National Library of Energy BETA

Sample records for guiyang polysource silicon

  1. Guiyang Polysource Silicon Co Ltd Formerly Jiayuan Sunshine Guiyang...

    Open Energy Info (EERE)

    Guiyang Polysource Silicon Co Ltd Formerly Jiayuan Sunshine Guiyang Hi New Sunshine Technology Jump to: navigation, search Name: Guiyang Polysource Silicon Co Ltd (Formerly Jiayuan...

  2. Silicone metalization

    DOE Patents [OSTI]

    Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  3. Silicone metalization

    DOE Patents [OSTI]

    Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

    2006-12-05

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  4. Guizhou New Material Dev Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Guizhou New Material Dev Co Ltd Jump to: navigation, search Name: Guizhou New Material Dev. Co Ltd Place: Guiyang, China Zip: 550018 Sector: Solar Product: Chinese silicon carbide...

  5. Buried oxide layer in silicon

    DOE Patents [OSTI]

    Sadana, Devendra Kumar (Pleasantville, NY); Holland, Orin Wayne (Lenoir, TN)

    2001-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  6. Purified silicon production system

    DOE Patents [OSTI]

    Wang, Tihu; Ciszek, Theodore F.

    2004-03-30

    Method and apparatus for producing purified bulk silicon from highly impure metallurgical-grade silicon source material at atmospheric pressure. Method involves: (1) initially reacting iodine and metallurgical-grade silicon to create silicon tetraiodide and impurity iodide byproducts in a cold-wall reactor chamber; (2) isolating silicon tetraiodide from the impurity iodide byproducts and purifying it by distillation in a distillation chamber; and (3) transferring the purified silicon tetraiodide back to the cold-wall reactor chamber, reacting it with additional iodine and metallurgical-grade silicon to produce silicon diiodide and depositing the silicon diiodide onto a substrate within the cold-wall reactor chamber. The two chambers are at atmospheric pressure and the system is open to allow the introduction of additional source material and to remove and replace finished substrates.

  7. Process for producing silicon

    DOE Patents [OSTI]

    Olson, Jerry M. (Lakewood, CO); Carleton, Karen L. (Boulder, CO)

    1984-01-01

    A process for producing silicon includes forming an alloy of copper and silicon and positioning the alloy in a dried, molten salt electrolyte to form a solid anode structure therein. An electrically conductive cathode is placed in the electrolyte for plating silicon thereon. The electrolyte is then purified to remove dissolved oxides. Finally, an electrical potential is applied between the anode and cathode in an amount sufficient to form substantially pure silicon on the cathode in the form of substantially dense, coherent deposits.

  8. Process for producing silicon

    DOE Patents [OSTI]

    Olson, J.M.; Carleton, K.L.

    1982-06-10

    A process of producing silicon includes forming an alloy of copper and silicon and positioning the alloy in a dried, molten salt electrolyte to form a solid anode structure therein. An electrically conductive cathode is placed in the electrolyte for plating silicon thereon. The electrolyte is then purified to remove dissolved oxides. Finally, an electrical potential is applied between the anode and cathode in an amount sufficient to form substantially pure silicon on the cathode in the form of substantially dense, coherent deposits.

  9. Electrodeposition of molten silicon

    DOE Patents [OSTI]

    De Mattei, Robert C. (Sunnyvale, CA); Elwell, Dennis (Palo Alto, CA); Feigelson, Robert S. (Saratoga, CA)

    1981-01-01

    Silicon dioxide is dissolved in a molten electrolytic bath, preferably comprising barium oxide and barium fluoride. A direct current is passed between an anode and a cathode in the bath to reduce the dissolved silicon dioxide to non-alloyed silicon in molten form, which is removed from the bath.

  10. Glass-silicon column

    DOE Patents [OSTI]

    Yu, Conrad M.

    2003-12-30

    A glass-silicon column that can operate in temperature variations between room temperature and about 450.degree. C. The glass-silicon column includes large area glass, such as a thin Corning 7740 boron-silicate glass bonded to a silicon wafer, with an electrode embedded in or mounted on glass of the column, and with a self alignment silicon post/glass hole structure. The glass/silicon components are bonded, for example be anodic bonding. In one embodiment, the column includes two outer layers of silicon each bonded to an inner layer of glass, with an electrode imbedded between the layers of glass, and with at least one self alignment hole and post arrangement. The electrode functions as a column heater, and one glass/silicon component is provided with a number of flow channels adjacent the bonded surfaces.

  11. Silicon micro-mold

    DOE Patents [OSTI]

    Morales, Alfredo M. (Livermore, CA)

    2006-10-24

    The present invention describes a method for rapidly fabricating a robust 3-dimensional silicon-mold for use in preparing complex metal micro-components. The process begins by depositing a conductive metal layer onto one surface of a silicon wafer. A thin photoresist and a standard lithographic mask are then used to transfer a trace image pattern onto the opposite surface of the wafer by exposing and developing the resist. The exposed portion of the silicon substrate is anisotropically etched through the wafer thickness down to conductive metal layer to provide an etched pattern consisting of a series of rectilinear channels and recesses in the silicon which serve as the silicon micro-mold. Microcomponents are prepared with this mold by first filling the mold channels and recesses with a metal deposit, typically by electroplating, and then removing the silicon micro-mold by chemical etching.

  12. Thermally Oxidized Silicon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Anneli Munkholm (Lumileds Lighting) and Sean Brennan (SSRL) Illustration of the silicon positions near the Si-SiO2 interface for a 4° miscut projected onto the ( ) plane. The silicon atoms in the substrate are blue and those in the oxide are red. The small black spots represent the translated silicon positions in the absence of static disorder. The silicon atoms in the oxide have been randomly assigned a magnitude and direction based on the static disorder value at that position in the

  13. Micromachined silicon electrostatic chuck

    DOE Patents [OSTI]

    Anderson, Robert A. (Albuquerque, NM); Seager, Carleton H. (Albuquerque, NM)

    1996-01-01

    An electrostatic chuck is faced with a patterned silicon plate 11, created y micromachining a silicon wafer, which is attached to a metallic base plate 13. Direct electrical contact between the chuck face 15 (patterned silicon plate's surface) and the silicon wafer 17 it is intended to hold is prevented by a pattern of flat-topped silicon dioxide islands 19 that protrude less than 5 micrometers from the otherwise flat surface of the chuck face 15. The islands 19 may be formed in any shape. Islands may be about 10 micrometers in diameter or width and spaced about 100 micrometers apart. One or more concentric rings formed around the periphery of the area between the chuck face 15 and wafer 17 contain a low-pressure helium thermal-contact gas used to assist heat removal during plasma etching of a silicon wafer held by the chuck. The islands 19 are tall enough and close enough together to prevent silicon-to-silicon electrical contact in the space between the islands, and the islands occupy only a small fraction of the total area of the chuck face 15, typically 0.5 to 5 percent. The pattern of the islands 19, together with at least one hole 12 bored through the silicon veneer into the base plate, will provide sufficient gas-flow space to allow the distribution of the helium thermal-contact gas.

  14. Micromachined silicon electrostatic chuck

    DOE Patents [OSTI]

    Anderson, R.A.; Seager, C.H.

    1996-12-10

    An electrostatic chuck is faced with a patterned silicon plate, created by micromachining a silicon wafer, which is attached to a metallic base plate. Direct electrical contact between the chuck face (patterned silicon plate`s surface) and the silicon wafer it is intended to hold is prevented by a pattern of flat-topped silicon dioxide islands that protrude less than 5 micrometers from the otherwise flat surface of the chuck face. The islands may be formed in any shape. Islands may be about 10 micrometers in diameter or width and spaced about 100 micrometers apart. One or more concentric rings formed around the periphery of the area between the chuck face and wafer contain a low-pressure helium thermal-contact gas used to assist heat removal during plasma etching of a silicon wafer held by the chuck. The islands are tall enough and close enough together to prevent silicon-to-silicon electrical contact in the space between the islands, and the islands occupy only a small fraction of the total area of the chuck face, typically 0.5 to 5 percent. The pattern of the islands, together with at least one hole bored through the silicon veneer into the base plate, will provide sufficient gas-flow space to allow the distribution of the helium thermal-contact gas. 6 figs.

  15. Patent: Microelectromechanical pump utilizing porous silicon...

    Office of Scientific and Technical Information (OSTI)

    pump utilizing porous silicon Citation Details Title: Microelectromechanical pump utilizing porous silicon

  16. Silicone-containing composition

    DOE Patents [OSTI]

    Mohamed, Mustafa

    2012-01-24

    A silicone-containing composition comprises the reaction product of a first component and an excess of an isocyanate component relative to the first component to form an isocyanated intermediary. The first component is selected from one of a polysiloxane and a silicone resin. The first component includes a carbon-bonded functional group selected from one of a hydroxyl group and an amine group. The isocyanate component is reactive with the carbon-bonded functional group of the first component. The isocyanated intermediary includes a plurality of isocyanate functional groups. The silicone-containing composition comprises the further reaction product of a second component, which is selected from the other of the polysiloxane and the silicone resin. The second component includes a plurality of carbon-bonded functional groups reactive with the isocyanate functional groups of the isocyanated intermediary for preparing the silicone-containing composition.

  17. Structure, defects, and strain in silicon-silicon oxide interfaces

    SciTech Connect (OSTI)

    Kova?evi?, Goran Pivac, Branko

    2014-01-28

    The structure of the interfaces between silicon and silicon-oxide is responsible for proper functioning of MOSFET devices while defects in the interface can deteriorate this function and lead to their failure. In this paper we modeled this interface and characterized its defects and strain. MD simulations were used for reconstructing interfaces into a thermodynamically stable configuration. In all modeled interfaces, defects were found in the form of three-coordinated silicon atom, five coordinated silicon atom, threefold-coordinated oxygen atom, or displaced oxygen atom. Three-coordinated oxygen atom can be created if dangling bonds on silicon are close enough. The structure and stability of three-coordinated silicon atoms (P{sub b} defect) depend on the charge as well as on the electric field across the interface. The negatively charged P{sub b} defect is the most stable one, but the electric field resulting from the interface reduces that stability. Interfaces with large differences in periodic constants of silicon and silicon oxide can be stabilized by buckling of silicon layer. The mechanical stress resulted from the interface between silicon and silicon oxide is greater in the silicon oxide layer. Ab initio modeling of clusters representing silicon and silicon oxide shows about three time larger susceptibility to strain in silicon oxide than in silicon if exposed to the same deformation.

  18. Tangshan Silicon Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    search Name: Tangshan Silicon Co Ltd Place: Tangshan, Hebei Province, China Product: Chinese silicon producer developing a 1000t silicon plant in Tangshan, Hebei Province. It has...

  19. Longi Silicon Materials Corp | Open Energy Information

    Open Energy Info (EERE)

    Longi Silicon Materials Corp Jump to: navigation, search Name: Longi Silicon Materials Corp Place: Xi'an, Shaanxi Province, China Zip: 710065 Product: A monocrystalline silicon...

  20. Fluoroethylene carbonate and %22silicon oxide%22 on silicon anodes:

    Office of Scientific and Technical Information (OSTI)

    modeling SEI reaction mechanisms. (Conference) | SciTech Connect Fluoroethylene carbonate and %22silicon oxide%22 on silicon anodes: modeling SEI reaction mechanisms. Citation Details In-Document Search Title: Fluoroethylene carbonate and %22silicon oxide%22 on silicon anodes: modeling SEI reaction mechanisms. Abstract not provided. Authors: Leung, Kevin Publication Date: 2013-05-01 OSTI Identifier: 1115631 Report Number(s): SAND2013-3743C 479901 DOE Contract Number: AC04-94AL85000 Resource

  1. Ultratough, Thermally Stable Polycrystalline Diamond/Silicon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ultratough, Thermally Stable Polycrystalline DiamondSilicon Carbide Nanocomposites for Drill Bits Ultratough, Thermally Stable Polycrystalline DiamondSilicon Carbide ...

  2. Silicon Cells | Open Energy Information

    Open Energy Info (EERE)

    a low cost method of processing silicon to produce a new generation of high energy density batteries. References: Silicon Cells1 This article is a stub. You can help OpenEI...

  3. Floating Silicon Method

    SciTech Connect (OSTI)

    Kellerman, Peter

    2013-12-21

    The Floating Silicon Method (FSM) project at Applied Materials (formerly Varian Semiconductor Equipment Associates), has been funded, in part, by the DOE under a “Photovoltaic Supply Chain and Cross Cutting Technologies” grant (number DE-EE0000595) for the past four years. The original intent of the project was to develop the FSM process from concept to a commercially viable tool. This new manufacturing equipment would support the photovoltaic industry in following ways: eliminate kerf losses and the consumable costs associated with wafer sawing, allow optimal photovoltaic efficiency by producing high-quality silicon sheets, reduce the cost of assembling photovoltaic modules by creating large-area silicon cells which are free of micro-cracks, and would be a drop-in replacement in existing high efficiency cell production process thereby allowing rapid fan-out into the industry.

  4. Electrochemical thinning of silicon

    DOE Patents [OSTI]

    Medernach, J.W.

    1994-01-11

    Porous semiconducting material, e.g. silicon, is formed by electrochemical treatment of a specimen in hydrofluoric acid, using the specimen as anode. Before the treatment, the specimen can be masked. The porous material is then etched with a caustic solution or is oxidized, depending of the kind of structure desired, e.g. a thinned specimen, a specimen, a patterned thinned specimen, a specimen with insulated electrical conduits, and so on. Thinned silicon specimen can be subjected to tests, such as measurement of interstitial oxygen by Fourier transform infra-red spectroscopy (FTIR). 14 figures.

  5. Electrochemical thinning of silicon

    DOE Patents [OSTI]

    Medernach, John W.

    1994-01-01

    Porous semiconducting material, e.g. silicon, is formed by electrochemical treatment of a specimen in hydrofluoric acid, using the specimen as anode. Before the treatment, the specimen can be masked. The porous material is then etched with a caustic solution or is oxidized, depending of the kind of structure desired, e.g. a thinned specimen, a specimen, a patterned thinned specimen, a specimen with insulated electrical conduits, and so on. Thinned silicon specimen can be subjected to tests, such as measurement of interstitial oxygen by Fourier transform infra-red spectroscopy (FTIR).

  6. Amorphous silicon photovoltaic devices

    DOE Patents [OSTI]

    Carlson, David E.; Lin, Guang H.; Ganguly, Gautam

    2004-08-31

    This invention is a photovoltaic device comprising an intrinsic or i-layer of amorphous silicon and where the photovoltaic device is more efficient at converting light energy to electric energy at high operating temperatures than at low operating temperatures. The photovoltaic devices of this invention are suitable for use in high temperature operating environments.

  7. Use of silicon in liquid sintered silicon nitrides and sialons

    DOE Patents [OSTI]

    Raj, Rishi (Ithaca, NY); Baik, Sunggi (Ithaca, NY)

    1984-12-11

    This invention relates to the production of improved high density nitrogen based ceramics by liquid-phase densification of silicon nitride or a compound of silicon-nitrogen-oxygen-metal, e.g. a sialon. In the process and compositions of the invention minor amounts of finely divided silicon are employed together with the conventional liquid phase producing additives to enhance the densification of the resultant ceramic.

  8. Use of silicon in liquid sintered silicon nitrides and sialons

    DOE Patents [OSTI]

    Raj, R.; Baik, S.

    1984-12-11

    This invention relates to the production of improved high density nitrogen based ceramics by liquid-phase densification of silicon nitride or a compound of silicon-nitrogen-oxygen-metal, e.g. a sialon. In the process and compositions of the invention minor amounts of finely divided silicon are employed together with the conventional liquid phase producing additives to enhance the densification of the resultant ceramic. 4 figs.

  9. Efficient Nanostructured Silicon (Black Silicon) PV Devices - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Efficient Nanostructured Silicon (Black Silicon) PV Devices National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Antireflective (AR) coatings on solar cells increase the efficiency of the cells by suppressing reflection, which allows more photons to enter a silicon (Si) wafer and increases the flow of electricity. Traditional AR coatings however, add significant cost to the solar cell manufacturing process. NREL scientists

  10. Amorphous silicon radiation detectors

    DOE Patents [OSTI]

    Street, R.A.; Perez-Mendez, V.; Kaplan, S.N.

    1992-11-17

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification. 13 figs.

  11. Multicolored Vertical Silicon Nanowires

    SciTech Connect (OSTI)

    Seo, Kwanyong; Wober, Munib; Steinvurzel, P.; Schonbrun, E.; Dan, Yaping; Ellenbogen, T.; Crozier, K. B.

    2011-04-13

    We demonstrate that vertical silicon nanowires take on a surprising variety of colors covering the entire visible spectrum, in marked contrast to the gray color of bulk silicon. This effect is readily observable by bright-field microscopy, or even to the naked eye. The reflection spectra of the nanowires each show a dip whose position depends on the nanowire radii. We compare the experimental data to the results of finite difference time domain simulations to elucidate the physical mechanisms behind the phenomena we observe. The nanowires are fabricated as arrays, but the vivid colors arise not from scattering or diffractive effects of the array, but from the guided mode properties of the individual nanowires. Each nanowire can thus define its own color, allowing for complex spatial patterning. We anticipate that the color filter effect we demonstrate could be employed in nanoscale image sensor devices.

