Sample records for guiyang polysource silicon

  1. Guiyang Polysource Silicon Co Ltd Formerly Jiayuan Sunshine Guiyang Hi New

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| Open Energy InformationGettopGuilford, Maine:

  2. Silicone metalization

    DOE Patents [OSTI]

    Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

    2008-12-09T23:59:59.000Z

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  3. Amorphous Silicon

    Broader source: Energy.gov [DOE]

    DOE has a proven track record of funding successes in amorphous silicon (a-Si)research. A list of current projects, summary of the benefits, and discussion on the production and manufacturing of...

  4. Buried oxide layer in silicon

    DOE Patents [OSTI]

    Sadana, Devendra Kumar (Pleasantville, NY); Holland, Orin Wayne (Lenoir, TN)

    2001-01-01T23:59:59.000Z

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  5. Purified silicon production system

    DOE Patents [OSTI]

    Wang, Tihu; Ciszek, Theodore F.

    2004-03-30T23:59:59.000Z

    Method and apparatus for producing purified bulk silicon from highly impure metallurgical-grade silicon source material at atmospheric pressure. Method involves: (1) initially reacting iodine and metallurgical-grade silicon to create silicon tetraiodide and impurity iodide byproducts in a cold-wall reactor chamber; (2) isolating silicon tetraiodide from the impurity iodide byproducts and purifying it by distillation in a distillation chamber; and (3) transferring the purified silicon tetraiodide back to the cold-wall reactor chamber, reacting it with additional iodine and metallurgical-grade silicon to produce silicon diiodide and depositing the silicon diiodide onto a substrate within the cold-wall reactor chamber. The two chambers are at atmospheric pressure and the system is open to allow the introduction of additional source material and to remove and replace finished substrates.

  6. Glass-silicon column

    DOE Patents [OSTI]

    Yu, Conrad M.

    2003-12-30T23:59:59.000Z

    A glass-silicon column that can operate in temperature variations between room temperature and about 450.degree. C. The glass-silicon column includes large area glass, such as a thin Corning 7740 boron-silicate glass bonded to a silicon wafer, with an electrode embedded in or mounted on glass of the column, and with a self alignment silicon post/glass hole structure. The glass/silicon components are bonded, for example be anodic bonding. In one embodiment, the column includes two outer layers of silicon each bonded to an inner layer of glass, with an electrode imbedded between the layers of glass, and with at least one self alignment hole and post arrangement. The electrode functions as a column heater, and one glass/silicon component is provided with a number of flow channels adjacent the bonded surfaces.

  7. Silicon rich nitride for silicon based laser devices

    E-Print Network [OSTI]

    Yi, Jae Hyung

    2008-01-01T23:59:59.000Z

    Silicon based light sources, especially laser devices, are the key components required to achieve a complete integrated silicon photonics system. However, the fundamental physical limitation of the silicon material as light ...

  8. Functionalized Silicone Nanospheres: Synthesis, Transition Metal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Functionalized Silicone Nanospheres: Synthesis, Transition Metal Immobilization, and Catalytic Applications. Functionalized Silicone Nanospheres: Synthesis, Transition Metal...

  9. Micromachined silicon electrostatic chuck

    DOE Patents [OSTI]

    Anderson, Robert A. (Albuquerque, NM); Seager, Carleton H. (Albuquerque, NM)

    1996-01-01T23:59:59.000Z

    An electrostatic chuck is faced with a patterned silicon plate 11, created y micromachining a silicon wafer, which is attached to a metallic base plate 13. Direct electrical contact between the chuck face 15 (patterned silicon plate's surface) and the silicon wafer 17 it is intended to hold is prevented by a pattern of flat-topped silicon dioxide islands 19 that protrude less than 5 micrometers from the otherwise flat surface of the chuck face 15. The islands 19 may be formed in any shape. Islands may be about 10 micrometers in diameter or width and spaced about 100 micrometers apart. One or more concentric rings formed around the periphery of the area between the chuck face 15 and wafer 17 contain a low-pressure helium thermal-contact gas used to assist heat removal during plasma etching of a silicon wafer held by the chuck. The islands 19 are tall enough and close enough together to prevent silicon-to-silicon electrical contact in the space between the islands, and the islands occupy only a small fraction of the total area of the chuck face 15, typically 0.5 to 5 percent. The pattern of the islands 19, together with at least one hole 12 bored through the silicon veneer into the base plate, will provide sufficient gas-flow space to allow the distribution of the helium thermal-contact gas.

  10. Micromachined silicon electrostatic chuck

    DOE Patents [OSTI]

    Anderson, R.A.; Seager, C.H.

    1996-12-10T23:59:59.000Z

    An electrostatic chuck is faced with a patterned silicon plate, created by micromachining a silicon wafer, which is attached to a metallic base plate. Direct electrical contact between the chuck face (patterned silicon plate`s surface) and the silicon wafer it is intended to hold is prevented by a pattern of flat-topped silicon dioxide islands that protrude less than 5 micrometers from the otherwise flat surface of the chuck face. The islands may be formed in any shape. Islands may be about 10 micrometers in diameter or width and spaced about 100 micrometers apart. One or more concentric rings formed around the periphery of the area between the chuck face and wafer contain a low-pressure helium thermal-contact gas used to assist heat removal during plasma etching of a silicon wafer held by the chuck. The islands are tall enough and close enough together to prevent silicon-to-silicon electrical contact in the space between the islands, and the islands occupy only a small fraction of the total area of the chuck face, typically 0.5 to 5 percent. The pattern of the islands, together with at least one hole bored through the silicon veneer into the base plate, will provide sufficient gas-flow space to allow the distribution of the helium thermal-contact gas. 6 figs.

  11. Structure, defects, and strain in silicon-silicon oxide interfaces

    SciTech Connect (OSTI)

    Kova?evi?, Goran, E-mail: gkova@irb.hr; Pivac, Branko [Department of Materials Physics, Rudjer Boskovic Institute, Bijeni?ka 56, P.O.B. 180, HR-10002 Zagreb (Croatia)

    2014-01-28T23:59:59.000Z

    The structure of the interfaces between silicon and silicon-oxide is responsible for proper functioning of MOSFET devices while defects in the interface can deteriorate this function and lead to their failure. In this paper we modeled this interface and characterized its defects and strain. MD simulations were used for reconstructing interfaces into a thermodynamically stable configuration. In all modeled interfaces, defects were found in the form of three-coordinated silicon atom, five coordinated silicon atom, threefold-coordinated oxygen atom, or displaced oxygen atom. Three-coordinated oxygen atom can be created if dangling bonds on silicon are close enough. The structure and stability of three-coordinated silicon atoms (P{sub b} defect) depend on the charge as well as on the electric field across the interface. The negatively charged P{sub b} defect is the most stable one, but the electric field resulting from the interface reduces that stability. Interfaces with large differences in periodic constants of silicon and silicon oxide can be stabilized by buckling of silicon layer. The mechanical stress resulted from the interface between silicon and silicon oxide is greater in the silicon oxide layer. Ab initio modeling of clusters representing silicon and silicon oxide shows about three time larger susceptibility to strain in silicon oxide than in silicon if exposed to the same deformation.

  12. AMORPHOUS SILICON-BASED MINIMODULES WITH SILICONE ELASTOMER ENCAPSULATION

    E-Print Network [OSTI]

    Deng, Xunming

    -based polymers (silicones) may not show this effect. Although silicones were used to encapsulate solar cells improved, which may make them suitable for encapsulating solar cells once again. We have recentlyAMORPHOUS SILICON-BASED MINIMODULES WITH SILICONE ELASTOMER ENCAPSULATION Aarohi Vijh 1

  13. Optical properties of nanostructured silicon-rich silicon dioxide

    E-Print Network [OSTI]

    Stolfi, Michael Anthony

    2006-01-01T23:59:59.000Z

    We have conducted a study of the optical properties of sputtered silicon-rich silicon dioxide (SRO) thin films with specific application for the fabrication of erbium-doped waveguide amplifiers and lasers, polarization ...

  14. Floating Silicon Method

    SciTech Connect (OSTI)

    Kellerman, Peter

    2013-12-21T23:59:59.000Z

    The Floating Silicon Method (FSM) project at Applied Materials (formerly Varian Semiconductor Equipment Associates), has been funded, in part, by the DOE under a “Photovoltaic Supply Chain and Cross Cutting Technologies” grant (number DE-EE0000595) for the past four years. The original intent of the project was to develop the FSM process from concept to a commercially viable tool. This new manufacturing equipment would support the photovoltaic industry in following ways: eliminate kerf losses and the consumable costs associated with wafer sawing, allow optimal photovoltaic efficiency by producing high-quality silicon sheets, reduce the cost of assembling photovoltaic modules by creating large-area silicon cells which are free of micro-cracks, and would be a drop-in replacement in existing high efficiency cell production process thereby allowing rapid fan-out into the industry.

  15. Electrochemical thinning of silicon

    DOE Patents [OSTI]

    Medernach, John W. (Albuquerque, NM)

    1994-01-01T23:59:59.000Z

    Porous semiconducting material, e.g. silicon, is formed by electrochemical treatment of a specimen in hydrofluoric acid, using the specimen as anode. Before the treatment, the specimen can be masked. The porous material is then etched with a caustic solution or is oxidized, depending of the kind of structure desired, e.g. a thinned specimen, a specimen, a patterned thinned specimen, a specimen with insulated electrical conduits, and so on. Thinned silicon specimen can be subjected to tests, such as measurement of interstitial oxygen by Fourier transform infra-red spectroscopy (FTIR).

  16. Electrochemical thinning of silicon

    DOE Patents [OSTI]

    Medernach, J.W.

    1994-01-11T23:59:59.000Z

    Porous semiconducting material, e.g. silicon, is formed by electrochemical treatment of a specimen in hydrofluoric acid, using the specimen as anode. Before the treatment, the specimen can be masked. The porous material is then etched with a caustic solution or is oxidized, depending of the kind of structure desired, e.g. a thinned specimen, a specimen, a patterned thinned specimen, a specimen with insulated electrical conduits, and so on. Thinned silicon specimen can be subjected to tests, such as measurement of interstitial oxygen by Fourier transform infra-red spectroscopy (FTIR). 14 figures.

  17. Fabrication of porous silicon membranes 

    E-Print Network [OSTI]

    Yue, Wing Kong

    1988-01-01T23:59:59.000Z

    . Porous silicon layer is formed by the local dissolution which is initiated by the surface layer and is promoted by the hindrance layers composed of the silicic acid. Local etching or local dissolution is the cause of forming porous structure... of pores were 25 to 45 A with a mean value of 38 A. Microstructure of porous silicon studied by Besle et al. showed two distinct 17 patterns: the structure pattern of porous silicon film on heavily doped silicon and that on slightly doped silicon [26...

  18. Amorphous silicon photovoltaic devices

    DOE Patents [OSTI]

    Carlson, David E.; Lin, Guang H.; Ganguly, Gautam

    2004-08-31T23:59:59.000Z

    This invention is a photovoltaic device comprising an intrinsic or i-layer of amorphous silicon and where the photovoltaic device is more efficient at converting light energy to electric energy at high operating temperatures than at low operating temperatures. The photovoltaic devices of this invention are suitable for use in high temperature operating environments.

  19. Hybrid Silicon Evanescent Lasers John E. Bowersa

    E-Print Network [OSTI]

    Bowers, John

    [2]. Finally a 110 nm thick n-doped InP spacer is used as a bonding interface to silicon. The silicon factors of the silicon waveguide and the QWs can be manipulated by the silicon waveguide dimensions silicon waveguide. For the fabricated waveguide dimensions of a 0.7 µm height (H) and 0.6 µm rib

  20. Use of silicon in liquid sintered silicon nitrides and sialons

    DOE Patents [OSTI]

    Raj, Rishi (Ithaca, NY); Baik, Sunggi (Ithaca, NY)

    1984-12-11T23:59:59.000Z

    This invention relates to the production of improved high density nitrogen based ceramics by liquid-phase densification of silicon nitride or a compound of silicon-nitrogen-oxygen-metal, e.g. a sialon. In the process and compositions of the invention minor amounts of finely divided silicon are employed together with the conventional liquid phase producing additives to enhance the densification of the resultant ceramic.

  1. Use of silicon in liquid sintered silicon nitrides and sialons

    DOE Patents [OSTI]

    Raj, R.; Baik, S.

    1984-12-11T23:59:59.000Z

    This invention relates to the production of improved high density nitrogen based ceramics by liquid-phase densification of silicon nitride or a compound of silicon-nitrogen-oxygen-metal, e.g. a sialon. In the process and compositions of the invention minor amounts of finely divided silicon are employed together with the conventional liquid phase producing additives to enhance the densification of the resultant ceramic. 4 figs.

  2. Making silicon stronger.

    SciTech Connect (OSTI)

    Boyce, Brad Lee

    2010-11-01T23:59:59.000Z

    Silicon microfabrication has seen many decades of development, yet the structural reliability of microelectromechanical systems (MEMS) is far from optimized. The fracture strength of Si MEMS is limited by a combination of poor toughness and nanoscale etch-induced defects. A MEMS-based microtensile technique has been used to characterize the fracture strength distributions of both standard and custom microfabrication processes. Recent improvements permit 1000's of test replicates, revealing subtle but important deviations from the commonly assumed 2-parameter Weibull statistical model. Subsequent failure analysis through a combination of microscopy and numerical simulation reveals salient aspects of nanoscale flaw control. Grain boundaries, for example, suffer from preferential attack during etch-release thereby forming failure-critical grain-boundary grooves. We will discuss ongoing efforts to quantify the various factors that affect the strength of polycrystalline silicon, and how weakest-link theory can be used to make worst-case estimates for design.

  3. Amorphous silicon radiation detectors

    DOE Patents [OSTI]

    Street, Robert A. (Palo Alto, CA); Perez-Mendez, Victor (Berkeley, CA); Kaplan, Selig N. (El Cerrito, CA)

    1992-01-01T23:59:59.000Z

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  4. Amorphous silicon radiation detectors

    DOE Patents [OSTI]

    Street, R.A.; Perez-Mendez, V.; Kaplan, S.N.

    1992-11-17T23:59:59.000Z

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification. 13 figs.

  5. Diamond-silicon carbide composite

    DOE Patents [OSTI]

    Qian, Jiang; Zhao, Yusheng

    2006-06-13T23:59:59.000Z

    Fully dense, diamond-silicon carbide composites are prepared from ball-milled microcrystalline diamond/amorphous silicon powder mixture. The ball-milled powder is sintered (P=5–8 GPa, T=1400K–2300K) to form composites having high fracture toughness. A composite made at 5 GPa/1673K had a measured fracture toughness of 12 MPa.dot.m1/2. By contrast, liquid infiltration of silicon into diamond powder at 5 GPa/1673K produces a composite with higher hardness but lower fracture toughness. X-ray diffraction patterns and Raman spectra indicate that amorphous silicon is partially transformed into nanocrystalline silicon at 5 GPa/873K, and nanocrystalline silicon carbide forms at higher temperatures.

  6. Modified silicon carbide whiskers

    DOE Patents [OSTI]

    Tiegs, Terry N. (Lenoir City, TN); Lindemer, Terrence B. (Oak Ridge, TN)

    1991-01-01T23:59:59.000Z

    Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparaging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.

  7. Modified silicon carbide whiskers

    DOE Patents [OSTI]

    Tiegs, T.N.; Lindemer, T.B.

    1991-05-21T23:59:59.000Z

    Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.

  8. Fabrication and properties of microporous silicon

    E-Print Network [OSTI]

    Shao, Jianzhong

    1994-01-01T23:59:59.000Z

    Microporous silicon layers were fabricated by electrochemical etching of single crystalline silicon wafers in HF-ethanol solutions. The pore properties of porous silicon were examined by physical adsorption of nitrogen and the relationship between...

  9. Fabrication and properties of microporous silicon 

    E-Print Network [OSTI]

    Shao, Jianzhong

    1994-01-01T23:59:59.000Z

    Microporous silicon layers were fabricated by electrochemical etching of single crystalline silicon wafers in HF-ethanol solutions. The pore properties of porous silicon were examined by physical adsorption of nitrogen and the relationship between...

  10. Vertical silicon nanowire arrays for gas sensing

    E-Print Network [OSTI]

    Zhao, Hangbo

    2014-01-01T23:59:59.000Z

    The goal of this research was to fabricate and characterize vertically aligned silicon nanowire gas sensors. Silicon nanowires are very attractive for gas sensing applications and vertically aligned silicon nanowires are ...

  11. Fabrication of porous silicon membranes

    E-Print Network [OSTI]

    Yue, Wing Kong

    1988-01-01T23:59:59.000Z

    efficiencies. The silicon difluoride, SiFq, is an unstable substance. It reacts with hydrofluoric acid forming silicic acid (HqSiFs) and hydrogen gas(Hq): SiFs + 2HF ? & SiF4+ Hs, (2) Si F4 + 2 H F ~ Hr Si Fs. In dilute HF solution, silicon can also react.... In step 1, the surface of silicon is covered with fluorine ions. In step 2, when an electric field is applied across the interface, holes move towards the surface. In step 3, some of the holes are trapped at the surface, and they weaken the silicon...

  12. Silicon on insulator with active buried regions

    DOE Patents [OSTI]

    McCarthy, Anthony M. (Menlo Park, CA)

    1998-06-02T23:59:59.000Z

    A method for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors.

  13. Silicon on insulator with active buried regions

    DOE Patents [OSTI]

    McCarthy, A.M.

    1996-01-30T23:59:59.000Z

    A method is disclosed for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors. 10 figs.

  14. Silicon on insulator with active buried regions

    DOE Patents [OSTI]

    McCarthy, Anthony M. (Menlo Park, CA)

    1996-01-01T23:59:59.000Z

    A method for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors.

  15. Silicon on insulator with active buried regions

    DOE Patents [OSTI]

    McCarthy, A.M.

    1998-06-02T23:59:59.000Z

    A method is disclosed for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors. 10 figs.

  16. Nanoscale Engineering Of Radiation Tolerant Silicon Carbide....

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Of Radiation Tolerant Silicon Carbide. Nanoscale Engineering Of Radiation Tolerant Silicon Carbide. Abstract: Radiation tolerance is determined by how effectively the...

  17. Amorphous silicon ionizing particle detectors

    DOE Patents [OSTI]

    Street, R.A.; Mendez, V.P.; Kaplan, S.N.

    1988-11-15T23:59:59.000Z

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation. 15 figs.

  18. Amorphous silicon ionizing particle detectors

    DOE Patents [OSTI]

    Street, Robert A. (Palo Alto, CA); Mendez, Victor P. (Berkeley, CA); Kaplan, Selig N. (El Cerrito, CA)

    1988-01-01T23:59:59.000Z

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation.

  19. Ultraviolet selective silicon photodiode

    E-Print Network [OSTI]

    Chintapalli, Koteswara Rao

    1992-01-01T23:59:59.000Z

    (' silicon surfa&(& that n&ost of t h&) phologeneraied hole-el( & tron pairs are k&st by surface rccornbinai ion before being nolle&. trxl hy a pr). jun?i, ion. The major cause of surl'a&. e re?omhination is probably due Io lifetim(. shortening ol' Lhe... drpth corresponded to a high& r shor4wav? length rcsponsiv- ity tlirough liis ( xperimcnial diodes with junction dcpl ha ol'0. -'I to 2 0 pm. I indmayer and Allison [4I] I'abri&. ated n+-p solar cells with junction &lcpths of approximately 0. 1, 0. 15...

  20. Amorphous silicon/crystalline silicon heterojunctions: The future of high-efficiency silicon solar cells

    E-Print Network [OSTI]

    Firestone, Jeremy

    ;5 Record efficiencies #12;6 Diffused-junction solar cells Diffused-junction solar cell Chemical passivation to ~650 mV #12;7 Silicon heterojunction solar cells a-Si:H provides excellent passivation of c-Si surface Heterojunction solar cell Chemical passivation Chemical passivation #12;8 Voc and silicon heterojunction solar

  1. Silicon-doped boron nitride coated fibers in silicon melt infiltrated composites

    DOE Patents [OSTI]

    Corman, Gregory Scot (Ballston Lake, NY); Luthra, Krishan Lal (Schenectady, NY)

    1999-01-01T23:59:59.000Z

    A fiber-reinforced silicon--silicon carbide matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is produced. The invention also provides a method for protecting the reinforcing fibers in the silicon--silicon carbide matrix composites by coating the fibers with a silicon-doped boron nitride coating.

  2. Silicon-doped boron nitride coated fibers in silicon melt infiltrated composites

    DOE Patents [OSTI]

    Corman, Gregory Scot (Ballston Lake, NY); Luthra, Krishan Lal (Schenectady, NY)

    2002-01-01T23:59:59.000Z

    A fiber-reinforced silicon-silicon carbide matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is produced. The invention also provides a method for protecting the reinforcing fibers in the silicon-silicon carbide matrix composites by coating the fibers with a silicon-doped boron nitride coating.

  3. Silicon nitride/silicon carbide composite densified materials prepared using composite powders

    DOE Patents [OSTI]

    Dunmead, S.D.; Weimer, A.W.; Carroll, D.F.; Eisman, G.A.; Cochran, G.A.; Susnitzky, D.W.; Beaman, D.R.; Nilsen, K.J.

    1997-07-01T23:59:59.000Z

    Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.

  4. Silicon nitride ceramic comprising samaria and ytterbia

    DOE Patents [OSTI]

    Yeckley, Russell L. (Oakham, MA)

    1996-01-01T23:59:59.000Z

    This invention relates to a sintered silicon nitride ceramic comprising samaria and ytterbia for enhanced toughness.

  5. Amorphous Silicon-Carbon Nanostructure Photovoltaic Devices

    E-Print Network [OSTI]

    Schriver, Maria Christine

    2012-01-01T23:59:59.000Z

    and Photovoltaic Performance . . . . . . . . . . . . . . .Amorphous Silicon as a Photovoltaic Material 2.1.2ii Photovoltaic Model . . . . . . . . . . .

  6. Process for forming retrograde profiles in silicon

    DOE Patents [OSTI]

    Weiner, K.H.; Sigmon, T.W.

    1996-10-15T23:59:59.000Z

    A process is disclosed for forming retrograde and oscillatory profiles in crystalline and polycrystalline silicon. The process consisting of introducing an n- or p-type dopant into the silicon, or using prior doped silicon, then exposing the silicon to multiple pulses of a high-intensity laser or other appropriate energy source that melts the silicon for short time duration. Depending on the number of laser pulses directed at the silicon, retrograde profiles with peak/surface dopant concentrations which vary are produced. The laser treatment can be performed in air or in vacuum, with the silicon at room temperature or heated to a selected temperature.

  7. Process for forming retrograde profiles in silicon

    DOE Patents [OSTI]

    Weiner, Kurt H. (San Jose, CA); Sigmon, Thomas W. (Phoenix, AZ)

    1996-01-01T23:59:59.000Z

    A process for forming retrograde and oscillatory profiles in crystalline and polycrystalline silicon. The process consisting of introducing an n- or p-type dopant into the silicon, or using prior doped silicon, then exposing the silicon to multiple pulses of a high-intensity laser or other appropriate energy source that melts the silicon for short time duration. Depending on the number of laser pulses directed at the silicon, retrograde profiles with peak/surface dopant concentrations which vary from 1-1e4 are produced. The laser treatment can be performed in air or in vacuum, with the silicon at room temperature or heated to a selected temperature.

  8. High specific activity silicon-32

    DOE Patents [OSTI]

    Phillips, D.R.; Brzezinski, M.A.

    1996-06-11T23:59:59.000Z

    A process for preparation of silicon-32 is provided and includes contacting an irradiated potassium chloride target, including spallation products from a prior irradiation, with sufficient water, hydrochloric acid or potassium hydroxide to form a solution, filtering the solution, adjusting pH of the solution from about 5.5 to about 7.5, admixing sufficient molybdate-reagent to the solution to adjust the pH of the solution to about 1.5 and to form a silicon-molybdate complex, contacting the solution including the silicon-molybdate complex with a dextran-based material, washing the dextran-based material to remove residual contaminants such as sodium-22, separating the silicon-molybdate complex from the dextran-based material as another solution, adding sufficient hydrochloric acid and hydrogen peroxide to the solution to prevent reformation of the silicon-molybdate complex and to yield an oxidation state of the molybdate adapted for subsequent separation by an anion exchange material, contacting the solution with an anion exchange material whereby the molybdate is retained by the anion exchange material and the silicon remains in solution, and optionally adding sufficient alkali metal hydroxide to adjust the pH of the solution to about 12 to 13. Additionally, a high specific activity silicon-32 product having a high purity is provided.

  9. High specific activity silicon-32

    DOE Patents [OSTI]

    Phillips, Dennis R. (Los Alamos, NM); Brzezinski, Mark A. (Santa Barbara, CA)

    1996-01-01T23:59:59.000Z

    A process for preparation of silicon-32 is provided and includes contacting an irradiated potassium chloride target, including spallation products from a prior irradiation, with sufficient water, hydrochloric acid or potassium hydroxide to form a solution, filtering the solution, adjusting pH of the solution to from about 5.5 to about 7.5, admixing sufficient molybdate-reagent to the solution to adjust the pH of the solution to about 1.5 and to form a silicon-molybdate complex, contacting the solution including the silicon-molybdate complex with a dextran-based material, washing the dextran-based material to remove residual contaminants such as sodium-22, separating the silicon-molybdate complex from the dextran-based material as another solution, adding sufficient hydrochloric acid and hydrogen peroxide to the solution to prevent reformation of the silicon-molybdate complex and to yield an oxidization state of the molybdate adapted for subsequent separation by an anion exchange material, contacting the solution with an anion exchange material whereby the molybdate is retained by the anion exchange material and the silicon remains in solution, and optionally adding sufficient alkali metal hydroxide to adjust the pH of the solution to about 12 to 13. Additionally, a high specific activity silicon-32 product having a high purity is provided.

  10. Method of forming buried oxide layers in silicon

    DOE Patents [OSTI]

    Sadana, Devendra Kumar (Pleasantville, NY); Holland, Orin Wayne (Lenoir City, TN)

    2000-01-01T23:59:59.000Z

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  11. Lithium Ion Battery Performance of Silicon Nanowires With Carbon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ion Battery Performance of Silicon Nanowires With Carbon Skin . Lithium Ion Battery Performance of Silicon Nanowires With Carbon Skin . Abstract: Silicon (Si) nanomaterials have...

  12. Arnold Schwarzenegger SINGLE CRYSTAL SILICON

    E-Print Network [OSTI]

    in this report. #12;ENERGY INNOVATIONS SMALL GRANT (EISG) PROGRAM INDEPENDENT ASSESSMENT REPORT (IAR) SINGLEArnold Schwarzenegger Governor SINGLE CRYSTAL SILICON SHEET GROWTH Prepared For: California Energy Commission Energy Innovations Small Grant Program Prepared By: Energy Materials Research

  13. Polarization manipulation in silicon photonics

    E-Print Network [OSTI]

    Su, Zhan, S.M. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    Silicon photonics is moving fast toward industrialization. It satisfies the increasing demand for higher speed, larger bandwidth communication. Thus it has a wide range of applications including high-performance computing, ...

  14. Intel Corporation CREOL April 1 2005 SiliconSilicon PhotonicsPhotonics

    E-Print Network [OSTI]

    Van Stryland, Eric

    Recent resultsRecent results ­­IntelIntel''s Silicon Lasers Silicon Laser SummarySummary #12;*Third party of their respective ownerve owner 44 Industry standard silicon manufacturing processes couldIndustry standard silicon manufacturing processes could enable integration, bring volume economics to optical.enable integration, bring

  15. Amorphous Silicon-Carbon Nanostructure Photovoltaic Devices

    E-Print Network [OSTI]

    Schriver, Maria Christine

    2012-01-01T23:59:59.000Z

    hydrogen dilution in silane on light induced degradation of hydrogenated amor- phous silicon films for solar photovoltaichydrogen content from 14-22%[76]. Hydrogenated amorphous silicon has promise as a photovoltaic

  16. Design of a silicon waver breaker

    E-Print Network [OSTI]

    Mukaddam, Kabir James, 1983-

    2005-01-01T23:59:59.000Z

    Usually multiple MEMS or IC devices are fabricated on a single silicon wafer. Manually separating the components from each other involves scribing and fracturing the silicon. This thesis presents a design for a tool to aid ...

  17. Nucleation and solidification of silicon for photovoltaics

    E-Print Network [OSTI]

    Appapillai, Anjuli T. (Anjuli Tara)

    2010-01-01T23:59:59.000Z

    The majority of solar cells produced today are made with crystalline silicon wafers, which are typically manufactured by growing a large piece of silicon and then sawing it into ~200 pm wafers, a process which converts ...

  18. Three dimensional amorphous silicon/microcrystalline silicon solar cells

    DOE Patents [OSTI]

    Kaschmitter, J.L.

    1996-07-23T23:59:59.000Z

    Three dimensional deep contact amorphous silicon/microcrystalline silicon (a-Si/{micro}c-Si) solar cells are disclosed which use deep (high aspect ratio) p and n contacts to create high electric fields within the carrier collection volume material of the cell. The deep contacts are fabricated using repetitive pulsed laser doping so as to create the high aspect p and n contacts. By the provision of the deep contacts which penetrate the electric field deep into the material where the high strength of the field can collect many of the carriers, thereby resulting in a high efficiency solar cell. 4 figs.

  19. Three dimensional amorphous silicon/microcrystalline silicon solar cells

    DOE Patents [OSTI]

    Kaschmitter, James L. (Pleasanton, CA)

    1996-01-01T23:59:59.000Z

    Three dimensional deep contact amorphous silicon/microcrystalline silicon (a-Si/.mu.c-Si) solar cells which use deep (high aspect ratio) p and n contacts to create high electric fields within the carrier collection volume material of the cell. The deep contacts are fabricated using repetitive pulsed laser doping so as to create the high aspect p and n contacts. By the provision of the deep contacts which penetrate the electric field deep into the material where the high strength of the field can collect many of the carriers, thereby resulting in a high efficiency solar cell.

  20. Silicon crystal growing by oscillating crucible technique

    DOE Patents [OSTI]

    Schwuttke, G.H.; Kim, K.M.; Smetana, P.

    1983-08-03T23:59:59.000Z

    A process for growing silicon crystals from a molten melt comprising oscillating the container during crystal growth is disclosed.

  1. System and method for liquid silicon containment

    SciTech Connect (OSTI)

    Cliber, James A; Clark, Roger F; Stoddard, Nathan G; Von Dollen, Paul

    2014-06-03T23:59:59.000Z

    This invention relates to a system and a method for liquid silicon containment, such as during the casting of high purity silicon used in solar cells or solar modules. The containment apparatus includes a shielding ember adapted to prevent breaching molten silicon from contacting structural elements or cooling elements of a casting device, and a volume adapted to hold a quantity of breaching molten silicon with the volume formed by a bottom and one or more sides.

  2. System and method for liquid silicon containment

    DOE Patents [OSTI]

    Cliber, James A; Clark, Roger F; Stoddard, Nathan G; Von Dollen, Paul

    2013-05-28T23:59:59.000Z

    This invention relates to a system and a method for liquid silicon containment, such as during the casting of high purity silicon used in solar cells or solar modules. The containment apparatus includes a shielding member adapted to prevent breaching molten silicon from contacting structural elements or cooling elements of a casting device, and a volume adapted to hold a quantity of breaching molten silicon with the volume formed by a bottom and one or more sides.

  3. Copper doped polycrystalline silicon solar cell

    DOE Patents [OSTI]

    Lovelace, Alan M. Administrator of the National Aeronautics and Space (La Canada, CA); Koliwad, Krishna M. (La Canada, CA); Daud, Taher (La Crescenta, CA)

    1981-01-01T23:59:59.000Z

    Photovoltaic cells having improved performance are fabricated from polycrystalline silicon containing copper segregated at the grain boundaries.

  4. Silicon Micromachined Dimensional Calibration Artifact for Mesoscale...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Micromachined Dimensional Calibration Artifact for Mesoscale Measurement Machines 1 Silicon Micromachined Dimensional Calibration Artifact for Mesoscale Measurement Machines 2...

  5. Birefringence Measurements on Crystalline Silicon

    E-Print Network [OSTI]

    Krüger, Christoph; Khalaidovski, Alexander; Steinlechner, Jessica; Nawrodt, Ronny; Schnabel, Roman; Lück, Harald

    2015-01-01T23:59:59.000Z

    Crystalline silicon has been proposed as a new test mass material in third generation gravitational wave detectors such as the Einstein Telescope (ET). Birefringence can reduce the interferometric contrast and can produce dynamical disturbances in interferometers. In this work we use the method of polarisation-dependent resonance frequency analysis of Fabry-Perot-cavities containing silicon as a birefringent medium. Our measurements show a birefringence of silicon along the (111) axis of the order of $\\Delta\\, n \\approx 10^{-7}$ at a laser wavelength of 1550nm and room temperature. A model is presented that explains the results of different settings of our measurements as a superposition of elastic strains caused by external stresses in the sample and plastic strains possibly generated during the production process. An application of our theory on the proposed ET test mass geometry suggests no critical effect on birefringence due to elastic strains.

  6. Process of preparing tritiated porous silicon

    DOE Patents [OSTI]

    Tam, S.W.

    1997-02-18T23:59:59.000Z

    A process of preparing tritiated porous silicon is described in which porous silicon is equilibrated with a gaseous vapor containing HT/T{sub 2} gas in a diluent for a time sufficient for tritium in the gas phase to replace hydrogen present in the pore surfaces of the porous silicon. 1 fig.

  7. Process of preparing tritiated porous silicon

    DOE Patents [OSTI]

    Tam, Shiu-Wing (Downers Grove, IL)

    1997-01-01T23:59:59.000Z

    A process of preparing tritiated porous silicon in which porous silicon is equilibrated with a gaseous vapor containing HT/T.sub.2 gas in a diluent for a time sufficient for tritium in the gas phase to replace hydrogen present in the pore surfaces of the porous silicon.

  8. Laser wafering for silicon solar.

    SciTech Connect (OSTI)

    Friedmann, Thomas Aquinas; Sweatt, William C.; Jared, Bradley Howell

    2011-03-01T23:59:59.000Z

    Current technology cuts solar Si wafers by a wire saw process, resulting in 50% 'kerf' loss when machining silicon from a boule or brick into a wafer. We want to develop a kerf-free laser wafering technology that promises to eliminate such wasteful wire saw processes and achieve up to a ten-fold decrease in the g/W{sub p} (grams/peak watt) polysilicon usage from the starting polysilicon material. Compared to today's technology, this will also reduce costs ({approx}20%), embodied energy, and green-house gas GHG emissions ({approx}50%). We will use short pulse laser illumination sharply focused by a solid immersion lens to produce subsurface damage in silicon such that wafers can be mechanically cleaved from a boule or brick. For this concept to succeed, we will need to develop optics, lasers, cleaving, and high throughput processing technologies capable of producing wafers with thicknesses < 50 {micro}m with high throughput (< 10 sec./wafer). Wafer thickness scaling is the 'Moore's Law' of silicon solar. Our concept will allow solar manufacturers to skip entire generations of scaling and achieve grid parity with commercial electricity rates. Yet, this idea is largely untested and a simple demonstration is needed to provide credibility for a larger scale research and development program. The purpose of this project is to lay the groundwork to demonstrate the feasibility of laser wafering. First, to design and procure on optic train suitable for producing subsurface damage in silicon with the required damage and stress profile to promote lateral cleavage of silicon. Second, to use an existing laser to produce subsurface damage in silicon, and third, to characterize the damage using scanning electron microscopy and confocal Raman spectroscopy mapping.

