minnesota Coates, Minnesota Eagan, Minnesota Farmington,...

  7. EA-1955: Campbell County Wind Farm; Campbell County, South Dakota...

    Broader source: Energy.gov (indexed) [DOE]

    an EA that analyzes the potential environmental impacts of a proposal to interconnect, via a proposed new substation, a proposed Dakota Plains Energy, LLC, 99-megawatt wind farm...

  8. Ramsey County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Ramsey County, North Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 48.3076017, -98.7287191 Show Map Loading map......

  9. EIS-0401: NextGen Project, South Dakota

    Broader source: Energy.gov [DOE]

    This EIS analyzes WAPA's proposed action for the construction and operation of the proposed NextGen Energy Facility (Project) in South Dakota.

  10. Ward County, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Ward County, North Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 48.2147451, -101.5805256 Show Map Loading map......

  11. Colman, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Inc. Smart Grid Project Utility Companies in Colman, South Dakota Sioux Valley SW Elec Coop References US Census Bureau Incorporated place and minor civil division...

  12. North Dakota Crude Oil + Lease Condensate Proved Reserves (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    North Dakota Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Crude Oil plus ...

  13. South Dakota Quantity of Production Associated with Reported...

    Gasoline and Diesel Fuel Update (EIA)

    Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) South Dakota Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet)...

  14. North Dakota Quantity of Production Associated with Reported...

    U.S. Energy Information Administration (EIA) Indexed Site

    Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) North Dakota Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet)...

  15. Gardner, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Gardner, North Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.1471966, -96.9678613 Show Map Loading map... "minzoom":false,"mapping...

  16. Microbial desulphurization of Turkish lignites by White Rot Fungi

    SciTech Connect (OSTI)

    Pinar Aytar; Mesut Sam; Ahmet Cabuk

    2008-03-15

    Biodesulphurization experiments were carried out with Tuncbilek lignite, characterized by high sulfur content (2.59%) by using Trametes versicolor ATCC 200801 and Phanerochaete chrysosporium ME 446. At fungal biomass studies, the effects of various parameters on fungal desulphurization of coals such as pH, temperature, pulp density, incubation time, and sterilization were investigated for both microorganisms. The maximum desulphurization (40%) was observed after 6 days of incubation at 35{sup o}C for T. versicolor. The optimum pH was measured at 6, and the agitation rate was fixed at 125 rpm. The pulp density was found as 5% (w/v) for the high extent of desulphurization. Also, calorific value did not change during this experiment. However, the ash and metal contents of coal were eliminated. 30 refs., 6 figs., 2 tabs.

  17. South Dakota Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 3,623 100.0 Total Net Summer Renewable Capacity 2,223 61.3 Geothermal - - Hydro Conventional 1,594 44.0 Solar - - Wind 629 17.3 Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 10,050 100.0 Total

  18. DOE-Sponsored Field Test Finds Potential for Permanent Storage of CO2 in Lignite Seams

    Broader source: Energy.gov [DOE]

    A field test sponsored by the U.S. Department of Energy has demonstrated that opportunities to permanently store carbon in unmineable seams of lignite may be more widespread than previously documented.

  19. South Dakota Wind Resource Assessment Network (WRAN)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    WRAN is a network of instrument stations sited throughout South Dakota. As of 2010, there are eleven stations, and some have been collecting data since 2001. The purpose of the WRAN:

    There are several reasons why the WRAN was built. One of the most obvious is that it will allow verification of the existing resource assessments of our state. South Dakota has tremendous potential as an exporter of wind-generated electricity. There has recently been a great deal of publicity over a Pacific Northwest National Laboratories study conducted in the early 1990s that ranked the contiguous 48 states in terms of their potential to produce windpower. (Click here for the results of this study as given by the American Wind Energy Association.) South Dakota ranked fourth in that study. Also, more recently, detailed maps of the wind resource in South Dakota were produced by the National Renewable Energy Laboratory (NREL). Unfortunately, both of these studies had to rely heavily on computer-generated models and very sparse measured data, because very little appropriate measured data exists. The WRAN will provide valuable data that we anticipate will validate the NREL maps, and perhaps suggest minor adjustments.

    There are many other benefits the WRAN will provide. The data it will measure will be at heights above ground that are more appropriate for predicting the performance of large modern wind turbines, as opposed to data collected at National Weather Service stations whose anemometers are usually only about 9 m (30 feet) above ground. Also, we will collect some different types of data than most wind measurement networks, which will allow a series of important studies of the potential impact and value of South Dakota's windpower. In addition, all of the WRAN data will be made available to the public via this WWWeb site. This will hopefully enable extensive informed discussion among all South Dakotans on such important topics as rural economic development and transmission system expansion. [Copied from http://sdwind.com/about/

  20. EA-1955: Campbell County Wind Farm; Campbell County, South Dakota

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration (Western) prepared an EA that analyzes the potential environmental impacts of a proposal to interconnect, via a proposed new substation, a proposed Dakota Plains Energy, LLC, 99-megawatt wind farm near Pollock, South Dakota, to Western’s existing transmission line at that location.

  1. North Dakota Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 6,188 100.0 Total Net Summer Renewable Capacity 1,941 31.4 Geothermal - - Hydro Conventional 508 8.2 Solar - - Wind 1,423 23.0 Wood/Wood Waste - - MSW/Landfill Gas - - Other Biomass 10 0.2 Generation (thousand megawatthours) Total Electricity Net Generation 34,740 100.0 Total Renewable Net Generation 6,150

  2. North Dakota Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    North Dakota" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy Generation Source","Wind" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",6188,100 "Total Net Summer Renewable Capacity",1941,31.4 " Geothermal","-","-" " Hydro Conventional",508,8.2 "

  3. South Dakota Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",3623,100 "Total Net Summer Renewable Capacity",2223,61.3 " Geothermal","-","-" " Hydro Conventional",1594,44 "

  4. Montana Natural Gas Processed in North Dakota (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    North Dakota (Million Cubic Feet) Montana Natural Gas Processed in North Dakota (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 176 865 1,460 1,613 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Processed Montana-North Dakota

  5. Montana Natural Gas Plant Liquids Production Extracted in North Dakota

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) North Dakota (Million Cubic Feet) Montana Natural Gas Plant Liquids Production Extracted in North Dakota (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 303 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Montana-North Dakota

  6. Western Gulf Coast Analysis | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SheetsWestern Gulf Coast Analysis content top Western Gulf Coast Analysis One focus area for NISAC is the importance of local and regional infrastructures-understanding their interactions and importance to our overall national economic health. In 2004 and 2005, NISAC evaluated the western Gulf Coast region. NISAC developed a National Petroleum System Simulator to evaluate the potential short-term effects of disruptions in the western Gulf Coast petroleum infrastructure operations on the rest of

  7. South Dakota Natural Gas Industrial Consumption (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    South Dakota Natural Gas Industrial Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 513 451 449 370 329 253 260 259 287 329 343 367 2002 ...

  8. Logan County, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Logan County is a county in North Dakota. Its FIPS County Code is 047. It is classified as...

  9. City of Colman, South Dakota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    index.asp?SEC Facebook: https:www.facebook.compagesColman-South-Dakota341612992034?refhl Outage Hotline: (605) 534-3611 References: EIA Form EIA-861 Final Data File for 2010...

  10. North Dakota Dry Natural Gas New Reservoir Discoveries in Old...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) North Dakota Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  11. Adams County, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Adams County is a county in North Dakota. Its FIPS County Code is 001. It is classified as...

  12. South Dakota State UniversitySGI/DOE Regional Biomass Feedstock...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    South Dakota State University SGIDOE Regional Biomass Feedstock Partnership Competitive Grants (Award GO88073; WBS 7.6.2.6) 23-27 March 2015 Technology Area Review: Feedstock ...

  13. Campbell County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Campbell County is a county in South Dakota. Its FIPS County Code is 021. It is classified as...

  14. Williams County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Williams County is a county in North Dakota. Its FIPS County Code is 105. It is classified as...

  15. Grand Forks County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Dakota. Its FIPS County Code is 035. It is classified as ASHRAE 169-2006 Climate Zone Number 7 Climate Zone Subtype A. Registered Energy Companies in Grand Forks County, North...

  16. Potter County, South Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Potter County is a county in South Dakota. Its FIPS County Code is 107. It is classified as...

  17. Dakota Electric Association- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Rebates are limited to 50% of the project cost up to a maximum of $100,000. Customers who wish to participate in this rebate program should call Dakota Electric Association before the new equipme...

  18. Brown County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Brown County is a county in South Dakota. Its FIPS County Code is 013. It is classified as...

  19. Jackson County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Jackson County is a county in South Dakota. Its FIPS County Code is 071. It is classified as...

  20. Pierce County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Pierce County is a county in North Dakota. Its FIPS County Code is 069. It is classified as...

  1. South Dakota Wind Energy Association | Open Energy Information

    Open Energy Info (EERE)

    South Dakota Wind Energy Association Address: 300 East Capitol Ave. Place: Pierre, SD Zip: 57501 Phone Number: 605.716.2981 Website: www.sdwind.org Coordinates: 44.364176,...

  2. North Dakota Natural Gas Number of Industrial Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Industrial Consumers (Number of Elements) North Dakota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  3. Stanley County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Stanley County is a county in South Dakota. Its FIPS County Code is 117. It is classified as...

  4. City of Tyndall, South Dakota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Place: South Dakota Phone Number: (605)-589-3481 Website: tyndallsd.comgovernment.html Outage Hotline: (605)-589-3481 References: EIA Form EIA-861 Final Data File for 2010 -...

  5. Nelson County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Nelson County is a county in North Dakota. Its FIPS County Code is 063. It is classified as...

  6. sorbent-univerisity-north-dakota | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation of CO2 Capture from Existing Coal-Fired Plants by Hybrid Sorption Using Solid Sorbents (CACHYS(tm)) Project No.: DE-FE0007603 The University of North Dakota (UND) is...

  7. Douglas Electric Coop, Inc (South Dakota) | Open Energy Information

    Open Energy Info (EERE)

    Coop, Inc Place: South Dakota Phone Number: 541.673.6616 Website: douglaselectric.com Outage Hotline: 1.800.233.2733 Outage Map: ebill.douglaselectric.comwoVi References: EIA...

  8. Dewey County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Dewey County is a county in South Dakota. Its FIPS County Code is 041. It is classified as...

  9. North Dakota Heat Content of Natural Gas Deliveries to Consumers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) North Dakota Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr ...

  10. South Dakota Heat Content of Natural Gas Deliveries to Consumers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) South Dakota Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr ...

  11. Perkins County, South Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Perkins County is a county in South Dakota. Its FIPS County Code is 105. It is classified as...

  12. Bio-liquefaction/solubilization of lignitic humic acids by white-rot fungus (Phanerochaete chrysosporium)

    SciTech Connect (OSTI)

    Elbeyli, I.Y.; Palantoken, A.; Piskin, S.; Peksel, A.; Kuzu, H.

    2006-08-15

    Humic acid samples obtained from lignite were liquefied/solubilized by using white-rot fungus, and chemical characterization of the products was investigated by FTIR and GC-MS techniques. Prior to the microbial treatment, raw lignite was oxidized with hydrogen peroxide and nitric acid separately, and then humic acids were extracted by alkali solution. The prepared humic acid samples were placed on the agar surface of the fungus and liquid products formed by microbial affects were collected. The products were analyzed and the chemical properties were compared. The results show that oxidation agent and oxidation degree affect composition of the liquid products formed by microbial attack.

  13. South Dakota Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Processed (Million Cubic Feet) South Dakota Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 113 86 71 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Processed South Dakota Natural Gas Plant Processing Natural Gas Processed

  14. Williston Basin. Gulf's CO/sub 2/ mini-test at Little Knife being evaluated

    SciTech Connect (OSTI)

    Hess, T.

    1981-10-01

    The Gulf Oil Exploration and Production Co. nonproducing CO/sub 2/ mini-test at Little Knife field is complete and under evaluation. Although Gulf and the Department of Energy, cosponsors of the $5.62-million project in Billings County, North Dakota, say it is premature to draw conclusions, it appears field test results mirror those achieved in laboratory tests. CO/sub 2/ and tracers have shown up in the observation wells. The objective was to show that CO/sub 2/ miscible displacement is potentially a commercial method of recovering crude oil from high-saturation carbonate reservoirs that have not been extensively waterflooded. The mini-test site, 3-144N-98W in Little Knife field, was appropriate because it was representative of the field.

  15. DAKOTA Design Analysis Kit for Optimization and Terascale

    Energy Science and Technology Software Center (OSTI)

    2010-02-24

    The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes (computational models) and iterative analysis methods. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and analysis of computational models on high performance computers.A user provides a set of DAKOTA commands in an input file andmore » launches DAKOTA. DAKOTA invokes instances of the computational models, collects their results, and performs systems analyses. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, polynomial chaos, stochastic collocation, and epistemic methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as hybrid optimization, surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. Services for parallel computing, simulation interfacing, approximation modeling, fault tolerance, restart, and graphics are also included.« less

  16. Lower Yellowstone R E A, Inc (North Dakota) | Open Energy Information

    Open Energy Info (EERE)

    Inc (North Dakota) Jump to: navigation, search Name: Lower Yellowstone R E A, Inc Place: North Dakota Phone Number: (406) 488-1602 Website: www.lyrec.com Facebook: https:...

  17. Adams County, North Dakota ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Adams County, North Dakota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, North Dakota ASHRAE Standard ASHRAE 169-2006 Climate...

  18. City of McLaughlin, South Dakota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    McLaughlin, South Dakota (Utility Company) Jump to: navigation, search Name: City of McLaughlin Place: South Dakota Phone Number: (605) 823-4428 Outage Hotline: (605) 823-4428...

  19. Gulf Powerbeat | Open Energy Information

    Open Energy Info (EERE)

    Powerbeat Place: Bahrain Product: Bahrain-based Gulf Powerbeat manufactures long life batteries and was acquired by Time Technoplast, through Time's subsidiary NED Energy....

  20. Gulf Ethanol Corp | Open Energy Information

    Open Energy Info (EERE)

    Gulf Ethanol Corp Jump to: navigation, search Name: Gulf Ethanol Corp Place: Houston, Texas Zip: 77055 Sector: Biomass Product: Focused on developing biomass preprocessing...

  1. Crude Oil Imports From Persian Gulf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crude Oil Imports From Persian Gulf January - December 2015 | Release Date: February 29, 2016 | Next Release Date: August 31, 2016 2015 Crude Oil Imports From Persian Gulf ...

  2. Gulf Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Gulf Wind Farm Facility Gulf Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Pattern Energy...

  3. Co-liquefaction of the Elbistan Lignite and Poplar Sawdust. Part I: The Effect of the Liquefaction Parameters

    SciTech Connect (OSTI)

    Karaca, H.; Acar, M.; Yilmaz, M.; Keklik, I.

    2009-07-01

    In this study, the liquefaction of Elbistan lignite and poplar sawdust, and the co-liquefaction of the Elbistan lignite and the poplar sawdust in an inert atmosphere and in non-catalytic conditions have been examined. Also, the effects of solvent/coal ratio and stirring speed on the total conversion derived as the result of the liquefaction process was attempted to be determined. Based on the results, although the effects of the solvent/coal ratio and the stirring speed on total conversion are similar for both the Elbistan lignite and the poplar sawdust, it was also noted that, under similar conditions, the conversion for the poplar sawdust was higher, as compared to the conversion of the Elbistan lignite. As the result of the liquefaction of Elbistan lignite and poplar sawdust under inert atmospheric conditions, the total conversion was increased partially, depending on both solvent/coal ratio and the speed of stirring. However, it was also noted that the total conversion did not change to a significant extent in high solvent/coal ratios and in stirring speed. As the result of the co-liquefaction of the Elbistan lignite and poplar sawdust under inert atmospheric conditions, total conversion was increased, based on the solvent/coal ratio. However, as in the case of the liquefaction of Elbistan lignite and poplar sawdust, it was noted that the high solvent/coal ratios (i.e., solvent/coal ratios of higher than 2/1) did not have a significant effect on the total conversion that was derived as the result of the co-liquefaction of the Elbistan lignite and poplar sawdust.

