National Library of Energy BETA

Sample records for gulf coast north

  1. Western Gulf Coast Analysis | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SheetsWestern Gulf Coast Analysis content top Western Gulf Coast Analysis One focus area for NISAC is the importance of local and regional infrastructures-understanding their interactions and importance to our overall national economic health. In 2004 and 2005, NISAC evaluated the western Gulf Coast region. NISAC developed a National Petroleum System Simulator to evaluate the potential short-term effects of disruptions in the western Gulf Coast petroleum infrastructure operations on the rest of

  2. Learning from Gulf Coast Community Leaders

    Broader source: Energy.gov [DOE]

    After hearing the stories about the work that leaders from the gulf coast and their organizations have done, it’s clear to me that they are changing the paradigm of gulf coast recovery -- changing the way buildings are developed in the gulf and creating a generation of green builders in New Orleans who work closely with low-income communities.

  3. Gulf Coast Green Energy | Open Energy Information

    Open Energy Info (EERE)

    Green Energy Jump to: navigation, search Name: Gulf Coast Green Energy Place: Bay City, Texas Zip: 77414 Product: The Texas-based company is the exclusive distributor of...

  4. A Path Forward for the Gulf Coast

    Broader source: Energy.gov [DOE]

    Our country has made a promise to the people and small businesses of the Gulf Coast to restore their environment, economy and health, and continue a conversation with the fisherman, environmental workers, elected officials, health officials, scientists and Gulf residents on how to restore the Gulf.

  5. EECBG Success Story: Gulf Coast's Texas City Sees Easy Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gulf Coast's Texas City Sees Easy Energy Savings EECBG Success Story: Gulf Coast's Texas ... of the Cape Coral Youth Center EECBG Success Story: Cape Coral Youth Center Helps ...

  6. Gulf Coast Clean Energy Application Center

    SciTech Connect (OSTI)

    Dillingham, Gavin

    2013-09-30

    The Gulf Coast Clean Energy Application Center was initiated to significantly improve market and regulatory conditions for the implementation of combined heat and power technologies. The GC CEAC was responsible for the development of CHP in Texas, Louisiana and Oklahoma. Through this program we employed a variety of outreach and education techniques, developed and deployed assessment tools and conducted market assessments. These efforts resulted in the growth of the combined heat and power market in the Gulf Coast region with a realization of more efficient energy generation, reduced emissions and a more resilient infrastructure. Specific t research, we did not formally investigate any techniques with any formal research design or methodology.

  7. Final Strategic Plan Released by Gulf Coast Ecosystem Restoration Taskforce

    Broader source: Energy.gov [DOE]

    Today (December 5) the Gulf Coast Ecosystem Restoration Task Force released its final strategy for long-term restoration in the Gulf, a path forward based on input from states, tribes, federal...

  8. Continuity and internal properties of Gulf Coast sandstones and...

    Office of Scientific and Technical Information (OSTI)

    properties of Gulf Coast sandstones and their implications for geopressured fluid production Morton, R.A.; Ewing, T.E.; Tyler, N. 15 GEOTHERMAL ENERGY; GEOPRESSURED...

  9. Coos Bay Field Gulf Coast Coal Region Williston Basin Illinois

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coos Bay Field Gulf Coast Coal Region Williston Basin Illinois Basin Forest City Basin Northern Appalachian Basin Powder River Basin Uinta Basin Cherokee Platform San Juan Basin C e n t r a l A p p a l a c h i a n B a s i n Michigan Basin Greater Green River Basin Black Warrior Basin North Central Coal Region Arkoma Basin Denver Basin Southwestern Coal Region Piceance Basin Big Horn Basin Wind River Basin Raton Basin Black Mesa Basin Terlingua Field Kaiparowits Basin Deep River Basin SW Colorado

  10. Final Gulf Coast Ecosystem Restoration Task Force Strategic Plan |

    Office of Environmental Management (EM)

    Department of Energy Final Gulf Coast Ecosystem Restoration Task Force Strategic Plan Final Gulf Coast Ecosystem Restoration Task Force Strategic Plan The natural resources of the Gulf's ecosystem are vital to many of the region's industries that directly support economic progress and job creation, including tourism and recreation, seafood production and sales, energy production and navigation and commerce. Among the key priorities of the strategy are: 1) Stopping the Loss of Critical

  11. Gulf Coast Electric Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    Electric Coop, Inc Jump to: navigation, search Name: Gulf Coast Electric Coop, Inc Place: Florida Phone Number: 1-800-568-3667 Website: www.gcec.com Outage Hotline: 1-800-568-3667...

  12. Gulf Coast's Texas City Sees Easy Energy Savings

    Broader source: Energy.gov [DOE]

    In Texas City, an Energy Efficiency and Conservation Block Grant (EECBG) awarded last year has already been utilized to start saving the Texas Gulf Coast city money by installing more efficient lights and applying UV reduction films to windows.

  13. Energy Department Approves Gulf Coast Exports of Liquefied Natural Gas |

    Energy Savers [EERE]

    Department of Energy Approves Gulf Coast Exports of Liquefied Natural Gas Energy Department Approves Gulf Coast Exports of Liquefied Natural Gas May 20, 2011 - 12:00am Addthis Washington, D.C. - The U.S. Department of Energy today issued a conditional authorization approving an application to export liquefied natural gas (LNG) from the Sabine Pass LNG Terminal in Louisiana, paving the way for thousands of new construction and domestic natural gas production jobs in Louisiana, Texas, and

  14. Energy Department Approves Gulf Coast Exports of Liquefied Natural Gas |

    Office of Environmental Management (EM)

    Department of Energy Approves Gulf Coast Exports of Liquefied Natural Gas Energy Department Approves Gulf Coast Exports of Liquefied Natural Gas May 20, 2011 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy today issued a conditional authorization approving an application to export liquefied natural gas (LNG) from the Sabine Pass LNG Terminal in Louisiana, paving the way for thousands of new construction and domestic natural gas production jobs in Louisiana, Texas, and several

  15. Gulf Coast-East Coast magnetic anomaly I: Root of the main crustal decollement for the Appalachian-Ouachita orogen

    SciTech Connect (OSTI)

    Hall, D.J. (Total Minatome Corporation, Houston, TX (USA))

    1990-09-01

    The Gulf Coast-East Coast magnetic anomaly extends for at least 4000 km from south-central Texas to offshore Newfoundland as one of the longest continuous tectonic features in North America and a major crustal element of the entire North Atlantic-Gulf Coast region. Analysis of 28 profiles spaced at 100km intervals and four computed models demonstrate that the anomaly may be explained by a thick zone of mafic and ultramafic rocks averaging 13-15 km in depth. The trend of the anomaly closely follows the trend of main Appalachian features: in the Gulf Coast of Louisiana, the anomaly is as far south of the Ouachita front as it is east of the western limit of deformation through the central Appalachians. Because the anomaly continues across well-known continental crust in northern Florida and onshore Texas, it cannot plausibly be ascribed to an edge effect at the boundary of oceanic with continental crustal compositions. The northwest-verging, deep-crustal events discovered in COCORP data from the Ouachitas and Appalachians suggest an analogy with the main suture of the Himalayan orogen in the Tibetan Plateau. In this paper the anomaly is identified with the late Paleozoic Alleghenian megasuture, in which the northwest-verging crustal-detachment surfaces ultimately root.

  16. Proceedings of the Gulf Coast Cogeneration Association spring conference

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    This book contains the proceedings of the Gulf Coast Cogeneration Association cogeneration conference held March 23, 1993. The topics of the papers contained in the conference proceedings include planning for additional capacity by electric utilities, fuel selection, fuel supply, competition and market pressures, power transmission and access to power transmission facilities, case studies of successful cogeneration projects.

  17. SOLUTION MINING IN SALT DOMES OF THE GULF COAST EMBAYMENT

    SciTech Connect (OSTI)

    Griswold, G. B.

    1981-02-01

    Following a description of salt resources in the salt domes of the gulf coast embayment, mining, particularly solution mining, is described. A scenario is constructed which could lead to release of radioactive waste stored in a salt dome via inadvertent solution mining and the consequences of this scenario are analyzed.

  18. A coastal hazards data base for the US Gulf Coast

    SciTech Connect (OSTI)

    Daniels, R.C.; Gornitz, V.M.; White, T.W.

    1994-06-01

    This document describes the contents of a digital data base that may be used to identify coastlines along the US Gulf Coast at risk to sea-level rise. The data base integrates point, line, and polygon data for the US Gulf Coast into 0.25{degree} latitude by 0.25{degree} longitude grid cells and into 1:2,000,000 digitized line segments that can be used by raster or vector geographic information systems (GIS) as well as by non-GIS data base systems. Each coastal grid cell and line segment contains data on elevation, geology, geomorphology, sea-level trends, shoreline displacement (erosion/accretion), tidal ranges, and wave heights. To allow for the identification of coastlines at risk from sea-level rise, 7 of the 22 original data variables in this data base were classified by vulnerability and used to create 7 relative risk variables. These relative risk variables range in value from 1 to 5 and may be used to calculate a coastal vulnerability index for each grid cell and/or line segment. The data for these 29 variables (i.e., the 22 original variables and 7 risk variables) have been placed into the following data formats: (1) Gridded polygon data for the 22 original data variables. Data include elevation, geology, geomorphology, sea-level trends, shoreline displacement (erosion/accretion), tidal ranges, and wave heights. (2) Gridded polygon data for the seven classified risk variables. The risk variables are classified versions of: mean coastal elevation, geology, geomorphology, local subsidence trend, mean shoreline displacement, maximum tidal range, and maximum significant wave height. (3) 1:2,000,000 line segment data containing the 29 data variables (the 22 original data variables and the seven classified risk variables). (4) Supplemental point data for the stations used in calculating the sea-level trend and tidal range data sets. (5) Supplemental line segment data containing a 1:2,000,000 digitized coastline of the US Gulf Coast as defined by this document.

  19. DOE Announces Three Projects to Help the Gulf Coast Recover and Rebuild |

    Energy Savers [EERE]

    Department of Energy Three Projects to Help the Gulf Coast Recover and Rebuild DOE Announces Three Projects to Help the Gulf Coast Recover and Rebuild January 20, 2006 - 10:52am Addthis ROBINSONVILLE, MS - Energy Secretary Samuel W. Bodman today announced three Department of Energy (DOE) initiatives to help the people in the Gulf coast region recover from the hurricanes in 2005, as well as prevent loss of life and damage in the future. During his speech to the Energy Leadership Forum, the

  20. Pipeline transportation of natural gas from the Gulf Coast to the Northeast

    SciTech Connect (OSTI)

    Boehm, J.C.

    1980-01-01

    Transcontinental Gas Pipe Line Corp.'s national gas pipeline system from the Gulf Coast producing area (where 75% of its supply lies offshore) extends for 1832 mi along the Gulf Coast through the southeastern Piedmont and north to terminate in New York City. It serves high-priority markets in 11 southern and Atlantic seaboard states with a daily flowing capacity of 3.0 billion cu ft/day and an additional 1.5 billion cu ft/day available from storage. Also discussed are gas conditioning for the removal of hydrogen sulfide, carbon dioxide, water vapor and entrained salt water and solids, and measurement of gas volume with a meter and gravitometer and of heating value with a calorimeter; gas transmission through 9,295 mi of pipeline, made up mostly of four, 30-42 in. dia parallel pipelines with 1,062,452 hp of compression capacity; LNG storage, including unique facilities at the Eminence, Miss., Salt Dome Storage facility and the Carlstadt, N.J., LNG plant; odorization; operations; and pipeline protection against third-party damage and against corrosion.

  1. Identification of geopressured occurrences outside of the Gulf Coast. Final report, Phase I

    SciTech Connect (OSTI)

    Strongin, O.

    1980-09-30

    As an extension of its efforts in the development of the geopressured resources of the Gulf Coast, the Division of Geothermal Energy of the US Department of Energy is interested in determining the extent and characteristics of geopressured occurrences in areas outside the Gulf Coast. The work undertaken involved a literature search of available information documenting such occurrences. Geopressured reservoirs have been reported from various types of sedimentary lithologies representing virtually all geologic ages and in a host of geologic environments, many of which are unlike those of the Gulf Coast. These include many Rocky Mountain basins (Green River, Big Horn, Powder River, Wind River, Uinta, Piceance, Denver, San Juan), Mid-Continent basins (Delaware, Anadorko, Interior Salt, Williston, Appalachian), California basins (Sacramento, San Joaquin, Los Angeles, Ventura, Coast Ranges), Alaskan onshore and offshore basins, Pacific Coast offshore basins, and other isolated occurrences, both onshore and offshore.

  2. Final Gulf Coast Ecosystem Restoration Task Force Strategic Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the flow of excess nutrients into the Gulf by supporting state nutrient reduction frameworks, new nutrient reduction approaches, and targeted watershed work to reduce ...

  3. EECBG Success Story: Gulf Coast's Texas City Sees Easy Energy Savings |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Gulf Coast's Texas City Sees Easy Energy Savings EECBG Success Story: Gulf Coast's Texas City Sees Easy Energy Savings July 26, 2010 - 10:00am Addthis By replacing T-12 lights with more efficient T-8 units, Texas City will save 65.5 kW each year. | Courtesy of the City of Texas City, Texas By replacing T-12 lights with more efficient T-8 units, Texas City will save 65.5 kW each year. | Courtesy of the City of Texas City, Texas To start saving money, Texas City installed

  4. SEMI-ANNUAL REPORTS FOR GULF COAST LNG EXPORT, LLC - FE DKT. NO. 12-05-LNG

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - ORDER 3163 | Department of Energy GULF COAST LNG EXPORT, LLC - FE DKT. NO. 12-05-LNG - ORDER 3163 SEMI-ANNUAL REPORTS FOR GULF COAST LNG EXPORT, LLC - FE DKT. NO. 12-05-LNG - ORDER 3163 PDF icon October 2014 - February 2015 PDF icon April 2015 PDF icon October 2015 More Documents & Publications SEMI-ANNUAL REPORTS FOR PIERIDAE ENERGY (USA), LTD - DKT. NO. 14-179-LNG - ORDER 3639 SEMI-ANNUAL REPORT - GULF LNG LIQUEFACTION COMPANY, LLC - FE DKT. NO. 12-47-LNG - ORDER 3104 SEMI-ANNUAL

  5. Bird Movements and Behaviors in the Gulf Coast Region: Relation to Potential Wind-Energy Developments

    SciTech Connect (OSTI)

    Morrison, M. L.

    2006-06-01

    The purpose of this paper is to discuss the possible impacts of wind development to birds along the lower Gulf Coast, including both proposed near-shore and offshore developments. The report summarizes wind resources in Texas, discusses timing and magnitude of bird migration as it relates to wind development, reviews research that has been conducted throughout the world on near- and offshore developments, and provides recommendations for research that will help guide wind development that minimizes negative impacts to birds and other wildlife resources.

  6. Review of the NURE Assessment of the U.S. Gulf Coast Uranium Province

    SciTech Connect (OSTI)

    Hall, Susan M.

    2013-09-15

    Historic exploration and development were used to evaluate the reliability of domestic uranium reserves and potential resources estimated by the U.S. Department of Energy national uranium resource evaluation (NURE) program in the U.S. Gulf Coast Uranium Province. NURE estimated 87 million pounds of reserves in the $30/lb U{sub 3}O{sub 8} cost category in the Coast Plain uranium resource region, most in the Gulf Coast Uranium Province. Since NURE, 40 million pounds of reserves have been mined, and 38 million pounds are estimated to remain in place as of 2012, accounting for all but 9 million pounds of U{sub 3}O{sub 8} in the reserve or production categories in the NURE estimate. Considering the complexities and uncertainties of the analysis, this study indicates that the NURE reserve estimates for the province were accurate. An unconditional potential resource of 1.4 billion pounds of U{sub 3}O{sub 8}, 600 million pounds of U{sub 3}O{sub 8} in the forward cost category of $30/lb U{sub 3}O{sub 8} (1980 prices), was estimated in 106 favorable areas by the NURE program in the province. Removing potential resources from the non-productive Houston embayment, and those reserves estimated below historic and current mining depths reduces the unconditional potential resource 33% to about 930 million pounds of U{sub 3}O{sub 8}, and that in the $30/lb cost category 34% to 399 million pounds of U{sub 3}O{sub 8}. Based on production records and reserve estimates tabulated for the region, most of the production since 1980 is likely from the reserves identified by NURE. The potential resource predicted by NURE has not been developed, likely due to a variety of factors related to the low uranium prices that have prevailed since 1980.

  7. Impact of induced seismic events on seal integrity, Texas Gulf Coast

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nicot, Jean-Philippe; Meckel, Timothy A.; Carr, David A.; Oldenburg, Curtis M.

    2014-12-31

    Recent publications have suggested that large-scale CO2 injection could trigger earthquakes and that even small- to moderate-sized earthquakes may threaten the seal integrity of the injection zone, and potentially damage buildings and other surface structures. In this study, we compared seal thickness to estimated fault displacement due to a single hypothetical seismic event in a selected area of the Texas Gulf Coast comprising an offshore strip of state waters along two Texas counties. To evaluate the slip generated by a single seismic event, we compiled well log information on shale/sand sequences and seismic information on fault geometric characteristics of amore » section of Lower Miocene age. The section is thousands of feet thick and is overlain and underlain by marine shales (Amph. B and Anahuac, respectively) that are relatively easy to correlate between wells. The Amph. B. shale is the secondary and ultimate seal for all injection intervals in the Lower Miocene. Given its thickness, no realistic seismic event or small series of seismic events will offset it significantly. However, this may not be true of smaller local primary seals. An analysis of geophysical logs of a total of 71 wells yielded a total of 2,871 sand / shale binary intervals. An analysis of the dedicated 3D seismic survey counted 723 fault traces at five roughly horizontal horizons within the Lower Miocene Fault displacement estimated using the product of the fault length times an uncertain multiplier coefficient assumed to follow a triangular distribution with a 10-3 to 10-5 range and a mode of 8 × 10-5. We then compared estimated single-event fault displacements to seal thicknesses by means of a Monte-Carlo analysis. Only 1.8% of thickness/displacement pairs display a displacement greater than 20% of the seal thickness. Only 0.26% of the pairs result in a displacement of half the seal thickness and only 0.05% of thickness/displacement pairs result in a clear seal rupture. The next step was to compare the magnitude of the event generated by such a displacement to documented magnitudes of “large” earthquakes generated by waterflooding and fluid disposal. Based on this analysis, we conclude that seismicity that may arise from CO2 injection appears not to be a serious complication for CO2 storage integrity, at least in the Gulf Coast area.« less

  8. Impact of induced seismic events on seal integrity, Texas Gulf Coast

    SciTech Connect (OSTI)

    Nicot, Jean-Philippe; Meckel, Timothy A.; Carr, David A.; Oldenburg, Curtis M.

    2014-12-31

    Recent publications have suggested that large-scale CO2 injection could trigger earthquakes and that even small- to moderate-sized earthquakes may threaten the seal integrity of the injection zone, and potentially damage buildings and other surface structures. In this study, we compared seal thickness to estimated fault displacement due to a single hypothetical seismic event in a selected area of the Texas Gulf Coast comprising an offshore strip of state waters along two Texas counties. To evaluate the slip generated by a single seismic event, we compiled well log information on shale/sand sequences and seismic information on fault geometric characteristics of a section of Lower Miocene age. The section is thousands of feet thick and is overlain and underlain by marine shales (Amph. B and Anahuac, respectively) that are relatively easy to correlate between wells. The Amph. B. shale is the secondary and ultimate seal for all injection intervals in the Lower Miocene. Given its thickness, no realistic seismic event or small series of seismic events will offset it significantly. However, this may not be true of smaller local primary seals. An analysis of geophysical logs of a total of 71 wells yielded a total of 2,871 sand / shale binary intervals. An analysis of the dedicated 3D seismic survey counted 723 fault traces at five roughly horizontal horizons within the Lower Miocene Fault displacement estimated using the product of the fault length times an uncertain multiplier coefficient assumed to follow a triangular distribution with a 10-3 to 10-5 range and a mode of 8 10-5. We then compared estimated single-event fault displacements to seal thicknesses by means of a Monte-Carlo analysis. Only 1.8% of thickness/displacement pairs display a displacement greater than 20% of the seal thickness. Only 0.26% of the pairs result in a displacement of half the seal thickness and only 0.05% of thickness/displacement pairs result in a clear seal rupture. The next step was to compare the magnitude of the event generated by such a displacement to documented magnitudes of large earthquakes generated by waterflooding and fluid disposal. Based on this analysis, we conclude that seismicity that may arise from CO2 injection appears not to be a serious complication for CO2 storage integrity, at least in the Gulf Coast area.

  9. Final report on decommissioning boreholes and wellsite restoration, Gulf Coast Interior Salt Domes of Mississippi

    SciTech Connect (OSTI)

    Not Available

    1989-04-01

    In 1978, eight salt domes in Texas, Louisiana, and Mississippi were identified for study as potential locations for a nuclear waste repository as part of the National Waste Terminal Storage (NWTS) program. Three domes were selected in Mississippi for ``area characterization`` phase study as follows: Lampton Dome near Columbia, Cypress Creek Dome near New Augusta, and Richton Dome near Richton. The purpose of the studies was to acquire geologic and geohydrologic information from shallow and deep drilling investigations to enable selection of sites suitable for more intensive study. Eleven deep well sites were selected for multiple-well installations to acquire information on the lithologic and hydraulic properties of regional aquifers. In 1986, the Gulf Coast salt domes were eliminated from further consideration for repository development by the selection of three candidate sites in other regions of the country. In 1987, well plugging and restoration of these deferred sites became a closeout activity. The primary objectives of this activity are to plug and abandon all wells and boreholes in accordance with state regulations, restore all drilling sites to as near original condition as feasible, and convey to landowners any wells on their property that they choose to maintain. This report describes the activities undertaken to accomplish these objectives, as outlines in Activity Plan 1--2, ``Activity Plan for Well Plugging and Site Restoration of Test Hole Sites in Mississippi.``

  10. Other Locales Gulf Stream Locale -A Field Laboratory for Cloud Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gulf Stream Locale -A Field Laboratory for Cloud Process S. Raman Department of Marine, Earth and Atmospheric Sciences North Carolina State University Raleigh, NC 27695-8028 Clouds associated with the Gulf Stream Locale, (Figure 1) are in general due to the cyclogenesis or redevelopments of the storms off the east coast of the United States in winters, movement along the coast of the storms that are generated over the Gulf of Mexico in the spring and fall and mesoscale convective circulations

  11. EIS-0296: South Oregon Coast Reinforcement Project, Coos Bay/North Bend, Oregon

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration proposes to build a 500- kilovolt (kV) transmission line and new substation to reinforce electrical service to the southern coast of the state of Oregon. Nucor Steel, a division of Nucor Corporation, may build a new steel mill in the Coos Bay/North Bend, Oregon, area.

  12. EIS-0296: South Oregon Coast Reinforcement Project, Coos Bay/North Bend, Oregon

    Broader source: Energy.gov [DOE]

    This EIS analyzes BPA's proposed action to build a 500- kilovolt (kV) transmission line and new substation to reinforce electrical service to the southern coast of the state of Oregon. Nucor Steel, a division of Nucor Corporation, may build a new steel mill in the Coos Bay/North Bend, Oregon, area.

  13. Cleaning of the ocean floor near offshore platforms in the Gulf coast

    SciTech Connect (OSTI)

    Fang, C.S.; Smith, S.A. Jr.

    1986-03-01

    For decades in offshore drilling, the drill cuttings were separated from the circulating drilling fluid by the shale shaker and hydrocyclone, and discharged to the ocean. The drilling fluid itself was discharged to the ocean intermittently to maintain its required properties during the drilling process. These discharges contain many environmentally undesirable chemicals, such as hydrocarbons chemical additives and heavy metals. As a result, the ocean floor near some of the offshore platforms in the Gulf of Mexico are covered by contaminated sediment. Ocean current is not as effective in washing out the discarded ocean muds as previously believed. An attempt was made to clean some of the offshore platforms in the Gulf of Mexico. The quantity and characteristics of the drilling discharges are estimated the technology used to clean the ocean floor near platforms is described, and advanced treatments for hydrocarbon removal, chemical oxidation and activated carbon adsorption, are discussed. 8 references.

  14. Targeted technology applications for infield reserve growth: A synopsis of the Secondary Natural Gas Recovery project, Gulf Coast Basin. Topical report, September 1988--April 1993

    SciTech Connect (OSTI)

    Levey, R.A.; Finley, R.J.; Hardage, B.A.

    1994-06-01

    The Secondary Natural Gas Recovery (SGR): Targeted Technology Applications for Infield Reserve Growth is a joint venture research project sponsored by the Gas Research Institute (GRI), the US Department of Energy (DOE), the State of Texas through the Bureau of Economic Geology at The University of Texas at Austin, with the cofunding and cooperation of the natural gas industry. The SGR project is a field-based program using an integrated multidisciplinary approach that integrates geology, geophysics, engineering, and petrophysics. A major objective of this research project is to develop, test, and verify those technologies and methodologies that have near- to mid-term potential for maximizing recovery of gas from conventional reservoirs in known fields. Natural gas reservoirs in the Gulf Coast Basin are targeted as data-rich, field-based models for evaluating infield development. The SGR research program focuses on sandstone-dominated reservoirs in fluvial-deltaic plays within the onshore Gulf Coast Basin of Texas. The primary project research objectives are: To establish how depositional and diagenetic heterogeneities cause, even in reservoirs of conventional permeability, reservoir compartmentalization and hence incomplete recovery of natural gas. To document examples of reserve growth occurrence and potential from fluvial and deltaic sandstones of the Texas Gulf Coast Basin as a natural laboratory for developing concepts and testing applications. To demonstrate how the integration of geology, reservoir engineering, geophysics, and well log analysis/petrophysics leads to strategic recompletion and well placement opportunities for reserve growth in mature fields.

  15. Successful revegetation of a gas pipeline right-of-way in a Gulf Coast barrier island ecosystem

    SciTech Connect (OSTI)

    Hinchman, R.R.; George, J.F.; Gaynor, A.J.

    1987-01-01

    This study evaluates the revegetation of a 30-m-wide right-of-way (ROW) following construction of a 76-cm-diameter natural gas pipeline across Padre Island, Texas, a Gulf Coast barrier island. ROW construction activities were completed in 1979 and included breaching of the foredunes, grading, trenching, pipeline installation, and leveling - which effectively removed all existing vegetation from the full length of the ROW. Following construction, the foredunes were rebuilt, fertilized, and sprigged with Panicum amarum, a native dune grass known as bitter panicum. The remainder of the ROW across the mid-island flats was allowed to revegetate naturally. Plant cover by species and total vegetative cover was measured on paired permanent transects on the ROW and in the adjacent undisturbed vegetation. These cover data show that the disturbed ROW underwent rapid vegetative recovery during the first two growing seasons, attaining 54% of the cover on the undisturbed controls. By 1984, the percent vegetative cover and plant species diversity on the ROW and the adjacent undisturbed control area were not significantly different and the ROW vegetation was visually indistinguishable from the surrounding plant communities. 9 refs., 3 figs., 2 tabs.

  16. ASSESSING AND FORECASTING, BY PLAY, NATURAL GAS ULTIMATE RECOVERY GROWTH AND QUANTIFYING THE ROLE OF TECHNOLOGY ADVANCEMENTS IN THE TEXAS GULF COAST BASIN AND EAST TEXAS

    SciTech Connect (OSTI)

    William L. Fisher; Eugene M. Kim

    2000-12-01

    A detailed natural gas ultimate recovery growth (URG) analysis of the Texas Gulf Coast Basin and East Texas has been undertaken. The key to such analysis was determined to be the disaggregation of the resource base to the play level. A play is defined as a conceptual geologic unit having one or more reservoirs that can be genetically related on the basis of depositional origin of the reservoir, structural or trap style, source rocks and hydrocarbon generation, migration mechanism, seals for entrapment, and type of hydrocarbon produced. Plays are the geologically homogeneous subdivision of the universe of petroleum pools within a basin. Therefore, individual plays have unique geological features that can be used as a conceptual model that incorporates geologic processes and depositional environments to explain the distribution of petroleum. Play disaggregation revealed important URG trends for the major natural gas fields in the Texas Gulf Coast Basin and East Texas. Although significant growth and future potential were observed for the major fields, important URG trends were masked by total, aggregated analysis based on a broad geological province. When disaggregated by plays, significant growth and future potential were displayed for plays that were associated with relatively recently discovered fields, deeper reservoir depths, high structural complexities due to fault compartmentalization, reservoirs designated as tight gas/low-permeability, and high initial reservoir pressures. Continued technology applications and advancements are crucial in achieving URG potential in these plays.