  9. Black Silicon Enhanced Thin Film Silicon Photovoltaic Devices

    SciTech Connect (OSTI)

    Martin U. Pralle; James E. Carey

    2010-07-31T23:59:59.000Z

    SiOnyx has developed an enhanced thin film silicon photovoltaic device with improved efficiency. Thin film silicon solar cells suffer from low material absorption characteristics resulting in poor cell efficiencies. SiOnyx’s approach leverages Black Silicon, an advanced material fabricated using ultrafast lasers. The laser treated films show dramatic enhancement in optical absorption with measured values in excess of 90% in the visible spectrum and well over 50% in the near infrared spectrum. Thin film Black Silicon solar cells demonstrate 25% higher current generation with almost no impact on open circuit voltage as compared with representative control samples. The initial prototypes demonstrated an improvement of nearly 2 percentage points in the suns Voc efficiency measurement. In addition we validated the capability to scale this processing technology to the throughputs (< 5 min/m2) required for volume production using state of the art commercially available high power industrial lasers. With these results we clearly demonstrate feasibility for the enhancement of thin film solar cells with this laser processing technique.

  10. Method for processing silicon solar cells

    DOE Patents [OSTI]

    Tsuo, Y. Simon (Golden, CO); Landry, Marc D. (Lafayette, CO); Pitts, John R. (Lakewood, CO)

    1997-01-01T23:59:59.000Z

    The instant invention teaches a novel method for fabricating silicon solar cells utilizing concentrated solar radiation. The solar radiation is concentrated by use of a solar furnace which is used to form a front surface junction and back-surface field in one processing step. The present invention also provides a method of making multicrystallline silicon from amorphous silicon. The invention also teaches a method of texturing the surface of a wafer by forming a porous silicon layer on the surface of a silicon substrate and a method of gettering impurities. Also contemplated by the invention are methods of surface passivation, forming novel solar cell structures, and hydrogen passivation.

  11. Method for processing silicon solar cells

    DOE Patents [OSTI]

    Tsuo, Y.S.; Landry, M.D.; Pitts, J.R.

    1997-05-06T23:59:59.000Z

    The instant invention teaches a novel method for fabricating silicon solar cells utilizing concentrated solar radiation. The solar radiation is concentrated by use of a solar furnace which is used to form a front surface junction and back-surface field in one processing step. The present invention also provides a method of making multicrystalline silicon from amorphous silicon. The invention also teaches a method of texturing the surface of a wafer by forming a porous silicon layer on the surface of a silicon substrate and a method of gettering impurities. Also contemplated by the invention are methods of surface passivation, forming novel solar cell structures, and hydrogen passivation. 2 figs.

  12. Narrow band gap amorphous silicon semiconductors

    DOE Patents [OSTI]

    Madan, A.; Mahan, A.H.

    1985-01-10T23:59:59.000Z

    Disclosed is a narrow band gap amorphous silicon semiconductor comprising an alloy of amorphous silicon and a band gap narrowing element selected from the group consisting of Sn, Ge, and Pb, with an electron donor dopant selected from the group consisting of P, As, Sb, Bi and N. The process for producing the narrow band gap amorphous silicon semiconductor comprises the steps of forming an alloy comprising amorphous silicon and at least one of the aforesaid band gap narrowing elements in amount sufficient to narrow the band gap of the silicon semiconductor alloy below that of amorphous silicon, and also utilizing sufficient amounts of the aforesaid electron donor dopant to maintain the amorphous silicon alloy as an n-type semiconductor.

  13. Method for fabricating silicon cells

    DOE Patents [OSTI]

    Ruby, D.S.; Basore, P.A.; Schubert, W.K.

    1998-08-11T23:59:59.000Z

    A process is described for making high-efficiency solar cells. This is accomplished by forming a diffusion junction and a passivating oxide layer in a single high-temperature process step. The invention includes the class of solar cells made using this process, including high-efficiency solar cells made using Czochralski-grown silicon. 9 figs.

  14. Dispersion toughened silicon carbon ceramics

    DOE Patents [OSTI]

    Wei, G.C.

    1984-01-01T23:59:59.000Z

    Fracture resistant silicon carbide ceramics are provided by incorporating therein a particulate dispersoid selected from the group consisting of (a) a mixture of boron, carbon and tungsten, (b) a mixture of boron, carbon and molybdenum, (c) a mixture of boron, carbon and titanium carbide, (d) a mixture of aluminum oxide and zirconium oxide, and (e) boron nitride. 4 figures.

  15. Microelectromechanical pump utilizing porous silicon

    DOE Patents [OSTI]

    Lantz, Jeffrey W. (Albuquerque, NM); Stalford, Harold L. (Norman, OK)

    2011-07-19T23:59:59.000Z

    A microelectromechanical (MEM) pump is disclosed which includes a porous silicon region sandwiched between an inlet chamber and an outlet chamber. The porous silicon region is formed in a silicon substrate and contains a number of pores extending between the inlet and outlet chambers, with each pore having a cross-section dimension about equal to or smaller than a mean free path of a gas being pumped. A thermal gradient is provided along the length of each pore by a heat source which can be an electrical resistance heater or an integrated circuit (IC). A channel can be formed through the silicon substrate so that inlet and outlet ports can be formed on the same side of the substrate, or so that multiple MEM pumps can be connected in series to form a multi-stage MEM pump. The MEM pump has applications for use in gas-phase MEM chemical analysis systems, and can also be used for passive cooling of ICs.

  16. Method for fabricating silicon cells

    DOE Patents [OSTI]

    Ruby, Douglas S. (Albuquerque, NM); Basore, Paul A. (Albuquerque, NM); Schubert, W. Kent (Albuquerque, NM)

    1998-08-11T23:59:59.000Z

    A process for making high-efficiency solar cells. This is accomplished by forming a diffusion junction and a passivating oxide layer in a single high-temperature process step. The invention includes the class of solar cells made using this process, including high-efficiency solar cells made using Czochralski-grown silicon.

  17. Amorphous silicon passivated contacts for diffused junction silicon solar cells

    SciTech Connect (OSTI)

    Bullock, J., E-mail: james.bullock@anu.edu.au; Yan, D.; Wan, Y.; Cuevas, A. [Research School of Engineering, The Australian National University, Canberra, ACT 0200 (Australia); Demaurex, B.; Hessler-Wyser, A.; De Wolf, S. [École Polytechnique Fédérale de Lausanne (EPFL), Institute of micro engineering (IMT), Photovoltaics and Thin Film Electronic Laboratory, Maladière 71, CH-200 Neuchâtel (Switzerland)

    2014-04-28T23:59:59.000Z

    Carrier recombination at the metal contacts is a major obstacle in the development of high-performance crystalline silicon homojunction solar cells. To address this issue, we insert thin intrinsic hydrogenated amorphous silicon [a-Si:H(i)] passivating films between the dopant-diffused silicon surface and aluminum contacts. We find that with increasing a-Si:H(i) interlayer thickness (from 0 to 16?nm) the recombination loss at metal-contacted phosphorus (n{sup +}) and boron (p{sup +}) diffused surfaces decreases by factors of ?25 and ?10, respectively. Conversely, the contact resistivity increases in both cases before saturating to still acceptable values of ? 50 m? cm{sup 2} for n{sup +} and ?100 m? cm{sup 2} for p{sup +} surfaces. Carrier transport towards the contacts likely occurs by a combination of carrier tunneling and aluminum spiking through the a-Si:H(i) layer, as supported by scanning transmission electron microscopy–energy dispersive x-ray maps. We explain the superior contact selectivity obtained on n{sup +} surfaces by more favorable band offsets and capture cross section ratios of recombination centers at the c-Si/a-Si:H(i) interface.

  18. A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction

    E-Print Network [OSTI]

    Mailoa, Jonathan P.

    With the advent of efficient high-bandgap metal-halide perovskite photovoltaics, an opportunity exists to make perovskite/silicon tandem solar cells. We fabricate a monolithic tandem by developing a silicon-based interband ...

  19. Strained Silicon on Silicon by Wafer Bonding and Layer Transfer from Relaxed SiGe Buffer

    E-Print Network [OSTI]

    Isaacson, David M.

    We report the creation of strained silicon on silicon (SSOS) substrate technology. The method uses a relaxed SiGe buffer as a template for inducing tensile strain in a Si layer, which is then bonded to another Si handle ...

  20. Polycrystalline Silicon Solar Cells Fabricated by Pulsed Rapid Thermal Annealing of Amorphous Silicon 

    E-Print Network [OSTI]

    Lee, I-Syuan

    2014-05-07T23:59:59.000Z

    optimized. The novel nickel-induced crystallization with low thermal budget was demonstrated. Polycrystalline silicon thin films were formed from the amorphous silicon thin films by the pulsed rapid thermal annealing process enhanced with a thin nickel...

  1. The CDF silicon vertex trigger

    SciTech Connect (OSTI)

    B. Ashmanskas; A. Barchiesi; A. Bardi

    2003-06-23T23:59:59.000Z

    The CDF experiment's Silicon Vertex Trigger is a system of 150 custom 9U VME boards that reconstructs axial tracks in the CDF silicon strip detector in a 15 {mu}sec pipeline. SVT's 35 {mu}m impact parameter resolution enables CDF's Level 2 trigger to distinguish primary and secondary particles, and hence to collect large samples of hadronic bottom and charm decays. We review some of SVT's key design features. Speed is achieved with custom VLSI pattern recognition, linearized track fitting, pipelining, and parallel processing. Testing and reliability are aided by built-in logic state analysis and test-data sourcing at each board's input and output, a common inter-board data link, and a universal ''Merger'' board for data fan-in/fan-out. Speed and adaptability are enhanced by use of modern FPGAs.

  2. The ATLAS Silicon Pixel Sensors

    E-Print Network [OSTI]

    Alam, M S; Einsweiler, K F; Emes, J; Gilchriese, M G D; Joshi, A; Kleinfelder, S A; Marchesini, R; McCormack, F; Milgrome, O; Palaio, N; Pengg, F; Richardson, J; Zizka, G; Ackers, M; Andreazza, A; Comes, G; Fischer, P; Keil, M; Klasen, V; Kühl, T; Meuser, S; Ockenfels, W; Raith, B; Treis, J; Wermes, N; Gössling, C; Hügging, F G; Wüstenfeld, J; Wunstorf, R; Barberis, D; Beccherle, R; Darbo, G; Gagliardi, G; Gemme, C; Morettini, P; Musico, P; Osculati, B; Parodi, F; Rossi, L; Blanquart, L; Breugnon, P; Calvet, D; Clemens, J-C; Delpierre, P A; Hallewell, G D; Laugier, D; Mouthuy, T; Rozanov, A; Valin, I; Aleppo, M; Caccia, M; Ragusa, F; Troncon, C; Lutz, Gerhard; Richter, R H; Rohe, T; Brandl, A; Gorfine, G; Hoeferkamp, M; Seidel, SC; Boyd, GR; Skubic, P L; Sícho, P; Tomasek, L; Vrba, V; Holder, M; Ziolkowski, M; D'Auria, S; del Papa, C; Charles, E; Fasching, D; Becks, K H; Lenzen, G; Linder, C

    2001-01-01T23:59:59.000Z

    Prototype sensors for the ATLAS silicon pixel detector have been developed. The design of the sensors is guided by the need to operate them in the severe LHC radiation environment at up to several hundred volts while maintaining a good signal-to-noise ratio, small cell size, and minimal multiple scattering. The ability to be operated under full bias for electrical characterization prior to the attachment of the readout integrated circuit electronics is also desired.

  3. Diamond-silicon carbide composite and method

    DOE Patents [OSTI]

    Zhao, Yusheng (Los Alamos, NM)

    2011-06-14T23:59:59.000Z

    Uniformly dense, diamond-silicon carbide composites having high hardness, high fracture toughness, and high thermal stability are prepared by consolidating a powder mixture of diamond and amorphous silicon. A composite made at 5 GPa/1673K had a measured fracture toughness of 12 MPam.sup.1/2. By contrast, liquid infiltration of silicon into diamond powder at 5 GPa/1673K produces a composite with higher hardness but lower fracture toughness.

  4. Process for strengthening silicon based ceramics

    SciTech Connect (OSTI)

    Kim, Hyoun-Ee; Moorhead, A.J.

    1991-03-07T23:59:59.000Z

    A process for strengthening silicon based ceramic monolithic materials and composite materials that contain silicon based ceramic reinforcing phases that requires that the ceramic be exposed to a wet hydrogen atmosphere at about 1400{degrees}C. The process results in a dense, tightly adherent silicon containing oxide layer that heals, blunts, or otherwise negates the detrimental effect of strength limiting flaws on the surface of the ceramic body.

  5. Silicon Sheets By Redox Assisted Chemical Exfoliation

    E-Print Network [OSTI]

    Tchalala, Mohamed Rachid; Enriquez, Hanna; Kara, Abdelkader; Lachgar, Abdessadek; Yagoubi, Said; Foy, Eddy; Vega, Enrique; Bendounan, Azzedine; Silly, Mathieu G; Sirotti, Fausto; Nitshe, Serge; Chaudanson, Damien; Jamgotchian, Haik; Aufray, Bernard; Mayne, Andrew J; Dujardin, Gérald; Oughaddou, Hamid

    2013-01-01T23:59:59.000Z

    In this paper, we report the direct chemical synthesis of silicon sheets in gram-scale quantities by chemical exfoliation of pre-processed calcium di-silicide (CaSi2). We have used a combination of X-ray photoelectron spectroscopy, transmission electron microscopy and Energy-dispersive X-ray spectroscopy to characterize the obtained silicon sheets. We found that the clean and crystalline silicon sheets show a 2-dimensional hexagonal graphitic structure.

  6. Enhancing the Lithiation Rate of Silicon Nanowires by the Inclusion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhancing the Lithiation Rate of Silicon Nanowires by the Inclusion of Tin. Enhancing the Lithiation Rate of Silicon Nanowires by the Inclusion of Tin. Abstract: Silicon (Si) has a...

  7. Efficient light trapping structure in thin film silicon solar cells

    E-Print Network [OSTI]

    Sheng, Xing

    Thin film silicon solar cells are believed to be promising candidates for continuing cost reduction in photovoltaic panels because silicon usage could be greatly reduced. Since silicon is an indirect bandgap semiconductor, ...

  8. Structural alloy with a protective coating containing silicon or silicon-oxide

    DOE Patents [OSTI]

    Natesan, K.

    1992-01-01T23:59:59.000Z

    This invention is comprised of an iron-based alloy containing chromium and optionally, nickel. The alloy has a surface barrier of silicon or silicon plus oxygen which converts at high temperature to a protective silicon compound. The alloy can be used in oxygen-sulfur mixed gases at temperatures up to about 1100{degrees}C.

  9. Amorphous Silicon-Carbon Nanostructure Photovoltaic Devices

    E-Print Network [OSTI]

    Schriver, Maria Christine

    2012-01-01T23:59:59.000Z

    decline in photovoltaic efficiency is less dramatic, butefficiency ? = V OC I ?j SC Amorphous Silicon-Carbon Nanostructure So- lar Cells For this thesis, I made photovoltaic

  10. Silicon Materials and Devices (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01T23:59:59.000Z

    This National Center for Photovoltaics sheet describes the capabilities of its silicon materials and devices research. The scope and core competencies and capabilities are discussed.

  11. Silicon-Graphene Anodes | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Silicon-Graphene Anodes Technology available for licensing: Provides low-cost production process. Advanced gas phase deposition process yields anodes with five times the specific...

  12. Engineering Metal Impurities in Multicrystalline Silicon Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Metal Impurities in Multicrystalline Silicon Solar Cells Print Transition metals are one of the main culprits in degrading the efficiency of multicrystalline solar...

  13. Silicon nitride having a high tensile strength

    DOE Patents [OSTI]

    Pujari, Vimal K. (Northboro, MA); Tracey, Dennis M. (Medfield, MA); Foley, Michael R. (Oxford, MA); Paille, Norman I. (Oxford, MA); Pelletier, Paul J. (Sutton, MA); Sales, Lenny C. (Grafton, MA); Willkens, Craig A. (Worcester, MA); Yeckley, Russell L. (Latrobe, PA)

    1998-01-01T23:59:59.000Z

    A ceramic body comprising at least about 80 w/o silicon nitride and having a mean tensile strength of at least about 800 MPa.

  14. Advanced crystallization techniques of ''solar grade'' silicon

    SciTech Connect (OSTI)

    Gasparini, M.; Alessandri, M.; Calligarich, C.; Pizzini, S.; Rava, P.; Redaelli, F.; Sardi, L.

    1982-09-01T23:59:59.000Z

    Microstructural, electrical and photovoltaic characteristics of polycristalline silicon solar cells fabricated with silicon ingots containing 5, 100 and 500 ppmw iron are reported and discussed. All silicon ingots were grown by the directional solidification technique in graphite or special quartz molds and doped intentionally with iron, in order to evaluate the potentiality of the D.S. technique when employed with solar silicon feedstocks. Results indicate that structural breakdown limits the amount of the ingot which is usable for solar cells fabrication, but also that efficiencies in excess of 10% are obtained using the ''good'' region of the ingot.

  15. Holey Silicon as an Efficient Thermoelectric Material

    E-Print Network [OSTI]

    Tang, Jinyao

    2011-01-01T23:59:59.000Z

    Silicon as Efficient Thermoelectric Material Jinyao Tang 1,This work investigated the thermoelectric properties of thinat room temperature, the thermoelectric performance of HS is

  16. Protein separations using porous silicon membranes 

    E-Print Network [OSTI]

    Pass, Shannon Marie

    1992-01-01T23:59:59.000Z

    ) 61 IX LIST OF TABLES 1. The L9 Orthogonal Array 34 2. Experimental Factors and Levels . 3. Results of Silicon Etching Trials . 35 40 4. Results of Silicon Membrane Separation Experiments 44 5. Results of Single Solute Experiments Using... charge or as the absence of an electron in the crystal structure of silicon. The properties of boron doped siTicon are exploited experimentally by setting up an etch cell in which one surface of the silicon serves as the anode and by using...

  17. Modeling the Process of Mining Silicon Through a Single Displacement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling the Process of Mining Silicon Through a Single DisplacementRedox Reaction Modeling the Process of Mining Silicon Through a Single DisplacementRedox Reaction Below is...

  18. Design and Implementation of Silicon Nitride Valves for Heavy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Implementation of Silicon Nitride Valves for Heavy Duty Diesel Engines Design and Implementation of Silicon Nitride Valves for Heavy Duty Diesel Engines Poster presentation at the...

  19. Hydrogen Bubbles and Formation of Nanoporous Silicon during Electroche...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bubbles and Formation of Nanoporous Silicon during Electrochemical Etching. Hydrogen Bubbles and Formation of Nanoporous Silicon during Electrochemical Etching. Abstract: Many...

  20. Silicon Nanostructure-based Technology for Next Generation Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Silicon Nanostructure-based Technology for Next Generation Energy Storage Silicon Nanostructure-based Technology for Next Generation Energy Storage 2012 DOE Hydrogen and Fuel Cells...

  1. Designing Silicon Nanostructures for High Energy Lithium Ion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Designing Silicon Nanostructures for High Energy Lithium Ion Battery Anodes Designing Silicon Nanostructures for High Energy Lithium Ion Battery Anodes 2012 DOE Hydrogen and Fuel...

  2. Synthesis and Characterization of Silicon Clathrates for Anode...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Silicon Clathrates for Anode Applications in Lithium-Ion Batteries Synthesis and Characterization of Silicon Clathrates for Anode Applications in Lithium-Ion Batteries 2012 DOE...

  3. Mesoporous Silicon Sponge as an Anti-Pulverization Structure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mesoporous Silicon Sponge as an Anti-Pulverization Structure for High-Performance Lithium-ion Battery Anodes. Mesoporous Silicon Sponge as an Anti-Pulverization Structure for...

  4. Heteroepitaxial Self Assembling Noble Metal Nanoparticles in Monocrystalline Silicon 

    E-Print Network [OSTI]

    Martin, Michael S.

    2013-08-13T23:59:59.000Z

    Embedding metal nanoparticles in crystalline silicon possesses numerous possible applications to fabricate optoelectronic switches, increase efficiency of radiation detectors, decrease the thickness of monocrystalline silicon solar panels...

  5. amorphous silicon carbon: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 11 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  6. amorphous silicon film: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    values previously Hellman, Frances 8 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  7. amorphous hydrogenated silicon: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gunther; Baets, Roel 2011-01-01 36 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  8. amorphous silicon pv: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 11 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  9. amorphous silicon epid: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 7 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  10. amorphous silicon arrays: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    amorphous carbon Wang, Zhong L. 8 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  11. amorphous silicon alloy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 11 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  12. amorphous silicon studied: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Yang, Cheng-Chieh 2012-01-01 22 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  13. amorphous silicon films: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    values previously Hellman, Frances 8 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  14. amorphous silicon sensor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 9 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  15. amorphous silicon nanoparticles: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 9 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  16. amorphous silicon alloys: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 11 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  17. amorphous silicon solar: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 26 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  18. amorphous silicon thin: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    values previously Hellman, Frances 6 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  19. amorphous silicon tft: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 20 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  20. amorphous silicon photovoltaic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    properties Mazur, Eric 20 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  1. amorphous silicon final: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 7 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  2. amorphous silicon diodes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 9 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  3. amorphous silicon surfaces: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 10 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  4. amorphous silicon technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technologies is presented. Then 11 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  5. amorphous silicon electronic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technologies is presented. Then 22 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  6. amorphous silicon dioxide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 8 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  7. amorphous silicon oxynitride: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 15 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  8. amorphous silicon schottky: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 13 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  9. amorphous silicon nitride: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Paris-Sud XI, Universit de 26 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  10. amorphous silicon layers: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 16 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  11. amorphous silicon detector: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 7 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  12. area amorphous silicon: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 9 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  13. amorphous silicon measured: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 13 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  14. amorphous silicon deposited: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 23 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  15. amorphous silicon flat: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 7 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  16. amorphous silicon modules: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 10 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  17. amorphous silicon sensors: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 9 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  18. amorphous silicon carbonitride: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 7 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  19. amorphous silicon research: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 9 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  20. amorphous silicon prepared: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nominanda, Helinda 2008-10-10 10 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  1. amorphous silicon microdisk: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 24 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  2. amorphous silicon germanium: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Si-I or Ge Wang, Wei Hua 37 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  3. amorphous silicon radiation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 9 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  4. amorphous silicon multijunction: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 7 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  5. amorphous silicon pixel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ph. Emplit; S. Massar 2011-02-04 14 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  6. area silicon sheet: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (ii) an aluminium oxidesilicon nitride stack. The rear contacts to the silicon base% on monocrystalline silicon wafers 1. Among others two loss mechanisms limit the conversion...

  7. Silicon Nanostructure-based Technology for Next Generation Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Silicon Nanostructure-based Technology for Next Generation Energy Storage Silicon Nanostructure-based Technology for Next Generation Energy Storage 2013 DOE Hydrogen and Fuel Cells...

  8. Silicon Valley Power and Oklahoma Municipal Power Authority Win...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public Power Wind Awards Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public Power Wind...

  9. Characterization of nitrided silicon-silicon dioxide interfaces

    SciTech Connect (OSTI)

    Polignano, M.L.; Alessandri, M.; Brazzelli, D. [and others

    2000-07-01T23:59:59.000Z

    A newly-developed technique for the simultaneous characterization of the oxide-silicon interface properties and of bulk impurities was used for a systematic study of the nitridation process of thin oxides. This technique is based upon surface recombination velocity measurements, and does not require the formation of a capacitor structure, so it is very suitable for the characterization of as-grown interfaces. Oxides grown both in dry and in wet environments were considered, and nitridation processes in N{sub 2}O and in NO were compared to N{sub 2} annealing processes. The effect of nitridation temperature and duration were also studied, and RTO/RTN processes were compared to conventional furnace nitridation processes. Surface recombination velocity was correlated with nitrogen concentration at the oxide-silicon interface obtained by Secondary Ion Mass Spectroscopy (SIMS) measurements. Surface recombination velocity (hence surface state density) decreases with increasing nitrogen pile-up at the oxide-silicon interface, indicating that in nitrided interfaces surface state density is limited by nitridation. NO treatments are much more effective than N{sub 2}O treatments in the formation of nitrogen-rich interface layer and, as a consequence, in surface state reduction. Surface state density was measured in fully processed wafers before and after constant current stress. After a complete device process surface states are annealed out by hydrogen passivation, however they are reactivated by the electrical stress, and surface state results after stress were compared with data of surface recombination velocity in as-processed wafers.

  10. Bitcoin and the Age of Bespoke Silicon

    E-Print Network [OSTI]

    Wang, Deli

    Bitcoin and the Age of Bespoke Silicon Michael B. Taylor Associate Professor University of California, San Diego #12;This Talk Introduction An Overview of the Bitcoin Cryptocurrency Bitcoin's Computing Evolution Bespoke Silicon #12;Interesting Facts about Bitcoin The most successful digital

  11. Nitride-bonded silicon carbide composite filter

    SciTech Connect (OSTI)

    Thomson, B.N.; DiPietro, S.G.

    1995-12-01T23:59:59.000Z

    The objective of this program is to develop and demonstrate an advanced hot gas filter, using ceramic component technology, with enhanced durability to provide increased resistance to thermal fatigue and crack propagation. The material is silicon carbide fiber reinforced nitride bonded silicon carbide.

  12. Heterogeneous lithium niobate photonics on silicon substrates

    E-Print Network [OSTI]

    Fathpour, Sasan

    Heterogeneous lithium niobate photonics on silicon substrates Payam Rabiei,1,* Jichi Ma,1 Saeed-confined lithium niobate photonic devices and circuits on silicon substrates is reported based on wafer bonding high- performance lithium niobate microring optical resonators and Mach- Zehnder optical modulators

  13. D0 silicon microstrip tracker

    SciTech Connect (OSTI)

    Burdin, Sergey

    2005-11-01T23:59:59.000Z

    The D0 Run II silicon microstrip tracker (SMT) has 3 square meters of Si area. There are 792,576 channels read out by 6192 SVXIIe chips on 912 read out modules. The SMT provides track and vertex reconstruction capabilities over the full pseudorapidity coverage of the D0 detector. The full detector has been running successfully since April 2002. This presentation covers the experience in commissioning and operating, the recent electronics upgrade which improved stability of the SMT and estimates of the radiation damage.

  14. Silicon Cells | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AGShandongShirkeSichuan MiyiSichuanVista,SilicioSilicon

  15. Micro benchtop optics by bulk silicon micromachining

    DOE Patents [OSTI]

    Lee, Abraham P. (Walnut Creek, CA); Pocha, Michael D. (Livermore, CA); McConaghy, Charles F. (Livermore, CA); Deri, Robert J. (Pleasanton, CA)

    2000-01-01T23:59:59.000Z

    Micromachining of bulk silicon utilizing the parallel etching characteristics of bulk silicon and integrating the parallel etch planes of silicon with silicon wafer bonding and impurity doping, enables the fabrication of on-chip optics with in situ aligned etched grooves for optical fibers, micro-lenses, photodiodes, and laser diodes. Other optical components that can be microfabricated and integrated include semi-transparent beam splitters, micro-optical scanners, pinholes, optical gratings, micro-optical filters, etc. Micromachining of bulk silicon utilizing the parallel etching characteristics thereof can be utilized to develop miniaturization of bio-instrumentation such as wavelength monitoring by fluorescence spectrometers, and other miniaturized optical systems such as Fabry-Perot interferometry for filtering of wavelengths, tunable cavity lasers, micro-holography modules, and wavelength splitters for optical communication systems.

  16. Fabricating solar cells with silicon nanoparticles

    DOE Patents [OSTI]

    Loscutoff, Paul; Molesa, Steve; Kim, Taeseok

    2014-09-02T23:59:59.000Z

    A laser contact process is employed to form contact holes to emitters of a solar cell. Doped silicon nanoparticles are formed over a substrate of the solar cell. The surface of individual or clusters of silicon nanoparticles is coated with a nanoparticle passivation film. Contact holes to emitters of the solar cell are formed by impinging a laser beam on the passivated silicon nanoparticles. For example, the laser contact process may be a laser ablation process. In that case, the emitters may be formed by diffusing dopants from the silicon nanoparticles prior to forming the contact holes to the emitters. As another example, the laser contact process may be a laser melting process whereby portions of the silicon nanoparticles are melted to form the emitters and contact holes to the emitters.

  17. Compensated amorphous-silicon solar cell

    DOE Patents [OSTI]

    Devaud, G.

    1982-06-21T23:59:59.000Z

    An amorphous silicon solar cell including an electrically conductive substrate, a layer of glow discharge deposited hydrogenated amorphous silicon having regions of differing conductivity with at least one region of intrinsic hydrogenated amorphous silicon. The layer of hydrogenated amorphous silicon has opposed first and second major surfaces where the first major surface contacts the elecrically conductive substrate and an electrode for electrically contacting the second major surface. The intrinsic hydrogenated amorphous silicon region is deposited in a glow discharge with an atmosphere which includes not less than about 0.02 atom percent mono-atomic boron. An improved N.I.P. solar cell is disclosed using a BF/sub 3/ doped intrinsic layer.

  18. Growth of silicon quantum dots by oxidation of the silicon nanocrystals embedded within silicon carbide matrix

    SciTech Connect (OSTI)

    Kole, Arindam; Chaudhuri, Partha, E-mail: erpc@iacs.res.in [Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata-700032 (India)

    2014-10-15T23:59:59.000Z

    A moderately low temperature (?800 °C) thermal processing technique has been described for the growth of the silicon quantum dots (Si-QD) within microcrystalline silicon carbide (?c-SiC:H) dielectric thin films deposited by plasma enhanced chemical vapour deposition (PECVD) process. The nanocrystalline silicon grains (nc-Si) present in the as deposited films were initially enhanced by aluminium induced crystallization (AIC) method in vacuum at a temperature of T{sub v} = 525 °C. The samples were then stepwise annealed at different temperatures T{sub a} in air ambient. Analysis of the films by FTIR and XPS reveal a rearrangement of the ?c-SiC:H network has taken place with a significant surface oxidation of the nc-Si domains upon annealing in air. The nc-Si grain size (D{sub XRD}) as calculated from the XRD peak widths using Scherrer formula was found to decrease from 7 nm to 4 nm with increase in T{sub a} from 250 °C to 800 °C. A core shell like structure with the nc-Si as the core and the surface oxide layer as the shell can clearly describe the situation. The results indicate that with the increase of the annealing temperature in air the oxide shell layer becomes thicker and the nc-Si cores become smaller until their size reduced to the order of the Si-QDs. Quantum confinement effect due to the SiO covered nc-Si grains of size about 4 nm resulted in a photoluminescence peak due to the Si QDs with peak energy at 1.8 eV.

  19. Process for forming silicon carbide films and microcomponents

    DOE Patents [OSTI]

    Hamza, Alex V. (Livermore, CA); Balooch, Mehdi (Berkeley, CA); Moalem, Mehran (Berkeley, CA)

    1999-01-01T23:59:59.000Z

    Silicon carbide films and microcomponents are grown on silicon substrates at surface temperatures between 900 K and 1700 K via C.sub.60 precursors in a hydrogen-free environment. Selective crystalline silicon carbide growth can be achieved on patterned silicon-silicon oxide samples. Patterned SiC films are produced by making use of the high reaction probability of C.sub.60 with silicon at surface temperatures greater than 900 K and the negligible reaction probability for C.sub.60 on silicon dioxide at surface temperatures less than 1250 K.

  20. Process for forming silicon carbide films and microcomponents

    DOE Patents [OSTI]

    Hamza, A.V.; Balooch, M.; Moalem, M.

    1999-01-19T23:59:59.000Z

    Silicon carbide films and microcomponents are grown on silicon substrates at surface temperatures between 900 K and 1700 K via C{sub 60} precursors in a hydrogen-free environment. Selective crystalline silicon carbide growth can be achieved on patterned silicon-silicon oxide samples. Patterned SiC films are produced by making use of the high reaction probability of C{sub 60} with silicon at surface temperatures greater than 900 K and the negligible reaction probability for C{sub 60} on silicon dioxide at surface temperatures less than 1250 K. 5 figs.

  1. Production of high specific activity silicon-32

    DOE Patents [OSTI]

    Phillips, Dennis R. (Los Alamos, NM); Brzezinski, Mark A. (Santa Barbara, CA)

    1994-01-01T23:59:59.000Z

    A process for preparation of silicon-32 is provide and includes contacting an irradiated potassium chloride target, including spallation products from a prior irradiation, with sufficient water, hydrochloric acid or potassium hydroxide to form a solution, filtering the solution, adjusting pH of the solution to from about 5.5 to about 7.5, admixing sufficient molybdate-reagent to the solution to adjust the pH of the solution to about 1.5 and to form a silicon-molybdate complex, contacting the solution including the silicon-molybdate complex with a dextran-based material, washing the dextran-based material to remove residual contaminants such as sodium-22, separating the silicon-molybdate complex from the dextran-based material as another solution, adding sufficient hydrochloric acid and hydrogen peroxide to the solution to prevent reformation of the silicon-molybdate complex and to yield an oxidization state of the molybdate adapted for subsequent separation by an anion exchange material, contacting the solution with an anion exchange material whereby the molybdate is retained by the anion exchange material and the silicon remains in solution, and optionally adding sufficient alkali metal hydroxide to adjust the pH of the solution to about 12 to 13. Additionally, a high specific activity silicon-32 product having a high purity is provided.

  2. Analytical and experimental evaluation of joining silicon carbide to silicon carbide and silicon nitride to silicon nitride for advanced heat engine applications Phase 2. Final report

    SciTech Connect (OSTI)

    Sundberg, G.J.; Vartabedian, A.M.; Wade, J.A.; White, C.S. [Norton Co., Northboro, MA (United States). Advanced Ceramics Div.

    1994-10-01T23:59:59.000Z

    The purpose of joining, Phase 2 was to develop joining technologies for HIP`ed Si{sub 3}N{sub 4} with 4wt% Y{sub 2}O{sub 3} (NCX-5101) and for a siliconized SiC (NT230) for various geometries including: butt joins, curved joins and shaft to disk joins. In addition, more extensive mechanical characterization of silicon nitride joins to enhance the predictive capabilities of the analytical/numerical models for structural components in advanced heat engines was provided. Mechanical evaluation were performed by: flexure strength at 22 C and 1,370 C, stress rupture at 1,370 C, high temperature creep, 22 C tensile testing and spin tests. While the silicon nitride joins were produced with sufficient integrity for many applications, the lower join strength would limit its use in the more severe structural applications. Thus, the silicon carbide join quality was deemed unsatisfactory to advance to more complex, curved geometries. The silicon carbide joining methods covered within this contract, although not entirely successful, have emphasized the need to focus future efforts upon ways to obtain a homogeneous, well sintered parent/join interface prior to siliconization. In conclusion, the improved definition of the silicon carbide joining problem obtained by efforts during this contract have provided avenues for future work that could successfully obtain heat engine quality joins.

  3. Deng & Schiff, Amorphous Silicon Based Solar Cells rev. 7/30/2002, Page 1 Amorphous Silicon Based Solar Cells

    E-Print Network [OSTI]

    Deng, Xunming

    Deng & Schiff, Amorphous Silicon Based Solar Cells rev. 7/30/2002, Page 1 Amorphous Silicon Based Solar Cells Xunming Deng and Eric A. Schiff Table of Contents 1 Overview 3 1.1 Amorphous Silicon: The First Bipolar Amorphous Semiconductor 3 1.2 Designs for Amorphous Silicon Solar Cells: A Guided Tour 6

  4. Holey Silicon as an Efficient Thermoelectric Material

    SciTech Connect (OSTI)

    Tang, Jinyao; Wang, Hung-Ta; Hyun Lee, Dong; Fardy, Melissa; Huo, Ziyang; Russell, Thomas P.; Yang, Peidong

    2010-09-30T23:59:59.000Z

    This work investigated the thermoelectric properties of thin silicon membranes that have been decorated with high density of nanoscopic holes. These ?holey silicon? (HS) structures were fabricated by either nanosphere or block-copolymer lithography, both of which are scalable for practical device application. By reducing the pitch of the hexagonal holey pattern down to 55 nm with 35percent porosity, the thermal conductivity of HS is consistently reduced by 2 orders of magnitude and approaches the amorphous limit. With a ZT value of 0.4 at room temperature, the thermoelectric performance of HS is comparable with the best value recorded in silicon nanowire system.