  4. South Dakota Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    South Dakota Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Plant Fuel Consumption South Dakota Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas

  5. North Dakota Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    North Dakota Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 North Dakota Coalbed Methane Proved Reserves, Reserves

  6. North Dakota Shale Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Proved Reserves (Billion Cubic Feet) North Dakota Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 21 24 368 2010's 1,185 1,649 3,147 5,059 6,442 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31 North Dakota Shale Gas

  7. North Dakota Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 9 5 42 6 22 22 40 43 26 1 2010's 136 169 206 384 322 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Acquisitions North Dakota Dry

  8. North Dakota Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 7 8 46 1 11 1 53 39 25 2 2010's 47 113 237 13 557 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Sales North Dakota Dry Natural Gas Proved Reserves

  9. South Dakota Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  10. North Dakota Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  11. Advanced power assessment for Czech lignite. Task 3.6, Volume 1

    SciTech Connect (OSTI)

    Sondreal, E.A.; Mann, M.D.; Weber, G.W.; Young, B.C.

    1995-12-01

    The US has invested heavily in research, development, and demonstration of efficient and environmentally acceptable technologies for the use of coal. The US has the opportunity to use its leadership position to market a range of advanced coal-based technologies internationally. For example, coal mining output in the Czech Republic has been decreasing. This decrease in demand can be attributed mainly to the changing structure of the Czech economy and to environmental constraints. The continued production of energy from indigenous brown coals is a major concern for the Czech Republic. The strong desire to continue to use this resource is a challenge. The Energy and Environmental Research Center undertook two major efforts recently. One effort involved an assessment of opportunities for commercialization of US coal technologies in the Czech Republic. This report is the result of that effort. The technology assessment focused on the utilization of Czech brown coals. These coals are high in ash and sulfur, and the information presented in this report focuses on the utilization of these brown coals in an economically and environmentally friendly manner. Sections 3--5 present options for utilizing the as-mined coal, while Sections 6 and 7 present options for upgrading and generating alternative uses for the lignite. Contents include Czech Republic national energy perspectives; powering; emissions control; advanced power generation systems; assessment of lignite-upgrading technologies; and alternative markets for lignite.

  12. EIS-0418: PrairieWinds Project, South Dakota

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to approve the interconnection request from PrairieWinds for their South Dakota PrairieWinds Project, a 151.5-megawatt (MW) nameplate capacity wind powered generation facility, including 101 General Electric 1.5-MW wind turbine generators, electrical collector lines, collector substation, transmission line, communications system, and wind turbine service access roads.

  13. North Dakota: EERE-Funded Project Recycles Energy, Generates Electricity

    Broader source: Energy.gov [DOE]

    This SEP-funded project in Williston, North Dakota, places generators at oil production well sites to transform wellhead flare gas into high-quality, three-phase electricity,which is then sold to the local rural electric cooperatives. The modern, natural gas-fueled generators burn cleanly with ultra-low emissions ratings that exceed state and federal emissions standards.

  14. EIS-0072: Great Plains Gasification Project, Mercer County, North Dakota

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy prepared this EIS to evaluate the impacts of a project to construct a 125 million cubic feet per day coal gasification facility located in Mercer County, North Dakota. The Office of Fossil Energy adopted three environmental impact evaluation documents prepared by other Federal agencies to develop this EIS.

  15. EA-1979: Summit Wind Farm; Summit, South Dakota

    Broader source: Energy.gov [DOE]

    Western Area Power Administration (Western) prepared an EA that analyzes the potential environmental impacts of the proposed Summit Wind Farm, a proposed 99-MW wind farm south of Summit, South Dakota. The proposed wind farm would interconnect to Western’s existing transmission line within the footprint of the wind farm. .

  16. EA-1902: Northern Wind Project, Roberts County, South Dakota

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing an EA that evaluates the potential environmental impacts of the proposed Northern Wind Project in Summit, Roberts County, South Dakota. Additional information is available on the project webpage, http://www.wapa.gov/ugp/Environment/NorthernWindFarm.htm.

  17. Energy Department and South Dakota Tribal Leaders Explore Ways to Lower Energy Costs

    Broader source: Energy.gov [DOE]

    Learn how the Energy Department is providing South Dakota tribes with resources and technical assistance to help lower their energy costs.

  18. North Dakota - State Energy Profile Overview - U.S. Energy Information...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... North Dakota Department of Commerce, Division of Community Services, Office of Renewable Energy and Energy Efficiency, Weatherization Assistance more Play a short video to learn ...

  19. Experiences using DAKOTA stochastic expansion methods in computational simulations.

    SciTech Connect (OSTI)

    Templeton, Jeremy Alan; Ruthruff, Joseph R.

    2012-01-01

    Uncertainty quantification (UQ) methods bring rigorous statistical connections to the analysis of computational and experiment data, and provide a basis for probabilistically assessing margins associated with safety and reliability. The DAKOTA toolkit developed at Sandia National Laboratories implements a number of UQ methods, which are being increasingly adopted by modeling and simulation teams to facilitate these analyses. This report disseminates results as to the performance of DAKOTA's stochastic expansion methods for UQ on a representative application. Our results provide a number of insights that may be of interest to future users of these methods, including the behavior of the methods in estimating responses at varying probability levels, and the expansion levels for the methodologies that may be needed to achieve convergence.

  20. DAKOTA reliability methods applied to RAVEN/RELAP-7.

    SciTech Connect (OSTI)

    Swiler, Laura Painton; Mandelli, Diego; Rabiti, Cristian; Alfonsi, Andrea

    2013-09-01

    This report summarizes the result of a NEAMS project focused on the use of reliability methods within the RAVEN and RELAP-7 software framework for assessing failure probabilities as part of probabilistic risk assessment for nuclear power plants. RAVEN is a software tool under development at the Idaho National Laboratory that acts as the control logic driver and post-processing tool for the newly developed Thermal-Hydraulic code RELAP-7. Dakota is a software tool developed at Sandia National Laboratories containing optimization, sensitivity analysis, and uncertainty quantification algorithms. Reliability methods are algorithms which transform the uncertainty problem to an optimization problem to solve for the failure probability, given uncertainty on problem inputs and a failure threshold on an output response. The goal of this work is to demonstrate the use of reliability methods in Dakota with RAVEN/RELAP-7. These capabilities are demonstrated on a demonstration of a Station Blackout analysis of a simplified Pressurized Water Reactor (PWR).

  1. South Dakota PrairieWinds Project Executive Summary Executive Summary

    Office of Environmental Management (EM)

    PrairieWinds Project Executive Summary Executive Summary This executive summary is included in the beginning of the Draft Environmental Impact Statement (DEIS) for the South Dakota PrairieWinds Project (Proposed Project) and is also intended to serve as a stand-alone document to provide a summary of the information contained within the full text version of the DEIS. For additional information on the topics contained within this summary please see the DEIS. S.1 INTRODUCTION Basin Electric Power

  2. Gulf of Mexico Federal Offshore Production

    Gasoline and Diesel Fuel Update (EIA)

    Federal Offshore Gulf of Mexico production volumes are presented as a separate data series beginning in 2001. Production data for the Gulf of Mexico for years prior to 2001 are...

  3. Gulf Power Co | Open Energy Information

    Open Energy Info (EERE)

    Gulf Power Co Place: Florida Phone Number: 1-800-225-5797 Website: www.gulfpower.com Facebook: https:www.facebook.comGulfPowerCompany Outage Hotline: 1-800-487-6937 Outage Map:...

  4. Gulf Petro Initiative

    SciTech Connect (OSTI)

    Fathi Boukadi

    2011-02-05

    In this report, technologies for petroleum production and exploration enhancement in deepwater and mature fields are developed through basic and applied research by: (1) Designing new fluids to efficiently drill deepwater wells that can not be cost-effectively drilled with current technologies. The new fluids will be heavy liquid foams that have low-density at shallow dept to avoid formation breakdown and high density at drilling depth to control formation pressure. The goal of this project is to provide industry with formulations of new fluids for reducing casing programs and thus well construction cost in deepwater development. (2) Studying the effects of flue gas/CO{sub 2} huff n puff on incremental oil recovery in Louisiana oilfields bearing light oil. An artificial neural network (ANN) model will be developed and used to map recovery efficiencies for candidate reservoirs in Louisiana. (3) Arriving at a quantitative understanding for the three-dimensional controlled-source electromagnetic (CSEM) geophysical response of typical Gulf of Mexico hydrocarbon reservoirs. We will seek to make available tools for the qualitative, rapid interpretation of marine CSEM signatures, and tools for efficient, three-dimensional subsurface conductivity modeling.

  5. Learning from Gulf Coast Community Leaders

    Broader source: Energy.gov [DOE]

    After hearing the stories about the work that leaders from the gulf coast and their organizations have done, it’s clear to me that they are changing the paradigm of gulf coast recovery -- changing the way buildings are developed in the gulf and creating a generation of green builders in New Orleans who work closely with low-income communities.

  6. A Path Forward for the Gulf Coast

    Broader source: Energy.gov [DOE]

    Our country has made a promise to the people and small businesses of the Gulf Coast to restore their environment, economy and health, and continue a conversation with the fisherman, environmental workers, elected officials, health officials, scientists and Gulf residents on how to restore the Gulf.

  7. EIS-0461: Hyde County Wind Energy Center Project, Hyde and Buffalo Counties, South Dakota

    Broader source: Energy.gov [DOE]

    This EIS will evaluate the environmental impacts of interconnecting the proposed 150 megawatt Hyde County Wind Energy Center Project, in Hyde County, South Dakota, with DOE’s Western Area Power Administration’s existing Fort Thompson Substation in Buffalo County, South Dakota.

  8. South Dakota - State Energy Profile Overview - U.S. Energy Information...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Enter Search Term(s): Search eia.gov A-Z Index A-Z Index A B C D E F G H I J K L M N O P Q R S T U V W XYZ U.S. States South Dakota South Dakota Profile State Profile and ...

  9. User guidelines and best practices for CASL VUQ analysis using Dakota.

    SciTech Connect (OSTI)

    Adams, Brian M.; Swiler, Laura Painton; Hooper, Russell; Lewis, Allison; McMahan, Jerry A.,; Smith, Ralph C.; Williams, Brian J.

    2014-03-01

    Sandia's Dakota software (available at http://dakota.sandia.gov) supports science and engineering transformation through advanced exploration of simulations. Specifically it manages and analyzes ensembles of simulations to provide broader and deeper perspective for analysts and decision makers. This enables them to enhance understanding of risk, improve products, and assess simulation credibility. This manual offers Consortium for Advanced Simulation of Light Water Reactors (LWRs) (CASL) partners a guide to conducting Dakota-based VUQ studies for CASL problems. It motivates various classes of Dakota methods and includes examples of their use on representative application problems. On reading, a CASL analyst should understand why and how to apply Dakota to a simulation problem. This SAND report constitutes the product of CASL milestone L3:VUQ.V&V.P8.01 and is also being released as a CASL unlimited release report with number CASL-U-2014-0038-000.

  10. Annual Energy Outlook 2015 - Appendix F

    Gasoline and Diesel Fuel Update (EIA)

    7 U.S. Energy Information Administration | Annual Energy Outlook 2015 Regional maps Figure F6. Coal supply regions WA ID OR CA NV UT TX OK AR MO LA MS AL GA FL TN SC NC KY VA WV WY CO SD ND MI MN WI IL IN OH MD PA NJ DE CT MA NH VT NY ME RI MT NE IA KS MI AZ NM 500 0 SCALE IN MILES APPALACHIA Northern Appalachia Central Appalachia Southern Appalachia INTERIOR NORTHERN GREAT PLAINS Eastern Interior Western Interior Gulf Lignite Dakota Lignite Western Montana Wyoming, Northern Powder River Basin

  11. South Dakota Natural Gas LNG Storage Additions (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Additions (Million Cubic Feet) South Dakota Natural Gas LNG Storage Additions (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 0 0 0 0 1990's 0 0 24 0 0 0 0 0 44 83 2000's 70 89 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Additions of Liquefied Natural Gas

  12. South Dakota Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Withdrawals (Million Cubic Feet) South Dakota Natural Gas LNG Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 0 0 0 0 1990's 0 15 13 0 0 0 143 0 53 74 2000's 66 85 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Withdrawals of Liquefied

  13. South Dakota Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) South Dakota Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 61 76 93 70 125 123 112 1990's 158 393 451 452 437 404 424 911 848 864 2000's 1,003 538 495 553 562 545 508 573 545 568 2010's 562 594 866 916 827 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release

  14. South Dakota Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) South Dakota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 261 267 270 1990's 275 283 319 355 381 396 444 481 464 445 2000's 416 402 533 526 475 542 528 548 598 598 2010's 580 556 574 566 575 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016

  15. South Dakota Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids Production (Million Cubic Feet) South Dakota Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 86 4 0 1980's 0 0 0 0 1990's 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 30 25 21 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: NGPL Production, Gaseous

  16. South Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (Million Cubic Feet) South Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 1990's 0 2 5 7 5 4 4 10 8 10 2000's 10 13 13 16 18 0 W 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Delivered

  17. North Dakota Crude Oil Reserves in Nonproducing Reservoirs (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Reserves in Nonproducing Reservoirs (Million Barrels) North Dakota Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 17 22 2000's 29 91 62 47 52 56 53 107 148 463 2010's 969 1,421 2,207 3,278 3,456 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  18. North Dakota Dry Natural Gas Expected Future Production (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Expected Future Production (Billion Cubic Feet) North Dakota Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 361 374 439 1980's 537 581 629 600 566 569 541 508 541 561 1990's 586 472 496 525 507 463 462 479 447 416 2000's 433 443 471 448 417 453 479 511 541 1,079 2010's 1,667 2,381 3,569 5,420 6,034 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  19. North Dakota Natural Gas Liquids Lease Condensate, Proved Reserves (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids Lease Condensate, Proved Reserves (Million Barrels) North Dakota Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14 1980's 19 16 18 15 16 15 16 14 12 11 1990's 10 9 10 9 9 9 8 7 7 7 2000's 7 7 6 5 4 4 4 4 4 12 2010's 73 9 12 6 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  20. North Dakota Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) North Dakota Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 33 1980's 42 52 53 54 57 59 53 53 40 48 1990's 50 47 54 46 46 44 40 40 41 46 2000's 47 50 41 40 39 45 51 54 51 104 2010's 157 193 297 466 540 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  1. North Dakota Natural Gas, Wet After Lease Separation Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) North Dakota Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 485 1980's 594 654 696 673 643 650 610 578 593 625 1990's 650 533 567 585 568 518 512 531 501 475 2000's 487 495 524 497 465 508 539 572 603 1,213 2010's 1,869 2,652 3,974 6,081 6,787 - = No Data Reported; -- = Not Applicable; NA =

  2. North Dakota Nonassociated Natural Gas, Wet After Lease Separation, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) North Dakota Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 284 1980's 355 401 448 416 376 319 317 302 327 312 1990's 316 290 301 311 293 255 257 274 240 225 2000's 223 225 209 181 145 165 182 155 119 143 2010's 152 141 105 91 45 - = No Data