  17. Environmental Assessment: Geothermal Energy Geopressure Subprogram. Gulf Coast Well Drilling and Testing Activity (Frio, Wilcox, and Tuscaloosa Formations, Texas and Louisiana)

    SciTech Connect (OSTI)

    1981-09-01

    The Department of Energy (DOE) has initiated a program to evaluate the feasibility of developing the geothermal-geopressured energy resources of the Louisiana-Texas Gulf Coast. As part of this effort, DOE is contracting for the drilling of design wells to define the nature and extent of the geopressure resource. At each of several sites, one deep well (4000-6400 m) will be drilled and flow tested. One or more shallow wells will also be drilled to dispose of geopressured brines. Each site will require about 2 ha (5 acres) of land. Construction and initial flow testing will take approximately one year. If initial flow testing is successful, a continuous one-year duration flow test will take place at a rate of up to 6400 m{sup 3} (40,000 bbl) per day. Extensive tests will be conducted on the physical and chemical composition of the fluids, on their temperature and flow rate, on fluid disposal techniques, and on the reliability and performance of equipment. Each project will require a maximum of three years to complete drilling, testing, and site restoration.

  18. Upper Pleistocene-to-Holocene depositional sequences in the north-central Gulf of Mexico

    SciTech Connect (OSTI)

    Bowland, C. ); Wood, L.J. )

    1991-03-01

    Upper Quaternary depositional sequences and their systems tracts can be delineated in the Main Pass area using minisparker seismic data. Core collected by the Gulf of Mexico Outer Shelf/Slope Research Consortium (Amoco, ARCO, BP, Chevron, Elf-Aquitaine, Exxon, Marathon, Mobil, and Texaco) sampled these systems tracts on one site in Main Pass 303. At the shelfbreak, a distinct change in depositional style occurs across the latest Wisconsinan sequence boundary. Widespread progradational systems (late highstand systems tract) below become focused into discrete depocenters with predominantly aggradational deposits (lowstand systems tract) above. Focusing was probably a result of localized high subsidence rates due to salt movement, progradation into rapidly deepening water, and, possibly, stabilization of sediment transport paths on the exposed shelf. No age-equivalent submarine canyons are present in this area. The oldest mappable systems tract is a highstand systems tract deposited during stage 3 interstadial and the early-to-middle stage 2 glacial. The overlying transgressive systems tract was deposited coeval with the stage 2-stage 1 transition. It thins in a land-ward direction, except where an updip depocenter was present. At the corehole site, the transgressive systems tract consists of fining-upward deposits ranging from medium-grained sands to clays. The transgressive systems tract includes small slope-front-fill lenses deposited on the uppermost slope above and adjacent to lowstand deltaic depocenters. These lenses likely comprise silt and clay derived from either reworking of lowstand deltas or sediment bypassing the outer shelf.

  19. Outer continental shelf development and the North Carolina coast: a guide for local planners

    SciTech Connect (OSTI)

    Brower, D.J.; McElyea, W.D.; Godschalk, D.R.; Lofaro, N.D.

    1981-08-01

    This guide supplies local governments in North Carolina's coastal region with information on (1) the facilities and activities associated with outer continental shelf (OCS) oil and gas development, (2) their impacts on coastal communities, and (3) how local governments can manage these impacts. Offshore activities and onshore facilities accompanying each stage of OCS development (leasing, exploration, field development, production, and shutdown) are described, including factors influencing facility siting, local economies, and local natural resources. The guide helps local governments apply this information by presenting ways in which they can influence the development process.

  20. Gulf Stream Locale R. J. Alliss and S. Raman Department of Marine, Earth and Atmospheric Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R. J. Alliss and S. Raman Department of Marine, Earth and Atmospheric Sciences North Carolina State University Raleigh, NC 27695-8208 Introduction Clouds have long been recognized as having a major impact on the radiation budget in the earth's climate system. One of the preferred areas for the production of clouds is off the east coast of the United States. The formation of clouds in this region, particularly during the winter months, is caused predominately by the presence of the Gulf Stream,

  1. Frontal Eddy Dynamics (FRED) experiment off North Carolina: Volume 1. Executive summary

    SciTech Connect (OSTI)

    Ebbesmeyer, C.C.

    1989-03-01

    In preparation for oil and gas lease sales on the outer continental shelf offshore of North Carolina, the Minerals Management Service was requested to investigate the potential transport and impacts of oil spilled offshore. The Gulf Stream and associated eddies are an important aspect of the transport. Although the speed and location of the Gulf Stream are reasonably well known, knowledge of the meanders of the Gulf Stream is limited. How the circulatory structure and movement of associated frontal eddies and filaments affect the North Carolina coastal waters is not clear. This study investigates the interactions of these circulatory elements and follows the evolution of frontal eddies as they migrate along the North Carolina coast.

  2. East Coast (PADD 1) Imports from All Countries

    Gasoline and Diesel Fuel Update (EIA)

    Import Area: East Coast (PADD 1) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Country: All Countries Persian Gulf OPEC Algeria Angola Ecuador Iraq Kuwait Libya Nigeria Qatar Saudi Arabia United Arab Emirates Venezuela Non OPEC Albania Argentina Aruba Australia Austria Azerbaijan Bahamas Bahrain Barbados Belarus Belgium Bosnia and

  3. Frontal Eddy Dynamics (FRED) experiment off North Carolina: Volume 2. Technical report

    SciTech Connect (OSTI)

    Ebbesmeyer, C.C.

    1988-03-01

    In preparation for oil and gas lease sales on the outer continental shelf offshore of North Carolina, the Minerals Management Service was requested to investigate the potential transport and impacts of oil spilled offshore. Of particular concern is estimating the movement of spilled oil, especially the probability of shoreward transport and/or beaching of the floatable fraction. Although the speed and location of the Gulf Stream are well known, knowledge of the meanders of the Gulf Stream is limited. How the circulatory structure and movement of associated frontal eddies and filaments affect the North Carolina coastal waters is not clear. This present study investigates the interactions of these circulatory elements and follows the evolution of frontal eddies as they migrate along the North Carolina coast.

  4. Geopressured-geothermal energy, US Gulf Coast

    SciTech Connect (OSTI)

    Bebout, D.G.; Bachman, A.L.

    1981-01-01

    Sixty-five papers are included. Eleven papers were entered into the data base previously. Separate abstracts were prepared for fifty-four. (MHR)

  5. Final Gulf Coast Hurricanes Situation Report #46

    SciTech Connect (OSTI)

    2006-01-26

    According to Entergy New Orleans, electricity has been restored to the vast majority of residents and businesses in the city, except in a few isolated areas that sustained severe devastation from Hurricane Katrina.

  6. Gulf Coast Hurricanes Situation Report #39

    SciTech Connect (OSTI)

    2005-11-09

    There are 49,300 customers without power in Florida as of 7:00 AM EST 11/9 due to Hurricane Wilma, down from a peak of about 3.6 million customers. Currently, less than 1 percent of the customers are without power in the state. This is the last report we will due on outages due to Hurricane Wilma.

  7. Gulf Coast Hurricanes Situation Report #40

    SciTech Connect (OSTI)

    2005-11-14

    On 11/12 Florida Power & Light (FPL) announced that crews had essentially completed Hurricane Wilma restoration efforts to all 3.2 million customers in South Florida who had been without power. Electricity restoration efforts are now essentially complete in Florida.

  8. Gulf Coast (PADD 3) Imports & Exports

    Gasoline and Diesel Fuel Update (EIA)

    3,596 3,601 3,601 3,522 3,804 3,824 2008-2016 Commercial 2,831 2,838 2,872 2,891 3,172 3,257 1990-2016 Total Products 764 763 729 632 633 567 2008-2016 Total Motor Gasoline 6 7 7 4 7 17 2008-2016 Finished Motor Gasoline 0 0 0 0 0 0 2008-2016 Reformulated 0 0 0 0 0 0 2008-2016 Blended with Fuel Ethanol 0 0 0 0 0 0 2008-2016 Other 0 0 0 0 0 0 2010-2016 Conventional 0 0 0 0 0 0 2008-2016 Blended with Fuel Ethanol 0 0 0 0 0 0 2008-2016 Ed55 and Lower 0 0 0 0 0 0 2010-2016 Greater than Ed55 0 0 0 0 0

  9. Response to Hurricane Irene - Restoring Power on the East Coast |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Response to Hurricane Irene - Restoring Power on the East Coast Response to Hurricane Irene - Restoring Power on the East Coast September 2, 2011 - 3:15pm Addthis Response to Hurricane Irene – Restoring Power on the East Coast Patricia A. Hoffman Patricia A. Hoffman Assistant Secretary, Office of Electricity Delivery & Energy Reliability Hurricane Irene struck the East coast last Friday, making landfall in North Carolina. Over the weekend, the storm traveled up

  10. East Coast (PADD 1) Total Crude Oil and Products Imports

    Gasoline and Diesel Fuel Update (EIA)

    Import Area: East Coast (PADD 1) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Import Area Country Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History All Countries 54,019 56,394 49,770 49,022 45,969 51,354 1981-2015 Persian Gulf 2,561 2,752 930 3,300 3,057 2,079 1993-2015 OPEC* 8,253 8,366 7,680 9,641 11,059 10,466

  11. Summary Report on Information Technology Integration Activities For project to Enhance NASA Tools for Coastal Managers in the Gulf of Mexico and Support Technology Transfer to Mexico

    SciTech Connect (OSTI)

    Gulbransen, Thomas C.

    2009-04-27

    Deliverable to NASA Stennis Space Center summarizing summarizes accomplishments made by Battelle and its subcontractors to integrate NASA's COAST visualization tool with the Noesis search tool developed under the Gulf of Mexico Regional Collaborative project.

  12. Gulf Coast (PADD 3) Total Crude Oil and Products Imports

    Gasoline and Diesel Fuel Update (EIA)

    MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31

  13. Gulf Coast (PADD 3) Total Crude Oil and Products Imports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31

  14. Operational testing of geopressure geothermal wells on the Gulf Coast

    SciTech Connect (OSTI)

    Goldsberry, F.L.

    1983-01-01

    A combined-cycle electric-power and pipeline-gas production process is proposed for the exploitation of the geopressured geothermal resource. It allows the operator to shift a portion of the production between the electric grid and the gas pipeline markets. On-site equipment and operating labor requirements are minimized. Thermal efficiencies are based upon sound application of thermodynamic principles and are competitive with large-scale plant operations. The economics presented are based upon 1983 avoided power costs and NGPA Section 102 gas prices.

  15. ,"Henry Hub Gulf Coast Natural Gas Spot Price ($/MMBTU)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...162013" ,"Release Date:","9182013" ,"Next Release Date:","9252013" ,"Excel File Name:","rngwhhdd.xls" ,"Available from Web Page:","http:tonto.eia.govdnav...

  16. Gulf Coast (PADD 3) Gasoline and Diesel Retail Prices

    Gasoline and Diesel Fuel Update (EIA)

    67 1.632 1.631 1.662 1.706 1.850 1993-2016 All Grades - Conventional Areas 1.673 1.638 1.641 1.666 1.705 1.854 1994-2016 All Grades - Reformulated Areas 1.646 1.610 1.599 1.648 1.710 1.839 1994-2016 Regular 1.561 1.528 1.526 1.559 1.603 1.746 1992-2016 Conventional Areas 1.568 1.536 1.536 1.565 1.603 1.751 1992-2016 Reformulated Areas 1.538 1.502 1.491 1.538 1.603 1.732 1994-2016 Midgrade 1.805 1.764 1.762 1.792 1.834 1.980 1994-2016 Conventional Areas 1.809 1.766 1.767 1.790 1.829 1.977

  17. Left Coast Electric Formerly Left Coast Conversions | Open Energy...

    Open Energy Info (EERE)

    Services Product: California-based company that provides services and products for electric cars. References: Left Coast Electric (Formerly Left Coast Conversions)1 This...

  18. East Coast (PADD 1) Imports of Crude Oil and Petroleum Products for

    Gasoline and Diesel Fuel Update (EIA)

    Processing Area: East Coast (PADD 1) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Total 54,019 56,394 49,770 49,022 45,969 51,354

  19. Gulf Powerbeat | Open Energy Information

    Open Energy Info (EERE)

    Powerbeat Place: Bahrain Product: Bahrain-based Gulf Powerbeat manufactures long life batteries and was acquired by Time Technoplast, through Time's subsidiary NED Energy....

  20. Gulf Ethanol Corp | Open Energy Information

    Open Energy Info (EERE)

    Gulf Ethanol Corp Jump to: navigation, search Name: Gulf Ethanol Corp Place: Houston, Texas Zip: 77055 Sector: Biomass Product: Focused on developing biomass preprocessing...

  1. Gulf Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Gulf Wind Farm Facility Gulf Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Pattern Energy...

  2. Green Coast Enterprises | Open Energy Information

    Open Energy Info (EERE)

    Coast Enterprises Jump to: navigation, search Name: Green Coast Enterprises Place: New Orleans, LA Website: www.greencoastenterprises.com References: Green Coast Enterprises1...

  3. Maine coast winds

    SciTech Connect (OSTI)

    Avery, Richard

    2000-01-28

    The Maine Coast Winds Project was proposed for four possible turbine locations. Significant progress has been made at the prime location, with a lease-power purchase contract for ten years for the installation of turbine equipment having been obtained. Most of the site planning and permitting have been completed. It is expect that the turbine will be installed in early May. The other three locations are less suitable for the project, and new locations are being considered.

  4. U.S. gasoline prices continue to increase; West Coast increases by over 23 cents (long version)

    Gasoline and Diesel Fuel Update (EIA)

    increase; West Coast increases by over 23 cents (long version) The U.S. average retail price for regular gasoline rose to $2.66 a gallon on Monday. That's up 9.4 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast states at 3.42 a gallon, up 23.4 cents from a week ago. Prices were lowest in the Gulf Coast states at 2.38 a gallon, up 7.9 cents.

  5. Gulf Power Co | Open Energy Information

    Open Energy Info (EERE)

    Gulf Power Co Place: Florida Phone Number: 1-800-225-5797 Website: www.gulfpower.com Facebook: https:www.facebook.comGulfPowerCompany Outage Hotline: 1-800-487-6937 Outage Map:...

  6. Gulf Petro Initiative

    SciTech Connect (OSTI)

    Fathi Boukadi

    2011-02-05

    In this report, technologies for petroleum production and exploration enhancement in deepwater and mature fields are developed through basic and applied research by: (1) Designing new fluids to efficiently drill deepwater wells that can not be cost-effectively drilled with current technologies. The new fluids will be heavy liquid foams that have low-density at shallow dept to avoid formation breakdown and high density at drilling depth to control formation pressure. The goal of this project is to provide industry with formulations of new fluids for reducing casing programs and thus well construction cost in deepwater development. (2) Studying the effects of flue gas/CO{sub 2} huff n puff on incremental oil recovery in Louisiana oilfields bearing light oil. An artificial neural network (ANN) model will be developed and used to map recovery efficiencies for candidate reservoirs in Louisiana. (3) Arriving at a quantitative understanding for the three-dimensional controlled-source electromagnetic (CSEM) geophysical response of typical Gulf of Mexico hydrocarbon reservoirs. We will seek to make available tools for the qualitative, rapid interpretation of marine CSEM signatures, and tools for efficient, three-dimensional subsurface conductivity modeling.

  7. WEST COAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect (OSTI)

    Larry Myer; Terry Surles; Kelly Birkinshaw

    2004-01-01

    The West Coast Regional Carbon Sequestration Partnership is one of seven partnerships which have been established by the US Department of Energy (DOE) to evaluate carbon dioxide capture, transport and sequestration (CT&S) technologies best suited for different regions of the country. The West Coast Region comprises Arizona, California, Nevada, Oregon, Washington, and the North Slope of Alaska. Led by the California Energy Commission, the West Coast Partnership is a consortium of over thirty five organizations, including state natural resource and environmental protection agencies; national labs and universities; private companies working on CO{sub 2} capture, transportation, and storage technologies; utilities; oil and gas companies; nonprofit organizations; and policy/governance coordinating organizations. In an eighteen month Phase I project, the Partnership will evaluate both terrestrial and geologic sequestration options. Work will focus on five major objectives: (1) Collect data to characterize major CO{sub 2} point sources, the transportation options, and the terrestrial and geologic sinks in the region, and compile and organize this data via a geographic information system (GIS) database; (2) Address key issues affecting deployment of CT&S technologies, including storage site permitting and monitoring, injection regulations, and health and environmental risks (3) Conduct public outreach and maintain an open dialogue with stakeholders in CT&S technologies through public meetings, joint research, and education work (4) Integrate and analyze data and information from the above tasks in order to develop supply curves and cost effective, environmentally acceptable sequestration options, both near- and long-term (5) Identify appropriate terrestrial and geologic demonstration projects consistent with the options defined above, and create action plans for their safe and effective implementation A kickoff meeting for the West Coast Partnership was held on Sept 30-Oct.1. Contracts were then put into place with twelve organizations which will carry out the technical work required to meet Partnership objectives.

  8. North Carolina - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    North Carolina North Carolina

  9. North Carolina - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    North Carolina North Carolina

  10. North Carolina - Search - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    North Carolina North Carolina

  11. East Coast | OpenEI Community

    Open Energy Info (EERE)

    East Coast Home Graham7781's picture Submitted by Graham7781(2017) Super contributor 29 October, 2012 - 14:46 East Coast Utilities prepare for Hurricane Sandy East Coast Hurricane...

  12. Gulf of Mexico Proved Reserves By Water Depth, 2009

    Gasoline and Diesel Fuel Update (EIA)

    Gulf of Mexico Proved Reserves and Production by Water Depth, 2009 1 Gulf of Mexico Proved Reserves and Production by Water Depth The Gulf of Mexico Federal Offshore region (GOM ...

  13. DOE_Gulf_Response.pdf | Department of Energy

    Office of Environmental Management (EM)

    Gulf_Response.pdf DOE_Gulf_Response.pdf PDF icon DOE_Gulf_Response.pdf More Documents & Publications Deepwater_Response.pdf UDAC Meeting - September 2012 April 30, 2010 Situation Report

  14. Ivory Coast: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    and Wind Energy Resource Atlas for Ivory Coast. 4 Programs Ivory Coast-UNEP Risoe Technology Needs Assessment Program African Biofuel & Renewable Energy Fund (ABREF) USAID West...

  15. East Coast Ethanol | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Jump to: navigation, search Name: East Coast Ethanol Place: Columbia, South Carolina Zip: 29202 Product: East Coast Ethanol was formed in August 2007 through a merger...

  16. Crude Oil Imports From Persian Gulf

    Gasoline and Diesel Fuel Update (EIA)

    Company Level Imports Crude Oil Imports From Persian Gulf January - December 2015 | Release Date: February 29, 2016 | Next Release Date: August 31, 2016 2015 Crude Oil Imports From Persian Gulf Highlights It should be noted that several factors influence the source of a company's crude oil imports. For example, a company like Motiva, which is partly owned by Saudi Refining Inc., would be expected to import a large percentage from the Persian Gulf, while Citgo Petroleum Corporation, which is

  17. Federal Offshore -- Gulf of Mexico Natural Gas Total Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    -- Gulf of Mexico Natural Gas Total Consumption (Million Cubic Feet) Federal Offshore -- Gulf of Mexico Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1...

  18. U.S. gasoline prices decrease across the u.s. except for the west coast region (long version)

    Gasoline and Diesel Fuel Update (EIA)

    long version) The U.S. average retail price for regular gasoline fell to $3.55 a gallon on Monday. That's down 4 cents from a week ago, based on the weekly price survey by the U.S. Energy Information Administration. Pump prices were highest in the West Coast region at 3.90 a gallon, up 10.3 cents from a week ago marking the highest weekly increase in this region since May. Prices were lowest in the Gulf Coast States at 3.30 a gallon, down 7.6 cents.

  19. Gulf of Mexico Federal Offshore Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Federal Offshore Gulf of Mexico production volumes are presented as a separate data series beginning in 2001. Production data for the Gulf of Mexico for years prior to 2001 are presented as part of the production volumes for the States of Alabama, Louisiana

  20. Mississippi Nuclear Profile - Grand Gulf

    U.S. Energy Information Administration (EIA) Indexed Site

    Grand Gulf" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,"1,251","9,643",88.0,"BWR","application/vnd.ms-excel","application/vnd.ms-excel" ,"1,251","9,643",88.0 "Data for 2010" "BWR = Boiling Water Reactor."

  1. Space Coast Next Generation Solar Energy Center Solar Power Plant...

    Open Energy Info (EERE)

    Coast Next Generation Solar Energy Center Solar Power Plant Jump to: navigation, search Name Space Coast Next Generation Solar Energy Center Solar Power Plant Facility Space Coast...

  2. Department of Energy Launches Website Supporting Energy-Saving Reconstruction in the Gulf Coast

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC - The U.S. Department of Energy (DOE) today launched a Disaster Recovery and Building Reconstruction website at http://www.eere.energy.gov/buildings/ as part of its continuing effort...

  3. DOE Providing Additional Supercomputing Resources to Study Hurricane Effects on Gulf Coast

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC - The U.S. Department of Energy (DOE) announced today that the Office of Science has provided an additional 400,000 supercomputing processor-hours to the U.S. Army Corps of Engineers...

  4. SEMI-ANNUAL REPORT - GULF LNG LIQUEFACTION COMPANY, LLC - FE...

    Energy Savers [EERE]

    GULF LNG LIQUEFACTION COMPANY, LLC - FE DKT. NO. 12-47-LNG - ORDER 3104 SEMI-ANNUAL REPORT - GULF LNG LIQUEFACTION COMPANY, LLC - FE DKT. NO. 12-47-LNG - ORDER 3104 PDF icon ...

  5. Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals...

    Gasoline and Diesel Fuel Update (EIA)

    Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals (Million Cubic Feet per...

  6. A Preliminary Regional Geothermal Assessment Of The Gulf Of Suez...

    Open Energy Info (EERE)

    along its eastern margin. The most promising areas for geothermal development in the NW Red Sea-Gulf of Suez rift system are locations along the eastern shore of the Gulf of Suez...

  7. Gulf of Mexico Fact Sheet - Energy Information Administration

    Gasoline and Diesel Fuel Update (EIA)

    Gulf of Mexico Fact Sheet Overview Data Petroleum and Other Liquids Crude Oil, Condensate and NGL Proved Reserves Natural Gas Natural Gas Proved Reserves Refinery Capacity Natural Gas Processing Plants The Gulf of Mexico area, both onshore and offshore, is one of the most important regions for energy resources and infrastructure. Gulf of Mexico federal offshore oil production accounts for 17% of total U.S. crude oil production and federal offshore natural gas production in the Gulf accounts for

  8. Promoting Offshore Wind Along the "Fresh Coast" | Department of Energy

    Energy Savers [EERE]

    Promoting Offshore Wind Along the "Fresh Coast" Promoting Offshore Wind Along the "Fresh Coast" October 12, 2010 - 12:18pm Addthis Chris Hart Offshore Wind Team Lead, Wind & Water Power Program When people think about offshore wind power, the first location that comes to mind probably isn't Cleveland, Ohio. Most of the offshore wind turbines installed around the world are operating in salt water, like Europe's North Sea and Baltic Sea, and most of the offshore wind

  9. California Coast Venture Forum | Open Energy Information

    Open Energy Info (EERE)

    search Name: California Coast Venture Forum Address: 800 Anacapa Street, Suite A Place: Santa Barbara, California Zip: 93101 Region: Southern CA Area Year Founded: 1996 Phone...

  10. High Performance Builder Spotlight: Green Coast Enterprises ...

    Energy Savers [EERE]

    Solutions for New Homes: Green Coast Enterprises, New Orleans, Louisiana Building America Best Practices Series Volume 15: 40% Whole-House Energy Savings in the Hot-Humid ...

  11. EIA - Gulf of Mexico Energy Data

    Gasoline and Diesel Fuel Update (EIA)

    Gulf of Mexico Fact Sheet Overview Data Petroleum and Other Liquids Crude Oil, Condensate and NGL Proved Reserves Natural Gas Natural Gas Proved Reserves Refinery Capacity Natural Gas Processing Plants Release Date: July 2, 2015 Energy Data all tables + EXPAND ALL U.S. Petroleum and Other Liquid Fuels Facts for 2014 million barrels per day Share of Total U.S. Liquid Fuels Consumed Liquid Fuels Production 14.3 75% U.S. Crude Oil Production 8.7 46% Total U.S. Federal Offshore 1.4 8% Gulf of Mexico

  12. Gulf Stream Locale P. Michael and M. L. Daum Brookhaven National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P. Michael and M. L. Daum Brookhaven National Laboratory Upton, NY 11973 S. Raman and M. leach North Carolina State University Raleigh, NC 27695-8028 Locale Characteristics climate models. These modules usually assume uniformity of surface conditions overdomains of several hundreds of kilometers. 4. The anthropogenic aerosol loading off the east coast of the United States is highly variable; thus, the locale provides a testbed for hypotheses on the effects of changes in cloud condensation nuclei

  13. Predicted impacts from offshore produced water discharges on hypoxia in the Gulf of Mexico.

    SciTech Connect (OSTI)

    Bierman, V. J.; Hinz, S.C.; Justic, D.; Scavia, D.; Veil, J. A.; Satterlee, K.; Parker, M. E.; Wilson, S.; Environmental Science Division; LimnoTech.; Louisiana State Univ.; Univ of Michigan; Shell E&P Co.; Exxon Mobil Production Co.; U.S. EPA

    2008-06-01

    Summer hypoxia (dissolved oxygen < 2 mg/L) in the bottom waters of the northern Gulf of Mexico has received considerable scientific and policy attention because of potential ecological and economic impacts. This hypoxic zone forms off the Louisiana coast each summer and has increased from an average of 8,300 km{sup 2} in 1985-1992 to over 16,000 km{sup 2} in 1993-2001, reaching a record 22,000 km{sup 2} in 2002. The almost threefold increase in nitrogen load from the Mississippi River Basin (MRB) to the Gulf since the middle of the last century is the primary external driver for hypoxia. A goal of the 2001 Federal Action Plan is to reduce the 5-year running average size of the hypoxic zone to below 5,000 km{sup 2} by 2015. After the Action Plan was developed, a new question arose as to whether sources other than the MRB may also contribute significant quantities of oxygen-demanding substances. One very visible potential source is the hundreds of offshore oil and gas platforms located within or near the hypoxic zone, many of which discharge varying volumes of produced water. The objectives of this study were to assess the incremental impacts of produced water discharges on dissolved oxygen in the northern Gulf of Mexico, and to evaluate the significance of these discharges relative to loadings from the MRB. Predictive simulations were conducted with three existing models of Gulf hypoxia using produced water loads from an industry study. Scenarios were designed that addressed loading uncertainties, settleability of suspended constituents, and different assumptions on delivery locations for the produced water loads. Model results correspond to the incremental impacts of produced water loads, relative to the original model results, which included only loads from the MRB. The predicted incremental impacts of produced water loads on dissolved oxygen in the northern Gulf of Mexico from all three models were small. Even considering the predicted ranges between lower- and upper-bound results, these impacts are likely to be within the errors of measurement for bottomwater dissolved oxygen and hypoxic area at the spatial scale of the entire hypoxic zone.

  14. Egypt`s first remotely controlled subsea completion -- A Gulf of Suez case history

    SciTech Connect (OSTI)

    El Hawary, A.; Hoffman, J.G.