  5. Protein separations using porous silicon membranes

    E-Print Network [OSTI]

    Pass, Shannon Marie

    1992-01-01T23:59:59.000Z

    charge or as the absence of an electron in the crystal structure of silicon. The properties of boron doped siTicon are exploited experimentally by setting up an etch cell in which one surface of the silicon serves as the anode and by using... terminals located on the top surface of the etch cell. The current to be used in the experiment and the total time were previously calculated to produce the desired average pore size and porous silicon film thickness, respectively. The power source...

  6. Manufacture of silicon carbide using solar energy

    DOE Patents [OSTI]

    Glatzmaier, Gregory C. (Boulder, CO)

    1992-01-01T23:59:59.000Z

    A method is described for producing silicon carbide particles using solar energy. The method is efficient and avoids the need for use of electrical energy to heat the reactants. Finely divided silica and carbon are admixed and placed in a solar-heated reaction chamber for a time sufficient to cause a reaction between the ingredients to form silicon carbide of very small particle size. No grinding of silicon carbide is required to obtain small particles. The method may be carried out as a batch process or as a continuous process.

  7. Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics

    E-Print Network [OSTI]

    Kang, Jin Sung

    2012-01-01T23:59:59.000Z

    Hahn, H. T. , "Photovoltaic Performance of Amorphous SiliconHahn, H. T. , "Photovoltaic Performance of Amorphous SiliconYS, Hahn HT. Photovoltaic Performance of Amorphous Silicon

  8. amorphous silicon thin-film: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    amorphous silicon Kanicki, Jerzy 17 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

  9. A NEW A15 MULTIFILAMENTARY SUPERCONDUCTOR BASED ON THE NIOBIUM-ALUMINUM-SILICON SYSTEM

    E-Print Network [OSTI]

    Quinn, G.C.

    2011-01-01T23:59:59.000Z

    BASED ON THE NIOBIUM-ALUMINUM-SILICON SYSTEM Gary C. Quinnpsi. Photomicrograph of an Aluminum-Silicon eutectic filledmultifilimentary niobium-aluminum-silicon wire, a) sample #

  10. High Efficiency, Low Cost Solar Cells Manufactured Using 'Silicon Ink' on Thin Crystalline Silicon Wafers

    SciTech Connect (OSTI)

    Antoniadis, H.

    2011-03-01T23:59:59.000Z

    Reported are the development and demonstration of a 17% efficient 25mm x 25mm crystalline Silicon solar cell and a 16% efficient 125mm x 125mm crystalline Silicon solar cell, both produced by Ink-jet printing Silicon Ink on a thin crystalline Silicon wafer. To achieve these objectives, processing approaches were developed to print the Silicon Ink in a predetermined pattern to form a high efficiency selective emitter, remove the solvents in the Silicon Ink and fuse the deposited particle Silicon films. Additionally, standard solar cell manufacturing equipment with slightly modified processes were used to complete the fabrication of the Silicon Ink high efficiency solar cells. Also reported are the development and demonstration of a 18.5% efficient 125mm x 125mm monocrystalline Silicon cell, and a 17% efficient 125mm x 125mm multicrystalline Silicon cell, by utilizing high throughput Ink-jet and screen printing technologies. To achieve these objectives, Innovalight developed new high throughput processing tools to print and fuse both p and n type particle Silicon Inks in a predetermined pat-tern applied either on the front or the back of the cell. Additionally, a customized Ink-jet and screen printing systems, coupled with customized substrate handling solution, customized printing algorithms, and a customized ink drying process, in combination with a purchased turn-key line, were used to complete the high efficiency solar cells. This development work delivered a process capable of high volume producing 18.5% efficient crystalline Silicon solar cells and enabled the Innovalight to commercialize its technology by the summer of 2010.

  11. Use of free silicon in liquid phase sintering of silicon nitrides and sialons

    DOE Patents [OSTI]

    Raj, R.; Baik, S.

    1985-11-12T23:59:59.000Z

    This invention relates to the production of improved high density nitrogen based ceramics by liquid-phase densification of silicon nitride or a compound of silicon-nitrogen-oxygen-metal, e.g. a sialon. In the process and compositions of the invention minor amounts of finely divided silicon are employed together with the conventional liquid phase producing additives to enhance the densification of the resultant ceramic. 4 figs.

  12. Use of free silicon in liquid phase sintering of silicon nitrides and sialons

    DOE Patents [OSTI]

    Raj, Rishi (Ithaca, NY); Baik, Sunggi (Ithaca, NY)

    1985-11-12T23:59:59.000Z

    This invention relates to the production of improved high density nitrogen based ceramics by liquid-phase densification of silicon nitride or a compound of silicon-nitrogen-oxygen-metal, e.g. a sialon. In the process and compositions of the invention minor amounts of finely divided silicon are employed together with the conventional liquid phase producing additives to enhance the densification of the resultant ceramic.

  13. Optical absorption of silicon nanowires

    SciTech Connect (OSTI)

    Xu, T. [Key Laboratory of Advanced Display and System Application, Shanghai University, 149 Yanchang Road, Shanghai 200072 (China); Institut d'Electronique et de Microelectronique et de Nanotechnologies, IEMN (CNRS, UMR 8520), Groupe de Physique, Cite scientifique, avenue Poincare, 59652 Villeneuve d'Ascq (France); Lambert, Y.; Krzeminski, C.; Grandidier, B.; Stievenard, D.; Leveque, G.; Akjouj, A.; Pennec, Y.; Djafari-Rouhani, B. [Institut d'Electronique et de Microelectronique et de Nanotechnologies, IEMN (CNRS, UMR 8520), Groupe de Physique, Cite scientifique, avenue Poincare, 59652 Villeneuve d'Ascq (France)

    2012-08-01T23:59:59.000Z

    We report on simulations and measurements of the optical absorption of silicon nanowires (NWs) versus their diameter. We first address the simulation of the optical absorption based on two different theoretical methods: the first one, based on the Green function formalism, is useful to calculate the scattering and absorption properties of a single or a finite set of NWs. The second one, based on the finite difference time domain (FDTD) method, is well-adapted to deal with a periodic set of NWs. In both cases, an increase of the onset energy for the absorption is found with increasing diameter. Such effect is experimentally illustrated, when photoconductivity measurements are performed on single tapered Si nanowires connected between a set of several electrodes. An increase of the nanowire diameter reveals a spectral shift of the photocurrent intensity peak towards lower photon energies that allow to tune the absorption onset from the ultraviolet radiations to the visible light spectrum.

  14. Nano-Optoelectronic Integration on Silicon

    E-Print Network [OSTI]

    Chen, Roger

    2012-01-01T23:59:59.000Z

    Crystal Si Nanopillars,” Nano Lett. , vol. 10, no. 11, pp.?V Nanowires on Silicon,” Nano Letters, vol. 4, no. 10, pp.and nanoribbon lasers,” Nano Letters, vol. 4, no. 2, pp.

  15. Silver transport in CVD silicon carbide

    E-Print Network [OSTI]

    MacLean, Heather J. (Heather Jean), 1974-

    2004-01-01T23:59:59.000Z

    Ion implantation and diffusion couple experiments were used to study silver transport through and release from CVD silicon carbide. Results of these experiments show that silver does not migrate via classical diffusion in ...

  16. High index contrast platform for silicon photonics

    E-Print Network [OSTI]

    Akiyama, Shoji, 1972-

    2004-01-01T23:59:59.000Z

    This thesis focuses on silicon-based high index contrast (HIC) photonics. In addition to mature fiber optics or low index contrast (LIC) platform, which is often referred to as Planar Lightwave Cirrcuit (PLC) or Silica ...

  17. Femtosecond laser processing of crystalline silicon

    E-Print Network [OSTI]

    Tran, D. V.

    This paper reports the surface morphologies and ablation of crystalline silicon wafers irradiated by infra-red 775 nm Ti:sapphire femtosecond laser. The effects of energy fluences (below and above single-pulse modification) ...

  18. Designing manycore processor networks using silicon photonics

    E-Print Network [OSTI]

    Stojanovic, Vladimir Marko

    We present a vertical integration approach for designing silicon photonic networks for communication in manycore systems. Using a top-down approach we project the photonic device requirements for a 64-tile system designed ...

  19. Silicon nitride having a high tensile strength

    DOE Patents [OSTI]

    Pujari, V.K.; Tracey, D.M.; Foley, M.R.; Paille, N.I.; Pelletier, P.J.; Sales, L.C.; Willkens, C.A.; Yeckley, R.L.

    1998-06-02T23:59:59.000Z

    A ceramic body is disclosed comprising at least about 80 w/o silicon nitride and having a mean tensile strength of at least about 800 MPa. 4 figs.

  20. Device integration for silicon microphotonic platforms

    E-Print Network [OSTI]

    Lim, Desmond Rodney

    2000-01-01T23:59:59.000Z

    Silicon ULSI compatible, high index contrast waveguides and devices provide high density integration for optical networking and on-chip optical interconnects. Four such waveguide systems were fabricated and analyzed: ...

  1. Electrical characterization of germanium-silicon alloy

    E-Print Network [OSTI]

    Kishore, Kumar P.

    1994-01-01T23:59:59.000Z

    . The fabrication procedure involved sputter deposition of silicon dioxide, oxide patterning, deposition of aluminum metal and metal patterning. Each test structure was square-shaped and consisted of eight sets of peripheral metal contacts. The results...

  2. Electrical characterization of germanium-silicon alloy 

    E-Print Network [OSTI]

    Kishore, Kumar P.

    1994-01-01T23:59:59.000Z

    . The fabrication procedure involved sputter deposition of silicon dioxide, oxide patterning, deposition of aluminum metal and metal patterning. Each test structure was square-shaped and consisted of eight sets of peripheral metal contacts. The results...

  3. Silicon cast wafer recrystallization for photovoltaic applications

    E-Print Network [OSTI]

    Hantsoo, Eerik T. (Eerik Torm)

    2008-01-01T23:59:59.000Z

    Current industry-standard methods of manufacturing silicon wafers for photovoltaic (PV) cells define the electrical properties of the wafer in a first step, and then the geometry of the wafer in a subsequent step. The ...

  4. Texturization of multicrystalline silicon solar cells

    E-Print Network [OSTI]

    Li, Dai-Yin

    2010-01-01T23:59:59.000Z

    A significant efficiency gain for crystalline silicon solar cells can be achieved by surface texturization. This research was directed at developing a low-cost, high-throughput and reliable texturing method that can create ...

  5. Method for silicon nitride precursor solids recovery

    DOE Patents [OSTI]

    Crosbie, Gary M. (Dearborn, MI); Predmesky, Ronald L. (Livonia, MI); Nicholson, John M. (Wayne, MI)

    1992-12-15T23:59:59.000Z

    Method and apparatus are provided for collecting reaction product solids entrained in a gaseous outflow from a reaction situs, wherein the gaseous outflow includes a condensable vapor. A condensate is formed of the condensable vapor on static mixer surfaces within a static mixer heat exchanger. The entrained reaction product solids are captured in the condensate which can be collected for further processing, such as return to the reaction situs. In production of silicon imide, optionally integrated into a production process for making silicon nitride caramic, wherein reactant feed gas comprising silicon halide and substantially inert carrier gas is reacted with liquid ammonia in a reaction vessel, silicon imide reaction product solids entrained in a gaseous outflow comprising residual carrier gas and vaporized ammonia can be captured by forming a condensate of the ammonia vapor on static mixer surfaces of a static mixer heat exchanger.

  6. Apparatus for silicon nitride precursor solids recovery

    DOE Patents [OSTI]

    Crosbie, Gary M. (Dearborn, MI); Predmesky, Ronald L. (Livonia, MI); Nicholson, John M. (Wayne, MI)

    1995-04-04T23:59:59.000Z

    Method and apparatus are provided for collecting reaction product solids entrained in a gaseous outflow from a reaction situs, wherein the gaseous outflow includes a condensable vapor. A condensate is formed of the condensable vapor on static mixer surfaces within a static mixer heat exchanger. The entrained reaction product solids are captured in the condensate which can be collected for further processing, such as return to the reaction situs. In production of silicon imide, optionally integrated into a production process for making silicon nitride caramic, wherein reactant feed gas comprising silicon halide and substantially inert carrier gas is reacted with liquid ammonia in a reaction vessel, silicon imide reaction product solids entrained in a gaseous outflow comprising residual carrier gas and vaporized ammonia can be captured by forming a condensate of the ammonia vapor on static mixer surfaces of a static mixer heat exchanger.

  7. Polycrystalline silicon resistor trimming by laser annealing

    E-Print Network [OSTI]

    Crowley, Robert Terrence

    1989-01-01T23:59:59.000Z

    , and (b) Kelvin resistors. luminum Top oxide Polysilicon Initial oxide ubstrate 26 Fig. 7. Cross sectional view of test cell. an oxidized silicon wafer. The polysilicon was oxidized for passivation, and contact windows were etched for the metal... materials are sfliicon-chrome, nickel-chrome, and tantalum nitride. Another material commonly used for resistors is polycrystalline silicon, or polysilicon. PolysiTicon is used in Metal Oxide Semiconductor (MOS) circuit fabrication as the MOS Field...

  8. Polycrystalline silicon resistor trimming by laser annealing 

    E-Print Network [OSTI]

    Crowley, Robert Terrence

    1989-01-01T23:59:59.000Z

    . ~ The single crystal band structure of silicon is applicable inside each grain. ~ Carrier trapping sites exist at the grain boundary with an area density of qq cm . These traps are filled with a density of n, cm ~ The traps are monovalent and located..., and (b) Kelvin resistors. luminum Top oxide Polysilicon Initial oxide ubstrate 26 Fig. 7. Cross sectional view of test cell. an oxidized silicon wafer. The polysilicon was oxidized for passivation, and contact windows were etched for the metal...

  9. Microtextured Silicon Surfaces for Detectors, Sensors & Photovoltaics

    SciTech Connect (OSTI)

    Carey, JE; Mazur, E

    2005-05-19T23:59:59.000Z

    With support from this award we studied a novel silicon microtexturing process and its application in silicon-based infrared photodetectors. By irradiating the surface of a silicon wafer with intense femtosecond laser pulses in the presence of certain gases or liquids, the originally shiny, flat surface is transformed into a dark array of microstructures. The resulting microtextured surface has near-unity absorption from near-ultraviolet to infrared wavelengths well below the band gap. The high, broad absorption of microtextured silicon could enable the production of silicon-based photodiodes for use as inexpensive, room-temperature multi-spectral photodetectors. Such detectors would find use in numerous applications including environmental sensors, solar energy, and infrared imaging. The goals of this study were to learn about microtextured surfaces and then develop and test prototype silicon detectors for the visible and infrared. We were extremely successful in achieving our goals. During the first two years of this award, we learned a great deal about how microtextured surfaces form and what leads to their remarkable optical properties. We used this knowledge to build prototype detectors with high sensitivity in both the visible and in the near-infrared. We obtained room-temperature responsivities as high as 100 A/W at 1064 nm, two orders of magnitude higher than standard silicon photodiodes. For wavelengths below the band gap, we obtained responsivities as high as 50 mA/W at 1330 nm and 35 mA/W at 1550 nm, close to the responsivity of InGaAs photodiodes and five orders of magnitude higher than silicon devices in this wavelength region.

  10. Sampling Artifacts from Conductive Silicone Tubing

    SciTech Connect (OSTI)

    Timko, Michael T.; Yu, Zhenhong; Kroll, Jesse; Jayne, John T.; Worsnop, Douglas R.; Miake-Lye, Richard C.; Onasch, Timothy B.; Liscinsky, David; Kirchstetter, Thomas W.; Destaillats, Hugo; Holder, Amara L.; Smith, Jared D.; Wilson, Kevin R.

    2009-05-15T23:59:59.000Z

    We report evidence that carbon impregnated conductive silicone tubing used in aerosol sampling systems can introduce two types of experimental artifacts: 1) silicon tubing dynamically absorbs carbon dioxide gas, requiring greater than 5 minutes to reach equilibrium and 2) silicone tubing emits organic contaminants containing siloxane that adsorb onto particles traveling through it and onto downstream quartz fiber filters. The consequence can be substantial for engine exhaust measurements as both artifacts directly impact calculations of particulate mass-based emission indices. The emission of contaminants from the silicone tubing can result in overestimation of organic particle mass concentrations based on real-time aerosol mass spectrometry and the off-line thermal analysis of quartz filters. The adsorption of siloxane contaminants can affect the surface properties of aerosol particles; we observed a marked reduction in the water-affinity of soot particles passed through conductive silicone tubing. These combined observations suggest that the silicone tubing artifacts may have wide consequence for the aerosol community and should, therefore, be used with caution. Gentle heating, physical and chemical properties of the particle carriers, exposure to solvents, and tubing age may influence siloxane uptake. The amount of contamination is expected to increase as the tubing surface area increases and as the particle surface area increases. The effect is observed at ambient temperature and enhanced by mild heating (<100 oC). Further evaluation is warranted.

  11. Purification and deposition of silicon by an iodide disproportionation reaction

    DOE Patents [OSTI]

    Wang, Tihu (Littleton, CO); Ciszek, Theodore F. (Evergreen, CO)

    2002-01-01T23:59:59.000Z

    Method and apparatus for producing purified bulk silicon from highly impure metallurgical-grade silicon source material at atmospheric pressure. Method involves: (1) initially reacting iodine and metallurgical-grade silicon to create silicon tetraiodide and impurity iodide byproducts in a cold-wall reactor chamber; (2) isolating silicon tetraiodide from the impurity iodide byproducts and purifying it by distillation in a distillation chamber; and (3) transferring the purified silicon tetraiodide back to the cold-wall reactor chamber, reacting it with additional iodine and metallurgical-grade silicon to produce silicon diiodide and depositing the silicon diiodide onto a substrate within the cold-wall reactor chamber. The two chambers are at atmospheric pressure and the system is open to allow the introduction of additional source material and to remove and replace finished substrates.

  12. Anti-reflection zinc oxide nanocones for higher efficiency thin-film silicon solar cells

    E-Print Network [OSTI]

    Mailoa, Jonathan P

    2012-01-01T23:59:59.000Z

    Thin film silicon solar cells, which are commonly made from microcrystalline silicon ([mu]c-Si) or amorphous silicon (a-Si), have been considered inexpensive alternatives to thick polycrystalline silicon (polysilicon) solar ...

  13. Methods and apparatuses for manufacturing monocrystalline cast silicon and monocrystalline cast silicon bodies for photovoltaics

    DOE Patents [OSTI]

    Stoddard, Nathan G. (Gettysburg, PA)

    2011-11-01T23:59:59.000Z

    Methods and apparatuses are provided for casting silicon for photovoltaic cells and other applications. With such methods and apparatuses, a cast body of monocrystalline silicon may be formed that is free of, or substantially free of, radially-distributed impurities and defects and having at least two dimensions that are each at least about 35 cm is provided.

  14. Combustion Synthesis of Silicon Carbide 389 Combustion Synthesis of Silicon Carbide

    E-Print Network [OSTI]

    Mukasyan, Alexander

    Combustion Synthesis of Silicon Carbide 389 X Combustion Synthesis of Silicon Carbide Alexander S. Mukasyan University of Notre Dame USA 1. Introduction Combustion synthesis (CS) is an effective technique by which combustion synthesis can occur: self - propagating high-temperature synthesis (SHS) and volume

  15. CHARGE STABILITY IN LPCVD SILICON NITRIDE FOR SURFACE PASSIVATION OF SILICON SOLAR CELLS

    E-Print Network [OSTI]

    CHARGE STABILITY IN LPCVD SILICON NITRIDE FOR SURFACE PASSIVATION OF SILICON SOLAR CELLS Yongling Ren, Natalita M Nursam, Da Wang and Klaus J Weber Centre for Sustainable Energy Systems, College of Engineering and Computer Science, The Australian National University, Canberra, ACT 0200, Australia ABSTRACT

  16. Methods and apparatus for manufacturing monocrystalline cast silicon and monocrystalline cast silicon bodies for photovoltaics

    DOE Patents [OSTI]

    Stoddard, Nathan G

    2014-01-14T23:59:59.000Z

    Methods and apparatuses are provided for casting silicon for photovoltaic cells and other applications. With such methods and apparatuses, a cast body of monocrystalline silicon may be formed that is free of, or substantially free of, radially-distributed impurities and defects and having at least two dimensions that are each at least about 35 cm is provided.

  17. LPCVD SILICON NITRIDE-ON-SILICON SPACER TECHNOLOGY H. W. van Zeijl, L.K. Nanver

    E-Print Network [OSTI]

    Technische Universiteit Delft

    of obtaining self-aligned sub- lithographic dimensions. In many processes were spacers are applied to separate-etching affects the dimensions of the spacer which could lead to a lack of control over the spacer-related deviceLPCVD SILICON NITRIDE-ON-SILICON SPACER TECHNOLOGY H. W. van Zeijl, L.K. Nanver DIMES Delft

  18. Metallic coatings on silicon substrates, and methods of forming metallic coatings on silicon substrates

    DOE Patents [OSTI]

    Branagan, Daniel J. (Idaho Falls, ID); Hyde, Timothy A. (Idaho Falls, ID); Fincke, James R. (Los Alamos, NM)

    2008-03-11T23:59:59.000Z

    The invention includes methods of forming a metallic coating on a substrate which contains silicon. A metallic glass layer is formed over a silicon surface of the substrate. The invention includes methods of protecting a silicon substrate. The substrate is provided within a deposition chamber along with a deposition target. Material from the deposition target is deposited over at least a portion of the silicon substrate to form a protective layer or structure which contains metallic glass. The metallic glass comprises iron and one or more of B, Si, P and C. The invention includes structures which have a substrate containing silicon and a metallic layer over the substrate. The metallic layer contains less than or equal to about 2 weight % carbon and has a hardness of at least 9.2 GPa. The metallic layer can have an amorphous microstructure or can be devitrified to have a nanocrystalline microstructure.

  19. Cryogenic silicon surface ion trap

    E-Print Network [OSTI]

    Michael Niedermayr; Kirill Lakhmanskiy; Muir Kumph; Stefan Partel; Johannes Edlinger; Michael Brownnutt; Rainer Blatt

    2015-05-01T23:59:59.000Z

    Trapped ions are pre-eminent candidates for building quantum information processors and quantum simulators. They have been used to demonstrate quantum gates and algorithms, quantum error correction, and basic quantum simulations. However, to realise the full potential of such systems and make scalable trapped-ion quantum computing a reality, there exist a number of practical problems which must be solved. These include tackling the observed high ion-heating rates and creating scalable trap structures which can be simply and reliably produced. Here, we report on cryogenically operated silicon ion traps which can be rapidly and easily fabricated using standard semiconductor technologies. Single $^{40}$Ca$^+$ ions have been trapped and used to characterize the trap operation. Long ion lifetimes were observed with the traps exhibiting heating rates as low as $\\dot{\\bar{n}}=$ 0.33 phonons/s at an ion-electrode distance of 230 $\\mu$m. These results open many new avenues to arrays of micro-fabricated ion traps.

  20. Dynamics of hydrogen in silicon

    SciTech Connect (OSTI)

    Shirai, Koun [ISIR, Osaka University, 8-1, Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Hamada, Ikutaro [International Center for Materials Nanoarchitectonics, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Katayama-Yoshida, Hiroshi [Grad. School of Eng. Sci., Osaka University, 1-3, Machikaneyama, Toyonaka 560-8531 (Japan)

    2014-02-21T23:59:59.000Z

    The frequency of local hydrogen vibration in silicon and its decay process have been studied theoretically. It is believed that the H in Si is located at the bond center in equilibrium. By analyzing the discrepancy between the frequency of the antisymmetric stretching mode in a frozen-phonon calculation and the frequency in a molecular dynamic simulation, it is found that the Si–H–Si bond is dynamically bending. The reason is that the adiabatic potential along a direction perpendicular to the bond axis is so flat that random thermal motion of atoms easily scatters the H atom from the axis. A fast relaxation (?1 ps) around the axis hides this bending from observation by slow-response measurements. One consequence of the bending is that it renders the frequency of the symmetric stretching mode higher than when the bond is not bent. Another, more interesting consequence of this bending is the fast decay rate of the antisymmetric stretching mode, in spite of its local-mode character. Again, the ease of conversion of the H motion from parallel to perpendicular to the bond axis is the cause of this fast decay, which is otherwise difficult to explain by a simple combination law of frequencies.

  1. Silicon-based nanoenergetic composites

    SciTech Connect (OSTI)

    Asay, Blaine [Los Alamos National Laboratory; Son, Steven [PURDUE UNIV; Mason, Aaron [PURDUE UNIV; Yarrington, Cole [PURDUE UNIV; Cho, K Y [PURDUE UNIV; Gesner, J [PSU; Yetter, R A [PSU

    2009-01-01T23:59:59.000Z

    Fundamental combustion properties of silicon-based nano-energetic composites was studied by performing equilibrium calculations, 'flame tests', and instrumented burn-tube tests. That the nominal maximum flame temperature and for many Si-oxidizer systems is about 3000 K, with exceptions. Some of these exceptions are Si-metal oxides with temperatures ranging from 2282 to 2978 K. Theoretical maximum gas production of the Si composites ranged from 350-6500 cm{sup 3}/g of reactant with NH{sub 4}ClO{sub 4} - Si producing the most gas at 6500 cm{sup 3}/g and Fe{sub 2}O{sub 3} producing the least. Of the composites tested NH{sub 4}ClO{sub 4} - Si showed the fastest burning rates with the fastest at 2.1 km/s. The Si metal oxide burning rates where on the order of 0.03-75 mls the slowest of which was nFe{sub 2}O{sub 3} - Si.

  2. Silicon ball grid array chip carrier

    DOE Patents [OSTI]

    Palmer, David W. (Albuquerque, NM); Gassman, Richard A. (Greensboro, NC); Chu, Dahwey (Albuquerque, NM)

    2000-01-01T23:59:59.000Z

    A ball-grid-array integrated circuit (IC) chip carrier formed from a silicon substrate is disclosed. The silicon ball-grid-array chip carrier is of particular use with ICs having peripheral bond pads which can be reconfigured to a ball-grid-array. The use of a semiconductor substrate such as silicon for forming the ball-grid-array chip carrier allows the chip carrier to be fabricated on an IC process line with, at least in part, standard IC processes. Additionally, the silicon chip carrier can include components such as transistors, resistors, capacitors, inductors and sensors to form a "smart" chip carrier which can provide added functionality and testability to one or more ICs mounted on the chip carrier. Types of functionality that can be provided on the "smart" chip carrier include boundary-scan cells, built-in test structures, signal conditioning circuitry, power conditioning circuitry, and a reconfiguration capability. The "smart" chip carrier can also be used to form specialized or application-specific ICs (ASICs) from conventional ICs. Types of sensors that can be included on the silicon ball-grid-array chip carrier include temperature sensors, pressure sensors, stress sensors, inertia or acceleration sensors, and/or chemical sensors. These sensors can be fabricated by IC processes and can include microelectromechanical (MEM) devices.

  3. Sputtered silicon oxynitride for microphotonics : a materials study

    E-Print Network [OSTI]

    Sandland, Jessica Gene, 1977-

    2005-01-01T23:59:59.000Z

    Silicon oxynitride (SiON) is an ideal waveguide material because the SiON materials system provides substantial flexibility in composition and refractive index. SiON can be varied in index from that of silicon dioxide ...

  4. aspect ratio silicon: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    silicon-nitride hard-mask for high aspect-ratio silicon fins V. Jovanovi, S, Zagreb, Croatia Abstract - A method for using hard-masks to achieve sub- 100 nm patterning of...

  5. Iron-oxide catalyzed silicon photoanode for water splitting

    E-Print Network [OSTI]

    Jun, Kimin

    2011-01-01T23:59:59.000Z

    This thesis presents an integrated study of high efficiency photoanodes for water splitting using silicon and iron-oxide. The fundamental limitations of silicon to water splitting applications were overcome by an ultrathin ...

  6. Silicon Photonics for chemical sensing and spectroscopy, diagnosis and therapy

    E-Print Network [OSTI]

    Hon, Kam Yan

    2012-01-01T23:59:59.000Z

    poled silicon (PePSi) – Second-order nonlinearity ofpoled silicon (PePSi) – Second-order nonlinearity ofinfrared generation using PePSi waveguide 3.2. Discrepancy

  7. D0 layer 0 innermost layer of silicon microstrip tracker

    SciTech Connect (OSTI)

    Hanagaki, K.; /Fermilab

    2006-01-01T23:59:59.000Z

    A new inner layer silicon strip detector has been built and will be installed in the existing silicon microstrip tracker in D0. They report on the motivation, design, and performance of this new detector.

  8. Flaw-limited transport in germanium-on-silicon photodiodes

    E-Print Network [OSTI]

    Orcutt, Jason S. (Jason Scott)

    2008-01-01T23:59:59.000Z

    Epitaxial germanium growth on silicon substrates has enabled a new class of photodiodes that can be integrated with traditional silicon electronics. Previous workers using lowthroughput growth techniques have demonstrated ...

  9. Fabrication of Memristors with Poly-Crystalline Silicon Nanowires

    E-Print Network [OSTI]

    De Micheli, Giovanni

    - silicon nanowire, SiNWFET, spacer technique, polycrystalline silicon, poly-Si, ambipolar, memristor of device dimensions, new phenomena have been claimed to be responsible for the memristor behavior

  10. area multicrystalline silicon: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SOLAR CELLS FROM THE POROUS SILICON PROCESS APPLYING CONVECTION for the first time to monocrystalline Si thin-film solar cells from the porous silicon (PSI) layer transfer for...

  11. aastaks silicon valleysse: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SOLAR CELLS FROM THE POROUS SILICON PROCESS APPLYING CONVECTION for the first time to monocrystalline Si thin-film solar cells from the porous silicon (PSI) layer transfer for...

  12. assisted grown silicon: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SOLAR CELLS FROM THE POROUS SILICON PROCESS APPLYING CONVECTION for the first time to monocrystalline Si thin-film solar cells from the porous silicon (PSI) layer transfer for...

  13. acid modified silicone: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SOLAR CELLS FROM THE POROUS SILICON PROCESS APPLYING CONVECTION for the first time to monocrystalline Si thin-film solar cells from the porous silicon (PSI) layer transfer for...

  14. athermal silicon microring: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SOLAR CELLS FROM THE POROUS SILICON PROCESS APPLYING CONVECTION for the first time to monocrystalline Si thin-film solar cells from the porous silicon (PSI) layer transfer for...

  15. Development of a Microfabricated Silicon Motor-Driven Compression System

    E-Print Network [OSTI]

    Frechette, Luc G.

    silicon microturbine rotor enclosed in a bonded stack of ve deep reactive ion etched wafers. They were

  16. Silicon Valley Power- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Silicon Valley Power offers rebates to residential customers for the purchase of a variety of energy efficient products including:

  17. Deposition method for producing silicon carbide high-temperature semiconductors

    DOE Patents [OSTI]

    Hsu, George C. (La Crescenta, CA); Rohatgi, Naresh K. (W. Corine, CA)

    1987-01-01T23:59:59.000Z

    An improved deposition method for producing silicon carbide high-temperature semiconductor material comprising placing a semiconductor substrate composed of silicon carbide in a fluidized bed silicon carbide deposition reactor, fluidizing the bed particles by hydrogen gas in a mildly bubbling mode through a gas distributor and heating the substrate at temperatures around 1200.degree.-1500.degree. C. thereby depositing a layer of silicon carbide on the semiconductor substrate.

  18. Porous silicon membranes as ultrafiltration devices: a feasibility study 

    E-Print Network [OSTI]

    Hong, Xiangrong

    1993-01-01T23:59:59.000Z

    in the integrated circuits. According to research results, porous silicon layers are formed by local dissolution of silicon during anodization in hydrofluoric acid solution. Memming and Schwandt (1966) proposed the following model for the etching process... results in the formation of the etched pores. Beale (1984) investigated the microstructure of porous silicon using cross-sectional transmission electron microscopy. The studies show that the structure of porous silicon is not perfectly cylindrical...

  19. Highly Efficient Silicon Light Emitting Diode

    E-Print Network [OSTI]

    Leminh Holleman Wallinga; P. Leminh; J. Holleman; H. Wallinga

    2000-01-01T23:59:59.000Z

    In this paper, we describe the fabrication, using standard silicon processing techniques, of silicon light-emitting diodes (LED) that efficiently emit photons with energy around the silicon bandgap. The improved efficiency had been explained by the spatial confinement of charge carriers due to a local strain field that is formed by dislocation loop arrays. The dependence of device electroluminescent properties on the annealing conditions is carefully examined as a high temperature process has profound influence on these dislocations. Increased luminescent intensity at higher device temperature, together with pure diffusion current conduction mechanism evidently shows the influence of the dislocation loops. The electrical properties of the diode are reasonable with low leakage reverse current.

  20. Efficiency of silicon solar cells containing chromium

    DOE Patents [OSTI]

    Frosch, Robert A. Administrator of the National Aeronautics and Space (New Port Beach, CA); Salama, Amal M. (New Port Beach, CA)

    1982-01-01T23:59:59.000Z

    Efficiency of silicon solar cells containing about 10.sup.15 atoms/cm.sup.3 of chromium is improved about 26% by thermal annealing of the silicon wafer at a temperature of 200.degree. C. to form chromium precipitates having a diameter of less than 1 Angstrom. Further improvement in efficiency is achieved by scribing laser lines onto the back surface of the wafer at a spacing of at least 0.5 mm and at a depth of less than 13 micrometers to preferentially precipitate chromium near the back surface and away from the junction region of the device. This provides an economical way to improve the deleterious effects of chromium, one of the impurities present in metallurgical grade silicon material.

  1. Light Ions Response of Silicon Carbide Detectors

    E-Print Network [OSTI]

    M. De Napoli; G. Raciti; E. Rapisarda; C. Sfienti

    2006-12-14T23:59:59.000Z

    Silicon carbide (SiC) Schottky diodes 21 mum thick with small surfaces and high N-dopant concentration have been used to detect alpha particles and low energy light ions. In particular 12C and 16O beams at incident energies between 5 and 18 MeV were used. The diode active-region depletion-thickness, the linearity of the response, energy resolution and signal rise-time were measured for different values of the applied reverse bias. Moreover the radiation damage on SiC diodes irradiated with 53 MeV 16O beam has been explored. The data show that SiC material is radiation harder than silicon but at least one order of magnitude less hard than epitaxial silicon diodes. An inversion in the signal was found at a fluence of 10^15 ions/cm^2.

  2. Silicon nitride ceramic having high fatigue life and high toughness

    DOE Patents [OSTI]

    Yeckley, Russell L. (Oakham, MA)

    1996-01-01T23:59:59.000Z

    A sintered silicon nitride ceramic comprising between about 0.6 mol % and about 3.2 mol % rare earth as rare earth oxide, and between about 85 w/o and about 95 w/o beta silicon nitride grains, wherein at least about 20% of the beta silicon nitride grains have a thickness of greater than about 1 micron.