  3. North Dakota Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 16 -23 1980's -7 31 -1 -9 21 -31 6 -3 6 29 1990's 56 -93 44 49 -47 -2 22 -2 -31 -13 2000's 21 17 18 25 -29 -10 18 12 -7 47 2010's -2 -3 -56 -208 -31 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  4. North Dakota Dry Natural Gas Reserves Estimated Production (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Estimated Production (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 25 28 30 1980's 37 44 51 58 58 59 55 57 73 55 1990's 58 49 43 52 47 43 45 46 46 39 2000's 42 41 53 50 51 53 52 53 65 82 2010's 94 133 230 302 406 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  5. North Dakota Dry Natural Gas Reserves Extensions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 5 37 1980's 31 69 60 23 28 17 10 5 51 8 1990's 16 11 17 21 7 2 5 25 25 1 2000's 3 3 8 5 7 49 30 59 102 401 2010's 442 572 834 1,523 1,161 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  6. North Dakota Dry Natural Gas Reserves Revision Decreases (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decreases (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 10 18 14 1980's 18 85 56 113 96 46 51 64 78 52 1990's 50 33 57 27 24 29 22 17 27 31 2000's 15 32 20 44 57 27 31 62 75 81 2010's 722 375 292 640 777 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015

  7. North Dakota Dry Natural Gas Reserves Revision Increases (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Increases (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 5 21 29 1980's 50 36 47 119 61 118 57 83 125 77 1990's 59 50 61 37 74 24 36 57 47 50 2000's 43 48 79 36 86 49 70 69 63 243 2010's 848 570 924 1,096 861 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  8. North Dakota Natural Gas Exports (Price) All Countries (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) (Price) All Countries (Dollars per Thousand Cubic Feet) North Dakota Natural Gas Exports (Price) All Countries (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's -- 2000's -- -- -- 5.15 -- -- -- -- -- -- 2010's -- -- -- -- 14.71 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016

  9. North Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (Million Cubic Feet) North Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 1990's 0 1 3 8 8 12 15 41 40 49 2000's 54 67 68 83 93 3 1 1 1 2010's 1 1 1 0 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Delivered

  10. North Dakota Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) North Dakota Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 201 1980's 239 253 248 257 267 331 293 276 266 313 1990's 334 243 266 274 275 263 255 257 261 250 2000's 264 270 315 316 320 343 357 417 484 1,070 2010's 1,717

  11. North Dakota Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 North Dakota Coalbed Methane Proved Reserves, Reserves Changes, and Production

    + Lease Condensate Proved

  12. North Dakota Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) North Dakota Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 3 4 4 5 6 6 5 6 5 5 1990's 5 5 5 5 4 4 4 4 4 4 2000's 5 5 5 4 5 5 6 6 6 8 2010's 9 11 19 26 36 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  13. sorbent-univerisity-north-dakota | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation of CO2 Capture from Existing Coal-Fired Plants by Hybrid Sorption Using Solid Sorbents (CACHYS(tm)) Project No.: DE-FE0007603 The University of North Dakota (UND) is scaling up and demonstrating a solid sorbent technology for carbon dioxide (CO2) capture and separation from coal combustion-derived flue gas. The technology - Capture from Existing Coal-Fired Plants by Hybrid Sorption Using Solid Sorbents Capture (CACHYS(tm)) - is a novel solid sorbent process based on the following

  14. EA-1966: Sunflower Wind Project, Hebron, North Dakota

    Broader source: Energy.gov [DOE]

    Western Area Power Administration (Western) prepared an EA to evaluate potential environmental impacts of interconnecting a proposed 80 MW generating facility south of Hebron in Morton and Stark Counties, North Dakota. The proposed wind generating facility of 30-50 wind turbines encompassed approximately 9,000 acres. Ancillary facilities included an underground collection line system, a project substation, one mile of new transmission line, a new switchyard facility on the existing Dickinson-Mandan 230 kV line owned and operated by Western, one permanent meteorological tower, new access roads, and an operations and maintenance building.

  15. Advanced power assessment for Czech lignite task 3.6. Topical report

    SciTech Connect (OSTI)

    Sondreal, E.A.; Mann, M.D.; Weber, G.W.; Young, B.C.

    1995-12-01

    Major reforms in the Czech energy sector have been initiated to reverse 40 years of central planning, subsidized energy pricing, unchecked pollution from coal-fired plants, concerns over nuclear safety and fuel cycle management, and dependence on the former U.S.S.R. for oil, gas, and nuclear fuel processing. Prices for electricity, heat, and natural gas paid by industry are close to western levels, but subsidized prices for households are as much as 40% lower and below economic cost. State control of major energy enterprises is being reduced by moving toward government-regulated, investor-owned companies to raise needed capital, but with a strategic stake retained by the state. Foreign firms will participate in privatization, but they are not expected to acquire a controlling interest in Czech energy companies. Economic conditions in the Czech Republic are now improving after the disruptions caused by restructuring since 1989 and separation of the former Czech and Slovak Federal Republics in January 1993. The downturn in the economy after 1989 was concentrated in energy-intensive heavy industry, and recovery is paced by consumer trade, services, light industry and construction. Energy use in relation to gross domestic product (GDP) has declined, but it is still significantly higher than in OECD (Organization for Economic Cooperation and Development) countries. The GDP increased by 2% in 1994 after dropping 22% between 1989 and 1993. A positive balance of payments has been achieved, with foreign investment offsetting a small trade deficit. The government`s external debt is only 4% of GDP. This report studies the application of lignite resources within the newly formulated energy policies of the republic, in light of a move toward privatization and stronger air pollution regulations. Lignite has represented the major energy source for the country.

  16. Hybrid Solar-Wind Generates Savings for South Dakota City | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Hybrid Solar-Wind Generates Savings for South Dakota City Hybrid Solar-Wind Generates Savings for South Dakota City July 19, 2010 - 4:05pm Addthis What does this project do? The projects will reduce the city's natural gas and electric bills by an estimated $2,700. An array of six solar panels, similar to the ones shown, will be installed at Colton, S.D.'s city hall. | Photo courtesy of Colton. The city of Colton, South Dakota. is a small, agriculturally-based community. So small that

  17. Website Provides Data for Key Oil Play in North Dakota, Eastern Montana |

    Energy Savers [EERE]

    Department of Energy Website Provides Data for Key Oil Play in North Dakota, Eastern Montana Website Provides Data for Key Oil Play in North Dakota, Eastern Montana July 19, 2011 - 1:00pm Addthis Washington, DC - A new web-based geographic information system designed to improve oil production in North Dakota and eastern Montana has been launched with support from the U.S. Department of Energy. The Bakken Decision Support System (BDSS) assembles data for the Bakken and Three Forks Formations

  18. Dakota uncertainty quantification methods applied to the NEK-5000 SAHEX model.

    SciTech Connect (OSTI)

    Weirs, V. Gregory

    2014-03-01

    This report summarizes the results of a NEAMS project focused on the use of uncertainty and sensitivity analysis methods within the NEK-5000 and Dakota software framework for assessing failure probabilities as part of probabilistic risk assessment. NEK-5000 is a software tool under development at Argonne National Laboratory to perform computational fluid dynamics calculations for applications such as thermohydraulics of nuclear reactor cores. Dakota is a software tool developed at Sandia National Laboratories containing optimization, sensitivity analysis, and uncertainty quantification algorithms. The goal of this work is to demonstrate the use of uncertainty quantification methods in Dakota with NEK-5000.

  19. Gulf of Mexico Proved Reserves By Water Depth, 2009

    Gasoline and Diesel Fuel Update (EIA)

    Gulf of Mexico Proved Reserves and Production by Water Depth, 2009 1 Gulf of Mexico Proved Reserves and Production by Water Depth The Gulf of Mexico Federal Offshore region (GOM ...

  20. Gulf Coast Green Energy | Open Energy Information

    Open Energy Info (EERE)

    Green Energy Jump to: navigation, search Name: Gulf Coast Green Energy Place: Bay City, Texas Zip: 77414 Product: The Texas-based company is the exclusive distributor of...

  1. Federal Offshore--Gulf of Mexico Natural Gas Repressuring (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Repressuring (Million Cubic Feet) Federal Offshore--Gulf of Mexico Natural Gas ... Natural Gas Used for Repressuring Federal Offshore Gulf of Mexico Natural Gas Gross ...

  2. Federal Offshore--Gulf of Mexico Dry Natural Gas Production ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Production (Million Cubic Feet) Federal Offshore--Gulf of Mexico Dry ... Natural Gas Dry Production Federal Offshore Gulf of Mexico Natural Gas Gross Withdrawals ...

  3. EA-1896: Williston to Stateline Transmission Line Project, Mountrail Williams Electric Cooperative, Williston, North Dakota

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing this EA to evaluate the environmental impacts of interconnecting the proposed Stateline I transmission line, in Williston, North Dakota, to Western’s transmission system.

  4. EIS-0437: Interconnection of the Buffalo Ridge III Wind Project, Brookings and Deuel Counties, South Dakota

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of a proposal to interconnect the Heartland Wind, LLC, proposed Buffalo Ridge III Wind Project in Brookings and Deuel Counties, South Dakota, to DOE’s Western Area Power Administration transmission system.

  5. North Dakota State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    1981-10-01

    The North Dakota State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in North Dakota. The profile is the result of a survey of NRC licensees in North Dakota. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in North Dakota.

  6. South Dakota Geothermal Commercialization Project. Final report, July 1979-October 1985

    SciTech Connect (OSTI)

    Wegman, S.

    1985-01-01

    This report describes the activities of the South Dakota Energy Office in providing technical assistance, planning, and commercialization projects for geothermal energy. Projects included geothermal prospect identification, area development plans, and active demonstration/commercialization projects. (ACR)

  7. North Dakota, et al. v. EPA, Memorandum Opinion and Order Granting...

    Open Energy Info (EERE)

    North Dakota, et al. v. EPA, Memorandum Opinion and Order Granting Plaintiffs' Motion for Preliminary Injunction Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  8. Analysis of Potential Benefits and Costs of Updating the Commercial Building Energy Code in North Dakota

    SciTech Connect (OSTI)

    Cort, Katherine A.; Belzer, David B.; Winiarski, David W.; Richman, Eric E.

    2004-04-30

    The state of North Dakota is considering updating its commercial building energy code. This report evaluates the potential costs and benefits to North Dakota residents from updating and requiring compliance with ASHRAE Standard 90.1-2001. Both qualitative and quantitative benefits and costs are assessed in the analysis. Energy and economic impacts are estimated using the Building Loads Analysis and System Thermodynamics (BLAST simulation combined with a Life-cycle Cost (LCC) approach to assess correspodning economic costs and benefits.

  9. EERE Success Story-North Dakota: EERE-Funded Project Recycles Energy,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generates Electricity | Department of Energy North Dakota: EERE-Funded Project Recycles Energy, Generates Electricity EERE Success Story-North Dakota: EERE-Funded Project Recycles Energy, Generates Electricity June 17, 2014 - 2:58pm Addthis Blaise Energy Inc. is using a Renewable Energy Market Development grant, funded by EERE, to demonstrate the commercial viability of its Flare Gas Micro-turbine. The microturbine pilot project places generators at oil production well sites to transform

  10. Allegations Regarding the Department of Energy's State Energy Program Funding to South Dakota

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Special Report Allegations Regarding the Department of Energy's State Energy Program Funding to South Dakota OAS-RA-L-14-01 April 2014 Department of Energy Washington, DC 20585 April 14, 2014 MEMORANDUM FOR THE MANAGER OF THE STATE ENERGY PROGRAM FROM: Jack Rouch, Director Central Audits Division Office of Inspector General SUBJECT: INFORMATION: Special Report on "Allegations Regarding the Department of Energy's State Energy Program Funding to South Dakota" BACKGROUND The Department of

  11. Mercury Control for Plants Firing Texas Lignite and Equipped with ESP-wet FGD

    SciTech Connect (OSTI)

    Katherine Dombrowski

    2009-12-31

    This report presents the results of a multi-year test program conducted as part of Cooperative Agreement DE-FC26-06NT42779, 'Mercury Control for Plants Firing Texas Lignite and Equipped with ESP-wet FGD.' The objective of this program was to determine the level of mercury removal achievable using sorbent injection for a plant firing Texas lignite fuel and equipped with an ESP and wet FGD. The project was primarily funded by the U.S. DOE National Energy Technology Laboratory. EPRI, NRG Texas, Luminant (formerly TXU), and AEP were project co-funders. URS Group was the prime contractor, and Apogee Scientific and ADA-ES were subcontractors. The host site for this program was NRG Texas Limestone Electric Generating Station (LMS) Units 1 and 2, located in Jewett, Texas. The plant fires a blend of Texas lignite and Powder River Basin (PRB) coal. Full-scale tests were conducted to evaluate the mercury removal performance of powdered sorbents injected into the flue gas upstream of the ESP (traditional configuration), upstream of the air preheater, and/or between electric fields within the ESP (Toxecon{trademark} II configuration). Phases I through III of the test program, conducted on Unit 1 in 2006-2007, consisted of three short-term parametric test phases followed by a 60-day continuous operation test. Selected mercury sorbents were injected to treat one quarter of the flue gas (e.g., approximately 225 MW equivalence) produced by Limestone Unit 1. Six sorbents and three injection configurations were evaluated and results were used to select the best combination of sorbent (Norit Americas DARCO Hg-LH at 2 lb/Macf) and injection location (upstream of the ESP) for a two-month performance evaluation. A mercury removal rate of 50-70% was targeted for the long-term test. During this continuous-injection test, mercury removal performance and variability were evaluated as the plant operated under normal conditions. Additional evaluations were made to determine any balance-of-plant impacts of the mercury control process, including those associated with ESP performance and fly ash reuse properties. Upon analysis of the project results, the project team identified several areas of interest for further study. Follow-on testing was conducted on Unit 2 in 2009 with the entire unit treated with injected sorbent so that mercury removal across the FGD could be measured and so that other low-ash impact technologies could be evaluated. Three approaches to minimizing ash impacts were tested: (1) injection of 'low ash impact' sorbents, (2) alterations to the injection configuration, and (3) injection of calcium bromide in conjunction with sorbent. These conditions were tested with the goal of identifying the conditions that result in the highest mercury removal while maintaining the sorbent injection at a rate that preserves the beneficial use of ash.