    1995-11-01

    A case history of the Gulf of Suez Petroleum Company`s (GUPCO) first remotely controlled subsea completion is provided. The first completion was for well GS 373-2, a previously drilled and tested exploration well located in the south portion of the Gulf of Suez. Subsea technology was utilized to economically justify development of this one well marginal field which was discovered in 1978. Traditional methods proved to be too costly for development, therefore application of a low cost subsea tree was utilized to capture the resources. In the Gulf of Suez many fields have been discovered by have not been developed due to low reserves. These marginal projects can have a profound impact on the revenue and shareholder value if any economic method is used to exploit these opportunities. Platform installation was not feasible due to reserve size, hence the well has remained abandoned until recently. Capturing the experience of Amoco in the Gulf of Mexico and in the Dutch North Sea, GUPCO was able to build a low cost subsea system which would allow for the economic development of the marginal fields discovered in the past. This paper presents a summarized look at subsea completion technology. The cost comparison of traditional development methods will be made, given the local cost structure in Egypt. The application of this technology has some limitations and constraints which will be discussed in the paper. Furthermore the actual field installation of Egypt`s first remotely controlled subsea tree will be summarized. Also included is a discussion on simple remote controls,and offshore installation operations.

  15. Benthic study of the continental slope off Cape Hatteras, North Carolina. Volume 3. Appendices

    SciTech Connect (OSTI)

    Diaz, R.J.; Blake, J.A.; Lohse, D.P.

    1993-03-01

    The Point is an area that supports a most productive pelagic fishery, including tuna, swordfish, marlin, and more. The objective of the study is to analyze video tapes from near the Point, in order to provide data on epibenthic, megafaunal invertebrates including species composition, relative abundances, and large scale (1 km) distribution. The Point is not a defined spot on a chart. Although fishermen do use the steep shelf break for location, they generally look for the west wall of the Gulf Stream. The Point and the oil lease site coincidentally occur where the Gulf Stream parts the continental slope, just north of the eastern-most tip of Cape Hatteras.

  16. Cass County, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    North Dakota North River, North Dakota Oxbow, North Dakota Page, North Dakota Prairie Rose, North Dakota Reile's Acres, North Dakota Tower City, North Dakota West Fargo, North...

  17. Ivory Coast-UNEP Risoe Technology Needs Assessment Program |...

    Open Energy Info (EERE)

    Ivory Coast-UNEP Risoe Technology Needs Assessment Program Jump to: navigation, search Name Ivory Coast-UNEP Risoe-Technology Needs Assessment Program AgencyCompany Organization...

  18. US South Coast Air Quality Management District SCAQMD | Open...

    Open Energy Info (EERE)

    South Coast Air Quality Management District SCAQMD Jump to: navigation, search Name: US South Coast Air Quality Management District (SCAQMD) Place: Diamond Bar, California Zip: CA...

  19. ORISE: Incident Management Training Put to Test in Gulf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Incident Management Training Put to Test in Gulf ORISE emergency management staff provided critical support during Deepwater Horizon disaster On April 20, 2010, an explosion on the Deepwater Horizon oil rig in the Gulf of Mexico killed 11 people and touched off a massive offshore oil spill that continued for more than 12 weeks. U.S. Department of Energy and the Oak Ridge Institute for Science and Education emergency management personnel were among those who traveled to the Gulf to assist

  20. Ivory Coast: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Country Profile Name Ivory Coast Population 15,366,672 GDP 32,000,000,000 Energy Consumption Quadrillion Btu 2-letter ISO code CI 3-letter ISO code CIV Numeric ISO code...

  1. West Coast Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    Energy Ltd Jump to: navigation, search Name: West Coast Energy Ltd Place: Mold, Scotland, United Kingdom Zip: CH7 4EW Sector: Wind energy Product: Wind farm developer. Coordinates:...

  2. United States Coast Guard | Open Energy Information

    Open Energy Info (EERE)

    in Washington, District of Columbia. From Website: The U.S. Coast Guard is one of the five armed forces of the United States and the only military organization within the...

  3. Gulf of Mexico Regional Collaborative Final Report

    SciTech Connect (OSTI)

    Judd, Kathleen S.; Judd, Chaeli; Engel-Cox, Jill A.; Gulbransen, Thomas; Anderson, Michael G.; Woodruff, Dana L.; Thom, Ronald M.; Guzy, Michael; Hardin, Danny; Estes, Maury

    2007-12-01

    This report presents the results of the Gulf of Mexico Regional Collaborative (GoMRC), a year-long project funded by NASA. The GoMRC project was organized around end user outreach activities, a science applications team, and a team for information technology (IT) development. Key outcomes are summarized below for each of these areas. End User Outreach; Successfully engaged federal and state end users in project planning and feedback; With end user input, defined needs and system functional requirements; Conducted demonstration to End User Advisory Committee on July 9, 2007 and presented at Gulf of Mexico Alliance (GOMA) meeting of Habitat Identification committee; Conducted significant engagement of other end user groups, such as the National Estuary Programs (NEP), in the Fall of 2007; Established partnership with SERVIR and Harmful Algal Blooms Observing System (HABSOS) programs and initiated plan to extend HABs monitoring and prediction capabilities to the southern Gulf; Established a science and technology working group with Mexican institutions centered in the State of Veracruz. Key team members include the Federal Commission for the Protection Against Sanitary Risks (COFEPRIS), the Ecological Institute (INECOL) a unit of the National Council for science and technology (CONACYT), the Veracruz Aquarium (NOAA’s first international Coastal Ecology Learning Center) and the State of Veracruz. The Mexican Navy (critical to coastal studies in the Southern Gulf) and other national and regional entities have also been engaged; and Training on use of SERVIR portal planned for Fall 2007 in Veracruz, Mexico Science Applications; Worked with regional scientists to produce conceptual models of submerged aquatic vegetation (SAV) ecosystems; Built a logical framework and tool for ontological modeling of SAV and HABs; Created online guidance for SAV restoration planning; Created model runs which link potential future land use trends, runoff and SAV viability; Analyzed SAV cover change at five other bays in the Gulf of Mexico to demonstrate extensibility of the analytical tools; and Initiated development of a conceptual model for understanding the causes and effects of HABs in the Gulf of Mexico IT Tool Development; Established a website with the GoMRC web-based tools at www.gomrc.org; Completed development of an ArcGIS-based decision support tool for SAV restoration prioritization decisions, and demonstrated its use in Mobile Bay; Developed a web-based application, called Conceptual Model Explorer (CME), that enables non-GIS users to employ the prioritization model for SAV restoration; Created CME tool enabling scientists to view existing, and create new, ecosystem conceptual models which can be used to document cause-effect relationships within coastal ecosystems, and offer guidance on management solutions; Adapted the science-driven advanced web search engine, Noesis, to focus on an initial set of coastal and marine resource issues, including SAV and HABs; Incorporated map visualization tools with initial data layers related to coastal wetlands and SAVs; and Supported development of a SERVIR portal for data management and visualization in the southern Gulf of Mexico, as well as training of end users in Mexican Gulf States.

  4. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Nonassociated...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Nonassociated Natural Gas Proved Reserves, Wet After Lease...

  5. ,"Federal Offshore, Gulf of Mexico, Texas Crude Oil plus Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Texas Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014,"06302009"...

  6. ,"Federal Offshore Gulf of Mexico Natural Gas Gross Withdrawals...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gulf of Mexico Natural Gas Gross Withdrawals and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  7. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Crude...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014...

  8. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Associated...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease...

  9. ,"Federal Offshore, Gulf of Mexico, Texas Nonassociated Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Texas Nonassociated Natural Gas Proved Reserves, Wet After Lease...

  10. ,"Federal Offshore, Gulf of Mexico, Texas Dry Natural Gas Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Texas Dry Natural Gas Proved Reserves",10,"Annual",2014,"06301981" ,"Release...

  11. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Dry Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Dry Natural Gas Proved Reserves",10,"Annual",2014,"06301981"...

  12. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Coalbed...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Coalbed Methane Proved Reserves, Reserves Changes, and...

  13. ,"Federal Offshore, Gulf of Mexico, Texas Associated-Dissolved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Texas Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease...

  14. Alternative Fuels Data Center: Hybrid and Electric Vehicles Boom Coast to

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Coast Hybrid and Electric Vehicles Boom Coast to Coast to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Electric Vehicles Boom Coast to Coast on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Electric Vehicles Boom Coast to Coast on Twitter Bookmark Alternative Fuels Data Center: Hybrid and Electric Vehicles Boom Coast to Coast on Google Bookmark Alternative Fuels Data Center: Hybrid and Electric Vehicles Boom Coast to Coast on Delicious Rank Alternative

  15. Mountrail County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    North Dakota New Town, North Dakota Palermo, North Dakota Parshall, North Dakota Plaza, North Dakota Ross, North Dakota Southwest Mountrail, North Dakota Stanley, North...

  16. Barnes County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    County, North Dakota Dazey, North Dakota Fingal, North Dakota Kathryn, North Dakota Leal, North Dakota Litchville, North Dakota Nome, North Dakota Oriska, North Dakota...

  17. Northampton County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    North Carolina Conway, North Carolina Garysburg, North Carolina Gaston, North Carolina Jackson, North Carolina Lasker, North Carolina Rich Square, North Carolina Seaboard, North...

  18. Robeson County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    North Carolina Prospect, North Carolina Raemon, North Carolina Raynham, North Carolina Red Springs, North Carolina Rennert, North Carolina Rex, North Carolina Rowland, North...

  19. Rolette County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    North Dakota North Rolette, North Dakota Rolette, North Dakota Rolla, North Dakota Shell Valley, North Dakota South Rolette, North Dakota St. John, North Dakota Turtle...

  20. Burleigh County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    North Dakota Lincoln, North Dakota Lincoln-Fort Rice, North Dakota Lyman, North Dakota Phoenix, North Dakota Regan, North Dakota Wilton, North Dakota Wing, North Dakota Retrieved...

  1. Cavalier County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Calvin, North Dakota Hannah, North Dakota Langdon, North Dakota Loma, North Dakota Milton, North Dakota Munich, North Dakota Nekoma, North Dakota Osnabrock, North Dakota...

  2. High Performance Builder Spotlight: Green Coast Enterprises - New Orleans,

    Energy Savers [EERE]

    Louisiana | Department of Energy High Performance Builder Spotlight: Green Coast Enterprises - New Orleans, Louisiana High Performance Builder Spotlight: Green Coast Enterprises - New Orleans, Louisiana This four-page case study describes Green Coast Enterprises efforts to rebuild hurricane-ravaged New Orleans through Project Home Again. PDF icon green_coast_enterprises.pdf More Documents & Publications High Performance Builder Spotlight: Green Coast Enterprises - New Orleans, Louisiana

  3. A modeling study of coastal inundation induced by storm surge, sea-level rise, and subsidence in the Gulf of Mexico

    SciTech Connect (OSTI)

    Yang, Zhaoqing; Wang, Taiping; Leung, Lai-Yung R.; Hibbard, Kathleen A.; Janetos, Anthony C.; Kraucunas, Ian P.; Rice, Jennie S.; Preston, Benjamin; Wilbanks, Thomas

    2013-12-10

    The northern coasts of the Gulf of Mexico are highly vulnerable to the direct threats of climate change, such as hurricane-induced storm surge, and such risks can be potentially exacerbated by land subsidence and global sea level rise. This paper presents an application of a coastal storm surge model to study the coastal inundation process induced by tide and storm surge, and its response to the effects of land subsidence and sea level rise in the northern Gulf coast. An unstructured-grid Finite Volume Coastal Ocean Model was used to simulate tides and hurricane-induced storm surges in the Gulf of Mexico. Simulated distributions of co-amplitude and co-phase of semi-diurnal and diurnal tides are in good agreement with previous modeling studies. The storm surges induced by four historical hurricanes (Rita, Katrina, Ivan and Dolly) were simulated and compared to observed water levels at National Oceanic and Atmospheric Administration tide stations. Effects of coastal subsidence and future global sea level rise on coastal inundation in the Louisiana coast were evaluated using a parameter change of inundation depth through sensitivity simulations that were based on a projected future subsidence scenario and 1-m global sea level rise by the end of the century. Model results suggested that hurricane-induced storm surge height and coastal inundation could be exacerbated by future global sea level rise and subsidence, and that responses of storm surge and coastal inundation to the effects of sea level rise and subsidence are highly nonlinear and vary on temporal and spatial scales.

  4. Federal Offshore Gulf of Mexico Proved Reserves

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Federal Offshore Gulf of Mexico Proved Reserves Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Data Series 2002 2003 2004 2005 2006 2007 View History Dry Natural Gas (billion cubic feet) 24,689 22,059 18,812 17,007 14,549 13,634 1992-2007 Depth Less Than 200 Meters 14,423 12,224 10,433 8,964 8,033 NA 1992-2007 Depth Greater Than 200 Meters 10,266 9,835 8,379 8,043 6,516 NA 1992-2007 Percentage from Depth Greater

  5. Coast Intelligen CI60 | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Manufacturer Coast Intelligen Technology Type Internal Combustion Engine Engine Type Inverter Power Output 60 kW0.06 MW 60,000 W 60,000,000 mW 6.0e-5...

  6. Bowman County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    A. Places in Bowman County, North Dakota Bowman, North Dakota Gascoyne, North Dakota Hart, North Dakota Rhame, North Dakota Scranton, North Dakota West Bowman, North Dakota...

  7. Wells County, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    North Dakota Cathay, North Dakota Fessenden, North Dakota Hamberg, North Dakota Harvey, North Dakota Hurdsfield, North Dakota Sykeston, North Dakota Retrieved from "http:...

  8. Alamance County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Burlington, North Carolina Elon, North Carolina Gibsonville, North Carolina Glen Raven, North Carolina Graham, North Carolina Green Level, North Carolina Haw River, North...

  9. Bladen County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Dublin, North Carolina East Arcadia, North Carolina Elizabethtown, North Carolina Kelly, North Carolina Tar Heel, North Carolina White Lake, North Carolina White Oak, North...

  10. Duplin County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Kenansville, North Carolina Magnolia, North Carolina Mount Olive, North Carolina Rose Hill, North Carolina Teachey, North Carolina Wallace, North Carolina Warsaw, North...

  11. Pembina County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    in Pembina County, North Dakota Bathgate, North Dakota Canton City, North Dakota Cavalier, North Dakota Crystal, North Dakota Drayton, North Dakota Hamilton, North Dakota...

  12. Wayne County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Places in Wayne County, North Carolina Brogden, North Carolina Elroy, North Carolina Eureka, North Carolina Fremont, North Carolina Goldsboro, North Carolina Mar-Mac, North...

  13. West Coast Port Closure Enforcement Policy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    West Coast Port Closure Enforcement Policy West Coast Port Closure Enforcement Policy February 27, 2015 Closures at 29 West Coast marine ports in February 2015 due to a labor dispute have resulted in significant delays for certain goods entering the United States through those ports. DOE issued a policy not to seek civil penalties for violations resulting from those delays if the importers provide certain documentation to DOE by July 1, 2015. PDF icon Enforcement Policy Statement: West Coast

  14. High Performance Builder Spotlight: Green Coast Enterprises, New Orleans, Louisiana

    SciTech Connect (OSTI)

    Pacific Northwest National Laboratory

    2010-09-01

    This case study describes Green Coast Enterprises efforts to rebuild hurricane-ravaged New Orleans through Project Home Again.

  15. The Gulf War and the environment

    SciTech Connect (OSTI)

    El-Baz, F. (ed.) (Boston Univ., MA (United States). Center for Remote Sensing); Makharita, R.M. (ed.) (World Bank, Washington, DC (United States))

    1994-01-01

    The Gulf War inflicted dramatic environmental damage upon the fragile desert and shore environments of Kuwait and northeastern Saudi Arabia. Coastal and marine environments experienced oil spills of more than 8 million barrels, which killed wildlife and damaged the fishing industry. In inland Kuwait, hundreds of oil lakes are scattered across the desert surface: these lakes emit noxious gases, drown insects and birds, and may seep to pollute groundwater. Exploding and burning oil wells released soot particles, oil droplets, and noxious chemicals into the atmosphere, spreading air pollution, acid rain, and respiratory problems. Military diggings, constructions, and vehicles have destroyed much of the desert pavement, resulting in increased dust storms and large, moving dunes.

  16. Oil Production Capacity Expansion Costs for the Persian Gulf

    Reports and Publications (EIA)

    1996-01-01

    Provides estimates of development and operating costs for various size fields in countries surrounding the Persian Gulf. In addition, a forecast of the required reserve development and associated costs to meet the expected demand through the year 2010 is presented.

  17. Gulf County, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    169-2006 Climate Zone Number 2 Climate Zone Subtype A. Places in Gulf County, Florida Port St. Joe, Florida Wewahitchka, Florida Retrieved from "http:en.openei.orgw...

  18. Entergy Gulf States Louisiana LLC | Open Energy Information

    Open Energy Info (EERE)

    States Louisiana LLC Jump to: navigation, search Name: Entergy Gulf States Louisiana LLC Place: Louisiana Phone Number: 1-800-368-3749 Website: www.entergy-louisiana.com Twitter:...

  19. Gulf Stream, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Gulf Stream is a town in Palm Beach County, Florida. It falls under Florida's 22nd...

  20. Entergy (Louisiana and Gulf States)- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Residential customers of Entergy Louisiana, and Entergy Gulf States Louisiana can participate in energy efficiency programs designed to help offset cost of installing energy efficient equipment and...

  1. Gulf of California Rift Zone Geothermal Region | Open Energy...

    Open Energy Info (EERE)

    Projects (0) Techniques (0) Map: Name The Gulf of California rift zone is a complex transition zone between the dextral (right-lateral) motion of the San Andreas transform...

  2. Gulf Of Mexico Natural Gas Plant Liquids Production Extracted...

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas (Million Cubic Feet) Gulf Of Mexico Natural Gas Plant Liquids Production Extracted in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  3. Gulf Of Mexico Natural Gas Plant Liquids Production (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Gulf Of Mexico Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0...

  4. Gulf Of Mexico Natural Gas Plant Liquids Production Extracted...

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama (Million Cubic Feet) Gulf Of Mexico Natural Gas Plant Liquids Production Extracted in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  5. Gulf Of Mexico Natural Gas Plant Liquids Production Extracted...

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana (Million Cubic Feet) Gulf Of Mexico Natural Gas Plant Liquids Production Extracted in Louisiana (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  6. Gulf Of Mexico Natural Gas Plant Liquids Production Extracted...

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi (Million Cubic Feet) Gulf Of Mexico Natural Gas Plant Liquids Production Extracted in Mississippi (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  7. EIS-0504: Gulf LNG Liquefaction Project, Jackson County, Mississippi |

    Office of Environmental Management (EM)

    Department of Energy 4: Gulf LNG Liquefaction Project, Jackson County, Mississippi EIS-0504: Gulf LNG Liquefaction Project, Jackson County, Mississippi SUMMARY The Federal Energy Regulatory Commission (FERC) announced its intent to prepare an EIS to analyze the potential environmental impacts of a proposal to expand an existing liquefied natural gas (LNG) import terminal in Jackson County Mississippi and modify related facilities to enable the terminal to liquefy natural gas for export. DOE

  8. Gulf Coast geopressured-geothermal program summary report compilation. Volume 4: Bibliography (annotated only for all major reports)

    SciTech Connect (OSTI)

    John, C.J.; Maciasz, G.; Harder, B.J.

    1998-06-01

    This bibliography contains US Department of Energy sponsored Geopressured-Geothermal reports published after 1984. Reports published prior to 1984 are documented in the Geopressured Geothermal bibliography Volumes 1, 2, and 3 that the Center for Energy Studies at the University of Texas at Austin compiled in May 1985. It represents reports, papers and articles covering topics from the scientific and technical aspects of geopressured geothermal reservoirs to the social, environmental, and legal considerations of exploiting those reservoirs for their energy resources.

  9. North Slope of Alaska

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govSitesNorth Slope of Alaska NSA Related Links Virtual Tour Facilities and Instruments Barrow Atqasuk Oliktok Point (AMF3) ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site NSA Fact Sheet Images Information for Guest Scientists Contacts North Slope of Alaska Barrow: 71° 19' 23.73" N, 156° 36' 56.70" W Atqasuk: 70° 28' 19.11" N, 157° 24' 28.99" W The North Slope of Alaska (NSA) site is providing data about cloud and radiative processes at

  10. North American Energy Markets

    Gasoline and Diesel Fuel Update (EIA)

    Conference North American Energy Markets Mexico's role and the importance of a Strong North American Relationship. Dr. Guillermo C. Dominguez Director of the School of Engineering, TAMIU and former Commissioner at CNH, Mexico. Washington D.C., June 15, 2015. guillermoc.dominguez@tamiu.edu @GCDV 1 2 2 Regional Distribution and Producing Areas in PEMEX Exploración y Producción (PEP)* Northern Region Southern Region Southwest Marine Region Northeast Marine Region Veracruz not associated Gas

  11. SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT

    SciTech Connect (OSTI)

    J. Robert Woolsey; Tom McGee; Carol Lutken; Elizabeth Stidham

    2006-06-01

    The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The Consortium is administered by the Center for Marine Resources and Environmental Technology, CMRET, at the University of Mississippi. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2007, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the marine environment, including sea water and sea-floor sediments, on a more-or-less continuous basis over an extended period of time. In 2005, biological monitoring, as a means of assessing environmental health was added to the mission of the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has now achieved a microbial dimension in addition to the geophysical and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 in May of 2005. Follow-up deployments, planned for fall 2005, had to be postponed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Every effort was made to locate and retain the services of a suitable vessel and submersibles or Remotely Operated Vehicles (ROVs) following the storms and the loss of the contracted vessel, the M/V Ocean Quest and its two submersibles, but these efforts have been fruitless due to the demand for these resources in the tremendous recovery effort being made in the Gulf area. Station/observatory completion, anticipated for 2007, will likely be delayed by at least one year. The seafloor monitoring station/observatory is funded approximately equally by three federal Agencies: Minerals Management Services (MMS) of the Department of the Interior (DOI), National Energy Technology Laboratory (NETL) of the Department of Energy (DOE), and the National Institute for Undersea Science and Technology (NIUST), an agency of the National Oceanographic and Atmospheric Administration (NOAA).

  12. Richmond County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    East Rockingham, North Carolina Ellerbe, North Carolina Hamlet, North Carolina Hoffman, North Carolina Norman, North Carolina Rockingham, North Carolina Retrieved from...

  13. Henderson County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    East Flat Rock, North Carolina Etowah, North Carolina Flat Rock, North Carolina Fletcher, North Carolina Hendersonville, North Carolina Laurel Park, North Carolina Mills...

  14. Granville County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    in Granville County, North Carolina Butner, North Carolina Creedmoor, North Carolina Oxford, North Carolina Stem, North Carolina Stovall, North Carolina Retrieved from "http:...

  15. Dickey County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Climate Zone Subtype A. Places in Dickey County, North Dakota Ellendale, North Dakota Forbes, North Dakota Fullerton, North Dakota Ludden, North Dakota Monango, North Dakota...

  16. LaMoure County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Edgeley, North Dakota Jud, North Dakota Kulm, North Dakota LaMoure, North Dakota Marion, North Dakota Verona, North Dakota Retrieved from "http:en.openei.orgw...

  17. Steele County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    North Dakota M Power LLC Places in Steele County, North Dakota Finley, North Dakota Hope, North Dakota Luverne, North Dakota Sharon, North Dakota Retrieved from "http:...

  18. Cumberland County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Carolina Fayetteville, North Carolina Fort Bragg, North Carolina Godwin, North Carolina Hope Mills, North Carolina Linden, North Carolina Pope AFB, North Carolina Spring Lake,...

  19. Hoke County, North Carolina: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Carolina Dundarrach, North Carolina Five Points, North Carolina Raeford, North Carolina Red Springs, North Carolina Rockfish, North Carolina Silver City, North Carolina Retrieved...

  20. Nash County, North Carolina: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Carolina Middlesex, North Carolina Momeyer, North Carolina Nashville, North Carolina Red Oak, North Carolina Rocky Mount, North Carolina Sharpsburg, North Carolina Spring Hope,...

  1. Stanly County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Carolina New London, North Carolina Norwood, North Carolina Oakboro, North Carolina Red Cross, North Carolina Richfield, North Carolina Stanfield, North Carolina Retrieved...

  2. Forsyth County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Carolina King, North Carolina Lewisville, North Carolina Midway, North Carolina Rural Hall, North Carolina Tobaccoville, North Carolina Walkertown, North Carolina Winston-Salem,...

  3. Brunswick County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Island, North Carolina Belville, North Carolina Boiling Spring Lakes, North Carolina Bolivia, North Carolina Calabash, North Carolina Carolina Shores, North Carolina Caswell...

  4. Craven County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Dover, North Carolina Fairfield Harbour, North Carolina Havelock, North Carolina James City, North Carolina Neuse Forest, North Carolina New Bern, North Carolina River Bend,...

  5. Iredell County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    in Iredell County, North Carolina Davidson, North Carolina Harmony, North Carolina Love Valley, North Carolina Mooresville, North Carolina Statesville, North Carolina Stony...

  6. Sioux County, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Number 6 Climate Zone Subtype A. Places in Sioux County, North Dakota Cannon Ball, North Dakota Fort Yates, North Dakota North Sioux, North Dakota Selfridge, North...

  7. Carteret County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Bogue, North Carolina Cape Carteret, North Carolina Cedar Point, North Carolina Emerald Isle, North Carolina Harkers Island, North Carolina Indian Beach, North Carolina...

  8. Gulf of Mexico pipelines heading into deeper waters

    SciTech Connect (OSTI)

    True, W.R.

    1987-06-08

    Pipeline construction for Gulf of Mexico federal waters is following drilling and production operations into deeper waters, according to U.S. Department of Interior (DOI) Minerals Management Service (MMS) records. Review of MMS 5-year data for three water depth categories (0-300 ft, 300-600 ft, and deeper than 600 ft) reveals this trend in Gulf of Mexico pipeline construction. Comparisons are shown between pipeline construction applications that were approved by the MMS during this period and projects that have been reported to the MMS as completed. This article is the first of annual updates of MMS gulf pipeline data. Future installments will track construction patterns in water depths, diameter classifications, and mileage. These figures will also be evaluated in terms of pipeline-construction cost data.

  9. United States Coast Guard Bridge Administration Manual | Open...

    Open Energy Info (EERE)

    United States Coast Guard Bridge Administration Manual Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: United...

  10. Introduction to Coast Guard Bridge Permitting | Open Energy Informatio...

    Open Energy Info (EERE)

    Introduction to Coast Guard Bridge Permitting Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Introduction to...

  11. Coast Electric Power Association- Comfort Advantage Home Program

    Broader source: Energy.gov [DOE]

    Coast Electric Power Association (CEPA) provides rebates on heat pumps for new homes which meet certain weatherization standards. To qualify for this rebate the home must have:

  12. West Coast Paper Mills Ltd WCPML | Open Energy Information

    Open Energy Info (EERE)

    Paper Mills Ltd WCPML Jump to: navigation, search Name: West Coast Paper Mills Ltd. (WCPML) Place: Dandeli, Karnataka, India Zip: 581 325 Sector: Biomass Product: Dandeli based...

  13. Coast Electric Power Association- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Coast Electric Power Association provides incentives for commercial customers to increase the energy efficiency of facilities. Rebates are provided for new or replacement energy efficient heat...

  14. Major deepwater pipelay vessel starts work in North Sea

    SciTech Connect (OSTI)

    Heerema, E.P.

    1998-05-04

    Industry`s deepwater pipelaying capability has received a boost this year with the entry into the world`s fleet of Solitaire, a dynamically positioned pipelay vessel of about 350 m including stinger. The converted bulk carrier, formerly the Trentwood, will arrive on station in the North Sea and begin laying pipe this month on Statoil`s Europipe II project, a 600-km, 42-in. OD gas pipeline from Norway to Germany. Next year, the vessel will install pipe for the Exxon U.S.A.`s Gulf of Mexico South Diana development (East Breaks Block 945) in a water depth of 1,643 m and for Mobil Oil Canada as part of the Sable Island Offshore and Energy Project offshore Nova Scotia. Using the S-lay mode, Solitaire is particularly well-suited for laying large lines economically, including the deepwater projects anticipated for the US Gulf of Mexico. Table 1 presents Solitaire`s technical specifications. The design, construction, pipelaying, and justification for building vessels such as the Solitaire are discussed.