  3. Parylene Coated Silicon Probes for Neural Prosthesis Ray Huang1*

    E-Print Network [OSTI]

    Andersen, Richard

    Parylene Coated Silicon Probes for Neural Prosthesis Ray Huang1* , Changlin Pang1 , Yu-Chong Tai1 electrodes. Keywords - parylene cable; neural prosthesis; silicon probe I. INTRODUCTION An important component of silicon neural prosthesis is the electrode array capable of recording neural activity from

  4. Periodically poled silicon Nick K. Hon,a

    E-Print Network [OSTI]

    Jalali. Bahram

    as quasi-phase matching. Periodically poled silicon PePSi adds the periodic poling capability to silicon to be harnessed for devices based on second-order nonlinear effects. As an example of the utility of the PePSi is in effect, periodically poled silicon PePSi , a new technology for efficient second-order nonlinear

  5. CRYSTALLINE SILICON THIN-FILM SOLAR CELLS FROM THE POROUS SILICON PROCESS APPLYING CONVECTION ASSISTED CHEMICAL VAPOR DEPOSITION

    E-Print Network [OSTI]

    . An industrial exploitation of these properties for solar cell production currently lacks of a cost effectiveCRYSTALLINE SILICON THIN-FILM SOLAR CELLS FROM THE POROUS SILICON PROCESS APPLYING CONVECTION for the first time to monocrystalline Si thin-film solar cells from the porous silicon (PSI) layer transfer

  6. Fabricating amorphous silicon solar cells by varying the temperature _of the substrate during deposition of the amorphous silicon layer

    DOE Patents [OSTI]

    Carlson, David E. (Yardley, PA)

    1982-01-01T23:59:59.000Z

    An improved process for fabricating amorphous silicon solar cells in which the temperature of the substrate is varied during the deposition of the amorphous silicon layer is described. Solar cells manufactured in accordance with this process are shown to have increased efficiencies and fill factors when compared to solar cells manufactured with a constant substrate temperature during deposition of the amorphous silicon layer.

  7. Solar cell structure incorporating a novel single crystal silicon material

    DOE Patents [OSTI]

    Pankove, Jacques I. (Princeton, NJ); Wu, Chung P. (Trenton, NJ)

    1983-01-01T23:59:59.000Z

    A novel hydrogen rich single crystal silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystal silicon without out-gassing the hydrogen. The new material can be used to fabricate semiconductor devices such as single crystal silicon solar cells with surface window regions having a greater band gap energy than that of single crystal silicon without hydrogen.

  8. Fabrication of strained silicon on insulator by strain transfer process

    SciTech Connect (OSTI)

    Jin Bo; Wang Xi; Chen Jing; Cheng Xinli; Chen Zhijun [Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050 (China)

    2005-08-01T23:59:59.000Z

    The fabrication of ultrathin strained silicon layer directly on insulator is demonstrated. 50 nm strained silicon on insulator layers were fabricated by a method which includes four steps: Epitaxial growth of strained SiGe on ultrathin silicon on insulator (SOI) substrates, ion implantation, postannealing process, and etch-back process. Strain of the layer was observed by Raman spectroscopy. 0.72% tensile strain was maintained in the strained silicon layer even after removing the SiGe film. The strained layer was the result of strain equalization and transfer process between the SiGe film and top silicon layer.

  9. Application of optical processing for growth of silicon dioxide

    DOE Patents [OSTI]

    Sopori, B.L.

    1997-06-17T23:59:59.000Z

    A process for producing a silicon dioxide film on a surface of a silicon substrate is disclosed. The process comprises illuminating a silicon substrate in a substantially pure oxygen atmosphere with a broad spectrum of visible and infrared light at an optical power density of from about 3 watts/cm{sup 2} to about 6 watts/cm{sup 2} for a time period sufficient to produce a silicon dioxide film on the surface of the silicon substrate. An optimum optical power density is about 4 watts/cm{sup 2} for growth of a 100{angstrom}-300{angstrom} film at a resultant temperature of about 400 C. Deep level transient spectroscopy analysis detects no measurable impurities introduced into the silicon substrate during silicon oxide production and shows the interface state density at the SiO{sub 2}/Si interface to be very low. 1 fig.

  10. Application Of Optical Processing For Growth Of Silicon Dioxide

    DOE Patents [OSTI]

    Sopori, Bhushan L. (Denver, CO)

    1997-06-17T23:59:59.000Z

    A process for producing a silicon dioxide film on a surface of a silicon substrate. The process comprises illuminating a silicon substrate in a substantially pure oxygen atmosphere with a broad spectrum of visible and infrared light at an optical power density of from about 3 watts/cm.sup.2 to about 6 watts/cm.sup.2 for a time period sufficient to produce a silicon dioxide film on the surface of the silicon substrate. An optimum optical power density is about 4 watts/cm.sup.2 for growth of a 100.ANG.-300.ANG. film at a resultant temperature of about 400.degree. C. Deep level transient spectroscopy analysis detects no measurable impurities introduced into the silicon substrate during silicon oxide production and shows the interface state density at the SiO.sub.2 /Si interface to be very low.

  11. Method of forming crystalline silicon devices on glass

    DOE Patents [OSTI]

    McCarthy, A.M.

    1995-03-21T23:59:59.000Z

    A method is disclosed for fabricating single-crystal silicon microelectronic components on a silicon substrate and transferring same to a glass substrate. This is achieved by utilizing conventional silicon processing techniques for fabricating components of electronic circuits and devices on bulk silicon, wherein a bulk silicon surface is prepared with epitaxial layers prior to the conventional processing. The silicon substrate is bonded to a glass substrate and the bulk silicon is removed leaving the components intact on the glass substrate surface. Subsequent standard processing completes the device and circuit manufacturing. This invention is useful in applications requiring a transparent or insulating substrate, particularly for display manufacturing. Other applications include sensors, actuators, optoelectronics, radiation hard electronics, and high temperature electronics. 7 figures.

  12. Method of forming crystalline silicon devices on glass

    DOE Patents [OSTI]

    McCarthy, Anthony M. (Menlo Park, CA)

    1995-01-01T23:59:59.000Z

    A method for fabricating single-crystal silicon microelectronic components on a silicon substrate and transferring same to a glass substrate. This is achieved by utilizing conventional silicon processing techniques for fabricating components of electronic circuits and devices on bulk silicon, wherein a bulk silicon surface is prepared with epitaxial layers prior to the conventional processing. The silicon substrate is bonded to a glass substrate and the bulk silicon is removed leaving the components intact on the glass substrate surface. Subsequent standard processing completes the device and circuit manufacturing. This invention is useful in applications requiring a transparent or insulating substrate, particularly for display manufacturing. Other applications include sensors, actuators, optoelectronics, radiation hard electronics, and high temperature electronics.

  13. Methanol Steam Reformer on a Silicon Wafer

    SciTech Connect (OSTI)

    Park, H; Malen, J; Piggott, T; Morse, J; Sopchak, D; Greif, R; Grigoropoulos, C; Havstad, M; Upadhye, R

    2004-04-15T23:59:59.000Z

    A study of the reforming rates, heat transfer and flow through a methanol reforming catalytic microreactor fabricated on a silicon wafer are presented. Comparison of computed and measured conversion efficiencies are shown to be favorable. Concepts for insulating the reactor while maintaining small overall size and starting operation from ambient temperature are analyzed.

  14. Nanoparticle-based etching of silicon surfaces

    DOE Patents [OSTI]

    Branz, Howard (Boulder, CO); Duda, Anna (Denver, CO); Ginley, David S. (Evergreen, CO); Yost, Vernon (Littleton, CO); Meier, Daniel (Atlanta, GA); Ward, James S. (Golden, CO)

    2011-12-13T23:59:59.000Z

    A method (300) of texturing silicon surfaces (116) such to reduce reflectivity of a silicon wafer (110) for use in solar cells. The method (300) includes filling (330, 340) a vessel (122) with a volume of an etching solution (124) so as to cover the silicon surface 116) of a wafer or substrate (112). The etching solution (124) is made up of a catalytic nanomaterial (140) and an oxidant-etchant solution (146). The catalytic nanomaterial (140) may include gold or silver nanoparticles or noble metal nanoparticles, each of which may be a colloidal solution. The oxidant-etchant solution (146) includes an etching agent (142), such as hydrofluoric acid, and an oxidizing agent (144), such as hydrogen peroxide. Etching (350) is performed for a period of time including agitating or stirring the etching solution (124). The etch time may be selected such that the etched silicon surface (116) has a reflectivity of less than about 15 percent such as 1 to 10 percent in a 350 to 1000 nanometer wavelength range.

  15. Silicon nitride having a high tensile strength

    DOE Patents [OSTI]

    Pujari, Vimal K. (Northboro, MA); Tracey, Dennis M. (Medfield, MA); Foley, Michael R. (Oxford, MA); Paille, Norman I. (Oxford, MA); Pelletier, Paul J. (Millbury, MA); Sales, Lenny C. (Grafton, MA); Willkens, Craig A. (Sterling, MA); Yeckley, Russell L. (Oakham, MA)

    1996-01-01T23:59:59.000Z

    A silicon nitride ceramic comprising: a) inclusions no greater than 25 microns in length, b) agglomerates no greater than 20 microns in diameter, and c) a surface finish of less than about 8 microinches, said ceramic having a four-point flexural strength of at least about 900 MPa.

  16. High Q silicon carbide microdisk resonator

    SciTech Connect (OSTI)

    Lu, Xiyuan [Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627 (United States); Lee, Jonathan Y. [Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627 (United States); Feng, Philip X.-L. [Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, Ohio 44106 (United States); Lin, Qiang, E-mail: qiang.lin@rochester.edu [Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627 (United States); Institute of Optics, University of Rochester, Rochester, New York 14627 (United States)

    2014-05-05T23:59:59.000Z

    We demonstrate a silicon carbide (SiC) microdisk resonator with optical Q up to 5.12?×?10{sup 4}. The high optical quality, together with the diversity of whispering-gallery modes and the tunability of external coupling, renders SiC microdisk a promising platform for integrated quantum photonics applications.

  17. Metal electrode for amorphous silicon solar cells

    DOE Patents [OSTI]

    Williams, Richard (Princeton, NJ)

    1983-01-01T23:59:59.000Z

    An amorphous silicon solar cell having an N-type region wherein the contact to the N-type region is composed of a material having a work function of about 3.7 electron volts or less. Suitable materials include strontium, barium and magnesium and rare earth metals such as gadolinium and yttrium.

  18. Seismic behavior of structural silicone glazing

    SciTech Connect (OSTI)

    Zarghamee, M.S.; Schwartz, T.A. [Simpson Gumpertz and Heger Inc., Arlington, MA (United States); Gladstone, M. [Dow Corning Corp., Fremont, CA (United States)

    1996-12-31T23:59:59.000Z

    In seismic events, glass curtain walls undergo racking deformation, while the flat glass lites do not rack due to their high shear stiffness. If the glass curtain wall is not isolated from the building frame by specifically designed connections that accommodate relative motion, seismic racking motion of the building frame will demand significant resiliency of the sealant that secures the glass to the curtain wall framing. In typical four-sided structural silicone glazing systems used in buildings with unbraced moment frames, the magnitude of seismic racking is likely to stress the sealants significantly beyond the sealant design strength. In this paper, the extent of the expected seismic racking motion, the behavior of the structural silicone glazing when subjected to the expected racking motion, and the field performance of a building with four-sided structural silicone glazing during the Northridge earthquake are discussed. The details of a curtain wall design concept consisting of shop-glazed subframes connected to the building frame and the connections that accommodate seismic motion of the subframe relative to the building frame is developed. Specific recommendations are made for the design of the four-sided structural silicone glazing systems for seismic loads.

  19. Enhanced thermoelectric performance of rough silicon nanowires

    E-Print Network [OSTI]

    Yang, Peidong

    LETTERS Enhanced thermoelectric performance of rough silicon nanowires Allon I. Hochbaum1 *, Renkun, such that roughly 15 terawatts of heat is lost to the environment. Thermoelectric modules could potentially convert part of this low-grade waste heat to electricity. Their efficiency depends on the thermoelectric figure

  20. Silicon on insulator achieved using electrochemical etching

    DOE Patents [OSTI]

    McCarthy, Anthony M. (Menlo Park, CA)

    1997-01-01T23:59:59.000Z

    Bulk crystalline silicon wafers are transferred after the completion of circuit fabrication to form thin films of crystalline circuitry on almost any support, such as metal, semiconductor, plastic, polymer, glass, wood, and paper. In particular, this technique is suitable to form silicon-on-insulator (SOI) wafers, whereby the devices and circuits formed exhibit superior performance after transfer due to the removal of the silicon substrate. The added cost of the transfer process to conventional silicon fabrication is insignificant. No epitaxial, lift-off, release or buried oxide layers are needed to perform the transfer of single or multiple wafers onto support members. The transfer process may be performed at temperatures of 50.degree. C. or less, permits transparency around the circuits and does not require post-transfer patterning. Consequently, the technique opens up new avenues for the use of integrated circuit devices in high-brightness, high-resolution video-speed color displays, reduced-thickness increased-flexibility intelligent cards, flexible electronics on ultrathin support members, adhesive electronics, touch screen electronics, items requiring low weight materials, smart cards, intelligent keys for encryption systems, toys, large area circuits, flexible supports, and other applications. The added process flexibility also permits a cheap technique for increasing circuit speed of market driven technologies such as microprocessors at little added expense.

  1. Accurate performance measurement of silicon solar cells

    E-Print Network [OSTI]

    accuracy. The light source is very important when calibrating solar cells. Commonly used light sourcesAccurate performance measurement of silicon solar cells William Murray Keogh July 2001 A thesis is an important part of the solar cell manufacturing process. Two classes of measurement can be considered

  2. Microscopic Investigations on various Silicon Materials

    E-Print Network [OSTI]

    to be responsible for the radiation hardness of oxygen enriched silicon. The generation of the acceptor V 2 O interstitials and vacancies form defects with the impurities oxygen and carbon. The radiation induced defects are the shallow doping concentration phosphorous and the concentrations of the impurities oxygen and carbon

  3. Silicon enhancement mode nanostructures for quantum computing.

    SciTech Connect (OSTI)

    Carroll, Malcolm S.

    2010-03-01T23:59:59.000Z

    Development of silicon, enhancement mode nanostructures for solid-state quantum computing will be described. A primary motivation of this research is the recent unprecedented manipulation of single electron spins in GaAs quantum dots, which has been used to demonstrate a quantum bit. Long spin decoherence times are predicted possible in silicon qubits. This talk will focus on silicon enhancement mode quantum dot structures that emulate the GaAs lateral quantum dot qubit but use an enhancement mode field effect transistor (FET) structure. One critical concern for silicon quantum dots that use oxides as insulators in the FET structure is that defects in the metal oxide semiconductor (MOS) stack can produce both detrimental electrostatic and paramagnetic effects on the qubit. Understanding the implications of defects in the Si MOS system is also relevant for other qubit architectures that have nearby dielectric passivated surfaces. Stable, lithographically defined, single-period Coulomb-blockade and single-electron charge sensing in a quantum dot nanostructure using a MOS stack will be presented. A combination of characterization of defects, modeling and consideration of modified approaches that incorporate SiGe or donors provides guidance about the enhancement mode MOS approach for future qubits and quantum circuit micro-architecture.

  4. Superconductive silicon nanowires using gallium beam lithography.

    SciTech Connect (OSTI)

    Henry, Michael David; Jarecki, Robert Leo,

    2014-01-01T23:59:59.000Z

    This work was an early career LDRD investigating the idea of using a focused ion beam (FIB) to implant Ga into silicon to create embedded nanowires and/or fully suspended nanowires. The embedded Ga nanowires demonstrated electrical resistivity of 5 m-cm, conductivity down to 4 K, and acts as an Ohmic silicon contact. The suspended nanowires achieved dimensions down to 20 nm x 30 nm x 10 m with large sensitivity to pressure. These structures then performed well as Pirani gauges. Sputtered niobium was also developed in this research for use as a superconductive coating on the nanowire. Oxidation characteristics of Nb were detailed and a technique to place the Nb under tensile stress resulted in the Nb resisting bulk atmospheric oxidation for up to years.

  5. Direct current, closed furnace silicon technology

    SciTech Connect (OSTI)

    Dosaj, V.D. [Dow Corning Corp., Midland, MI (United States); May, J.B. [Dow Corning Corp., Freeland, MI (United States); Arvidson, A.N. [Meadow Materials, Manitoba (Canada)

    1994-05-01T23:59:59.000Z

    The dc closed furnace technology for smelting silicon offers technical operating challenges, as well as, economic opportunities for off-gas recovery, reduced electrode consumption, reduced reductant oxidation losses, reduced energy consumption, and improved silicon recovery. The 10 mva dc closed furnace is located in East Selkirk, Manitoba. Construction of this pilot plant was started in September 1990. Following successful commissioning of the furnace in 1992, a number of smelting tests have been conducted aimed at optimization of the furnace operation and the raw material mix. The operation of a closed furnace is significantly different from an open furnace operation. The major difference being in the mechanical movement of the mix, off-gas recovery, and inability to observe the process. These differences made data collection and analysis critical in making operating decisions. This closed furnace was operated by computer control (state of the art in the smelling industry).

  6. Fabrication of 3D Silicon Sensors

    SciTech Connect (OSTI)

    Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; /SINTEF, Oslo; Kenney, C.; Hasi, J.; /SLAC; Da Via, C.; /Manchester U.; Parker, S.I.; /Hawaii U.

    2012-06-06T23:59:59.000Z

    Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.

  7. Synthesis of silicon and germanium nanowires.

    SciTech Connect (OSTI)

    Clement, Teresa J. (Arizona State University); Hsu, Julia W. P.

    2007-11-01T23:59:59.000Z

    The vapor-liquid-solid growth process for synthesis of group-IV semiconducting nanowires using silane, germane, disilane and digermane precursor gases has been investigated. The nanowire growth process combines in situ gold seed formation by vapor deposition on atomically clean silicon (111) surfaces, in situ growth from the gaseous precursor(s), and real-time monitoring of nanowire growth as a function of temperature and pressure by a novel optical reflectometry technique. A significant dependence on precursor pressure and growth temperature for the synthesis of silicon and germanium nanowires is observed, depending on the stability of the specific precursor used. Also, the presence of a nucleation time for the onset of nanowire growth has been found using our new in situ optical reflectometry technique.

  8. Diamond-Silicon Carbide Composite And Method For Preparation Thereof

    DOE Patents [OSTI]

    Qian, Jiang (Los Alamos, NM); Zhao, Yusheng (Los Alamos, NM)

    2005-09-06T23:59:59.000Z

    Fully dense, diamond-silicon carbide composites are prepared from ball-milled microcrystalline diamond/amorphous silicon powder mixture. The ball-milled powder is sintered (P=5-8 GPa, T=1400K-2300K) to form composites having high fracture toughness. A composite made at 5 GPa/1673K had a measured fracture toughness of 12 MPa.multidot.m.sup.1/2. By contrast, liquid infiltration of silicon into diamond powder at 5 GPa/1673K produces a composite with higher hardness but lower fracture toughness. X-ray diffraction patterns and Raman spectra indicate that amorphous silicon is partially transformed into nanocrystalline silicon at 5 GPa/873K, and nanocrystalline silicon carbide forms at higher temperatures.

  9. Copper-assisted, anti-reflection etching of silicon surfaces

    DOE Patents [OSTI]

    Toor, Fatima; Branz, Howard

    2014-08-26T23:59:59.000Z

    A method (300) for etching a silicon surface (116) to reduce reflectivity. The method (300) includes electroless deposition of copper nanoparticles about 20 nanometers in size on the silicon surface (116), with a particle-to-particle spacing of 3 to 8 nanometers. The method (300) includes positioning (310) the substrate (112) with a silicon surface (116) into a vessel (122). The vessel (122) is filled (340) with a volume of an etching solution (124) so as to cover the silicon surface (116). The etching solution (124) includes an oxidant-etchant solution (146), e.g., an aqueous solution of hydrofluoric acid and hydrogen peroxide. The silicon surface (116) is etched (350) by agitating the etching solution (124) with, for example, ultrasonic agitation, and the etching may include heating (360) the etching solution (124) and directing light (365) onto the silicon surface (116). During the etching, copper nanoparticles enhance or drive the etching process.

  10. Method for forming silicon on a glass substrate

    DOE Patents [OSTI]

    McCarthy, Anthony M. (Menlo Park, CA)

    1995-01-01T23:59:59.000Z

    A method by which single-crystal silicon microelectronics may be fabricated on glass substrates at unconventionally low temperatures. This is achieved by fabricating a thin film of silicon on glass and subsequently forming the doped components by a short wavelength (excimer) laser doping procedure and conventional patterning techniques. This method may include introducing a heavily boron doped etch stop layer on a silicon wafer using an excimer laser, which permits good control of the etch stop layer removal process. This method additionally includes dramatically reducing the remaining surface roughness of the silicon thin films after etching in the fabrication of silicon on insulator wafers by scanning an excimer laser across the surface of the silicon thin film causing surface melting, whereby the surface tension of the melt causes smoothing of the surface during recrystallization. Applications for this method include those requiring a transparent or insulating substrate, such as display manufacturing. Other applications include sensors, actuators, optoelectronics, radiation hard and high temperature electronics.

  11. The PHENIX Forward Silicon Vertex Detector

    E-Print Network [OSTI]

    C. Aidala; L. Anaya; E. Anderssen; A. Bambaugh; A. Barron; J. G. Boissevain; J. Bok; S. Boose; M. L. Brooks; S. Butsyk; M. Cepeda; P. Chacon; S. Chacon; L. Chavez; T. Cote; C. D'Agostino; A. Datta; K. DeBlasio; L. DelMonte; E. J. Desmond; J. M. Durham; D. Fields; M. Finger; C. Gingu; B. Gonzales; J. S. Haggerty; T. Hawke; H. W. van Hecke; M. Herron; J. Hoff; J. Huang; X. Jiang; T. Johnson; M. Jonas; J. S. Kapustinsky; A. Key; G. J. Kunde; J. Kurtz; J. LaBounty; D. M. Lee; K. B. Lee; M. J. Leitch; M. Lenz; W. Lenz; M. X. Liu; D. Lynch; E. Mannel; P. L. McGaughey; A. Meles; B. Meredith; H. Nguyen; E. O'Brien; R. Pak; V. Papavassiliou; S. Pate; H. Pereira; G. D. N. Perera; M. Phillips; R. Pisani; S. Polizzo; R. J. Poncione; J. Popule; M. Prokop; M. L. Purschke; A. K. Purwar; N. Ronzhina; C. L. Silva; M. Slunecka; R. Smith; W. E. Sondheim; K. Spendier; M. Stoffer; E. Tennant; D. Thomas; M. Tomasek; A. Veicht; V. Vrba; X. R. Wang; F. Wei; D. Winter; R. Yarema; Z. You; I. Younus; A. Zimmerman; T. Zimmerman

    2014-02-14T23:59:59.000Z

    A new silicon detector has been developed to provide the PHENIX experiment with precise charged particle tracking at forward and backward rapidity. The Forward Silicon Vertex Tracker (FVTX) was installed in PHENIX prior to the 2012 run period of the Relativistic Heavy Ion Collider (RHIC). The FVTX is composed of two annular endcaps, each with four stations of silicon mini-strip sensors, covering a rapidity range of $1.2<|\\eta|<2.2$ that closely matches the two existing PHENIX muon arms. Each station consists of 48 individual silicon sensors, each of which contains two columns of mini-strips with 75 $\\mu$m pitch in the radial direction and lengths in the $\\phi$ direction varying from 3.4 mm at the inner radius to 11.5 mm at the outer radius. The FVTX has approximately 0.54 million strips in each endcap. These are read out with FPHX chips, developed in collaboration with Fermilab, which are wire bonded directly to the mini-strips. The maximum strip occupancy reached in central Au-Au collisions is approximately 2.8%. The precision tracking provided by this device makes the identification of muons from secondary vertices away from the primary event vertex possible. The expected distance of closest approach (DCA) resolution of 200 $\\mu$m or better for particles with a transverse momentum of 5 GeV/$c$ will allow identification of muons from relatively long-lived particles, such as $D$ and $B$ mesons, through their broader DCA distributions.

  12. Substrate for thin silicon solar cells

    DOE Patents [OSTI]

    Ciszek, Theodore F. (Evergreen, CO)

    1995-01-01T23:59:59.000Z

    A photovoltaic device for converting solar energy into electrical signals comprises a substrate, a layer of photoconductive semiconductor material grown on said substrate, wherein the substrate comprises an alloy of boron and silicon, the boron being present in a range of from 0.1 to 1.3 atomic percent, the alloy having a lattice constant substantially matched to that of the photoconductive semiconductor material and a resistivity of less than 1.times.10.sup.-3 ohm-cm.

  13. Substrate for thin silicon solar cells

    DOE Patents [OSTI]

    Ciszek, T.F.

    1995-03-28T23:59:59.000Z

    A photovoltaic device for converting solar energy into electrical signals comprises a substrate, a layer of photoconductive semiconductor material grown on said substrate, wherein the substrate comprises an alloy of boron and silicon, the boron being present in a range of from 0.1 to 1.3 atomic percent, the alloy having a lattice constant substantially matched to that of the photoconductive semiconductor material and a resistivity of less than 1{times}10{sup {minus}3} ohm-cm. 4 figures.

  14. Status of the CDF silicon detector

    SciTech Connect (OSTI)

    Grinstein, Sebastian; /Harvard U.

    2006-05-01T23:59:59.000Z

    The CDF Run II silicon micro-strip detector is an essential part of the heavy flavor tagging and forward tracking capabilities of the experiment. Since the commissioning period ended in 2002, about 85% of the 730 k readout channels have been consistently provided good data. A summary of the recent improvements in the DAQ system as well as experience of maintaining and operating such a large, complex detector are presented.

  15. Retrograde Melting and Internal Liquid Gettering in Silicon

    SciTech Connect (OSTI)

    Hudelson, Steve; Newman, Bonna K.; Bernardis, Sarah; Fenning, David P.; Bertoni, Mariana I.; Marcus, Matthew A.; Fakra, Sirine C.; Lai, Barry; Buonassisi, Tonio

    2011-07-01T23:59:59.000Z

    Retrograde melting (melting upon cooling) is observed in silicon doped with 3d transition metals, via synchrotron-based temperature-dependent X-ray microprobe measurements. Liquid metal-silicon droplets formed via retrograde melting act as efficient sinks for metal impurities dissolved within the silicon matrix. Cooling results in decomposition of the homogeneous liquid phase into solid multiple-metal alloy precipitates. These phenomena represent a novel pathway for engineering impurities in semiconductor-based systems.

  16. An investigation of magnesium production in silicon by neutron transmutation

    E-Print Network [OSTI]

    Davis, Freddie Joe

    1986-01-01T23:59:59.000Z

    OF SCIENCE May 1986 Major Subject: Nuclear Engineering AN INVESTIGATION OF MAGNESIUM PRODUCTION IN SILICON BY NEUTRON TRANSMUTATION A Thesis by FREDDIE JOE DAVIS, JR. Approved as to style and content by: Ron R. Har t (Chair of Committee) Donald L... University Chairman of Advisory Committee: Dr . Ron R. Hart An investigation of the production of' magnesium in silicon by neutron tr ansmutation is r eported. A 20 mil silicon wafer was irradiated at the Texas A&M University Nuclear Science Center...

  17. Etch-free Formation of Porous Silicon by High-energy Ion Irradiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Etch-free Formation of Porous Silicon by High-energy Ion Irradiation. Etch-free Formation of Porous Silicon by High-energy Ion Irradiation. Abstract: In this study, porous silicon...

  18. Selective Response of Mesoporous Silicon to Adsorbants with Nitro...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    We demonstrate that the electronic structure of mesoporous silicon is affected by adsorption of nitrobased explosive molecules in a compound-selective manner. This selective...

  19. Optimizing wettability of externally wetted microfabricated silicon electrospray thrusters

    E-Print Network [OSTI]

    Garza, Tanya Cruz

    2007-01-01T23:59:59.000Z

    Electrospray propulsion devices with externally wetted architectures have shown favorable performance. The design of microfabricated silicon thrusters and their feed systems requires an understanding of propellant flow ...

  20. Silicon sponge improves lithium-ion battery performance | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sponge improves lithium-ion battery performance Silicon sponge improves lithium-ion battery performance Increasing battery's storage capacity could allow devices to run...

  1. Atomistic modeling of amorphous silicon carbide using a bond...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    there is partial recovery of shortrange order. Citation: Devanathan R, F Gao, and WJ Weber.2007."Atomistic modeling of amorphous silicon carbide using a bond-order...

  2. Amorphization of Silicon Carbide by Carbon Displacement. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plays a significant role in the amorphization. Citation: Devanathan R, F Gao, and WJ Weber.2004."Amorphization of Silicon Carbide by Carbon Displacement."Applied Physics Letters...

  3. Irradiation-induced defect clustering and amorphization in silicon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    guidance on experimental approaches to reveal the onset of these processes. Citation: Weber WJ, and F Gao.2010."Irradiation-induced defect clustering and amorphization in silicon...

  4. Fabrication and testing of oxidized porous silicon field emitter strips

    E-Print Network [OSTI]

    Madduri, Vasanta Bhanu

    1992-01-01T23:59:59.000Z

    mechanism. Formation by Local Dissolution of Silicon Unagami proposed [29] that the formation of porous silicon occurs due to the dissolution of silicon at places restricted by a surface porous film and silicic acid formed during the dissolution reaction... anodized in the presence of HF electmlyte. The silicon wafer divides the electrochemical cell into front and rear half cells. Each of the cells was filled with the electrolyte which is a mixture of 1. 5:1 hydroflouric acid and ethanol. Ethanol is used...

  5. Method and apparatus for producing high purity silicon

    DOE Patents [OSTI]

    Olson, J.M.

    1983-05-27T23:59:59.000Z

    A method for producing high purity silicon includes forming a copper silicide alloy and positioning the alloy within an enclosure. A filament member is also placed within the enclosure opposite the alloy. The enclosure is then filled with a chemical vapor transport gas adapted for transporting silicon. Finally, both the filament member and the alloy are heated to temperatures sufficient to cause the gas to react with silicon at the alloy surface and deposit the reacted silicon on the filament member. In addition, an apparatus for carrying out this method is also disclosed.

  6. GCL Solar Energy Technology Holdings formerly GCL Silicon aka...

    Open Energy Info (EERE)

    GCL Solar Energy Technology Holdings formerly GCL Silicon aka Jiangsu Zhongneng Polysilicon Jump to: navigation, search Name: GCL Solar Energy Technology Holdings (formerly GCL...

  7. advanced silicon space: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to the astronomical identifications 11 Advanced Multilayer Amorphous Silicon Thin-Film Transistor Structure: Film Thickness Effect on Its Electrical Performance and Contact...

  8. Retrograde Melting and Internal Liquid Gettering in Silicon

    E-Print Network [OSTI]

    Hudelson, Steve

    2012-01-01T23:59:59.000Z

    X-ray ?uorescence microscopy ( ? -XRF) mapping was used toimpurities detected by ? -XRF was determined by X-raymetal-silicon mixture. ? -XRF mapping of the standard at

  9. Structures And Magnetization Of Defect-Associated Sites In Silicon

    SciTech Connect (OSTI)

    Chow, L.; Gonzalez-Pons, J. C.; Barco, E. del [Department of Physics, University of Central Florida, Orlando, FL 32816-2385 (United States); Vanfleet, R. [Department of Physics, Brigham Young University, Provo, UT 84602 (United States); Misiuk, A. [Institute of Electron Technology (ITE), al. Lotnikow 32/46, Warsaw 02-668 Poland (Poland); Barcz, A. [Institute of Electron Technology (ITE), al. Lotnikow 32/46, Warsaw 02-668 Poland (Poland); Polish Academy of Science, Institute of Physics, al Lotnikow 32/46, Warsaw 02-668 Poland (Poland); Choi, E. S. [NHMFL, Florida State University, Tallahassee, FL 32310-3706 (United States); Chai, G. [Apollo Technologies, Inc. 205 Waymont Court, Suite 111, Lake Mary, FL 32746 (United States)

    2008-04-24T23:59:59.000Z

    To better understand the mechanism of the reported 'quasi-ferromagnetism' observed in Si ions self-implanted or irradiated silicon, we carry out high resolution transmission electron microscopy (HRTEM), magnetization measurements using superconducting quantum interference device (SQUID) magnetometer, and ferromagnetic resonance (FMR) measurements of the magnetic interaction of the defect-associated sites in silicon damaged by silicon self-implantation or energetic particle beams. The SQUID measurements showed that the silicon self-implanted sample has paramagnetic ordering. FMR measurements indicated the He{sup ++} irradiated sample has a ferromagnetic interaction and yields a Lande g-factor of 2.35.

  10. Role of silicon excess in Er-doped silicon-rich nitride light emitting devices at 1.54??m

    SciTech Connect (OSTI)

    Ramírez, J. M., E-mail: jmramirez@el.ub.edu; Berencén, Y.; Garrido, B. [MIND-IN2UB, Department Electrònica, Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028 (Spain); Cueff, S. [Institut des Nanotechnologies de Lyon, École Centrale de Lyon, Écully 69134 (France); Labbé, C. [Centre de Recherche sur les Ions, les Matériaux et la Photonique (CIMAP), UMR 6252 CNRS/CEA/Ensicaen/UCBN, Caen 14050 (France)

    2014-08-28T23:59:59.000Z

    Erbium-doped silicon-rich nitride electroluminescent thin-films emitting at 1.54??m have been fabricated and integrated within a metal-oxide-semiconductor structure. By gradually varying the stoichiometry of the silicon nitride, we uncover the role of silicon excess on the optoelectronic properties of devices. While the electrical transport is mainly enabled in all cases by Poole-Frenkel conduction, power efficiency and conductivity are strongly altered by the silicon excess content. Specifically, the increase in silicon excess remarkably enhances the conductivity and decreases the charge trapping; however, it also reduces the power efficiency. The main excitation mechanism of Er{sup 3+} ions embedded in silicon-rich nitrides is discussed. The optimum Si excess that balances power efficiency, conductivity, and charge trapping density is found to be close to 16%.

  11. Tribological degradation of fluorocarbon coated silicon microdevice surfaces in normal and sliding contact

    E-Print Network [OSTI]

    Krim, Jacqueline

    Tribological degradation of fluorocarbon coated silicon microdevice surfaces in normal and sliding degradation of the contact interface of a fluorocarbon monolayer-coated polycrystalline silicon microdevice

  12. DOE-funded Silicon-Graphene Research Leads to Chicago-based Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE-funded Silicon-Graphene Research Leads to Chicago-based Technology Startup Graduate students at Northwestern University are commercializing a silicon (Si)-graphene technology...

  13. NREL Develops ZnSiP2 for Silicon-Based Tandem Solar Cells (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01T23:59:59.000Z

    Combining an Earth-abundant chalcopyrite with a silicon layer could significantly boost conversion efficiency above that of single-junction silicon solar cells.

  14. Producer-Focused Life Cycle Assessment of Thin-Film Silicon Photovoltaic Systems

    E-Print Network [OSTI]

    Zhang, Teresa Weirui

    2011-01-01T23:59:59.000Z

    microcrystalline- silicon photovoltaic cell, B) range ofpayback of roof mounted photovoltaic cells. Boustead, I. andmicrocrystalline-silicon photovoltaic cell, B) range of

  15. Mechanical properties and microstructures of dual phase steels containing silicon, aluminum and molybdenum

    E-Print Network [OSTI]

    Neill, Thomas John O'

    2011-01-01T23:59:59.000Z

    AND MICROSTRUCTURES OF DUAL PHASE STEELS CONTAINING SILICON,and Microstructures of Dual Phase Steels Containing Silicon,microstructures of selected dual-phase steels in which the

  16. Silicon-on-glass pore network micromodels with oxygen-sensing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Silicon-on-glass pore network micromodels with oxygen-sensing fluorophore films for chemical imaging and defined spatial Silicon-on-glass pore network micromodels with...

  17. amorphous-nanocrystalline silicon thin: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    THE POROUS SILICON PROCESS APPLYING CONVECTION for the first time to monocrystalline Si thin-film solar cells from the porous silicon (PSI) layer transfer for manufacturing high...