  12. Making silicon stronger.

    SciTech Connect (OSTI)

    Boyce, Brad Lee

    2010-11-01

    Silicon microfabrication has seen many decades of development, yet the structural reliability of microelectromechanical systems (MEMS) is far from optimized. The fracture strength of Si MEMS is limited by a combination of poor toughness and nanoscale etch-induced defects. A MEMS-based microtensile technique has been used to characterize the fracture strength distributions of both standard and custom microfabrication processes. Recent improvements permit 1000's of test replicates, revealing subtle but important deviations from the commonly assumed 2-parameter Weibull statistical model. Subsequent failure analysis through a combination of microscopy and numerical simulation reveals salient aspects of nanoscale flaw control. Grain boundaries, for example, suffer from preferential attack during etch-release thereby forming failure-critical grain-boundary grooves. We will discuss ongoing efforts to quantify the various factors that affect the strength of polycrystalline silicon, and how weakest-link theory can be used to make worst-case estimates for design.

  13. Amorphous silicon radiation detectors

    DOE Patents [OSTI]

    Street, Robert A. (Palo Alto, CA); Perez-Mendez, Victor (Berkeley, CA); Kaplan, Selig N. (El Cerrito, CA)

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  14. Modified silicon carbide whiskers

    DOE Patents [OSTI]

    Tiegs, T.N.; Lindemer, T.B.

    1991-05-21

    Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.

  15. Modified silicon carbide whiskers

    DOE Patents [OSTI]

    Tiegs, Terry N. (Lenoir City, TN); Lindemer, Terrence B. (Oak Ridge, TN)

    1991-01-01

    Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparaging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.

  16. Diamond-silicon carbide composite

    DOE Patents [OSTI]

    Qian, Jiang; Zhao, Yusheng

    2006-06-13

    Fully dense, diamond-silicon carbide composites are prepared from ball-milled microcrystalline diamond/amorphous silicon powder mixture. The ball-milled powder is sintered (P=5–8 GPa, T=1400K–2300K) to form composites having high fracture toughness. A composite made at 5 GPa/1673K had a measured fracture toughness of 12 MPa.dot.m1/2. By contrast, liquid infiltration of silicon into diamond powder at 5 GPa/1673K produces a composite with higher hardness but lower fracture toughness. X-ray diffraction patterns and Raman spectra indicate that amorphous silicon is partially transformed into nanocrystalline silicon at 5 GPa/873K, and nanocrystalline silicon carbide forms at higher temperatures.

  17. Silicon Border Development LLC | Open Energy Information

    Open Energy Info (EERE)

    Silicon Border Development LLC Jump to: navigation, search Name: Silicon Border Development LLC Place: Poway, California Zip: 92064 Sector: Solar Product: US-based developer of...

  18. Silicon on insulator with active buried regions

    DOE Patents [OSTI]

    McCarthy, A.M.

    1996-01-30

    A method is disclosed for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors. 10 figs.

  19. Silicon on insulator with active buried regions

    DOE Patents [OSTI]

    McCarthy, A.M.

    1998-06-02

    A method is disclosed for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors. 10 figs.

  20. Silicon on insulator with active buried regions

    DOE Patents [OSTI]

    McCarthy, Anthony M. (Menlo Park, CA)

    1998-06-02

    A method for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors.

  1. Silicon on insulator with active buried regions

    DOE Patents [OSTI]

    McCarthy, Anthony M. (Menlo Park, CA)

    1996-01-01

    A method for forming patterned buried components, such as collectors, sources and drains, in silicon-on-insulator (SOI) devices. The method is carried out by epitaxially growing a suitable sequence of single or multiple etch stop layers ending with a thin silicon layer on a silicon substrate, masking the silicon such that the desired pattern is exposed, introducing dopant and activating in the thin silicon layer to form doped regions. Then, bonding the silicon layer to an insulator substrate, and removing the silicon substrate. The method additionally involves forming electrical contact regions in the thin silicon layer for the buried collectors.

  2. Silicon Crystals Inc | Open Energy Information

    Open Energy Info (EERE)

    Zip: 95742 Product: Supplier of semi-conductor grade silicon for applications that demand unusual shapes and sizes. References: Silicon Crystals Inc1 This article is a stub....

  3. Longwei Silicon Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Silicon Co Ltd Place: Liancheng, Fujian Province, China Sector: Solar Product: A Chinese sillicon metal producer who also produce 4N-6N silicon for solar use. Coordinates:...

  4. Silicon Chemical Corp SCC | Open Energy Information

    Open Energy Info (EERE)

    Corp SCC Jump to: navigation, search Name: Silicon Chemical Corp (SCC) Place: Vancouver, Washington State Zip: 98687 Product: US manufacturer of polysilicon and silicon chemical...

  5. Silicon Photonics for Low- Energy Optical Communications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    will likely achieve the high yield, high reliability, and low costs common in the electronics industry. Enabling Power Savings Silicon photonics devices are comprised of silicon...

  6. Amorphous silicon ionizing particle detectors

    DOE Patents [OSTI]

    Street, R.A.; Mendez, V.P.; Kaplan, S.N.

    1988-11-15

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation. 15 figs.

  7. Compensated amorphous silicon solar cell

    DOE Patents [OSTI]

    Carlson, David E. (Yardley, PA)

    1980-01-01

    An amorphous silicon solar cell incorporates a region of intrinsic hydrogenated amorphous silicon fabricated by a glow discharge wherein said intrinsic region is compensated by P-type dopants in an amount sufficient to reduce the space charge density of said region under illumination to about zero.

  8. Amorphous silicon ionizing particle detectors

    DOE Patents [OSTI]

    Street, Robert A. (Palo Alto, CA); Mendez, Victor P. (Berkeley, CA); Kaplan, Selig N. (El Cerrito, CA)

    1988-01-01

    Amorphous silicon ionizing particle detectors having a hydrogenated amorphous silicon (a--Si:H) thin film deposited via plasma assisted chemical vapor deposition techniques are utilized to detect the presence, position and counting of high energy ionizing particles, such as electrons, x-rays, alpha particles, beta particles and gamma radiation.

  9. Compensated amorphous silicon solar cell

    DOE Patents [OSTI]

    Devaud, Genevieve (629 S. Humphrey Ave., Oak Park, IL 60304)

    1983-01-01

    An amorphous silicon solar cell including an electrically conductive substrate, a layer of glow discharge deposited hydrogenated amorphous silicon over said substrate and having regions of differing conductivity with at least one region of intrinsic hydrogenated amorphous silicon. The layer of hydrogenated amorphous silicon has opposed first and second major surfaces where the first major surface contacts the electrically conductive substrate and an electrode for electrically contacting the second major surface. The intrinsic hydrogenated amorphous silicon region is deposited in a glow discharge with an atmosphere which includes not less than about 0.02 atom percent mono-atomic boron. An improved N.I.P. solar cell is disclosed using a BF.sub.3 doped intrinsic layer.

  10. Cordierite silicon nitride filters

    SciTech Connect (OSTI)

    Sawyer, J.; Buchan, B. ); Duiven, R.; Berger, M. ); Cleveland, J.; Ferri, J. )

    1992-02-01

    The objective of this project was to develop a silicon nitride based crossflow filter. This report summarizes the findings and results of the project. The project was phased with Phase I consisting of filter material development and crossflow filter design. Phase II involved filter manufacturing, filter testing under simulated conditions and reporting the results. In Phase I, Cordierite Silicon Nitride (CSN) was developed and tested for permeability and strength. Target values for each of these parameters were established early in the program. The values were met by the material development effort in Phase I. The crossflow filter design effort proceeded by developing a macroscopic design based on required surface area and estimated stresses. Then the thermal and pressure stresses were estimated using finite element analysis. In Phase II of this program, the filter manufacturing technique was developed, and the manufactured filters were tested. The technique developed involved press-bonding extruded tiles to form a filter, producing a monolithic filter after sintering. Filters manufactured using this technique were tested at Acurex and at the Westinghouse Science and Technology Center. The filters did not delaminate during testing and operated and high collection efficiency and good cleanability. Further development in areas of sintering and filter design is recommended.

  11. Silicon nitride/silicon carbide composite densified materials prepared using composite powders

    DOE Patents [OSTI]

    Dunmead, S.D.; Weimer, A.W.; Carroll, D.F.; Eisman, G.A.; Cochran, G.A.; Susnitzky, D.W.; Beaman, D.R.; Nilsen, K.J.

    1997-07-01

    Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.

  12. Silicon-doped boron nitride coated fibers in silicon melt infiltrated composites

    DOE Patents [OSTI]

    Corman, Gregory Scot (Ballston Lake, NY); Luthra, Krishan Lal (Schenectady, NY)

    1999-01-01

    A fiber-reinforced silicon--silicon carbide matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is produced. The invention also provides a method for protecting the reinforcing fibers in the silicon--silicon carbide matrix composites by coating the fibers with a silicon-doped boron nitride coating.

  13. Silicon-doped boron nitride coated fibers in silicon melt infiltrated composites

    DOE Patents [OSTI]

    Corman, Gregory Scot (Ballston Lake, NY); Luthra, Krishan Lal (Schenectady, NY)

    2002-01-01

    A fiber-reinforced silicon-silicon carbide matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is produced. The invention also provides a method for protecting the reinforcing fibers in the silicon-silicon carbide matrix composites by coating the fibers with a silicon-doped boron nitride coating.

  14. High specific activity silicon-32

    DOE Patents [OSTI]

    Phillips, D.R.; Brzezinski, M.A.

    1996-06-11

    A process for preparation of silicon-32 is provided and includes contacting an irradiated potassium chloride target, including spallation products from a prior irradiation, with sufficient water, hydrochloric acid or potassium hydroxide to form a solution, filtering the solution, adjusting pH of the solution from about 5.5 to about 7.5, admixing sufficient molybdate-reagent to the solution to adjust the pH of the solution to about 1.5 and to form a silicon-molybdate complex, contacting the solution including the silicon-molybdate complex with a dextran-based material, washing the dextran-based material to remove residual contaminants such as sodium-22, separating the silicon-molybdate complex from the dextran-based material as another solution, adding sufficient hydrochloric acid and hydrogen peroxide to the solution to prevent reformation of the silicon-molybdate complex and to yield an oxidation state of the molybdate adapted for subsequent separation by an anion exchange material, contacting the solution with an anion exchange material whereby the molybdate is retained by the anion exchange material and the silicon remains in solution, and optionally adding sufficient alkali metal hydroxide to adjust the pH of the solution to about 12 to 13. Additionally, a high specific activity silicon-32 product having a high purity is provided.

  15. High specific activity silicon-32

    DOE Patents [OSTI]

    Phillips, Dennis R. (Los Alamos, NM); Brzezinski, Mark A. (Santa Barbara, CA)

    1996-01-01

    A process for preparation of silicon-32 is provided and includes contacting an irradiated potassium chloride target, including spallation products from a prior irradiation, with sufficient water, hydrochloric acid or potassium hydroxide to form a solution, filtering the solution, adjusting pH of the solution to from about 5.5 to about 7.5, admixing sufficient molybdate-reagent to the solution to adjust the pH of the solution to about 1.5 and to form a silicon-molybdate complex, contacting the solution including the silicon-molybdate complex with a dextran-based material, washing the dextran-based material to remove residual contaminants such as sodium-22, separating the silicon-molybdate complex from the dextran-based material as another solution, adding sufficient hydrochloric acid and hydrogen peroxide to the solution to prevent reformation of the silicon-molybdate complex and to yield an oxidization state of the molybdate adapted for subsequent separation by an anion exchange material, contacting the solution with an anion exchange material whereby the molybdate is retained by the anion exchange material and the silicon remains in solution, and optionally adding sufficient alkali metal hydroxide to adjust the pH of the solution to about 12 to 13. Additionally, a high specific activity silicon-32 product having a high purity is provided.

  16. Silicon nitride ceramic comprising samaria and ytterbia

    DOE Patents [OSTI]

    Yeckley, Russell L. (Oakham, MA)

    1996-01-01

    This invention relates to a sintered silicon nitride ceramic comprising samaria and ytterbia for enhanced toughness.

  17. Process for forming retrograde profiles in silicon

    DOE Patents [OSTI]

    Weiner, Kurt H. (San Jose, CA); Sigmon, Thomas W. (Phoenix, AZ)

    1996-01-01

    A process for forming retrograde and oscillatory profiles in crystalline and polycrystalline silicon. The process consisting of introducing an n- or p-type dopant into the silicon, or using prior doped silicon, then exposing the silicon to multiple pulses of a high-intensity laser or other appropriate energy source that melts the silicon for short time duration. Depending on the number of laser pulses directed at the silicon, retrograde profiles with peak/surface dopant concentrations which vary from 1-1e4 are produced. The laser treatment can be performed in air or in vacuum, with the silicon at room temperature or heated to a selected temperature.

  18. Process for forming retrograde profiles in silicon

    DOE Patents [OSTI]

    Weiner, K.H.; Sigmon, T.W.

    1996-10-15

    A process is disclosed for forming retrograde and oscillatory profiles in crystalline and polycrystalline silicon. The process consisting of introducing an n- or p-type dopant into the silicon, or using prior doped silicon, then exposing the silicon to multiple pulses of a high-intensity laser or other appropriate energy source that melts the silicon for short time duration. Depending on the number of laser pulses directed at the silicon, retrograde profiles with peak/surface dopant concentrations which vary are produced. The laser treatment can be performed in air or in vacuum, with the silicon at room temperature or heated to a selected temperature.

  19. BY SILICON CRYSTALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    c October 29, 1942 a 1 1 _MIGH aECTgFXCATIOH - BY SILICON CRYSTALS . . c .. I n. The excellent pesformmce of Brftieh "red dot" c r y s t a l s f e explained R R due t o the kgife edge contact i n a t A polfehod ~ X ' f l i C B o H i g h frequency m c t l f f c n t f o n 8ependre c r i t i c a l l y on the ape%e;y of the rectifytnc boundary layer o f the crystal, C, For hl#$ comvere~on e f f i c i e n c y , the product c d t h i ~ capacity m a o f ' t h e @forward" (bulk) re-.

  20. Huachang Silicon Material Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Huachang Silicon Material Co Ltd Jump to: navigation, search Name: Huachang Silicon Material Co Ltd Place: Jinzhou, Liaoning Province, China Product: A monocrystalline silicon...

  1. Jinzhou Huari Silicon Material Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Huari Silicon Material Co Ltd Jump to: navigation, search Name: Jinzhou Huari Silicon Material Co Ltd Place: China Product: Chinese manufacturer of mono-crystalline silicon ingot....

  2. Method of forming buried oxide layers in silicon

    DOE Patents [OSTI]

    Sadana, Devendra Kumar (Pleasantville, NY); Holland, Orin Wayne (Lenoir City, TN)

    2000-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  3. Direct Production of Silicones From Sand

    SciTech Connect (OSTI)

    Larry N. Lewis; F.J. Schattenmann: J.P. Lemmon

    2001-09-30

    Silicon, in the form of silica and silicates, is the second most abundant element in the earth's crust. However the synthesis of silicones (scheme 1) and almost all organosilicon chemistry is only accessible through elemental silicon. Silicon dioxide (sand or quartz) is converted to chemical-grade elemental silicon in an energy intensive reduction process, a result of the exceptional thermodynamic stability of silica. Then, the silicon is reacted with methyl chloride to give a mixture of methylchlorosilanes catalyzed by cooper containing a variety of tract metals such as tin, zinc etc. The so-called direct process was first discovered at GE in 1940. The methylchlorosilanes are distilled to purify and separate the major reaction components, the most important of which is dimethyldichlorosilane. Polymerization of dimethyldichlorosilane by controlled hydrolysis results in the formation of silicone polymers. Worldwide, the silicones industry produces about 1.3 billion pounds of the basic silicon polymer, polydimethylsiloxane.

  4. Photovoltaic Silicon Cell Basics | Department of Energy

    Energy Savers [EERE]

    Silicon Cell Basics Photovoltaic Silicon Cell Basics August 20, 2013 - 2:19pm Addthis Silicon-used to make some the earliest photovoltaic (PV) devices-is still the most popular material for solar cells. Silicon is also the second-most abundant element in the Earth's crust (after oxygen). However, to be useful as a semiconductor material in solar cells, silicon must be refined to a purity of 99.9999%. In single-crystal silicon, the molecular structure-which is the arrangement of atoms in the

  5. Three dimensional amorphous silicon/microcrystalline silicon solar cells

    DOE Patents [OSTI]

    Kaschmitter, James L.