  15. Gulf Of Mexico Natural Gas Processed (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Gulf Of Mexico Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 1,317,031 1,002,608 1,000,964 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Processed Gulf of Mexico Natural Gas Plant Processing Natural Gas Processed (Summary)

  16. Gulf of Mexico Federal Offshore Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 590 605 603 630 753 906 919 994 2000's 1,074 967 965 717 713 688 649 620 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Federal Offshore Gulf

  17. Gulf of Mexico Proved Reserves By Water Depth, 2009

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Mexico Proved Reserves and Production by Water Depth, 2009 1 Gulf of Mexico Proved Reserves and Production by Water Depth The Gulf of Mexico Federal Offshore region (GOM Fed) has long been one of the Nation's principal sources of proved reserves. At the end of 2009, the GOM Fed accounted for close to one-fifth of oil proved reserves (second only to Texas) and just over four percent of natural gas proved reserves (the country's seventh largest reporting region). 1 Natural gas proved reserves

  18. Gulf LNG, Mississippi Liquefied Natural Gas Imports from Egypt (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Egypt (Million Cubic Feet) Gulf LNG, Mississippi Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,954 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Gulf LNG, MS LNG Imports from Egypt

  19. Gulf LNG, Mississippi Liquefied Natural Gas Imports from Trinidad and

    U.S. Energy Information Administration (EIA) Indexed Site

    Tobago (Million Cubic Feet) Trinidad and Tobago (Million Cubic Feet) Gulf LNG, Mississippi Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,820 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Gulf LNG, MS LNG

  20. Main Coast Winds - Final Scientific Report

    SciTech Connect (OSTI)

    Jason Huckaby; Harley Lee

    2006-03-15

    The Maine Coast Wind Project was developed to investigate the cost-effectiveness of small, distributed wind systems on coastal sites in Maine. The restructuring of Maine's electric grid to support net metering allowed for the installation of small wind installations across the state (up to 100kW). The study performed adds insight to the difficulties of developing cost-effective distributed systems in coastal environments. The technical hurdles encountered with the chosen wind turbine, combined with the lower than expected wind speeds, did not provide a cost-effective return to make a distributed wind program economically feasible. While the turbine was accepted within the community, the low availability has been a negative.

  1. Why the Gulf War still matters: Foreign perspectives on the war and the future of international security. Report No. 16

    SciTech Connect (OSTI)

    Garrity, P.J.

    1993-07-01

    This report summarizes the main findings of a Center for National Security Studies (CNSS) project that examined how a number of nations other than the United States have reacted to the course and outcome of the Persian Gulf War of 1991. The project was built around studies of key countries on which the Gulf War might reasonably be expected to have had a significant impact: Argentina, the ASEAN states, Brazil, China, Cuba, Egypt, France, Germany, India, Iran, Iraq, Israel, Italy, Japan, Jordan, Libya, North Korea, Russia, Saudi Arabia, South Korea, Spain, Syria, Taiwan, the United Kingdom, Vietnam, and the states of the former Yugoslavia. These country studies were written by well-recognized independent experts following a common set of guidelines provided by CNSS. When the country studies were completed, they were reviewed and supplemented through a series of peer assessments and workshops. The report represents a synthesis of material generated through this process, and is intended to stimulate thought and further analysis on the critical topics discussed herein.

  2. Gulf of Mexico Federal Offshore Crude Oil Production (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Gulf of Mexico Federal Offshore Crude Oil Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 267 266 265 292 303 342 372 421 2000's 419 459 451 485 467 409 406 414

  3. Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 44 46 47 49 60 70 72 87 2000's 106 101 90 78 74 62 58

  4. Gulf of Mexico Federal Offshore Natural Gas Liquids Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 91 97 98 85 101 140 139 167 2000's 199 192 184 148 155 123 125

  5. NorthWinds Renewables | Open Energy Information

    Open Energy Info (EERE)

    NorthWinds Renewables Jump to: navigation, search Name: NorthWinds Renewables Place: Harrison, New York Zip: 10528 Sector: Renewable Energy, Wind energy Product: NorthWinds...

  6. Sanyo North America Co | Open Energy Information

    Open Energy Info (EERE)

    North America Co Jump to: navigation, search Name: Sanyo North America Co Place: San Diego, California Zip: CA 92154 Product: Sanyo North America Co, a subsidiary of Japanese...

  7. Post Fukushima tsunami simulations for Malaysian coasts

    SciTech Connect (OSTI)

    Koh, Hock Lye; Teh, Su Yean; Abas, Mohd Rosaidi Che

    2014-10-24

    The recent recurrences of mega tsunamis in the Asian region have rekindled concern regarding potential tsunamis that could inflict severe damage to affected coastal facilities and communities. The 11 March 2011 Fukushima tsunami that crippled nuclear power plants in Northern Japan has further raised the level of caution. The recent discovery of petroleum reserves in the coastal water surrounding Malaysia further ignites the concern regarding tsunami hazards to petroleum facilities located along affected coasts. Working in a group, federal government agencies seek to understand the dynamics of tsunami and their impacts under the coordination of the Malaysian National Centre for Tsunami Research, Malaysian Meteorological Department. Knowledge regarding the generation, propagation and runup of tsunami would provide the scientific basis to address safety issues. An in-house tsunami simulation models known as TUNA has been developed by the authors to assess tsunami hazards along affected beaches so that mitigation measures could be put in place. Capacity building on tsunami simulation plays a critical role in the development of tsunami resilience. This paper aims to first provide a simple introduction to tsunami simulation towards the achievement of tsunami simulation capacity building. The paper will also present several scenarios of tsunami dangers along affected Malaysia coastal regions via TUNA simulations to highlight tsunami threats. The choice of tsunami generation parameters reflects the concern following the Fukushima tsunami.

  8. Pender County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in Pender County, North Carolina Atkinson, North Carolina Burgaw, North Carolina St. Helena, North Carolina Surf City, North...

  9. Ransom County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    North Dakota Enderlin, North Dakota Fort Ransom, North Dakota Lisbon, North Dakota Sheldon, North Dakota Retrieved from "http:en.openei.orgwindex.php?titleRansomCounty,N...

  10. Kidder County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Climate Zone Number 7 Climate Zone Subtype A. Places in Kidder County, North Dakota Dawson, North Dakota Kickapoo, North Dakota Pettibone, North Dakota Robinson, North Dakota...

  11. Pitt County, North Carolina: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Carolina Greenville, North Carolina Grifton, North Carolina Grimesland, North Carolina Simpson, North Carolina Winterville, North Carolina Retrieved from "http:en.openei.orgw...

  12. Stokes County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Climate Zone Subtype A. Places in Stokes County, North Carolina Danbury, North Carolina King, North Carolina Tobaccoville, North Carolina Walnut Cove, North Carolina Retrieved from...

  13. Sampson County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Roseboro, North Carolina Salemburg, North Carolina Spiveys Corner, North Carolina Turkey, North Carolina Vann Crossroads, North Carolina Retrieved from "http:en.openei.org...

  14. Columbus County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Zone Number 3 Climate Zone Subtype A. Places in Columbus County, North Carolina Boardman, North Carolina Bolton, North Carolina Brunswick, North Carolina Cerro Gordo, North...

  15. Hettinger County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    in Hettinger County, North Dakota Central Hettinger, North Dakota Mott, North Dakota New England, North Dakota Regent, North Dakota Retrieved from "http:en.openei.orgw...

  16. Dunn County, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    A. Places in Dunn County, North Dakota Dodge, North Dakota Dunn Center, North Dakota Halliday, North Dakota Killdeer, North Dakota Retrieved from "http:en.openei.orgw...

  17. Benthic study of the continental slope off Cape Hatteras, North Carolina. Volume 2. Final report

    SciTech Connect (OSTI)

    Diaz, R.J.; Blake, J.A.; Lohse, D.P.

    1993-03-01

    A number of blocks off Cape Hatteras have been leased by Mobil Oil, which has requested permission to drill an exploratory well, at 820-m depth, in a block identified as Manteo 467. The proposed well location is 39 miles from the coast of North Carolina. The possibility of extracting gas from the continental slope off the coast of North Carolina, particularly at slope depths, has raised a number of environmental concerns that cannot be addressed from existing data. The present study was developed by the Minerals Management Service to better define the nature of the continental slope benthic communities off Cape Hatteras and to delineate their areal extent. Emphasis was placed on the area around the proposed drill site in the Manteo 467 lease block.

  18. Sequestration Options for the West Coast States

    SciTech Connect (OSTI)

    Myer, Larry

    2006-04-30

    The West Coast Regional Carbon Sequestration Partnership (WESTCARB) is one of seven partnerships that have been established by the U.S. Department of Energy (DOE) to evaluate carbon capture and sequestration (CCS) technologies best suited for different regions of the country. The West Coast Region comprises Arizona, California, Nevada, Oregon, Washington, Alaska, and British Columbia. Led by the California Energy Commission, WESTCARB is a consortium of about 70 organizations, including state natural resource and environmental protection agencies; national laboratories and universities; private companies working on carbon dioxide (CO{sub 2}) capture, transportation, and storage technologies; utilities; oil and gas companies; nonprofit organizations; and policy/governance coordinating organizations. Both terrestrial and geologic sequestration options were evaluated in the Region during the 18-month Phase I project. A centralized Geographic Information System (GIS) database of stationary source, geologic and terrestrial sink data was developed. The GIS layer of source locations was attributed with CO{sub 2} emissions and other data and a spreadsheet was developed to estimate capture costs for the sources in the region. Phase I characterization of regional geological sinks shows that geologic storage opportunities exist in the WESTCARB region in each of the major technology areas: saline formations, oil and gas reservoirs, and coal beds. California offers outstanding sequestration opportunities because of its large capacity and the potential of value-added benefits from enhanced oil recovery (EOR) and enhanced gas recovery. The estimate for storage capacity of saline formations in the ten largest basins in California ranges from about 150 to about 500 Gt of CO{sub 2}, the potential CO{sub 2}-EOR storage was estimated to be 3.4 Gt, and the cumulative production from gas reservoirs suggests a CO{sub 2} storage capacity of 1.7 Gt. A GIS-based method for source-sink matching was implemented and preliminary marginal cost curves developed, which showed that 20, 40, or 80 Mega tonnes (Mt) of CO{sub 2} per year could be sequestered in California at a cost of $31/tonne (t), $35/t, or $50/t, respectively. Phase I also addressed key issues affecting deployment of CCS technologies, including storage-site monitoring, injection regulations, and health and environmental risks. A framework for screening and ranking candidate sites for geologic CO{sub 2} storage on the basis of HSE risk was developed. A webbased, state-by-state compilation of current regulations for injection wells, and permits/contracts for land use changes, was developed, and modeling studies were carried out to assess the application of a number of different geophysical techniques for monitoring geologic sequestration. Public outreach activities resulted in heightened awareness of sequestration among state, community and industry leaders in the Region. Assessment of the changes in carbon stocks in agricultural lands showed that Washington, Oregon and Arizona were CO{sub 2} sources for the period from 1987 to 1997. Over the same period, forest carbon stocks decreased in Washington, but increased in Oregon and Arizona. Results of the terrestrial supply curve analyses showed that afforestation of rangelands and crop lands offer major sequestration opportunities; at a price of $20 per t CO{sub 2}, more than 1,233 MMT could be sequestered over 40-years in Washington and more than 1,813 MMT could be sequestered in Oregon.

  19. North American Synchrophasor Initiative (NASPI) Program Information...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (NASPI) Program Information North American Synchrophasor Initiative (NASPI) Program Information Summary of the Transmission Reliability program's North American Synchrophasor...

  20. Kelsey North Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    North Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Kelsey North Geothermal Project Project Location Information...

  1. North Carolina State Historic Preservation Programmatic Agreement...

    Energy Savers [EERE]

    North Carolina State Historic Preservation Programmatic Agreement North Carolina State Historic Preservation Programmatic Agreement Fully executed programmatic agreement between...

  2. North American Electric Reliability Corporation Interconnections...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interconnections North American Electric Reliability Corporation Interconnections Map of the North American Electric Reliability Corporation Interconnection showing the Eastern,...

  3. NORTH AMERICAN ELECTRIC RELIABILITY COUNCIL: Preliminary Disturbance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NORTH AMERICAN ELECTRIC RELIABILITY COUNCIL: Preliminary Disturbance Report NORTH AMERICAN ELECTRIC RELIABILITY COUNCIL: Preliminary Disturbance Report The following information...

  4. Coast Intelligen 150-IC with ECS | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Manufacturer Coast Intelligen Technology Type Internal Combustion Engine Engine Type Synchronous Generator Power Output 150 kW0.15 MW 150,000 W...

  5. West Coast Wind Farms Scotland Ltd | Open Energy Information

    Open Energy Info (EERE)

    Wind Farms Scotland Ltd Jump to: navigation, search Name: West Coast Wind Farms (Scotland) Ltd Place: Ilfracombe, United Kingdom Zip: EX34 8NJ Sector: Wind energy Product: Wind...

  6. United States Coast Guard Bridge Permit Application Guide | Open...

    Open Energy Info (EERE)

    United States Coast Guard Bridge Permit Application Guide Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: United...

  7. Pipelines following exploration in deeper Gulf of Mexico

    SciTech Connect (OSTI)

    True, W.R.

    1988-07-04

    Gulf of Mexico pipeline construction has been falling of sharply to shallow-water (less than 300 ft) areas, while construction for middle depth (300 - 600 ft) and deepwater (600 + ft) areas as been holding steady. These trends are evident from analyses of 5-year data compiled by the U.S. Department of Interior (DOI) Minerals Management Service (MMS). This article continues a series of updates based on MMS gulf pipeline data (OGJ, June 8, 1987, p. 50). These installments track construction patterns in water depths, diameter classifications, and mileage. The figures are also evaluated in terms of pipeline-construction cost data published in Oil and Gas Journal's annual Pipeline Economics Reports.

  8. Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate

    Gasoline and Diesel Fuel Update (EIA)

    Production from Greater than 200 Meters Deep (Million Barrels) Greater than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate Production from Greater than 200 Meters Deep (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2 3 3 7 8 8 13 27 2000's 45 51 38 30 27 26 23

  9. Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate

    Gasoline and Diesel Fuel Update (EIA)

    Production from Less than 200 Meters Deep (Million Barrels) Less than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate Production from Less than 200 Meters Deep (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 42 43 44 42 52 62 59 60 2000's 61 50 52 48 47 36 35

  10. Location of Natural Gas Production Facilities in the Gulf of Mexico

    Gasoline and Diesel Fuel Update (EIA)

    Location of Natural Gas Production Facilities in the Gulf of Mexico 2014 U.S. Energy Information Administration | Natural Gas Annual 102 1,179,714 4.6 Gulf of Mexico - Natural Gas 2011 Million Cu. Feet Percent of National Total Dry Production: Table S12. Summary statistics for natural gas - Gulf of Mexico, 2010-2014 Gulf of Mexico - Table S12 Federal Offshore Production trillion cubic feet 0 1 2 3 4 5 6 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

  11. Impact of Tropical Cyclones on Gulf of Mexico Crude Oil and Natural Gas Production, The

    Reports and Publications (EIA)

    2006-01-01

    This is a special analysis report on hurricanes and their effects on oil and natural gas production in the Gulf of Mexico region.

  12. MHK Projects/Gulf of Mexico Ocean test | Open Energy Information

    Open Energy Info (EERE)

    Gulf of Mexico Ocean test < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"R...

  13. Gulf of Mexico miocene CO₂ site characterization mega transect

    SciTech Connect (OSTI)

    Meckel, Timothy; Trevino, Ramon

    2014-09-30

    This project characterized the Miocene-age sub-seafloor stratigraphy in the near-offshore portion of the Gulf of Mexico adjacent to the Texas coast. The large number of industrial sources of carbon dioxide (CO₂) in coastal counties and the high density of onshore urbanization and environmentally sensitive areas make this offshore region extremely attractive for long-term storage of carbon dioxide emissions from industrial sources (CCS). The study leverages dense existing geologic data from decades of hydrocarbon exploration in and around the study area to characterize the regional geology for suitability and storage capacity. Primary products of the study include: regional static storage capacity estimates, sequestration “leads” and prospects with associated dynamic capacity estimates, experimental studies of CO₂-brine-rock interaction, best practices for site characterization, a large-format ‘Atlas’ of sequestration for the study area, and characterization of potential fluid migration pathways for reducing storage risks utilizing novel high-resolution 3D (HR3D) seismic surveys. In addition, three subcontracted studies address source-to-sink matching optimization, offshore well bore management and environmental aspects. The various geologic data and interpretations are integrated and summarized in a series of cross-sections and maps, which represent a primary resource for any near-term commercial deployment of CCS in the area. The regional study characterized and mapped important geologic features (e.g., Clemente-Tomas fault zone, the regionally extensive Marginulina A and Amphistegina B confining systems, etc.) that provided an important context for regional static capacity estimates and specific sequestration prospects of the study. A static capacity estimate of the majority of the Study area (14,467 mi2) was estimated at 86 metric Gigatonnes. While local capacity estimates are likely to be lower due to reservoir-scale characteristics, the offshore Miocene interval is a storage resource of National interest for providing CO₂ storage as an atmospheric emissions abatement strategy. The natural petroleum system was used as an analog to infer seal quality and predict possible migration pathways of fluids in an engineered system of anthropogenic CO₂ injection and storage. The regional structural features (e.g., Clemente-Tomas fault zone) that exert primary control on the trapping and distribution of Miocene hydrocarbons are expected to perform similarly for CCS. Industrial-scale CCS will require storage capacity utilizing well-documented Miocene hydrocarbon (dominantly depleted gas) fields and their larger structural closures, as well as barren (unproductive, brine-filled) closures. No assessment was made of potential for CO₂ utilization for enhanced oil and gas recovery. The use of 3D numerical fluid flow simulations have been used in the study to greatly assist in characterizing the potential storage capacity of a specific reservoir. Due to the complexity of geologic systems (stratigraphic heterogeneity) and inherent limitations on producing a 3D geologic model, these simulations are typically simplified scenarios that explore the influence of model property variability (sensitivity study). A specific site offshore San Luis Pass (southern Galveston Island) was undertaken successfully, indicating stacked storage potential. Downscaling regional capacity estimates to the local scale (and the inverse) has proven challenging, and remains an outstanding gap in capacity assessments. In order to characterize regional seal performance and identify potential brine and CO₂ leakage pathways, results from three high-resolution 3D (HR3D) seismic datasets acquired by the study using novel HR3D (P-Cable) acquisition system showed steady and significant improvements in data quality because of improved acquisition and processing technique. Finely detailed faults and stratigraphy in the shallowest 1000 milliseconds (~800 m) of data allowed for the identification and mapping of unconformable surfaces including what is probably a surface associated with the last Pleistocene glacial lowstand. The identification of a previously unrecognized (in commercial seismic data) gas chimney that was clearly defined in the 2013 HR3D survey, indicates that HR3D surveys may be useful as both a characterization tool for the overburden of a potential carbon sequestration site and as an additional monitoring tool for future engineered injection sites. Geochemical modeling indicated that injection of CO₂ would result in minor dissolution of calcite, K-feldspar and albite. In addition, modeling of typical brines in Miocene age rocks indicate that approximately 5% of injection capacity would result from CO₂ dissolution into the brine. After extensive searches, no rock samples of the Marginulina A and Amphistegina B seals (“caprocks”) were obtained, but analyses of available core samples of other Miocene age mudrocks (seals or caprocks) indicate that they have sealing ability sufficient for potential CO2 storage in underlying sandstone units.

  14. Overview of South Coast AQMD Incentive Programs and Their Funding Structure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy South Coast AQMD Incentive Programs and Their Funding Structure Overview of South Coast AQMD Incentive Programs and Their Funding Structure 2002 DEER Conference Presentation: AQMD PDF icon 2002_deer_minassian.pdf More Documents & Publications South Coast AQMD Clean Transportation Programs The Need to Reduce Mobile Source Emissions in the South Coast Air Basin StateActivity.pdf

  15. CASL - North Carolina State University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    North Carolina State University Raleigh, NC NC State University has a proven record of working with industry and government to advance research in support of solving nuclear...

  16. ARM North Slope of Alaska

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In 1997, the DOE Atmospheric Radiation Measurement (ARM) Climate Research Facility established research sites on the North Slope of Alaska (NSA), to provide data about cloud and ...

  17. Oil and gas developments in North Africa in 1984

    SciTech Connect (OSTI)

    Michel, R.Ch.

    1985-10-01

    Petroleum rights in the 6 North African countries (Algeria, Egypt, Libya, Morocco, Sudan, and Tunisia) covered in this paper were 1,906,065 km/sup 2/ at the end of 1984, an increase of 4.6% from the 1,821,966 km/sup 2/ in force at the end of 1983. This increase is due to large awards in the Sudan despite significant relinquishments elsewhere. Seismic surveys conducted during 1984 decreased to about 510.5 crew-months onshore and 29.5 crew-months offshore. However, exploration in and off Egypt was higher compared to 1983. Exploratory drilling was lower, with only 125 wells drilled compared to 179 tests completed in 1983. The main decrease was in Egypt and Sudan, but drilling in Libya resulted in 20 more completions. A significant oil discovery was made in the offshore part of the Sirte basin, off southwest Cyrenaica. The success rate in North Africa ranged from 19% to 50% (Libya). Development drilling increased during 1984, as higher activity appears to have taken place in 3 countries. Oil production, with an estimated daily rate of 2,952,570 bbl, was up 2.8% from 1983 (2,871,460 BOPD). In Egypt, 7 fields located in the Gulf of Suez area went on stream during the year. Political unrest, which prevailed in southern Sudan during most of 1984, will likely delay the start-up of production in several fields. No statistics are available on gas production in North African countries.

  18. Oil and gas developments in North Africa in 1984

    SciTech Connect (OSTI)

    Michel, R.C.

    1985-10-01

    Petroleum rights in the 6 North African countries (Algeria, Egypt, Libya, Morocco, Sudan, and Tunisia) covered in this paper were 1,906,065 km/sup 2/ at the end of 1984. An increase of 4.6% from the 1,821,966 km/sup 2/ in force at the end of 1983. This increase is due to large awards in the Sudan despite significant relinquishments elsewhere. Seismic surveys conducted during 1984 decreased to about 510.5 crew-months onshore and 29.5 crew-months offshore. However, exploration in and off Egypt was higher compared to 1983. Exploratory drilling was lower, with only 125 wells drilled compared to 179 tests completed in 1983. The main decrease was in Egypt and Sudan, but drilling in Libya resulted in 20 more completions. A significant oil discovery was made in the offshore part of the Sirte basin, off southwest Cyrenaica. The success rate in North America ranged from 19% to 50% (Libya). Development drilling increased during 1984, as higher activity appears to have taken place in 3 countries. Oil production, with an estimated daily rate of 2,952,570 bbl, was 2.8% from 1983 (2,871,460 BOPD). In Egypt, 7 fields located in the Gulf of Suez area went on stream during the year. Political unrest, which prevailed in southern Sudan during most of 1984, will likely delay the start-up of production in several fields. No statistics are available on gas production in North African countries. 9 figures, 27 tables.

  19. Jumpstarting commercial-scale CO2 capture and storage with ethylene production and enhanced oil recovery in the US Gulf

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Middleton, Richard S.; Levine, Jonathan S.; Bielicki, Jeffrey M.; Viswanathan, Hari S.; Carey, J. William; Stauffer, Philip H.

    2015-04-27

    CO2 capture, utilization, and storage (CCUS) technology has yet to be widely deployed at a commercial scale despite multiple high-profile demonstration projects. We suggest that developing a large-scale, visible, and financially viable CCUS network could potentially overcome many barriers to deployment and jumpstart commercial-scale CCUS. To date, substantial effort has focused on technology development to reduce the costs of CO2 capture from coal-fired power plants. Here, we propose that near-term investment could focus on implementing CO2 capture on facilities that produce high-value chemicals/products. These facilities can absorb the expected impact of the marginal increase in the cost of production onmore » the price of their product, due to the addition of CO2 capture, more than coal-fired power plants. A financially viable demonstration of a large-scale CCUS network requires offsetting the costs of CO2 capture by using the CO2 as an input to the production of market-viable products. As a result, we demonstrate this alternative development path with the example of an integrated CCUS system where CO2 is captured from ethylene producers and used for enhanced oil recovery in the U.S. Gulf Coast region.« less

  20. The Need to Reduce Mobile Source Emissions in the South Coast Air Basin |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The Need to Reduce Mobile Source Emissions in the South Coast Air Basin The Need to Reduce Mobile Source Emissions in the South Coast Air Basin 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: South Coast Air Quality Management District PDF icon 2004_deer_liu.pdf More Documents & Publications South Coast AQMD Clean Transportation Programs Overview of South Coast AQMD Incentive Programs and Their Funding Structure Cleaning Up Diesel Engines

  1. SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT

    SciTech Connect (OSTI)

    Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis; Bob A. Hardage; Jeffrey Chanton; Rudy Rogers

    2006-05-18

    The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The primary objective of the group has been to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station has always included the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. This possibility has recently achieved reality via the National Institute for Undersea Science and Technology's (NIUST) solicitation for proposals for research to be conducted at the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has achieved a microbial dimension in addition to the geophysical and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 in May of 2005. Follow-up deployments, planned for fall 2005, have had to be postponed and the use of the vessel M/V Ocean Quest and its two manned submersibles sacrificed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Every effort is being made to locate and retain the services of a replacement vessel and submersibles or Remotely Operated Vehicles (ROVs) but these efforts have been fruitless due to the demand for these resources in the tremendous recovery effort being made in the Gulf area. Station/observatory completion, anticipated for 2007, will likely be delayed by at least one year. The seafloor monitoring station/observatory is funded approximately equally by three federal Agencies: Minerals Management Services (MMS) of the Department of the Interior (DOI), National Energy Technology Laboratory (NETL) of the Department of Energy (DOE), and the National Institute for Undersea Science and Technology (NIUST), an agency of the National Oceanographic and Atmospheric Administration (NOAA). Subcontractors with FY03 funding fulfilled their technical reporting requirements in the previous report (41628R10). Only unresolved matching funds issues remain and will be addressed in the report of the University of Mississippi's Office of Research and Sponsored Programs.

  2. Support of Gulf of Mexico Hydrate Research Consortium: Activities to Support Establishment of a Sea Floor Monitoring Station Project

    SciTech Connect (OSTI)

    J. Robert Woolsey; Thomas M. McGee; Carol Blanton Lutken; Elizabeth Stidham

    2007-03-31

    The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The Consortium is administered by the Center for Marine Resources and Environmental Technology, CMRET, at the University of Mississippi. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2007, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the marine environment, including sea water and sea-floor sediments, on a more-or-less continuous basis over an extended period of time. In 2005, biological monitoring, as a means of assessing environmental health, was added to the mission of the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has now achieved a microbial dimension in addition to the geophysical, geological, and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 (MC118) in May of 2005. Follow-up deployments, planned for fall 2005, had to be postponed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Station/observatory completion, anticipated for 2007, will likely be delayed by at least one year. These delays caused scheduling and deployments difficulties but many sensors and instruments were completed during this period. Software has been written that will accommodate the data that the station retrieves, when it begins to be delivered. In addition, new seismic data processing software has been written to treat the peculiar data to be received by the vertical line array (VLA) and additional software has been developed that will address the horizontal line array (HLA) data. These packages have been tested on data from the test deployments of the VLA and on data from other, similar, areas of the Gulf (in the case of the HLA software). The CMRET has conducted one very significant research cruise during this reporting period: a March cruise to perform sea trials of the Station Service Device (SSD), the custom Remotely Operated Vehicle (ROV) built to perform several of the unique functions required for the observatory to become fully operational. March's efforts included test deployments of the SSD and Florida Southern University's mass spectrometer designed to measure hydrocarbon gases in the water column and The University of Georgia's microbial collector. The University of Georgia's rotational sea-floor camera was retrieved as was Specialty Devices storm monitor array. The former was deployed in September and the latter in June, 2006. Both were retrieved by acoustic release from a dispensable weight. Cruise participants also went prepared to recover any and all instruments left on the sea-floor during the September Johnson SeaLink submersible cruise. One of the pore-fluid samplers, a small ''peeper'' was retrieved successfully and in fine condition. Other instrumentation was left on the sea-floor until modifications of the SSD are complete and a return cruise is accomplished.