  18. Silicon And Silicon-germanium Epitaxy For Quantum Dot Device Fabrications

    E-Print Network [OSTI]

    as they provide highly tunable structures for trapping and manipu- lating individual electrons/silicon- germanium material heterosystem. We describe the growth of two-dimensional electron gas structures advisor Professor James C. Sturm, whose perpetual enthusiasm, stimulating insight, and constant

  19. Femtosecond Laser Ablation of Silicon: Nanoparticles, Doping and Photovoltaics

    E-Print Network [OSTI]

    Mazur, Eric

    Femtosecond Laser Ablation of Silicon: Nanoparticles, Doping and Photovoltaics A thesis presented Laser Ablation of Silicon: Nanoparticles, Doping and Photovoltaics Eric Mazur Brian R. Tull Abstract irradiated surface layer to the grain boundaries. #12;iv Lastly, we measure the photovoltaic properties

  20. Metal-Insulating-Semi-Incorporation of Silicon Nanoparticles into

    E-Print Network [OSTI]

    Foundation Research Experience for Undergraduates under grant number DMR-1063150, Renewable Energy Materials Research Science and Engineering Center under grant number DMR-0820518 and the Department of Energy SunMetal-Insulating-Semi- Conductor Incorporation of Silicon Nanoparticles into Silicon Based Solar

  1. INVESTIGATION OF IONIC CONTAMINATION REMOVAL FROM SILICON DIOXIDE SURFACES

    E-Print Network [OSTI]

    Suni, Ian Ivar

    INVESTIGATION OF IONIC CONTAMINATION REMOVAL FROM SILICON DIOXIDE SURFACES H. Lin, A. A. Busnaina, and I. I. Suni T he removal of ionic contaminants from silicon surfaces surface contamination level canM Communications L td. INTRODUCTION with increasing frequency and power, and decreases Contamination removal is one

  2. Hydrogen plasma enhanced crystallization of hydrogenated amorphous silicon films

    E-Print Network [OSTI]

    Hydrogen plasma enhanced crystallization of hydrogenated amorphous silicon films K. Pangal,a) J. C August 1998; accepted for publication 21 October 1998 We report that a room temperature hydrogen plasma thermal crystallization of amorphous silicon time by a factor of five. Exposure to hydrogen plasma reduces

  3. Thermo-optically tunable silicon photonic crystal light modulator

    E-Print Network [OSTI]

    Lee, Jeong-Bong

    Thermo-optically tunable silicon photonic crystal light modulator Yonghao Cui,* Ke Liu, Duncan L (Doc. ID 130726); published October 21, 2010 We designed, fabricated, and characterized a thermo frequency in a silicon-based line defect PhC. The cutoff frequency is shifted because of the thermo

  4. Lithium-Assisted Electrochemical Welding in Silicon Nanowire Battery Electrodes

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Lithium-Assisted Electrochemical Welding in Silicon Nanowire Battery Electrodes Khim Karki, Eric-healing, interfacial lithium diffusivity, in situ TEM, lithium-ion battery Silicon is an auspicious candidate to replace today's widely utilized graphitic anodes in lithium ion batteries because its specific energy

  5. Silicon optical nanocrystal memory R. J. Walters,a)

    E-Print Network [OSTI]

    Atwater, Harry

    Silicon optical nanocrystal memory R. J. Walters,a) P. G. Kik, J. D. Casperson, and H. A. Atwater (Received 19 January 2004; accepted 22 July 2004) We describe the operation of a silicon optical nanocrystal memory device. The programmed logic state of the device is read optically by the detection of high or low

  6. Low cost routes to high purity silicon and derivatives thereof

    SciTech Connect (OSTI)

    Laine, Richard M; Krug, David James; Marchal, Julien Claudius; Mccolm, Andrew Stewart

    2013-07-02T23:59:59.000Z

    The present invention is directed to a method for providing an agricultural waste product having amorphous silica, carbon, and impurities; extracting from the agricultural waste product an amount of the impurities; changing the ratio of carbon to silica; and reducing the silica to a high purity silicon (e.g., to photovoltaic silicon).

  7. Molybdenum disilicide composites reinforced with zirconia and silicon carbide

    DOE Patents [OSTI]

    Petrovic, J.J.

    1995-01-17T23:59:59.000Z

    Compositions are disclosed consisting essentially of molybdenum disilicide, silicon carbide, and a zirconium oxide component. The silicon carbide used in the compositions is in whisker or powder form. The zirconium oxide component is pure zirconia or partially stabilized zirconia or fully stabilized zirconia.

  8. Superlattice doped layers for amorphous silicon photovoltaic cells

    DOE Patents [OSTI]

    Arya, Rajeewa R. (Doylestown, PA)

    1988-01-12T23:59:59.000Z

    Superlattice doped layers for amorphous silicon photovoltaic cells comprise a plurality of first and second lattices of amorphous silicon alternatingly formed on one another. Each of the first lattices has a first optical bandgap and each of the second lattices has a second optical bandgap different from the first optical bandgap. A method of fabricating the superlattice doped layers also is disclosed.

  9. CHARACTERIZATION OF URANIUM, URANIUM OXIDE AND SILICON MULTILAYER THIN FILMS

    E-Print Network [OSTI]

    Hart, Gus

    CHARACTERIZATION OF URANIUM, URANIUM OXIDE AND SILICON MULTILAYER THIN FILMS by David T. Oliphant. Woolley Dean, College of Physical and Mathematical Sciences #12;ABSTRACT CHARACTERIZATION OF URANIUM, URANIUM OXIDE AND SILICON MULTILAYER THIN FILMS David T. Oliphant Department of Physics and Astronomy

  10. Method for improving the stability of amorphous silicon

    DOE Patents [OSTI]

    Branz, Howard M.

    2004-03-30T23:59:59.000Z

    A method of producing a metastable degradation resistant amorphous hydrogenated silicon film is provided, which comprises the steps of growing a hydrogenated amorphous silicon film, the film having an exposed surface, illuminating the surface using an essentially blue or ultraviolet light to form high densities of a light induced defect near the surface, and etching the surface to remove the defect.

  11. MICROMACHINED FOURIER TRANSFORM SPECTROMETER ON SILICON OPTICAL BENCH PLATFORM

    E-Print Network [OSTI]

    Park, Namkyoo

    MICROMACHINED FOURIER TRANSFORM SPECTROMETER ON SILICON OPTICAL BENCH PLATFORM Kyoungsik Yu1 a miniaturized Fourier transform spectrometer implemented on a silicon optical bench platform. The optical-etching. A spectral resolution of 45 nm near 1550 nm wavelength is demonstrated. Keywords: Fourier transform

  12. Epitaxial graphene on silicon carbide: Introduction to structured graphene

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Epitaxial graphene on silicon carbide: Introduction to structured graphene Ming Ruan 1 , Yike Hu 1, France Abstract We present an introduction to the rapidly growing field of epitaxial graphene on silicon present, highly evolved state. The potential of epitaxial graphene as a new electronic material is now

  13. Investigating the efficiency of Silicon Solar cells at

    E-Print Network [OSTI]

    Attari, Shahzeen Z.

    Investigating the efficiency of Silicon Solar cells at different temperatures and wavelengths to study the characteristics of silicon photovoltaic cells (solar cells). We vary the wavelength of light as well as the temperature of the solar cell to investigate how the open voltage across the cell varies

  14. Field emission study of cobalt ion implanted porous silicon 

    E-Print Network [OSTI]

    Liu, Hongbiao

    1995-01-01T23:59:59.000Z

    as an electrode in field emission applications. In this project, the formation of a CoSi2, conducting layer on porous silicon by high dose ion implantation while preserving the pore structure and field emission properties of the underlying porous silicon...

  15. Performance of Ultrathin Silicon Solar Microcells with Nanostructures of Relief

    E-Print Network [OSTI]

    Rogers, John A.

    of the materials. Solar cells based on thin films of amorphous or polycrystalline silicon require sub- stantially, Urbana, Illinois 61801 ABSTRACT Recently developed classes of monocrystalline silicon solar microcells systems that benefit from thin construction and efficient materials utilization. KEYWORDS Nanoimprint

  16. IMPROVED SPECTRAL RESPONSE OF SILICONE ENCAPSULANTED PHOTOVOLTAIC MODULES

    E-Print Network [OSTI]

    IMPROVED SPECTRAL RESPONSE OF SILICONE ENCAPSULANTED PHOTOVOLTAIC MODULES Nick E. Powell 1* , Byung the benefit of using optically superior silicone encapsulant materials over the incumbent ethylene vinyl in the UV region of the solar spectrum. Single cell mini-modules were prepared using two different

  17. Terahertz emission from black silicon M. Theuer,2

    E-Print Network [OSTI]

    of different meth- ods for the generation of terahertz radiation have been devel- oped including pure optical-called photoconductive terahertz emitters and detectors, radiation-damaged silicon on sapphire or low- temperature grown of terahertz optics made out of silicon is that the copropagating infrared radiation is ab- sorbed sufficiently

  18. (Preoxidation cleaning optimization for crystalline silicon)

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    A series of controlled experiments has been performed in Sandia's Photovoltaic Device Fabrication Laboratory to evaluate the effect of various chemical surface treatments on the recombination lifetime of crystalline silicon wafers subjected to a high-temperature dry oxidation. From this series of experiments we have deduced a relatively simple yet effective cleaning sequence. We have also evaluated the effect of different chemical damage-removal etches for improving the recombination lifetime and surface smoothness of mechanically lapped wafers. This paper presents the methodology used, the experimental results obtained, and our experience with using this process on a continuing basis over a period of many months. 7 refs., 4 figs., 1 tab.

  19. Arrays of ultrathin silicon solar microcells

    DOE Patents [OSTI]

    Rogers, John A; Rockett, Angus A; Nuzzo, Ralph; Yoon, Jongseung; Baca, Alfred

    2014-03-25T23:59:59.000Z

    Provided are solar cells, photovoltaics and related methods for making solar cells, wherein the solar cell is made of ultrathin solar grade or low quality silicon. In an aspect, the invention is a method of making a solar cell by providing a solar cell substrate having a receiving surface and assembling a printable semiconductor element on the receiving surface of the substrate via contact printing. The semiconductor element has a thickness that is less than or equal to 100 .mu.m and, for example, is made from low grade Si.

  20. Hybrid stretchable circuits on silicone substrate

    SciTech Connect (OSTI)

    Robinson, A., E-mail: adam.1.robinson@nokia.com; Aziz, A., E-mail: a.aziz1@lancaster.ac.uk [Nanoscience Centre, University of Cambridge, Cambridge CB01FF (United Kingdom); Liu, Q.; Suo, Z. [School of Engineering and Applied Sciences and Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, Massachusetts 02138 (United States); Lacour, S. P., E-mail: stephanie.lacour@epfl.ch [Centre for Neuroprosthetics and Laboratory for Soft Bioelectronics Interfaces, School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015 (Switzerland)

    2014-04-14T23:59:59.000Z

    When rigid and stretchable components are integrated onto a single elastic carrier substrate, large strain heterogeneities appear in the vicinity of the deformable-non-deformable interfaces. In this paper, we report on a generic approach to manufacture hybrid stretchable circuits where commercial electronic components can be mounted on a stretchable circuit board. Similar to printed circuit board development, the components are electrically bonded on the elastic substrate and interconnected with stretchable electrical traces. The substrate—a silicone matrix carrying concentric rigid disks—ensures both the circuit elasticity and the mechanical integrity of the most fragile materials.

  1. Longwei Silicon Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners andLodgepole, Nebraska:Longboard Capital AdvisorsLongwei Silicon Co

  2. Reactive sticking coefficients of silane on silicon

    SciTech Connect (OSTI)

    Buss, R.J.; Ho, P.; Breiland, W.G.; Coltrin, M.E.

    1988-09-15T23:59:59.000Z

    Reactive sticking coefficients (RSCs) were measured for silane and disilane on polycrystalline silicon for a wide range of temperature and flux (pressure) conditions. The data were obtained from deposition rate measurements using molecular beam scattering and a very low pressure cold wall reactor. The RSCs have non-Arrhenius temperature dependences and decreases with increasing flux at low (710/sup 0/) temperatures. A simple model involving dissociative adsorption of silane is consistent with these results. The results are compared with previous studies of the SiH/sub 4//Si(s) reaction.

  3. ThinSilicon | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheasternInformationPolicyREDD+ BookThinSilicon Jump to:

  4. Micromachined cutting blade formed from {211}-oriented silicon

    DOE Patents [OSTI]

    Fleming, James G. (Albuquerque, NM); Fleming, legal representative, Carol (Burbank, CA); Sniegowski, Jeffry J. (Tijeras, NM); Montague, Stephen (Albuquerque, NM)

    2011-08-09T23:59:59.000Z

    A cutting blade is disclosed fabricated of micromachined silicon. The cutting blade utilizes a monocrystalline silicon substrate having a {211} crystalline orientation to form one or more cutting edges that are defined by the intersection of {211} crystalline planes of silicon with {111} crystalline planes of silicon. This results in a cutting blade which has a shallow cutting-edge angle .theta. of 19.5.degree.. The micromachined cutting blade can be formed using an anisotropic wet etching process which substantially terminates etching upon reaching the {111} crystalline planes of silicon. This allows multiple blades to be batch fabricated on a common substrate and separated for packaging and use. The micromachined cutting blade, which can be mounted to a handle in tension and optionally coated for increased wear resistance and biocompatibility, has multiple applications including eye surgery (LASIK procedure).

  5. RF Sputtering for preparing substantially pure amorphous silicon monohydride

    DOE Patents [OSTI]

    Jeffrey, Frank R. (Ames, IA); Shanks, Howard R. (Ames, IA)

    1982-10-12T23:59:59.000Z

    A process for controlling the dihydride and monohydride bond densities in hydrogenated amorphous silicon produced by reactive rf sputtering of an amorphous silicon target. There is provided a chamber with an amorphous silicon target and a substrate therein with the substrate and the target positioned such that when rf power is applied to the target the substrate is in contact with the sputtering plasma produced thereby. Hydrogen and argon are fed to the chamber and the pressure is reduced in the chamber to a value sufficient to maintain a sputtering plasma therein, and then rf power is applied to the silicon target to provide a power density in the range of from about 7 watts per square inch to about 22 watts per square inch to sputter an amorphous silicon hydride onto the substrate, the dihydride bond density decreasing with an increase in the rf power density. Substantially pure monohydride films may be produced.

  6. Back contact to film silicon on metal for photovoltaic cells

    DOE Patents [OSTI]

    Branz, Howard M.; Teplin, Charles; Stradins, Pauls

    2013-06-18T23:59:59.000Z

    A crystal oriented metal back contact for solar cells is disclosed herein. In one embodiment, a photovoltaic device and methods for making the photovoltaic device are disclosed. The photovoltaic device includes a metal substrate with a crystalline orientation and a heteroepitaxial crystal silicon layer having the same crystal orientation of the metal substrate. A heteroepitaxial buffer layer having the crystal orientation of the metal substrate is positioned between the substrate and the crystal silicon layer to reduce diffusion of metal from the metal foil into the crystal silicon layer and provide chemical compatibility with the heteroepitaxial crystal silicon layer. Additionally, the buffer layer includes one or more electrically conductive pathways to electrically couple the crystal silicon layer and the metal substrate.

  7. Silicon Based Anodes for Li-Ion Batteries

    SciTech Connect (OSTI)

    Zhang, Jiguang; Wang, Wei; Xiao, Jie; Xu, Wu; Graff, Gordon L.; Yang, Zhenguo; Choi, Daiwon; Li, Xiaolin; Wang, Deyu; Liu, Jun

    2012-06-15T23:59:59.000Z

    Silicon is environmentally benign and ubiquitous. Because of its high specific capacity, it is considered one of the most promising candidates to replace the conventional graphite negative electrode used in today's Li ion batteries. Silicon has a theoretical specific capacity of nearly 4200 mAh/g (Li21Si5), which is 10 times larger than the specific capacity of graphite (LiC6, 372 mAh/g). However, the high capacity of silicon is associated with huge volume changes (more than 300 percent) when alloyed with lithium, which can cause severe cracking and pulverization of the electrode and lead to significant capacity loss. Significant scientific research has been conducted to circumvent the deterioration of silicon based anode materials during cycling. Various strategies, such as reduction of particle size, generation of active/inactive composites, fabrication of silicon based thin films, use of alternative binders, and the synthesis of 1-D silicon nanostructures have been implemented by a number of research groups. Fundamental mechanistic research has also been performed to better understand the electrochemical lithiation and delithiation process during cycling in terms of crystal structure, phase transitions, morphological changes, and reaction kinetics. Although efforts to date have not attained a commercially viable Si anode, further development is expected to produce anodes with three to five times the capacity of graphite. In this chapter, an overview of research on silicon based anodes used for lithium-ion battery applications will be presented. The overview covers electrochemical alloying of the silicon with lithium, mechanisms responsible for capacity fade, and methodologies adapted to overcome capacity degradation observed during cycling. The recent development of silicon nanowires and nanoparticles with significantly improved electrochemical performance will also be discussed relative to the mechanistic understanding. Finally, future directions on the development of silicon based anodes will be considered.

  8. Analysis of copper-rich precipitates in silicon: Chemical state, gettering, and impact on multicrystalline silicon solar cell material

    E-Print Network [OSTI]

    Analysis of copper-rich precipitates in silicon: Chemical state, gettering, and impact on multicrystalline silicon solar cell material Tonio Buonassisia Applied Science and Technology Group, University and Lawrence Berkeley National Laboratory, Berkeley, California 94720 Received 23 September 2004; accepted 13

  9. Cryogenic Silicon Microstrip Detector Modules for LHC

    E-Print Network [OSTI]

    Perea-Solano, B

    2004-01-01T23:59:59.000Z

    CERN is presently constructing the LHC, which will produce collisions of 7 TeV protons in 4 interaction points at a design luminosity of 1034 cm-2 s-1. The radiation dose resulting from the operation at high luminosity will cause a serious deterioration of the silicon tracker performance. The state-of-art silicon microstrip detectors can tolerate a fluence of about 3 1014 cm-2 of hadrons or charged leptons. This is insufficient, however, for long-term operation in the central parts of the LHC trackers, in particular after the possible luminosity upgrade of the LHC. By operating the detectors at cryogenic temperatures the radiation hardness can be improved by a factor 10. This work proposes a cryogenic microstrip detector module concept which has the features required for the microstrip trackers of the upgraded LHC experiments at CERN. The module can hold an edgeless sensor, being a good candidate for improved luminosity and total cross-section measurements in the ATLAS, CMS and TOTEM experiments. The design o...

  10. Dispersion aspects of silicon carbide gelcasting

    SciTech Connect (OSTI)

    Bleier, A.

    1991-09-01T23:59:59.000Z

    The principal objective of this research was to increase the solid loading of silicon carbide (SiC) powder, in an appropriate liquid medium, to a level that is useful for gelcasting technology. A number of factors that determine the maximum concentration of silicon carbide that can be incorporated into a pourable ceramic suspension have been identified. The pH of the system is the most critical processing parameter. Its proper adjustment (pH 11 to 13) allows SiC concentrations exceeding 50%, based on volume, to be routinely achieved without the use of additional dispersing agents. The particle size of SiC was also found to affect the maximum, attainable concentration. The surface area of the powder and the presence of free carbon in the powder, though not significantly influencing the suspension properties, determine the concentration of initiator required to induce polymerization and gelation. SiC specimens have been gelcast for powders in the size range of 0.8 to 8.5 {mu}m; the powders employed contain either {approximately} 0 or 19% carbon by weight. Finally, the generation of bubbles, typically encountered by the use of ammonia to adjust pH has been circumvented by the use of tetramethylammonium hydroxide.

  11. Spin interference of holes in silicon nanosandwiches

    SciTech Connect (OSTI)

    Bagraev, N. T., E-mail: Bagraev@mail.ioffe.ru; Danilovskii, E. Yu.; Klyachkin, L. E.; Malyarenko, A. M. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Mashkov, V. A. [St. Petersburg State Polytechnical University (Russian Federation)

    2012-01-15T23:59:59.000Z

    Spin-dependent transport of holes is studied in silicon nanosandwiches on an n-Si (100) surface which are represented by ultranarrow p-Si quantum wells confined by {delta}-barriers heavily doped with boron. The measurement data of the longitudinal and Hall voltages as functions of the top gate voltage without an external magnetic field show the presence of edge conduction channels in the silicon nanosandwiches. An increase in the stabilized source-drain current within the range 0.25-5 nA subsequently exhibits the longitudinal conductance value 4e{sup 2}/h, caused by the contribution of the multiple Andreev reflection, the value 0.7(2e{sup 2}/h) corresponding to the known quantum conductance staircase feature, and displays Aharonov-Casher oscillations, which are indicative of the spin polarization of holes in the edge channels. In addition, at a low stabilized source-drain current, due to spin polarization, a nonzero Hall voltage is detected which is dependent on the top gate voltage; i. e., the quantum spin Hall effect is observed. The measured longitudinal I-V characteristics demonstrate Fiske steps and a negative differential resistance caused by the generation of electromagnetic radiation as a result of the Josephson effect. The results obtained are explained within a model of topological edge states which are a system of superconducting channels containing quantum point contacts transformable to single Josephson junctions at an increasing stabilized source-drain current.

  12. High resolution amorphous silicon radiation detectors

    DOE Patents [OSTI]

    Street, R.A.; Kaplan, S.N.; Perez-Mendez, V.

    1992-05-26T23:59:59.000Z

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n-type, intrinsic, p-type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography. 18 figs.

  13. High resolution amorphous silicon radiation detectors

    DOE Patents [OSTI]

    Street, Robert A. (Palo Alto, CA); Kaplan, Selig N. (El Cerrito, CA); Perez-Mendez, Victor (Berkeley, CA)

    1992-01-01T23:59:59.000Z

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n type, intrinsic, p type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography.

  14. Boron-Loaded Silicone Rubber Scintillators

    SciTech Connect (OSTI)

    Bell, Z.W.; Maya, L.; Brown, G.M.; Sloop, F.V.Jr

    2003-05-12T23:59:59.000Z

    Silicone rubber received attention as an alternative to polyvinyltoluene in applications in which the scintillator is exposed to high doses because of the increased resistance of the rubber to the formation of blue-absorbing color centers. Work by Bowen, et al., and Harmon, et al., demonstrated their properties under gamma/x-ray irradiation, and Bell, et al. have shown their response to thermal neutrons. This last work, however, provided an example of a silicone in which both the boron and the scintillator were contained in the rubber as solutes, a formulation which led to the precipitation of solids and sublimation of the boron component. In the present work we describe a scintillator in which the boron is chemically bonded to the siloxane and so avoids the problem of precipitation and loss of boron to sublimation. Material containing up to 18% boron, by weight, was prepared, mounted on photomultipliers, and exposed to both neutron and gamma fluxes. Pulse height spectra showing the neutron and photon response were obtained, and although the light output was found to be much poorer than from samples in which boron was dissolved, the higher boron concentrations enabled essentially 100% neutron absorption in only a few millimeters' thickness of rubber.

  15. Thin Silicon MEMS Contact-Stress Sensor

    SciTech Connect (OSTI)

    Kotovsky, J; Tooker, A; Horsley, D A

    2009-12-07T23:59:59.000Z

    This work offers the first, thin, MEMS contact-stress (CS) sensor capable of accurate in situ measruement of time-varying, contact-stress between two solid interfaces (e.g. in vivo cartilage contact-stress and body armor dynamic loading). This CS sensor is a silicon-based device with a load sensitive diaphragm. The diaphragm is doped to create piezoresistors arranged in a full Wheatstone bridge. The sensor is similar in performance to established silicon pressure sensors, but it is reliably produced to a thickness of 65 {micro}m. Unlike commercial devices or other research efforts, this CS sensor, including packaging, is extremely thin (< 150 {micro}m fully packaged) so that it can be unobtrusively placed between contacting structures. It is built from elastic, well-characterized materials, providing accurate and high-speed (50+ kHz) measurements over a potential embedded lifetime of decades. This work explored sensor designs for an interface load range of 0-2 MPa; however, the CS sensor has a flexible design architecture to measure a wide variety of interface load ranges.

  16. Performance Testing using Silicon Devices - Analysis of Accuracy: Preprint

    SciTech Connect (OSTI)

    Sengupta, M.; Gotseff, P.; Myers, D.; Stoffel, T.

    2012-06-01T23:59:59.000Z

    Accurately determining PV module performance in the field requires accurate measurements of solar irradiance reaching the PV panel (i.e., Plane-of-Array - POA Irradiance) with known measurement uncertainty. Pyranometers are commonly based on thermopile or silicon photodiode detectors. Silicon detectors, including PV reference cells, are an attractive choice for reasons that include faster time response (10 us) than thermopile detectors (1 s to 5 s), lower cost and maintenance. The main drawback of silicon detectors is their limited spectral response. Therefore, to determine broadband POA solar irradiance, a pyranometer calibration factor that converts the narrowband response to broadband is required. Normally this calibration factor is a single number determined under clear-sky conditions with respect to a broadband reference radiometer. The pyranometer is then used for various scenarios including varying airmass, panel orientation and atmospheric conditions. This would not be an issue if all irradiance wavelengths that form the broadband spectrum responded uniformly to atmospheric constituents. Unfortunately, the scattering and absorption signature varies widely with wavelength and the calibration factor for the silicon photodiode pyranometer is not appropriate for other conditions. This paper reviews the issues that will arise from the use of silicon detectors for PV performance measurement in the field based on measurements from a group of pyranometers mounted on a 1-axis solar tracker. Also we will present a comparison of simultaneous spectral and broadband measurements from silicon and thermopile detectors and estimated measurement errors when using silicon devices for both array performance and resource assessment.

  17. Method for enhancing the solubility of dopants in silicon

    DOE Patents [OSTI]

    Sadigh, Babak; Lenosky, Thomas J.; De La Rubia, Tomas Diaz

    2003-09-30T23:59:59.000Z

    A method for enhancing the equilibrium solid solubility of dopants in silicon, germanium and silicon-germanium alloys. The method involves subjecting silicon-based substrate to biaxial or compression strain. It has been determined that boron solubility was largely enhanced (more than 100%) by a compressive bi-axial strain, based on a size-mismatch theory since the boron atoms are smaller than the silicon atoms. It has been found that the large enhancement or mixing properties of dopants in silicon and germanium substrates is primarily governed by their, and to second order by their size-mismatch with the substrate. Further, it has been determined that the dopant solubility enhancement with strain is most effective when the charge and the size-mismatch of the impurity favor the same type of strain. Thus, the solid solubility of small p-type (e.g., boron) as well as large n-type (e.g., arsenic) dopants can be raised most dramatically by appropriate bi-axial (compressive) strain, and that solubility of a large p-type dopant (e.g, indium) in silicon will be raised due to size-mismatch with silicon, which favors tensile strain, while its negative charge prefers compressive strain, and thus the two effects counteract each other.

  18. Method of preparing silicon carbide particles dispersed in an electrolytic bath for composite electroplating of metals

    DOE Patents [OSTI]

    Peng, Yu-Min (Hsinchu, TW); Wang, Jih-Wen (Hsinchu, TW); Liue, Chun-Ying (Tau-Yung, TW); Yeh, Shinn-Horng (Kaohsiung, TW)

    1994-01-01T23:59:59.000Z

    A method for preparing silicon carbide particles dispersed in an electrolytic bath for composite electroplating of metals includes the steps of washing the silicon carbide particles with an organic solvent; washing the silicon carbide particles with an inorganic acid; grinding the silicon carbide particles; and heating the silicon carbide particles in a nickel-containing solution at a boiling temperature for a predetermined period of time.

  19. A study of laser annealing effects in boron ion implanted polycrystalline silicon films

    E-Print Network [OSTI]

    Suh, Inhak Harry

    1982-01-01T23:59:59.000Z

    , large-grain polycrysta11ine silicon has potential use for large volume production of low cost solar cells [1-3] . Polycrystalline silicon is easy to prepare and is compa- tible with monolithic silicon integrated circuit technology; however... of 2O pico second [5]. The MOSFET's fabricated to date on thin films of polycrystalline silicon have also exhibited poor transconductance [5J. It has been reported that the electrical properties of ion implanted polycrystalline silicon can...

  20. Silicon nitride protective coatings for silvered glass mirrors

    DOE Patents [OSTI]

    Tracy, C. Edwin (Golden, CO); Benson, David K. (Golden, CO)

    1988-01-01T23:59:59.000Z

    A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate before metal deposition to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors.

  1. Method of fabricating silicon carbide coatings on graphite surfaces

    DOE Patents [OSTI]

    Varacalle, Jr., Dominic J. (Idaho Falls, ID); Herman, Herbert (Port Jefferson, NY); Burchell, Timothy D. (Oak Ridge, TN)

    1994-01-01T23:59:59.000Z

    The vacuum plasma spray process produces well-bonded, dense, stress-free coatings for a variety of materials on a wide range of substrates. The process is used in many industries to provide for the excellent wear, corrosion resistance, and high temperature behavior of the fabricated coatings. In this application, silicon metal is deposited on graphite. This invention discloses the optimum processing parameters for as-sprayed coating qualities. The method also discloses the effect of thermal cycling on silicon samples in an inert helium atmosphere at about 1600.degree.C. which transforms the coating to silicon carbide.

  2. Method for forming fibrous silicon carbide insulating material

    DOE Patents [OSTI]

    Wei, G.C.

    1983-10-12T23:59:59.000Z

    A method whereby silicon carbide-bonded SiC fiber composites are prepared from carbon-bonded C fiber composites is disclosed. Carbon-bonded C fiber composite material is treated with gaseous silicon monoxide generated from the reaction of a mixture of colloidal silica and carbon black at an elevated temperature in an argon atmosphere. The carbon in the carbon bond and fiber is thus chemically converted to SiC resulting in a silicon carbide-bonded SiC fiber composite that can be used for fabricating dense, high-strength high-toughness SiC composites or as thermal insulating materials in oxidizing environments.

  3. Method for forming fibrous silicon carbide insulating material

    DOE Patents [OSTI]

    Wei, George C. (Oak Ridge, TN)

    1984-01-01T23:59:59.000Z

    A method whereby silicon carbide-bonded SiC fiber composites are prepared from carbon-bonded C fiber composites is disclosed. Carbon-bonded C fiber composite material is treated with gaseous silicon monoxide generated from the reaction of a mixture of colloidal silica and carbon black at an elevated temperature in an argon atmosphere. The carbon in the carbon bond and fiber is thus chemically converted to SiC resulting in a silicon carbide-bonded SiC fiber composite that can be used for fabricating dense, high-strength high-toughness SiC composites or as thermal insulating materials in oxidizing environments.

  4. Method of fabricating silicon carbide coatings on graphite surfaces

    DOE Patents [OSTI]

    Varacalle, D.J. Jr.; Herman, H.; Burchell, T.D.

    1994-07-26T23:59:59.000Z

    The vacuum plasma spray process produces well-bonded, dense, stress-free coatings for a variety of materials on a wide range of substrates. The process is used in many industries to provide for the excellent wear, corrosion resistance, and high temperature behavior of the fabricated coatings. In this application, silicon metal is deposited on graphite. This invention discloses the optimum processing parameters for as-sprayed coating qualities. The method also discloses the effect of thermal cycling on silicon samples in an inert helium atmosphere at about 1,600 C which transforms the coating to silicon carbide. 3 figs.

  5. Separation of Nuclear Fuel Surrogates from Silicon Carbide Inert Matrix

    SciTech Connect (OSTI)

    Dr. Ronald Baney

    2008-12-15T23:59:59.000Z

    The objective of this project has been to identify a process for separating transuranic species from silicon carbide (SiC). Silicon carbide has become one of the prime candidates for the matrix in inert matrix fuels, (IMF) being designed to reduce plutonium inventories and the long half-lives actinides through transmutation since complete reaction is not practical it become necessary to separate the non-transmuted materials from the silicon carbide matrix for ultimate reprocessing. This work reports a method for that required process.l

  6. Silicon nitride protective coatings for silvered glass mirrors

    DOE Patents [OSTI]

    Tracy, C.E.; Benson, D.K.

    1984-07-20T23:59:59.000Z

    A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate prior to metal deposition thereon to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors.

  7. Fabrication and testing of oxidized porous silicon field emitter strips 

    E-Print Network [OSTI]

    Madduri, Vasanta Bhanu

    1992-01-01T23:59:59.000Z

    Fig. 1 Cross-section of Thin-film Field Emission Structure (After Spindt, et al. [7] ). Mo Silicon dioxide Silicon substrate Axis of rotation ~' Evaporant Aluminum release layer Mo SiO Si Evaporant Deposition for cone formation Etch off... release layer Fig. 2 Fabrication Procedure to Produce Mo Cones silicon substrates with 1-1, 5 pm of thermally grown oxide on them. Holes of 1. 5-2 ltm diameter are micro-machined in the oxide layer using electron beam lithography. Mo serves as an etch...

  8. Control of carbon balance in a silicon smelting furnace

    DOE Patents [OSTI]

    Dosaj, V.D.; Haines, C.M.; May, J.B.; Oleson, J.D.

    1992-12-29T23:59:59.000Z

    The present invention is a process for the carbothermic reduction of silicon dioxide to form elemental silicon. Carbon balance of the process is assessed by measuring the amount of carbon monoxide evolved in offgas exiting the furnace. A ratio of the amount of carbon monoxide evolved and the amount of silicon dioxide added to the furnace is determined. Based on this ratio, the carbon balance of the furnace can be determined and carbon feed can be adjusted to maintain the furnace in carbon balance.

  9. Antifuse with a single silicon-rich silicon nitride insulating layer

    DOE Patents [OSTI]

    Habermehl, Scott D.; Apodaca, Roger T.

    2013-01-22T23:59:59.000Z

    An antifuse is disclosed which has an electrically-insulating region sandwiched between two electrodes. The electrically-insulating region has a single layer of a non-hydrogenated silicon-rich (i.e. non-stoichiometric) silicon nitride SiN.sub.X with a nitrogen content X which is generally in the range of 0silicon. Arrays of antifuses can also be formed.

  10. Silicon carbide mirrors for high power applications

    SciTech Connect (OSTI)

    Takacs, P.Z.

    1981-11-01T23:59:59.000Z

    The advent of synchrotron radiation (SR) sources and high energy lasers (HEL) in recent years has brought about the need for optical materials that can withstand the harsh operating conditions in such devices. SR mirrors must be ultra-high vacuum compatible, must withstand intense x-ray irradiation without surface damage, must maintain surface figure under thermal loading and must be capable of being polished to an extremely smooth surface finish. Chemical vapor deposited (CVD) silicon carbide in combination with sintered substrate material meets these requirements and offers additional benefits as well. It is an extremely hard material and offers the possibility of being cleaned and recoated many times without degradation of the surface finish, thereby prolonging the lifetime of expensive optical components. It is an extremely strong material and offers the possibility of weight reduction over conventional mirror materials.

  11. Silicon Pixel Detectors for Synchrotron Applications

    E-Print Network [OSTI]

    Stewart, Graeme Douglas

    Recent advances in particle accelerators have increased the demands being placed on detectors. Novel detector designs are being implemented in many different areas including, for example, high luminosity experiments at the LHC or at next generation synchrotrons. The purpose of this thesis was to characterise some of these novel detectors. The first of the new detector types is called a 3D detector. This design was first proposed by Parker, Kenney and Segal (1997). In this design, doped electrodes are created that extend through the silicon substrate. When compared to a traditional photodiode with electrodes on the opposing surfaces, the 3D design can combine a reasonable detector thickness with a small electrode spacing resulting in fast charge collection and limited charge sharing. The small electrode spacing leads to the detectors having lower depletion voltages. This, combined with the fast collection time, makes 3D detectors a candidate for radiation hard applications. These applications include the upgra...

  12. Method of casting silicon into thin sheets

    DOE Patents [OSTI]

    Sanjurjo, Angel (San Jose, CA); Rowcliffe, David J. (Los Altos, CA); Bartlett, Robert W. (Tucson, AZ)

    1982-10-26T23:59:59.000Z

    Silicon (Si) is cast into thin shapes within a flat-bottomed graphite crucible by providing a melt of molten Si along with a relatively small amount of a molten salt, preferably NaF. The Si in the resulting melt forms a spherical pool which sinks into and is wetted by the molten salt. Under these conditions the Si will not react with any graphite to form SiC. The melt in the crucible is pressed to the desired thinness with a graphite tool at which point the tool is held until the mass in the crucible has been cooled to temperatures below the Si melting point, at which point the Si shape can be removed.