    1996-01-01

    Three dimensional deep contact amorphous silicon/microcrystalline silicon (a-Si/.mu.c-Si) solar cells which use deep (high aspect ratio) p and n contacts to create high electric fields within the carrier collection volume material of the cell. The deep contacts are fabricated using repetitive pulsed laser doping so as to create the high aspect p and n contacts. By the provision of the deep contacts which penetrate the electric field deep into the material where the high strength of the field can collect many of the carriers, thereby resulting in a high efficiency solar cell.

  6. Three dimensional amorphous silicon/microcrystalline silicon solar cells

    DOE Patents [OSTI]

    Kaschmitter, J.L.

    1996-07-23

    Three dimensional deep contact amorphous silicon/microcrystalline silicon (a-Si/{micro}c-Si) solar cells are disclosed which use deep (high aspect ratio) p and n contacts to create high electric fields within the carrier collection volume material of the cell. The deep contacts are fabricated using repetitive pulsed laser doping so as to create the high aspect p and n contacts. By the provision of the deep contacts which penetrate the electric field deep into the material where the high strength of the field can collect many of the carriers, thereby resulting in a high efficiency solar cell. 4 figs.

  7. Becancour Silicon Inc BSI | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Becancour Silicon Inc (BSI) Place: St. Laurent, Quebec, Canada Zip: H4M2M4 Sector: Solar Product: Canadian supplier of silicon metal for the...

  8. ThinSilicon | Open Energy Information

    Open Energy Info (EERE)

    ThinSilicon Place: California Product: US-based developer of thin-film PV module manufacturing technology. References: ThinSilicon1 This article is a stub. You can help OpenEI...

  9. Jiangshan Silicon Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    China Zip: 134700 Product: Chinese metal silicon producer who is doing R&D to purify its silicon to 6N by UMG method Coordinates: 42.088902, 127.218193 Show Map Loading...

  10. Crystalline Silicon Photovoltaics Research | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crystalline Silicon Photovoltaics Research Crystalline Silicon Photovoltaics Research DOE supports crystalline silicon photovoltaic (PV) research and development efforts that lead to market-ready technologies. Below are a list of the projects, summary of the benefits, and discussion on the production and manufacturing of this solar technology. Background Crystalline silicon PV cells are the most common solar cells used in commercially available solar panels, representing 87% of world PV cell

  11. Black Silicon Etching - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Black Silicon Etching Award-winning, efficient, and inexpensive photovoltaic technology National Renewable Energy Laboratory Contact NREL About This Technology Three silicon wafers, showing absorbed light: (left) micron-scale texture, (center) NREL’s Black Silicon Etch, and (right) micron-scale texture with an antireflective coating. Three silicon wafers, showing absorbed light: (left) micron-scale texture,

  12. Silicon nanocrystal inks, films, and methods

    DOE Patents [OSTI]

    Wheeler, Lance Michael; Kortshagen, Uwe Richard

    2015-09-01

    Silicon nanocrystal inks and films, and methods of making and using silicon nanocrystal inks and films, are disclosed herein. In certain embodiments the nanocrystal inks and films include halide-terminated (e.g., chloride-terminated) and/or halide and hydrogen-terminated nanocrystals of silicon or alloys thereof. Silicon nanocrystal inks and films can be used, for example, to prepare semiconductor devices.

  13. System and method for liquid silicon containment

    SciTech Connect (OSTI)

    Cliber, James A; Clark, Roger F; Stoddard, Nathan G; Von Dollen, Paul

    2014-06-03

    This invention relates to a system and a method for liquid silicon containment, such as during the casting of high purity silicon used in solar cells or solar modules. The containment apparatus includes a shielding ember adapted to prevent breaching molten silicon from contacting structural elements or cooling elements of a casting device, and a volume adapted to hold a quantity of breaching molten silicon with the volume formed by a bottom and one or more sides.

  14. Enabling Thin Silicon Solar Cell Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enabling Thin Silicon Solar Cell Technology Enabling Thin Silicon Solar Cell Technology Print Friday, 21 June 2013 10:49 Generic silicon solar cells showing +45°, -45°, and dendritic crack patterns. The effort to shift U.S. energy reliance from fossil fuels to renewable sources has spurred companies to reduce the cost and increase the reliability of their solar photovoltaics (SPVs). The use of thinner silicon in SPV technologies is being widely adopted because it significantly reduces costs;

  15. Copper doped polycrystalline silicon solar cell

    DOE Patents [OSTI]

    Lovelace, Alan M. Administrator of the National Aeronautics and Space (La Canada, CA); Koliwad, Krishna M. (La Canada, CA); Daud, Taher (La Crescenta, CA)

    1981-01-01

    Photovoltaic cells having improved performance are fabricated from polycrystalline silicon containing copper segregated at the grain boundaries.

  16. System and method for liquid silicon containment

    DOE Patents [OSTI]

    Cliber, James A; Clark, Roger F; Stoddard, Nathan G; Von Dollen, Paul

    2013-05-28

    This invention relates to a system and a method for liquid silicon containment, such as during the casting of high purity silicon used in solar cells or solar modules. The containment apparatus includes a shielding member adapted to prevent breaching molten silicon from contacting structural elements or cooling elements of a casting device, and a volume adapted to hold a quantity of breaching molten silicon with the volume formed by a bottom and one or more sides.

  17. Silicon crystal growing by oscillating crucible technique

    DOE Patents [OSTI]

    Schwuttke, G.H.; Kim, K.M.; Smetana, P.

    1983-08-03

    A process for growing silicon crystals from a molten melt comprising oscillating the container during crystal growth is disclosed.

  18. Process of preparing tritiated porous silicon

    DOE Patents [OSTI]

    Tam, S.W.

    1997-02-18

    A process of preparing tritiated porous silicon is described in which porous silicon is equilibrated with a gaseous vapor containing HT/T{sub 2} gas in a diluent for a time sufficient for tritium in the gas phase to replace hydrogen present in the pore surfaces of the porous silicon. 1 fig.

  19. Process of preparing tritiated porous silicon

    DOE Patents [OSTI]

    Tam, Shiu-Wing

    1997-01-01

    A process of preparing tritiated porous silicon in which porous silicon is equilibrated with a gaseous vapor containing HT/T.sub.2 gas in a diluent for a time sufficient for tritium in the gas phase to replace hydrogen present in the pore surfaces of the porous silicon.

  20. Prealloyed catalyst for growing silicon carbide whiskers

    DOE Patents [OSTI]

    Shalek, Peter D. (Los Alamos, NM); Katz, Joel D. (Niagara Falls, NY); Hurley, George F. (Los Alamos, NM)

    1988-01-01

    A prealloyed metal catalyst is used to grow silicon carbide whiskers, especially in the .beta. form. Pretreating the metal particles to increase the weight percentages of carbon or silicon or both carbon and silicon allows whisker growth to begin immediately upon reaching growth temperature.

  1. Tandem junction amorphous silicon solar cells

    DOE Patents [OSTI]

    Hanak, Joseph J. (Lawrenceville, NJ)

    1981-01-01

    An amorphous silicon solar cell has an active body with two or a series of layers of hydrogenated amorphous silicon arranged in a tandem stacked configuration with one optical path and electrically interconnected by a tunnel junction. The layers of hydrogenated amorphous silicon arranged in tandem configuration can have the same bandgap or differing bandgaps.

  2. Dispersion toughened silicon carbon ceramics

    DOE Patents [OSTI]

    Wei, G.C.

    1984-01-01

    Fracture resistant silicon carbide ceramics are provided by incorporating therein a particulate dispersoid selected from the group consisting of (a) a mixture of boron, carbon and tungsten, (b) a mixture of boron, carbon and molybdenum, (c) a mixture of boron, carbon and titanium carbide, (d) a mixture of aluminum oxide and zirconium oxide, and (e) boron nitride. 4 figures.

  3. Method for fabricating silicon cells

    DOE Patents [OSTI]

    Ruby, D.S.; Basore, P.A.; Schubert, W.K.

    1998-08-11

    A process is described for making high-efficiency solar cells. This is accomplished by forming a diffusion junction and a passivating oxide layer in a single high-temperature process step. The invention includes the class of solar cells made using this process, including high-efficiency solar cells made using Czochralski-grown silicon. 9 figs.

  4. Method for fabricating silicon cells

    DOE Patents [OSTI]

    Ruby, Douglas S. (Albuquerque, NM); Basore, Paul A. (Albuquerque, NM); Schubert, W. Kent (Albuquerque, NM)

    1998-08-11

    A process for making high-efficiency solar cells. This is accomplished by forming a diffusion junction and a passivating oxide layer in a single high-temperature process step. The invention includes the class of solar cells made using this process, including high-efficiency solar cells made using Czochralski-grown silicon.

  5. Microelectromechanical pump utilizing porous silicon

    DOE Patents [OSTI]

    Lantz, Jeffrey W.; Stalford, Harold L.

    2011-07-19

    A microelectromechanical (MEM) pump is disclosed which includes a porous silicon region sandwiched between an inlet chamber and an outlet chamber. The porous silicon region is formed in a silicon substrate and contains a number of pores extending between the inlet and outlet chambers, with each pore having a cross-section dimension about equal to or smaller than a mean free path of a gas being pumped. A thermal gradient is provided along the length of each pore by a heat source which can be an electrical resistance heater or an integrated circuit (IC). A channel can be formed through the silicon substrate so that inlet and outlet ports can be formed on the same side of the substrate, or so that multiple MEM pumps can be connected in series to form a multi-stage MEM pump. The MEM pump has applications for use in gas-phase MEM chemical analysis systems, and can also be used for passive cooling of ICs.

  6. Silicon on insulator self-aligned transistors

    DOE Patents [OSTI]

    McCarthy, Anthony M.

    2003-11-18

    A method for fabricating thin-film single-crystal silicon-on-insulator (SOI) self-aligned transistors. Standard processing of silicon substrates is used to fabricate the transistors. Physical spaces, between the source and gate, and the drain and gate, introduced by etching the polysilicon gate material, are used to provide connecting implants (bridges) which allow the transistor to perform normally. After completion of the silicon substrate processing, the silicon wafer is bonded to an insulator (glass) substrate, and the silicon substrate is removed leaving the transistors on the insulator (glass) substrate. Transistors fabricated by this method may be utilized, for example, in flat panel displays, etc.

  7. Method for processing silicon solar cells

    DOE Patents [OSTI]

    Tsuo, Y. Simon (Golden, CO); Landry, Marc D. (Lafayette, CO); Pitts, John R. (Lakewood, CO)

    1997-01-01

    The instant invention teaches a novel method for fabricating silicon solar cells utilizing concentrated solar radiation. The solar radiation is concentrated by use of a solar furnace which is used to form a front surface junction and back-surface field in one processing step. The present invention also provides a method of making multicrystallline silicon from amorphous silicon. The invention also teaches a method of texturing the surface of a wafer by forming a porous silicon layer on the surface of a silicon substrate and a method of gettering impurities. Also contemplated by the invention are methods of surface passivation, forming novel solar cell structures, and hydrogen passivation.

  8. Silicon carbide fibers and articles including same

    DOE Patents [OSTI]

    Garnier, John E; Griffith, George W

    2015-01-27

    Methods of producing silicon carbide fibers. The method comprises reacting a continuous carbon fiber material and a silicon-containing gas in a reaction chamber at a temperature ranging from approximately 1500.degree. C. to approximately 2000.degree. C. A partial pressure of oxygen in the reaction chamber is maintained at less than approximately 1.01.times.10.sup.2 Pascal to produce continuous alpha silicon carbide fibers. Continuous alpha silicon carbide fibers and articles formed from the continuous alpha silicon carbide fibers are also disclosed.

  9. Method for processing silicon solar cells

    DOE Patents [OSTI]

    Tsuo, Y.S.; Landry, M.D.; Pitts, J.R.

    1997-05-06

    The instant invention teaches a novel method for fabricating silicon solar cells utilizing concentrated solar radiation. The solar radiation is concentrated by use of a solar furnace which is used to form a front surface junction and back-surface field in one processing step. The present invention also provides a method of making multicrystalline silicon from amorphous silicon. The invention also teaches a method of texturing the surface of a wafer by forming a porous silicon layer on the surface of a silicon substrate and a method of gettering impurities. Also contemplated by the invention are methods of surface passivation, forming novel solar cell structures, and hydrogen passivation. 2 figs.

  10. Epitaxial growth of silicon for layer transfer

    DOE Patents [OSTI]

    Teplin, Charles; Branz, Howard M

    2015-03-24

    Methods of preparing a thin crystalline silicon film for transfer and devices utilizing a transferred crystalline silicon film are disclosed. The methods include preparing a silicon growth substrate which has an interface defining substance associated with an exterior surface. The methods further include depositing an epitaxial layer of silicon on the silicon growth substrate at the surface and separating the epitaxial layer from the substrate substantially along the plane or other surface defined by the interface defining substance. The epitaxial layer may be utilized as a thin film of crystalline silicon in any type of semiconductor device which requires a crystalline silicon layer. In use, the epitaxial transfer layer may be associated with a secondary substrate.

  11. Narrow band gap amorphous silicon semiconductors

    DOE Patents [OSTI]

    Madan, A.; Mahan, A.H.

    1985-01-10

    Disclosed is a narrow band gap amorphous silicon semiconductor comprising an alloy of amorphous silicon and a band gap narrowing element selected from the group consisting of Sn, Ge, and Pb, with an electron donor dopant selected from the group consisting of P, As, Sb, Bi and N. The process for producing the narrow band gap amorphous silicon semiconductor comprises the steps of forming an alloy comprising amorphous silicon and at least one of the aforesaid band gap narrowing elements in amount sufficient to narrow the band gap of the silicon semiconductor alloy below that of amorphous silicon, and also utilizing sufficient amounts of the aforesaid electron donor dopant to maintain the amorphous silicon alloy as an n-type semiconductor.

  12. Amorphous silicon passivated contacts for diffused junction silicon solar cells

    SciTech Connect (OSTI)

    Bullock, J. Yan, D.; Wan, Y.; Cuevas, A.; Demaurex, B.; Hessler-Wyser, A.; De Wolf, S.

    2014-04-28

    Carrier recombination at the metal contacts is a major obstacle in the development of high-performance crystalline silicon homojunction solar cells. To address this issue, we insert thin intrinsic hydrogenated amorphous silicon [a-Si:H(i)] passivating films between the dopant-diffused silicon surface and aluminum contacts. We find that with increasing a-Si:H(i) interlayer thickness (from 0 to 16?nm) the recombination loss at metal-contacted phosphorus (n{sup +}) and boron (p{sup +}) diffused surfaces decreases by factors of ?25 and ?10, respectively. Conversely, the contact resistivity increases in both cases before saturating to still acceptable values of ? 50 m? cm{sup 2} for n{sup +} and ?100 m? cm{sup 2} for p{sup +} surfaces. Carrier transport towards the contacts likely occurs by a combination of carrier tunneling and aluminum spiking through the a-Si:H(i) layer, as supported by scanning transmission electron microscopyenergy dispersive x-ray maps. We explain the superior contact selectivity obtained on n{sup +} surfaces by more favorable band offsets and capture cross section ratios of recombination centers at the c-Si/a-Si:H(i) interface.

  13. Formation of multiple levels of porous silicon for buried insulators and conductors in silicon device technologies

    DOE Patents [OSTI]

    Blewer, Robert S. (Albuquerque, NM); Gullinger, Terry R. (Albuquerque, NM); Kelly, Michael J. (Albuquerque, NM); Tsao, Sylvia S. (Albuquerque, NM)

    1991-01-01

    A method of forming a multiple level porous silicon substrate for semiconductor integrated circuits including anodizing non-porous silicon layers of a multi-layer silicon substrate to form multiple levels of porous silicon. At least one porous silicon layer is then oxidized to form an insulating layer and at least one other layer of porous silicon beneath the insulating layer is metallized to form a buried conductive layer. Preferably the insulating layer and conductive layer are separated by an anodization barrier formed of non-porous silicon. By etching through the anodization barrier and subsequently forming a metallized conductive layer, a fully or partially insulated buried conductor may be fabricated under single crystal silicon.

  14. Analytical and Experimental Evaluation of Joining Silicon Carbide to Silicon Carbide and Silicon Nitride to Silicon Nitride for Advanced Heat Engine Applications Phase II

    SciTech Connect (OSTI)

    Sundberg, G.J.

    1994-01-01

    Techniques were developed to produce reliable silicon nitride to silicon nitride (NCX-5101) curved joins which were used to manufacture spin test specimens as a proof of concept to simulate parts such as a simple rotor. Specimens were machined from the curved joins to measure the following properties of the join interlayer: tensile strength, shear strength, 22 C flexure strength and 1370 C flexure strength. In parallel, extensive silicon nitride tensile creep evaluation of planar butt joins provided a sufficient data base to develop models with accurate predictive capability for different geometries. Analytical models applied satisfactorily to the silicon nitride joins were Norton's Law for creep strain, a modified Norton's Law internal variable model and the Monkman-Grant relationship for failure modeling. The Theta Projection method was less successful. Attempts were also made to develop planar butt joins of siliconized silicon carbide (NT230).