  12. South Dakota Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) South Dakota Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 9 24 50 1 0 0 0 0 10 16 1990's 10 3 10 9 61 37 87 30 4 5 2000's 13 5 3 57 5 4 0 1 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next

  13. South Dakota Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) South Dakota Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12,480 12,438 12,771 1990's 13,443 13,692 14,133 16,523 15,539 16,285 16,880 17,432 17,972 18,453 2000's 19,100 19,378 19,794 20,070 20,457 20,771 21,149 21,502 21,819 22,071 2010's 22,267 22,570 22,955 23,214 23,591 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  14. South Dakota Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) South Dakota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 101,468 102,084 103,538 1990's 105,436 107,846 110,291 128,029 119,544 124,152 127,269 130,307 133,095 136,789 2000's 142,075 144,310 147,356 150,725 148,105 157,457 160,481 163,458 165,694 168,096 2010's 169,838 170,877 173,856 176,204 179,042 - = No Data Reported; -- = Not

  15. South Dakota Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) South Dakota Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 36,115 33,042 35,794 2000's 37,939 37,077 41,577 43,881 41,679 42,555 40,739 53,938 65,258 66,185 2010's 72,563 73,605 70,238 81,986 79,964 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date:

  16. North Dakota Natural Gas Imports (No intransit Receipts) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Imports (No intransit Receipts) (Million Cubic Feet) North Dakota Natural Gas Imports (No intransit Receipts) (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 0 0 0 1990's 1,617 4,559 6,110 7,672 9,268 3,416 2000's 60,718 495,568 453,645 435,453 460,237 491,867 514,052 465,973 490,045 480,013 2010's 476,864 448,977 433,721 432,509 433,256 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  17. North Dakota Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) North Dakota Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 196 417 102 0 8,335 40,370 49,847 51,543 49,014 54,408 1990's 53,144 52,557 58,496 57,680 57,127 57,393 55,867 53,179 54,672 53,185 2000's 49,190 51,004 53,184 53,192 47,362 51,329 54,361 51,103 50,536 53,495 2010's 54,813 51,303 52,541 45,736 48,394 - = No

  18. North Dakota Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) North Dakota Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 11,905 12,104 12,454 1990's 12,742 12,082 12,353 12,650 12,944 13,399 13,789 14,099 14,422 15,050 2000's 15,531 15,740 16,093 16,202 16,443 16,518 16,848 17,013 17,284 17,632 2010's 17,823 18,421 19,089 19,855 20,687 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  19. North Dakota Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) North Dakota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 83,517 84,059 84,643 1990's 85,646 87,880 89,522 91,237 93,398 95,818 97,761 98,326 101,930 104,051 2000's 105,660 106,758 108,716 110,048 112,206 114,152 116,615 118,100 120,056 122,065 2010's 123,585 125,392 130,044 133,975 137,972 - = No Data Reported; -- = Not Applicable; NA =

  20. North Dakota Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) North Dakota Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,086 2,165 2,216 1,957 2,737 2,112 2,005 1990's 4,835 4,777 4,753 4,734 5,059 4,542 4,283 4,420 4,471 4,553 2000's 4,738 3,874 5,141 4,548 4,602 4,816 4,364 4,323 4,283 4,521 2010's 4,294 5,473 5,887 6,707 5,736 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  1. North Dakota Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) North Dakota Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 56,179 49,541 56,418 2000's 56,528 60,819 66,726 60,907 59,986 53,050 53,336 59,453 63,097 54,564 2010's 66,395 72,463 72,740 81,593 83,330 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date:

  2. North Dakota Natural Gas Gross Withdrawals from Coalbed Wells (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1 0 0 2000's 0 3 1 0 3 1 2 2 1 1 2010's 2 0 1 337 40 3,671 Thousand Cubic Feet)

    (Price) All Countries (Dollars per Thousand Cubic Feet) North Dakota Natural Gas Exports (Price) All Countries (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's -- 2000's -- -- -- 5.15 -- -- -- -- -- -- 2010's -- -- -- -- 14.71 - = No Data

  3. North Dakota Natural Gas Plant Liquids Production Extracted in Illinois

    Gasoline and Diesel Fuel Update (EIA)

    Elements) Commercial Consumers (Number of Elements) North Dakota Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 11,905 12,104 12,454 1990's 12,742 12,082 12,353 12,650 12,944 13,399 13,789 14,099 14,422 15,050 2000's 15,531 15,740 16,093 16,202 16,443 16,518 16,848 17,013 17,284 17,632 2010's 17,823 18,421 19,089 19,855 20,687 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  4. Small Wind Electric Systems: A North Dakota Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-04-01

    Small Wind Electric Systems: A North Dakota Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  5. Small Wind Electric Systems: A South Dakota Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-04-01

    Small Wind Electric Systems: A South Dakota Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  6. Industrial properties of lignitic and lignocellulosic fly ashes from Turkish sources

    SciTech Connect (OSTI)

    Demirbas, A.; Cetin, S.

    2006-01-21

    Fly ash is an inorganic matter from combustion of the carbonaceous solid fuels. More than half the electricity in Turkey is produced from lignite-fired power plants. This energy production has resulted in the formation of more than 13 million tons of fly ash waste annually. The presence of carbon in fly ash inducing common faults include adding unwanted black color and adsorbing process or product materials such as water and chemicals. One of the reasons for not using fly ash directly is its carbon content. For some uses carbon must be lower than 3%. Fly ash has been used for partial replacement of cement, aggregate, or both for nearly 70 years, and it is still used on a very limited scale in Turkey. The heavy metal content of industrial wastewaters is an important source of environmental pollution. Each of the three major oxides (SiO{sub 2} + Al{sub 2}O{sub 3} + Fe{sub 2}O{sub 3}) in fly ash can be ideal as a metal adsorbent.

  7. Mississippi Nuclear Profile - Grand Gulf

    U.S. Energy Information Administration (EIA) Indexed Site

    Grand Gulf" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,"1,251","9,643",88.0,"BWR","application/vnd.ms-excel","application/vnd.ms-excel" ,"1,251","9,643",88.0 "Data for 2010" "BWR = Boiling Water Reactor."

  8. STUDIES OF THE SPONTANEOUS COMBUSTION OF LOW RANK COALS AND LIGNITES

    SciTech Connect (OSTI)

    Joseph M. Okoh; Joseph N.D. Dodoo

    2005-07-26

    Spontaneous combustion has always been a problem in coal utilization especially in the storage and transportation of coal. In the United States, approximately 11% of underground coal mine fires are attributed to spontaneous coal combustion. The incidence of such fires is expected to increase with increased consumption of lower rank coals. The cause is usually suspected to be the reabsorption of moisture and oxidation. To understand the mechanisms of spontaneous combustion this study was conducted to (1) define the initial and final products during the low temperature (10 to 60 C) oxidation of coal at different partial pressures of O{sub 2}, (2) determine the rate of oxidation, and (3) measure the reaction enthalpy. The reaction rate (R) and propensity towards spontaneous combustion were evaluated in terms of the initial rate method for the mass gained due to adsorbed O{sub 2}. Equipment that was used consisted of a FT-IR (Fourier Transform-Infrared Spectrometer, Perkin Elmer), an accelerated surface area porosimeter (ASAP, Micromeritics model 2010), thermogravimetric analyzer (TGA, Cahn Microbalance TG 121) and a differential scanning calorimeter (DSC, Q1000, thermal analysis instruments). Their combination yielded data that established a relation between adsorption of oxygen and reaction enthalpy. The head space/ gas chromatograph/ mass spectrometer system (HS/GC/MS) was used to identify volatiles evolved during oxidation. The coal samples used were Beulah lignite and Wyodak (sub-bituminous). Oxygen (O{sub 2}) absorption rates ranged from 0.202 mg O{sub 2}/mg coal hr for coal sample No.20 (Beulah pyrolyzed at 300 C) to 6.05 mg O{sub 2}/mg coal hr for coal sample No.8 (wyodak aged and pyrolyzed at 300 C). Aging of coal followed by pyrolysis was observed to contribute to higher reaction rates. Reaction enthalpies ranged from 0.42 to 1580 kcal/gm/mol O{sub 2}.

  9. North Dakota Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) North Dakota Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 5,150 5,428 4,707 1970's 4,490 3,592 3,199 2,969 2,571 2,404 2,421 2,257 2,394 2,986 1980's 3,677 5,008 5,602 7,171 7,860 8,420 6,956 7,859 6,945 6,133 1990's 6,444 6,342 6,055 5,924 5,671 5,327 4,937 5,076 5,481 5,804 2000's 6,021 6,168 5,996 5,818 6,233 6,858 7,254 7,438 7,878 10,140 2010's 11,381

  10. North Dakota Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Processed (Million Cubic Feet) North Dakota Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 42,828 41,318 37,818 1970's 36,830 33,252 32,131 0 0 0 0 0 0 1980's 50,900 57,608 71,745 77,524 81,008 72,678 86,329 67,867 59,841 1990's 62,042 59,228 50,462 51,713 55,150 49,861 47,942 51,657 52,777 52,191 2000's 54,738 58,536 59,894 58,479 60,261 63,240 65,575 69,653 76,762 87,977 2010's 91,539 112,206 208,598 270,001

  11. North Dakota Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,082 1,093 1,096 1,091 1,068 1,131 1,140 1,077 1,013 1,099 1,112 1,089 2014 1,087 1,084 1,074 1,077 1,083 1,079 1,078 1,106 1,123 1,100 1,105 1,096 2015 1,036 1,078 1,072 1,084 1,084 1,089 1,117 1,095 1,078 1,093 1,097 1,112 2016 1,095 1,095

    % of Total Residential Deliveries (Percent) North Dakota Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7

  12. South Dakota Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,028 1,030 1,029 1,028 1,028 1,029 1,031 1,030 1,029 1,031 1,030 1,034 2014 1,034 1,034 1,035 1,036 1,039 1,041 1,039 1,045 1,045 1,049 1,048 1,048 2015 1,048 1,048 1,047 1,051 1,054 1,059 1,062 1,060 1,056 1,053 1,053 1,058 2016 1,060 1,058

    % of Total Residential Deliveries (Percent) South Dakota Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7

  13. COFIRING OF BIOMASS AT THE UNIVERSITY OF NORTH DAKOTA

    SciTech Connect (OSTI)

    Phillip N. Hutton

    2002-01-01

    A project funded by the U.S. Department of Energy's National Energy Technology Laboratory was completed by the Energy & Environmental Research Center to explore the potential for cofiring biomass at the University of North Dakota (UND). The results demonstrate how 25% sunflower hulls can be cofired with subbituminous coal and provide a 20% return on investment or 5-year payback for the modifications required to enable firing biomass. Significant outcomes of the study are as follows. A complete resource assessment presented all biomass options to UND within a 100-mile radius. Among the most promising options in order of preference were sunflower hulls, wood residues, and turkey manure. The firing of up to 28% sunflower hulls by weight was completed at the university's steam plant to identify plant modifications that would be necessary to enable cofiring sunflower hulls. The results indicated investments in a new equipment could be less than $408,711. Data collected from test burns, which were not optimized for biomass firing, resulted in a 15% reduction in sulfur and NO{sub x} emissions, no increase in opacity, and slightly better boiler efficiency. Fouling and clinkering potential were not evaluated; however, no noticeable detrimental effects occurred during testing. As a result of this study, UND has the potential to achieve a cost savings of approximately $100,000 per year from a $1,500,000 annual fossil fuel budget by implementing the cofiring of 25% sunflower hulls.

  14. South Dakota Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Net Withdrawals (Million Cubic Feet) South Dakota Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 0 0 0 0 1990's 0 -15 11 0 0 0 -143 0 -9 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Net Withdrawals of Liquefied Natural Gas from Storage South Dakota

  15. North Dakota Natural Gas Exports to All Countries (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Exports to All Countries (Million Cubic Feet) North Dakota Natural Gas Exports to All Countries (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 2000's 0 0 0 66 0 0 0 0 0 0 2010's 0 0 0 0 11 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Exports (Summary) North Dakota U.S. Natural

  16. Energy Department Approves Gulf Coast Exports of Liquefied Natural...

    Office of Environmental Management (EM)

    Approves Gulf Coast Exports of Liquefied Natural Gas Energy Department Approves Gulf Coast ... to receive imports or those with which trade is prohibited by U.S. law or policy. ...

  17. SEMI-ANNUAL REPORT - GULF LNG LIQUEFACTION COMPANY, LLC - FE...

    Energy Savers [EERE]

    GULF LNG LIQUEFACTION COMPANY, LLC - FE DKT. NO. 12-47-LNG - ORDER 3104 SEMI-ANNUAL REPORT - GULF LNG LIQUEFACTION COMPANY, LLC - FE DKT. NO. 12-47-LNG - ORDER 3104 PDF icon ...

  18. EECBG Success Story: Gulf Coast's Texas City Sees Easy Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gulf Coast's Texas City Sees Easy Energy Savings EECBG Success Story: Gulf Coast's Texas City Sees Easy Energy Savings July 26, 2010 - 10:00am Addthis By replacing T-12 lights with ...

  19. Final Strategic Plan Released by Gulf Coast Ecosystem Restoration Taskforce

    Broader source: Energy.gov [DOE]

    Today (December 5) the Gulf Coast Ecosystem Restoration Task Force released its final strategy for long-term restoration in the Gulf, a path forward based on input from states, tribes, federal...

  20. A Preliminary Regional Geothermal Assessment Of The Gulf Of Suez...

    Open Energy Info (EERE)

    along its eastern margin. The most promising areas for geothermal development in the NW Red Sea-Gulf of Suez rift system are locations along the eastern shore of the Gulf of Suez...

  1. Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals...

    Gasoline and Diesel Fuel Update (EIA)

    Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals (Million Cubic Feet per...

  2. Gulf of Mexico Fact Sheet - Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    Gulf of Mexico Fact Sheet Overview Data Petroleum and Other Liquids Crude Oil, Condensate and NGL Proved Reserves Natural Gas Natural Gas Proved Reserves Refinery Capacity Natural Gas Processing Plants The Gulf of Mexico area, both onshore and offshore, is one of the most important regions for energy resources and infrastructure. Gulf of Mexico federal offshore oil production accounts for 17% of total U.S. crude oil production and federal offshore natural gas production in the Gulf accounts for

  3. EIS-0462: Crowned Ridge Wind Energy Center Project, Grant and Codington Counties, South Dakota

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to approve a grid interconnection request by NextEra Energy Resources for its proposed 150-megawatt (MW) Crowned Ridge Wind Energy Center Project with the Western Area Power Administration's existing Watertown Substation in Codington County, South Dakota.

  4. EIS-0435: Modification of the Groton Generation Station Interconnection Agreement, Brown County, South Dakota

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of a proposal for DOE's Western Area Power Administration to modify its Large Generator Connection Agreement for the Groton Generation Station in Brown County, South Dakota. The modification would allow Basin Electric Power Cooperative, which operates the generation station, to produce power above the current operating limit of 50 average megawatts.

  5. EIS-0134: Charlie Creek-Belfield Transmission Line Project, North Dakota

    Broader source: Energy.gov [DOE]

    The Western Area Power Administration developed this EIS to assess the environmental impact of constructing a high voltage transmission line between Charlie Creek and Belfield, North Dakota, and a new substation near Belfield to as a means of adding transmission capacity to the area.

  6. EECBG Success Story: Hybrid Solar-Wind Generates Savings for South Dakota City

    Broader source: Energy.gov [DOE]

    The small town of Colton, South Dakota is using an Energy Efficiency and Conservation Block Grant (EECBG) to implement a comprehensive Energy Independence Community (EIC) Initiative that will reduce the town's natural gas and electric bills by an estimated $2,700. Learn more.

  7. Gulf Coast Clean Energy Application Center

    SciTech Connect (OSTI)

    Dillingham, Gavin

    2013-09-30

    The Gulf Coast Clean Energy Application Center was initiated to significantly improve market and regulatory conditions for the implementation of combined heat and power technologies. The GC CEAC was responsible for the development of CHP in Texas, Louisiana and Oklahoma. Through this program we employed a variety of outreach and education techniques, developed and deployed assessment tools and conducted market assessments. These efforts resulted in the growth of the combined heat and power market in the Gulf Coast region with a realization of more efficient energy generation, reduced emissions and a more resilient infrastructure. Specific t research, we did not formally investigate any techniques with any formal research design or methodology.

  8. DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis.

    SciTech Connect (OSTI)

    Eldred, Michael Scott; Vigil, Dena M.; Dalbey, Keith R.; Bohnhoff, William J.; Adams, Brian M.; Swiler, Laura Painton; Lefantzi, Sophia; Hough, Patricia Diane; Eddy, John P.

    2011-12-01

    The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a theoretical manual for selected algorithms implemented within the DAKOTA software. It is not intended as a comprehensive theoretical treatment, since a number of existing texts cover general optimization theory, statistical analysis, and other introductory topics. Rather, this manual is intended to summarize a set of DAKOTA-related research publications in the areas of surrogate-based optimization, uncertainty quantification, and optimization under uncertainty that provide the foundation for many of DAKOTA's iterative analysis capabilities.