  13. Niobium Silicon alloys for Kinetic Inductance Detectors

    E-Print Network [OSTI]

    Calvo, M; Monfardini, A; Benoit, A; Boudou, N; Bourrion, O; Catalano, A; Dumoulin, L; Goupy, J; Sueur, H Le; Marnieros, S

    2013-01-01T23:59:59.000Z

    We are studying the properties of Niobium Silicon amorphous alloys as a candidate material for the fabrication of highly sensitive Kinetic Inductance Detectors (KID), optimized for very low optical loads. As in the case of other composite materials, the NbSi properties can be changed by varying the relative amounts of its components. Using a NbSi film with T_c around 1 K we have been able to obtain the first NbSi resonators, observe an optical response and acquire a spectrum in the band 50 to 300 GHz. The data taken show that this material has very high kinetic inductance and normal state surface resistivity. These properties are ideal for the development of KID. More measurements are planned to further characterize the NbSi alloy and fully investigate its potential.

  14. Equilibrium shapes of polycrystalline silicon nanodots

    SciTech Connect (OSTI)

    Korzec, M. D., E-mail: korzec@math.tu-berlin.de; Wagner, B., E-mail: bwagner@math.tu-berlin.de [Department of Mathematics, Technische Universität Berlin, Straße des 17. Juni 136, 10623 Berlin (Germany); Roczen, M., E-mail: maurizio.roczen@physik.hu-berlin.de [Department of Physics, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin (Germany); Schade, M., E-mail: martin.schade@physik.uni-halle.de [Zentrum für Innovationskompetenz SiLi-nano, Martin-Luther-Universität Halle-Wittenberg, Karl-Freiherr-von-Fritsch-Straße 3, 06120 Halle (Germany); Rech, B., E-mail: bernd.rech@helmholtz-berlin.de [Helmholtz-Zentrum Berlin, Institute for Silicon Photovoltaics, Kekuléstraße 5, 12489 Berlin (Germany)

    2014-02-21T23:59:59.000Z

    This study is concerned with the topography of nanostructures consisting of arrays of polycrystalline nanodots. Guided by transmission electron microscopy (TEM) measurements of crystalline Si (c-Si) nanodots that evolved from a “dewetting” process of an amorphous Si (a-Si) layer from a SiO{sub 2} coated substrate, we investigate appropriate formulations for the surface energy density and transitions of energy density states at grain boundaries. We introduce a new numerical minimization formulation that allows to account for adhesion energy from an underlying substrate. We demonstrate our approach first for the free standing case, where the solutions can be compared to well-known Wulff constructions, before we treat the general case for interfacial energy settings that support “partial wetting” and grain boundaries for the polycrystalline case. We then use our method to predict the morphologies of silicon nanodots.

  15. Imaging topological edge states in silicon photonics

    E-Print Network [OSTI]

    M. Hafezi; S. Mittal; J. Fan; A. Migdall; J. Taylor

    2015-04-03T23:59:59.000Z

    Topological features - global properties not discernible locally - emerge in systems from liquid crystals to magnets to fractional quantum Hall systems. Deeper understanding of the role of topology in physics has led to a new class of matter: topologically - ordered systems. The best known examples are quantum Hall effects, where insensitivity to local properties manifests itself as conductance through edge states that is insensitive to defects and disorder. Current research in engineering topological order primarily focuses on analogies to quantum Hall systems, where the required magnetic field is synthesized in non-magnetic systems. Here, we realize synthetic magnetic fields for photons at room temperature, using linear Silicon photonics. We observe, for the first time, topological edge states of light in a two - dimensional system and show their robustness against intrinsic and introduced disorder. Our experiment demonstrates the feasibility of using photonics to realize topological order in both the non-interacting and many-body regimes.

  16. Bipolar monolithic preamplifiers for SSC silicon calorimetry

    SciTech Connect (OSTI)

    Britton, C.L. Jr.; Todd, R.A.; Bauer, M.L. (Oak Ridge National Lab., TN (USA)); Kennedy, E.J. (Tennessee Univ., Knoxville, TN (USA). Dept. of Electrical and Computer Engineering Oak Ridge National Lab., TN (USA)); Bugg, W.M. (Tennessee Univ., Knoxville, TN (USA). Dept. of Physics)

    1990-01-01T23:59:59.000Z

    This paper describes preamplifiers designed specifically to address the requirements of silicon calorimetry for the Superconducting Super Collider (SSC). Eight different preamplifiers designed for detector capacitances ranging from 20 pF to 500 pF and operating temperatures from 25{degree}C to {minus}20{degree}C are discussed. The preamplifiers were fabricated with two different high-frequency processes (one with the VTC, Inc. VJ900 process, seven with the Harris Semiconductor VHF Process). The different topologies and their features are discussed in addition to the design methodologies employed. The results for noise, power consumption, speed, and radiation damage effects as well as data for post-damage annealing are presented for the VTC process preamplifier. Simulations for the VHF Process circuits are presented. This work was funded through SSC Generic Detector funding, SSC Detector Subsystem funding, and the Oak Ridge National Laboratory (ORNL) Detector Center.

  17. Junction-side illuminated silicon detector arrays

    DOE Patents [OSTI]

    Iwanczyk, Jan S.; Patt, Bradley E.; Tull, Carolyn

    2004-03-30T23:59:59.000Z

    A junction-side illuminated detector array of pixelated detectors is constructed on a silicon wafer. A junction contact on the front-side may cover the whole detector array, and may be used as an entrance window for light, x-ray, gamma ray and/or other particles. The back-side has an array of individual ohmic contact pixels. Each of the ohmic contact pixels on the back-side may be surrounded by a grid or a ring of junction separation implants. Effective pixel size may be changed by separately biasing different sections of the grid. A scintillator may be coupled directly to the entrance window while readout electronics may be coupled directly to the ohmic contact pixels. The detector array may be used as a radiation hardened detector for high-energy physics research or as avalanche imaging arrays.

  18. Process and apparatus for casting multiple silicon wafer articles

    DOE Patents [OSTI]

    Nanis, Leonard (Palo Alto, CA)

    1992-05-05T23:59:59.000Z

    Method and apparatus of casting silicon produced by the reaction between SiF.sub.4 and an alkaline earth metal into thin wafer-shaped articles suitable for solar cell fabrication.

  19. Pulsed energy synthesis and doping of silicon carbide

    DOE Patents [OSTI]

    Truher, J.B.; Kaschmitter, J.L.; Thompson, J.B.; Sigmon, T.W.

    1995-06-20T23:59:59.000Z

    A method for producing beta silicon carbide thin films by co-depositing thin films of amorphous silicon and carbon onto a substrate is disclosed, whereafter the films are irradiated by exposure to a pulsed energy source (e.g. excimer laser) to cause formation of the beta-SiC compound. Doped beta-SiC may be produced by introducing dopant gases during irradiation. Single layers up to a thickness of 0.5-1 micron have been produced, with thicker layers being produced by multiple processing steps. Since the electron transport properties of beta silicon carbide over a wide temperature range of 27--730 C is better than these properties of alpha silicon carbide, they have wide application, such as in high temperature semiconductors, including HETEROJUNCTION-junction bipolar transistors and power devices, as well as in high bandgap solar arrays, ultra-hard coatings, light emitting diodes, sensors, etc.

  20. Pulsed energy synthesis and doping of silicon carbide

    DOE Patents [OSTI]

    Truher, Joel B. (San Rafael, CA); Kaschmitter, James L. (Pleasanton, CA); Thompson, Jesse B. (Brentwood, CA); Sigmon, Thomas W. (Beaverton, OR)

    1995-01-01T23:59:59.000Z

    A method for producing beta silicon carbide thin films by co-depositing thin films of amorphous silicon and carbon onto a substrate, whereafter the films are irradiated by exposure to a pulsed energy source (e.g. excimer laser) to cause formation of the beta-SiC compound. Doped beta-SiC may be produced by introducing dopant gases during irradiation. Single layers up to a thickness of 0.5-1 micron have been produced, with thicker layers being produced by multiple processing steps. Since the electron transport properties of beta silicon carbide over a wide temperature range of 27.degree.-730.degree. C. is better than these properties of alpha silicon carbide, they have wide application, such as in high temperature semiconductors, including hetero-junction bipolar transistors and power devices, as well as in high bandgap solar arrays, ultra-hard coatings, light emitting diodes, sensors, etc.

  1. Electron spin decoherence in isotope-enriched silicon

    E-Print Network [OSTI]

    Wayne M. Witzel; Malcolm S. Carroll; Andrea Morello; Lukasz Cywinski; S. Das Sarma

    2010-10-27T23:59:59.000Z

    Silicon is promising for spin-based quantum computation because nuclear spins, a source of magnetic noise, may be eliminated through isotopic enrichment. Long spin decoherence times, $T_2$, have been measured in isotope-enriched silicon but come far short of the $T_2 = 2 T_1$ limit. The effect of nuclear spins on $T_2$ is well established. However, the effect of background electron spins from ever present residual phosphorus impurities in silicon can also produce significant decoherence. We study spin decoherence decay as a function of donor concentration, $^{29}$Si concentration, and temperature using cluster expansion techniques specifically adapted to the problem of a sparse dipolarly coupled electron spin bath. Our results agree with the existing experimental spin echo data in Si:P and establish the importance of background dopants as the ultimate decoherence mechanism in isotope-enriched silicon.

  2. Potential applications of a toughened silicon-based alloy

    E-Print Network [OSTI]

    Lei, Wang S

    2008-01-01T23:59:59.000Z

    Silicon has long been used as an alloying element in various metal alloys, in engineered ceramics, and in the semiconductor industry. However, due to its intrinsic low fracture toughness, it is generally perceived as a ...

  3. Dislocation density reduction in multicrystalline silicon through cyclic annealing

    E-Print Network [OSTI]

    Vogl, Michelle (Michelle Lynn)

    2011-01-01T23:59:59.000Z

    Multicrystalline silicon solar cells are an important renewable energy technology that have the potential to provide the world with much of its energy. While they are relatively inexpensive, their efficiency is limited by ...

  4. Geometry control of recrystallized silicon wafers for solar applications

    E-Print Network [OSTI]

    Ruggiero, Christopher W

    2009-01-01T23:59:59.000Z

    The cost of manufacturing crystalline silicon wafers for use in solar cells can be reduced by eliminating the waste streams caused by sawing ingots into individual wafers. Professor Emanuel Sachs has developed a new method ...

  5. Safety of light water reactor fuel with silicon carbide cladding

    E-Print Network [OSTI]

    Lee, Youho

    2013-01-01T23:59:59.000Z

    Structural aspects of the performance of light water reactor (LWR) fuel rod with triplex silicon carbide (SiC) cladding - an emerging option to replace the zirconium alloy cladding - are assessed. Its behavior under accident ...

  6. Silicon carbidonitride based phosphors and lighting devices using the same

    DOE Patents [OSTI]

    Li, Yuanqiang; Romanelli, Michael Dennis; Tian, Yongchi

    2013-09-17T23:59:59.000Z

    Disclosed herein are novel families of silicon carbidonitride phosphor compositions. In certain embodiments, optimal ranges of carbon content have been identified which provide excellent luminescence and thermal stability characteristics.

  7. New Composite Silicon-Defect Graphene Anode Architecture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Composite Silicon-Defect Graphene Anode Architecture for High Capacity, High-Rate Li-ion Batteries Xin Zhao, Cary Hayner, Mayfair Kung, and Harold Kung, Northwestern...

  8. Field emission study of cobalt ion implanted porous silicon

    E-Print Network [OSTI]

    Liu, Hongbiao

    1995-01-01T23:59:59.000Z

    Porous silicon has become potentially important material for microelectronics applications. By using low energy implantation and energy scan implantation, a stable silicide with good electrical conductivity can be formed, and can be used...

  9. aluminum silicon titanium: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aluminum Paris-Sud XI, Universit de 7 HIGH-EFFICIENCY BACK-JUNCTION SILICON SOLAR CELL WITH AN IN-LINE EVAPORATED ALUMINUM FRONT GRID Renewable Energy Websites Summary:...

  10. Fabrication and characterization of germanium-on-silicon photodiodes

    E-Print Network [OSTI]

    DiLello, Nicole Ann

    2012-01-01T23:59:59.000Z

    Germanium is becoming an increasingly popular material to use in photonic systems. Due to its strong absorption in the near infrared and its relative ease of integration on silicon, it is a promising candidate for the ...

  11. Advanced materials, process, and designs for silicon photonic integration

    E-Print Network [OSTI]

    Sun, Rong, Ph. D. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    The copper (Cu) interconnect has become the bottleneck for bandwidth scaling due to its increasing RC time constant with the decreasing gate line width. Currently, silicon based optical interconnect is widely pursued as ...

  12. Regular step arrays on silicon J. Viernow,a)

    E-Print Network [OSTI]

    Himpsel, Franz J.

    Regular step arrays on silicon J. Viernow,a) J.-L. Lin, D. Y. Petrovykh, F. M. Leibsle,b) F. K. Men, as well as magnetoresistive sensors on sawtooth-shaped semiconductors.1 Particularly appealing are self

  13. Simulation of iron impurity gettering in crystalline silicon solar cells

    E-Print Network [OSTI]

    Powell, Douglas M. (Douglas Michael)

    2012-01-01T23:59:59.000Z

    This work discusses the Impurity-to-Efficiency (12E) simulation tool and applet. The 12E simulator models the physics of iron impurity gettering in silicon solar cells during high temperature processing. The tool also ...

  14. amorphous silicon based: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The researchers have managed to create Rogers, John A. 279 A Silicon-Based Micro Gas Turbine Engine for Power Generation CERN Preprints Summary: This paper reports on our...

  15. amorphous silicon carbide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The high power densities expected for the MIT microengine (silicon MEMS-based micro-gas turbine generator) require the turbine and compressor spool to rotate at a very high...

  16. ablating silicon carbide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The high power densities expected for the MIT microengine (silicon MEMS-based micro-gas turbine generator) require the turbine and compressor spool to rotate at a very high...

  17. advanced silicon carbide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The high power densities expected for the MIT microengine (silicon MEMS-based micro-gas turbine generator) require the turbine and compressor spool to rotate at a very high...

  18. advanced silicon processing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The high power densities expected for the MIT microengine (silicon MEMS-based micro-gas turbine generator) require the turbine and compressor spool to rotate at a very high...

  19. Rapid Wolff–Kishner reductions in a silicon carbide microreactor

    E-Print Network [OSTI]

    Newman, Stephen G.

    2014-01-01T23:59:59.000Z

    Wolff–Kishner reductions are performed in a novel silicon carbide microreactor. Greatly reduced reaction times and safer operation are achieved, giving high yields without requiring a large excess of hydrazine. The corrosion ...

  20. Micro-cleaved ridge lasers for optoelectronic integration on silicon

    E-Print Network [OSTI]

    Rumpler, Joseph John, 1976-

    2008-01-01T23:59:59.000Z

    This thesis addresses one of the last hurdles to optoelectronic integration on silicon, namely the incorporation of room-temperature, electrically-pumped edge-emitting laser diodes. To this end, thin (-6 pm) InP-based ...

  1. Reactor physics assessment of thick silicon carbide clad PWR fuels

    E-Print Network [OSTI]

    Bloore, David A. (David Allan)

    2013-01-01T23:59:59.000Z

    High temperature tolerance, chemical stability and low neutron affinity make silicon carbide (SiC) a potential fuel cladding material that may improve the economics and safety of light water reactors (LWRs). "Thick" SiC ...

  2. Athermal photonic devices and circuits on a silicon platform

    E-Print Network [OSTI]

    Raghunathan, Vivek

    2013-01-01T23:59:59.000Z

    In recent years, silicon based optical interconnects has been pursued as an eective solution that can offer cost, energy, distance and bandwidth density improvements over copper. Monolithic integration of optics and ...

  3. Studies of advanced integrated nano-photonic devices in silicon

    E-Print Network [OSTI]

    Dahlem, Marcus

    2011-01-01T23:59:59.000Z

    Electronic-photonic integrated circuits (EPICs) are a promising technology for overcoming bandwidth and power-consumption bottlenecks of traditional integrated circuits. Silicon is a good candidate for building such devices, ...

  4. Silicon-based sleeve devices for chemical reactions

    DOE Patents [OSTI]

    Northrup, M.A.; Mariella, R.P. Jr.; Carrano, A.V.; Balch, J.W.

    1996-12-31T23:59:59.000Z

    A silicon-based sleeve type chemical reaction chamber is described that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis. 32 figs.

  5. Silicon-based sleeve devices for chemical reactions

    DOE Patents [OSTI]

    Northrup, M. Allen (Berkeley, CA); Mariella, Jr., Raymond P. (Danville, CA); Carrano, Anthony V. (Livermore, CA); Balch, Joseph W. (Livermore, CA)

    1996-01-01T23:59:59.000Z

    A silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.

  6. Indium oxide/n-silicon heterojunction solar cells

    DOE Patents [OSTI]

    Feng, Tom (Morris Plains, NJ); Ghosh, Amal K. (New Providence, NJ)

    1982-12-28T23:59:59.000Z

    A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.

  7. Silicon Valley Power- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Silicon Valley Power (SVP) offers a variety rebates to its business customers, capped at a maximum total incentive of $500,000 per customer per year. Rebates are available for the following:

  8. Structural origins of intrinsic stress in amorphous silicon thin films

    E-Print Network [OSTI]

    Johlin, Eric (Eric Carl)

    Hydrogenated amorphous silicon (a-Si:H) refers to a broad class of atomic configurations, sharing a lack of long-range order, but varying significantly in material properties, including optical constants, porosity, hydrogen ...

  9. High temperature investigations of crystalline silicon solar cell materials

    E-Print Network [OSTI]

    Hudelson, George David Stephen, III

    2009-01-01T23:59:59.000Z

    Crystalline silicon solar cells are a promising candidate to provide a sustainable, clean energy source for the future. In order to bring about widespread adoption of solar cells, much work is needed to reduce their cost. ...

  10. Understanding and improving hole transport in hydrogenated amorphous silicon photovoltaics

    E-Print Network [OSTI]

    Johlin, Eric (Eric Carl)

    2014-01-01T23:59:59.000Z

    While hydrogenated amorphous silicon (a-Si:H) solar cells have been studied extensively for the previous four decades, the low performance of the devices is still not well understood. The poor efficiency (below 10%, even ...

  11. Single-layer graphene on silicon nitride micromembrane resonators

    E-Print Network [OSTI]

    Schmid, Silvan

    Due to their low mass, high quality factor, and good optical properties, silicon nitride (SiN) micromembrane resonators are widely used in force and mass sensing applications, particularly in optomechanics. The metallization ...

  12. Virus-Enabled Silicon Anode for Lithium-Ion Batteries

    SciTech Connect (OSTI)

    Chen, X L; Gerasopoulos, K; Guo, J C; Brown, A; Wang, Chunsheng; Ghodssi, Reza; Culver, J N

    2010-01-01T23:59:59.000Z

    A novel three-dimensional Tobacco mosaic virus assembled silicon anode is reported. This electrode combines genetically modified virus templates for the production of high aspect ratio nanofeatured surfaces with electroless deposition to produce an integrated nickel current collector followed by physical vapor deposition of a silicon layer to form a high capacity silicon anode. This composite silicon anode produced high capacities (3300 mAh/g), excellent charge?discharge cycling stability (0.20% loss per cycle at 1C), and consistent rate capabilities (46.4% at 4C) between 0 and 1.5 V. The biological templated nanocomposite electrode architecture displays a nearly 10-fold increase in capacity over currently available graphite anodes with remarkable cycling stability.

  13. Anti-reflective nanoporous silicon for efficient hydrogen production

    DOE Patents [OSTI]

    Oh, Jihun; Branz, Howard M

    2014-05-20T23:59:59.000Z

    Exemplary embodiments are disclosed of anti-reflective nanoporous silicon for efficient hydrogen production by photoelectrolysis of water. A nanoporous black Si is disclosed as an efficient photocathode for H.sub.2 production from water splitting half-reaction.

  14. (Data in thousand metric tons of silicon content unless otherwise noted) Domestic Production and Use: Estimated value of silicon alloys and metal (excluding semiconductor-and solar-

    E-Print Network [OSTI]

    Production and Use: Estimated value of silicon alloys and metal (excluding semiconductor- and solar- grade silicon) produced in the United States in 2009 was $470 million. Four companies produced silicon materials in six plants. Of those companies, three produced ferrosilicon in four plants. Metallurgical

  15. Target molecules detection by waveguiding in a photonic silicon membrane

    DOE Patents [OSTI]

    Letant, Sonia; Van Buuren, Anthony; Terminello, Louis

    2004-08-31T23:59:59.000Z

    Disclosed herein is a photonic silicon filter capable of binding and detecting biological and chemical target molecules in liquid or gas samples. A photonic waveguiding silicon filter with chemical and/or biological anchors covalently attached to the pore walls selectively bind target molecules. The system uses transmission curve engineering principles to allow measurements to be made in situ and in real time to detect the presence of various target molecules and determine the concentration of bound target.

  16. Target molecules detection by waveguiding in a photonic silicon membrane

    DOE Patents [OSTI]

    Letant, Sonia E. (Livermore, CA); Van Buuren, Anthony (Livermore, CA); Terminello, Louis (Danville, CA); Hart, Bradley R. (Brentwood, CA)

    2006-12-26T23:59:59.000Z

    Disclosed herein is a porous silicon filter capable of binding and detecting biological and chemical target molecules in liquid or gas samples. A photonic waveguiding silicon filter with chemical and/or biological anchors covalently attached to the pore walls bind target molecules. The system uses transmission curve engineering principles to allow measurements to be made in situ and in real time to detect the presence of various target molecules and calculate the concentration of bound target.

  17. 3D, Flash, Induced Current Readout for Silicon Sensors

    SciTech Connect (OSTI)

    Parker, Sherwood I.

    2014-06-07T23:59:59.000Z

    A new method for silicon microstrip and pixel detector readout using (1) 65 nm-technology current amplifers which can, for the first time with silicon microstrop and pixel detectors, have response times far shorter than the charge collection time (2) 3D trench electrodes large enough to subtend a reasonable solid angle at most track locations and so have adequate sensitivity over a substantial volume of pixel, (3) induced signals in addition to, or in place of, collected charge

  18. Status and performance of the CDF Run II silicon detector

    SciTech Connect (OSTI)

    Maki, Tuula; /Helsinki Inst. of Phys.

    2006-10-01T23:59:59.000Z

    The CDF silicon detector is one of the largest silicon detectors in operation. It has a total of 722,432 electronic channels, and it covers a sensor surface area of 6 m{sup 2}. The detector has been operating reliably for five years, and it has recorded 1.5 fb{sup -1} of data. This article discusses experiences of operating such a large, complex system as well as the longevity of the detector.

  19. Porous silicon membranes as ultrafiltration devices: a feasibility study

    E-Print Network [OSTI]

    Hong, Xiangrong

    1993-01-01T23:59:59.000Z

    etching have several physical qualities desirable for an ultrafiltration membrane. Porous silicon layers with mean pore sizes of 7. 5 ? 11. 0 nm were fabricated. Porous silicon membrane samples were tested for permeability using nitrogen gas... . . 8 10 . . . 12 GAS FLOW TESTING 14 Apparatus and test procedure of gas flow testing Inf1uence of etching current density on gas flow rate Influence of the concentration of hydrofluoric acid on gas flow rate . . . 1 4 17 . . . 20 TABLE...

  20. The D0 silicon micro-strip tracker

    SciTech Connect (OSTI)

    Weber, Michael S.; /Fermilab

    2006-01-01T23:59:59.000Z

    The D0 silicon micro-strip tracker (SMT) is part of the D0 upgrade for the Tevatron RunII at Fermilab. The detector has been running successfully since the start of the RunII physics data taking. The tracking and vertexing performance match the expectation from Monte-Carlo studies. An additional inner layer (Layer0) of silicon sensors at R = 1.6cm will be installed in 2005.

  1. Nuclear magnetic resonance study of methane adsorbed on porous silicon

    E-Print Network [OSTI]

    Li, Feng

    1992-01-01T23:59:59.000Z

    NUCLEAR MAGNETIC RESONANCE STUDY OF METHANE ADSORBED ON POROUS SILICON A Thesis by FENG I I Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... May 1992 Major Subject: Physics NUCLEAR MAGNETIC RESONANCE STUDY OF METHANE ADSORBED ON POROUS SILICON A Thesis by FENG LI Approved as to style and content by: . P. Kirk (Chair of Committee) i G. Agnolet (Member) J. H. Ross, r (Member) M...

  2. The study of methane adsorbed on porous silicon by NMR

    E-Print Network [OSTI]

    Czermak, Adam Kazimierz

    1986-01-01T23:59:59.000Z

    THE STUDY OF METHANE ADSORBED ON POROUS SILICON BY NMR A Thesis by ADAM KAZIMIERZ CZERMAK Submitted to the Graduate College of Texas ARM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE August 1986... Major Subject: Physics THE STUDY OF METHANE ADSORBED ON POROUS SILICON BY NMR A Thesis by ADAM KAZIMIERZ CZERMAK Approved as to style and content by: e Wile . Kirk (Chairman of Committee) J eevak M. Par pi a (Member) Randall L. Geiger...

  3. Two dimensional properties of methane adsorbed on porous silicon

    E-Print Network [OSTI]

    Tennis, Richard Franklin

    1989-01-01T23:59:59.000Z

    TWO DIMENSIONAL PROPERTIES OF METHANE ADSORBED ON POROUS SILICON A Thesis by RICHARD FRANKLIN TENNIS Submitted to the Office of Graduate Studies of Texas ASM University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE May 1989 Major Subject: Physics TWO DIMENSIONAL PROPERTIES OF METHANE ADSORBED ON POROUS SILICON A Thesis by RICHARD FRANKLIN TENNIS Approved as to style and content by: P. Kirk (C ir of Committee) Glenn olet (M er) Da J. Ernst...

  4. Method for forming silicon on a glass substrate

    DOE Patents [OSTI]

    McCarthy, A.M.

    1995-03-07T23:59:59.000Z

    A method by which single-crystal silicon microelectronics may be fabricated on glass substrates at unconventionally low temperatures. This is achieved by fabricating a thin film of silicon on glass and subsequently forming the doped components by a short wavelength (excimer) laser doping procedure and conventional patterning techniques. This method may include introducing a heavily boron doped etch stop layer on a silicon wafer using an excimer laser, which permits good control of the etch stop layer removal process. This method additionally includes dramatically reducing the remaining surface roughness of the silicon thin films after etching in the fabrication of silicon on insulator wafers by scanning an excimer laser across the surface of the silicon thin film causing surface melting, whereby the surface tension of the melt causes smoothing of the surface during recrystallization. Applications for this method include those requiring a transparent or insulating substrate, such as display manufacturing. Other applications include sensors, actuators, optoelectronics, radiation hard and high temperature electronics. 15 figs.

  5. Method for fabricating an ultra-low expansion mask blank having a crystalline silicon layer

    DOE Patents [OSTI]

    Cardinale, Gregory F. (Oakland, CA)

    2002-01-01T23:59:59.000Z

    A method for fabricating masks for extreme ultraviolet lithography (EUVL) using Ultra-Low Expansion (ULE) substrates and crystalline silicon. ULE substrates are required for the necessary thermal management in EUVL mask blanks, and defect detection and classification have been obtained using crystalline silicon substrate materials. Thus, this method provides the advantages for both the ULE substrate and the crystalline silicon in an Extreme Ultra-Violet (EUV) mask blank. The method is carried out by bonding a crystalline silicon wafer or member to a ULE wafer or substrate and thinning the silicon to produce a 5-10 .mu.m thick crystalline silicon layer on the surface of the ULE substrate. The thinning of the crystalline silicon may be carried out, for example, by chemical mechanical polishing and if necessary or desired, oxidizing the silicon followed by etching to the desired thickness of the silicon.

  6. Deposition of device quality, low hydrogen content, amorphous silicon films by hot filament technique using ``safe`` silicon source gas

    DOE Patents [OSTI]

    Mahan, A.H.; Molenbroek, E.C.; Nelson, B.P.

    1998-07-07T23:59:59.000Z

    A method is described for producing hydrogenated amorphous silicon on a substrate by flowing a stream of safe (diluted to less than 1%) silane gas past a heated filament. 7 figs.

  7. Etching process for improving the strength of a laser-machined silicon-based ceramic article

    DOE Patents [OSTI]

    Copley, S.M.; Tao, H.; Todd-Copley, J.A.

    1991-06-11T23:59:59.000Z

    A process is disclosed for improving the strength of laser-machined articles formed of a silicon-based ceramic material such as silicon nitride, in which the laser-machined surface is immersed in an etching solution of hydrofluoric acid and nitric acid for a duration sufficient to remove substantially all of a silicon film residue on the surface but insufficient to allow the solution to unduly attack the grain boundaries of the underlying silicon nitride substrate. This effectively removes the silicon film as a source of cracks that otherwise could propagate downwardly into the silicon nitride substrate and significantly reduce its strength. 1 figure.

  8. Etching process for improving the strength of a laser-machined silicon-based ceramic article

    DOE Patents [OSTI]

    Copley, Stephen M. (Palos Verdes, CA); Tao, Hongyi (Covina, CA); Todd-Copley, Judith A. (Palos Verdes, CA)

    1991-01-01T23:59:59.000Z

    A process for improving the strength of laser-machined articles formed of a silicon-based ceramic material such as silicon nitride, in which the laser-machined surface is immersed in an etching solution of hydrofluoric acid and nitric acid for a duration sufficient to remove substantially all of a silicon film residue on the surface but insufficient to allow the solution to unduly attack the grain boundaries of the underlying silicon nitride substrate. This effectively removes the silicon film as a source of cracks that otherwise could propagate downwardly into the silicon nitride substrate and significantly reduce its strength.

  9. Qubit entanglement on a silicon photonic chip

    E-Print Network [OSTI]

    Joshua W. Silverstone; Raffaele Santagati; Damien Bonneau; Michael J. Strain; Marc Sorel; Jeremy L. O'Brien; Mark G. Thompson

    2014-11-21T23:59:59.000Z

    Entanglement--one of the most delicate phenomena in nature--is an essential resource for quantum information applications. Large entangled cluster states have been predicted to enable universal quantum computation, with the required single- qubit measurements readily implemented with photons. Useful large-scale systems must generate and control qubit entanglement on-chip, where quantum information is naturally encoded in photon path. Here we report a silicon photonic chip which integrates resonant-enhanced sources, filters, and reconfigurable optics to generate a path-entangled two-qubit state--the smallest non-trivial cluster state--and analyse its entanglement. We show that ring-resonator-based spontaneous four-wave mixing sources can be made highly indistinguishable, despite their nonlinear dynamics, and the first evidence that their frequency correlations are small, as predicted. We use quantum state tomography, and the strict Bell-CHSH inequality to quantify entanglement in the device, confirming its high performance. This work integrates essential components for building devices and systems to harness quantum entanglement on the large scale.

  10. Electrical overstress failure in silicon solar cells

    SciTech Connect (OSTI)

    Pease, R.L.; Barnum, J.R.; van Lint, V.A.J.; Vulliet, W.V.; Wrobel, T.F.

    1982-11-01T23:59:59.000Z

    A solar-cell electrical-overstress-failure model and the results of experimental measurements of threshold pulsed failure currents on four types of silicon solar cells are presented. The transient EMP field surrounding a lightning stroke has been identified as a potential threat to a photovoltaic array, yet failure analysis of solar cells in a pulsed environment had not previously been reported. Failure in the low-resistivity concentrator cells at pulse widths between 1 ..mu..s and 1 ms occurred initially in the junction. Finger damage in the form of silver melting occurs at currents only slightly greater than that required for junction damage. The result of reverse-bias transient-overstress tests on high-resistivity (10 ..cap omega..cm) cells demonstrated that the predominant failure mode was due to edge currents. These flat-plate cells failed at currents of only 4 to 20 A, which is one or two orders of magnitude below the model predictions. It thus appears that high-resistivity flat-plate cells are quite vulnerable to electrical overstress which could be produced by a variety of mechanisms.

  11. Quantitative analysis of defects in silicon. Silicon sheet growth development for the Large Area Silicon Sheet Task of the Low-Cost Solar Array Project. Final report

    SciTech Connect (OSTI)

    Natesh, R.; Smith, J.M.; Bruce, T.; Qidwai, H.A.

    1980-04-01T23:59:59.000Z

    The complete procedures for the defect analysis of silicon samples using a QTM-720 Image Analyzing System are described, chemical polishing, etching, and QTM operation are discussed. The data from one hundred and seventy four (174) samples, and a discussion of the data are included. The data include twin boundary density, dislocation pit density, and grain boundary length. (WHK)

  12. (Data in thousand metric tons of silicon content unless otherwise noted) Domestic Production and Use: Estimated value of silicon metal and alloys (excluding semiconductor-grade silicon)

    E-Print Network [OSTI]

    metal: Brazil, 37%; South Africa, 25%; Canada, 14%; Norway, 6%; and other, 18%. Total: Brazil, 20%; China, 16%; South Africa, 13%; Canada, 12%; and other, 39%. Tariff: Item Number Normal Trade Relations energy costs. Demand for silicon metal comes primarily from the aluminum and chemical industries

  13. Optical properties of grooved silicon microstructures: Theory and experiment

    SciTech Connect (OSTI)

    Dyakov, S. A., E-mail: dyakovs@tcd.ie [Moscow State University (Russian Federation); Astrova, E. V. [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation); Perova, T. S. [Trinity College Dublin (Ireland); Tikhodeev, S. G.; Gippius, N. A. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation); Timoshenko, V. Yu. [Moscow State University (Russian Federation)

    2011-07-15T23:59:59.000Z

    The reflection spectra of grooved silicon structures consisting of alternating silicon walls and grooves (air channels) with a period of a = 4-6 {mu}m are studied experimentally and theoretically in the mid-IR spectral range (2-25 {mu}m) upon irradiation of samples by normally incident light polarized along and perpendicular to silicon layers. The calculation is performed by the scattering matrix method taking into account Rayleigh scattering losses in a grooved layer by adding imaginary parts to the refractive indices of silicon and air in grooved regions. The experimental and calculated reflection spectra are in good agreement in the entire spectral range studied. The analysis of experimental and calculated spectra gave close values of the effective refractive indices and birefringence of the studied structures in the long-wavelength spectral region. The values calculated in the effective medium model in the long-wavelength approximation ({lambda} Much-Greater-Than a) gave considerably understated values. The obtained results confirm the efficiency of the scattering matrix method for describing the optical properties of silicon microstructures.

  14. X-ray and synchrotron studies of porous silicon

    SciTech Connect (OSTI)

    Sivkov, V. N., E-mail: svn@dm.komisc.ru [Russian Academy of Sciences, Komi Scientific Center, Ural Branch (Russian Federation); Lomov, A. A. [Russian Academy of Sciences, Physical-Technological Institute (Russian Federation)] [Russian Academy of Sciences, Physical-Technological Institute (Russian Federation); Vasil'ev, A. L. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)] [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Nekipelov, S. V. [Komi State Pedagogical Institute (Russian Federation)] [Komi State Pedagogical Institute (Russian Federation); Petrova, O. V. [Russian Academy of Sciences, Komi Scientific Center, Ural Branch (Russian Federation)] [Russian Academy of Sciences, Komi Scientific Center, Ural Branch (Russian Federation)

    2013-08-15T23:59:59.000Z

    The results of comprehensive studies of layers of porous silicon of different conductivity types, grown by anodizing standard Si(111) substrates in an electrolyte based on fluoric acid and ethanol with the addition of 5% of iodine and kept in air for a long time, are discussed. Measurements are performed by scanning electron microscopy, high-resolution X-ray diffraction, and ultrasoft X-ray spectroscopy using synchrotron radiation. The structural parameters of the layers (thickness, strain, and porosity) and atomic and chemical composition of the porous-silicon surface are determined. It is found that an oxide layer 1.5-2.3-nm thick is formed on the surface of the silicon skeleton. The near-edge fine structure of the Si 2p absorption spectrum of this layer corresponds to the fine structure of the 2p spectrum of well coordinated SiO{sub 2}. In this case, the fine structure in the Si 2p-edge absorption region of the silicon skeleton is identical to that of the 2p absorption spectrum of crystalline silicon.