  15. Process for strengthening silicon based ceramics

    DOE Patents [OSTI]

    Kim, Hyoun-Ee; Moorhead, A. J.

    1993-04-06

    A process for strengthening silicon based ceramic monolithic materials and omposite materials that contain silicon based ceramic reinforcing phases that requires that the ceramic be exposed to a wet hydrogen atmosphere at about 1400.degree. C. The process results in a dense, tightly adherent silicon containing oxide layer that heals, blunts , or otherwise negates the detrimental effect of strength limiting flaws on the surface of the ceramic body.

  16. Diamond-silicon carbide composite and method

    DOE Patents [OSTI]

    Zhao, Yusheng (Los Alamos, NM)

    2011-06-14

    Uniformly dense, diamond-silicon carbide composites having high hardness, high fracture toughness, and high thermal stability are prepared by consolidating a powder mixture of diamond and amorphous silicon. A composite made at 5 GPa/1673K had a measured fracture toughness of 12 MPam.sup.1/2. By contrast, liquid infiltration of silicon into diamond powder at 5 GPa/1673K produces a composite with higher hardness but lower fracture toughness.

  17. Process for strengthening silicon based ceramics

    DOE Patents [OSTI]

    Kim, Hyoun-Ee (Oak Ridge, TN); Moorhead, A. J. (Knoxville, TN)

    1993-01-01

    A process for strengthening silicon based ceramic monolithic materials and omposite materials that contain silicon based ceramic reinforcing phases that requires that the ceramic be exposed to a wet hydrogen atmosphere at about 1400.degree. C. The process results in a dense, tightly adherent silicon containing oxide layer that heals, blunts , or otherwise negates the detrimental effect of strength limiting flaws on the surface of the ceramic body.

  18. Laser, Supercomputer Measure Speedy Electrons in Silicon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser, Supercomputer Measure Speedy Electrons in Silicon Laser, Supercomputer Measure Speedy Electrons in Silicon Simulations at NERSC Help Illuminate Attosecond Laser Experiment Findings December 19, 2014 Contact: Robert Sanders, rlsanders@berkeley.edu, (510) 643-6998 speedyelectrons In silicon, electrons attached to atoms in the crystal lattice can be mobilized into the conduction band by light or voltage. Berkeley scientists have taken snapshots of this very brief band-gap jump and timed it

  19. Method for fabricating pixelated silicon device cells

    DOE Patents [OSTI]

    Nielson, Gregory N.; Okandan, Murat; Cruz-Campa, Jose Luis; Nelson, Jeffrey S.; Anderson, Benjamin John

    2015-08-18

    A method, apparatus and system for flexible, ultra-thin, and high efficiency pixelated silicon or other semiconductor photovoltaic solar cell array fabrication is disclosed. A structure and method of creation for a pixelated silicon or other semiconductor photovoltaic solar cell array with interconnects is described using a manufacturing method that is simplified compared to previous versions of pixelated silicon photovoltaic cells that require more microfabrication steps.

  20. Silicon Materials and Devices (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01

    This National Center for Photovoltaics sheet describes the capabilities of its silicon materials and devices research. The scope and core competencies and capabilities are discussed.

  1. Silicon Valley Biodiesel Inc | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Inc Jump to: navigation, search Name: Silicon Valley Biodiesel Inc. Place: Sunnyvale, California Zip: CA 94086 Product: Manufactures biodiesel for the local diesel fuel...

  2. Process for Polycrystalline film silicon growth

    DOE Patents [OSTI]

    Wang, Tihu (Littleton, CO); Ciszek, Theodore F. (Evergreen, CO)

    2001-01-01

    A process for depositing polycrystalline silicon on substrates, including foreign substrates, occurs in a chamber at about atmospheric pressure, wherein a temperature gradient is formed, and both the atmospheric pressure and the temperature gradient are maintained throughout the process. Formation of a vapor barrier within the chamber that precludes exit of the constituent chemicals, which include silicon, iodine, silicon diiodide, and silicon tetraiodide. The deposition occurs beneath the vapor barrier. One embodiment of the process also includes the use of a blanketing gas that precludes the entrance of oxygen or other impurities. The process is capable of repetition without the need to reset the deposition zone conditions.

  3. Engineering Metal Impurities in Multicrystalline Silicon Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of multicrystalline silicon solar cells led to the concept of defect engineering by ... systems decreased from the current price of approximately 16,000-25,000. One way ...

  4. Hydrogenation of Dislocation-Limited Heteroepitaxial Silicon...

    Office of Scientific and Technical Information (OSTI)

    Hydrogenation of Dislocation- Limited Heteroepitaxial Silicon Solar Cells Preprint Michael L. Bolen, Sachit Grover, Charles W. Teplin, Howard M. Branz, and Paul Stradins National...

  5. Hydrogenation of Dislocation-Limited Heteroepitaxial Silicon...

    Office of Scientific and Technical Information (OSTI)

    Hydrogenation of Dislocation-Limited Heteroepitaxial Silicon Solar Cells: Preprint Bolen, M. L.; Grover, S.; Teplin, C. W.; Bobela, D.; Branz, H. M.; Stradins, P. 08 HYDROGEN; 14...

  6. Fuyuan Silicon Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Fuyuan Silicon Co Ltd Place: Baishan, Jilin Province, China Sector: Solar Product: A Chinese solar-grade polysilicon producer using metallurgical method. Coordinates:...

  7. Sunsing Silicon Inc | Open Energy Information

    Open Energy Info (EERE)

    Sunsing Silicon Inc Place: Liancheng, Fujian Province, China Zip: 366200 Product: A Chinese polysilicon manufacturer applying self-developed metallurgical method References:...

  8. Synthesis and tribological behavior of silicon oxycarbonitride...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 36 MATERIALS SCIENCE; SILICON COMPOUNDS; SYNTHESIS; THIN FILMS; OXYCARBIDES; NITRIDES; TRIBOLOGY Word Cloud More ...

  9. Solar cell with silicon oxynitride dielectric layer

    DOE Patents [OSTI]

    Shepherd, Michael; Smith, David D

    2015-04-28

    Solar cells with silicon oxynitride dielectric layers and methods of forming silicon oxynitride dielectric layers for solar cell fabrication are described. For example, an emitter region of a solar cell includes a portion of a substrate having a back surface opposite a light receiving surface. A silicon oxynitride (SiO.sub.xN.sub.y, 0silicon oxynitride dielectric layer.

  10. Silicon-Graphene Anodes | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Silicon-Graphene Anodes Technology available for licensing: Provides low-cost production process. Advanced gas phase deposition process yields anodes with five times the specific...

  11. Semipermeable Membranes for Micromachined Silicon Surfaces -...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for lap-on-a-chip products Eases cost and complexity of manufacturing Robust Permeability control at time of manufacture Compatible with a wide range of silicon Applications...

  12. Norwegian Silicon Refining AS | Open Energy Information

    Open Energy Info (EERE)

    214 Product: Oslo-based company with an upgraded metallurgical silicon (UMG) production process called the Stubergh method. Coordinates: 59.91228, 10.74998 Show Map Loading...

  13. Apparatus for obtaining silicon from fluosilicic acid

    DOE Patents [OSTI]

    Sanjurjo, Angel (San Jose, CA)

    1986-05-20

    Apparatus for producing low cost, high purity solar grade silicon ingots in single crystal or quasi single crystal ingot form in a substantially continuous operation in a two stage reactor starting with sodium fluosilicate and a metal more electropositive than silicon (preferably sodium) in separate compartments having easy vapor transport therebetween and thermally decomposing the sodium fluosilicate to cause formation of substantially pure silicon and a metal fluoride which may be continuously separated in the melt and silicon may be directly and continuously cast from the melt.

  14. RSI Silicon Products LLC | Open Energy Information

    Open Energy Info (EERE)

    startup which is developing a process for solar-grade silicon manufacture at low energy intensity, spinoff from MIT. Coordinates: 47.237806, -121.179542 Show Map...

  15. Silicon nitride having a high tensile strength

    DOE Patents [OSTI]

    Pujari, Vimal K. (Northboro, MA); Tracey, Dennis M. (Medfield, MA); Foley, Michael R. (Oxford, MA); Paille, Norman I. (Oxford, MA); Pelletier, Paul J. (Sutton, MA); Sales, Lenny C. (Grafton, MA); Willkens, Craig A. (Worcester, MA); Yeckley, Russell L. (Latrobe, PA)

    1998-01-01

    A ceramic body comprising at least about 80 w/o silicon nitride and having a mean tensile strength of at least about 800 MPa.

  16. Silicon Materials and Devices (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01

    Capabilities fact sheet for the National Center for Photovoltaics: Silicon Materials and Devices that includes scope, core competencies and capabilities, and contact/web information.

  17. Structural alloy with a protective coating containing silicon or silicon-oxide

    DOE Patents [OSTI]

    Natesan, Ken (Naperville, IL)

    1994-01-01

    An iron-based alloy containing chromium and optionally, nickel. The alloy has a surface barrier of silicon or silicon plus oxygen which converts at high temperature to a protective silicon compound. The alloy can be used in oxygen-sulfur mixed gases at temperatures up to about 1100.degree. C.

  18. Structural alloy with a protective coating containing silicon or silicon-oxide

    DOE Patents [OSTI]

    Natesan, K.

    1994-12-27

    An iron-based alloy is described containing chromium and optionally, nickel. The alloy has a surface barrier of silicon or silicon plus oxygen which converts at high temperature to a protective silicon compound. The alloy can be used in oxygen-sulfur mixed gases at temperatures up to about 1100 C. 8 figures.

  19. Structural alloy with a protective coating containing silicon or silicon-oxide

    DOE Patents [OSTI]

    Natesan, K.

    1992-01-01

    This invention is comprised of an iron-based alloy containing chromium and optionally, nickel. The alloy has a surface barrier of silicon or silicon plus oxygen which converts at high temperature to a protective silicon compound. The alloy can be used in oxygen-sulfur mixed gases at temperatures up to about 1100{degrees}C.

  20. Nano tech Silicon India Ltd | Open Energy Information

    Open Energy Info (EERE)

    tech Silicon India Ltd Jump to: navigation, search Name: Nano-tech Silicon India Ltd Place: Hyderabad, Andhra Pradesh, India Product: Nano-tech Silicon is a manufacturer of PV...

  1. Design and Implementation of Silicon Nitride Valves for Heavy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Implementation of Silicon Nitride Valves for Heavy Duty Diesel Engines Design and Implementation of Silicon Nitride Valves for Heavy Duty Diesel Engines Poster presentation at the...

  2. SunShot Initiative Workshop on Silicon Photovoltaics | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SunShot Initiative held a workshop on silicon photovoltaics research directions beyond 2020 in conjunction with the NREL workshop on crystalline silicon solar cells and modules. ...

  3. Low-temperature plasma-deposited silicon epitaxial films: Growth...

    Office of Scientific and Technical Information (OSTI)

    Low-temperature plasma-deposited silicon epitaxial films: Growth and properties Citation Details In-Document Search Title: Low-temperature plasma-deposited silicon epitaxial films:...

  4. ShaanXi Tianhong Silicon Industrial | Open Energy Information

    Open Energy Info (EERE)

    ShaanXi Tianhong Silicon Industrial Jump to: navigation, search Name: ShaanXi Tianhong Silicon Industrial Place: Shaanxi Province, China Product: Shaaxi-based polysilicon maker...

  5. Schmid Silicon Technology GmbH SST | Open Energy Information

    Open Energy Info (EERE)

    Schmid Silicon Technology GmbH SST Jump to: navigation, search Name: Schmid Silicon Technology GmbH (SST) Place: Freudenstadt, Germany Zip: D-72250 Sector: Solar Product:...

  6. Recent Progress in Silicon-based Spintronic Materials (Book)...

    Office of Scientific and Technical Information (OSTI)

    Book: Recent Progress in Silicon-based Spintronic Materials Citation Details In-Document Search Title: Recent Progress in Silicon-based Spintronic Materials You are accessing a ...

  7. Tianwei Sichuan Silicon Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    search Name: Tianwei Sichuan Silicon Co Ltd Place: Sichuan Province, China Product: A Chinese polysilicon manufacturer developing a 3000t silicon plant in Xinjin of Sichuan...

  8. Chengdu Jiayang Silicon Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Jiayang Silicon Technology Co Ltd Place: Chengdu, Sichuan Province, China Product: Chinese monocrystalline silicon ingots and wafers manufacturer Coordinates: 30.67,...

  9. Glory Silicon Energy Zhenjiang Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Silicon Energy (Zhenjiang) Co Ltd Place: Yangzhong, Jiangsu Province, China Product: Chinese manufacturer of silicon ingots and PV wafers; ingots are only for in-house use....

  10. Silicon Nanostructure-based Technology for Next Generation Energy...

    Office of Environmental Management (EM)

    Silicon Nanostructure-based Technology for Next Generation Energy Storage Silicon Nanostructure-based Technology for Next Generation Energy Storage 2013 DOE Hydrogen and Fuel Cells...

  11. Vehicle Technologies Office Merit Review 2012: Silicon Nanostructure...

    Office of Environmental Management (EM)

    2: Silicon Nanostructure-based Technology for Next Generation Energy Storage Vehicle Technologies Office Merit Review 2012: Silicon Nanostructure-based Technology for Next...

  12. GSMSolar formerly Shanghai General Silicon Material Co Ltd |...

    Open Energy Info (EERE)

    GSMSolar formerly Shanghai General Silicon Material Co Ltd Jump to: navigation, search Name: GSMSolar (formerly Shanghai General Silicon Material Co Ltd) Place: Kunshan, Jiangsu...

  13. Jiangxi Jiahua Silicon Material Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Jiahua Silicon Material Co Ltd Jump to: navigation, search Name: Jiangxi Jiahua Silicon Material Co Ltd Place: Shangrao, Jiangxi Province, China Product: A PV ingots and wafer...

  14. Jinzhou Rixin Silicon Material Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Silicon Material Co Ltd Jump to: navigation, search Name: Jinzhou Rixin Silicon Material Co Ltd Place: Liaoning Province, China Product: A monosilicon manufacturer in China....

  15. Zhongsheng Semiconductor Silicon Material Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Zhongsheng Semiconductor Silicon Material Co Ltd Jump to: navigation, search Name: Zhongsheng Semiconductor Silicon Material Co Ltd Place: Linzhou, Henan Province, China Product:...

  16. Shaanxi Tianhong Silicon Material Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Tianhong Silicon Material Co Ltd Jump to: navigation, search Name: Shaanxi Tianhong Silicon Material Co Ltd Place: Shaanxi Province, China Sector: Solar Product: A Chinese...

  17. Anhui Tiansheng Silicon Material Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Tiansheng Silicon Material Co Ltd Jump to: navigation, search Name: Anhui Tiansheng Silicon Material Co Ltd Place: Chaohu, Anhui Province, China Zip: 214192 Product: Polysilicon...

  18. Dongqi Leshan Silicon Material Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Dongqi Leshan Silicon Material Co Ltd Jump to: navigation, search Name: Dongqi Leshan Silicon Material Co Ltd Place: Leshan, Sichuan Province, China Product: A Chinese polysilicon...

  19. Dawu Silicon Park Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Dawu Silicon Park Co Ltd Jump to: navigation, search Name: Dawu Silicon Park Co Ltd Place: Dawu County, Hubei Province, China Zip: 432800 Sector: Solar Product: Chinese polysilicon...

  20. GCL Solar Energy Technology Holdings formerly GCL Silicon aka...

    Open Energy Info (EERE)

    GCL Silicon aka Jiangsu Zhongneng Polysilicon Jump to: navigation, search Name: GCL Solar Energy Technology Holdings (formerly GCL Silicon, aka Jiangsu Zhongneng Polysilicon)...

  1. Fact Sheet: Award-Winning Silicon Carbide Power Electronics ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Award-Winning Silicon Carbide Power Electronics (October 2012) Fact Sheet: Award-Winning Silicon Carbide Power Electronics (October 2012) Operating at high temperatures and with ...

  2. Vehicle Technologies Office Merit Review 2014: Silicon Nanowire...

    Broader source: Energy.gov (indexed) [DOE]

    and Peer Evaluation Meeting about silicon nanowire anodes for next generation energy storage. es126stefan2014p.pdf More Documents & Publications Silicon Nanostructure-based...

  3. Ningxia Sunshine Silicon Business Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Silicon Business Co Ltd Jump to: navigation, search Name: Ningxia Sunshine Silicon Business Co Ltd Place: Shizuishan, Ningxia Autonomous Region, China Product: A JV project company...

  4. Zhenjiang Huantai Silicon Science Technology Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Huantai Silicon Science Technology Co Ltd Jump to: navigation, search Name: Zhenjiang Huantai Silicon Science & Technology Co Ltd Place: Yangzhou, Jiangsu Province, China Zip:...

  5. Leshan Ledian Tianwei Silicon Science and Technology Co Ltd ...

    Open Energy Info (EERE)

    Ledian Tianwei Silicon Science and Technology Co Ltd Jump to: navigation, search Name: Leshan Ledian Tianwei Silicon Science and Technology Co Ltd Place: Leshan, Sichuan Province,...