  3. Microsoft Word - Accessing Gulf Resources article.doc

    Broader source: Energy.gov (indexed) [DOE]

    New Orleans, LA May 27, 2014 Testimony by Ted M Falgout Having had the opportunity to be Port Director of Port Fourchon for 31 years, and to participate in the Port's evolution from a place where mostly muskrats and mosquitoes were the main inhabitants, to what now is the most significant intermodal transfer facility for energy support in the World, has given me a perspective that I hope you will find informative. We all know that the Gulf of Mexico has evolved into this country's premiere

  4. Gulf of Mexico Federal Offshore - Louisiana and Alabama

    Gasoline and Diesel Fuel Update (EIA)

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,875 1990's 5,098 5,085 4,637 4,570 4,982 5,385 5,492

  5. Gulf of Mexico Federal Offshore - Louisiana and Alabama Coalbed Methane

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec.

  6. Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated

    Gasoline and Diesel Fuel Update (EIA)

    Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 22,897 1990's 17,952 16,943 15,369 15,181 16,226 16,279 16,627 16,241 15,427 14,950 2000's

  7. Recent Gulf of Mexico pipeline activity reflects industry's recovery

    SciTech Connect (OSTI)

    True, W.R.

    1990-08-27

    Pipeline construction in the U.S. Gulf of Mexico has improved considerably in recent years, especially activity in shallow water (less than 300 ft). Construction for middle depths (300-600 ft) has been flat, while deepwater (600+ ft) projects have held firm or increased slightly. Overall pipeline mileage constructed in federal waters 1985-89 period showed a strengthening industry, especially during the 1988-89 period. These trends are evident from analyses of 5-year data. The author tracks comparisons between applications that were approved by the MMS during this period and projects that have been reported to the MMS as completed.

  8. Subsea technology progress buoys Gulf of Mexico deepwater action

    SciTech Connect (OSTI)

    Koen, A.D.

    1996-09-02

    This paper reviews the technological advances in subsea oil and gas equipment to drive a new era of exploration and development in the outer continental shelf and other areas considered to complex to economically pursue. As subsea technology expands into deep waters, operators in the Gulf are using subsea production systems based on template and well cluster designs. Subsea cluster systems are gaining favor among operators because they allow more flexibility with shallow water flow which occurs during the first 1,000 feet of clay formations below the seabed. The paper also provides insight into deep water drilling, remote operated vehicles, deep water umbilicals, and other deep water production equipment.

  9. Davie County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Zone Number 4 Climate Zone Subtype A. Places in Davie County, North Carolina Bermuda Run, North Carolina Cooleemee, North Carolina Mocksville, North Carolina Retrieved from...

  10. McDowell County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Zone Number 4 Climate Zone Subtype A. Places in McDowell County, North Carolina Marion, North Carolina Old Fort, North Carolina West Marion, North Carolina Retrieved from...

  11. Washington County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Zone Number 3 Climate Zone Subtype A. Places in Washington County, North Carolina Creswell, North Carolina Plymouth, North Carolina Roper, North Carolina Retrieved from "http:...

  12. Stark County, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Dakota Gladstone, North Dakota Richardton, North Dakota South Heart, North Dakota Taylor, North Dakota Retrieved from "http:en.openei.orgwindex.php?titleStarkCounty,Nor...

  13. Stora Enso, North America | Department of Energy

    Energy Savers [EERE]

    Stora Enso, North America Stora Enso, North America PDF icon Stora Enso, North America More Documents & Publications NewPage Corporation Slide 1 NewPage Demonstration-Scale Biorefinery

  14. North Sea platforms revamped

    SciTech Connect (OSTI)

    O'Hare, J.

    1999-12-01

    Many of the early North Sea platforms are reaching their end-of-field life. Most are still equipped with their original drilling package. In a few cases the package has either been removed or decommissioned. The early installations were designed for much simpler and less demanding wells than the horizontal, extended-reach or designer wells common today. Extended-reach wells now can be drilled realistically from ageing platforms, without incurring massive capital expenditure. This can be achieved using the existing drilling package to the limit of its capabilities and supplementing where necessary with relatively minor upgrades or the use of temporary equipment. Drilling even a few more wells from existing platforms not only prolongs field life, it enables any surplus processing capacity to be made available to develop near-field potential with extended-reach drilling (ERD) or by tying back subsea satellite wells, or for processing third-party fluids. The paper describes well design, surface equipment, mud pumps, shakers and solids control equipment, drill cuttings disposal systems, derrick and hoisting system, top drive and drillstring, downhole equipment, well planning, casing wear, logistics, rig preparations, and ERD vs. subsea tie-backs.

  15. North America Power Partners | Open Energy Information

    Open Energy Info (EERE)

    North America Power Partners Place: Mount Laurel, New Jersey Product: New Jersey-based demand response specialists focusing on large scale energy savings. References: North...

  16. University of North Carolina | Open Energy Information

    Open Energy Info (EERE)

    Carolina Jump to: navigation, search Name: University of North Carolina Place: Chapel Hill, North Carolina Zip: 27514 Sector: Solar, Wind energy Product: Chapel Hill-based public...

  17. Invest North Pty Ltd | Open Energy Information

    Open Energy Info (EERE)

    Invest North Pty Ltd Jump to: navigation, search Name: Invest North Pty Ltd Place: Darwin, Northern Territory, Australia Sector: Solar Product: Onwer of a solar power system atop...

  18. North Dakota/Incentives | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy Tax Credit (North Dakota) Corporate Tax Credit Yes Residential Energy Efficiency Rebates (Offered by 5 Utilities) (North Dakota) Utility Rebate Program Yes...

  19. North Carolina State University | Open Energy Information

    Open Energy Info (EERE)

    University Jump to: navigation, search Name: North Carolina State University Place: Raleigh, North Carolina Zip: 27695 Sector: Biofuels, Biomass, Solar Product: Public university...

  20. North Carolina/Incentives | Open Energy Information

    Open Energy Info (EERE)

    for North Carolina CSV (rows 1 - 24) Incentive Incentive Type Active Ashe County - Wind Energy System Ordinance (North Carolina) SolarWind Permitting Standards Yes Building...

  1. 2015 North Carolina Building Performance Conference | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2015 North Carolina Building Performance Conference 2015 North Carolina Building Performance Conference September 1, 2015 9:00AM EDT to September 3, 2015 5...

  2. Rio Grande North | Open Energy Information

    Open Energy Info (EERE)

    search Name Rio Grande North Facility Rio Grande North Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Baryonyx Corporation Developer Baryonyx...

  3. North American Electric Reliability Corporation Interconnections...

    Broader source: Energy.gov (indexed) [DOE]

    Map of the North American Electric Reliability Corporation Interconnection showing the Eastern, Western, and Teaxs Interconnectins. North American Electric Reliability Corporation...

  4. North Cove Capital Advisors | Open Energy Information

    Open Energy Info (EERE)

    Cove Capital Advisors Jump to: navigation, search Name: North Cove Capital Advisors Place: Connecticut Sector: Carbon Product: North Cove is an advisory firm that works...

  5. EDP Renewables North America | Open Energy Information

    Open Energy Info (EERE)

    EDP Renewables North America Jump to: navigation, search Name: EDP Renewables North America Address: 808 Travis St, Suite 700 Place: Houston, Texas Zip: 77002 Region: Texas Area...

  6. RES North America LLC | Open Energy Information

    Open Energy Info (EERE)

    RES North America LLC Jump to: navigation, search Name: RES North America LLC Place: Portland, Oregon Zip: 97258 Sector: Wind energy Product: US development arm of RES Ltd....

  7. Volvo Trucks North America | Open Energy Information

    Open Energy Info (EERE)

    Volvo Trucks North America Jump to: navigation, search Name: Volvo Trucks North America Place: Dublin, VA Information About Partnership with NREL Partnership with NREL Yes...

  8. Comments of North American Electric Reliability Corporation ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    North American Electric Reliability Corporation (NERC) to DOE Smart Grid RFI: Addressing Policy and Logistical Challenges Comments of North American Electric Reliability...

  9. North American LNG Project Sourcebook

    SciTech Connect (OSTI)

    2007-06-15

    The report provides a status of the development of LNG Import Terminal projects in North America, and includes 1-2 page profiles of 63 LNG projects in North America which are either in operation, under construction, or under development. For each project, the sourcebook provides information on the following elements: project description, project ownership, project status, projected operation date, storage capacity, sendout capacity, and pipeline interconnection.

  10. Expedition Provides New Insight on Gas Hydrates in Gulf of Mexico |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Expedition Provides New Insight on Gas Hydrates in Gulf of Mexico Expedition Provides New Insight on Gas Hydrates in Gulf of Mexico May 14, 2013 - 10:00am Addthis USGS technicians Eric Moore and Jenny White deploy instruments at the start of a seismic survey to explore gas hydrates in the deepwater Gulf of Mexico from April to May 2013 | Photo courtesy of USGS USGS technicians Eric Moore and Jenny White deploy instruments at the start of a seismic survey to explore gas

  11. Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico Print Wednesday, 24 November 2010 00:00 Microbial Mitigation The Deepwater Horizon blowout in the Gulf of Mexico on April 20, 2010, resulted in the largest oil spill in the history of the United States. The biological effects and expected fate of the oil are unknown, partly due to the extreme depth and magnitude of this event and partly due to the primary

  12. Interaction of marine and fluvial clastic sedimentation, central Italy, Tyrrhenian coast

    SciTech Connect (OSTI)

    Evangelista, S.; Full, W.E.; Tortora, P.

    1989-03-01

    An integrated approach was used to study the interaction of fluvial, beach, and marine processes on sedimentation at the west-central coast of Italy along the Tyrrhenian Sea. The study area, 120 km northwest of Rome, is bounded on the north by Mt. Argentario, on the east by Pleistocene volcanics, on the south by the St. Augustine River, and on the west by the 50-mn bathymetric isopleth. The primary tools used included field work, textural analysis, high-resolution marine seismic, SEM, and Fourier shape analysis. Field work revealed incised streams, potentially relict beach ridges and lagoons, and relatively steep nearshore marine slopes in the northern portions of the study area. The result of the shape analysis performed on 56 samples was the definition of four end members. Each end member reflects a sedimentation process. Three end members were directly associated with fluvial sedimentation, and the fourth reflected marine processes. The seismic data along with the SEM analysis strongly supported the interpretation of four processes that dominate the recent sedimentation history. The sand interpreted to be associated with marine processes was found to represent the smoothest end member. SEM analysis suggests that the smoothing is not due to abrasion but to plastering associated with biologic processes (digestion.) and/or with silica precipitation associated with clay alteration at the freshwater/saltwater interface.

  13. Tidal salt marshes of the southeast Atlantic Coast: A community profile

    SciTech Connect (OSTI)

    Wiegert, R.G.; Freeman, B.J.

    1990-09-01

    This report is part of a series of community profiles on the ecology of wetland and marine communities. This particular profile considers tidal marshes of the southeastern Atlantic coast, from North Carolina south to northern Florida. Alone among the earth's ecosystems, coastal communities are subjected to a bidirectional flooding sometimes occurring twice each day; this flooding affects successional development, species composition, stability, and productivity. In the tidally influenced salt marsh, salinity ranges from less than 1 ppt to that of seawater. Dominant plant species include cordgrasses (Spartina alterniflora and S. cynosuroides), black needlerush (Juncus romerianus), and salt marsh bulrush (Scirpus robustus). Both terrestrail and aquatic animals occur in salt marshes and include herons, egrets ospreys (Pandion haliaetus), bald eagles (Haliaeetus leucocephalus), alligators (Alligator Mississippiensis), manatees (Trichecus manatus), oysters, mussels, and fiddler crabs. Currently, the only significant direct commercial use of the tidal salt marshes is by crabbers seeking the blue crab Callinectes sapidus, but the marshes are quite important recreationally, aesthetically, and educationally. 151 refs., 45 figs., 6 tabs.

  14. McHenry County, North Dakota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    McHenry, North Dakota Towner, North Dakota Upham, North Dakota Velva, North Dakota Voltaire, North Dakota Retrieved from "http:en.openei.orgwindex.php?titleMcHenryCounty,...

  15. Recent ooids from Mesopotamian shallow shelf, northwest Arabian Gulf

    SciTech Connect (OSTI)

    Aqrawi, A.A.M.; Sadooni, F.N.

    1987-05-01

    Petrographic and mineralogical analyses of available oolitic samples from Khor Abdulla and Khor Al-Umaya, Mesopotamian shallow shelf of the northwest Arabian Gulf, showed that the ooids exhibit extensive variations in their forms according to their nuclei shapes. The ooids cortices are usually of radial structure and are formed mainly of high magnesium calcite. The sediment distribution of the studied area revealed the existence of an oolitic zone extending NW-SE from east of Bubiyan Island toward the open sea. It is believed that these ooids are usually formed in sheltered environments by direct precipitation of high magnesium-calcite around any available nuclei. Then they are concentrated by agitation on small shoal-margins located to the east of Bubiyan Island. At these shoals they attained their final shapes and then dispersed through the studied area. It is thought that these ooids represent a peculiar example of ooid formation in quiet shallow-water environments.

  16. Gulf of Mexico Federal Offshore - Texas Nonassociated Natural Gas, Wet

    Gasoline and Diesel Fuel Update (EIA)

    After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Texas Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6,411 6,191 6,956 6,739 6,745 6,504 1990's 6,884 6,305 6,353 6,138 5,739 5,674 5,240 4,799 4,452 4,507 2000's 5,030 5,404 4,967

  17. Gulf of Mexico Federal Offshore Percentage of Natural Gas Liquids

    Gasoline and Diesel Fuel Update (EIA)

    Production from Greater than 200 Meters Deep (Percent) Production from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Natural Gas Liquids Production from Greater than 200 Meters Deep (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4.4 6.2 6.1 14.1 12.9 12.1 18.7 30.5 2000's 42.2 50.0 36.0 37.2 40.9 35.8 39.6 NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  18. Gulf of Mexico -- Offshore Natural Gas Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    -- Offshore Natural Gas Withdrawals (Million Cubic Feet) Gulf of Mexico -- Offshore Natural Gas Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 2000's 0 5,066,015 4,547,627 4,447,348 4,000,685 3,150,818 2,914,131 2,813,197 2,329,955 2,444,102 2010's 2,259,144 1,830,913 1,527,875 1,326,697 1,275,213 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  19. DOE Expedition Discovers the First Gulf of Mexico Resource-Quality Gas Hydrate Deposits

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy's National Energy Technology Laboratory has established that gas hydrate can and does occur at high saturations within reservoir-quality sands in the Gulf of Mexico.

  20. Federal Offshore--Gulf of Mexico Natural Gas Number of Gas and...

    Gasoline and Diesel Fuel Update (EIA)

    Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Federal Offshore--Gulf of Mexico Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements)...

  1. Utility DSM: off the coasts and into the heartland

    SciTech Connect (OSTI)

    Nadel, Steven; Gold, Rachel

    2010-10-15

    Utility demand-side management efforts began on the coasts but have recently spread to the ''heartland.'' The authors review efforts to develop DSM programs and policies in states that are now ramping up programs, identifying key practices that are often linked with progress in states that are new to DSM and discussing the implications for the 18 states that currently lack significant DSM programs. (author)

  2. Littoral processes: US Coast Guard Station, Fort Point, San Francisco

    SciTech Connect (OSTI)

    Ecker, R.M.; Whelan, G.

    1983-10-01

    The US Coast Guard Station, Fort Point is located three-quarters of a nautical mile southeast of the Golden Gate Strait, the entrance to San Francisco Bay. The existing storm wave conditions at Fort Point Station pier make it extremely dangerous for the SAR crews to get on and off the Motor Life Boats at times requiring the vessels to be moored at the San Francisco Yacht Harbor about 1.5 miles east of the Fort Point Station. To mitigate these harsh working conditions the US Coast Guard is considering the feasibility of constructing suitable all-weather moorings for the three Motor Life Boats at the Fort Point Station to enable unimpeded SAR operations, to provide safe working conditions for Coast Guard small boat crews, and to improve small boat maintenance conditions at Fort Point Station. The purpose of this report is to identify, analyze and evaluate physical environmental factors that could affect all-weather moorings siting, configuration and entrance location, as well as potential post construction alterations to littoral conditions and processes. This report includes a description of the site, description of pertinent littoral processes, evaluation of how these processes could affect construction of all-weather moorings, and discussion of design considerations, as well as mitigation measures to minimize potential adverse effects to the physical environment. 19 references, 27 figures, 26 tables.

  3. Support of Gulf of Mexico Hydrate Research Consortium: Activities to Support Establishment of a Sea Floor Monitoring Station Project

    SciTech Connect (OSTI)

    Carol Lutken

    2006-09-30

    The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The Consortium is administered by the Center for Marine Resources and Environmental Technology, CMRET, at the University of Mississippi. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2007, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the marine environment, including sea water and sea-floor sediments, on a more-or-less continuous basis over an extended period of time. In 2005, biological monitoring, as a means of assessing environmental health, was added to the mission of the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has now achieved a microbial dimension in addition to the geophysical, geological, and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 in May of 2005. Follow-up deployments, planned for fall 2005, had to be postponed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Station/observatory completion, anticipated for 2007, will likely be delayed by at least one year. The CMRET has conducted several research cruises during this reporting period: one in April, one in June, one in September. April's effort was dedicated to surveying the mound at MC118 with the Surface-Source-Deep-Receiver (SSDR) seismic surveying system. This survey was completed in June and water column and bottom samples were collected via box coring. A microbial filtering system developed by Consortium participants at the University of Georgia was also deployed, run for {approx}12 hours and retrieved. The September cruise, designed to deploy, test, and in some cases recover, geochemical and microbial instruments and experiments took place aboard Harbor Branch's Seward Johnson and employed the Johnson SeaLink manned submersible. The seafloor monitoring station/observatory is funded approximately equally by three federal Agencies: Minerals Management Services (MMS) of the Department of the Interior (DOI), National Energy Technology Laboratory (NETL) of the Department of Energy (DOE), and the National Institute for Undersea Science and Technology (NIUST), an agency of the National Oceanographic and Atmospheric Administration (NOAA). Subcontractors with FY03 funding fulfilled their technical reporting requirements in a previously submitted report (41628R10). Only unresolved matching funds issues remain and will be addressed in the report of the University of Mississippi's Office of Research and Sponsored Programs. In addition, Barrodale Computing Services Ltd. (BCS) completed their work; their final report is the bulk of the semiannual report that precedes (abstract truncated)

  4. Environmental impact of geopressure - geothermal cogeneration facility on wetland resources and socioeconomic characteristics in Louisiana Gulf Coast region. Final report, October 10, 1983-September 31, 1984

    SciTech Connect (OSTI)

    Smalley, A.M.; Saleh, F.M.S.; Fontenot, M.

    1984-08-01

    Baseline data relevant to air quality are presented. The following are also included: geology and resource assessment, design well prospects in southwestern Louisiana, water quality monitoring, chemical analysis subsidence, microseismicity, geopressure-geothermal subsidence modeling, models of compaction and subsidence, sampling handling and preparation, brine chemistry, wetland resources, socioeconomic characteristics, impacts on wetlands, salinity, toxic metals, non-metal toxicants, temperature, subsidence, and socioeconomic impacts. (MHR)

  5. Gulf Coast geopressured-geothermal program summary report compilation. Volume 2-B: Resource description, program history, wells tested, university and company based research, site restoration

    SciTech Connect (OSTI)

    John, C.J.; Maciasz, G.; Harder, B.J.

    1998-06-01

    The US Department of Energy established a geopressured-geothermal energy program in the mid 1970`s as one response to America`s need to develop alternate energy resources in view of the increasing dependence on imported fossil fuel energy. This program continued for 17 years and approximately two hundred million dollars were expended for various types of research and well testing to thoroughly investigate this alternative energy source. This volume describes the following studies: Design well program; LaFourche Crossing; MG-T/DOE Amoco Fee No. 1 (Sweet Lake); Environmental monitoring at Sweet Lake; Air quality; Water quality; Microseismic monitoring; Subsidence; Dow/DOE L.R. Sweezy No. 1 well; Reservoir testing; Environmental monitoring at Parcperdue; Air monitoring; Water runoff; Groundwater; Microseismic events; Subsidence; Environmental consideration at site; Gladys McCall No. 1 well; Test results of Gladys McCall; Hydrocarbons in production gas and brine; Environmental monitoring at the Gladys McCall site; Pleasant Bayou No. 2 well; Pleasant Bayou hybrid power system; Environmental monitoring at Pleasant Bayou; and Plug abandonment and well site restoration of three geopressured-geothermal test sites. 197 figs., 64 tabs.

  6. North America Drilling Fluids Market Segment Forecasts up to...

    Open Energy Info (EERE)

    removal of cuttings from wellbore, counterbalancing the formation processes, maintaining wellbore stability and so on, are on the rise in the offshore areas of Gulf of Mexico. As...

  7. East Coast (PADD 1) Distillate Fuel Oil Imports

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History All Countries 104 104 76 92 133 130 1981-2015 Persian Gulf 1995-2015 OPEC* 10 1993-2015 Algeria 1994-2010 Angola 1995-2003 Kuwait 1995-2012 Libya 2013-2013 Nigeria 10 1993-2015 Qatar 1995-2015 Saudi Arabia 1995-2015 United Arab Emirates 1995-2014 Venezuela 1993-2014 Non OPEC* 104 104 76 92 133 120 1993-2015 Argentina 1995-2015 Aruba 2005-2012 Bahamas 1994-2014 Bahrain 1995-2007 Belarus 2006-2009 Belgium 1995-2015 Brazil 1994-2014 Cameroon

  8. McLean County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Dakota Mercer, North Dakota North Central McLean, North Dakota Riverdale, North Dakota Ruso, North Dakota South McLean, North Dakota Turtle Lake, North Dakota Underwood, North...

  9. U.S. Adjusted Distillate Fuel Oil and Kerosene Sales by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Area: U.S. East Coast (PADD 1) New England (PADD 1A) Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Central Atlantic (PADD 1B) Delaware District of Columbia Maryland New Jersey New York Pennsylvania Lower Atlantic (PADD 1C) Florida Georgia North Carolina South Carolina Virginia West Virginia Midwest (PADD 2) Illinois Indiana Iowa Kansas Kentucky Michigan Minnesota Missouri Nebraska North Dakota Ohio Oklahoma South Dakota Tennessee Wisconsin Gulf Coast (PADD 3) Alabama

  10. U.S. Adjusted Sales of Distillate Fuel Oil by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Area: U.S. East Coast (PADD 1) New England (PADD 1A) Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Central Atlantic (PADD 1B) Delaware District of Columbia Maryland New Jersey New York Pennsylvania Lower Atlantic (PADD 1C) Florida Georgia North Carolina South Carolina Virginia West Virginia Midwest (PADD 2) Illinois Indiana Iowa Kansas Kentucky Michigan Minnesota Missouri Nebraska North Dakota Ohio Oklahoma South Dakota Tennessee Wisconsin Gulf Coast (PADD 3) Alabama

  11. U.S. Adjusted Sales of Kerosene by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Area: U.S. East Coast (PADD 1) New England (PADD 1A) Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Central Atlantic (PADD 1B) Delaware District of Columbia Maryland New Jersey New York Pennsylvania Lower Atlantic (PADD 1C) Florida Georgia North Carolina South Carolina Virginia West Virginia Midwest (PADD 2) Illinois Indiana Iowa Kansas Kentucky Michigan Minnesota Missouri Nebraska North Dakota Ohio Oklahoma South Dakota Tennessee Wisconsin Gulf Coast (PADD 3) Alabama

  12. U.S. Adjusted Sales of Residual Fuel Oil by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Area: U.S. East Coast (PADD 1) New England (PADD 1A) Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Central Atlantic (PADD 1B) Delaware District of Columbia Maryland New Jersey New York Pennsylvania Lower Atlantic (PADD 1C) Florida Georgia North Carolina South Carolina Virginia West Virginia Midwest (PADD 2) Illinois Indiana Iowa Kansas Kentucky Michigan Minnesota Missouri Nebraska North Dakota Ohio Oklahoma South Dakota Tennessee Wisconsin Gulf Coast (PADD 3) Alabama

  13. U.S. Distillate Fuel Oil and Kerosene Sales by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Area: U.S. East Coast (PADD 1) New England (PADD 1A) Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Central Atlantic (PADD 1B) Delaware District of Columbia Maryland New Jersey New York Pennsylvania Lower Atlantic (PADD 1C) Florida Georgia North Carolina South Carolina Virginia West Virginia Midwest (PADD 2) Illinois Indiana Iowa Kansas Kentucky Michigan Minnesota Missouri Nebraska North Dakota Ohio Oklahoma South Dakota Tennessee Wisconsin Gulf Coast (PADD 3) Alabama

  14. U.S. Residual Fuel Oil Prices by Sales Type

    U.S. Energy Information Administration (EIA) Indexed Site

    Area: U.S. East Coast (PADD 1) New England (PADD 1A) Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Central Atlantic (PADD 1B) Delaware District of Columbia Maryland New Jersey New York Pennsylvania Lower Atlantic (PADD 1C) Florida Georgia North Carolina South Carolina Virginia West Virginia Midwest (PADD 2) Illinois Indiana Iowa Kansas Kentucky Michigan Minnesota Missouri Nebraska North Dakota Ohio Oklahoma South Dakota Tennessee Wisconsin Gulf Coast (PADD 3) Alabama

  15. U.S. Sales of Kerosene by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Area: U.S. East Coast (PADD 1) New England (PADD 1A) Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Central Atlantic (PADD 1B) Delaware District of Columbia Maryland New Jersey New York Pennsylvania Lower Atlantic (PADD 1C) Florida Georgia North Carolina South Carolina Virginia West Virginia Midwest (PADD 2) Illinois Indiana Iowa Kansas Kentucky Michigan Minnesota Missouri Nebraska North Dakota Ohio Oklahoma South Dakota Tennessee Wisconsin Gulf Coast (PADD 3) Alabama

  16. U.S. Sales of Residual Fuel Oil by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Area: U.S. East Coast (PADD 1) New England (PADD 1A) Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Central Atlantic (PADD 1B) Delaware District of Columbia Maryland New Jersey New York Pennsylvania Lower Atlantic (PADD 1C) Florida Georgia North Carolina South Carolina Virginia West Virginia Midwest (PADD 2) Illinois Indiana Iowa Kansas Kentucky Michigan Minnesota Missouri Nebraska North Dakota Ohio Oklahoma South Dakota Tennessee Wisconsin Gulf Coast (PADD 3) Alabama

  17. U.S. Weekly Heating Oil and Propane Prices (October - March)

    U.S. Energy Information Administration (EIA) Indexed Site

    Area: U.S. East Coast (PADD 1) New England (PADD 1A) Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Central Atlantic (PADD 1B) Delaware District of Columbia Maryland New Jersey New York Pennsylvania Lower Atlantic (PADD 1C) Florida Georgia North Carolina Virginia Midwest (PADD 2) Illinois Indiana Iowa Kansas Kentucky Michigan Minnesota Missouri Nebraska North Dakota Ohio Oklahoma South Dakota Tennessee Wisconsin Gulf Coast (PADD 3) Alabama Arkansas Mississippi Texas Rocky

  18. Dynamical and thermodynamical modulations of future changes in landfalling atmospheric rivers over North America

    SciTech Connect (OSTI)

    Gao, Yang; Lu, Jian; Leung, Lai-Yung R.; Yang, Qing; Hagos, Samson M.; Qian, Yun

    2015-09-12

    This study examines the changes of landfalling atmospheric rivers (ARs) over the west coast of North America in response to future warming using model outputs from the Coupled Model Intercomparison Project phase 5 (CMIP5). The result reveals a strikingly large magnitude of increase of AR days by the end of the 21st century in the RCP8.5 climate change scenario, with fractional increases ranging between ~50% and 600%, depending on the seasons and the landfall locations. These increases are predominantly controlled by the super-Clausius-Clapeyron rate of increase of atmospheric water vapor with warming, while changes of winds that transport moisture in the ARs, or dynamical effect, mostly counter the thermodynamical effect of increasing water vapor, limiting the increase of AR events in the future. The consistent negative effect of wind changes on AR days during spring and fall can be further linked to the robust poleward shift of the subtropical jet in the North Pacific basin.