  15. Fabrication and Performance of Silicon-Embedded Permanent-Magnet Microgenerators

    E-Print Network [OSTI]

    Herrault, Florian

    This paper focuses on the design, fabrication, and characterization of silicon-packaged permanent-magnet (PM) microgenerators. The use of silicon packaging favors fine control on shape and dimensions in batch fabrication ...

  16. Luminescent, quantum dot-based anti-reflective coatings for crystalline silicon photovoltaics

    E-Print Network [OSTI]

    Bruer, Garrett (Garrett A.)

    2010-01-01T23:59:59.000Z

    This thesis demonstrates and evaluates the potential application of luminescent quantum dot/polymer solutions on crystalline silicon photovoltaics. After spin coating the QD/polymer onto silicon photodiodes, an increase ...

  17. Silicon surface passivation by an organic overlayer of 9,10-phenanthrenequinone

    E-Print Network [OSTI]

    ,10-phenanthrenequinone, PQ . PQ reacts with the dangling bonds, thus providing a bridge between organic semiconductors in integrating organic and silicon-based semiconductor devices.1­3 Organic- semiconductor/silicon interfaces can

  18. Characterization of temperature profile in furnace and solubility of iron in silicon

    E-Print Network [OSTI]

    Modi, Vrajesh Y

    2011-01-01T23:59:59.000Z

    A better understanding of the behavior of impurities, such as iron, in silicon can lead to increases in solar cell efficiency. The purpose of this thesis was to study the behavior of iron in silicon via three sub-tasks: ...

  19. BUILDING MANY-CORE PROCESSOR-TO-DRAM NETWORKS WITH MONOLITHIC CMOS SILICON PHOTONICS

    E-Print Network [OSTI]

    Batten, Christopher

    Silicon photonics is a promising technology for addressing memory bandwidth limitations in future many-core processors. This article first introduces a new monolithic silicon-photonic technology, which uses a standard bulk ...

  20. Solar energy trapping with modulated silicon nanowire photonic crystals Guillaume Demsy and Sajeev John

    E-Print Network [OSTI]

    John, Sajeev

    Solar energy trapping with modulated silicon nanowire photonic crystals Guillaume Demésy and Sajeev://jap.aip.org/about/rights_and_permissions #12;Solar energy trapping with modulated silicon nanowire photonic crystals Guillaume Demesya

  1. Growth of nano-and microcrystalline silicon thin films at low temperature by pulsed electron deposition

    E-Print Network [OSTI]

    Zexian, Cao

    crystallites (heating-film silicon solar cells take a larger market share than the single- and polycrystalline silicon solar cells industry. In all the efforts, substrate heating or post-annealing at a temperature higher than 300 1C

  2. A Constitutive Model for the Mechanical Behavior of Single Crystal Silicon at Elevated Temperature

    E-Print Network [OSTI]

    Moon, H.-S.

    Silicon in single crystal form has been the material of choice for the first demonstration of the MIT microengine project. However, because it has a relatively low melting temperature, silicon is not an ideal material for ...

  3. Femtosecond-laser irradiation as a platform for tailoring the optoelectronic properties of silicon

    E-Print Network [OSTI]

    Smith, Matthew John, Ph. D. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    Silicon is the most abundant semiconductor on earth and benefits from decades of technological development driven by the integrated circuit industry. Furthermore, silicon allows for facile n-type and p-type doping, has a ...

  4. Highly Ordered Vertical Silicon Nanowire Array Composite Thin Films for Thermoelectric Devices

    E-Print Network [OSTI]

    Bowers, John

    Highly Ordered Vertical Silicon Nanowire Array Composite Thin Films for Thermoelectric Devices for thermoelectric devices are presented. Inter- ference lithography was used to pattern square lattice photoresist device. Key words: Silicon nanowires, thermoelectrics, cross-plane measurements, nanowire composite

  5. Silicon Ink for High-Efficiency Solar Cells Captures a Share of the Market (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01T23:59:59.000Z

    Fact sheet on 2011 R&D 100 Award winner Silicon Ink. Liquid silicon has arrived, and with it comes a power boost for solar cells and dramatic cost savings for cell manufacturers.

  6. Nested potassium hydroxide etching and protective coatings for silicon-based microreactors

    E-Print Network [OSTI]

    de Mas, Nuria

    We have developed a multilayer, multichannel silicon-based microreactor that uses elemental fluorine as a reagent and generates hydrogen fluoride as a byproduct. Nested potassium hydroxide etching (using silicon nitride ...

  7. alkali-resistant silicon nitride: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Amorphous Silicon B. L. Zink,1,2,* R. Pietri,1. Above 50 K the thermal conductivity of thin-film amorphous silicon agrees with values previously Hellman, Frances 131 Profiles:...

  8. antibiotic-impregnated silicone rubber: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SOLAR CELLS FROM THE POROUS SILICON PROCESS APPLYING CONVECTION for the first time to monocrystalline Si thin-film solar cells from the porous silicon (PSI) layer transfer for...

  9. High-performance porous silicon solar cell development. Final report, October 1, 1993--September 30, 1995

    SciTech Connect (OSTI)

    Maruska, P. [Spire Corp., Bedford, MA (United States)] [Spire Corp., Bedford, MA (United States)

    1996-09-01T23:59:59.000Z

    The goal of the program was to demonstrate use of porous silicon in new solar cell structures. Porous silicon technology has been developed at Spire for producing visible light-emitting diodes (LEDs). The major aspects that they have demonstrated are the following: porous silicon active layers have been made to show photovoltaic action; porous silicon surface layers can act as antireflection coatings to improve the performance of single-crystal silicon solar cells; and porous silicon surface layers can act as antireflection coatings on polycrystalline silicon solar cells. One problem with the use of porous silicon is to achieve good lateral conduction of electrons and holes through the material. This shows up in terms of poor blue response and photocurrents which increase with increasing reverse bias applied to the diode.

  10. Determination of ionization energies of small silicon clusters with vacuum?ultraviolet (VUV) radiation

    E-Print Network [OSTI]

    Kostko, Oleg

    2010-01-01T23:59:59.000Z

    shown in Figure 2  and  tetramer silicon isomers  shown in the  cations.   The  tetramer  is  the  largest  cluster positively charged silicon tetramer is a rhombus with D 2h  

  11. Method of and apparatus for removing silicon from a high temperature sodium coolant

    DOE Patents [OSTI]

    Yunker, W.H.; Christiansen, D.W.

    1983-11-25T23:59:59.000Z

    This patent discloses a method of and system for removing silicon from a high temperature liquid sodium coolant system for a nuclear reactor. The sodium is cooled to a temperature below the silicon saturation temperature and retained at such reduced temperature while inducing high turbulence into the sodium flow for promoting precipitation of silicon compounds and ultimate separation of silicon compound particles from the liquid sodium.

  12. Silicon Detector Dark Matter Results from the Final Exposure of CDMS II

    SciTech Connect (OSTI)

    Agnese, R.; Ahmed, Z.; Anderson, A. J.; Arrenberg, S.; Balakishiyeva, D.; Basu Thakur, R.; Bauer, D. A.; Billard, J.; Borgland, A.; Brandt, D.; Brink, P. L.; Bruch, T.; Bunker, R.; Cabrera, B.; Caldwell, D. O.; Cerdeno, D. G.; Chagani, H.; Cooley, J.; Cornell, B.; Crewdson, C. H.; Cushman, Priscilla B.; Daal, M.; Dejongh, F.; Do Couto E Silva, E.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Filippini, J.; Fox, J.; Fritts, M.; Godfrey, G. L.; Golwala, S. R.; Hall, Jeter C.; Harris, R. H.; Hertel, S. A.; Hofer, T.; Holmgren, D.; Hsu, L.; Huber, M. E.; Jastram, A.; Kamaev, O.; Kara, B.; Kelsey, M. H.; Kennedy, A.; Kim, P.; Kiveni, M.; Koch, K.; Kos, M.; Leman, S. W.; Loer, B.; Lopez Asamar, E.; Mahapatra, R.; Mandic, V.; Martinez, C.; McCarthy, K. A.; Mirabolfathi, N.; Moffatt, R. A.; Moore, D. C.; Nadeau, P.; Nelson, R. H.; Page, K.; Partridge, R.; Pepin, M.; Phipps, A.; Prasad, K.; Pyle, M.; Qiu, H.; Rau, W.; Redi, P.; Reisetter, A.; Ricci, Y.; Saab, T.; Sadoulet, B.; Sander, K.; Schneck, K.; Schnee, Richard; Scorza, S.; Serfass, B.; Shank, B.; Speller, D.; Sundqvist, K. M.; Villano, A. N.; Welliver, B.; Wright, D. H.; Yellin, S.; Yen, J. J.; Yoo, J.; Young, B. A.; Zhang, J.

    2013-12-16T23:59:59.000Z

    Dark Matter Search Results Using Silicon Detectors of CDMS II journal article to be submitted to Physicial Review Letters

  13. WA_00_010_ROCKWELL_SCIENCE_CENTER_A_Subcontractor_of_SILICON...

    Broader source: Energy.gov (indexed) [DOE]

    NTERASubcontractorofSILICON.pdf More Documents & Publications WA03011ROCKWELLAUTOMATIONWaiverofPatentRightsUnder.pdf WA01034INGERSOLL-RANDENERGYSYSTEMSWaiverof...

  14. NREL's Black Silicon Increases Solar Cell Efficiency by Reducing Reflected Sunlight (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01T23:59:59.000Z

    A fact sheet detailing the R&D 100 Award-winning Black Silicon Nanocatalytic Wet-Chemical Etch technology.

  15. Silicon bulk micromachined hybrid dimensional artifact.

    SciTech Connect (OSTI)

    Claudet, Andre A.; Tran, Hy D.; Bauer, Todd Marks; Shilling, Katherine Meghan; Oliver, Andrew David

    2010-03-01T23:59:59.000Z

    A mesoscale dimensional artifact based on silicon bulk micromachining fabrication has been developed and manufactured with the intention of evaluating the artifact both on a high precision coordinate measuring machine (CMM) and video-probe based measuring systems. This hybrid artifact has features that can be located by both a touch probe and a video probe system with a k=2 uncertainty of 0.4 {micro}m, more than twice as good as a glass reference artifact. We also present evidence that this uncertainty could be lowered to as little as 50 nm (k=2). While video-probe based systems are commonly used to inspect mesoscale mechanical components, a video-probe system's certified accuracy is generally much worse than its repeatability. To solve this problem, an artifact has been developed which can be calibrated using a commercially available high-accuracy tactile system and then be used to calibrate typical production vision-based measurement systems. This allows for error mapping to a higher degree of accuracy than is possible with a glass reference artifact. Details of the designed features and manufacturing process of the hybrid dimensional artifact are given and a comparison of the designed features to the measured features of the manufactured artifact is presented and discussed. Measurement results from vision and touch probe systems are compared and evaluated to determine the capability of the manufactured artifact to serve as a calibration tool for video-probe systems. An uncertainty analysis for calibration of the artifact using a CMM is presented.

  16. DAMPE silicon tracker on-board data compression algorithm

    E-Print Network [OSTI]

    Dong, Yifan; Qiao, Rui; Peng, Wenxi; Fan, Ruirui; Gong, Ke; Wu, Di; Wang, Huanyu

    2015-01-01T23:59:59.000Z

    The Dark Matter Particle Explorer (DAMPE) is an upcoming scientific satellite mission for high energy gamma-ray, electron and cosmic rays detection. The silicon tracker (STK) is a sub detector of the DAMPE payload with an excellent position resolution (readout pitch of 242um), which measures the incident direction of particles, as well as charge. The STK consists 12 layers of Silicon Micro-strip Detector (SMD), equivalent to a total silicon area of 6.5m$^2$. The total readout channels of the STK are 73728, which leads to a huge amount of raw data to be dealt. In this paper, we focus on the on-board data compression algorithm and procedure in the STK, which was initially verified by cosmic-ray measurements.

  17. Electric field geometries dominate quantum transport coupling in silicon nanoring

    SciTech Connect (OSTI)

    Lee, Tsung-Han, E-mail: askaleeg@gmail.com, E-mail: sfhu.hu@gmail.com; Hu, Shu-Fen, E-mail: askaleeg@gmail.com, E-mail: sfhu.hu@gmail.com [Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan (China)

    2014-03-28T23:59:59.000Z

    Investigations on the relation between the geometries of silicon nanodevices and the quantum phenomenon they exhibit, such as the Aharonov–Bohm (AB) effect and the Coulomb blockade, were conducted. An arsenic doped silicon nanoring coupled with a nanowire by electron beam lithography was fabricated. At 1.47?K, Coulomb blockade oscillations were observed under modulation from the top gate voltage, and a periodic AB oscillation of ?B?=?0.178?T was estimated for a ring radius of 86?nm under a high sweeping magnetic field. Modulating the flat top gate and the pointed side gate was performed to cluster and separate the many electron quantum dots, which demonstrated that quantum confinement and interference effects coexisted in the doped silicon nanoring.

  18. Deposition of device quality low H content, amorphous silicon films

    DOE Patents [OSTI]

    Mahan, A.H.; Carapella, J.C.; Gallagher, A.C.

    1995-03-14T23:59:59.000Z

    A high quality, low hydrogen content, hydrogenated amorphous silicon (a-Si:H) film is deposited by passing a stream of silane gas (SiH{sub 4}) over a high temperature, 2,000 C, tungsten (W) filament in the proximity of a high temperature, 400 C, substrate within a low pressure, 8 mTorr, deposition chamber. The silane gas is decomposed into atomic hydrogen and silicon, which in turn collides preferably not more than 20--30 times before being deposited on the hot substrate. The hydrogenated amorphous silicon films thus produced have only about one atomic percent hydrogen, yet have device quality electrical, chemical, and structural properties, despite this lowered hydrogen content. 7 figs.

  19. Protective coating for alumina-silicon carbide whisker composites

    DOE Patents [OSTI]

    Tiegs, Terry N. (Lenoir City, TN)

    1989-01-01T23:59:59.000Z

    Ceramic composites formed of an alumina matrix reinforced with silicon carbide whiskers homogenously dispersed therein are provided with a protective coating for preventing fracture strength degradation of the composite by oxidation during exposure to high temperatures in oxygen-containing atmospheres. The coating prevents oxidation of the silicon carbide whiskers within the matrix by sealing off the exterior of the matrix so as to prevent oxygen transport into the interior of the matrix. The coating is formed of mullite or mullite plus silicon oxide and alumina and is formed in place by heating the composite in air to a temperature greater than 1200.degree. C. This coating is less than about 100 microns thick and adequately protects the underlying composite from fracture strength degradation due to oxidation.

  20. Deposition of device quality low H content, amorphous silicon films

    DOE Patents [OSTI]

    Mahan, Archie H. (Golden, CO); Carapella, Jeffrey C. (Evergreen, CO); Gallagher, Alan C. (Louisville, CO)

    1995-01-01T23:59:59.000Z

    A high quality, low hydrogen content, hydrogenated amorphous silicon (a-Si:H) film is deposited by passing a stream of silane gas (SiH.sub.4) over a high temperature, 2000.degree. C., tungsten (W) filament in the proximity of a high temperature, 400.degree. C., substrate within a low pressure, 8 mTorr, deposition chamber. The silane gas is decomposed into atomic hydrogen and silicon, which in turn collides preferably not more than 20-30 times before being deposited on the hot substrate. The hydrogenated amorphous silicon films thus produced have only about one atomic percent hydrogen, yet have device quality electrical, chemical, and structural properties, despite this lowered hydrogen content.

  1. Synthesis of silicon nitride powders in pulsed RF plasmas

    SciTech Connect (OSTI)

    Buss, R.J.; Ho, P. [Sandia National Labs., Albuquerque, NM (United States); Babu, S.V. [Sandia National Labs., Albuquerque, NM (United States)]|[Clarkson Univ., Potsdam, NY (United States). Dept. of Chemical Engineering

    1995-05-01T23:59:59.000Z

    Nanometer size silicon nitride particles are synthesized using a pulsed radio frequency plasma technique. The plasma is modulated with a square-wave on/off cycle of varying period to control size and morphology and to deduce the growth kinetics. In situ laser light scattering and ex situ particle analysis are used to study the nucleation and growth. For SiH{sub 4}/Ar plasmas which nucleate silicon particles, an initial extremely rapid growth phase is followed by a slower growth rate, approaching the rate of thin film deposition on adjacent flat surfaces. In SiH{sub 4}/NH{sub 3} plasmas, silicon nitride particle size can be tightly controlled by adjusting the plasma-on time. The size dispersion of the particles is large and is consistent with a process of continual nucleation during the plasma-on period. The observed polydispersity differs dramatically from that reported from other laboratories.

  2. Firenze 2001: Silicon Detectors Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz Large-Scale

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Firenze 2001: Silicon Detectors Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz SCIPPSCIPP Large (SCIPP) Development of Silicon Detectors GLAST : ·Gamma-Ray ·Large Area ·Space Telescope #12;Firenze 2001 by wafer size: 4" & 6" => Ladders #12;Firenze 2001: Silicon Detectors Hartmut F.-W. Sadrozinski , SCIPP, UC

  3. Control mechanisms for the oceanic distribution of silicon isotopes Andre G. Wischmeyer,1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    the silicic acid concentration and its silicon isotope composition is not a simple Rayleigh distillation curve to the Rayleigh distillation curve. Model results can be used to predict opal silicon isotope compositions of their pitfalls [Wefer et al., 1999]. [4] Recent work taking advantage of the fractionation of silicon isotopes

  4. Electrochemical method for defect delineation in silicon-on-insulator wafers

    DOE Patents [OSTI]

    Guilinger, Terry R. (Albuquerque, NM); Jones, Howland D. T. (Albuquerque, NM); Kelly, Michael J. (Albuquerque, NM); Medernach, John W. (Albuquerque, NM); Stevenson, Joel O. (Albuquerque, NM); Tsao, Sylvia S. (Albuquerque, NM)

    1991-01-01T23:59:59.000Z

    An electrochemical method for defect delineation in thin-film SOI or SOS wafers in which a surface of a silicon wafer is electrically connected so as to control the voltage of the surface within a specified range, the silicon wafer is then contacted with an electrolyte, and, after removing the electrolyte, defects and metal contamination in the silicon wafer are identified.

  5. Solar power conversion efficiency in modulated silicon nanowire photonic Alexei Deinega and Sajeev John

    E-Print Network [OSTI]

    John, Sajeev

    Solar power conversion efficiency in modulated silicon nanowire photonic crystals Alexei Deinega://jap.aip.org/about/rights_and_permissions #12;Solar power conversion efficiency in modulated silicon nanowire photonic crystals Alexei Deinegaa that using only 1 lm of silicon, sculpted in the form of a modulated nanowire photonic crystal, solar power

  6. Method to prevent recession loss of silica and silicon-containing materials in combustion gas environments

    DOE Patents [OSTI]

    Brun, Milivoj Konstantin (Ballston Lake, NY); Luthra, Krishan Lal (Niskayuna, NY)

    2003-01-01T23:59:59.000Z

    While silicon-containing ceramics or ceramic composites are prone to material loss in combustion gas environments, this invention introduces a method to prevent or greatly reduce the thickness loss by injecting directly an effective amount, generally in the part per million level, of silicon or silicon-containing compounds into the combustion gases.

  7. SCIPP 05/09 Operation of Short-Strip Silicon Detectors based on p-type

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    SCIPP 05/09 Operation of Short-Strip Silicon Detectors based on p-type Wafers in the ATLAS Upgrade effects in p-type detectors, the expected performance of planned short silicon strip detectors (SSSD), detector thickness (200, 300 µm) for both Float Zone (FZ) and Magnetic Czochralski silicon p-type detectors

  8. Coupled optical and electrical modeling of solar cell based on conical pore silicon photonic crystals

    E-Print Network [OSTI]

    John, Sajeev

    a significant part of silicon solar cell cost. Thin film technology is a promising way to avoid these costCoupled optical and electrical modeling of solar cell based on conical pore silicon photonic://jap.aip.org/authors #12;Coupled optical and electrical modeling of solar cell based on conical pore silicon photonic

  9. A Touch Panel using Silicone Rubber with embedded IR-LEDs Yuichiro Sakamoto,

    E-Print Network [OSTI]

    Tanaka, Jiro

    LED LED FTIR FTIR FTIR FTIR FTIR LED LED A Touch Panel using Silicone Rubber with embedded Shizuki and Jiro Tanaka In this paper, we present a novel touch panel using silicone rubber with embedded are difficult to detect for one made of acryl panel Moreover, it integrates IR-LEDs silicone rubber for multi

  10. CONSTRUCTING AN ELASTIC TOUCH PANEL WITH EMBEDDED IR-LEDS USING SILICONE RUBBER

    E-Print Network [OSTI]

    Tanaka, Jiro

    CONSTRUCTING AN ELASTIC TOUCH PANEL WITH EMBEDDED IR-LEDS USING SILICONE RUBBER Yuichiro Sakamoto a technique for the construction of an elastic touch panel using silicone rubber. The technique is similar is made of transparent silicone rubber rather than acrylic. Moreover, we embedded infrared LEDs within

  11. Mechanical characterization and comparison of different NiTi/silicone rubber interfaces

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Mechanical characterization and comparison of different NiTi/silicone rubber interfaces T. Rey(1 on the mechanical resistance of interface between wires of NiTi shape memory alloy and silicone rubber. Three of exposure to the plasma alone get the debonding force higher. Consequently, NiTi/silicone rubber interface

  12. Porous silicon with embedded tritium as a stand-alone prime power source for optoelectronic applications

    DOE Patents [OSTI]

    Tam, S.W.

    1997-02-25T23:59:59.000Z

    Disclosed is an illumination source comprising a porous silicon having a source of electrons on the surface and/or interstices thereof having a total porosity in the range of from about 50 v/o to about 90 v/o. Also disclosed are a tritiated porous silicon and a photovoltaic device and an illumination source of tritiated porous silicon. 1 fig.

  13. Microchannel Systems in Titanium and Silicon for Structural and Mechanical Studies of Aligned Protein

    E-Print Network [OSTI]

    MacDonald, Noel C.

    Microchannel Systems in Titanium and Silicon for Structural and Mechanical Studies of Aligned, such as F-actin bundles and microtubules, in a surface-modified titanium or silicon microfluidic device-modified devices produced via a high aspect ratio etch process in titanium and silicon can be used to confine

  14. Hole-blocking titanium-oxide/silicon heterojunction and its application to photovoltaics

    E-Print Network [OSTI]

    Hole-blocking titanium-oxide/silicon heterojunction and its application to photovoltaics Sushobhan-bandgap semiconducting heterojunctions on silicon. Here, we present a wide-bandgap heterojunction--between titanium oxide and crystalline silicon--where the titanium oxide is deposited via a metal-organic chemical vapor deposition

  15. Arrays of Sealed Silicon Nanotubes As Anodes for Lithium Ion Batteries

    E-Print Network [OSTI]

    Rogers, John A.

    Arrays of Sealed Silicon Nanotubes As Anodes for Lithium Ion Batteries Taeseup Song, Jianliang Xia ABSTRACT Silicon is a promising candidate for electrodes in lithium ion batteries due to its large reversible capacity and long-term cycle stability. KEYWORDS Lithium ion battery, silicon, nanotubes

  16. Kinetics of Initial Lithiation of Crystalline Silicon Electrodes of Lithium-Ion Batteries

    E-Print Network [OSTI]

    Kinetics of Initial Lithiation of Crystalline Silicon Electrodes of Lithium-Ion Batteries Matt phase. KEYWORDS: Lithium-ion batteries, silicon, kinetics, plasticity Lithium-ion batteries already at the electrolyte/lithiated silicon interface, diffusion of lithium through the lithiated phase, and the chemical

  17. Porous silicon with embedded tritium as a stand-alone prime power source for optoelectronic applications

    DOE Patents [OSTI]

    Tam, S.W.

    1998-06-16T23:59:59.000Z

    An illumination source is disclosed comprising a porous silicon having a source of electrons on the surface and/or interstices thereof having a total porosity in the range of from about 50 v/o to about 90 v/o. Also disclosed are a tritiated porous silicon and a photovoltaic device and an illumination source of tritiated porous silicon. 1 fig.

  18. Interface Stability During Rapid Solidification of Silicon-Tin A thesis presented

    E-Print Network [OSTI]

    Interface Stability During Rapid Solidification of Silicon-Tin A thesis presented by David Eric for the experiment were silicon and silicon-on-sapphire (SOS) wafers implanted with tin. The SOS samples were also/s, the interface might undergo breakdown at 0.3 atomic percent tin, resulting in a cellular structure with a cell

  19. GHZ ELECTRICAL PROPERTIES OF CARBON NANOTUBES ON SILICON DIOXIDE MICRO BRIDGES

    E-Print Network [OSTI]

    Tang, William C

    1 GHZ ELECTRICAL PROPERTIES OF CARBON NANOTUBES ON SILICON DIOXIDE MICRO BRIDGES SHENG F. YEN1 of an approach to reduce the high-frequency capacitive feedthrough and dielectric leakages of carbon nanotubes grown on silicon dioxide micro bridges suspended over silicon substrates. The microwave reflection

  20. Dynamics of static friction between steel and silicon Zhiping Yang, H. P. Zhang, and M. Marder

    E-Print Network [OSTI]

    Texas at Austin. University of

    Dynamics of static friction between steel and silicon Zhiping Yang, H. P. Zhang, and M. Marder 4, 2008) We conducted experiments in which steel and silicon or quartz are clamped together. Even experiments where silicon and quartz are clamped on steel, motion is measured down to the nanometer scale

  1. Porous silicon with embedded tritium as a stand-alone prime power source for optoelectronic applications

    DOE Patents [OSTI]

    Tam, Shiu-Wing (Downers Grove, IL)

    1997-01-01T23:59:59.000Z

    An illumination source comprising a porous silicon having a source of electrons on the surface and/or interticies thereof having a total porosity in the range of from about 50 v/o to about 90 v/o. Also disclosed are a tritiated porous silicon and a photovoltaic device and an illumination source of tritiated porous silicon.

  2. Porous silicon with embedded tritium as a stand-alone prime power source for optoelectronic applications

    DOE Patents [OSTI]

    Tam, Shiu-Wing (Downers Grove, IL)

    1998-01-01T23:59:59.000Z

    An illumination source comprising a porous silicon having a source of electrons on the surface and/or interticies thereof having a total porosity in the range of from about 50 v/o to about 90 v/o. Also disclosed are a tritiated porous silicon and a photovoltaic device and an illumination source of tritiated porous silicon.

  3. Transition metal co-precipitation mechanisms in silicon T. Buonassisi a,*, M. Heuer a,1

    E-Print Network [OSTI]

    , Argonne, IL 60439, USA Received 14 March 2007; received in revised form 9 July 2007; accepted 11 July 2007­silicon droplets may form within the silicon matrix, possibly with the potential to getter additional metal atoms is key to achieving high per- formance silicon-based devices, e.g., integrated circuits and solar cells

  4. Quantifying Desorption of Saturated Hydrocarbons from Silicon with Quantum Calculations and Scanning Tunneling Microscopy

    E-Print Network [OSTI]

    Seideman, Tamar

    Quantifying Desorption of Saturated Hydrocarbons from Silicon with Quantum Calculations hydrocarbon on silicon, desorption is observed at bias magnitudes as low as 2.5 V, albeit the desorption with conventional silicon microelectronic tech- nology [17­22]. A detailed understanding of both the electronic

  5. Synthesis of silicon nitride particles in pulsed Rf plasmas

    SciTech Connect (OSTI)

    Buss, R.J.; Babu, S.V.

    1995-11-01T23:59:59.000Z

    Silicon nitride (hydrogenated) particles are synthesized using a pulsed 13.56 Mhz glow discharge. The plasma is modulated with a square-wave on/off cycle of varying period to study the growth kinetics. In situ laser light scattering and ex situ particle analysis are used to study the nucleation and growth. For SiH{sub 4}/Ar and SiH{sub 4}/NH{sub 3} plasmas, an initial very rapid growth phase is followed by slower growth, approaching the rate of thin film deposition on adjacent flat surfaces. The average particle size can be controlled in the 10-100 nm range by adjusting the plasma-on time. The size dispersion of the particles is large and is consistent with a process of continuous nucleation during the plasma-on period. The large polydispersity is also reported for silicon particles from silane and differs from that reported in other laboratories. The silicon nitride particle morphology is compared to that of silicon and silicon carbide particles generated by the same technique. Whereas Si particles appear as rough clusters of smaller subunits, the SiC particles are smooth spheres, and the Si{sub 3}N{sub 4} particles are smooth but non-spherical. Post-plasma oxidation kinetics of the particles are studied with FTIR and are consistent with a hydrolysis mechanism proposed in earlier work with continuous plasmas. Heat treatment of the powder in an ammonia atmosphere results in the elimination of hydrogen, rendering the silicon nitride resistant to atmospheric oxidation.

  6. Synthesis of silicon nitride particles in pulsed radio frequency plasmas

    SciTech Connect (OSTI)

    Buss, R.J. [Sandia National Laboratories, Albuquerque, New Mexico 87185-0367 (United States)] [Sandia National Laboratories, Albuquerque, New Mexico 87185-0367 (United States); Babu, S.V. [Department of Chemical Engineering, Clarkson University, Potsdam, New York 13699-5705 (United States)] [Department of Chemical Engineering, Clarkson University, Potsdam, New York 13699-5705 (United States)

    1996-03-01T23:59:59.000Z

    Silicon nitride (hydrogenated) particles are synthesized using a pulsed 13.56 MHz glow discharge. The plasma is modulated with a square-wave on/off cycle of varying period to study the growth kinetics. {ital In} {ital situ} laser light scattering and {ital ex} {ital situ} particle analysis are used to study the nucleation and growth. For SiH{sub 4}/Ar and SiH{sub 4}/NH{sub 3} plasmas, an initial very rapid growth phase is followed by slower growth, approaching the rate of thin film deposition on adjacent flat surfaces. The average particle size can be controlled in the 10{endash}100 nm range by adjusting the plasma-on time. The size dispersion of the particles is large and is consistent with a process of continuous nucleation during the plasma-on period. The large polydispersity is also reported for silicon particles from silane and differs from that reported in other laboratories. The silicon nitride particle morphology is compared to that of silicon and silicon carbide particles generated by the same technique. Whereas Si particles appear as rough clusters of smaller subunits, the SiC particles are smooth spheres, and the Si{sub 3}N{sub 4} particles are smooth but nonspherical. Postplasma oxidation kinetics of the particles are studied with Fourier transform infrared spectra and are consistent with a hydrolysis mechanism proposed in earlier work with continuous plasmas. Heat treatment of the powder in an ammonia atmosphere results in the elimination of hydrogen, rendering the silicon nitride resistant to atmospheric oxidation. {copyright} {ital 1996 American Vacuum Society}

  7. Porous silicon ring resonator for compact, high sensitivity biosensing applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rodriguez, Gilberto A.; Hu, Shuren; Weiss, Sharon M.

    2015-01-01T23:59:59.000Z

    A ring resonator is patterned on a porous silicon slab waveguide to produce a compact, high quality factor biosensor with a large internal surface area available for enhanced recognition of biological and chemical molecules. The porous nature of the ring resonator allows molecules to directly interact with the guided mode. Quality factors near 10,000 were measured for porous silicon ring resonators with a radius of 25 ?m. A bulk detection sensitivity of 380 nm/RIU was measured upon exposure to salt water solutions. Specific detection of nucleic acid molecules was demonstrated with a surface detection sensitivity of 4 pm/nM.

  8. Transmissive metallic contact for amorphous silicon solar cells

    DOE Patents [OSTI]

    Madan, A.

    1984-11-29T23:59:59.000Z

    A transmissive metallic contact for amorphous silicon semiconductors includes a thin layer of metal, such as aluminum or other low work function metal, coated on the amorphous silicon with an antireflective layer coated on the metal. A transparent substrate, such as glass, is positioned on the light reflective layer. The metallic layer is preferably thin enough to transmit at least 50% of light incident thereon, yet thick enough to conduct electricity. The antireflection layer is preferably a transparent material that has a refractive index in the range of 1.8 to 2.2 and is approximately 550A to 600A thick.

  9. Preventing light-induced degradation in multicrystalline silicon

    SciTech Connect (OSTI)

    Lindroos, J., E-mail: jeanette.lindroos@aalto.fi; Boulfrad, Y.; Yli-Koski, M.; Savin, H. [Department of Micro and Nanosciences, Aalto University, Tietotie 3, 02150 Espoo (Finland)

    2014-04-21T23:59:59.000Z

    Multicrystalline silicon (mc-Si) is currently dominating the silicon solar cell market due to low ingot costs, but its efficiency is limited by transition metals, extended defects, and light-induced degradation (LID). LID is traditionally associated with a boron-oxygen complex, but the origin of the degradation in the top of the commercial mc-Si brick is revealed to be interstitial copper. We demonstrate that both a large negative corona charge and an aluminum oxide thin film with a built-in negative charge decrease the interstitial copper concentration in the bulk, preventing LID in mc-Si.

  10. Simulations of silicon vertex tracker for star experiment at RHIC

    SciTech Connect (OSTI)

    Odyniec, G.; Cebra, D.; Christie, W.; Naudet, C.; Schroeder, L.; Wilson, W. [Lawrence Berkeley Lab., CA (United States); Liko, D. [Institut fur Hochenenergiephysik, Vienna, (Austria); Cramer, J.; Prindle, D.; Trainor, T. [Univ. of Washington, Seattle (United States); Braithwaite, W. [Univ. of Arkansas, Little Rock (United States)

    1991-12-31T23:59:59.000Z

    The first computer simulations to optimize the Silicon Vertex Tracker (SVT) designed for the STAR experiment at RHIC are presented. The physics goals and the expected complexity of the events at RHIC dictate the design of a tracking system for the STAR experiment. The proposed tracking system will consist of a silicon vertex tracker (SVT) to locate the primary interaction and secondary decay vertices and to improve the momentum resolution, and a time projection chamber (TPC), positioned inside a solenoidal magnet, for continuous tracking.

  11. Computational Approach to Photonic Drilling of Silicon Carbide

    SciTech Connect (OSTI)

    Samant, Anoop N [University of Tennessee, Knoxville (UTK); Daniel, Claus [ORNL; Chand, Ronald H [ORNL; Blue, Craig A [ORNL; Dahotre, Narendra B [University of Tennessee, Knoxville (UTK)

    2009-01-01T23:59:59.000Z

    The ability of lasers to carry out drilling processes in silicon carbide ceramic was investigated in this study. A JK 701 pulsed Nd:YAG laser was used for drilling through the entire depth of silicon carbide plates of different thicknesses. The laser parameters were varied in different combinations for a well controlled drilling through the entire thickness of the SiC plates. A drilling model incorporating effects of various physical phenomena such as decomposition, evaporation induced recoil pressure, and surface tension was developed. Such comprehensive model was capable of advance prediction of the energy and time required for drilling a hole through any desired depth of material.

  12. Electron-beam-induced growth of silicon multibranched nanostructures

    SciTech Connect (OSTI)

    Fonseca, Luis F.; Resto, Oscar; Sola, Francisco [Department of Physics, University of Puerto Rico, P. O. Box 23343, San Juan, 00931-3343 (Puerto Rico)

    2005-09-12T23:59:59.000Z

    Although successful nanobranching has been demonstrated for some materials using a variety of methods, the controlled fabrication of multibranched nanostructures of silicon is an important challenge faced by nanotechnologist; because it is crucial for the assembly of electronic interconnects at the atomic scale. Here, we report an electron-beam-induced approach that enables to grow silicon nanobranched structures at specific locations and to control the growth process at the nanoscale level. We further present a detailed in situ imaging of the growth dynamics and explain the results by a qualitative model based on local heating and charge concentration processes.