  6. Sichuan Xinguang Silicon Business Science Technology Co Ltd ...

    Open Energy Info (EERE)

    Xinguang Silicon Business Science Technology Co Ltd Jump to: navigation, search Name: Sichuan Xinguang Silicon Business Science & Technology Co Ltd Place: Leshan, Sichuan Province,...

  7. Graphene-silicon layered structures on single-crystalline Ir...

    Office of Scientific and Technical Information (OSTI)

    Accepted Manuscript: Graphene-silicon layered structures on single-crystalline Ir(111) thin films Prev Next Title: Graphene-silicon layered structures on single-crystalline...

  8. Inner Mongolia Shenzhou Silicon Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Shenzhou Silicon Co Ltd Jump to: navigation, search Name: Inner Mongolia Shenzhou Silicon Co Ltd Place: Hohhot, Inner Mongolia Autonomous Region, China Product: Huhhot-based...

  9. Inner Mongolia Jinyu Silicon Industry Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Jinyu Silicon Industry Co Ltd Jump to: navigation, search Name: Inner Mongolia Jinyu Silicon Industry Co Ltd Place: Wuhai City, Inner Mongolia Autonomous Region, China Zip: 16030...

  10. Sino American Silicon Products Inc SAS | Open Energy Information

    Open Energy Info (EERE)

    Sino American Silicon Products Inc SAS Jump to: navigation, search Name: Sino-American Silicon Products Inc (SAS) Place: Hsinchu, Taiwan, Taiwan Product: Taiwan-based manufacturer...

  11. Silicon Detectors at the ILC (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Conference: Silicon Detectors at the ILC Citation Details In-Document Search Title: Silicon Detectors at the ILC You are accessing a document from the Department of Energy's ...

  12. Silicon Detectors at the ILC (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Conference: Silicon Detectors at the ILC Citation Details In-Document Search Title: Silicon Detectors at the ILC Authors: Brau, James E. ; Oregon U. ; Breidenbach, Martin ; SLAC ...

  13. Casimir Forces On A Silicon Micromechanical Chip (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Casimir Forces On A Silicon Micromechanical Chip Citation Details In-Document Search Title: Casimir Forces On A Silicon Micromechanical Chip Quantum fluctuations ...

  14. Low Cost, High Efficiency Tandem Silicon Solar Cells and LEDs...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    higher than those of simple multi or single crystalline silicon cells. While three junction non-silicon tandem solar cells have achieved unconcentrated efficiencies of up to...

  15. Preparation of silicon carbide fibers

    DOE Patents [OSTI]

    Wei, G.C.

    1983-10-12

    Silicon carbide fibers suitable for use in the fabrication of dense, high-strength, high-toughness SiC composites or as thermal insulating materials in oxidizing environments are fabricated by a new, simplified method wherein a mixture of short-length rayon fibers and colloidal silica is homogenized in a water slurry. Water is removed from the mixture by drying in air at 120/sup 0/C and the fibers are carbonized by (pyrolysis) heating the mixture to 800 to 1000/sup 0/C in argon. The mixture is subsequently reacted at 1550 to 1900/sup 0/C in argon to yield pure ..beta..-SiC fibers.

  16. Amorphous silicon carbide passivating layers for crystalline-silicon-based heterojunction solar cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Boccard, Mathieu; Holman, Zachary C.

    2015-08-14

    With this study, amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphousmore » silicon carbide being shown to surpass amorphous silicon for temperatures above 300°C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.« less

  17. Amorphous silicon carbide passivating layers for crystalline-silicon-based heterojunction solar cells

    SciTech Connect (OSTI)

    Boccard, Mathieu; Holman, Zachary C.

    2015-08-14

    With this study, amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphous silicon carbide being shown to surpass amorphous silicon for temperatures above 300C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.

  18. Compensated amorphous-silicon solar cell

    DOE Patents [OSTI]

    Devaud, G.

    1982-06-21

    An amorphous silicon solar cell including an electrically conductive substrate, a layer of glow discharge deposited hydrogenated amorphous silicon having regions of differing conductivity with at least one region of intrinsic hydrogenated amorphous silicon. The layer of hydrogenated amorphous silicon has opposed first and second major surfaces where the first major surface contacts the elecrically conductive substrate and an electrode for electrically contacting the second major surface. The intrinsic hydrogenated amorphous silicon region is deposited in a glow discharge with an atmosphere which includes not less than about 0.02 atom percent mono-atomic boron. An improved N.I.P. solar cell is disclosed using a BF/sub 3/ doped intrinsic layer.

  19. Micro benchtop optics by bulk silicon micromachining

    DOE Patents [OSTI]

    Lee, Abraham P. (Walnut Creek, CA); Pocha, Michael D. (Livermore, CA); McConaghy, Charles F. (Livermore, CA); Deri, Robert J. (Pleasanton, CA)

    2000-01-01

    Micromachining of bulk silicon utilizing the parallel etching characteristics of bulk silicon and integrating the parallel etch planes of silicon with silicon wafer bonding and impurity doping, enables the fabrication of on-chip optics with in situ aligned etched grooves for optical fibers, micro-lenses, photodiodes, and laser diodes. Other optical components that can be microfabricated and integrated include semi-transparent beam splitters, micro-optical scanners, pinholes, optical gratings, micro-optical filters, etc. Micromachining of bulk silicon utilizing the parallel etching characteristics thereof can be utilized to develop miniaturization of bio-instrumentation such as wavelength monitoring by fluorescence spectrometers, and other miniaturized optical systems such as Fabry-Perot interferometry for filtering of wavelengths, tunable cavity lasers, micro-holography modules, and wavelength splitters for optical communication systems.

  20. Fabricating solar cells with silicon nanoparticles

    DOE Patents [OSTI]

    Loscutoff, Paul; Molesa, Steve; Kim, Taeseok

    2014-09-02

    A laser contact process is employed to form contact holes to emitters of a solar cell. Doped silicon nanoparticles are formed over a substrate of the solar cell. The surface of individual or clusters of silicon nanoparticles is coated with a nanoparticle passivation film. Contact holes to emitters of the solar cell are formed by impinging a laser beam on the passivated silicon nanoparticles. For example, the laser contact process may be a laser ablation process. In that case, the emitters may be formed by diffusing dopants from the silicon nanoparticles prior to forming the contact holes to the emitters. As another example, the laser contact process may be a laser melting process whereby portions of the silicon nanoparticles are melted to form the emitters and contact holes to the emitters.

  1. Production of high specific activity silicon-32

    DOE Patents [OSTI]

    Phillips, Dennis R. (Los Alamos, NM); Brzezinski, Mark A. (Santa Barbara, CA)

    1994-01-01

    A process for preparation of silicon-32 is provide and includes contacting an irradiated potassium chloride target, including spallation products from a prior irradiation, with sufficient water, hydrochloric acid or potassium hydroxide to form a solution, filtering the solution, adjusting pH of the solution to from about 5.5 to about 7.5, admixing sufficient molybdate-reagent to the solution to adjust the pH of the solution to about 1.5 and to form a silicon-molybdate complex, contacting the solution including the silicon-molybdate complex with a dextran-based material, washing the dextran-based material to remove residual contaminants such as sodium-22, separating the silicon-molybdate complex from the dextran-based material as another solution, adding sufficient hydrochloric acid and hydrogen peroxide to the solution to prevent reformation of the silicon-molybdate complex and to yield an oxidization state of the molybdate adapted for subsequent separation by an anion exchange material, contacting the solution with an anion exchange material whereby the molybdate is retained by the anion exchange material and the silicon remains in solution, and optionally adding sufficient alkali metal hydroxide to adjust the pH of the solution to about 12 to 13. Additionally, a high specific activity silicon-32 product having a high purity is provided.

  2. Process for forming silicon carbide films and microcomponents

    DOE Patents [OSTI]

    Hamza, A.V.; Balooch, M.; Moalem, M.

    1999-01-19

    Silicon carbide films and microcomponents are grown on silicon substrates at surface temperatures between 900 K and 1700 K via C{sub 60} precursors in a hydrogen-free environment. Selective crystalline silicon carbide growth can be achieved on patterned silicon-silicon oxide samples. Patterned SiC films are produced by making use of the high reaction probability of C{sub 60} with silicon at surface temperatures greater than 900 K and the negligible reaction probability for C{sub 60} on silicon dioxide at surface temperatures less than 1250 K. 5 figs.

  3. Process for producing amorphous and crystalline silicon nitride

    DOE Patents [OSTI]

    Morgan, P.E.D.; Pugar, E.A.

    1985-11-12

    A process for producing amorphous or crystalline silicon nitride is disclosed which comprises reacting silicon disulfide ammonia gas at elevated temperature. In a preferred embodiment silicon disulfide in the form of whiskers'' or needles is heated at temperature ranging from about 900 C to about 1,200 C to produce silicon nitride which retains the whisker or needle morphological characteristics of the silicon disulfide. Silicon carbide, e.g. in the form of whiskers, also can be prepared by reacting substituted ammonia, e.g. methylamine, or a hydrocarbon containing active hydrogen-containing groups, such as ethylene, with silicon disulfide, at elevated temperature, e.g. 900 C. 6 figs.

  4. Process for forming silicon carbide films and microcomponents

    DOE Patents [OSTI]

    Hamza, Alex V. (Livermore, CA); Balooch, Mehdi (Berkeley, CA); Moalem, Mehran (Berkeley, CA)

    1999-01-01

    Silicon carbide films and microcomponents are grown on silicon substrates at surface temperatures between 900 K and 1700 K via C.sub.60 precursors in a hydrogen-free environment. Selective crystalline silicon carbide growth can be achieved on patterned silicon-silicon oxide samples. Patterned SiC films are produced by making use of the high reaction probability of C.sub.60 with silicon at surface temperatures greater than 900 K and the negligible reaction probability for C.sub.60 on silicon dioxide at surface temperatures less than 1250 K.

  5. Transistors using crystalline silicon devices on glass

    DOE Patents [OSTI]

    McCarthy, Anthony M. (Menlo Park, CA)

    1995-01-01

    A method for fabricating transistors using single-crystal silicon devices on glass. This method overcomes the potential damage that may be caused to the device during high voltage bonding and employs a metal layer which may be incorporated as part of the transistor. This is accomplished such that when the bonding of the silicon wafer or substrate to the glass substrate is performed, the voltage and current pass through areas where transistors will not be fabricated. After removal of the silicon substrate, further metal may be deposited to form electrical contact or add functionality to the devices. By this method both single and gate-all-around devices may be formed.

  6. Holey Silicon as an Efficient Thermoelectric Material

    SciTech Connect (OSTI)

    Tang, Jinyao; Wang, Hung-Ta; Hyun Lee, Dong; Fardy, Melissa; Huo, Ziyang; Russell, Thomas P.; Yang, Peidong

    2010-09-30

    This work investigated the thermoelectric properties of thin silicon membranes that have been decorated with high density of nanoscopic holes. These ?holey silicon? (HS) structures were fabricated by either nanosphere or block-copolymer lithography, both of which are scalable for practical device application. By reducing the pitch of the hexagonal holey pattern down to 55 nm with 35percent porosity, the thermal conductivity of HS is consistently reduced by 2 orders of magnitude and approaches the amorphous limit. With a ZT value of 0.4 at room temperature, the thermoelectric performance of HS is comparable with the best value recorded in silicon nanowire system.

  7. Manufacture of silicon carbide using solar energy

    DOE Patents [OSTI]

    Glatzmaier, Gregory C. (Boulder, CO)

    1992-01-01

    A method is described for producing silicon carbide particles using solar energy. The method is efficient and avoids the need for use of electrical energy to heat the reactants. Finely divided silica and carbon are admixed and placed in a solar-heated reaction chamber for a time sufficient to cause a reaction between the ingredients to form silicon carbide of very small particle size. No grinding of silicon carbide is required to obtain small particles. The method may be carried out as a batch process or as a continuous process.

  8. Use of free silicon in liquid phase sintering of silicon nitrides and sialons

    DOE Patents [OSTI]

    Raj, Rishi (Ithaca, NY); Baik, Sunggi (Ithaca, NY)

    1985-11-12

    This invention relates to the production of improved high density nitrogen based ceramics by liquid-phase densification of silicon nitride or a compound of silicon-nitrogen-oxygen-metal, e.g. a sialon. In the process and compositions of the invention minor amounts of finely divided silicon are employed together with the conventional liquid phase producing additives to enhance the densification of the resultant ceramic.

  9. Use of free silicon in liquid phase sintering of silicon nitrides and sialons

    DOE Patents [OSTI]

    Raj, R.; Baik, S.

    1985-11-12

    This invention relates to the production of improved high density nitrogen based ceramics by liquid-phase densification of silicon nitride or a compound of silicon-nitrogen-oxygen-metal, e.g. a sialon. In the process and compositions of the invention minor amounts of finely divided silicon are employed together with the conventional liquid phase producing additives to enhance the densification of the resultant ceramic. 4 figs.

  10. High Efficiency, Low Cost Solar Cells Manufactured Using 'Silicon Ink' on Thin Crystalline Silicon Wafers

    SciTech Connect (OSTI)

    Antoniadis, H.

    2011-03-01

    Reported are the development and demonstration of a 17% efficient 25mm x 25mm crystalline Silicon solar cell and a 16% efficient 125mm x 125mm crystalline Silicon solar cell, both produced by Ink-jet printing Silicon Ink on a thin crystalline Silicon wafer. To achieve these objectives, processing approaches were developed to print the Silicon Ink in a predetermined pattern to form a high efficiency selective emitter, remove the solvents in the Silicon Ink and fuse the deposited particle Silicon films. Additionally, standard solar cell manufacturing equipment with slightly modified processes were used to complete the fabrication of the Silicon Ink high efficiency solar cells. Also reported are the development and demonstration of a 18.5% efficient 125mm x 125mm monocrystalline Silicon cell, and a 17% efficient 125mm x 125mm multicrystalline Silicon cell, by utilizing high throughput Ink-jet and screen printing technologies. To achieve these objectives, Innovalight developed new high throughput processing tools to print and fuse both p and n type particle Silicon Inks in a predetermined pat-tern applied either on the front or the back of the cell. Additionally, a customized Ink-jet and screen printing systems, coupled with customized substrate handling solution, customized printing algorithms, and a customized ink drying process, in combination with a purchased turn-key line, were used to complete the high efficiency solar cells. This development work delivered a process capable of high volume producing 18.5% efficient crystalline Silicon solar cells and enabled the Innovalight to commercialize its technology by the summer of 2010.

  11. Crystalline Silicon Photovolatic Cell Basics | Department of Energy

    Office of Environmental Management (EM)

    Crystalline Silicon Photovolatic Cell Basics Crystalline Silicon Photovolatic Cell Basics August 19, 2013 - 4:58pm Addthis Crystalline silicon cells are made of silicon atoms connected to one another to form a crystal lattice. This lattice comprises the solid material that forms the photovoltaic (PV) cell's semiconductors. This section describes the atomic structure and bandgap energy of these cells. Atomic Structure Illustration of a silicon crystal with its 14 electrons orbiting a nucleus of

  12. 6N Silicon Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Jump to: navigation, search Name: 6N Silicon Inc Place: Mississauga, Ontario, Canada Zip: L5T 1E6 Sector: Solar Product: Canadian manufactuer of upgraded metallurgical...

  13. Silicon nitride having a high tensile strength

    DOE Patents [OSTI]

    Pujari, V.K.; Tracey, D.M.; Foley, M.R.; Paille, N.I.; Pelletier, P.J.; Sales, L.C.; Willkens, C.A.; Yeckley, R.L.

    1998-06-02

    A ceramic body is disclosed comprising at least about 80 w/o silicon nitride and having a mean tensile strength of at least about 800 MPa. 4 figs.

  14. Synthesis and characterization of silicon phthalocyanines bearing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Authors: Bergkamp, J. J., Sherman, B. D., Mario-Ochoa, E., Palacios, R. E., Cosa, G., Moore, T. A., Gust, D., and Moore, A. L. Title: Synthesis and characterization of silicon...

  15. The Silicon Mine | Open Energy Information

    Open Energy Info (EERE)

    produce solar grade polysilicon suitable for the production of wafers or as the base material for the manufacture of solar cells. References: The Silicon Mine1 This article is a...

  16. Lithium ion batteries based on nanoporous silicon

    DOE Patents [OSTI]

    Tolbert, Sarah H.; Nemanick, Eric J.; Kang, Chris Byung-Hwa

    2015-09-22

    A lithium ion battery that incorporates an anode formed from a Group IV semiconductor material such as porous silicon is disclosed. The battery includes a cathode, and an anode comprising porous silicon. In some embodiments, the anode is present in the form of a nanowire, a film, or a powder, the porous silicon having a pore diameters within the range between 2 nm and 100 nm and an average wall thickness of within the range between 1 nm and 100 nm. The lithium ion battery further includes, in some embodiments, a non-aqueous lithium containing electrolyte. Lithium ion batteries incorporating a porous silicon anode demonstrate have high, stable lithium alloying capacity over many cycles.