  19. Support of Gulf of Mexico Hydrate Research Consortium: Activities of Support Establishment of a Sea Floor Monitoring Station Project

    SciTech Connect (OSTI)

    J. Robert Woolsey; Thomas McGee; Carol Lutken

    2008-05-31

    The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research that shared the need for a way to conduct investigations of gas hydrates and their stability zone in the Gulf of Mexico in situ on a more-or-less continuous basis. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory (SFO) on the sea floor in the northern Gulf of Mexico, in an area where gas hydrates are known to be present at, or just below, the sea floor and to discover the configuration and composition of the subsurface pathways or 'plumbing' through which fluids migrate into and out of the hydrate stability zone (HSZ) to the sediment-water interface. Monitoring changes in this zone and linking them to coincident and perhaps consequent events at the seafloor and within the water column is the eventual goal of the Consortium. This mission includes investigations of the physical, chemical and biological components of the gas hydrate stability zone - the sea-floor/sediment-water interface, the near-sea-floor water column, and the shallow subsurface sediments. The eventual goal is to monitor changes in the hydrate stability zone over time. Establishment of the Consortium succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among those involved in gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative methods and construct necessary instrumentation. Following extensive investigation into candidate sites, Mississippi Canyon 118 (MC118) was chosen by consensus of the Consortium at their fall, 2004, meeting as the site most likely to satisfy all criteria established by the group. Much of the preliminary work preceding the establishment of the site - sensor development and testing, geophysical surveys, and laboratory studies - has been reported in agency documents including the Final Technical Report to DOE covering Cooperative Agreement DEFC26-00NT40920 and Semiannual Progress Reports for this award, DE-FC26-02NT41628. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in MC118 in May of 2005. Follow-up deployments, planned for fall 2005, had to be postponed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. SFO completion, now anticipated for 2009-10, has, therefore, been delayed. Although delays caused scheduling and deployment difficulties, many sensors and instruments were completed during this period. Software has been written that will accommodate the data that the station retrieves, when it begins to be delivered. In addition, new seismic data processing software has been written to treat the peculiar data to be received by the vertical line array (VLA) and additional software has been developed that will address the horizontal line array (HLA) data. These packages have been tested on data from the test deployments of the VLA and on data from other, similar, areas of the Gulf (in the case of the HLA software). During the life of this Cooperative Agreement (CA), the CMRET conducted many cruises. Early in the program these were executed primarily to survey potential sites and test sensors and equipment being developed for the SFO. When MC118 was established as the observatory site, subsequent cruises focused on this location. Beginning in 2005 and continuing to the present, 13 research cruises to MC118 have been conducted by the Consortium. During September, 2006, the Consortium was able to secure 8 days aboard the R/V Seward Johnson with submersible Johnson SeaLink, a critical chapter in the life of the Observatory project as important documentation, tests, recoveries and deployments were accomplished during this trip (log appended). Consortium members have participated materially in a number of additional cruises including several of the NIUST autonomous underwater vehicle (AUV), Ea

  20. Surry County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    4 Climate Zone Subtype A. Registered Energy Companies in Surry County, North Carolina Pike Electric Corporation Places in Surry County, North Carolina Dobson, North Carolina...

  1. North Carolina's 13th congressional district: Energy Resources...

    Open Energy Info (EERE)

    of North Carolina CPS Biofuels Clean Burn Fuels LLC Eaton Powerware INI Power Systems Methane Power Inc Microcell Corp North Carolina State Energy Office North Carolina State...

  2. Chatham County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Energy Companies in Chatham County, North Carolina CPS Biofuels INI Power Systems Methane Power Inc Piedmont Biofuels Places in Chatham County, North Carolina Cary, North...

  3. Luverne Wind Farm (North Field) | Open Energy Information

    Open Energy Info (EERE)

    Luverne Wind Farm (North Field) Jump to: navigation, search Name Luverne Wind Farm (North Field) Facility Luverne Wind Farm (North Field) Sector Wind energy Facility Type...

  4. Soleil Energy Solutions Greensboro North Carolina | Open Energy...

    Open Energy Info (EERE)

    Soleil Energy Solutions Greensboro North Carolina Jump to: navigation, search Logo: Soleil Energy Solutions Greensboro North Carolina Name: Soleil Energy Solutions Greensboro North...

  5. Biofuels Center of North Carolina | Open Energy Information

    Open Energy Info (EERE)

    Center of North Carolina Jump to: navigation, search Name: Biofuels Center of North Carolina Place: Oxford, North Carolina Zip: 27565 Sector: Biofuels Product: State-funded,...

  6. The Biofuels Center of North Carolina | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Center of North Carolina Jump to: navigation, search Name: The Biofuels Center of North Carolina Place: Oxford, North Carolina Website: www.biofuelscenter.org...

  7. Cabarrus County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Subtype A. Energy Generation Facilities in Cabarrus County, North Carolina Charlotte Motor Speedway Biomass Facility Places in Cabarrus County, North Carolina Concord, North...

  8. Caswell County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Climate Zone Number 4 Climate Zone Subtype A. Places in Caswell County, North Carolina Milton, North Carolina Yanceyville, North Carolina Retrieved from "http:en.openei.orgw...

  9. North Sky River | Open Energy Information

    Open Energy Info (EERE)

    Sky River Jump to: navigation, search Name North Sky River Facility North Sky River Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra...

  10. NorthWestern Energy | Open Energy Information

    Open Energy Info (EERE)

    Number: (800) 245-6977 Website: www.northernelectric.coop Twitter: @NorthWesternSD Facebook: https:www.facebook.comNorthWesternEnergy Outage Hotline: (800) 245-6977...

  11. Schott North America Inc | Open Energy Information

    Open Energy Info (EERE)

    Schott North America Inc Jump to: navigation, search Name: Schott North America Inc Address: 555 Taxter Road Place: Elmsford, New York Zip: 10523 Region: Northeast - NY NJ CT PA...

  12. Twenty years of sedimentary change and diagenesis, Qatar Peninsula, Arabian Gulf

    SciTech Connect (OSTI)

    Shinn, E.A.

    1988-02-01

    Re-examination in February 1986 of areas studied by the author in 1966 and 1967 revealed rapid rates of sedimentation and diagenesis along the east coast of the Qatar Peninsula. At Ras Um Sa on the north-east side of Qatar, a series of chenier-like beaches and curved spits is building southward under the influence of longshore currents. Beach and spit growth increasingly protects the shoreline and allows tidal flats to form in their lee. As these spits accrete, they become armored on their lagoonal side by beachrock formation. In the last 20 years a spit approximately 1/2 km long has grown, and beachrock has already armored its recurved lagoonal side. At Umm Said on the southeast side of Qatar, seawardly accreting barchan dunes composed of quartz sand have built a 40-km long, 10-km wide sabkha as thick as 30 m. Aerial and ground photographs show that certain dunes near the seaward edge of the sabkha have migrated into the sea and have contributed to shoreline accretion. The observed rate of dune migration suggests that within approximately 100 years the remaining quartz sands will be depleted and blown into the sea because there is no replenishment of the dune field. Subsequently, the area will revert to one of carbonate deposition. Fine-grained dolomite is presently precipitating in interstitial brines in the landwardmost portions of this unusual sabkha. In the geologic record, such a deposit would be an anomalous, porous and permeable, cross-bedded, linear, 30-m thick, dolomite-cemented sandstone body encased in carbonate sediments. A modern model such as the one at Umm Said can provide useful clues for determining the origin of similar deposits in ancient rocks.

  13. Geologic development and characteristics of continental margins, Gulf of Mexico

    SciTech Connect (OSTI)

    Coleman, J.M.; Prior, D.B.; Roberts, H.H.

    1986-09-01

    The continental slope of the Gulf basin covers more than 500,000 km/sup 2/ and consists of smooth and gently sloping surfaces, prominent escarpments, knolls, intraslope basins, and submarine canyons and channels. It is an area of extremely diverse topographic and sedimentologic conditions. The slope extends from the shelf break, roughly at the 200-m isobath, to the upper limit of the continental rise at a depth of 2800 m. The most complex province in the basin, and the one of most interest to the petroleum industry, is the Texas-Louisiana slope, occupying 120,000 km/sup 2/ and in which bottom slopes range from less than 1/sup 0/ to greater than 20/sup 0/ around the knolls and basins. The near-surface geology and topography of the slope is a function of the interplay between episodes of rapid shelf-edge and slope progradation and contemporaneous modification of the depositional sequence by diapirism. Development of discrete depocenters throughout the Neogene results in rapid shelf-edge progradation, often exceeding 15-20 km/m.y. This rapid progradation of the shelf edge leads to development of thick wedges of sediment accumulation on the continental slope. Slope oversteepening, high pore pressures in rapidly deposited soft sediments, and changes in eustatic sea level cause subaqueous slope instabilities such as landslides and debris flows. Large-scale features such as shelf-edge separation scars and landslide-related canyons often result from such processes.

  14. The oil policies of the Gulf Arab Nations

    SciTech Connect (OSTI)

    Ripple, R.D.; Hagen, R.E.

    1995-03-01

    At its heart, Arab oil policy is inseparable from Arab economic and social policy. This holds whether we are talking about the Arab nations as a group or each separately. The seven Arab nations covered in this report-Bahrain, Iraq, Kuwait, Oman, Qatar, Saudi Arabia, and the United Arab Emirates--participate in several organizations focusing on regional cooperation regarding economic development, social programs, and Islamic unity, as well as organizations concerned with oil policies. This report focuses on the oil-related activities of the countries that may reveal the de facto oil policies of the seven Persian Gulf nations. Nevertheless it should be kept in mind that the decision makers participating in the oil policy organizations are also involved with the collaborative efforts of these other organizations. Oil policies of five of the seven Arab nations are expressed within the forums of the Organization of Petroleum Exporting Countries (OPEC) and the Organization of Arab Petroleum Exporting Countries (OAPEC). Only Oman, among the seven, is not a member of either OAPEC or OPEC; Bahrain is a member of OAPEC but not of OPEC. OPEC and OAPEC provide forums for compromise and cooperation among their members. Nevertheless, each member state maintains its own sovereignty and follows its own policies. Each country deviates from the group prescription from time to time, depending upon individual circumstances.

  15. Jumpstarting commercial-scale CO2 capture and storage with ethylene production and enhanced oil recovery in the US Gulf

    SciTech Connect (OSTI)

    Middleton, Richard S.; Levine, Jonathan S.; Bielicki, Jeffrey M.; Viswanathan, Hari S.; Carey, J. William; Stauffer, Philip H.

    2015-04-27

    CO2 capture, utilization, and storage (CCUS) technology has yet to be widely deployed at a commercial scale despite multiple high-profile demonstration projects. We suggest that developing a large-scale, visible, and financially viable CCUS network could potentially overcome many barriers to deployment and jumpstart commercial-scale CCUS. To date, substantial effort has focused on technology development to reduce the costs of CO2 capture from coal-fired power plants. Here, we propose that near-term investment could focus on implementing CO2 capture on facilities that produce high-value chemicals/products. These facilities can absorb the expected impact of the marginal increase in the cost of production on the price of their product, due to the addition of CO2 capture, more than coal-fired power plants. A financially viable demonstration of a large-scale CCUS network requires offsetting the costs of CO2 capture by using the CO2 as an input to the production of market-viable products. As a result, we demonstrate this alternative development path with the example of an integrated CCUS system where CO2 is captured from ethylene producers and used for enhanced oil recovery in the U.S. Gulf Coast region.

  16. The North Carolina Field Test

    SciTech Connect (OSTI)

    Sharp, T.R.; Ternes, M.P.

    1990-08-01

    The North Carolina Field Test will test the effectiveness of two weatherization approaches: the current North Carolina Low-Income Weatherization Assistance Program and the North Carolina Field Test Audit. The Field Test Audit will differ from North Carolina's current weatherization program in that it will incorporate new weatherization measures and techniques, a procedure for basing measure selection of the characteristics of the individual house and the cost-effectiveness of the measure, and also emphasize cooling energy savings. The field test will determine the differences of the two weatherization approaches from the viewpoints of energy savings, cost effectiveness, and implementation ease. This Experimental Plan details the steps in performing the field test. The field test will be a group effort by several participating organizations. Pre- and post-weatherization data will be collected over a two-year period (November 1989 through August 1991). The 120 houses included in the test will be divided into a control group and two treatment groups (one for each weatherization procedure) of 40 houses each. Weekly energy use data will be collected for each house representing whole-house electric, space heating and cooling, and water heating energy uses. Corresponding outdoor weather and house indoor temperature data will also be collected. The energy savings of each house will be determined using linear-regression based models. To account for variations between the pre- and post-weatherization periods, house energy savings will be normalized for differences in outdoor weather conditions and indoor temperatures. Differences between the average energy savings of treatment groups will be identified using an analysis of variance approach. Differences between energy savings will be quantified using multiple comparison techniques. 9 refs., 8 figs., 5 tabs.

  17. DOE Offers Relief to Importers Affected by West Coast Port Closures |

    Energy Savers [EERE]

    Department of Energy Offers Relief to Importers Affected by West Coast Port Closures DOE Offers Relief to Importers Affected by West Coast Port Closures February 27, 2015 - 5:28pm Addthis Closures at 29 West Coast marine ports in February 2015 due to a labor dispute have resulted in significant delays for certain goods entering the United States through those ports. DOE issued an enforcement policy not to seek civil penalties for violations of the energy and water conservation standards

  18. Building America Whole-House Solutions for New Homes: Green Coast

    Energy Savers [EERE]

    Enterprises, New Orleans, Louisiana | Department of Energy Green Coast Enterprises, New Orleans, Louisiana Building America Whole-House Solutions for New Homes: Green Coast Enterprises, New Orleans, Louisiana Case study of Green Coast Enterprises, who worked with Building America research partner Building Science Corporation to build moisture- and flood-resistant HERS- 65 affordable homes on pier foundations, with borate pressure-treated lumber, wind-resistant OSB sheathing, hurricane

  19. East Coast (PADD 1) Total Crude Oil and Products Imports

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History All Countries 922,432 859,818 727,383 661,835 605,839 627,574 1981-2015 Persian Gulf 32,645 36,655 49,578 36,276 39,750 28,276 1993-2015 OPEC* 297,725 276,478 216,695 191,739 122,057 96,004 1993-2015 Algeria 28,538 27,871 29,164 9,781 6,440 4,234 1993-2015 Angola 44,554 45,631 30,832 30,371 25,299 17,880 1993-2015 Ecuador 550 347 1,813 1,223 411 931 1995-2015 Iraq 8,024 12,382 17,247 3,260 15,112 8,123 1995-2015 Kuwait 325 250 605 591 1995-2014 Libya

  20. Competition and Reliability in North American Electricity Markets...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Markets Technical Workshop Competition and Reliability in North American Electricity Markets Technical Workshop Competition and Reliability in North American...

  1. Liquid Propane Injection Technology Conductive to Today's North...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Conductive to Today's North American Specification Liquid Propane Injection Technology Conductive to Today's North American Specification Liquid propane injection ...

  2. Produced water discharges to the Gulf of Mexico: Background information for ecological risk assessments

    SciTech Connect (OSTI)

    Meinhold, A.F.; Holtzman, S.; DePhillips, M.P.

    1996-06-01

    This report reviews ecological risk assessment concepts and methods; describes important biological resources in the Gulf of Mexico of potential concern for produced water impacts; and summarizes data available to estimate exposure and effects of produced water discharges. The emphasis is on data relating to produced water discharges in the central and western Gulf of Mexico, especially in Louisiana. Much of the summarized data and cited literature are relevant to assessments of impacts in other regions. Data describing effects on marine and estuarine fishes, mollusks, crustaceans and benthic invertebrates are emphasized. This review is part of a series of studies of the health and ecological risks from discharges of produced water to the Gulf of Mexico. These assessments will provide input to regulators in the development of guidelines and permits, and to industry in the use of appropriate discharge practices.

  3. Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico Print Microbial Mitigation The Deepwater Horizon blowout in the Gulf of Mexico on April 20, 2010, resulted in the largest oil spill in the history of the United States. The biological effects and expected fate of the oil are unknown, partly due to the extreme depth and magnitude of this event and partly due to the primary initial mitigation strategy that injected unprecedented quantities of oil dispersant directly at the

  4. Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico Print Microbial Mitigation The Deepwater Horizon blowout in the Gulf of Mexico on April 20, 2010, resulted in the largest oil spill in the history of the United States. The biological effects and expected fate of the oil are unknown, partly due to the extreme depth and magnitude of this event and partly due to the primary initial mitigation strategy that injected unprecedented quantities of oil dispersant directly at the

  5. Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico Print Microbial Mitigation The Deepwater Horizon blowout in the Gulf of Mexico on April 20, 2010, resulted in the largest oil spill in the history of the United States. The biological effects and expected fate of the oil are unknown, partly due to the extreme depth and magnitude of this event and partly due to the primary initial mitigation strategy that injected unprecedented quantities of oil dispersant directly at the

  6. Gulf Of Mexico Natural Gas Processed in Alabama (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Alabama (Million Cubic Feet) Gulf Of Mexico Natural Gas Processed in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 117,738 96,587 95,078 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Processed Gulf of Mexico-Alabama

  7. Gulf Of Mexico Natural Gas Processed in Louisiana (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Louisiana (Million Cubic Feet) Gulf Of Mexico Natural Gas Processed in Louisiana (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 988,219 719,435 696,242 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Processed Gulf of Mexico-Louisiana

  8. Gulf Of Mexico Natural Gas Processed in Mississippi (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Mississippi (Million Cubic Feet) Gulf Of Mexico Natural Gas Processed in Mississippi (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 91,618 74,637 98,497 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Processed Gulf of Mexico-Mississippi

  9. Gulf Of Mexico Natural Gas Processed in Texas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Texas (Million Cubic Feet) Gulf Of Mexico Natural Gas Processed in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 119,456 111,949 111,147 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Processed Gulf of Mexico-Texas

  10. SEMI-ANNUAL REPORT - GULF LNG LIQUEFACTION COMPANY, LLC - FE DKT. NO.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    12-47-LNG - ORDER 3104 | Department of Energy REPORT - GULF LNG LIQUEFACTION COMPANY, LLC - FE DKT. NO. 12-47-LNG - ORDER 3104 SEMI-ANNUAL REPORT - GULF LNG LIQUEFACTION COMPANY, LLC - FE DKT. NO. 12-47-LNG - ORDER 3104 PDF icon October 2012 PDF icon April 2013 PDF icon October 2013 PDF icon April 2014 PDF icon October 2014 PDF icon April 2015 PDF icon October 2015 More Documents & Publications SEMI-ANNUAL REPORTS FOR SOUTHERN LNG COMPANY - FE DKT. NO. 12-54-LNG - ORDER 3106 SEMI-ANNUAL

  11. Federal Offshore--Gulf of Mexico Natural Gas Plant Fuel Consumption

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Gulf of Mexico Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Plant Fuel Consumption Gulf of Mexico Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas

  12. ,"Federal Offshore Gulf of Mexico Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gulf of Mexico Natural Gas Gross Withdrawals and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore Gulf of Mexico Natural Gas Gross Withdrawals and Production",10,"Monthly","12/2015","1/15/1997" ,"Release Date:","2/29/2016" ,"Next Release

  13. Gulf LNG, Mississippi LNG Imports (Price) (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gulf LNG, Mississippi LNG Imports (Price) (Dollars per Thousand Cubic Feet) Gulf LNG, Mississippi LNG Imports (Price) (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's -- 12.93 -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: U.S. Price of Liquefied Natural Gas

  14. Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico Print Microbial Mitigation The Deepwater Horizon blowout in the Gulf of Mexico on April 20, 2010, resulted in the largest oil spill in the history of the United States. The biological effects and expected fate of the oil are unknown, partly due to the extreme depth and magnitude of this event and partly due to the primary initial mitigation strategy that injected unprecedented quantities of oil dispersant directly at the

  15. Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico Print Microbial Mitigation The Deepwater Horizon blowout in the Gulf of Mexico on April 20, 2010, resulted in the largest oil spill in the history of the United States. The biological effects and expected fate of the oil are unknown, partly due to the extreme depth and magnitude of this event and partly due to the primary initial mitigation strategy that injected unprecedented quantities of oil dispersant directly at the

  16. Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico Print Microbial Mitigation The Deepwater Horizon blowout in the Gulf of Mexico on April 20, 2010, resulted in the largest oil spill in the history of the United States. The biological effects and expected fate of the oil are unknown, partly due to the extreme depth and magnitude of this event and partly due to the primary initial mitigation strategy that injected unprecedented quantities of oil dispersant directly at the

  17. Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico Print Microbial Mitigation The Deepwater Horizon blowout in the Gulf of Mexico on April 20, 2010, resulted in the largest oil spill in the history of the United States. The biological effects and expected fate of the oil are unknown, partly due to the extreme depth and magnitude of this event and partly due to the primary initial mitigation strategy that injected unprecedented quantities of oil dispersant directly at the

  18. A coastal hazards data base for the US East Coast

    SciTech Connect (OSTI)

    Gornitz, V.M. . Goddard Inst. for Space Studies); White, T.W. ); Daniels, R.C. )

    1992-08-01

    This document describes the contents of a digital data base that may be used by raster or vector geographic information systems (GIS) and non-GIS data bases to assess the risk of coastlines to erosion or sea level rise. The data base integrates point, line, and polygon data for the US East Coast into 0.250 latitude [times] 0.250 longitude grid cells. Each coastal grid cell contains data on geology, geomorpholog,elevation, wave heights, tidal ranges, shoreline displacement (erosion), and sea-level trends. These data are available as a Numeric Data Package (NDP), from the Carbon Dioxide Information Analysis Center, consisting of this document and a set of computerized data files. The documentation contains information on the methods used in calculating each variable, detailed descriptions of file contents and formats, and a discussion of the sources, restrictions, and limitations of the data. The data files are available on magnetic tape, on floppy diskettes, or through INTERNET.

  19. A coastal hazards data base for the US East Coast

    SciTech Connect (OSTI)

    Gornitz, V.M.; White, T.W.; Daniels, R.C.

    1992-08-01

    This document describes the contents of a digital data base that may be used by raster or vector geographic information systems (GIS) and non-GIS data bases to assess the risk of coastlines to erosion or sea level rise. The data base integrates point, line, and polygon data for the US East Coast into 0.250 latitude {times} 0.250 longitude grid cells. Each coastal grid cell contains data on geology, geomorpholog,elevation, wave heights, tidal ranges, shoreline displacement (erosion), and sea-level trends. These data are available as a Numeric Data Package (NDP), from the Carbon Dioxide Information Analysis Center, consisting of this document and a set of computerized data files. The documentation contains information on the methods used in calculating each variable, detailed descriptions of file contents and formats, and a discussion of the sources, restrictions, and limitations of the data. The data files are available on magnetic tape, on floppy diskettes, or through INTERNET.

  20. Preliminary Geologic Characterization of West Coast States for Geologic Sequestration

    SciTech Connect (OSTI)

    Larry Myer

    2005-09-29

    Characterization of geological sinks for sequestration of CO{sub 2} in California, Nevada, Oregon, and Washington was carried out as part of Phase I of the West Coast Regional Carbon Sequestration Partnership (WESTCARB) project. Results show that there are geologic storage opportunities in the region within each of the following major technology areas: saline formations, oil and gas reservoirs, and coal beds. The work focused on sedimentary basins as the initial most-promising targets for geologic sequestration. Geographical Information System (GIS) layers showing sedimentary basins and oil, gas, and coal fields in those basins were developed. The GIS layers were attributed with information on the subsurface, including sediment thickness, presence and depth of porous and permeable sandstones, and, where available, reservoir properties. California offers outstanding sequestration opportunities because of its large capacity and the potential of value-added benefits from enhanced oil recovery (EOR) and enhanced gas recovery (EGR). The estimate for storage capacity of saline formations in the ten largest basins in California ranges from about 150 to about 500 Gt of CO{sub 2}, depending on assumptions about the fraction of the formations used and the fraction of the pore volume filled with separate-phase CO{sub 2}. Potential CO{sub 2}-EOR storage was estimated to be 3.4 Gt, based on a screening of reservoirs using depth, an API gravity cutoff, and cumulative oil produced. The cumulative production from gas reservoirs (screened by depth) suggests a CO{sub 2} storage capacity of 1.7 Gt. In Oregon and Washington, sedimentary basins along the coast also offer sequestration opportunities. Of particular interest is the Puget Trough Basin, which contains up to 1,130 m (3,700 ft) of unconsolidated sediments overlying up to 3,050 m (10,000 ft) of Tertiary sedimentary rocks. The Puget Trough Basin also contains deep coal formations, which are sequestration targets and may have potential for enhanced coal bed methane recovery (ECBM).

  1. North American Natural Gas Markets

    SciTech Connect (OSTI)

    Not Available

    1989-02-01

    This report summarizes die research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  2. Virginia Nuclear Profile - North Anna

    U.S. Energy Information Administration (EIA) Indexed Site

    North Anna" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,920,"6,780",84.1,"PWR","application/vnd.ms-excel","application/vnd.ms-excel" 2,943,"6,620",80.1,"PWR","application/vnd.ms-excel","application/vnd.ms-excel"

  3. North Dakota Energy Workforce Development

    SciTech Connect (OSTI)

    Carter, Drake

    2014-12-29

    Bismarck State College, along with its partners (Williston State College, Minot State University and Dickinson State University), received funding to help address the labor and social impacts of rapid oilfield development in the Williston Basin of western North Dakota. Funding was used to develop and support both credit and non-credit workforce training as well as four major symposia designed to inform and educate the public; enhance communication and sense of partnership among citizens, local community leaders and industry; and identify and plan to ameliorate negative impacts of oil field development.

  4. Eastern North Atlantic Site, Graciosa Island, Azores

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govSitesEastern North Atlantic ENA Related Links Facilities and Instruments ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site ENA Fact Sheet (PDF, 512KB) Images Information for Guest Scientists Contacts Eastern North Atlantic This view shows Graciosa Island, Azores, Eastern North Atlantic Facility. The new ENA observations site will be situated near the previous AMF deployment. The new ENA observations site will be situated near the previous AMF deployment. The

  5. LED North America - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LED North America Oak Ridge National Laboratory Success Story Details Partner Location Agreement Type Publication Date LED North America Oak Ridge, TN License July 2, 2013 Summary LED North America (LEDNA), founded in 2008, is a company located in Oak Ridge, Tennessee that produces LED alternatives for commercial lighting for applications such as roadways, parking lots, parking garages, and indoor high bay applications. The company is located in Oak Ridge at an incubator facility for the Oak

  6. Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate Proved

    Gasoline and Diesel Fuel Update (EIA)

    Reserves (Million Barrels) (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 310 316 311 412 527 527 557 567 2000's 560 482 454 353 290 272 249

  7. Recovery sequences for a station blackout accident at the Grand Gulf Nuclear Station

    SciTech Connect (OSTI)

    Carbajo, J.J. [Martin Marietta Energy Systems, Oak Ridge, TN (United States)

    1995-12-31

    Recovery sequences for a low-pressure, short term, station blackout severe accident at the Grand Gulf power plant have been investigated using the computer code MELCOR, version 1.8.3 PN. This paper investigates the effect of reflood timing and mass flow rate on accident recovery.