  9. Evaluation of hydrothermal resources of North Dakota. Phase III final technical report

    SciTech Connect (OSTI)

    Harris, K.L.; Howell, F.L.; Wartman, B.L.; Anderson, S.B.

    1982-08-01

    The hydrothermal resources of North Dakota were evaluated. This evaluation was based on existing data on file with the North Dakota Geological Survey (NDGS) and other state and federal agencies, and field and laboratory studies conducted. The principal sources of data used during the study were WELLFILE, the computer library of oil and gas well data developed during the Phase I study, and WATERCAT, a computer library system of water well data assembled during the Phase II study. A field survey of the shallow geothermal gradients present in selected groundwater observation holes was conducted. Laboratory determinations of the thermal conductivity of core samples were done to facilitate heat-flow calculations on those holes-of-convenience cased.

  10. North Dakota and Texas help boost U.S. oil reserves to highest...

    U.S. Energy Information Administration (EIA) Indexed Site

    proved oil reserves now exceeds the oil reserves in the federal offshore Gulf of Mexico. ... were Colorado at 411 million barrels, New Mexico at 208 million, and Oklahoma with a ...

  11. EIS-0469: Wilton IV Wind Energy Center; Burleigh County, North Dakota

    Broader source: Energy.gov [DOE]

    Western Area Power Administration is evaluating the potential environmental impacts of interconnecting NextEra Energy Resources proposed Wilton IV Wind Energy Center Project, near Bismarck, North Dakota, to Western’s existing Wilton/Baldwin substation and allowing NextEra’s existing wind projects in this area to operate above 50 annual MW. Western is preparing a Supplemental Draft EIS to address substantial changes to the proposal, including 30 turbine locations and 5 alternate turbine locations in Crofte Township.

  12. Standing Rock Sioux Tribe - Lakota/Dakota Nation: Establishment of Renewable Energy & Energy Development Office

    Energy Savers [EERE]

    8540 fwasinzi@standingrock.org Establishment of Renewable Energy & Energy Development Office Standing Rock Sioux Tribe - Lakota/Dakota Nation OVERVIEW: BACKGROUND INFORMATION ON STANDING ROCK RESERVATION SITTING BULL COLLEGE WIND TURBINE EECBG ENERGY EFFICIENCY & WIND TURBINE INSTALLATION AT SITTING BULL COLLEGE WIND ASSESSMENT STUDY ESTABLISHMENT OF RENEWABLE ENERGY & ENERGY DEVELOPMENT OFFICE (REEDO) STANDING ROCK ONE OF SEVEN RESERVATIONS OF THE GREAT SIOUX NATION LOCATED IN

  13. CASL-U-2015-0087-000 Dakota, A Multilevel Parallel Object-Oriented Framework

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    87-000 Dakota, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 6.1 User's Manual Brian M. Adams Mohamed S. Ebeida Michael S. Eldred John D. Jakeman Laura P. Swiler J. Adam Stephens Dena M. Vigil Timothy M. Wildey William J. Bohnhoff Keith R. Dalbey John P. Eddy Kenneth T. Hu Lara E. Bauman Patricia D. Hough Sandia National Laboratory November 7, 2014 SAND2014-4633 Unlimited Release July

  14. Final Gulf Coast Ecosystem Restoration Task Force Strategic Plan |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Final Gulf Coast Ecosystem Restoration Task Force Strategic Plan Final Gulf Coast Ecosystem Restoration Task Force Strategic Plan The natural resources of the Gulf's ecosystem are vital to many of the region's industries that directly support economic progress and job creation, including tourism and recreation, seafood production and sales, energy production and navigation and commerce. Among the key priorities of the strategy are: 1) Stopping the Loss of Critical

  15. Gulf of Mexico Regional Collaborative Final Report

    SciTech Connect (OSTI)

    Judd, Kathleen S.; Judd, Chaeli; Engel-Cox, Jill A.; Gulbransen, Thomas; Anderson, Michael G.; Woodruff, Dana L.; Thom, Ronald M.; Guzy, Michael; Hardin, Danny; Estes, Maury

    2007-12-01

    This report presents the results of the Gulf of Mexico Regional Collaborative (GoMRC), a year-long project funded by NASA. The GoMRC project was organized around end user outreach activities, a science applications team, and a team for information technology (IT) development. Key outcomes are summarized below for each of these areas. End User Outreach; Successfully engaged federal and state end users in project planning and feedback; With end user input, defined needs and system functional requirements; Conducted demonstration to End User Advisory Committee on July 9, 2007 and presented at Gulf of Mexico Alliance (GOMA) meeting of Habitat Identification committee; Conducted significant engagement of other end user groups, such as the National Estuary Programs (NEP), in the Fall of 2007; Established partnership with SERVIR and Harmful Algal Blooms Observing System (HABSOS) programs and initiated plan to extend HABs monitoring and prediction capabilities to the southern Gulf; Established a science and technology working group with Mexican institutions centered in the State of Veracruz. Key team members include the Federal Commission for the Protection Against Sanitary Risks (COFEPRIS), the Ecological Institute (INECOL) a unit of the National Council for science and technology (CONACYT), the Veracruz Aquarium (NOAA’s first international Coastal Ecology Learning Center) and the State of Veracruz. The Mexican Navy (critical to coastal studies in the Southern Gulf) and other national and regional entities have also been engaged; and Training on use of SERVIR portal planned for Fall 2007 in Veracruz, Mexico Science Applications; Worked with regional scientists to produce conceptual models of submerged aquatic vegetation (SAV) ecosystems; Built a logical framework and tool for ontological modeling of SAV and HABs; Created online guidance for SAV restoration planning; Created model runs which link potential future land use trends, runoff and SAV viability; Analyzed SAV cover change at five other bays in the Gulf of Mexico to demonstrate extensibility of the analytical tools; and Initiated development of a conceptual model for understanding the causes and effects of HABs in the Gulf of Mexico IT Tool Development; Established a website with the GoMRC web-based tools at www.gomrc.org; Completed development of an ArcGIS-based decision support tool for SAV restoration prioritization decisions, and demonstrated its use in Mobile Bay; Developed a web-based application, called Conceptual Model Explorer (CME), that enables non-GIS users to employ the prioritization model for SAV restoration; Created CME tool enabling scientists to view existing, and create new, ecosystem conceptual models which can be used to document cause-effect relationships within coastal ecosystems, and offer guidance on management solutions; Adapted the science-driven advanced web search engine, Noesis, to focus on an initial set of coastal and marine resource issues, including SAV and HABs; Incorporated map visualization tools with initial data layers related to coastal wetlands and SAVs; and Supported development of a SERVIR portal for data management and visualization in the southern Gulf of Mexico, as well as training of end users in Mexican Gulf States.

  16. Plains CO2 Reduction Partnership PCOR | Open Energy Information

    Open Energy Info (EERE)

    Grand Forks, North Dakota Zip: 58202-9018 Product: North Dakota-based consortium researching CO2 storage options. PCOR is busy with the ECBM in the Unminable Lignite Research...

  17. Federal Offshore--Gulf of Mexico Nonhydrocarbon Gases Removed...

    U.S. Energy Information Administration (EIA) Indexed Site

    Referring Pages: Nonhydrocarbon Gases Removed from Natural Gas Federal Offshore Gulf of Mexico Natural Gas Gross Withdrawals and Production Nonhydrocarbon Gases Removed from ...

  18. Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals...

    U.S. Energy Information Administration (EIA) Indexed Site

    Referring Pages: Natural Gas Gross Withdrawals from Coalbed Wells Federal Offshore Gulf of Mexico Natural Gas Gross Withdrawals and Production Natural Gas Gross Withdrawals from ...

  19. Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals...

    U.S. Energy Information Administration (EIA) Indexed Site

    Referring Pages: Natural Gas Gross Withdrawals from Shale Gas Wells Federal Offshore Gulf of Mexico Natural Gas Gross Withdrawals and Production Natural Gas Gross Withdrawals from ...

  20. Gulf of Mexico Federal Offshore Percentage of Natural Gas Liquids...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Proved Reserves from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Natural Gas Liquids Proved Reserves from Greater than 200 Meters Deep...

  1. Gulf of Mexico Federal Offshore Percentage of Crude Oil Production...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Production from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Crude Oil Production from Greater than 200 Meters Deep (Percent) Decade Year-0...

  2. Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Less than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate Proved Reserves from Less than 200 Meters Deep (Million Barrels)...

  3. Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate...

    Gasoline and Diesel Fuel Update (EIA)

    Greater than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate Production from Greater than 200 Meters Deep (Million Barrels)...

  4. Gulf of Mexico Federal Offshore Percentage of Natural Gas, Wet...

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Natural Gas, Wet After Lease Separation, Proved Reserves from Greater than...

  5. Gulf of Mexico Federal Offshore - Texas Natural Gas Plant Liquids...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Gulf of Mexico Federal Offshore - Texas Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0...

  6. Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Less than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease Separation, Production from Less than 200 Meters Deep (Billion Cubic...

  7. Gulf of Mexico Federal Offshore Natural Gas Liquids Proved Reserves...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Greater than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Proved Reserves from Greater than 200 Meters Deep (Million Barrels) Decade Year-0...

  8. Gulf of Mexico Federal Offshore Natural Gas Liquids Proved Reserves...

    Gasoline and Diesel Fuel Update (EIA)

    Less than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Proved Reserves from Less than 200 Meters Deep (Million Barrels) Decade Year-0...

  9. Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Greater than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease Separation, Production from Greater than 200 Meters Deep (Billion...

  10. Gulf of Mexico Federal Offshore Percentage of Natural Gas Liquids...

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Natural Gas Liquids Lease Condensate Proved Reserves from Greater than 200...

  11. Gulf of Mexico Federal Offshore Percentage of Dry Natural Gas...

    Gasoline and Diesel Fuel Update (EIA)

    Production from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Dry Natural Gas Production from Greater than 200 Meters Deep (Percent) Decade...

  12. Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease...

    Gasoline and Diesel Fuel Update (EIA)

    Less than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease Separation, Proved Reserves from Less than 200 Meters Deep (Billion...

  13. Gulf of Mexico Federal Offshore Percentage of Crude Oil Proved...

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Crude Oil Proved Reserves from Greater than 200 Meters Deep (Percent)...

  14. Gulf of Mexico Federal Offshore Dry Natural Gas Proved Reserves...

    Gasoline and Diesel Fuel Update (EIA)

    Greater than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Proved Reserves from Greater than 200 Meters Deep (Billion Cubic Feet) Decade...

  15. Gulf of Mexico Federal Offshore Percentage of Natural Gas, Wet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Production from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Natural Gas, Wet After Lease Separation, Production from Greater than 200...

  16. Gulf of Mexico Federal Offshore Natural Gas Liquids Production...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Greater than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Production from Greater than 200 Meters Deep (Million Barrels) Decade Year-0...

  17. Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate...

    Gasoline and Diesel Fuel Update (EIA)

    Greater than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate Proved Reserves from Greater than 200 Meters Deep (Million...

  18. Gulf of Mexico Federal Offshore Percentage of Dry Natural Gas...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Proved Reserves from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Dry Natural Gas Proved Reserves from Greater than 200 Meters Deep...

  19. Gulf of Mexico Federal Offshore Percentage of Natural Gas Liquids...

    Gasoline and Diesel Fuel Update (EIA)

    Production from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Natural Gas Liquids Production from Greater than 200 Meters Deep (Percent)...

  20. Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas Plant Liquids, Proved Reserves (Million Barrels)...

  1. Gulf of Mexico Federal Offshore Percentage of Natural Gas Liquids...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Production from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Natural Gas Liquids Lease Condensate Production from Greater than 200 Meters...

  2. Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate...

    Gasoline and Diesel Fuel Update (EIA)

    Less than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate Production from Less than 200 Meters Deep (Million Barrels) Decade...

  3. Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease...

    Gasoline and Diesel Fuel Update (EIA)

    Greater than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease Separation, Proved Reserves from Greater than 200 Meters Deep...

  4. Continuity and internal properties of Gulf Coast sandstones and...

    Office of Scientific and Technical Information (OSTI)

    properties of Gulf Coast sandstones and their implications for geopressured fluid production Morton, R.A.; Ewing, T.E.; Tyler, N. 15 GEOTHERMAL ENERGY; GEOPRESSURED...

  5. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Nonassociated...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Nonassociated Natural Gas Proved Reserves, Wet After Lease...

  6. ,"Federal Offshore, Gulf of Mexico, Texas Crude Oil plus Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Texas Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014,"06302009"...

  7. ,"Federal Offshore Gulf of Mexico Natural Gas Gross Withdrawals...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gulf of Mexico Natural Gas Gross Withdrawals and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  8. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Crude...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014...

  9. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Associated...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease...

  10. ,"Federal Offshore, Gulf of Mexico, Texas Nonassociated Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Texas Nonassociated Natural Gas Proved Reserves, Wet After Lease...

  11. ,"Federal Offshore, Gulf of Mexico, Texas Dry Natural Gas Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Texas Dry Natural Gas Proved Reserves",10,"Annual",2014,"06301981" ,"Release...

  12. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Dry Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Dry Natural Gas Proved Reserves",10,"Annual",2014,"06301981"...

  13. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Coalbed...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Coalbed Methane Proved Reserves, Reserves Changes, and...

  14. ,"Federal Offshore, Gulf of Mexico, Texas Associated-Dissolved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Texas Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease...

  15. Final Gulf Coast Ecosystem Restoration Task Force Strategic Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    watershed to reduce the flow of excess nutrients into the Gulf by supporting state nutrient reduction frameworks, new nutrient reduction approaches, and targeted watershed work ...

  16. Federal Offshore--Gulf of Mexico Natural Gas Vented and Flared...

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Federal Offshore--Gulf of Mexico Natural Gas Vented ... Natural Gas Vented and Flared Federal Offshore Gulf of Mexico Natural Gas Gross ...

  17. Well test report and CO/sub 2/ injection plan for the Little Knife Field CO/sub 2/ minitest Billings County, North Dakota. First annual report, September 1979-August 1980

    SciTech Connect (OSTI)

    Upton, J.E.

    1981-11-01

    Gulf Oil Exploration and Production Company in conjunction with the Department of Energy is conducting a field test of the CO/sub 2/ miscible displacement process. The project is being conducted in the Mission Canyon Formation (lower Mississippian), a dolomitized carbonate reservoir which is currently in the middle stage of primary depletion. Location of the field is in west-central North Dakota at the approximate center of the Williston Basin. Four wells were drilled in an inverted four-spot configuration within the five-acre minitest. The central well is the injection well surrounded by three non-producing observation wells. Oriented cores were obtained from each well for detailed reservoir characterization and laboratory testing. In addition, pulse and injectivity tests were obtained. Results from these tests were used to upgrade two reservoir simulation models. Various parameters within the models were modified to determine the most efficient injection plan. A WAG-type injection sequence involving alternate slugs of water and CO/sub 2/ will be employed. The test is designed to establish the incremental recovery, over waterflooding, by a miscible CO/sub 2/ flood in an oil reservoir.