  17. Apparatus for silicon nitride precursor solids recovery

    DOE Patents [OSTI]

    Crosbie, Gary M. (Dearborn, MI); Predmesky, Ronald L. (Livonia, MI); Nicholson, John M. (Wayne, MI)

    1995-04-04

    Method and apparatus are provided for collecting reaction product solids entrained in a gaseous outflow from a reaction situs, wherein the gaseous outflow includes a condensable vapor. A condensate is formed of the condensable vapor on static mixer surfaces within a static mixer heat exchanger. The entrained reaction product solids are captured in the condensate which can be collected for further processing, such as return to the reaction situs. In production of silicon imide, optionally integrated into a production process for making silicon nitride caramic, wherein reactant feed gas comprising silicon halide and substantially inert carrier gas is reacted with liquid ammonia in a reaction vessel, silicon imide reaction product solids entrained in a gaseous outflow comprising residual carrier gas and vaporized ammonia can be captured by forming a condensate of the ammonia vapor on static mixer surfaces of a static mixer heat exchanger.

  18. Method for silicon nitride precursor solids recovery

    DOE Patents [OSTI]

    Crosbie, Gary M. (Dearborn, MI); Predmesky, Ronald L. (Livonia, MI); Nicholson, John M. (Wayne, MI)

    1992-12-15

    Method and apparatus are provided for collecting reaction product solids entrained in a gaseous outflow from a reaction situs, wherein the gaseous outflow includes a condensable vapor. A condensate is formed of the condensable vapor on static mixer surfaces within a static mixer heat exchanger. The entrained reaction product solids are captured in the condensate which can be collected for further processing, such as return to the reaction situs. In production of silicon imide, optionally integrated into a production process for making silicon nitride caramic, wherein reactant feed gas comprising silicon halide and substantially inert carrier gas is reacted with liquid ammonia in a reaction vessel, silicon imide reaction product solids entrained in a gaseous outflow comprising residual carrier gas and vaporized ammonia can be captured by forming a condensate of the ammonia vapor on static mixer surfaces of a static mixer heat exchanger.

  19. Microtextured Silicon Surfaces for Detectors, Sensors & Photovoltaics

    SciTech Connect (OSTI)

    Carey, JE; Mazur, E

    2005-05-19

    With support from this award we studied a novel silicon microtexturing process and its application in silicon-based infrared photodetectors. By irradiating the surface of a silicon wafer with intense femtosecond laser pulses in the presence of certain gases or liquids, the originally shiny, flat surface is transformed into a dark array of microstructures. The resulting microtextured surface has near-unity absorption from near-ultraviolet to infrared wavelengths well below the band gap. The high, broad absorption of microtextured silicon could enable the production of silicon-based photodiodes for use as inexpensive, room-temperature multi-spectral photodetectors. Such detectors would find use in numerous applications including environmental sensors, solar energy, and infrared imaging. The goals of this study were to learn about microtextured surfaces and then develop and test prototype silicon detectors for the visible and infrared. We were extremely successful in achieving our goals. During the first two years of this award, we learned a great deal about how microtextured surfaces form and what leads to their remarkable optical properties. We used this knowledge to build prototype detectors with high sensitivity in both the visible and in the near-infrared. We obtained room-temperature responsivities as high as 100 A/W at 1064 nm, two orders of magnitude higher than standard silicon photodiodes. For wavelengths below the band gap, we obtained responsivities as high as 50 mA/W at 1330 nm and 35 mA/W at 1550 nm, close to the responsivity of InGaAs photodiodes and five orders of magnitude higher than silicon devices in this wavelength region.

  20. University Crystalline Silicon Photovoltaics Research and Development

    SciTech Connect (OSTI)

    Ajeet Rohatgi; Vijay Yelundur; Abasifreke Ebong; Dong Seop Kim

    2008-08-18

    The overall goal of the program is to advance the current state of crystalline silicon solar cell technology to make photovoltaics more competitive with conventional energy sources. This program emphasizes fundamental and applied research that results in low-cost, high-efficiency cells on commercial silicon substrates with strong involvement of the PV industry, and support a very strong photovoltaics education program in the US based on classroom education and hands-on training in the laboratory.

  1. Adhesion Impact of Silicone Contamination during Encapsulation.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Adhesion Impact of Silicone Contamination during Encapsulation. Citation Details In-Document Search Title: Adhesion Impact of Silicone Contamination during Encapsulation. Abstract not provided. Authors: Grillet, Anne Mary ; Barringer, David Alan ; Ohlhausen, James Anthony ; Brumbach, Michael Todd ; Brooks, Carlton F. ; Tandon, Rajan ; Roach, Robert Allen Publication Date: 2014-06-01 OSTI Identifier: 1146813 Report Number(s): SAND2014-4736C 520488 DOE Contract

  2. Selective etching of silicon carbide films

    DOE Patents [OSTI]

    Gao, Di; Howe, Roger T.; Maboudian, Roya

    2006-12-19

    A method of etching silicon carbide using a nonmetallic mask layer. The method includes providing a silicon carbide substrate; forming a non-metallic mask layer by applying a layer of material on the substrate; patterning the mask layer to expose underlying areas of the substrate; and etching the underlying areas of the substrate with a plasma at a first rate, while etching the mask layer at a rate lower than the first rate.

  3. Silicon purification melting for photovoltaic applications

    SciTech Connect (OSTI)

    VAN DEN AVYLE,JAMES A.; HO,PAULINE; GEE,JAMES M.

    2000-04-01

    The availability of polysilicon feedstock has become a major issue for the photovoltaic (PV) industry in recent years. Most of the current polysilicon feedstock is derived from rejected material from the semiconductor industry. However, the reject material can become scarce and more expensive during periods of expansion in the integrated-circuit industry. Continued rapid expansion of the PV crystalline-silicon industry will eventually require a dedicated supply of polysilicon feedstock to produce solar cells at lower costs. The photovoltaic industry can accept a lower purity polysilicon feedstock (solar-grade) compared to the semiconductor industry. The purity requirements and potential production techniques for solar-grade polysilicon have been reviewed. One interesting process from previous research involves reactive gas blowing of the molten silicon charge. As an example, Dosaj et all reported a reduction of metal and boron impurities from silicon melts using reactive gas blowing with 0{sub 2} and Cl{sub 2}. The same authors later reassessed their data and the literature, and concluded that Cl{sub 2}and 0{sub 2}/Cl{sub 2} gas blowing are only effective for removing Al, Ca, and Mg from the silicon melt. Researchers from Kawasaki Steel Corp. reported removal of B and C from silicon melts using reactive gas blowing with an 0{sub 2}/Ar plasma torch. Processes that purify the silicon melt are believed to be potentially much lower cost compared to present production methods that purify gas species.

  4. Purification and deposition of silicon by an iodide disproportionation reaction

    DOE Patents [OSTI]

    Wang, Tihu (Littleton, CO); Ciszek, Theodore F. (Evergreen, CO)

    2002-01-01

    Method and apparatus for producing purified bulk silicon from highly impure metallurgical-grade silicon source material at atmospheric pressure. Method involves: (1) initially reacting iodine and metallurgical-grade silicon to create silicon tetraiodide and impurity iodide byproducts in a cold-wall reactor chamber; (2) isolating silicon tetraiodide from the impurity iodide byproducts and purifying it by distillation in a distillation chamber; and (3) transferring the purified silicon tetraiodide back to the cold-wall reactor chamber, reacting it with additional iodine and metallurgical-grade silicon to produce silicon diiodide and depositing the silicon diiodide onto a substrate within the cold-wall reactor chamber. The two chambers are at atmospheric pressure and the system is open to allow the introduction of additional source material and to remove and replace finished substrates.

  5. Silica substrate or portion formed from oxidation of monocrystalline silicon

    DOE Patents [OSTI]

    Matzke, Carolyn M.; Rieger, Dennis J.; Ellis, Robert V.

    2003-07-15

    A method is disclosed for forming an inclusion-free silica substrate using a monocrystalline silicon substrate as the starting material and oxidizing the silicon substrate to convert it entirely to silica. The oxidation process is performed from both major surfaces of the silicon substrate using a conventional high-pressure oxidation system. The resulting product is an amorphous silica substrate which is expected to have superior etching characteristics for microfabrication than conventional fused silica substrates. The present invention can also be used to convert only a portion of a monocrystalline silicon substrate to silica by masking the silicon substrate and locally thinning a portion the silicon substrate prior to converting the silicon portion entirely to silica. In this case, the silica formed by oxidizing the thinned portion of the silicon substrate can be used, for example, as a window to provide optical access through the silicon substrate.

  6. Methods and apparatus for manufacturing monocrystalline cast silicon and monocrystalline cast silicon bodies for photovoltaics

    DOE Patents [OSTI]

    Stoddard, Nathan G

    2014-01-14

    Methods and apparatuses are provided for casting silicon for photovoltaic cells and other applications. With such methods and apparatuses, a cast body of monocrystalline silicon may be formed that is free of, or substantially free of, radially-distributed impurities and defects and having at least two dimensions that are each at least about 35 cm is provided.

  7. Methods and apparatuses for manufacturing monocrystalline cast silicon and monocrystalline cast silicon bodies for photovoltaics

    DOE Patents [OSTI]

    Stoddard, Nathan G. (Gettysburg, PA)

    2011-11-01

    Methods and apparatuses are provided for casting silicon for photovoltaic cells and other applications. With such methods and apparatuses, a cast body of monocrystalline silicon may be formed that is free of, or substantially free of, radially-distributed impurities and defects and having at least two dimensions that are each at least about 35 cm is provided.

  8. Silicon-based nanoenergetic composites

    SciTech Connect (OSTI)

    Asay, Blaine; Son, Steven; Mason, Aaron; Yarrington, Cole; Cho, K Y; Gesner, J; Yetter, R A

    2009-01-01

    Fundamental combustion properties of silicon-based nano-energetic composites was studied by performing equilibrium calculations, 'flame tests', and instrumented burn-tube tests. That the nominal maximum flame temperature and for many Si-oxidizer systems is about 3000 K, with exceptions. Some of these exceptions are Si-metal oxides with temperatures ranging from 2282 to 2978 K. Theoretical maximum gas production of the Si composites ranged from 350-6500 cm{sup 3}/g of reactant with NH{sub 4}ClO{sub 4} - Si producing the most gas at 6500 cm{sup 3}/g and Fe{sub 2}O{sub 3} producing the least. Of the composites tested NH{sub 4}ClO{sub 4} - Si showed the fastest burning rates with the fastest at 2.1 km/s. The Si metal oxide burning rates where on the order of 0.03-75 mls the slowest of which was nFe{sub 2}O{sub 3} - Si.

  9. Metallic coatings on silicon substrates, and methods of forming metallic coatings on silicon substrates

    DOE Patents [OSTI]

    Branagan, Daniel J. (Idaho Falls, ID); Hyde, Timothy A. (Idaho Falls, ID); Fincke, James R. (Los Alamos, NM)

    2008-03-11

    The invention includes methods of forming a metallic coating on a substrate which contains silicon. A metallic glass layer is formed over a silicon surface of the substrate. The invention includes methods of protecting a silicon substrate. The substrate is provided within a deposition chamber along with a deposition target. Material from the deposition target is deposited over at least a portion of the silicon substrate to form a protective layer or structure which contains metallic glass. The metallic glass comprises iron and one or more of B, Si, P and C. The invention includes structures which have a substrate containing silicon and a metallic layer over the substrate. The metallic layer contains less than or equal to about 2 weight % carbon and has a hardness of at least 9.2 GPa. The metallic layer can have an amorphous microstructure or can be devitrified to have a nanocrystalline microstructure.

  10. Silicon ball grid array chip carrier

    DOE Patents [OSTI]

    Palmer, David W.; Gassman, Richard A.; Chu, Dahwey

    2000-01-01

    A ball-grid-array integrated circuit (IC) chip carrier formed from a silicon substrate is disclosed. The silicon ball-grid-array chip carrier is of particular use with ICs having peripheral bond pads which can be reconfigured to a ball-grid-array. The use of a semiconductor substrate such as silicon for forming the ball-grid-array chip carrier allows the chip carrier to be fabricated on an IC process line with, at least in part, standard IC processes. Additionally, the silicon chip carrier can include components such as transistors, resistors, capacitors, inductors and sensors to form a "smart" chip carrier which can provide added functionality and testability to one or more ICs mounted on the chip carrier. Types of functionality that can be provided on the "smart" chip carrier include boundary-scan cells, built-in test structures, signal conditioning circuitry, power conditioning circuitry, and a reconfiguration capability. The "smart" chip carrier can also be used to form specialized or application-specific ICs (ASICs) from conventional ICs. Types of sensors that can be included on the silicon ball-grid-array chip carrier include temperature sensors, pressure sensors, stress sensors, inertia or acceleration sensors, and/or chemical sensors. These sensors can be fabricated by IC processes and can include microelectromechanical (MEM) devices.

  11. Method to fabricate silicon chromatographic column comprising fluid ports

    DOE Patents [OSTI]

    Manginell, Ronald P.; Frye-Mason, Gregory C.; Heller, Edwin J.; Adkins, Douglas R.

    2004-03-02

    A new method for fabricating a silicon chromatographic column comprising through-substrate fluid ports has been developed. This new method enables the fabrication of multi-layer interconnected stacks of silicon chromatographic columns.

  12. Process for manufacture of semipermeable silicon nitride membranes

    DOE Patents [OSTI]

    Galambos, Paul Charles; Shul, Randy J.; Willison, Christi Gober

    2003-12-09

    A new class of semipermeable membranes, and techniques for their fabrication, have been developed. These membranes, formed by appropriate etching of a deposited silicon nitride layer, are robust, easily manufacturable, and compatible with a wide range of silicon micromachining techniques.

  13. Harmful Shunting Mechanisms Found in Silicon Solar Cells (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01

    Scientists developed near-field optical microscopy for imaging electrical breakdown in solar cells and identified critical electrical breakdown mechanisms operating in industrial silicon and epitaxial silicon solar cells.

  14. Overview of Silicon Detectors in STAR: Present and Future

    SciTech Connect (OSTI)

    Kabana, Sonia; Collaboration: The SVT, SSD and HFT detector groups of the STAR experiment at RHIC

    2011-12-13

    The STAR experiment at RHIC aims to study the QCD phase transition and the origin of the spin of the proton. Its main detector for charged particle track reconstruction is a Time Projection Chamber, which has been supplemented with a silicon detector involving two different technologies, in particular double-sided silicon strip and silicon drift technology. STAR is preparing now for a new Silicon Vertex Detector, using double-sided silicon strip, single-sided silicon strip-pads, and CMOS monolithic active pixel sensors technology, planned to take data in 2014. We give an overview of the design, calibration and performances of the silicon detectors used by the STAR experiment in the past and the expected performances of the future silicon detector upgrade.

  15. Direct-Write of Silicon and Germanium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electron microscopes at ALS Beamlines 7.3.1 and 11.0.1. From Sand to Processor Modern electronic integrated circuits are made of silicon. Silicon is the most abundant element...

  16. Huiwan Silicon Park Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Huiwan Silicon Park Co Ltd Jump to: navigation, search Name: Huiwan Silicon Park Co Ltd Place: Baishan, Jilin Province, China Product: A foreign-invested Chinese company plans to...

  17. Japan Solar Silicon Co Ltd JSS | Open Energy Information

    Open Energy Info (EERE)

    Solar Silicon Co Ltd JSS Jump to: navigation, search Name: Japan Solar Silicon Co Ltd (JSS) Place: Tokyo, Japan Sector: Solar Product: A JV company between Chisso, Nippon Mining...

  18. Joining of porous silicon carbide bodies

    DOE Patents [OSTI]

    Bates, Carl H. (Worcester, MA); Couhig, John T. (Worcester, MA); Pelletier, Paul J. (Thompson, CT)

    1990-05-01

    A method of joining two porous bodies of silicon carbide is disclosed. It entails utilizing an aqueous slip of a similar silicon carbide as was used to form the porous bodies, including the sintering aids, and a binder to initially join the porous bodies together. Then the composite structure is subjected to cold isostatic pressing to form a joint having good handling strength. Then the composite structure is subjected to pressureless sintering to form the final strong bond. Optionally, after the sintering the structure is subjected to hot isostatic pressing to further improve the joint and densify the structure. The result is a composite structure in which the joint is almost indistinguishable from the silicon carbide pieces which it joins.