  8. Biogenic silica fluxes and accumulation rates in the Gulf of California

    SciTech Connect (OSTI)

    Thunell, R.C.; Pride, C.J.; Tappa, E. ); Muller-Karger, F.E. )

    1994-04-01

    The Gulf of California, though small in size, plays an important role in the global silica cycle. The seasonal pattern of biogenic silica flux in the gulf is closely related to that of phytoplankton biomass levels and is controlled by changes in weather and hydrographic conditions. The highest opal fluxes ([approximately] 0.35 g[center dot]m[sup [minus]2][center dot]d[sup [minus]1]) occur during winter and spring, and they are comparable to those measured in some of the most productive ecosystems of the world. Approximately 15%-25% of the biogenic silica produced in surface waters is preserved in gulf sediments, a figure significantly higher than the average global ocean preservation rate. However, the flux of opal at 500 m water depth is less than 25% of that being produced at the surface, suggesting that most of the recycling of biogenic silica in the Gulf of California occurs in the upper water column. 28 refs., 3 figs.

  9. North American Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    North American Biodiesel Place: Menmonee Falls, Wisconsin Product: Biodiesel producer currently developing a biodiesel plant in Butler, Wisconsin and with plans to develop another...

  10. North Country Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Country Ethanol LLC Jump to: navigation, search Name: North Country Ethanol LLC Place: Rosholt, South Dakota Zip: 57260 Product: 20mmgy (75.7m litresy) ethanol producer....

  11. North American Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: North American Biofuels Place: Bohemia, New York Product: Biodiesel eqwuipment manufacturer and producer of biodiesel Coordinates:...

  12. North Reading, Massachusetts: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    ,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map North Reading is a town in Middlesex County, Massachusetts.1 US Recovery Act Smart Grid Projects...

  13. Sandia Energy - North American Electric Reliability Corporation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    North American Electric Reliability Corporation (NERC) Report Posted Home Energy Assurance Infrastructure Security Grid Integration News News & Events Transmission Grid Integration...

  14. North Associated Power Corporation | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: North Associated Power Corporation Place: Huhehaote, Inner Mongolia Autonomous Region, China Zip: 10020 Product: A company generating power for Inner...

  15. North American Hydro | Open Energy Information

    Open Energy Info (EERE)

    Hydro Jump to: navigation, search Name: North American Hydro Place: Schofield, Wisconsin Zip: 54476 Sector: Hydro Product: Focused on developing, upgrading, owning, and operating...

  16. North American Coating Laboratories | Open Energy Information

    Open Energy Info (EERE)

    Coating Laboratories Jump to: navigation, search Name: North American Coating Laboratories Address: 9450 Pineneedle Drive Place: Mentor, Ohio Zip: 44060 Sector: Services, Solar...

  17. SouthSouthNorth | Open Energy Information

    Open Energy Info (EERE)

    policy environment. SouthSouthNorth contributed to the development of the International Gold Standard label which ensures the highest standards of practice throughout CDM project...

  18. REpower North China Ltd | Open Energy Information

    Open Energy Info (EERE)

    China Ltd Jump to: navigation, search Name: REpower North (China) Ltd Place: Baotou, Inner Mongolia Autonomous Region, China Zip: 14033 Product: Joint venture to manufacture 2MW...

  19. Hillsborough, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    North Carolina: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.0754183, -79.0997347 Show Map Loading map... "minzoom":false,"mappingservice...

  20. Transylvania County, North Carolina: Energy Resources | Open...

    Open Energy Info (EERE)

    Transylvania County, North Carolina: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.2190534, -82.7778579 Show Map Loading map......

  1. ,"North Carolina Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","North Carolina Natural Gas Industrial Consumption (MMcf)",1,"Monthly","102015" ,"Release...

  2. North Carolina Solar Center | Open Energy Information

    Open Energy Info (EERE)

    Solar Center Jump to: navigation, search Name: North Carolina Solar Center Sector: Renewable Energy Product: Promotes the use of renewable energy technologies with funding from the...

  3. Hendersonville, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Hendersonville, North Carolina: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.3187279, -82.4609528 Show Map Loading map......

  4. Enel North America | Open Energy Information

    Open Energy Info (EERE)

    America Jump to: navigation, search Name: Enel North America Address: One Tech Drive Place: Andover, Massachusetts Zip: 01810 Region: Greater Boston Area Sector: Wind energy...

  5. North American Electric Reliability Corporation (NERC): Reliability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (NERC): Reliability Considerations from the Integration of Smart Grid North American Electric Reliability Corporation (NERC): Reliability Considerations from the Integration of...

  6. Gasoline and Diesel Fuel Update (EIA)

    Processing Plants along the Gulf of Mexico Coast, by Geographic Location Clusters maps

  7. North Dakota Refining Capacity Study

    SciTech Connect (OSTI)

    Dennis Hill; Kurt Swenson; Carl Tuura; Jim Simon; Robert Vermette; Gilberto Marcha; Steve Kelly; David Wells; Ed Palmer; Kuo Yu; Tram Nguyen; Juliam Migliavacca

    2011-01-05

    According to a 2008 report issued by the United States Geological Survey, North Dakota and Montana have an estimated 3.0 to 4.3 billion barrels of undiscovered, technically recoverable oil in an area known as the Bakken Formation. With the size and remoteness of the discovery, the question became 'can a business case be made for increasing refining capacity in North Dakota?' And, if so what is the impact to existing players in the region. To answer the question, a study committee comprised of leaders in the region's petroleum industry were brought together to define the scope of the study, hire a consulting firm and oversee the study. The study committee met frequently to provide input on the findings and modify the course of the study, as needed. The study concluded that the Petroleum Area Defense District II (PADD II) has an oversupply of gasoline. With that in mind, a niche market, naphtha, was identified. Naphtha is used as a diluent used for pipelining the bitumen (heavy crude) from Canada to crude markets. The study predicted there will continue to be an increase in the demand for naphtha through 2030. The study estimated the optimal configuration for the refinery at 34,000 barrels per day (BPD) producing 15,000 BPD of naphtha and a 52 percent refinery charge for jet and diesel yield. The financial modeling assumed the sponsor of a refinery would invest its own capital to pay for construction costs. With this assumption, the internal rate of return is 9.2 percent which is not sufficient to attract traditional investment given the risk factor of the project. With that in mind, those interested in pursuing this niche market will need to identify incentives to improve the rate of return.

  8. U.S. Coast Guard and Florida Power & Light Successfully Implement a Multi-Site UESC Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coast Guard and Florida Power & Light Successfully Implement a Multi-Site UESC Project As the largest component of the Department of Homeland Security (DHS), more than 42,000 active-duty members of the U.S. Coast Guard safeguard the nation's maritime interests. Consequently, Coast Guard facilities represent about 60 percent of the DHS shore energy use portfolio. Under the National Energy Conservation Policy Act (NECPA) and Executive Order 13423, the Coast Guard has reduced its facility

  9. Partnership connects North America NGL markets

    SciTech Connect (OSTI)

    Bodenhamer, K.

    1998-12-31

    The United States and Canadian NGL/LPG pipeline network became a larger North America system on April 2, 1997 with the opening of the Rio Grande Pipeline, delivering LPG from the United States to Mexico. This North American pipeline system now links three of the world`s largest LPG producing and consuming nations.

  10. North Star Refrigerator: Order (2013-CE-5355)

    Broader source: Energy.gov [DOE]

    DOE ordered North Star Refrigerator Co., Inc. to pay a $8,000 civil penalty after finding North Star Refrigerator had failed to certify that any basic models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  11. North Carolina State Historic Preservation Programmatic Agreement |

    Energy Savers [EERE]

    Department of Energy North Carolina State Historic Preservation Programmatic Agreement North Carolina State Historic Preservation Programmatic Agreement Fully executed programmatic agreement between DOE, State Energy Office and State Historic Preservation Office. PDF icon state_historic_preservation_programmatic_agreement_nc.pdf More Documents & Publications Indiana State Historic Preservation Programmatic Agreement South Dakota State Historic Preservation Programmatic Agreement

  12. North Dakota Natural Gas Plant Liquids Production Extracted in North Dakota

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Million Cubic Feet) North Dakota (Million Cubic Feet) North Dakota Natural Gas Plant Liquids Production Extracted in North Dakota (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 48,504 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent North Dakota-North

  13. North Dakota Natural Gas Processed in North Dakota (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    North Dakota (Million Cubic Feet) North Dakota Natural Gas Processed in North Dakota (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 111,925 177,995 231,935 301,661 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Processed North Dakota-North Dakota

  14. U.S. Coast Guard, Kodiak Island, Alaska | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coast Guard, Kodiak Island, Alaska U.S. Coast Guard, Kodiak Island, Alaska October 7, 2013 - 2:01pm Addthis Photo of new boiler at Kodiak Island facility The first delivery order included upgrades to the steam plant and boilers Jerry Reilley, ERI Services, Inc. Overview By taking a leadership role in a pilot program to streamline Federal financing and procurement for energy-saving projects, the Coast Guard is saving more than $220,000 a year in energy costs at their facility at Kodiak Island,

  15. March 13, 1968: Oil discovered on Alaska's North Slope | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    13, 1968: Oil discovered on Alaska's North Slope March 13, 1968: Oil discovered on Alaska's North Slope March 13, 1968: Oil discovered on Alaska's North Slope March 13, 1968 The ...

  16. Kinston, North Carolina: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is a stub. You can help OpenEI by expanding it. Kinston is a city in Lenoir County, North Carolina. It falls under North Carolina's 1st congressional district and North...

  17. EA-373 EDF Trading North America, LLC | Department of Energy

    Office of Environmental Management (EM)

    3 EDF Trading North America, LLC EA-373 EDF Trading North America, LLC Order authorizong EDF Trading North America, LLCto exprto electric energy to Mexico. PDF icon EA-373 EDF...

  18. EA-367 EDF Trading North America, LLC | Department of Energy

    Office of Environmental Management (EM)

    7 EDF Trading North America, LLC EA-367 EDF Trading North America, LLC Order authorizing EDF Trading North America, LLC to export electric energy to Canada PDF icon EA-367 EDF Trading North America, LLC More Documents & Publications Record of Categorical Exclusion (CS) Determination, Office of Electricity Delivery and Energy Reliability (OE): EA-367 EDF Trading North America, LLC (EDF) EA-367-A EDF Trading North America,LLC Application to Export Electric Energy OE Docket No. EA-367-A EDF

  19. Fuel Cell Demonstration at the U.S. Coast Guard Air Station Cape Cod

    SciTech Connect (OSTI)

    Halverson, Mark A.; Chvala, William D.; Herrera, Shawn

    2005-07-30

    Journal article reporting on the 250-kW fuel cell combined heat and power plant located at the U.S. Coast Guard Air Station Cape Code in Bourne, Massachusetts.

  20. U.S. Coast Guard, Kodiak Island, Alaska | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Coast Guard, Kodiak Island, Alaska October 7, 2013 - 2:01pm Addthis Photo of new boiler at Kodiak Island facility The first delivery order included upgrades to the steam...

  1. H. R. 5441: A Bill to establish a Gulf of Mexico environmental and economic restoration and protection program. Introduced in the House of Representatives, One Hundred Second Congress, Second Session, June 18, 1992

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    This Act may be cited as the [open quotes]Gulf of Mexico Environmental and Economic Restoration and Protection Act of 1992[close quotes]. The purpose of this Bill is to establish a Gulf of Mexico environmental and economic restoration and protection program. Definitions used in this Bill are presented. The findings and purposes and provisions for the Gulf of Mexico Program; Gulf of Mexico program office; Gulf of Mexico executive board; functions, powers, and duties of the Board; coordinated comprehensive joint plan; funding of the Gulf Restoration Project; grant program; and authorization of appropriations are described.

  2. Unconventional gas hydrate seals may trap gas off southeast US. [North Carolina, South Carolina

    SciTech Connect (OSTI)

    Dillion, W.P.; Grow, J.A.; Paull, C.K.

    1980-01-07

    Seismic profiles have indicated to the US Geological Survey that an unconventional seal, created by gas hydrates that form in near-bottom sediments, may provide gas traps in continental slopes and rises offshore North and South Carolina. The most frequently cited evidence for the presence of gas hydrate in ocean sediments is the observation of a seismic reflection event that occurs about 1/2 s below and parallel with the seafloor. If gas-hydrate traps do exist, they will occur at very shallow sub-bottom depths of about 1600 ft (500m). Exploration of such traps will probably take place in the federally controlled Blake Ridge area off the coast of South Carolina where seismic data suggest a high incidence of gas hydrates. However, drilling through the gas-hydrate-cemented layer may require new engineering techniques for sealing the casing.

  3. Executive Order 13547: Stewardship of the Ocean, Our Coasts, and the Great

    Energy Savers [EERE]

    Lakes | Department of Energy 47: Stewardship of the Ocean, Our Coasts, and the Great Lakes Executive Order 13547: Stewardship of the Ocean, Our Coasts, and the Great Lakes This order establishes a national policy to ensure the protection, maintenance, and restoration of the health of ocean, coastal, and Great Lakes ecosystems and resources, enhance the sustainability of ocean and coastal economies, preserve our maritime heritage, support sustainable uses and access, provide for adaptive

  4. Executive Order 13547: Stewardship of the Ocean, Our Coasts, and the Great

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lakes | Department of Energy Executive Order 13547: Stewardship of the Ocean, Our Coasts, and the Great Lakes Executive Order 13547: Stewardship of the Ocean, Our Coasts, and the Great Lakes This order establishes a national policy to ensure the protection, maintenance, and restoration of the health of ocean, coastal, and Great Lakes ecosystems and resources, enhance the sustainability of ocean and coastal economies, preserve our maritime heritage, support sustainable uses and access,

  5. Energy Independence for North America - Transition to the Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Independence for North America - Transition to the Hydrogen Economy Energy Independence for North America - Transition to the Hydrogen Economy 2003 DEER Conference Presentation:...

  6. North Carolina's 5th congressional district: Energy Resources...

    Open Energy Info (EERE)

    in North Carolina's 5th congressional district Dorsett s Inc Northwest Wind Developers Pike Electric Corporation Retrieved from "http:en.openei.orgwindex.php?titleNorthCarol...

  7. New Hanover County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    A. Registered Energy Companies in New Hanover County, North Carolina Chemtex GE Hitachi Nuclear Energy Energy Generation Facilities in New Hanover County, North Carolina New...

  8. National Science Bowl Update: Teams from North Carolina and California...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science Bowl Update: Teams from North Carolina and California to Compete for High School Championship National Science Bowl Update: Teams from North Carolina and California to ...

  9. Inner Mongolia North Longyuan Wind Power Co Ltd | Open Energy...

    Open Energy Info (EERE)

    North Longyuan Wind Power Co Ltd Jump to: navigation, search Name: Inner Mongolia North Longyuan Wind Power Co Ltd Place: Hohhot, Inner Mongolia Autonomous Region, China Zip: 10020...

  10. Pasquotank County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Zone Number 3 Climate Zone Subtype A. Places in Pasquotank County, North Carolina Elizabeth City, North Carolina Retrieved from "http:en.openei.orgwindex.php?titlePasquota...

  11. North Carolina State Energy Office | Open Energy Information

    Open Energy Info (EERE)

    Energy Office Jump to: navigation, search Name: North Carolina State Energy Office Place: Raleigh, North Carolina Zip: 27604 1376 Sector: Efficiency, Renewable Energy Product: Lead...

  12. San Emido Geothermal Energy North Project | Open Energy Information

    Open Energy Info (EERE)

    Emido Geothermal Energy North Project Jump to: navigation, search NEPA Document Collection for: San Emido Geothermal Energy North Project EA at San Emidio Desert Geothermal Area...

  13. City of Kings Mountain, North Carolina (Utility Company) | Open...

    Open Energy Info (EERE)

    Kings Mountain, North Carolina (Utility Company) Jump to: navigation, search Name: City of Kings Mountain Place: North Carolina Phone Number: 704.730.2125 Website:...

  14. North Slope Borough Power & Light | Open Energy Information

    Open Energy Info (EERE)

    Borough Power & Light Jump to: navigation, search Name: North Slope Borough Power & Light Place: Alaska Phone Number: (907) 852-0489 Website: www.north-slope.orgdepartment Outage...

  15. City of North Platte, Nebraska (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Nebraska (Utility Company) Jump to: navigation, search Name: North Platte Power & Light Place: Nebraska Phone Number: 308.535.6740 Website: www.ci.north-platte.ne.usutil...

  16. Wake County, North Carolina: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Solutions Formerly LED Lighting Fixtures LLF Eaton Powerware INI Power Systems Methane Power Inc Microcell Corp North Carolina State Energy Office North Carolina State...

  17. North Carolina's 4th congressional district: Energy Resources...

    Open Energy Info (EERE)

    Solutions Formerly LED Lighting Fixtures LLF Eaton Powerware INI Power Systems Methane Power Inc Microcell Corp North Carolina State Energy Office North Carolina State...

  18. North Carolina's 2nd congressional district: Energy Resources...

    Open Energy Info (EERE)

    BGT Biogasoline CPS Biofuels Clean Burn Fuels LLC Eaton Powerware INI Power Systems Methane Power Inc Microcell Corp North Carolina State Energy Office North Carolina State...

  19. Refraction Survey At North Brawley Geothermal Area (Fruis & Kohler...

    Open Energy Info (EERE)

    North Brawley Geothermal Area (Fruis & Kohler, 1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Refraction Survey At North Brawley...

  20. North End Of Tenakee Inlet Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    North End Of Tenakee Inlet Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home North End Of Tenakee Inlet Geothermal Area Contents 1 Area Overview 2...

  1. Volvo Truck Headquarters in North Carolina to Host Event With...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Volvo Truck Headquarters in North Carolina to Host Event With Acting Under Secretary of Energy Majumdar Volvo Truck Headquarters in North Carolina to Host Event With Acting Under ...

  2. Energy Secretary Moniz Will Host North American Energy Ministers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Will Host North American Energy Ministers in Trilateral Meeting Focused on Energy Cooperation Energy Secretary Moniz Will Host North American Energy Ministers in Trilateral Meeting ...

  3. Opportunity Assessment Clean Diesels in the North American Light...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunity Assessment Clean Diesels in the North American Light Duty Market Opportunity Assessment Clean Diesels in the North American Light Duty Market Presentation given at the ...

  4. Soil Sampling At North Brawley Geothermal Area (Alan & G., 1977...

    Open Energy Info (EERE)

    North Brawley Geothermal Area (Alan & G., 1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At North Brawley Geothermal Area...

  5. Alleghany County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Zone Number 5 Climate Zone Subtype A. Places in Alleghany County, North Carolina Sparta, North Carolina Retrieved from "http:en.openei.orgwindex.php?titleAlleghanyCount...

  6. Ground Magnetics At North Brawley Geothermal Area (Edmunds &...

    Open Energy Info (EERE)

    North Brawley Geothermal Area (Edmunds & W., 1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At North Brawley Geothermal...

  7. North Star Electric Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    North Star Electric Coop, Inc Jump to: navigation, search Name: North Star Electric Coop, Inc Address: 441 State Hwy 172 NW Place: Baudette, MN Zip: 56623 Phone Number:...

  8. Department of Energy Announces Philips Lighting North America...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Philips Lighting North America as Winner of L Prize Competition Department of Energy Announces Philips Lighting North America as Winner of L Prize Competition August 3, 2011 - ...

  9. Holden, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    ":"","inlineLabel":"","visitedicon":"" Hide Map Holden is a unorganized territory in Adams County, North Dakota. It falls under North Dakota's At-large congressional district....

  10. City of Laurinburg, North Carolina (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Laurinburg, North Carolina (Utility Company) Jump to: navigation, search Name: City of Laurinburg Place: North Carolina Phone Number: 910-276-2364 Website: www.laurinburg.org...

  11. City of Hillsboro, North Dakota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Hillsboro, North Dakota (Utility Company) Jump to: navigation, search Name: City of Hillsboro Place: North Dakota Phone Number: 605-338-4042 Website: acupofcoffeeaway.comcity-info...

  12. City of Winterville, North Carolina (Utility Company) | Open...

    Open Energy Info (EERE)

    Winterville, North Carolina (Utility Company) Jump to: navigation, search Name: City of Winterville Place: North Carolina Phone Number: 252-756-2221 Website: www.wintervillenc.com...

  13. North Carolina Sustainable Energy Association | Open Energy Informatio...

    Open Energy Info (EERE)

    Sustainable Energy Association Jump to: navigation, search Name: North Carolina Sustainable Energy Association Place: Raleigh, North Carolina Zip: 27628 Product: A non-profit...

  14. Suez Renewable Energy North America | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy North America Jump to: navigation, search Name: Suez Renewable Energy North America Place: Texas Sector: Biomass, Hydro, Solar, Wind energy Product: Developer of...

  15. West Morton, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    "alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map West Morton is a unorganized territory in Morton County, North Dakota. It falls under North...

  16. North American Polysilicon Technology LLC | Open Energy Information

    Open Energy Info (EERE)

    Technology LLC Jump to: navigation, search Name: North American Polysilicon Technology LLC Product: A US-based company engaged in R&D of polysilicon technology. References: North...

  17. Chapel Hill, North Carolina: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    district.12 Registered Energy Companies in Chapel Hill, North Carolina Practical Eco University of North Carolina References US Census Bureau Incorporated place and...

  18. E ON Climate Renewables North America formerly Airtricity USA...

    Open Energy Info (EERE)

    Climate Renewables North America formerly Airtricity USA Jump to: navigation, search Name: E.ON Climate & Renewables North America (formerly Airtricity USA) Place: Chicago,...

  19. Alleghany County, North Carolina ASHRAE 169-2006 Climate Zone...

    Open Energy Info (EERE)

    Alleghany County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alleghany County, North Carolina ASHRAE Standard ASHRAE 169-2006...

  20. Alamance County, North Carolina ASHRAE 169-2006 Climate Zone...

    Open Energy Info (EERE)

    Alamance County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alamance County, North Carolina ASHRAE Standard ASHRAE 169-2006...

  1. North Carolina's 6th congressional district: Energy Resources...

    Open Energy Info (EERE)

    You can help OpenEI by expanding it. This page represents a congressional district in North Carolina. Registered Energy Companies in North Carolina's 6th congressional district...

  2. City of Cherryville, North Carolina (Utility Company) | Open...

    Open Energy Info (EERE)

    Cherryville, North Carolina (Utility Company) Jump to: navigation, search Name: City of Cherryville Place: North Carolina Phone Number: 704.435.1717 or 704.435.1737 Website:...

  3. Alexander County, North Carolina ASHRAE 169-2006 Climate Zone...

    Open Energy Info (EERE)

    Alexander County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alexander County, North Carolina ASHRAE Standard ASHRAE 169-2006...

  4. North Carolina's 1st congressional district: Energy Resources...

    Open Energy Info (EERE)

    You can help OpenEI by expanding it. This page represents a congressional district in North Carolina. Registered Policy Organizations in North Carolina's 1st congressional...

  5. North Carolina's 3rd congressional district: Energy Resources...

    Open Energy Info (EERE)

    You can help OpenEI by expanding it. This page represents a congressional district in North Carolina. Registered Energy Companies in North Carolina's 3rd congressional district...

  6. EECBG Success Story: North Carolina Playing Fields Score Brighter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    North Carolina Playing Fields Score Brighter Lights EECBG Success Story: North Carolina ... EECBG Success Story: Brighter Lights, Safer Streets Fort Fairfield's new energy efficient ...

  7. Diesel Engine Strategy & North American Market Challenges, Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategy & North American Market Challenges, Technology and Growth Diesel Engine Strategy & North American Market Challenges, Technology and Growth Presentation given at the 2007...

  8. Enel Green Power North America | Open Energy Information

    Open Energy Info (EERE)

    North America Jump to: navigation, search Name: Enel North America (formerly CHI Energy Inc) Place: Andover, Massachusetts Zip: 18100 Sector: Biomass, Geothermal energy, Wind...

  9. Suez Energy Resources North America (Connecticut) | Open Energy...

    Open Energy Info (EERE)

    Suez Energy Resources North America (Connecticut) Jump to: navigation, search Name: Suez Energy Resources North America Place: Connecticut Phone Number: 713.636.0000 or...

  10. Ecotality North America formerly eTec | Open Energy Information

    Open Energy Info (EERE)

    North America formerly eTec Jump to: navigation, search Name: Ecotality North America (formerly eTec) Place: Phoenix, Arizona Zip: 85003 Sector: Vehicles Product: String...

  11. EA-1678: Nissan North America, Inc., Advanced Technology Electric...

    Office of Environmental Management (EM)

    ATVM ATVM Environmental Compliance EA-1678: Nissan North America, Inc., Advanced Technology Electric Vehicle Manufacturing Plant in Smyrna, TN EA-1678: Nissan North America,...

  12. NORTH AMERICAN ISO 50001/SEP PILOT PROGRAM INFORMATIONAL WEBINAR...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NORTH AMERICAN ISO 50001SEP PILOT PROGRAM INFORMATIONAL WEBINAR, NOVEMBER 18, 2:30PM EASTERN TIME NORTH AMERICAN ISO 50001SEP PILOT PROGRAM INFORMATIONAL WEBINAR, NOVEMBER 18,...

  13. Coal underlying Federal lands in the Gulf of Mexico coastal plain

    SciTech Connect (OSTI)

    Alex W. Karlsen; John R. SanFilipo; Peter D. Warwick

    2002-09-01

    About 6% of the total coa resource was selected for assessment in the Gulf of Mexico Coastal Plain region of the NCRA project underlies federally proclaimed management areas. Of the approximately 11 billion short tons of coal in this category, approximately 37 percent are estimated to be federally owned. Much of the coal in these categories may not be available for mining, and much of it is probably not economically recoverable. The dispersed nature of Federal holdings, the complicated nature of surface and mineral estate ownership, and the existence of various legal and technological restrictions may remove a significant portion of this coal resource from consideration for development. Continuing work by USGS scientists suggests that potentially viable energy resources of coal-bed methane are present within both Federal and non-Federal areas of the Gulf of Mexico Coastal Plain coal-bearing region. 3 refs., 3 figs.

  14. Gulf of Mexico Federal Offshore Dry Natural Gas Production (Billion Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4,508 4,577 4,725 4,627 4,991 5,133 4,872 4,885 2000's 4,773 4,913 4,423 4,306 3,874 2,906 2,738 NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Gulf of

  15. Savannah River Region: Transition between the Gulf and Atlantic Coastal Plains. Proceedings

    SciTech Connect (OSTI)

    Zullo, V.A.; Harris, W.B.; Price, V. [eds.

    1990-12-31

    The focus of the this conference of Coastal Plains geologists was on the Savannah River region of Georgia and South Carolina, and particularly on the geology of the US Department of Energy`s 300 square mile Savannah River Site (SRS) in western South Carolina. Current geological studies indicate that the Mesozoic-Cenozoic section in the Savannah River region is transitional between that of the Gulf Coastal Plain to the southwest and that of the Atlantic Coastal Plain to the northeast. With the transitional aspect of the region as its theme, the first session was devoted to overviews of Cretaceous and Paleogene geology in the Gulf and Atlantic Coastal Plains. Succeeding presentations and resulting discussions dealt with more specific problems in structural, lithostratigraphic, hydrological, biostratigraphic, and cyclostratigraphic analysis, and of correlation to standard stratigraphic frameworks. For these conference proceedings, individual papers have been processed separately for the Energy Data Base.