  18. South Dakota Natural Gas Lease and Plant Fuel Consumption (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) and Plant Fuel Consumption (Million Cubic Feet) South Dakota Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 0 0 63 61 76 93 70 125 123 112 1990's 158 393 451 452 437 404 424 911 848 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release

  19. South Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) South Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 53 1990's 54 54 38 47 55 56 61 60 59 60 2000's 71 68 69 61 61 69 69 71 71 89 2010's 102 100 95 65 68 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date:

  20. South Dakota Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Vehicle Fuel Price (Dollars per Thousand Cubic Feet) South Dakota Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4.13 4.08 4.19 3.17 3.89 3.76 3.48 4.95 4.83 2000's 4.48 -- 4.14 -- -- -- -- -- -- -- 2010's -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date:

  1. Geothermal heating project at St. Mary's Hospital, Pierre, South Dakota. Final report

    SciTech Connect (OSTI)

    Not Available

    1984-12-01

    St. Mary's Hospital, Pierre, South Dakota, with the assistance of the US Department of Energy, drilled a 2176 ft well into the Madison Aquifer ot secure 108/sup 0/F artesian flow water at 385 gpm (475 psig shut-in pressure). The objective was to provide heat for domestic hot water and to space heat 163,768 sq. ft. Cost savings for the first three years were significant and, with the exception of a shutdown to replace some corroded pipe, the system has operated reliably and continuously for the last four years.

  2. North Dakota Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) North Dakota Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 201 1980's 239 253 248 257 267 331 293 276 266 313 1990's 334 243 266 274 275 263 255 257 261 250 2000's 264 270 315 316 320 343 357 417 484 1,070 2010's 1,717

  3. North Dakota Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",1521,1305,1253,1475,2042 "Solar","-","-","-","-","-" "Wind",369,621,1693,2998,4096 "Wood/Wood Waste","-","-","-","-","-" "MSW Biogenic/Landfill

  4. North Dakota Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",443,486,486,508,508 "Solar","-","-","-","-","-" "Wind",164,383,776,1202,1423 "Wood/Wood Waste","-","-","-","-","-" "MSW/Landfill

  5. North Dakota Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Energy Source",2006,2007,2008,2009,2010 "Fossil",28987,29283,29721,29712,28552 " Coal",28879,29164,29672,29607,28462 " Petroleum",42,51,49,45,38 " Natural Gas",7,17,"s",17,16 " Other Gases",59,53,"-",44,36 "Nuclear","-","-","-","-","-" "Renewables",1894,1940,2959,4484,6150 "Pumped

  6. North Dakota Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Energy Source",2006,2007,2008,2009,2010 "Fossil",4222,4212,4212,4243,4247 " Coal",4127,4119,4119,4148,4153 " Petroleum",77,75,75,71,71 " Natural Gas",10,10,10,15,15 " Other Gases",8,8,8,8,8 "Nuclear","-","-","-","-","-" "Renewables",617,879,1272,1720,1941 "Pumped Storage","-","-","-","-","-"

  7. South Dakota Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",3397,2917,2993,4432,5239 "Solar","-","-","-","-","-" "Wind",149,150,145,421,1372 "Wood/Wood Waste","-","-","-","-","-" "MSW Biogenic/Landfill

  8. South Dakota Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",1516,1463,1463,1594,1594 "Solar","-","-","-","-","-" "Wind",43,43,193,320,629 "Wood/Wood Waste","-","-","-","-","-" "MSW/Landfill

  9. South Dakota Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Energy Source",2006,2007,2008,2009,2010 "Fossil",3586,3069,3912,3306,3439 " Coal",3316,2655,3660,3217,3298 " Petroleum",5,63,23,8,6 " Natural Gas",266,351,229,80,135 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",3546,3067,3140,4859,6611 "Pumped

  10. South Dakota Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Energy Source",2006,2007,2008,2009,2010 "Fossil",1374,1364,1449,1448,1401 " Coal",492,492,497,497,497 " Petroleum",232,226,230,230,228 " Natural Gas",649,645,722,722,676 " Other Gases","-","-","-","-","-" "Nuclear","-","-","-","-","-" "Renewables",1559,1506,1656,1914,2223 "Pumped

  11. North Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) North Dakota Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 61 1990's 103 100 104 101 104 99 108 104 99 96 2000's 94 95 100 117 117 148 200 200 194 196 2010's 188 239 211 200 200 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016

  12. ,"North Dakota Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  13. ,"North Dakota Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Dry Natural Gas Production (Million Cubic Feet)",1,"Monthly","12/2013" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  14. ,"North Dakota Natural Gas Gross Withdrawals from Gas Wells (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Gross Withdrawals from Gas Wells (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  15. ,"North Dakota Natural Gas Gross Withdrawals from Oil Wells (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil Wells (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Gross Withdrawals from Oil Wells (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  16. ,"North Dakota Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  17. ,"North Dakota Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  18. ,"North Dakota Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  19. ,"North Dakota Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  20. ,"North Dakota Shale Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Shale Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  1. ,"South Dakota Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Dry Natural Gas Production (Million Cubic Feet)",1,"Monthly","12/2013" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  2. ,"South Dakota Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  3. ,"South Dakota Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    LNG Storage Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas LNG Storage Net Withdrawals (MMcf)",1,"Annual",1998 ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  4. ,"South Dakota Natural Gas Nonhydrocarbon Gases Removed (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonhydrocarbon Gases Removed (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Nonhydrocarbon Gases Removed (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  5. ,"South Dakota Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Residential Consumption (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  6. ,"South Dakota Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  7. ,"South Dakota Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  8. Federal Offshore Gulf of Mexico Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    Federal Offshore Gulf of Mexico Proved Reserves Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Data Series 2002 2003 2004 2005 2006 2007 View History Dry Natural Gas (billion cubic feet) 24,689 22,059 18,812 17,007 14,549 13,634 1992-2007 Depth Less Than 200 Meters 14,423 12,224 10,433 8,964 8,033 NA 1992-2007 Depth Greater Than 200 Meters 10,266 9,835 8,379 8,043 6,516 NA 1992-2007 Percentage from Depth Greater

  9. 3-D seismology in the Arabian Gulf

    SciTech Connect (OSTI)

    Al-Husseini, M.; Chimblo, R.

    1995-08-01

    Since 1977 when Aramco and GSI (Geophysical Services International) pioneered the first 3-D seismic survey in the Arabian Gulf, under the guidance of Aramco`s Chief Geophysicist John Hoke, 3-D seismology has been effectively used to map many complex subsurface geological phenomena. By the mid-1990s extensive 3-D surveys were acquired in Abu Dhabi, Oman, Qatar and Saudi Arabia. Also in the mid-1990`s Bahrain, Kuwait and Dubai were preparing to record surveys over their fields. On the structural side 3-D has refined seismic maps, focused faults and fractures systems, as well as outlined the distribution of facies, porosity and fluid saturation. In field development, 3D has not only reduced drilling costs significantly, but has also improved the understanding of fluid behavior in the reservoir. In Oman, Petroleum Development Oman (PDO) has now acquired the first Gulf 4-D seismic survey (time-lapse 3D survey) over the Yibal Field. The 4-D survey will allow PDO to directly monitor water encroachment in the highly-faulted Cretaceous Shu`aiba reservoir. In exploration, 3-D seismology has resolved complex prospects with structural and stratigraphic complications and reduced the risk in the selection of drilling locations. The many case studies from Saudi Arabia, Oman, Qatar and the United Arab Emirates, which are reviewed in this paper, attest to the effectiveness of 3D seismology in exploration and producing, in clastics and carbonates reservoirs, and in the Mesozoic and Paleozoic.

  10. JV 38-APPLICATION OF COFIRING AND COGENERATION FOR SOUTH DAKOTA SOYBEAN PROCESSORS

    SciTech Connect (OSTI)

    Darren D. Schmidt

    2002-11-01

    Cogeneration of heat and electricity is being considered by the South Dakota Soybean Processors for its facility in Volga, South Dakota, and a new facility to be located in Brewster, Minnesota. The Energy & Environmental Research Center has completed a feasibility study, with 40% funding provided from the U.S. Department of Energy's Jointly Sponsored Research Program to determine the potential application of firing biomass fuels combined with coal and comparative economics of natural gas-fired turbines. Various biomass fuels are available at each location. The most promising options based on availability are as follows. The economic impact of firing 25% biomass with coal can increase return on investment by 0.5 to 1.5 years when compared to firing natural gas. The results of the comparative economics suggest that a fluidized-bed cogeneration system will have the best economic performance. Installation for the Brewster site is recommended based on natural gas prices not dropping below a $4.00/MMBtu annual average delivered cost. Installation at the Volga site is only recommended if natural gas prices substantially increase to $5.00/MMBtu on average. A 1- to 2-year time frame will be needed for permitting and equipment procurement.

  11. Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis :

    SciTech Connect (OSTI)

    Adams, Brian M.; Ebeida, Mohamed Salah; Eldred, Michael S.; Jakeman, John Davis; Swiler, Laura Painton; Stephens, John Adam; Vigil, Dena M.; Wildey, Timothy Michael; Bohnhoff, William J.; Eddy, John P.; Hu, Kenneth T.; Dalbey, Keith R.; Bauman, Lara E; Hough, Patricia Diane

    2014-05-01

    The Dakota (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a exible and extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quanti cation with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the Dakota toolkit provides a exible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a user's manual for the Dakota software and provides capability overviews and procedures for software execution, as well as a variety of example studies.

  12. Sequence Stratigraphy of the Dakota Sandstone, Eastern San Juan Basin, New Mexico, and its Relationship to Reservoir Compartmentalization

    SciTech Connect (OSTI)

    Varney, Peter J.

    2002-04-23

    This research established the Dakota-outcrop sequence stratigraphy in part of the eastern San Juan Basin, New Mexico, and relates reservoir quality lithologies in depositional sequences to structure and reservoir compartmentalization in the South Lindrith Field area. The result was a predictive tool that will help guide further exploration and development.

  13. Gulf of Mexico Proved Reserves By Water Depth, 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    Gulf of Mexico Proved Reserves and Production by Water Depth, 2009 1 Gulf of Mexico Proved Reserves and Production by Water Depth The Gulf of Mexico Federal Offshore region (GOM Fed) has long been one of the Nation's principal sources of proved reserves. At the end of 2009, the GOM Fed accounted for close to one-fifth of oil proved reserves (second only to Texas) and just over four percent of natural gas proved reserves (the country's seventh largest reporting region). 1 Natural gas proved

  14. Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov ...

  15. Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals...

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil Wells (Million Cubic Feet) Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov ...

  16. Gulf of Mexico Federal Offshore Dry Natural Gas Production from...

    Gasoline and Diesel Fuel Update (EIA)

    Less than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Production from Less than 200 Meters Deep (Billion Cubic Feet) Decade Year-0 Year-1...

  17. Gulf of Mexico -- Offshore Natural Gas Withdrawals (Million Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    -- Offshore Natural Gas Withdrawals (Million Cubic Feet) Gulf of Mexico -- Offshore Natural Gas Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  18. Gulf of Mexico Federal Offshore Crude Oil Production from Greater...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Greater than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Crude Oil Production from Greater than 200 Meters Deep (Million Barrels) Decade Year-0 Year-1 Year-2...

  19. Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  20. Gulf Of Mexico Natural Gas Processed in Texas (Million Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    Texas (Million Cubic Feet) Gulf Of Mexico Natural Gas Processed in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's...

  1. Gulf Of Mexico Natural Gas Processed in Alabama (Million Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Alabama (Million Cubic Feet) Gulf Of Mexico Natural Gas Processed in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  2. Gulf of Mexico Federal Offshore Crude Oil Proved Reserves (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Million Barrels) Gulf of Mexico Federal Offshore Crude Oil Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

  3. Gulf Of Mexico Natural Gas Processed in Louisiana (Million Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Louisiana (Million Cubic Feet) Gulf Of Mexico Natural Gas Processed in Louisiana (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  4. Gulf of Mexico Federal Offshore Crude Oil Production from Less...

    Gasoline and Diesel Fuel Update (EIA)

    Less than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Crude Oil Production from Less than 200 Meters Deep (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

  5. Gulf of Mexico Federal Offshore Crude Oil Proved Reserves from...

    Gasoline and Diesel Fuel Update (EIA)

    Greater than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Crude Oil Proved Reserves from Greater than 200 Meters Deep (Million Barrels) Decade Year-0 Year-1...

  6. Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Billion Cubic Feet) Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  7. Gulf of Mexico Federal Offshore Crude Oil Production (Million...

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Gulf of Mexico Federal Offshore Crude Oil Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 267 266...

  8. Gulf of Mexico Federal Offshore Dry Natural Gas Production from...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Greater than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Production from Greater than 200 Meters Deep (Billion Cubic Feet) Decade Year-0...

  9. Gulf of Mexico Federal Offshore Natural Gas Liquids Production...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Less than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Production from Less than 200 Meters Deep (Million Barrels) Decade Year-0 Year-1...

  10. Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease...

    Gasoline and Diesel Fuel Update (EIA)

    (Billion Cubic Feet) Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease Separation, Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  11. Gulf Of Mexico Natural Gas Processed in Mississippi (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Mississippi (Million Cubic Feet) Gulf Of Mexico Natural Gas Processed in Mississippi (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  12. Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  13. Gulf of Mexico Federal Offshore Natural Gas Liquids Proved Reserves...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  14. Gulf of Mexico Federal Offshore Dry Natural Gas Production (Billion...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  15. Gulf of Mexico Federal Offshore Natural Gas Liquids Production...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  16. Gulf of Mexico Federal Offshore Dry Natural Gas Proved Reserves...

    Gasoline and Diesel Fuel Update (EIA)

    Less than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Proved Reserves from Less than 200 Meters Deep (Billion Cubic Feet) Decade Year-0...

  17. Gulf Of Mexico Natural Gas Processed (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Million Cubic Feet) Gulf Of Mexico Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 1,317,031...

  18. Gulf of Mexico Federal Offshore Crude Oil Proved Reserves from...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Less than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Crude Oil Proved Reserves from Less than 200 Meters Deep (Million Barrels) Decade Year-0 Year-1 Year-2...

  19. Gulf of Mexico Federal Offshore Dry Natural Gas Expected Future...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

  20. DOE_Gulf_Response.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GulfResponse.pdf DOEGulfResponse.pdf PDF icon DOEGulfResponse.pdf More Documents & Publications DeepwaterResponse.pdf UDAC Meeting - September 2012 April 30, 2010 Situation...

  1. Oil Production Capacity Expansion Costs for the Persian Gulf

    Reports and Publications (EIA)

    1996-01-01

    Provides estimates of development and operating costs for various size fields in countries surrounding the Persian Gulf. In addition, a forecast of the required reserve development and associated costs to meet the expected demand through the year 2010 is presented.

  2. Gulf County, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    169-2006 Climate Zone Number 2 Climate Zone Subtype A. Places in Gulf County, Florida Port St. Joe, Florida Wewahitchka, Florida Retrieved from "http:en.openei.orgw...

  3. Gulf of California Rift Zone Geothermal Region | Open Energy...

    Open Energy Info (EERE)

    Projects (0) Techniques (0) Map: Name The Gulf of California rift zone is a complex transition zone between the dextral (right-lateral) motion of the San Andreas transform...

  4. Entergy (Louisiana and Gulf States)- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Residential customers of Entergy Louisiana, and Entergy Gulf States Louisiana can participate in energy efficiency programs designed to help offset cost of installing energy efficient equipment and...

  5. SEMI-ANNUAL REPORT - GULF LNG LIQUEFACTION COMPANY, LLC - FE...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications SEMI-ANNUAL REPORTS FOR SOUTHERN LNG COMPANY - FE DKT. NO. 12-54-LNG - ORDER 3106 SEMI-ANNUAL REPORTS FOR GULF COAST LNG EXPORT, LLC - FE DKT. NO. ...

  6. Entergy Gulf States Louisiana LLC | Open Energy Information

    Open Energy Info (EERE)

    States Louisiana LLC Jump to: navigation, search Name: Entergy Gulf States Louisiana LLC Place: Louisiana Phone Number: 1-800-368-3749 Website: www.entergy-louisiana.com Twitter:...

  7. Gulf Stream, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Gulf Stream is a town in Palm Beach County, Florida. It falls under Florida's 22nd...