  19. Electrically tunable hot-silicon terahertz attenuator

    SciTech Connect (OSTI)

    Wang, Minjie; Vajtai, Robert; Ajayan, Pulickel M.; Kono, Junichiro

    2014-10-06

    We have developed a continuously tunable, broadband terahertz attenuator with a transmission tuning range greater than 10{sup 3}. Attenuation tuning is achieved electrically, by simply changing the DC voltage applied to a heating wire attached to a bulk silicon wafer, which controls its temperature between room temperature and ?550?K, with the corresponding free-carrier density adjusted between ?10{sup 11?}cm{sup ?3} and ?10{sup 17?}cm{sup ?3}. This hot-silicon-based terahertz attenuator works most effectively at 450550?K (corresponding to a DC voltage variation of only ?7?V) and completely shields terahertz radiation above 550?K in a frequency range of 0.12.5 THz. Both intrinsic and doped silicon wafers were tested and demonstrated to work well as a continuously tunable attenuator. All behaviors can be understood quantitatively via the free-carrier Drude model taking into account thermally activated intrinsic carriers.

  20. Transistors using crystalline silicon devices on glass

    DOE Patents [OSTI]

    McCarthy, A.M.

    1995-05-09

    A method is disclosed for fabricating transistors using single-crystal silicon devices on glass. This method overcomes the potential damage that may be caused to the device during high voltage bonding and employs a metal layer which may be incorporated as part of the transistor. This is accomplished such that when the bonding of the silicon wafer or substrate to the glass substrate is performed, the voltage and current pass through areas where transistors will not be fabricated. After removal of the silicon substrate, further metal may be deposited to form electrical contact or add functionality to the devices. By this method both single and gate-all-around devices may be formed. 13 figs.

  1. Efficiency of silicon solar cells containing chromium

    DOE Patents [OSTI]

    Frosch, Robert A. Administrator of the National Aeronautics and Space; Salama, Amal M.

    1982-01-01

    Efficiency of silicon solar cells containing about 10.sup.15 atoms/cm.sup.3 of chromium is improved about 26% by thermal annealing of the silicon wafer at a temperature of 200.degree. C. to form chromium precipitates having a diameter of less than 1 Angstrom. Further improvement in efficiency is achieved by scribing laser lines onto the back surface of the wafer at a spacing of at least 0.5 mm and at a depth of less than 13 micrometers to preferentially precipitate chromium near the back surface and away from the junction region of the device. This provides an economical way to improve the deleterious effects of chromium, one of the impurities present in metallurgical grade silicon material.

  2. Silicon Valley Power- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Silicon Valley Power offers rebates to residential customers for the purchase of a variety of energy efficient products including:

  3. Deposition method for producing silicon carbide high-temperature semiconductors

    DOE Patents [OSTI]

    Hsu, George C. (La Crescenta, CA); Rohatgi, Naresh K. (W. Corine, CA)

    1987-01-01

    An improved deposition method for producing silicon carbide high-temperature semiconductor material comprising placing a semiconductor substrate composed of silicon carbide in a fluidized bed silicon carbide deposition reactor, fluidizing the bed particles by hydrogen gas in a mildly bubbling mode through a gas distributor and heating the substrate at temperatures around 1200.degree.-1500.degree. C. thereby depositing a layer of silicon carbide on the semiconductor substrate.

  4. Unique Quantum Effect Found in Silicon Nanocrystals - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unique Quantum Effect Found in Silicon Nanocrystals Quantum Dot Materials May Improve Efficiency of Silicon Solar Cells July 24, 2007 Researchers at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL), collaborating with Innovalight, Inc., have shown that a new and important effect called Multiple Exciton Generation (MEG) occurs efficiently in silicon nanocrystals. MEG results in the formation of more than one electron per absorbed photon. Silicon is the dominant

  5. Crystallization Behavior of Virgin TR-55 Silicone Rubber Measured...

    Office of Scientific and Technical Information (OSTI)

    Language: English Subject: 36 MATERIALS SCIENCE; CRYSTALLIZATION; GEOMETRY; HEATING; MELTING; NITROGEN; RUBBERS; SILICONES; STORAGE; STRAINS; THERMAL ANALYSIS; THERMAL EXPANSION; ...

  6. Predicting fracture in micron-scale polycrystalline silicon MEMS...

    Office of Scientific and Technical Information (OSTI)

    United States Language: English Subject: 42 ENGINEERING; CRACKS; MICROELECTRONIC CIRCUITS; SILICON; TENSILE PROPERTIES; FAILURE MODE ANALYSIS Polycrystalline;...

  7. Photovoltaic Crystalline Silicon Cell Basics | Department of Energy

    Energy Savers [EERE]

    Crystalline Silicon Cell Basics Photovoltaic Crystalline Silicon Cell Basics August 20, 2013 - 2:00pm Addthis To separate electrical charges, crystalline silicon cells must have a built-in electric field. Light shining on crystalline silicon may free electrons within the crystal lattice, but for these electrons to do useful work-such as provide electricity to a light bulb-they must be separated and directed into an electrical circuit. PV Semiconductors To create an electric field within a

  8. Lobbyist Disclosure Form - Silicon Valley | Department of Energy

    Office of Environmental Management (EM)

    Silicon Valley Lobbyist Disclosure Form - Silicon Valley Jonathan Silver, Energy Department executive director loans program, gave Colleen Quinn, Silicon Valley Leadership Group vice president of government relations and public policy, a broad overview of the work done by the LPO, and discussed the possible future of clean energy investment. PDF icon Lobbyist Disclosure Form - Silicon Valley.pdf More Documents & Publications Lobbyist Disclosure Form - AltEn Lobbyist Disclosure Form - First

  9. Liquid phase sintering of silicon carbide

    DOE Patents [OSTI]

    Cutler, R.A.; Virkar, A.V.; Hurford, A.C.

    1989-05-09

    Liquid phase sintering is used to densify silicon carbide based ceramics using a compound comprising a rare earth oxide and aluminum oxide to form liquids at temperatures in excess of 1,600 C. The resulting sintered ceramic body has a density greater than 95% of its theoretical density and hardness in excess of 23 GPa. Boron and carbon are not needed to promote densification and silicon carbide powder with an average particle size of greater than one micron can be densified via the liquid phase process. The sintered ceramic bodies made by the present invention are fine grained and have secondary phases resulting from the liquid phase. 4 figs.

  10. Ultralow-Power Silicon Microphotonic Communications Platform

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultralow-Power Silicon Microphotonic Communications Platform 1 R&D 100 Entry Ultralow-Power Silicon Microphotonic Communications Platform 2 R&D 100 Entry Submitting Organization Sandia National Laboratories P. O. Box 5800 Albuquerque New Mexico 87185-1082 USA Michael R. Watts Phone: (505) 284-9616 Fax: (505) 284-7690 mwatts@sandia.gov AFFIRMATION: I affirm that all information submitted as a part of, or supplemental to, this entry is a fair and accurate representation of this product.

  11. Silicon metal-semiconductor-metal photodetector

    DOE Patents [OSTI]

    Brueck, Steven R. J. (Albuquerque, NM); Myers, David R. (Albuquerque, NM); Sharma, Ashwani K. (Albuquerque, NM)

    1997-01-01

    Silicon MSM photodiodes sensitive to radiation in the visible to near infrared spectral range are produced by altering the absorption characteristics of crystalline Si by ion implantation. The implantation produces a defected region below the surface of the silicon with the highest concentration of defects at its base which acts to reduce the contribution of charge carriers formed below the defected layer. The charge carriers generated by the radiation in the upper regions of the defected layer are very quickly collected between biased Schottky barrier electrodes which form a metal-semiconductor-metal structure for the photodiode.

  12. Silicon metal-semiconductor-metal photodetector

    DOE Patents [OSTI]

    Brueck, Steven R. J. (Albuquerque, NM); Myers, David R. (Albuquerque, NM); Sharma, Ashwani K. (Albuquerque, NM)

    1995-01-01

    Silicon MSM photodiodes sensitive to radiation in the visible to near infrared spectral range are produced by altering the absorption characteristics of crystalline Si by ion implantation. The implantation produces a defected region below the surface of the silicon with the highest concentration of defects at its base which acts to reduce the contribution of charge carriers formed below the defected layer. The charge carriers generated by the radiation in the upper regions of the defected layer are very quickly collected between biased Schottky barrier electrodes which form a metal-semiconductor-metal structure for the photodiode.

  13. Silicon fiber with p-n junction

    SciTech Connect (OSTI)

    Homa, D.; Cito, A.; Pickrell, G.; Hill, C.; Scott, B.

    2014-09-22

    In this study, we fabricated a p-n junction in a fiber with a phosphorous doped silicon core and fused silica cladding. The fibers were fabricated via a hybrid process of the core-suction and melt-draw techniques and maintained overall diameters ranging from 200 to 900??m and core diameters of 20800??m. The p-n junction was formed by doping the fiber with boron and confirmed via the current-voltage characteristic. The demonstration of a p-n junction in a melt-drawn silicon core fiber paves the way for the seamless integration of optical and electronic devices in fibers.

  14. Making Silicon Carbide Devices | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Making Silicon Carbide Devices in the Cleanroom Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Making Silicon Carbide Devices in the Cleanroom Ron Olson 2012.08.23 As the Wide Bandgap Process and Fab manager for the GE Global Research cleanroom, I wanted to take some time to give you the dirt on our clean room over the

  15. Silicon nitride ceramic having high fatigue life and high toughness

    DOE Patents [OSTI]

    Yeckley, Russell L. (Oakham, MA)

    1996-01-01

    A sintered silicon nitride ceramic comprising between about 0.6 mol % and about 3.2 mol % rare earth as rare earth oxide, and between about 85 w/o and about 95 w/o beta silicon nitride grains, wherein at least about 20% of the beta silicon nitride grains have a thickness of greater than about 1 micron.

  16. Molybdenum enhanced low-temperature deposition of crystalline silicon nitride

    DOE Patents [OSTI]

    Lowden, Richard A. (Powell, TN)

    1994-01-01

    A process for chemical vapor deposition of crystalline silicon nitride which comprises the steps of: introducing a mixture of a silicon source, a molybdenum source, a nitrogen source, and a hydrogen source into a vessel containing a suitable substrate; and thermally decomposing the mixture to deposit onto the substrate a coating comprising crystalline silicon nitride containing a dispersion of molybdenum silicide.

  17. Method For Passivating Crystal Silicon Surfaces - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Method For Passivating Crystal Silicon Surfaces National Renewable Energy Laboratory Contact NREL About This Technology Publications: PDF Document Publication Silicon Surface and Heterojunction Interface Passivation Studies by Lifetime Measurements (395 KB) PDF Document Publication High-Throughput Approaches to Optimization of Crystal Silicon Surface Passivation and Heterojunction Solar Cells (837 KB) Technology Marketing

  18. Fabricating amorphous silicon solar cells by varying the temperature _of the substrate during deposition of the amorphous silicon layer

    DOE Patents [OSTI]

    Carlson, David E. (Yardley, PA)

    1982-01-01

    An improved process for fabricating amorphous silicon solar cells in which the temperature of the substrate is varied during the deposition of the amorphous silicon layer is described. Solar cells manufactured in accordance with this process are shown to have increased efficiencies and fill factors when compared to solar cells manufactured with a constant substrate temperature during deposition of the amorphous silicon layer.

  19. A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mailoa, Jonathan P.; Bailie, Colin D.; Johlin, Eric C.; Hoke, Eric T.; Akey, Austin J.; Nguyen, William H.; McGehee, Michael D.; Buonassisi, Tonio

    2015-03-24

    With the advent of efficient high-bandgap metal-halide perovskite photovoltaics, an opportunity exists to make perovskite/silicon tandem solar cells. We fabricate a monolithic tandem by developing a silicon-based interband tunnel junction that facilitates majority-carrier charge recombination between the perovskite and silicon sub-cells. We demonstrate a 1 cm2 2-terminal monolithic perovskite/silicon multijunction solar cell with a VOC as high as 1.65 V. As a result, we achieve a stable 13.7% power conversion efficiency with the perovskite as the current-limiting sub-cell, and identify key challenges for this device architecture to reach efficiencies over 25%.

  20. Process for forming a porous silicon member in a crystalline silicon member

    DOE Patents [OSTI]

    Northrup, M. Allen (Berkeley, CA); Yu, Conrad M. (Antioch, CA); Raley, Norman F. (Danville, CA)

    1999-01-01

    Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gasses in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters.

  1. A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction

    SciTech Connect (OSTI)

    Mailoa, Jonathan P.; Bailie, Colin D.; Johlin, Eric C.; Hoke, Eric T.; Akey, Austin J.; Nguyen, William H.; McGehee, Michael D.; Buonassisi, Tonio

    2015-03-24

    With the advent of efficient high-bandgap metal-halide perovskite photovoltaics, an opportunity exists to make perovskite/silicon tandem solar cells. We fabricate a monolithic tandem by developing a silicon-based interband tunnel junction that facilitates majority-carrier charge recombination between the perovskite and silicon sub-cells. We demonstrate a 1 cm2 2-terminal monolithic perovskite/silicon multijunction solar cell with a VOC as high as 1.65 V. As a result, we achieve a stable 13.7% power conversion efficiency with the perovskite as the current-limiting sub-cell, and identify key challenges for this device architecture to reach efficiencies over 25%.

  2. Effect of hydrogen passivation on charge storage in silicon quantum dots embedded in silicon nitride film

    SciTech Connect (OSTI)

    Cho, Chang-Hee; Kim, Baek-Hyun; Kim, Tae-Wook; Park, Seong-Ju; Park, Nae-Man; Sung, Gun-Yong

    2005-04-04

    The effect of hydrogen passivation on the charge storage characteristics of two types of silicon nitride films containing silicon quantum dots (Si QDs) grown by SiH{sub 4}+N{sub 2} and SiH{sub 4}+NH{sub 3} plasma was investigated. The transmission electron microscope analysis and the capacitance-voltage measurement showed that the silicon nitride film grown by SiH{sub 4}+NH{sub 3} plasma has a lower interface trap density and a higher density of Si QDs compared to that grown by SiH{sub 4}+N{sub 2} plasma. It was also found that the charge retention characteristics in the Si QDs were greatly enhanced in the samples grown by means of SiH{sub 4}+NH{sub 3} plasma, due to the hydrogen passivation of the defects in the silicon nitride films by NH{sub 3} during the growth of the Si QDs.

  3. Metal electrode for amorphous silicon solar cells

    DOE Patents [OSTI]

    Williams, Richard (Princeton, NJ)

    1983-01-01

    An amorphous silicon solar cell having an N-type region wherein the contact to the N-type region is composed of a material having a work function of about 3.7 electron volts or less. Suitable materials include strontium, barium and magnesium and rare earth metals such as gadolinium and yttrium.

  4. Silicon on insulator achieved using electrochemical etching

    DOE Patents [OSTI]

    McCarthy, Anthony M. (Menlo Park, CA)

    1997-01-01

    Bulk crystalline silicon wafers are transferred after the completion of circuit fabrication to form thin films of crystalline circuitry on almost any support, such as metal, semiconductor, plastic, polymer, glass, wood, and paper. In particular, this technique is suitable to form silicon-on-insulator (SOI) wafers, whereby the devices and circuits formed exhibit superior performance after transfer due to the removal of the silicon substrate. The added cost of the transfer process to conventional silicon fabrication is insignificant. No epitaxial, lift-off, release or buried oxide layers are needed to perform the transfer of single or multiple wafers onto support members. The transfer process may be performed at temperatures of 50.degree. C. or less, permits transparency around the circuits and does not require post-transfer patterning. Consequently, the technique opens up new avenues for the use of integrated circuit devices in high-brightness, high-resolution video-speed color displays, reduced-thickness increased-flexibility intelligent cards, flexible electronics on ultrathin support members, adhesive electronics, touch screen electronics, items requiring low weight materials, smart cards, intelligent keys for encryption systems, toys, large area circuits, flexible supports, and other applications. The added process flexibility also permits a cheap technique for increasing circuit speed of market driven technologies such as microprocessors at little added expense.

  5. Silicon on insulator achieved using electrochemical etching

    DOE Patents [OSTI]

    McCarthy, A.M.

    1997-10-07

    Bulk crystalline silicon wafers are transferred after the completion of circuit fabrication to form thin films of crystalline circuitry on almost any support, such as metal, semiconductor, plastic, polymer, glass, wood, and paper. In particular, this technique is suitable to form silicon-on-insulator (SOI) wafers, whereby the devices and circuits formed exhibit superior performance after transfer due to the removal of the silicon substrate. The added cost of the transfer process to conventional silicon fabrication is insignificant. No epitaxial, lift-off, release or buried oxide layers are needed to perform the transfer of single or multiple wafers onto support members. The transfer process may be performed at temperatures of 50 C or less, permits transparency around the circuits and does not require post-transfer patterning. Consequently, the technique opens up new avenues for the use of integrated circuit devices in high-brightness, high-resolution video-speed color displays, reduced-thickness increased-flexibility intelligent cards, flexible electronics on ultrathin support members, adhesive electronics, touch screen electronics, items requiring low weight materials, smart cards, intelligent keys for encryption systems, toys, large area circuits, flexible supports, and other applications. The added process flexibility also permits a cheap technique for increasing circuit speed of market driven technologies such as microprocessors at little added expense. 57 figs.