  16. Gulf of Mexico Federal Offshore Crude Oil Production from Greater than 200

    Gasoline and Diesel Fuel Update (EIA)

    Meters Deep (Million Barrels) Greater than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Crude Oil Production from Greater than 200 Meters Deep (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 46 46 53 77 90 123 171 228 2000's 234 286 288 336 310 305 318 313

  17. Gulf of Mexico Federal Offshore Crude Oil Production from Less than 200

    Gasoline and Diesel Fuel Update (EIA)

    Meters Deep (Million Barrels) Less than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Crude Oil Production from Less than 200 Meters Deep (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 221 220 212 215 213 219 201 193 2000's 185 173 163 149 157 104 87 101

  18. Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate Proved

    Gasoline and Diesel Fuel Update (EIA)

    Reserves from Greater than 200 Meters Deep (Million Barrels) Greater than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate Proved Reserves from Greater than 200 Meters Deep (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 48 51 57 192 210 203 234 234 2000's 244 221 195 135 103 104 90

  19. Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate Proved

    Gasoline and Diesel Fuel Update (EIA)

    Reserves from Less than 200 Meters Deep (Million Barrels) Less than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Lease Condensate Proved Reserves from Less than 200 Meters Deep (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 262 265 254 220 317 324 323 333 2000's 316 261 259 218 187 168 159

  20. Gulf of Mexico Federal Offshore Natural Gas Liquids Production from Greater

    Gasoline and Diesel Fuel Update (EIA)

    than 200 Meters Deep (Million Barrels) Greater than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Production from Greater than 200 Meters Deep (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4 6 6 12 13 17 26 51 2000's 84 96 66 55 51 44 50

  1. Gulf of Mexico Federal Offshore Natural Gas Liquids Production from Less

    Gasoline and Diesel Fuel Update (EIA)

    than 200 Meters Deep (Million Barrels) Less than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Production from Less than 200 Meters Deep (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 87 91 92 73 88 123 113 116 2000's 115 96 118 93 104 79 75

  2. Gulf of Mexico Federal Offshore Natural Gas Liquids Proved Reserves from

    Gasoline and Diesel Fuel Update (EIA)

    Greater than 200 Meters Deep (Million Barrels) Greater than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Proved Reserves from Greater than 200 Meters Deep (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 91 97 110 294 300 349 387 411 2000's 468 443 407 262 292 248 291

  3. Gulf of Mexico Federal Offshore Natural Gas Liquids Proved Reserves from

    Gasoline and Diesel Fuel Update (EIA)

    Less than 200 Meters Deep (Million Barrels) Less than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Natural Gas Liquids Proved Reserves from Less than 200 Meters Deep (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 499 508 493 336 456 557 532 583 2000's 606 524 558 455 421 440 358

  4. TABLE15.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Dist. Commodity IV V Texas La. Texas Gulf Gulf N. La., New U.S. Inland Coast Coast Ark. Mexico Total Rocky Mt. West Coast Total January 1998 Natural Gas Liquids...

  5. Energy investment advisory series No. 3: Investment opportunities in the Persian Gulf energy sector

    SciTech Connect (OSTI)

    Hadgen, R.E.

    1994-12-01

    Sometimes the greatest investment opportunities are in those areas where the least progress seems to be taking place. This report describes energy-based developments taking place in the Persian/Arabian Gulf. The 8 Gulf states are building their nations; each has large minority groups and swelling populations; their economies are built on one product (hydrocarbons). Large expatriate populations, being integrated into local societies and economies, have led to hostility and guarded access to contacts with the outside world. Gulf nations cannot benefit from any oil price rise as they did in the past, as their populations have grown too rapidly. Policies change daily and can be changed back to original ones as well as into new ones. Since the oil and gas industries are the primary source of government revenue, oil and gas are likely to remain longest under government control. A breakdown of energy-base investment potentials in the Middle East is tabulated: upstream oil, refining, domestic oil marketing, upstream gas, LNG, electricity, petrochemical.

  6. Egypt`s first subsea completion: A Gulf of Suez case history

    SciTech Connect (OSTI)

    El Hawary, A.; Hoffman, J.G.

    1996-06-01

    A case history of the Gulf of Suez Petroleum Co.`s (Gupco) first subsea completion is provided. The first completion was for Well GS 373-2, a previously drilled and tested exploration well located in the south portion of the gulf of Suez. Subsea technology was used to economically justify development of this one-well marginal field, which was discovered in 1978. Traditional methods proved to be too costly for development, therefore application of a low-cost subsea tree was used to capture the resources. In the Gulf of Suez, many fields have been discovered but have not been developed because of low reserves. These marginal projects can have a profound impact on the revenue and shareholder value if an economic method is used to exploit these opportunities. Platform installation was not feasible because of reserve size, hence the well has remained abandoned until recently. This paper presents a summarized look at subsea completion technology. The cost comparison of traditional development methods will be made, given the local cost structure in Egypt. The application of this technology has some limitations and constraints that will be discussed in the paper. Furthermore, the actual field installation of Egypt`s first subsea tree will be summarized. Also included is a discussion on simple remote controls and offshore installation operations.

  7. North Carolina Residential Energy Code Field Study

    Broader source: Energy.gov [DOE]

    Lead Performer: Appalachian State University – Boone, NCPartners: North Carolina Energy Efficiency Alliance – Boone, NCDOE Total Funding: $774,723Cost Share: $89,301Project Term: 2014 – 2017Funding...

  8. North Shore Gas- Residential Rebate Program

    Broader source: Energy.gov [DOE]

    The North Shore Gas Natural Gas Savings Program offers incentives to encourage customers to make energy-efficient improvements to their homes and apartment buildings. Rebates are available on...

  9. North American Electric Reliability Council Outage Announcement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    North American Electric Reliability Council Outage Announcement Starting at about 4:11 p.m. EDT, major losses of electric load occurred in the northeastern United States and Canada ...

  10. Minibar North America: Order (2014-CE-14010)

    Broader source: Energy.gov [DOE]

    DOE ordered Minibar North America, Inc. to pay a $8,000 civil penalty after finding Minibar had failed to certify that certain models of refrigerators comply with the applicable energy conservation standards.

  11. North Carolina Geological Survey | Open Energy Information

    Open Energy Info (EERE)

    Address: 1612 Mail Service Center Place: North Carolina Zip: 27699-1612 Website: www.geology.enr.state.nc.us Coordinates: 35.67, -78.66 Show Map Loading map......

  12. North American Leaders Summit: Energy Deliverables | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    methodology and data sharing in the area of large sources of carbon emissions and potential storage sites in North America. We will also explore ways to collaborate on research ...

  13. North Alabama Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    Place: Alabama Phone Number: (256) 437-2281 or 800-572-2900 Website: www.naecoop.com Facebook: https:www.facebook.compagesNorth-Alabama-Electric-Cooperative159082070791105...

  14. North American Electric Reliability Corporation (NERC): Reliability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Considerations from the Integration of Smart Grid | Department of Energy (NERC): Reliability Considerations from the Integration of Smart Grid North American Electric Reliability Corporation (NERC): Reliability Considerations from the Integration of Smart Grid North American Electric Reliability Corporation (NERC): Reliability Considerations from the Integration of Smart Grid. NERC develops and enforces Reliability Standards; assesses adequacy annually via a ten-year forcast and winter and

  15. Frequency Instability Problems in North American Interconnections

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frequency Instability Problems in North American Interconnections May 1, 2011 DOE/NETL-2011/1473 Frequency Instability Problems in North American Interconnections Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness

  16. NorthStar Medical Technologies LLC

    National Nuclear Security Administration (NNSA)

    Environmental Assessment for NorthStar Medical Technologies LLC Commercial Domestic Production of the Medical Isotope Molybdenum-99 (DOE/EA-1929) Prepared for U.S. Department of Energy National Nuclear Security Administration Defense Nuclear Nonproliferation/ Global Threat Reduction Initiative August 2012 EA for NorthStar Medical Technologies LLC Commercial Domestic Production of the Medical Isotope Mo-99 i COVER SHEET ENVIRONMENTAL ASSESSMENT FOR NORTHSTAR MEDICAL TECHNOLOGIES LLC COMMERCIAL

  17. North Carolina Nonprofit Helps Spread the Word About Weatherization

    Broader source: Energy.gov [DOE]

    See a North Carolina's innovative approach to educating constituents about energy efficiency at home.

  18. Ethanol Pathways in the 2050 North American Transportation Futures Study

    SciTech Connect (OSTI)

    2009-01-18

    A paper discussing the various ethanol pathways in the 2050 North American Transportation Futures Study

  19. Workplace Charging Challenge Partner: North Central College | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy North Central College Workplace Charging Challenge Partner: North Central College Workplace Charging Challenge Partner: North Central College North Central College has two plug-in electric vehicle (PEV) charging stations. Both stations may be used free of charge by students, faculty, staff and campus visitors. Serious in its efforts to reduce vehicle emissions, North Central College hopes their charging station efforts will encourage a trend toward more sustainable vehicle use on its

  20. Richland Operations Office Completes Cleanup in Hanford's 300 Area North

    Office of Environmental Management (EM)

    Section | Department of Energy Richland Operations Office Completes Cleanup in Hanford's 300 Area North Section Richland Operations Office Completes Cleanup in Hanford's 300 Area North Section March 28, 2013 - 12:00pm Addthis An aerial view of Hanford’s 300 Area North Section following completion of cleanup. An aerial view of Hanford's 300 Area North Section following completion of cleanup. Workers demolish the 384 Building, known as the Power House and Heating Plant, in the north

  1. North American Energy Ministers Meeting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting North American Energy Ministers Meeting December 15, 2014 - 12:30pm Addthis News Media Contact 202-586-4940 NORTH AMERICAN ENERGY MINISTERS MEETING Washington- The North American Energy Ministers met today, in response to the call of the North American Leaders, to advance an energy agenda that expands the continent's leadership in energy, strengthens North American energy security, supports shared economic prosperity and environmental performance. This meeting builds upon a long,

  2. Semidirect Dynamical and Radiative Impact of North African Dust Transport

    Office of Scientific and Technical Information (OSTI)

    on Lower Tropospheric Clouds over the Subtropical North Atlantic in CESM 1.0 (Journal Article) | SciTech Connect Semidirect Dynamical and Radiative Impact of North African Dust Transport on Lower Tropospheric Clouds over the Subtropical North Atlantic in CESM 1.0 Citation Details In-Document Search Title: Semidirect Dynamical and Radiative Impact of North African Dust Transport on Lower Tropospheric Clouds over the Subtropical North Atlantic in CESM 1.0 This study uses a century length

  3. Alternative Fuels Data Center: North Carolina City Expands Alternative Fuel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fleet North Carolina City Expands Alternative Fuel Fleet to someone by E-mail Share Alternative Fuels Data Center: North Carolina City Expands Alternative Fuel Fleet on Facebook Tweet about Alternative Fuels Data Center: North Carolina City Expands Alternative Fuel Fleet on Twitter Bookmark Alternative Fuels Data Center: North Carolina City Expands Alternative Fuel Fleet on Google Bookmark Alternative Fuels Data Center: North Carolina City Expands Alternative Fuel Fleet on Delicious Rank

  4. Comparison of coating alternatives for US Coast Guard aircraft. Final report for April 1993-August 1994

    SciTech Connect (OSTI)

    Hirst, D.J.; Spadafora, S.J.

    1994-12-12

    Current coatings used on U.S. Coast Guard aircraft contain high volatile organic compound (VOC) contents. Federal, state, and local environmental agencies restrict the amount of VOCs from the use of these materials through legislation such as the Clean Air Act and local Air Quality Management District Rules. At the request of the Coast Guard, the Naval Air Warfare Center Aircraft Division Warminster investigated several low VOC candidate replacements to the current paint scheme. The physical performance properties of these materials (i.e. corrosion resistance, adhesion, etc.) were characterized using standard coatings tests. The results of this program show that there are several acceptable alternatives. Replacement of current coating systems would reduce the total amount of hazardous materials emitted from Coast Guard painting operations and eliminate the need for expensive control equipment which will be required by the Clean Air Act (resulting in substantial future cost savings).

  5. Energy Assessment Training Reduces Energy Costs for the U.S. Coast Guard Sector Guam: Success Stories (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-05-01

    U.S. Coast Guard Sector Guam experiences considerable energy cost and use savings after implementing training from NREL's energy assessment training.

  6. S. 83: A Bill to ensure the preservation of the Gulf of Mexico by establishing within the Environmental Protection Agency a Gulf of Mexico Program. Introduced in the Senate of the United States, One Hundred Third Congress, First Session, January 21, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    S. 83 may be cited as the [open quotes]Gulf of Mexico Preservation Act of 1993.[close quotes] This Bill discusses findings pertaining to resources in the Gulf of Mexico, describes the establishment of the Gulf of Mexico Program, defines the establishment and duties of the Gulf of Mexico Program Office, and proposes a study of international issues. This Bill also includes an assessment to be prepared by the Administrator, a monitoring, management, protection and restoration plan, a grant program, authorization of appropriations, administrative provisions, and the relationship of the Bill to existing federal and state laws and international treaties.

  7. East Coast blizzard cuts into gasoline demand, but home electricity demand rises

    Gasoline and Diesel Fuel Update (EIA)

    East Coast blizzard cuts into gasoline demand, but home electricity demand rises U.S. monthly gasoline consumption declined in January, as the big winter storm that shut down many East Coast cities kept people in their homes and off the road. In its new monthly forecast, the U.S. Energy Information Administration said monthly gasoline consumption dropped 230,000 barrels per day in January compared to year-ago levels and that marked the first year-over-year decline in monthly gasoline use since

  8. First U.S. Grid-Connected Offshore Wind Turbine Installed Off the Coast of

    Office of Environmental Management (EM)

    Maine | Department of Energy First U.S. Grid-Connected Offshore Wind Turbine Installed Off the Coast of Maine First U.S. Grid-Connected Offshore Wind Turbine Installed Off the Coast of Maine October 1, 2013 - 12:33pm Addthis This is an excerpt from the Third Quarter 2013 edition of the Wind Program R&D Newsletter. A 65-foot tall, 20-kilowatt wind turbine with a white rotor and a yellow tower on a floating platform in the ocean. Castine, Maine - On May 31, 2013, the University of Maine's

  9. North Dakota Shale Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Shale Production (Billion Cubic Feet) North Dakota Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3 3 25 2010's 64 95 203 268 426 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Estimated Production North Dakota Shale Gas Proved Reserves, Reserves Changes,

  10. ARM - Lesson Plans: North Slope of Alaska

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    North Slope of Alaska Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Lesson Plans: North Slope of Alaska Adapting to Survive (PDF, 12.4K) Arctic Microclimates (PDF, 34.3K) Also available in a PowerPoint Version, (PPT, 80K) Arctic Microclimate Worksheet (PDF, 19.6K) Bringing Climate Change

  11. Oil, shrimp, mangroves: an evaluation of contingency planning for the Gulf of Guayaquil, Ecuador. Technical report

    SciTech Connect (OSTI)

    Filho, I.P.

    1983-10-01

    The possibility of finding oil in the Gulf of Guayaquil has led several Ecuadorian agencies to prepare contingency plans to deal with the eventuality of an oil spill in the area. This report characterizes the importance of the oil and fisheries industries to the Ecuadorian economy, and describes the region where these activities may conflict. It also elaborates on the biological effects of oil in tropical environments, and on aspects of prevention, control/clean- up and oil spill contingency planning. Compensation for oil pollution damages and methods for damage assessment are also discussed herein.

  12. Potential Economic Impacts from Offshore Wind in the Gulf of Mexico Region (Fact Sheet)

    SciTech Connect (OSTI)

    Flores, F.; Keyser, D.; Tegen, S.

    2014-01-01

    Offshore wind is a clean, renewable source of energy and can be an economic driver in the United States. To better understand the employment opportunities and other potential regional economic impacts from offshore wind development, the U.S. Department of Energy (DOE) funded research that focuses on four regions of the country. The studies use multiple scenarios with various local job and domestic manufacturing content assumptions. Each regional study uses the new offshore wind Jobs and Economic Development Impacts (JEDI) model, developed by the National Renewable Energy Laboratory. This fact sheet summarizes the potential economic impacts for the Gulf of Mexico region.

  13. Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease

    Gasoline and Diesel Fuel Update (EIA)

    Condensate Proved Reserves (Million Barrels) Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3,704 2010's 4,043 4,567 4,602 4,591 4,352 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  14. Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas Plant

    Gasoline and Diesel Fuel Update (EIA)

    Liquids, Proved Reserves (Million Barrels) Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 614 566 532 512 575 1990's 519 545 472 490 500 496 621 785 776 833 2000's 921 785 783 598 615 603 575 528 464 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  15. Gulf of Mexico Federal Offshore - Texas Associated-Dissolved Natural Gas,

    Gasoline and Diesel Fuel Update (EIA)

    Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 474 320 541 522 532 494 1990's 446 407 691 574 679 891 794 1,228 1,224 1,383 2000's 1,395 1,406 1,267

  16. Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate Proved

    Gasoline and Diesel Fuel Update (EIA)

    Reserves (Million Barrels) + Lease Condensate Proved Reserves (Million Barrels) Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 303 2010's 304 252 354 359 352 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages:

  17. Gulf of Mexico Federal Offshore - Texas Crude Oil Reserves in Nonproducing

    Gasoline and Diesel Fuel Update (EIA)

    Reservoirs (Million Barrels) Reserves in Nonproducing Reservoirs (Million Barrels) Gulf of Mexico Federal Offshore - Texas Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 215 207 2000's 222 180 154 147 72 64 68 53 56 125 2010's 102 52 34 33 84 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  18. Gulf of Mexico Federal Offshore - Texas Natural Gas Plant Liquids, Proved

    Gasoline and Diesel Fuel Update (EIA)

    Reserves (Million Barrels) Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Gulf of Mexico Federal Offshore - Texas Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 62 66 64 88 80 100 89 89 78 1990's 82 79 118 115 103 134 132 121 143 161 2000's 153 182 182 119 98 85 74 92 83 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  19. Gulf of Mexico Federal Offshore Crude Oil Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Gulf of Mexico Federal Offshore Crude Oil Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1,835 2,072 2,127 2,518 2,567 2,949 2,793 2,744 2000's 3,174 4,288 4,444 4,554 4,144 4,042 3,655 3,464

  20. Gulf of Mexico Federal Offshore Crude Oil Proved Reserves from Greater than

    Gasoline and Diesel Fuel Update (EIA)

    200 Meters Deep (Million Barrels) Greater than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Crude Oil Proved Reserves from Greater than 200 Meters Deep (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 557 824 877 1,241 1,311 1,682 1,611 1,626 2000's 2,021 3,208 3,372 3,627 3,280 3,272 2,983 2,836

  1. Gulf of Mexico Federal Offshore Crude Oil Proved Reserves from Less than

    Gasoline and Diesel Fuel Update (EIA)

    200 Meters Deep (Million Barrels) Less than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Crude Oil Proved Reserves from Less than 200 Meters Deep (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1,278 1,248 1,250 1,277 1,256 1,267 1,182 1,118 2000's 1,153 1,080 1,072 927 864 770 672 628

  2. Gulf of Mexico Federal Offshore Dry Natural Gas Production from Greater

    Gasoline and Diesel Fuel Update (EIA)

    than 200 Meters Deep (Billion Cubic Feet) Greater than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Production from Greater than 200 Meters Deep (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 162 224 288 361 544 565 711 1,099 2000's 1,165 1,334 1,328 1,513 1,222 1,069 1,086

  3. Gulf of Mexico Federal Offshore Dry Natural Gas Production from Less than

    Gasoline and Diesel Fuel Update (EIA)

    200 Meters Deep (Billion Cubic Feet) Less than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Production from Less than 200 Meters Deep (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4,346 4,353 4,437 4,266 4,447 4,568 4,161 3,786 2000's 3,608 3,578 3,095 2,793 2,652 1,837 1,652

  4. Gulf of Mexico Federal Offshore Dry Natural Gas Proved Reserves from

    Gasoline and Diesel Fuel Update (EIA)

    Greater than 200 Meters Deep (Billion Cubic Feet) Greater than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Proved Reserves from Greater than 200 Meters Deep (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3,225 3,438 4,709 5,751 6,322 7,343 7,425 7,533 2000's 8,506 10,943 10,266 9,835 8,379 8,043 6,516

  5. Gulf of Mexico Federal Offshore Dry Natural Gas Proved Reserves from Less

    Gasoline and Diesel Fuel Update (EIA)

    than 200 Meters Deep (Billion Cubic Feet) Less than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Dry Natural Gas Proved Reserves from Less than 200 Meters Deep (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 23,424 22,606 22,509 22,166 21,530 20,579 18,997 17,918 2000's 17,666 15,513 14,423 12,224 10,433 8,964 8,033

  6. Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease Separation,

    Gasoline and Diesel Fuel Update (EIA)

    Production (Billion Cubic Feet) (Billion Cubic Feet) Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease Separation, Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4,576 4,651 4,797 4,679 5,045 5,230 4,967 5,000 2000's 4,901 5,027 4,544 4,397 3,967 2,968 2,805 2,762

  7. Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease Separation,

    Gasoline and Diesel Fuel Update (EIA)

    Production from Greater than 200 Meters Deep (Billion Cubic Feet) Greater than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease Separation, Production from Greater than 200 Meters Deep (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 166 229 294 354 549 577 724 1,124 2000's 1,196 1,367 1,365 1,545 1,251 1,070 1,112 1,050

  8. Price of Gulf Gateway Natural Gas LNG Imports from Qatar (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Qatar (Dollars per Thousand Cubic Feet) Price of Gulf Gateway Natural Gas LNG Imports from Qatar (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- 9.47 -- -- 2010's -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: U.S. Price of Liquefied Natural Gas

  9. Price of Gulf Gateway Natural Gas LNG Imports from Trinidad and Tobago

    U.S. Energy Information Administration (EIA) Indexed Site

    (Dollars per Thousand Cubic Feet) Trinidad and Tobago (Dollars per Thousand Cubic Feet) Price of Gulf Gateway Natural Gas LNG Imports from Trinidad and Tobago (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- 7.31 7.30 -- -- 2010's -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  10. Price of Gulf of Mexico Natural Gas LNG Imports (Nominal Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) (Nominal Dollars per Thousand Cubic Feet) Price of Gulf of Mexico Natural Gas LNG Imports (Nominal Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- 8.87 7.31 8.36 -- -- 2010's -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: U.S. Price of Liquefied

  11. Price of Gulf of Mexico Natural Gas LNG Imports from Malaysia (Nominal

    U.S. Energy Information Administration (EIA) Indexed Site

    Dollars per Thousand Cubic Feet) Malaysia (Nominal Dollars per Thousand Cubic Feet) Price of Gulf of Mexico Natural Gas LNG Imports from Malaysia (Nominal Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- 6.67 -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: U.S. Price of

  12. Price of Gulf of Mexico Natural Gas LNG Imports from Nigeria (Nominal

    U.S. Energy Information Administration (EIA) Indexed Site

    Dollars per Thousand Cubic Feet) Nigeria (Nominal Dollars per Thousand Cubic Feet) Price of Gulf of Mexico Natural Gas LNG Imports from Nigeria (Nominal Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- 11.11 -- 8.29 -- -- 2010's -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  13. EA-1920: Border Winds 2, North Dakota

    Broader source: Energy.gov [DOE]

    DOEs Western Area Power Administration is preparing this EA to evaluate the environmental impacts of a proposed wind turbine generation facility in Rolette and Towner Counties in North Dakota. If the proposal is implemented, power generated by this facility would interconnect at an existing substation and would be distributed via an existing transmission line owned and operated by Western.

  14. North West Shelf pipeline. Part 2 (conclusion). Laying Australia's North West Shelf pipeline

    SciTech Connect (OSTI)

    Seymour, E.V.; Craze, D.J.; Ruinen, W.

    1984-05-14

    Details of the construction of Australia's North West Shelf gas pipeline cover the pipelaying operation, trunkline-to-riser tie-in, posttrenching, backfilling, slugcatcher construction, connection with the shore terminal, and hydrostatic testing.

  15. Fletcher, North Carolina: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Fletcher is a town in Henderson County, North Carolina. It falls under North Carolina's 11st...

  16. Camden County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in Camden County, North Carolina Elizabeth City, North Carolina Retrieved from "http:en.openei.orgwindex.php?titleCamdenC...

  17. City of Elizabeth City, North Carolina (Utility Company) | Open...

    Open Energy Info (EERE)

    Elizabeth City, North Carolina (Utility Company) Jump to: navigation, search Name: City of Elizabeth City Place: North Carolina Phone Number: (252) 337-6870 or (252) 335-2196...

  18. Traill County, North Dakota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Dakota. Its FIPS County Code is 097. It is classified as ASHRAE 169-2006 Climate Zone Number 7 Climate Zone Subtype A. Places in Traill County, North Dakota Buxton, North...

  19. Oxford, North Carolina: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Oxford is a city in Granville County, North Carolina. It falls under North Carolina's 1st...

  20. Mountain Electric Coop, Inc (North Carolina) | Open Energy Information

    Open Energy Info (EERE)

    Mountain Electric Coop, Inc (North Carolina) Jump to: navigation, search Name: Mountain Electric Coop, Inc Place: North Carolina Phone Number: 423-733-0159 or 423-772-3521 or...

  1. Greensboro, North Carolina: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    This article is a stub. You can help OpenEI by expanding it. Greensboro is a city in Guilford County, North Carolina. It falls under North Carolina's 6th congressional district...

  2. North Branch Water & Light Comm | Open Energy Information

    Open Energy Info (EERE)

    North Branch Water & Light Comm Jump to: navigation, search Name: North Branch Water & Light Comm Place: Minnesota Phone Number: 651-674-7100 or 651-674-8113 Website:...

  3. North American Green Power,LLC | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Logo: North American Green Power,LLC Name: North American Green Power,LLC Address: 1605 J.P Wright Loop Rd Place: Jacksonville, Arkansas Zip: 72076...

  4. Town of Forest City, North Carolina (Utility Company) | Open...

    Open Energy Info (EERE)

    Forest City, North Carolina (Utility Company) Jump to: navigation, search Name: Town of Forest City Place: North Carolina Phone Number: 828-245-0149 Website: www.townofforestcity.c...

  5. Semidirect Dynamical and Radiative Impact of North African Dust...

    Office of Scientific and Technical Information (OSTI)

    Semidirect Dynamical and Radiative Impact of North African Dust Transport on Lower Tropospheric Clouds over the Subtropical North Atlantic in CESM 1.0 Citation Details In-Document ...

  6. Southern Pines, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    article is a stub. You can help OpenEI by expanding it. Southern Pines is a town in Moore County, North Carolina. It falls under North Carolina's 6th congressional...

  7. Carthage, North Carolina: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Carthage is a town in Moore County, North Carolina. It falls under North Carolina's 6th congressional...

  8. Pinebluff, North Carolina: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Pinebluff is a town in Moore County, North Carolina. It falls under North Carolina's 6th congressional...

  9. Vass, North Carolina: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Vass is a town in Moore County, North Carolina. It falls under North Carolina's 6th congressional...

  10. Taylortown, North Carolina: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    This article is a stub. You can help OpenEI by expanding it. Taylortown is a town in Moore County, North Carolina. It falls under North Carolina's 6th congressional...

  11. Pinehurst, North Carolina: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    This article is a stub. You can help OpenEI by expanding it. Pinehurst is a village in Moore County, North Carolina. It falls under North Carolina's 6th congressional...

  12. Robbins, North Carolina: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Robbins is a city in Moore County, North Carolina. It falls under North Carolina's 6th congressional...

  13. Foxfire, North Carolina: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    This article is a stub. You can help OpenEI by expanding it. Foxfire is a village in Moore County, North Carolina. It falls under North Carolina's 6th congressional...

  14. Aberdeen, North Carolina: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Aberdeen is a town in Moore County, North Carolina. It falls under North Carolina's 6th congressional...

  15. Whispering Pines, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    is a stub. You can help OpenEI by expanding it. Whispering Pines is a village in Moore County, North Carolina. It falls under North Carolina's 6th congressional...

  16. Cameron, North Carolina: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Cameron is a town in Moore County, North Carolina. It falls under North Carolina's 6th congressional...

  17. City of Hope, North Dakota (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Hope, North Dakota (Utility Company) Jump to: navigation, search Name: City of Hope Place: North Dakota Phone Number: 701-945-2772 Website: www.hopend.com Outage Hotline:...

  18. Hope, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Hope is a city in Steele County, North Dakota. It falls under North Dakota's At-large...

  19. Bucyrus, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Bucyrus is a city in Adams County, North Dakota. It falls under North Dakota's At-large congressional...

  20. Hettinger, North Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Hettinger is a city in Adams County, North Dakota. It falls under North Dakota's At-large congressional...