  13. An investigation of magnesium production in silicon by neutron transmutation 

    E-Print Network [OSTI]

    Davis, Freddie Joe

    1986-01-01T23:59:59.000Z

    irradiation of silicon may result in various combinations of products. These reactions are listed below. 28, 25 4Si (n, a) Ng la. 28 28 14Si (n, p) 1 Al 1b. 14Si (n, Y) 14Si 1c. 29 . 26 1 48 I (n o) 12rig 2a. 29 29 14Si (n, p) 13A1 29 14Si 2b. 29... efficiency is an effort to correct for those a's which do not. register as through'-etched holes. Consider a case very similar to that described in Figure 3, where there is a monoenergetic, isotr opic a source distributed uniformly throughout the silicon...

  14. Glow-discharge synthesis of silicon nitride precursor powders

    SciTech Connect (OSTI)

    Ho, P.; Buss, R.J.; Loehman, R.E. (Sandia National Laboratories, Albuquerque, New Mexico 87185-5800 (US))

    1989-07-01T23:59:59.000Z

    A radio-frequency glow discharge is used for the synthesis of submicron, amorphous, silicon nitride precursor powders from silane and ammonia. Powders are produced with a range of Si/N ratios, including stoichiometric, Si-rich, and N-rich, and contain substantial amounts of hydrogen. The powders appear to be similar to silicon diimide and are easily converted to oxide by water vapor. The powders lose weight and crystallize to a mixture of {alpha} and {beta}-Si{sub 3}N{sub 4} after prolonged heating at 1600{degree}C. Studies of spectrally and spatially resolved optical emission from the plasma are reported.

  15. Identification of a paramagnetic recombination center in silicon/silicon-dioxide interface

    SciTech Connect (OSTI)

    Matsuoka, T.; Sekiguchi, T.; Itoh, K. M. [School of Fundamental Science and Technology, Keio University, Yokohama 223-8522 (Japan); Vlasenko, L. S.; Vlasenko, M. P. [A. F. Ioffe Physico-Technical Institute, 194021 St. Petersburg (Russian Federation)

    2012-04-09T23:59:59.000Z

    A paramagnetic recombination center having an orthorhombic symmetry with g[110] = 2.0095(2), g[001] = 2.0038(2), and g[110] = 2.0029(2) is found at the interface between silicon and native oxide. The center is referred to P{sub m} center and observed by a spin dependent recombination based electron paramagnetic resonance detection that has the sensitivity of {approx}10{sup 11} spins/cm{sup 2}. The employment of an isotopically enriched {sup 28}Si sample with the concentration of {sup 29}Si nuclear spins reduced to 0.017% leads to narrowing of the resonance line. This narrowing is the key for the accurate determination of the angular dependence of the g-factor.

  16. Utility-Scale Silicon Carbide Semiconductor: Monolithic Silicon Carbide Anode Switched Thyristor for Medium Voltage Power Conversion

    SciTech Connect (OSTI)

    None

    2010-09-01T23:59:59.000Z

    ADEPT Project: GeneSiC is developing an advanced silicon-carbide (SiC)-based semiconductor called an anode-switched thyristor. This low-cost, compact SiC semiconductor conducts higher levels of electrical energy with better precision than traditional silicon semiconductors. This efficiency will enable a dramatic reduction in the size, weight, and volume of the power converters and electronic devices it's used in.GeneSiC is developing its SiC-based semiconductor for utility-scale power converters. Traditional silicon semiconductors can't process the high voltages that utility-scale power distribution requires, and they must be stacked in complicated circuits that require bulky insulation and cooling hardware. GeneSiC's semiconductors are well suited for high-power applications like large-scale renewable wind and solar energy installations.

  17. The electroluminescence mechanism of Er³? in different silicon oxide and silicon nitride environments

    SciTech Connect (OSTI)

    Rebohle, L., E-mail: l.rebohle@hzdr.de; Wutzler, R.; Braun, M.; Helm, M.; Skorupa, W. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, 01328 Dresden (Germany); Berencén, Y.; Ramírez, J. M.; Garrido, B. [Dept. Electrònica, Martí i Franquès 1, Universitat de Barcelona, 08028 Barcelona (Spain); Hiller, D. [IMTEK, Faculty of Engineering, Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg (Germany)

    2014-09-28T23:59:59.000Z

    Rare earth doped metal-oxide-semiconductor (MOS) structures are of great interest for Si-based light emission. However, several physical limitations make it difficult to achieve the performance of light emitters based on compound semiconductors. To address this point, in this work the electroluminescence (EL) excitation and quenching mechanism of Er-implanted MOS structures with different designs of the dielectric stack are investigated. The devices usually consist of an injection layer made of SiO? and an Er-implanted layer made of SiO?, Si-rich SiO?, silicon nitride, or Si-rich silicon nitride. All structures implanted with Er show intense EL around 1540 nm with EL power efficiencies in the order of 2 × 10?³ (for SiO?:Er) or 2 × 10??(all other matrices) for lower current densities. The EL is excited by the impact of hot electrons with an excitation cross section in the range of 0.5–1.5 × 10?¹?cm?². Whereas the fraction of potentially excitable Er ions in SiO? can reach values up to 50%, five times lower values were observed for other matrices. The decrease of the EL decay time for devices with Si-rich SiO? or Si nitride compared to SiO? as host matrix implies an increase of the number of defects adding additional non-radiative de-excitation paths for Er³?. For all investigated devices, EL quenching cross sections in the 10?²? cm² range and charge-to-breakdown values in the range of 1–10 C cm?² were measured. For the present design with a SiO? acceleration layer, thickness reduction and the use of different host matrices did not improve the EL power efficiency or the operation lifetime, but strongly lowered the operation voltage needed to achieve intense EL.

  18. Enhanced light emission in photonic crystal nanocavities with Erbium-doped silicon nanocrystals

    SciTech Connect (OSTI)

    Makarova, Maria; Sih, Vanessa; Vuckovic, Jelena [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Warga, Joe; Li Rui; Dal Negro, Luca [Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215 (United States)

    2008-04-21T23:59:59.000Z

    Photonic crystal nanocavities are fabricated in silicon membranes covered by thermally annealed silicon-rich nitride films with Erbium-doped silicon nanocrystals. Silicon nitride films were deposited by sputtering on top of silicon on insulator wafers. The nanocavities were carefully designed in order to enhance emission from the nanocrystal sensitized Erbium at the 1540 nm wavelength. Experimentally measured quality factors of {approx}6000 were found to be consistent theoretical predictions. The Purcell factor of 1.4 was estimated from the observed 20-fold enhancement of Erbium luminescence.

  19. Method of making selective crystalline silicon regions containing entrapped hydrogen by laser treatment

    DOE Patents [OSTI]

    Pankove, Jacques I. (Princeton, NJ); Wu, Chung P. (Trenton, NJ)

    1982-01-01T23:59:59.000Z

    A novel hydrogen rich single crystalline silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystalline silicon without out-gasing the hydrogen. The new material can be used to fabricate semi-conductor devices such as single crystalline silicon solar cells with surface window regions having a greater band gap energy than that of single crystalline silicon without hydrogen.

  20. 4765Federal Register / Vol. 77, No. 20 / Tuesday, January 31, 2012 / Notices 1 See Crystalline Silicon Photovoltaic Cells,

    E-Print Network [OSTI]

    Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's Republic of China

  1. SILICON CARBIDE CERAMICS FOR COMPACT HEAT EXCHANGERS

    SciTech Connect (OSTI)

    DR. DENNIS NAGLE; DR. DAJIE ZHANG

    2009-03-26T23:59:59.000Z

    Silicon carbide (SiC) materials are prime candidates for high temperature heat exchangers for next generation nuclear reactors due to their refractory nature and high thermal conductivity at elevated temperatures. This research has focused on demonstrating the potential of liquid silicon infiltration (LSI) for making SiC to achieve this goal. The major advantage of this method over other ceramic processing techniques is the enhanced capability of making high dense, high purity SiC materials in complex net shapes. For successful formation of net shape SiC using LSI techniques, the carbon preform reactivity and pore structure must be controlled to allow the complete infiltration of the porous carbon structure which allows complete conversion of the carbon to SiC. We have established a procedure for achieving desirable carbon properties by using carbon precursors consisting of two readily available high purity organic materials, crystalline cellulose and phenolic resin. Phenolic resin yields a glassy carbon with low chemical reactivity and porosity while the cellulose carbon is highly reactive and porous. By adjusting the ratio of these two materials in the precursor mixtures, the properties of the carbons produced can be controlled. We have identified the most favorable carbon precursor composition to be a cellulose resin mass ratio of 6:4 for LSI formation of SiC. The optimum reaction conditions are a temperature of 1800 C, a pressure of 0.5 Torr of argon, and a time of 120 minutes. The fully dense net shape SiC material produced has a density of 2.96 g cm{sup -3} (about 92% of pure SiC) and a SiC volume fraction of over 0.82. Kinetics of the LSI SiC formation process was studied by optical microscopy and quantitative digital image analysis. This study identified six reaction stages and provided important understanding of the process. Although the thermal conductivity of pure SiC at elevated temperatures is very high, thermal conductivities of most commercial SiC materials are much lower due to phonon scattering by impurities (e.g., sintering aids located at the grain boundaries of these materials). The thermal conductivity of our SiC was determined using the laser flash method and it is 214 W/mK at 373 K and 64 W/mK at 1273 K. These values are very close to those of pure SiC and are much higher than those of SiC materials made by industrial processes. This SiC made by our LSI process meets the thermal properties required for use in high temperature heat exchanger. Cellulose and phenolic resin carbons lack the well-defined atomic structures associated with common carbon allotropes. Atomic-scale structure was studied using high resolution transmission electron microscopy (HRTEM), nitrogen gas adsorption and helium gas pycnometry. These studies revealed that cellulose carbon exhibits a very high degree of atomic disorder and angstrom-scale porosity. It has a density of only 93% of that of pure graphite, with primarily sp2 bonding character and a low concentration of graphene clusters. Phenolic resin carbon shows more structural order and substantially less angstrom-scale porosity. Its density is 98% of that of pure graphite, and Fourier transform analysis of its TEM micrographs has revealed high concentrations of sp3 diamond and sp2 graphene nano-clusters. This is the first time that diamond nano-clusters have been observed in carbons produced from phenolic resin. AC and DC electrical measurements were made to follow the thermal conversion of microcrystalline cellulose to carbon. This study identifies five regions of electrical conductivity that can be directly correlated to the chemical decomposition and microstructural evolution during carbonization. In Region I, a decrease in overall AC conductivity occurs due to the initial loss of the polar groups from cellulose molecules. In Region II, the AC conductivity starts to increase with heat treatment temperature due to the formation and growth of conducting carbon clusters. In Region III, a further increase of AC conductivity with increasing heat treatment temperature is obs

  2. Revitalize the US silicon/ferrosilicon industry through energy-efficient technology. Part 1, Final report

    SciTech Connect (OSTI)

    Larson, H.R.; Welborn, J.H.

    1995-02-01T23:59:59.000Z

    It is concluded that silicon metal and ferrosilicon can be very effectively produced in a DC submerged arc furnace. Specific energy consumption factors measured were favorable to the technology. Significant energy savings over conventional AC practice are likely. Hollow electrode feeding of the furnace does not appear feasible. Electrode consumption was 0.144 lbs/lb so silicon while making metal, much of which occurred above the burden pile. Silicon loss to fume averaged 19.5% of the silicon charge. In this furnace, 50% FeSi was more difficult to produce than silicon metal, and the furnace could not be run with full burden; it was operated successfully about 3/4 full. In the silicon metal portion, the furnace was operated in a fully submerged mode for several 3-day test campaigns. The industry must seriously consider the identified benefits of DC plasma arc technology for retrofit or new added silicon capacity.

  3. Carbothermic reduction and prereduced charge for producing aluminum-silicon alloys

    DOE Patents [OSTI]

    Stevenson, David T. (Washington Township, Armstrong County, PA); Troup, Robert L. (Murrysville, PA)

    1985-01-01T23:59:59.000Z

    Disclosed is a method for the carbothermic reduction of aluminum oxide to form an aluminum alloy including producing silicon carbide by heating a first mix of carbon and silicon oxide in a combustion reactor to an elevated temperature sufficient to produce silicon carbide at an accelerated rate, the heating being provided by an in situ combustion with oxygen gas, and then admixing the silicon carbide with carbon and aluminum oxide to form a second mix and heating the second mix in a second reactor to an elevated metal-forming temperature sufficient to produce aluminum-silicon alloy. The prereduction step includes holding aluminum oxide substantially absent from the combustion reactor. The metal-forming step includes feeding silicon oxide in a preferred ratio with silicon carbide.

  4. Forming high efficiency silicon solar cells using density-graded anti-reflection surfaces

    DOE Patents [OSTI]

    Yuan, Hao-Chih; Branz, Howard M.; Page, Matthew R.

    2014-09-09T23:59:59.000Z

    A method (50) is provided for processing a graded-density AR silicon surface (14) to provide effective surface passivation. The method (50) includes positioning a substrate or wafer (12) with a silicon surface (14) in a reaction or processing chamber (42). The silicon surface (14) has been processed (52) to be an AR surface with a density gradient or region of black silicon. The method (50) continues with heating (54) the chamber (42) to a high temperature for both doping and surface passivation. The method (50) includes forming (58), with a dopant-containing precursor in contact with the silicon surface (14) of the substrate (12), an emitter junction (16) proximate to the silicon surface (14) by doping the substrate (12). The method (50) further includes, while the chamber is maintained at the high or raised temperature, forming (62) a passivation layer (19) on the graded-density silicon anti-reflection surface (14).

  5. Method for rapid, controllable growth and thickness, of epitaxial silicon films

    DOE Patents [OSTI]

    Wang, Qi (Littleton, CO); Stradins, Paul (Golden, CO); Teplin, Charles (Boulder, CO); Branz, Howard M. (Boulder, CO)

    2009-10-13T23:59:59.000Z

    A method of producing epitaxial silicon films on a c-Si wafer substrate using hot wire chemical vapor deposition by controlling the rate of silicon deposition in a temperature range that spans the transition from a monohydride to a hydrogen free silicon surface in a vacuum, to obtain phase-pure epitaxial silicon film of increased thickness is disclosed. The method includes placing a c-Si substrate in a HWCVD reactor chamber. The method also includes supplying a gas containing silicon at a sufficient rate into the reaction chamber to interact with the substrate to deposit a layer containing silicon thereon at a predefined growth rate to obtain phase-pure epitaxial silicon film of increased thickness.

  6. Carbothermic reduction and prereduced charge for producing aluminum-silicon alloys

    DOE Patents [OSTI]

    Stevenson, D.T.; Troup, R.L.

    1985-01-01T23:59:59.000Z

    Disclosed is a method for the carbothermic reduction of aluminum oxide to form an aluminum alloy including producing silicon carbide by heating a first mix of carbon and silicon oxide in a combustion reactor to an elevated temperature sufficient to produce silicon carbide at an accelerated rate, the heating being provided by an in situ combustion with oxygen gas, and then admixing the silicon carbide with carbon and aluminum oxide to form a second mix and heating the second mix in a second reactor to an elevated metal-forming temperature sufficient to produce aluminum-silicon alloy. The prereduction step includes holding aluminum oxide substantially absent from the combustion reactor. The metal-forming step includes feeding silicon oxide in a preferred ratio with silicon carbide. 1 fig.

  7. Infrared modulation spectroscopy of interfaces in amorphous silicon solar cells

    E-Print Network [OSTI]

    Schiff, Eric A.

    Infrared modulation spectroscopy of interfaces in amorphous silicon solar cells Kai Zhu a,1 , E Solar, Toano, VA 23168, USA Abstract We report infrared depletion modulation spectra for near an infrared modulation spectroscopy technique that probes the optical spectra of dopants and defects

  8. Photovoltaic Measurements in Single-Nanowire Silicon Solar Cells

    E-Print Network [OSTI]

    Atwater, Harry

    Photovoltaic Measurements in Single-Nanowire Silicon Solar Cells Michael D. Kelzenberg, Daniel B-voltage measurements were made under simulated Air Mass 1.5 global illumination. Photovoltaic spectral response work by our group has shown that macroscopic Si wire arrays (>1 cm2 in area) suitable for photovoltaic

  9. Bitcoin and The Age of Bespoke Silicon Michael Bedford Taylor

    E-Print Network [OSTI]

    Wang, Deli

    Bitcoin and The Age of Bespoke Silicon Michael Bedford Taylor University of California, San Diego ABSTRACT Recently, the Bitcoin cryptocurrency has been an interna- tional sensation. This paper tells the story of Bitcoin hard- ware: how a group of early-adopters self-organized and fi- nanced the creation

  10. Quantum Adsorption of an Electron to Porous Silicon

    E-Print Network [OSTI]

    Yanting Zhang; Dennis P. Clougherty

    2012-04-26T23:59:59.000Z

    Using the theory of Zhang and Clougherty [Phys. Rev. Lett. 108, 173202 (2012)], we provide detailed supporting information concerning the numerical calculations of the probability ${\\it s}(E)$ for a low-energy electron with incident energy E adsorbing to the surface of nanoporous silicon.

  11. Thermal Transport Measurement of Silicon-Germanium Nanowires

    E-Print Network [OSTI]

    Gwak, Yunki

    2010-10-12T23:59:59.000Z

    to the enhanced boundary scattering. Among the nanoscale semiconductor materials, Silicon-Germanium(SiGe) alloy nanowire is a promising candidate for thermoelectric materials The thermal conductivities of SiGe core-shell nanowires with core diameters of 96nm, 129...

  12. Intermediate Band Properties of Femtosecond-Laser Hyperdoped Silicon

    E-Print Network [OSTI]

    Mazur, Eric

    . The high concentration of dopants forms an intermediate band (IB), instead of discrete energy levels exhibits broad-band light absorption to wavelengths deep below the corresponding bandgap energy of silicon) using secondary ion mass spectrometry. By varying the pressure of SF6, we find that the surface adsorbed

  13. Imaging crystal orientations in multicrystalline silicon wafers via photoluminescence

    E-Print Network [OSTI]

    ), Canberra, ACT 0200, Australia 2 State Key Laboratory of PV Science & Technology, Trina Solar Energy Limited in multicrystalline or so-called "cast monocrystalline" wafers. VC 2012 American Institute of Physics. [http it is convenient to texture monocrystalline silicon wafers with a (100) surface orientation through alkaline etch

  14. Fast Exploration of Silicon Photonic Network Designs for Exascale Systems

    E-Print Network [OSTI]

    Bergman, Keren

    layer model (Photonic Interconnect Link Optimisation Tool - PILOT) that analyses the impact of each Si applications and performance-energy benefits of silicon photonic technology in future computing systems call for a set of modeling and simulation tools to realize the development and design exploration of Si

  15. Nuclear breeder reactor fuel element with silicon carbide getter

    DOE Patents [OSTI]

    Christiansen, David W. (Kennewick, WA); Karnesky, Richard A. (Richland, WA)

    1987-01-01T23:59:59.000Z

    An improved cesium getter 28 is provided in a breeder reactor fuel element or pin in the form of an extended surface area, low density element formed in one embodiment as a helically wound foil 30 located with silicon carbide, and located at the upper end of the fertile material upper blanket 20.

  16. MAPPING THE WAVELET TRANSFORM ONTO SILICON: THE DYNAMIC TRANSLINEAR APPROACH

    E-Print Network [OSTI]

    Serdijn, Wouter A.

    MAPPING THE WAVELET TRANSFORM ONTO SILICON: THE DYNAMIC TRANSLINEAR APPROACH Sandro A. P. Haddad.haddad,w.a.serdijn}@its.tudelft.nl ABSTRACT In this paper, an analog implementation of the Wavelet Transform (WT) is presented. The circuit widely used for frequency analysis among wavelet functions. From simulations, it is demonstrated that we

  17. EELE408 Photovoltaics Lecture 16: Silicon Solar Cell Fabrication Techniques

    E-Print Network [OSTI]

    Kaiser, Todd J.

    ;3 Screen Printed Solar Cells · Firing the contacts ­ The furnace heats the cell to a high temperature by Efficiency 22 Rear Panel before Lamination 23 Buried Contact Solar Cells · High Efficiency · Laser groved1 EELE408 Photovoltaics Lecture 16: Silicon Solar Cell Fabrication Techniques Dr. Todd J. Kaiser

  18. NREL Success Stories - Quest for Inexpensive Silicon Solar Cells

    ScienceCinema (OSTI)

    Branz, Howard

    2013-05-29T23:59:59.000Z

    Scientists at the National Renewable Energy Laboratory (NREL) share their story about a successful partnership with Oak Ridge National Laboratory and the Ampulse Corporation and how support from the US Department of Energy's Technology Commercialization & Deployment Fund has helped it and their silicon solar cell research thrive.

  19. Adhesion of benzocyclobutene-passivated silicon in epoxy layered structures

    E-Print Network [OSTI]

    Hutchinson, John W.

    different epoxy underfill resins. The effects of environmental variables were studied with temperature. The underfill is typically an epoxy resin with thermal expansion and elas- tic properties tailoredAdhesion of benzocyclobutene-passivated silicon in epoxy layered structures Robert J. Hohlfelder

  20. Processes for producing low cost, high efficiency silicon solar cells

    DOE Patents [OSTI]

    Rohatgi, Ajeet (Marietta, GA); Chen, Zhizhang (Duluth, GA); Doshi, Parag (Atlanta, GA)

    1996-01-01T23:59:59.000Z

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. Silicon solar cell efficiencies of 16.9% have been achieved. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x.

  1. Hybrid Silicon Nanocone-Polymer Solar Cells Sangmoo Jeong,

    E-Print Network [OSTI]

    Cui, Yi

    ABSTRACT: Recently, hybrid Si/organic solar cells have been studied for low-cost Si photovoltaic devices solar cell. Additionally, about 26% of the module cost comes from the fabrication processes of a SiHybrid Silicon Nanocone-Polymer Solar Cells Sangmoo Jeong, Erik C. Garnett, Shuang Wang, Zongfu Yu

  2. The structure of electronic states in amorphous silicon

    E-Print Network [OSTI]

    Drabold, David

    the structure and dynamics of electron states in amorphous Si. The nature of the states near the gap at zeroThe structure of electronic states in amorphous silicon David A. Drabold,* Uwe Stephan, Jianjun for amorphous Si, which are of particular interest for efficient ab initio calculation of electronic properties

  3. ELECTROMECHANICAL RELIABILITY TESTING OF THREE-AXIAL SILICON FORCE SENSORS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , available automatic test equipment for integrated circuits (ICs) can be leveraged [2]. The reliabilityELECTROMECHANICAL RELIABILITY TESTING OF THREE-AXIAL SILICON FORCE SENSORS S. Spinner1,2, J the measurement results. 1. INTRODUCTION The reliability of microelectromechanical systems (MEMS) receives growing

  4. Lithium Insertion In Silicon Nanowires: An ab Initio Study

    E-Print Network [OSTI]

    Cui, Yi

    Lithium Insertion In Silicon Nanowires: An ab Initio Study Qianfan Zhang, Wenxing Zhang, Wenhui Wan, and § School of Physics, Peking University, Beijing 100871, China ABSTRACT The ultrahigh specific lithium ion opportunities for energy storage. However, a systematic theoretical study on lithium insertion in SiNWs remains

  5. Evaluation and silicon nitride internal combustion engine components

    SciTech Connect (OSTI)

    Voldrich, W. (Allied-Signal Aerospace Co., Torrance, CA (United States). Garrett Ceramic Components Div.)

    1992-04-01T23:59:59.000Z

    The feasibility of silicon nitride (Si[sub 3]N[sub 4]) use in internal combustion engines was studied by testing three different components for wear resistance and lower reciprocating mass. The information obtained from these preliminary spin rig and engine tests indicates several design changes are necessary to survive high-stress engine applications. The three silicon nitride components tested were valve spring retainers, tappet rollers, and fuel pump push rod ends. Garrett Ceramic Components' gas-pressure sinterable Si[sub 3]N[sub 4] (GS-44) was used to fabricate the above components. Components were final machined from densified blanks that had been green formed by isostatic pressing of GS-44 granules. Spin rig testing of the valve spring retainers indicated that these Si[sub 3]N[sub 4] components could survive at high RPM levels (9,500) when teamed with silicon nitride valves and lower spring tension than standard titanium components. Silicon nitride tappet rollers showed no wear on roller O.D. or I.D. surfaces, steel axles and lifters; however, due to the uncrowned design of these particular rollers the cam lobes indicated wear after spin rig testing. Fuel pump push rod ends were successful at reducing wear on the cam lobe and rod end when tested on spin rigs and in real-world race applications.

  6. Lighting the Dark Silicon by Exploiting Heterogeneity on Future Processors

    E-Print Network [OSTI]

    Koppelman, David M.

    ][17], leading to an ever increasing power density on modern processors. On the other hand, the max- imumLighting the Dark Silicon by Exploiting Heterogeneity on Future Processors Ying Zhang Lu Peng Xin processor power consumption should be always enclosed within a reasonable envelope despite the manufacturing

  7. Status of the CDF Run II Silicon Detector

    SciTech Connect (OSTI)

    S. Nahn

    2003-04-10T23:59:59.000Z

    A snapshot of the status of the CDF Run II Silicon Detector is presented, with a summary of commissioning issues since the start of Run II, current performance of the detector, and the use of the data in both the trigger and offline reconstruction.

  8. Micro-miniature gas chromatograph column disposed in silicon wafers

    DOE Patents [OSTI]

    Yu, Conrad M. (Antioch, CA)

    2000-01-01T23:59:59.000Z

    A micro-miniature gas chromatograph column is fabricated by forming matching halves of a circular cross-section spiral microcapillary in two silicon wafers and then bonding the two wafers together using visual or physical alignment methods. Heating wires are deposited on the outside surfaces of each wafer in a spiral or serpentine pattern large enough in area to cover the whole microcapillary area inside the joined wafers. The visual alignment method includes etching through an alignment window in one wafer and a precision-matching alignment target in the other wafer. The two wafers are then bonded together using the window and target. The physical alignment methods include etching through vertical alignment holes in both wafers and then using pins or posts through corresponding vertical alignment holes to force precision alignment during bonding. The pins or posts may be withdrawn after curing of the bond. Once the wafers are bonded together, a solid phase of very pure silicone is injected in a solution of very pure chloroform into one end of the microcapillary. The chloroform lowers the viscosity of the silicone enough that a high pressure hypodermic needle with a thumbscrew plunger can force the solution into the whole length of the spiral microcapillary. The chloroform is then evaporated out slowly to leave the silicone behind in a deposit.

  9. Design and Performance of a Silicon Test Counter for HERMES

    E-Print Network [OSTI]

    -detector array has been designed and constructed to investigate the prospects for large-angle trackingDesign and Performance of a Silicon Test Counter for HERMES J. Visser a , M.G. van Beuzekom a , J. For the read-out, a local front-end with 64-channel Analog Pipeline Chips (APC) has been employed. The large

  10. DNA Oligonucleotide Synthesis in Mesoporous Silicon for Biosensing Applications

    E-Print Network [OSTI]

    Weiss, Sharon

    DNA Oligonucleotide Synthesis in Mesoporous Silicon for Biosensing Applications Jenifer L. Lawrie for improving the sensitivity of label-free optical biosensors based on in-situ synthesis of DNA probes within was utilized as the sensor structure. Synthesis of DNA probe, as well as sensing of target DNA, was verified

  11. A DNA Computing-Inspired Silicon Chip for Pattern Recognition

    E-Print Network [OSTI]

    examples [1]. We have evaluated the feasibility of this probabilistic library model (PLM) by testing its. Software simulations of the PLM model using a version of the molecular algorithm described in [1] achieved vectors), we implemented the PLM model for pattern recognition in a silicon memory chip utilizing

  12. Temperature dependence of ambipolar diffusion in silicon-on-insulator

    E-Print Network [OSTI]

    Zhao, Hui

    2008-03-01T23:59:59.000Z

    the bandgap, with 200-fs temporal and 3-micrometer spatial resolution. From sample temperatures of 250 K to 400 K, the ambipolar diffusivity decreases, and is similar to reported values of bulk silicon. Cooling the sample from 250 K to 90 K, a decrease...

  13. LOW-POWER SILICON NEURONS, AXONS, AND SYNAPSES

    E-Print Network [OSTI]

    Lazzaro, John

    LOW-POWER SILICON NEURONS, AXONS, AND SYNAPSES John Lazzaro and John Wawrzynek Computer Science neuron circuit from (Mead, 1989), that uses a high-gain voltage amplifier with a sigmoidal nonlinearity of Cf and C. Vp VoIi C Cf Vc 5 V 5 nA 5 ms Ii Vo Figure 1. Spiking neuron circuit and function

  14. Amorphous silicon thin film transistor as nonvolatile device. 

    E-Print Network [OSTI]

    Nominanda, Helinda

    2008-10-10T23:59:59.000Z

    n-channel and p-channel amorphous-silicon thin-film transistors (a-Si:H TFTs) with copper electrodes prepared by a novel plasma etching process have been fabricated and studied. Their characteristics are similar to those of TFTs with molybdenum...

  15. Efficient Wavelength Tuning Techniques for Integrated Silicon Photonics 

    E-Print Network [OSTI]

    Titriku, Alex K

    2014-12-04T23:59:59.000Z

    based on microring resonator devices offer a low-area and energy-efficient approach to realize both high-speed modulation and WDM with high-speed transmit-side ring modulators and high-Q receive-side drop filters. At the heart of silicon photonics...

  16. Heteroepitaxial Self Assembling Noble Metal Nanoparticles in Monocrystalline Silicon

    E-Print Network [OSTI]

    Martin, Michael S.

    2013-08-13T23:59:59.000Z

    , such as measuring X-rays emitted by U-235, by selecting materials that have high absorption related to electron energy level transitions at selected energies. For instance, it might be possible to make depleted uranium nanoparticles in silicon, which could have...

  17. Lateral Buckling Mechanics in Silicon Nanowires on Elastomeric Substrates

    E-Print Network [OSTI]

    Rogers, John A.

    Lateral Buckling Mechanics in Silicon Nanowires on Elastomeric Substrates Seung Yoon Ryu, Jianliang-liquid-solid (VLS) growth and transferred onto PDMS substrates. The behavior involves lateral buckling Manuscript Received July 17, 2009 ABSTRACT We describe experimental and theoretical studies of the buckling

  18. Tribological interaction between polytetrafluoroethylene and silicon oxide surfaces

    SciTech Connect (OSTI)

    Uçar, A.; Çopuro?lu, M.; Suzer, S., E-mail: suzer@fen.bilkent.edu.tr [Department of Chemistry, Bilkent University, 06800 Ankara (Turkey); Baykara, M. Z. [Department of Mechanical Engineering, Bilkent University, 06800 Ankara (Turkey); Ar?kan, O. [Department of Electrical and Electronics Engineering, Bilkent University, 06800 Ankara (Turkey)

    2014-10-28T23:59:59.000Z

    We investigated the tribological interaction between polytetrafluoroethylene (PTFE) and silicon oxide surfaces. A simple rig was designed to bring about a friction between the surfaces via sliding a piece of PTFE on a thermally oxidized silicon wafer specimen. A very mild inclination (?0.5°) along the sliding motion was also employed in order to monitor the tribological interaction in a gradual manner as a function of increasing contact force. Additionally, some patterns were sketched on the silicon oxide surface using the PTFE tip to investigate changes produced in the hydrophobicity of the surface, where the approximate water contact angle was 45° before the transfer. The nature of the transferred materials was characterized by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). XPS results revealed that PTFE was faithfully transferred onto the silicon oxide surface upon even at the slightest contact and SEM images demonstrated that stable morphological changes could be imparted onto the surface. The minimum apparent contact pressure to realize the PTFE transfer is estimated as 5 kPa, much lower than reported previously. Stability of the patterns imparted towards many chemical washing processes lead us to postulate that the interaction is most likely to be chemical. Contact angle measurements, which were carried out to characterize and monitor the hydrophobicity of the silicon oxide surface, showed that upon PTFE transfer the hydrophobicity of the SiO{sub 2} surface could be significantly enhanced, which might also depend upon the pattern sketched onto the surface. Contact angle values above 100° were obtained.

  19. Amorphous silicon enhanced metal-insulator-semiconductor contacts for silicon solar cells

    SciTech Connect (OSTI)

    Bullock, J., E-mail: james.bullock@anu.edu.au; Cuevas, A.; Yan, D. [Research School of Engineering, The Australian National University, Canberra, ACT 0200 (Australia); Demaurex, B.; Hessler-Wyser, A.; De Wolf, S. [Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Micro Engineering (IMT), Photovoltaics and Thin Film Electronic Laboratory PVLab, Maladière 71b, CH-200 Neuchâtel (Switzerland)

    2014-10-28T23:59:59.000Z

    Carrier recombination at the metal-semiconductor contacts has become a significant obstacle to the further advancement of high-efficiency diffused-junction silicon solar cells. This paper provides the proof-of-concept of a procedure to reduce contact recombination by means of enhanced metal-insulator-semiconductor (MIS) structures. Lightly diffused n{sup +} and p{sup +} surfaces are passivated with SiO{sub 2}/a-Si:H and Al{sub 2}O{sub 3}/a-Si:H stacks, respectively, before the MIS contacts are formed by a thermally activated alloying process between the a-Si:H layer and an overlying aluminum film. Transmission/scanning transmission electron microscopy (TEM/STEM) and energy dispersive x-ray spectroscopy are used to ascertain the nature of the alloy. Idealized solar cell simulations reveal that MIS(n{sup +}) contacts, with SiO{sub 2} thicknesses of ?1.55?nm, achieve the best carrier-selectivity producing a contact resistivity ?{sub c} of ?3 m? cm{sup 2} and a recombination current density J{sub 0c} of ?40 fA/cm{sup 2}. These characteristics are shown to be stable at temperatures up to 350?°C. The MIS(p{sup +}) contacts fail to achieve equivalent results both in terms of thermal stability and contact characteristics but may still offer advantages over directly metallized contacts in terms of manufacturing simplicity.

  20. STATUS OF HIGH FLUX ISOTOPE REACTOR IRRADIATION OF SILICON CARBIDE/SILICON CARBIDE JOINTS

    SciTech Connect (OSTI)

    Katoh, Yutai [ORNL; Koyanagi, Takaaki [ORNL; Kiggans, Jim [ORNL; Cetiner, Nesrin [ORNL; McDuffee, Joel [ORNL

    2014-09-01T23:59:59.000Z

    Development of silicon carbide (SiC) joints that retain adequate structural and functional properties in the anticipated service conditions is a critical milestone toward establishment of advanced SiC composite technology for the accident-tolerant light water reactor (LWR) fuels and core structures. Neutron irradiation is among the most critical factors that define the harsh service condition of LWR fuel during the normal operation. The overarching goal of the present joining and irradiation studies is to establish technologies for joining SiC-based materials for use as the LWR fuel cladding. The purpose of this work is to fabricate SiC joint specimens, characterize those joints in an unirradiated condition, and prepare rabbit capsules for neutron irradiation study on the fabricated specimens in the High Flux Isotope Reactor (HFIR). Torsional shear test specimens of chemically vapor-deposited SiC were prepared by seven different joining methods either at Oak Ridge National Laboratory or by industrial partners. The joint test specimens were characterized for shear strength and microstructures in an unirradiated condition. Rabbit irradiation capsules were designed and fabricated for neutron irradiation of these joint specimens at an LWR-relevant temperature. These rabbit capsules, already started irradiation in HFIR, are scheduled to complete irradiation to an LWR-relevant dose level in early 2015.