  8. Gulf Coast Electric Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    Electric Coop, Inc Jump to: navigation, search Name: Gulf Coast Electric Coop, Inc Place: Florida Phone Number: 1-800-568-3667 Website: www.gcec.com Outage Hotline: 1-800-568-3667...

  9. Microsoft Word - Accessing Gulf Resources article.doc

    Broader source: Energy.gov (indexed) [DOE]

    Gulf, plays some key role in 16-18% of the nation's total oil supply and is connected by pipelines to 50% of the country's refining capacity. It is very clear in my mind that the...

  10. The Gulf War and the environment

    SciTech Connect (OSTI)

    El-Baz, F. (ed.) (Boston Univ., MA (United States). Center for Remote Sensing); Makharita, R.M. (ed.) (World Bank, Washington, DC (United States))

    1994-01-01

    The Gulf War inflicted dramatic environmental damage upon the fragile desert and shore environments of Kuwait and northeastern Saudi Arabia. Coastal and marine environments experienced oil spills of more than 8 million barrels, which killed wildlife and damaged the fishing industry. In inland Kuwait, hundreds of oil lakes are scattered across the desert surface: these lakes emit noxious gases, drown insects and birds, and may seep to pollute groundwater. Exploding and burning oil wells released soot particles, oil droplets, and noxious chemicals into the atmosphere, spreading air pollution, acid rain, and respiratory problems. Military diggings, constructions, and vehicles have destroyed much of the desert pavement, resulting in increased dust storms and large, moving dunes.

  11. DAKOTA, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis:version 4.0 reference manual

    SciTech Connect (OSTI)

    Griffin, Joshua D. (Sandai National Labs, Livermore, CA); Eldred, Michael Scott; Martinez-Canales, Monica L.; Watson, Jean-Paul; Kolda, Tamara Gibson; Adams, Brian M.; Swiler, Laura Painton; Williams, Pamela J.; Hough, Patricia Diane; Gay, David M.; Dunlavy, Daniel M.; Eddy, John P.; Hart, William Eugene; Guinta, Anthony A.; Brown, Shannon L.

    2006-10-01

    The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a reference manual for the commands specification for the DAKOTA software, providing input overviews, option descriptions, and example specifications.

  12. South Dakota Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) South Dakota Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,910 2,805 6,020 2000's 6,269 5,774 6,065 6,318 6,217 5,751 5,421 5,690 4,686 3,240 2010's 5,806 6,692 6,402 6,888 5,221 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages:

  13. South Dakota Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) South Dakota Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2.11 1980's 2.75 3.08 3.37 3.67 2.51 2.46 2.71 1.95 1.11 1990's 1.56 1.12 1.79 2.13 1.73 1.59 2.09 2.47 2.13 2000's 3.56 3.42 2.95 4.98 5.49 7.44 6.40 7.22 7.94 NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  14. North Dakota Dry Natural Gas Reserves New Field Discoveries (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) New Field Discoveries (Billion Cubic Feet) North Dakota Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 25 8 47 1980's 20 34 44 5 4 1 2 2 0 1 1990's 0 0 0 0 0 3 3 0 0 0 2000's 0 0 0 0 0 5 1 0 6 6 2010's 25 10 16 1 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  15. North Dakota Natural Gas Imports Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet) North Dakota Natural Gas Imports Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.55 0.97 1.26 1.67 1.71 1.88 2000's 6.10 4.10 3.04 5.31 5.82 8.23 6.71 6.75 8.72 3.92 2010's 4.41 4.04 2.72 3.59 5.00 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016

  16. North Dakota Natural Gas Lease and Plant Fuel Consumption (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) and Plant Fuel Consumption (Million Cubic Feet) North Dakota Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 17,133 16,163 14,691 1970's 14,067 13,990 12,773 12,462 11,483 12,008 15,998 13,697 12,218 3,950 1980's 1,017 13,759 3,514 4,100 4,563 4,710 3,974 5,194 4,014 3,388 1990's 6,939 11,583 8,462 8,256 11,306 11,342 11,603 8,572 8,309 - = No Data Reported; -- = Not Applicable; NA =

  17. North Dakota Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) North Dakota Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4,744 413 9,506 2000's 10,567 13,563 14,230 14,109 14,035 13,306 13,023 13,317 11,484 8,870 2010's 13,745 13,575 15,619 14,931 14,604 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016

  18. North Dakota Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Vehicle Fuel Price (Dollars per Thousand Cubic Feet) North Dakota Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4.31 3.34 4.25 4.61 4.19 2.71 1.54 3.92 4.01 4.50 2000's 5.51 6.32 3.88 6.84 8.61 10.21 11.11 8.25 11.32 8.69 2010's 8.84 8.08 6.17 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  19. North Dakota Natural Gas Delivered to Commercial Consumers for the Account

    Gasoline and Diesel Fuel Update (EIA)

    of Others (Million Cubic Feet) Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) North Dakota Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 103 716 2,082 1990's 2,585 3,223 3,035 2,908 2,199 2,224 1,454 1,207 1,631 1,178 2000's 1,157 1,031 977 617 773 704 653 693 732 776 2010's 764 795 837 981 968 - = No Data Reported; -- = Not

  20. South Dakota Natural Gas Delivered to Commercial Consumers for the Account

    Gasoline and Diesel Fuel Update (EIA)

    of Others (Million Cubic Feet) Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) South Dakota Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 298 321 695 1990's 1,161 1,723 1,603 1,724 1,124 1,406 2,008 1,742 1,466 1,802 2000's 1,711 1,535 1,739 1,832 1,758 1,617 1,703 1,943 1,931 2,059 2010's 2,100 2,030 1,721 2,235 2,268 - = No Data

  1. JV Task 99-Integrated Risk Analysis and Contaminant Reduction, Watford City, North Dakota

    SciTech Connect (OSTI)

    Jaroslav Solc; Barry W. Botnen

    2007-05-31

    The Energy & Environmental Research Center (EERC) conducted a limited site investigation and risk analyses for hydrocarbon-contaminated soils and groundwater at a Construction Services, Inc., site in Watford City, North Dakota. Site investigation confirmed the presence of free product and high concentrations of residual gasoline-based contaminants in several wells, the presence of 1,2-dichloroethane, and extremely high levels of electrical conductivity indicative of brine residuals in the tank area south of the facility. The risk analysis was based on compilation of information from the site-specific geotechnical investigation, including multiphase extraction pilot test, laser induced fluorescence probing, evaluation of contaminant properties, receptor survey, capture zone analysis and evaluation of well head protection area for municipal well field. The project results indicate that the risks associated with contaminant occurrence at the Construction Services, Inc. site are low and, under current conditions, there is no direct or indirect exposure pathway between the contaminated groundwater and soils and potential receptors.

  2. Environmental Assessment and Finding of No Significant Impact: Wind Energy Center Edgeley/Kulm Project, North Dakota

    SciTech Connect (OSTI)

    N /A

    2003-04-15

    The proposed Edgeley/Kulm Project is a 21-megawatt (MW) wind generation project proposed by Florida Power and Light (FPL) Energy North Dakota Wind LLC (Dakota Wind) and Basin Electric Power Cooperative (Basin). The proposed windfarm would be located in La Moure County, south central North Dakota, near the rural farming communities of Kulm and Edgeley. The proposed windfarm is scheduled to be operational by the end of 2003. Dakota Wind and other project proponents are seeking to develop the proposed Edgeley/Kulm Project to provide utilities and, ultimately, electric energy consumers with electricity from a renewable energy source at the lowest possible cost. A new 115-kilovolt (kV) transmission line would be built to transmit power generated by the proposed windfarm to an existing US Department of Energy Western Area Power Administration (Western) substation located near Edgeley. The proposed interconnection would require modifying Western's Edgeley Substation. Modifying the Edgeley Substation is a Federal proposed action that requires Western to review the substation modification and the proposed windfarm project for compliance with Section 102(2) of the National Environmental Policy Act (NEPA) of 1969, 42 U.S.C. 4332, and Department of Energy NEPA Implementing Procedures (10 CFR Part 1021). Western is the lead Federal agency for preparation of this Environmental Assessment (EA). The US Fish and Wildlife Service (USFWS) is a cooperating agency with Western in preparing the EA. This document follows regulation issued by the Council on Environmental Quality (CEQ) for implementing procedural provisions of NEPA (40 CFR 1500-1508), and is intended to disclose potential impacts on the quality of the human environment resulting from the proposed project. If potential impacts are determined to be significant, preparation of an Environmental Impact Statement would be required. If impacts are determined to be insignificant, Western would complete a Finding of No Significant Impact (FONSI). Environmental protection measures that would be included in the design of the proposed project are included.

  3. Tectonic Setting and Characteristics of Natural Fractures in MesaVerde and Dakota Reservoirs of the San Juan Basin

    SciTech Connect (OSTI)

    LORENZ,JOHN C.; COOPER,SCOTT P.

    2000-12-20

    The Cretaceous strata that fill the San Juan Basin of northwestern New Mexico and southwestern Colorado were shortened in a generally N-S to NN13-SSW direction during the Laramide orogeny. This shortening was the result of compression of the strata between southward indentation of the San Juan Uplift at the north edge of the basin and northward to northeastward indentation of the Zuni Uplift from the south. Right-lateral strike-slip motion was concentrated at the eastern and western basin margins of the basin to form the Hogback Monocline and the Nacimiento Uplift at the same time, and small amounts of shear may have been pervasive within the basin as well. Vertical extension fractures, striking N-S to NNE-SSW with local variations (parallel to the Laramide maximum horizontal compressive stress), formed in both Mesaverde and Dakota sandstones under this system, and are found in outcrops and in the subsurface of the San Juan Basin. The immature Mesaverde sandstones typically contain relatively long, irregular, vertical extension fractures, whereas the quartzitic Dakota sandstones contain more numerous, shorter, sub-parallel, closely spaced, extension fractures. Conjugate shear planes in several orientations are also present locally in the Dakota strata.

  4. Arms and oil: US military strategy and the Persian Gulf

    SciTech Connect (OSTI)

    McNaugher, T.L.

    1985-01-01

    In the oil-rich Persian Gulf, a region crucial to the world's security and economic health, the United States confronts major challenges to its military and diplomatic skills. The Iranian revolution, the Soviet invasion of Afghanistan, and unpredictable turbulence have contributed to declining US influence in the area. In the United States, military questions about force size and strategy have sparked controversy over the proper US role in the Gulf. In this book Thomas L. McNaugher offers a military strategy for the Gulf that seeks to balance the risks of overinvolvement against the risks of neglect. The author, a research associate in the Brookings Foreign Policy Studies program, believes that the United States must cultivate the traditional security mechanisms of the states on the Arabian Peninsula, and he encourages cooperation with allies like Great Britain and France that historically have been involved in Gulf security. He argues that the United States should focus on protecting the Gulf states from external attack and on deterring further Soviet encroachment in the region, leaving internal security largely to the states themselves. 19 figs., 13 tabs.

  5. Gulf of Mexico pipelines heading into deeper waters

    SciTech Connect (OSTI)

    True, W.R.

    1987-06-08

    Pipeline construction for Gulf of Mexico federal waters is following drilling and production operations into deeper waters, according to U.S. Department of Interior (DOI) Minerals Management Service (MMS) records. Review of MMS 5-year data for three water depth categories (0-300 ft, 300-600 ft, and deeper than 600 ft) reveals this trend in Gulf of Mexico pipeline construction. Comparisons are shown between pipeline construction applications that were approved by the MMS during this period and projects that have been reported to the MMS as completed. This article is the first of annual updates of MMS gulf pipeline data. Future installments will track construction patterns in water depths, diameter classifications, and mileage. These figures will also be evaluated in terms of pipeline-construction cost data.

  6. Federal Offshore -- Gulf of Mexico Natural Gas Total Consumption (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) -- Gulf of Mexico Natural Gas Total Consumption (Million Cubic Feet) Federal Offshore -- Gulf of Mexico Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 2000's 0 0 109,277 98,372 90,025 78,139 102,242 115,528 102,389 103,976 2010's 108,490 101,217 93,985 95,207 93,855 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  7. Gulf LNG, Mississippi Liquefied Natural Gas Imports from Egypt (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Egypt (Million Cubic Feet) Gulf LNG, Mississippi Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,954 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Gulf LNG, MS LNG Imports from Egypt

  8. Gulf LNG, Mississippi Liquefied Natural Gas Imports from Trinidad and

    U.S. Energy Information Administration (EIA) Indexed Site

    Tobago (Million Cubic Feet) Trinidad and Tobago (Million Cubic Feet) Gulf LNG, Mississippi Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,820 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Gulf LNG, MS LNG

  9. Gulf Of Mexico Natural Gas Plant Liquids Production Extracted in

    Gasoline and Diesel Fuel Update (EIA)

    Mississippi (Million Cubic Feet) Mississippi (Million Cubic Feet) Gulf Of Mexico Natural Gas Plant Liquids Production Extracted in Mississippi (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 9,793 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Gulf of

  10. EIS-0433-S1: Keystone XL Pipeline SEIS (Montana, South Dakota, and Nebraska)

    Broader source: Energy.gov [DOE]

    This EIS analyzes the potential environmental impacts of a revised proposal for the Keystone XL pipeline and related facilities. The proposed facilities would transport crude oil from the Western Canadian Sedimentary Basin and the Williston Basin to existing pipeline facilities near Steele City, Nebraska, for onward transport to markets in the Texas Gulf Coast area. DOE is a cooperating agency. DOE's Western Area Power Administration has jurisdiction over certain proposed transmission facilities relating to the proposal, including construction and operation of a portion of a 230-kilovolt transmission line and construction and operation of two new substations and the expansion of six existing substations.

  11. DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. Version 5.0, developers manual.

    SciTech Connect (OSTI)

    Eldred, Michael Scott; Dalbey, Keith R.; Bohnhoff, William J.; Adams, Brian M.; Swiler, Laura Painton; Hough, Patricia Diane; Gay, David M.; Eddy, John P.; Haskell, Karen H.

    2010-05-01

    The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a developers manual for the DAKOTA software and describes the DAKOTA class hierarchies and their interrelationships. It derives directly from annotation of the actual source code and provides detailed class documentation, including all member functions and attributes.

  12. Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis:version 4.0 developers manual.

    SciTech Connect (OSTI)

    Griffin, Joshua D. (Sandia National lababoratory, Livermore, CA); Eldred, Michael Scott; Martinez-Canales, Monica L.; Watson, Jean-Paul; Kolda, Tamara Gibson (Sandia National lababoratory, Livermore, CA); Giunta, Anthony Andrew; Adams, Brian M.; Swiler, Laura Painton; Williams, Pamela J.; Hough, Patricia Diane (Sandia National lababoratory, Livermore, CA); Gay, David M.; Dunlavy, Daniel M.; Eddy, John P.; Hart, William Eugene; Brown, Shannon L.

    2006-10-01

    The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a developers manual for the DAKOTA software and describes the DAKOTA class hierarchies and their interrelationships. It derives directly from annotation of the actual source code and provides detailed class documentation, including all member functions and attributes.

  13. Visualizing the Surface Infrastructure Used to Move 2 MtCO2/year from the Dakota Gasification Company to the Weyburn CO2 Enhanced Oil Recovery Project: Version of July 1, 2009

    SciTech Connect (OSTI)

    Dooley, James J.

    2009-07-09

    Google Earth Pro has been employed to create an interactive flyover of the worlds largest operational carbon dioxide capture and storage project. The visualization focuses on the transport and storage of 2 MtCO2/year which is captured from the Dakota Gasification Facility (Beula, North Dakota) and transported 205 miles and injected into the Weyburn oil field in Southeastern Saskatchewan.

  14. South Dakota Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) South Dakota Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.24 0.22 0.20 1970's 0.20 0.20 0.30 0.33 0.31 0.50 0.55 0.63 0.78 1.20 1980's 1.71 2.20 2.91 3.31 3.32 3.46 2.69 2.17 2.05 1.91 1990's 2.13 1.42 1.22 1.80 1.36 1.03 1.75 2.13 1.68 2.12 2000's 3.76 3.28 NA -- -- -- - = No Data Reported; -- = Not

  15. North Dakota Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) North Dakota Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.16 0.17 0.16 1970's 0.16 0.17 0.17 0.20 0.20 0.23 0.34 0.35 0.46 1.28 1980's 1.19 1.94 2.30 2.27 2.26 1.90 1.35 1.30 2.00 1.78 1990's 1.79 1.67 1.97 1.84 2.16 2.14 2.32 2000's 3.94 3.53 2.73 3.53 5.73 8.40 6.52 6.67 8.55 3.74 2010's 3.92 - = No Data Reported; -- = Not Applicable; NA = Not

  16. North Dakota Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) North Dakota Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.27 0.17 0.17 1970's 0.20 0.20 0.25 0.29 0.31 0.51 0.57 0.75 0.95 1.55 1980's 1.81 2.34 4.11 3.80 3.42 2.77 2.56 2.40 2.49 2.03 1990's 1.61 1.35 1.28 1.84 1.34 1.01 1.70 2.07 1.77 2.12 2000's 3.62 2.14 NA -- -- -- - = No Data Reported; -- = Not

  17. Spearfish High School, Sparfish, South Dakota solar energy system performance evaluation, September 1980-June 1981

    SciTech Connect (OSTI)

    Howard, B.D.

    1981-01-01

    Spearfish High School in South Dakota contains 43,000 square feet of conditioned space. Its active solar energy system is designed to supply 57% of the space heating and 50% of the hot water demand. The system is equipped with 8034 square feet of flat plate collectors, 4017 cubic feet of rock bin sensible heat storage, and auxiliary equipment including 8 heat pumps, 6 of which are solar supplied and instrumented, air conditioning units, and natural-gas-fired boilers. Performance data are given for the system including the solar fraction, solar savings ratio, conventional fuel savings, system performance factor and solar system coefficient of performance. Insolation, solar energy utilization and operation data are also given. The performance of the collector, storage, domestic hot water and space heating subsystems, the operating energy, energy savings, and weather conditions are also evaluated. Appended are a system description, performance evaluation techniques and equations, site history, long-term weather data, sensor technology, and typical monthly data. (LEW)

  18. Economic Impact of Harvesting Corn Stover under Time Constraint: The Case of North Dakota

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Maung, Thein A.; Gustafson, Cole R.

    2013-01-01

    This study examines the impact of stochastic harvest field time on profit maximizing potential of corn cob/stover collection in North Dakota. Three harvest options are analyzed using mathematical programming models. Our findings show that under the first corn grain only harvest option, farmers are able to complete harvesting corn grain and achieve maximum net income in a fairly short amount of time with existing combine technology. However, under the second simultaneous corn grain and cob (one-pass) harvest option, farmers generate lower net income compared to the net income of the first option. This is due to the slowdown in combinemore » harvest capacity as a consequence of harvesting corn cobs. Under the third option of separate corn grain and stover (two-pass) harvest option, time allocation is the main challenge and our evidence shows that with limited harvest field time available, farmers find it optimal to allocate most of their time harvesting grain and then proceed to harvest and bale stover if time permits at the end of harvest season. The overall findings suggest is that it would be more economically efficient to allow a firm that is specialized in collecting biomass feedstock to participate in cob/stover harvest business.« less

  19. Proceedings of the Gulf Coast Cogeneration Association spring conference

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    This book contains the proceedings of the Gulf Coast Cogeneration Association cogeneration conference held March 23, 1993. The topics of the papers contained in the conference proceedings include planning for additional capacity by electric utilities, fuel selection, fuel supply, competition and market pressures, power transmission and access to power transmission facilities, case studies of successful cogeneration projects.

  20. SOLUTION MINING IN SALT DOMES OF THE GULF COAST EMBAYMENT

    SciTech Connect (OSTI)

    Griswold, G. B.

    1981-02-01

    Following a description of salt resources in the salt domes of the gulf coast embayment, mining, particularly solution mining, is described. A scenario is constructed which could lead to release of radioactive waste stored in a salt dome via inadvertent solution mining and the consequences of this scenario are analyzed.

  1. Chemical migration by contact metamorphism between pegmatite/country rocks: natural analogs for radionuclides migration. [Black Hills, South Dakota

    SciTech Connect (OSTI)

    Laul, J.C.; Walker, R.J.; Shearer, C.K.; Papike, J.J.; Simon, S.B.

    1983-10-01

    Comparison of trace element signatures of country rocks as a function of distance from the contact with two pegmatites, Tin Mountain and Etta, in the Black Hills of South Dakota, suggests that some elements such as K, Li, Rb, Cs, As, Sb, Zn and Pb, have migrated to distances of 4 to 40 meters during contact metamorphism. The relative degree of migration varies depending on the element. On the other hand, there is virtually no migration of rare earth elements (REE), Al, Sc, Cr, Hf, U, and Th. Biotite and muscovite are effective trace element traps for Li, Rb and Cs. Biotite has a greater affinity for Rb, Cs and Li than muscovite.

  2. ,"North Dakota Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  3. ,"North Dakota Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  4. ,"North Dakota Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015"

  5. Storm-water characterization and lagoon sediment analysis, Grand Forks Air Force Base, North Dakota. Final report

    SciTech Connect (OSTI)

    Garland, J.G.; Vaughn, R.W.; Scott, P.T.

    1990-08-01

    Sampling was conducted in the wastewater treatment lagoons and stormwater runoff at Grand Forks AFB. The base was concerned about whether the unlined lagoons were creating a potential groundwater contamination problem and whether their stormwater runoff met North Dakota state stream standards. Lagoon sediment did not contain Extraction Procedure hazardous chemicals. Stormwater runoff exceeded state standards for boron, phosphates, and phenols and contained trace levels of methylene chloride. Characterization of lagoon influent showed it to be generally representative of domestic sewage, but also contained trace levels of boron, phenols, toluene, cyanide, chloroform, methylene chloride and ethyl benzene.

  6. Potential use of California lignite and other alternate fuel for enhanced oil recovery. Phase I and II. Final report. [As alternative fuels for steam generation in thermal EOR

    SciTech Connect (OSTI)

    Shelton, R.; Shimizu, A.; Briggs, A.

    1980-02-01

    The Nation's continued reliance on liquid fossil fuels and decreasing reserves of light oils gives increased impetus to improving the recovery of heavy oil. Thermal enhanced oil recovery EOR techniques, such as steam injection, have generally been the most effective for increasing heavy oil production. However, conventional steam generation consumes a large fraction of the produced oil. The substitution of alternate (solid) fuels would release much of this consumed oil to market. This two-part report focuses on two solid fuels available in California, the site of most thermal EOR - petroleum coke and lignite. Phase I, entitled Economic Analysis, shows detailed cost comparisons between the two candidate fuels and also with Western coal. The analysis includes fuels characterizations, process designs for several combustion systems, and a thorough evaluation of the technical and economic uncertainties. In Phase II, many technical parameters of petroleum coke combustion were measured in a pilot-plant fluidized bed. The results of the study showed that petroleum coke combustion for EOR is feasible and cost effective in a fluidized bed combustor.

  7. Other Locales Gulf Stream Locale -A Field Laboratory for Cloud Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gulf Stream Locale -A Field Laboratory for Cloud Process S. Raman Department of Marine, Earth and Atmospheric Sciences North Carolina State University Raleigh, NC 27695-8028 Clouds associated with the Gulf Stream Locale, (Figure 1) are in general due to the cyclogenesis or redevelopments of the storms off the east coast of the United States in winters, movement along the coast of the storms that are generated over the Gulf of Mexico in the spring and fall and mesoscale convective circulations

  8. Pipelines following exploration in deeper Gulf of Mexico

    SciTech Connect (OSTI)

    True, W.R.

    1988-07-04

    Gulf of Mexico pipeline construction has been falling of sharply to shallow-water (less than 300 ft) areas, while construction for middle depth (300 - 600 ft) and deepwater (600 + ft) areas as been holding steady. These trends are evident from analyses of 5-year data compiled by the U.S. Department of Interior (DOI) Minerals Management Service (MMS). This article continues a series of updates based on MMS gulf pipeline data (OGJ, June 8, 1987, p. 50). These installments track construction patterns in water depths, diameter classifications, and mileage. The figures are also evaluated in terms of pipeline-construction cost data published in Oil and Gas Journal's annual Pipeline Economics Reports.

  9. EIS-0478: Antelope Valley Station to Neset Transmission Project, Mercer, Dunn, Billings, Williams, McKenzie, and Mountrail Counties, North Dakota

    Broader source: Energy.gov [DOE]

    USDA Rural Utilities Service prepared an EIS that evaluates the potential environmental impacts of constructing, operating, and maintaining a proposed transmission line and associated facilities in western North Dakota. DOE’s Western Area Power Administration, a cooperating agency, would modify its existing Williston Substation to allow a connection of the proposed new transmission line to Western’s transmission system.

  10. DAKOTA, a multilevel parellel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis:version 4.0 uers's manual.

    SciTech Connect (OSTI)

    Griffin, Joshua D.; Eldred, Michael Scott; Martinez-Canales, Monica L.; Watson, Jean-Paul; Kolda, Tamara Gibson; Giunta, Anthony Andrew; Adams, Brian M.; Swiler, Laura Painton; Williams, Pamela J.; Hough, Patricia Diane; Gay, David M.; Dunlavy, Daniel M.; Eddy, John P.; Hart, William Eugene; Brown, Shannon L.

    2006-10-01

    The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a user's manual for the DAKOTA software and provides capability overviews and procedures for software execution, as well as a variety of example studies.

  11. EA-1943: Long Baseline Neutrino Facility/Deep Underground Neutrino Experiment (LBNF/DUNE) at Fermilab, Batavia, Illinois and the Sanford Underground Research Facility, Lead, South Dakota

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of using the existing Main Injector Accelerator at Fermilab to produce a pure beam of muon neutrinos. The neutrinos would be examined at a "near detector" proposed to be constructed at Fermilab, and at a "far detector," at the Sanford Underground Research Facility (SURF) in Lead, South Dakota. NOTE: This Project was previously designated (DOE/EA-1799).

  12. DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. Version 5.0, user's manual.

    SciTech Connect (OSTI)

    Eldred, Michael Scott; Dalbey, Keith R.; Bohnhoff, William J.; Adams, Brian M.; Swiler, Laura Painton; Hough, Patricia Diane; Gay, David M.; Eddy, John P.; Haskell, Karen H.

    2010-05-01

    The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a user's manual for the DAKOTA software and provides capability overviews and procedures for software execution, as well as a variety of example studies.

  13. EA-1943: Construction and Operation of the Long Baseline Neutrino Facility and Deep Underground Neutrino Experiment at Fermilab, Batavia, Illinois, and Sanford Underground Research Facility, Lead, South Dakota

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of using the existing Main Injector Accelerator at Fermilab to produce a pure beam of muon neutrinos. The neutrinos would be examined at a "near detector" proposed to be constructed at Fermilab, and at a "far detector," at the Sanford Underground Research Facility (SURF) in Lead, South Dakota. NOTE: This Project was previously designated (DOE/EA-1799).

  14. Location of Natural Gas Production Facilities in the Gulf of Mexico

    U.S. Energy Information Administration (EIA) Indexed Site

    Location of Natural Gas Production Facilities in the Gulf of Mexico 2014 U.S. Energy Information Administration | Natural Gas Annual 102 1,179,714 4.6 Gulf of Mexico - Natural Gas 2011 Million Cu. Feet Percent of National Total Dry Production: Table S12. Summary statistics for natural gas - Gulf of Mexico, 2010-2014 Gulf of Mexico - Table S12 Federal Offshore Production trillion cubic feet 0 1 2 3 4 5 6 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

  15. Impact of Tropical Cyclones on Gulf of Mexico Crude Oil and Natural Gas Production, The

    Reports and Publications (EIA)

    2006-01-01

    This is a special analysis report on hurricanes and their effects on oil and natural gas production in the Gulf of Mexico region.

  16. MHK Projects/Gulf of Mexico Ocean test | Open Energy Information

    Open Energy Info (EERE)

    Gulf of Mexico Ocean test < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"R...

  17. Measurement of gas species, temperatures, coal burnout, and wall heat fluxes in a 200 MWe lignite-fired boiler with different overfire air damper openings

    SciTech Connect (OSTI)

    Jianping Jing; Zhengqi Li; Guangkui Liu; Zhichao Chen; Chunlong Liu

    2009-07-15

    Measurements were performed on a 200 MWe, wall-fired, lignite utility boiler. For different overfire air (OFA) damper openings, the gas temperature, gas species concentration, coal burnout, release rates of components (C, H, and N), furnace temperature, and heat flux and boiler efficiency were measured. Cold air experiments for a single burner were conducted in the laboratory. The double-swirl flow pulverized-coal burner has two ring recirculation zones starting in the secondary air region in the burner. As the secondary air flow increases, the axial velocity of air flow increases, the maxima of radial velocity, tangential velocity and turbulence intensity all increase, and the swirl intensity of air flow and the size of recirculation zones increase slightly. In the central region of the burner, as the OFA damper opening widens, the gas temperature and CO concentration increase, while the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and coal particles ignite earlier. In the secondary air region of the burner, the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and the gas temperature and CO concentration vary slightly. In the sidewall region, the gas temperature, O{sub 2} concentration, and NOx concentration decrease, while the CO concentration increases and the gas temperature varies slightly. The furnace temperature and heat flux in the main burning region decrease appreciably, but increase slightly in the burnout region. The NOx emission decreases from 1203.6 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 0% to 511.7 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 80% and the boiler efficiency decreases from 92.59 to 91.9%. 15 refs., 17 figs., 3 tabs.

  18. 2010 Outlook for Hurricane-Related Production Outages in the Gulf of Mexico - Short-Term Energy Outlook Supplement:

    Reports and Publications (EIA)

    2010-01-01

    Projected impacts to Gulf of Mexico crude oil and natural gas production for the 2010 Atlantic hurricane season.

  19. 2009 Outlook for Hurricane Production Outages in the Gulf of Mexico, The (Released in the STEO June 2009)

    Reports and Publications (EIA)

    2009-01-01

    Projected impacts to Gulf of Mexico crude oil and natural gas production for the 2009 Atlantic hurricane season.

  20. JV Task-130 Technological Synergies for Recovery of Organic Pollutants from a Coal Seam at Garrison, North Dakota

    SciTech Connect (OSTI)

    Jaroslav Solc

    2009-03-15

    The Energy & Environmental Research Center (EERC) initiated remediation of hydrocarbon-contaminated soils and groundwater associated with gasoline release at the Farmers Union Oil station in Garrison, North Dakota. The remedial strategy implemented is based on application of two innovative concepts: (1) simultaneous operation of soil vapor and multiphase extraction systems allowing for water table control in challenging geotechnical conditions and (2) controlled hot-air circulation between injection and extraction wells to accelerated in situ volatilization and stripping of contaminants of concern (COC) alternatively using the same wells as either extraction or injection points. A proactive remedial approach is required to reduce high COC levels in the source and impacted areas and to eliminate long-term health risks associated with contaminant migration to water-bearing zones used as a regional water supply source. This report compiles results of Phase I focused on design, construction, and start-up of remediation systems.