  6. Silicon nitride having a high tensile strength

    DOE Patents [OSTI]

    Pujari, Vimal K. (Northboro, MA); Tracey, Dennis M. (Medfield, MA); Foley, Michael R. (Oxford, MA); Paille, Norman I. (Oxford, MA); Pelletier, Paul J. (Millbury, MA); Sales, Lenny C. (Grafton, MA); Willkens, Craig A. (Sterling, MA); Yeckley, Russell L. (Oakham, MA)

    1996-01-01

    A silicon nitride ceramic comprising: a) inclusions no greater than 25 microns in length, b) agglomerates no greater than 20 microns in diameter, and c) a surface finish of less than about 8 microinches, said ceramic having a four-point flexural strength of at least about 900 MPa.

  7. High Q silicon carbide microdisk resonator

    SciTech Connect (OSTI)

    Lu, Xiyuan; Lee, Jonathan Y.; Feng, Philip X.-L.; Lin, Qiang

    2014-05-05

    We demonstrate a silicon carbide (SiC) microdisk resonator with optical Q up to 5.12??10{sup 4}. The high optical quality, together with the diversity of whispering-gallery modes and the tunability of external coupling, renders SiC microdisk a promising platform for integrated quantum photonics applications.

  8. Silicon nitride having a high tensile strength

    DOE Patents [OSTI]

    Pujari, V.K.; Tracey, D.M.; Foley, M.R.; Paille, N.I.; Pelletier, P.J.; Sales, L.C.; Willkens, C.A.; Yeckley, R.L.

    1996-11-05

    A silicon nitride ceramic is disclosed comprising: (a) inclusions no greater than 25 microns in length, (b) agglomerates no greater than 20 microns in diameter, and (c) a surface finish of less than about 8 microinches, said ceramic having a four-point flexural strength of at least about 900 MPa. 4 figs.

  9. Nanoparticle-based etching of silicon surfaces

    DOE Patents [OSTI]

    Branz, Howard (Boulder, CO); Duda, Anna (Denver, CO); Ginley, David S. (Evergreen, CO); Yost, Vernon (Littleton, CO); Meier, Daniel (Atlanta, GA); Ward, James S. (Golden, CO)

    2011-12-13

    A method (300) of texturing silicon surfaces (116) such to reduce reflectivity of a silicon wafer (110) for use in solar cells. The method (300) includes filling (330, 340) a vessel (122) with a volume of an etching solution (124) so as to cover the silicon surface 116) of a wafer or substrate (112). The etching solution (124) is made up of a catalytic nanomaterial (140) and an oxidant-etchant solution (146). The catalytic nanomaterial (140) may include gold or silver nanoparticles or noble metal nanoparticles, each of which may be a colloidal solution. The oxidant-etchant solution (146) includes an etching agent (142), such as hydrofluoric acid, and an oxidizing agent (144), such as hydrogen peroxide. Etching (350) is performed for a period of time including agitating or stirring the etching solution (124). The etch time may be selected such that the etched silicon surface (116) has a reflectivity of less than about 15 percent such as 1 to 10 percent in a 350 to 1000 nanometer wavelength range.

  10. Solar cell structure incorporating a novel single crystal silicon material

    DOE Patents [OSTI]

    Pankove, Jacques I. (Princeton, NJ); Wu, Chung P. (Trenton, NJ)

    1983-01-01

    A novel hydrogen rich single crystal silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystal silicon without out-gassing the hydrogen. The new material can be used to fabricate semiconductor devices such as single crystal silicon solar cells with surface window regions having a greater band gap energy than that of single crystal silicon without hydrogen.

  11. Method of forming crystalline silicon devices on glass

    DOE Patents [OSTI]

    McCarthy, A.M.

    1995-03-21

    A method is disclosed for fabricating single-crystal silicon microelectronic components on a silicon substrate and transferring same to a glass substrate. This is achieved by utilizing conventional silicon processing techniques for fabricating components of electronic circuits and devices on bulk silicon, wherein a bulk silicon surface is prepared with epitaxial layers prior to the conventional processing. The silicon substrate is bonded to a glass substrate and the bulk silicon is removed leaving the components intact on the glass substrate surface. Subsequent standard processing completes the device and circuit manufacturing. This invention is useful in applications requiring a transparent or insulating substrate, particularly for display manufacturing. Other applications include sensors, actuators, optoelectronics, radiation hard electronics, and high temperature electronics. 7 figures.

  12. Method of forming crystalline silicon devices on glass

    DOE Patents [OSTI]

    McCarthy, Anthony M. (Menlo Park, CA)

    1995-01-01

    A method for fabricating single-crystal silicon microelectronic components on a silicon substrate and transferring same to a glass substrate. This is achieved by utilizing conventional silicon processing techniques for fabricating components of electronic circuits and devices on bulk silicon, wherein a bulk silicon surface is prepared with epitaxial layers prior to the conventional processing. The silicon substrate is bonded to a glass substrate and the bulk silicon is removed leaving the components intact on the glass substrate surface. Subsequent standard processing completes the device and circuit manufacturing. This invention is useful in applications requiring a transparent or insulating substrate, particularly for display manufacturing. Other applications include sensors, actuators, optoelectronics, radiation hard electronics, and high temperature electronics.

  13. Application Of Optical Processing For Growth Of Silicon Dioxide

    DOE Patents [OSTI]

    Sopori, Bhushan L. (Denver, CO)

    1997-06-17

    A process for producing a silicon dioxide film on a surface of a silicon substrate. The process comprises illuminating a silicon substrate in a substantially pure oxygen atmosphere with a broad spectrum of visible and infrared light at an optical power density of from about 3 watts/cm.sup.2 to about 6 watts/cm.sup.2 for a time period sufficient to produce a silicon dioxide film on the surface of the silicon substrate. An optimum optical power density is about 4 watts/cm.sup.2 for growth of a 100.ANG.-300.ANG. film at a resultant temperature of about 400.degree. C. Deep level transient spectroscopy analysis detects no measurable impurities introduced into the silicon substrate during silicon oxide production and shows the interface state density at the SiO.sub.2 /Si interface to be very low.

  14. Application of optical processing for growth of silicon dioxide

    DOE Patents [OSTI]

    Sopori, B.L.

    1997-06-17

    A process for producing a silicon dioxide film on a surface of a silicon substrate is disclosed. The process comprises illuminating a silicon substrate in a substantially pure oxygen atmosphere with a broad spectrum of visible and infrared light at an optical power density of from about 3 watts/cm{sup 2} to about 6 watts/cm{sup 2} for a time period sufficient to produce a silicon dioxide film on the surface of the silicon substrate. An optimum optical power density is about 4 watts/cm{sup 2} for growth of a 100{angstrom}-300{angstrom} film at a resultant temperature of about 400 C. Deep level transient spectroscopy analysis detects no measurable impurities introduced into the silicon substrate during silicon oxide production and shows the interface state density at the SiO{sub 2}/Si interface to be very low. 1 fig.

  15. Thin silicon foils produced by epoxy-induced spalling of silicon for high efficiency solar cells

    SciTech Connect (OSTI)

    Martini, R., E-mail: roberto.martini@imec.be [Department of Electrical Engineering, KU Leuven, Kasteelpark 10, 3001 Leuven (Belgium); imec, Kapeldreef 75, 3001 Leuven (Belgium); Kepa, J.; Stesmans, A. [Department of Physics, KU Leuven, Celestijnenlaan 200 D, 3001 Leuven (Belgium); Debucquoy, M.; Depauw, V.; Gonzalez, M.; Gordon, I. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Poortmans, J. [Department of Electrical Engineering, KU Leuven, Kasteelpark 10, 3001 Leuven (Belgium); imec, Kapeldreef 75, 3001 Leuven (Belgium); Universiteit Hasselt, Martelarenlaan 42, B-3500 Hasselt (Belgium)

    2014-10-27

    We report on the drastic improvement of the quality of thin silicon foils produced by epoxy-induced spalling. In the past, researchers have proposed to fabricate silicon foils by spalling silicon substrates with different stress-inducing materials to manufacture thin silicon solar cells. However, the reported values of effective minority carrier lifetime of the fabricated foils remained always limited to ?100??s or below. In this work, we investigate epoxy-induced exfoliated foils by electron spin resonance to analyze the limiting factors of the minority carrier lifetime. These measurements highlight the presence of disordered dangling bonds and dislocation-like defects generated by the exfoliation process. A solution to remove these defects compatible with the process flow to fabricate solar cells is proposed. After etching off less than 1??m of material, the lifetime of the foil increases by more than a factor of 4.5, reaching a value of 461??s. This corresponds to a lower limit of the diffusion length of more than 7 times the foil thickness. Regions with different lifetime correlate well with the roughness of the crack surface which suggests that the lifetime is now limited by the quality of the passivation of rough surfaces. The reported values of the minority carrier lifetime show a potential for high efficiency (>22%) thin silicon solar cells.

  16. Fabrication of 3D Silicon Sensors

    SciTech Connect (OSTI)

    Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; Kenney, C.; Hasi, J.; Da Via, C.; Parker, S.I.; /Hawaii U.

    2012-06-06

    Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.

  17. An ultrafast silicon nanoplasmonic ballistic triode

    SciTech Connect (OSTI)

    Greig, S. R. Elezzabi, A. Y.

    2014-12-15

    A nanoscale three terminal silicon based nanoplasmonic triode is proposed as a nanometer transistor. The device is suitable for monolithic integration with complementary-metal-oxide-semiconductor technology. Due to the highly spatially inhomogeneous, highly confined nanoplasmonic mode, electrons generated through two-photon absorption in the silicon are ponderomotively accelerated towards the copper anode producing an output current. Application of a negative grid voltage allows for control of the output current. The nanoplasmonic triode is able to achieve output current as high as 628?mA/?m on an ultrafast timescale of 150 fs in a compact footprint of 0.07??m{sup 2}. Reduction of the plasmonic field strength allows for a CMOS compatible current of 11.7?mA/?m. The results demonstrate the potential for the compact optical control of current useful for applications in high-speed, high current switching, and amplification.

  18. Advances in amorphous silicon photovoltaic technology

    SciTech Connect (OSTI)

    Carlson, D.E.; Rajan, K.; Arya, R.R.; Willing, F.; Yang, L.

    1998-10-01

    With the advent of new multijunction thin film solar cells, amorphous silicon photovoltaic technology is undergoing a commercial revival with about 30 megawatts of annual capacity coming on-line in the next year. These new {ital a}{endash}Si multijunction modules should exhibit stabilized conversion efficiencies on the order of 8{percent}, and efficiencies over 10{percent} may be obtained in the next several years. The improved performance results from the development of amorphous and microcrystalline silicon alloy films with improved optoelectronic properties and from the development of more efficient device structures. Moreover, the manufacturing costs for these multijunction modules using the new large-scale plants should be on the order of {dollar_sign}1 per peak watt. These new modules may find widespread use in solar farms, photovoltaic roofing, as well as in traditional remote applications. {copyright} {ital 1998 Materials Research Society.}

  19. Substrate for thin silicon solar cells

    DOE Patents [OSTI]

    Ciszek, T.F.

    1995-03-28

    A photovoltaic device for converting solar energy into electrical signals comprises a substrate, a layer of photoconductive semiconductor material grown on said substrate, wherein the substrate comprises an alloy of boron and silicon, the boron being present in a range of from 0.1 to 1.3 atomic percent, the alloy having a lattice constant substantially matched to that of the photoconductive semiconductor material and a resistivity of less than 1{times}10{sup {minus}3} ohm-cm. 4 figures.

  20. Status of the CDF silicon detector

    SciTech Connect (OSTI)

    Grinstein, Sebastian; /Harvard U.

    2006-05-01

    The CDF Run II silicon micro-strip detector is an essential part of the heavy flavor tagging and forward tracking capabilities of the experiment. Since the commissioning period ended in 2002, about 85% of the 730 k readout channels have been consistently provided good data. A summary of the recent improvements in the DAQ system as well as experience of maintaining and operating such a large, complex detector are presented.

  1. Method of preparing silicon from sodium fluosilicate

    DOE Patents [OSTI]

    Schmidt, Frederick A. (Ames, IA); Rehbein, David (Ames, IA); Chiotti, Premo (Ames, IA)

    1984-01-01

    A process for preparing high purity silicon metal from Na.sub.2 SiF.sub.6 (sodium fluosilicate). The sodium fluosilicate is heated to decomposition temperature to form NaF, which retains most of the impurities, and gaseous SiF.sub.4. The SiF.sub.4 is then reduced by the bomb reduction method using a reductant having a low packing density.

  2. Substrate for thin silicon solar cells

    DOE Patents [OSTI]

    Ciszek, Theodore F. (Evergreen, CO)

    1995-01-01

    A photovoltaic device for converting solar energy into electrical signals comprises a substrate, a layer of photoconductive semiconductor material grown on said substrate, wherein the substrate comprises an alloy of boron and silicon, the boron being present in a range of from 0.1 to 1.3 atomic percent, the alloy having a lattice constant substantially matched to that of the photoconductive semiconductor material and a resistivity of less than 1.times.10.sup.-3 ohm-cm.

  3. Method for forming silicon on a glass substrate

    DOE Patents [OSTI]

    McCarthy, Anthony M. (Menlo Park, CA)

    1995-01-01

    A method by which single-crystal silicon microelectronics may be fabricated on glass substrates at unconventionally low temperatures. This is achieved by fabricating a thin film of silicon on glass and subsequently forming the doped components by a short wavelength (excimer) laser doping procedure and conventional patterning techniques. This method may include introducing a heavily boron doped etch stop layer on a silicon wafer using an excimer laser, which permits good control of the etch stop layer removal process. This method additionally includes dramatically reducing the remaining surface roughness of the silicon thin films after etching in the fabrication of silicon on insulator wafers by scanning an excimer laser across the surface of the silicon thin film causing surface melting, whereby the surface tension of the melt causes smoothing of the surface during recrystallization. Applications for this method include those requiring a transparent or insulating substrate, such as display manufacturing. Other applications include sensors, actuators, optoelectronics, radiation hard and high temperature electronics.

  4. Porous siliconformation and etching process for use in silicon micromachining

    DOE Patents [OSTI]

    Guilinger, Terry R. (Albuquerque, NM); Kelly, Michael J. (Albuquerque, NM); Martin, Jr., Samuel B. (Albuquerque, NM); Stevenson, Joel O. (Albuquerque, NM); Tsao, Sylvia S. (Albuquerque, NM)

    1991-01-01

    A reproducible process for uniformly etching silicon from a series of micromechanical structures used in electrical devices and the like includes providing a micromechanical structure having a silicon layer with defined areas for removal thereon and an electrochemical cell containing an aqueous hydrofluoric acid electrolyte. The micromechanical structure is submerged in the electrochemical cell and the defined areas of the silicon layer thereon are anodically biased by passing a current through the electrochemical cell for a time period sufficient to cause the defined areas of the silicon layer to become porous. The formation of the depth of the porous silicon is regulated by controlling the amount of current passing through the electrochemical cell. The micromechanical structure is then removed from the electrochemical cell and submerged in a hydroxide solution to remove the porous silicon. The process is subsequently repeated for each of the series of micromechanical structures to achieve a reproducibility better than 0.3%.

  5. Copper-assisted, anti-reflection etching of silicon surfaces

    DOE Patents [OSTI]

    Toor, Fatima; Branz, Howard

    2014-08-26

    A method (300) for etching a silicon surface (116) to reduce reflectivity. The method (300) includes electroless deposition of copper nanoparticles about 20 nanometers in size on the silicon surface (116), with a particle-to-particle spacing of 3 to 8 nanometers. The method (300) includes positioning (310) the substrate (112) with a silicon surface (116) into a vessel (122). The vessel (122) is filled (340) with a volume of an etching solution (124) so as to cover the silicon surface (116). The etching solution (124) includes an oxidant-etchant solution (146), e.g., an aqueous solution of hydrofluoric acid and hydrogen peroxide. The silicon surface (116) is etched (350) by agitating the etching solution (124) with, for example, ultrasonic agitation, and the etching may include heating (360) the etching solution (124) and directing light (365) onto the silicon surface (116). During the etching, copper nanoparticles enhance or drive the etching process.

  6. Diamond-Silicon Carbide Composite And Method For Preparation Thereof

    DOE Patents [OSTI]

    Qian, Jiang (Los Alamos, NM); Zhao, Yusheng (Los Alamos, NM)

    2005-09-06

    Fully dense, diamond-silicon carbide composites are prepared from ball-milled microcrystalline diamond/amorphous silicon powder mixture. The ball-milled powder is sintered (P=5-8 GPa, T=1400K-2300K) to form composites having high fracture toughness. A composite made at 5 GPa/1673K had a measured fracture toughness of 12 MPa.multidot.m.sup.1/2. By contrast, liquid infiltration of silicon into diamond powder at 5 GPa/1673K produces a composite with higher hardness but lower fracture toughness. X-ray diffraction patterns and Raman spectra indicate that amorphous silicon is partially transformed into nanocrystalline silicon at 5 GPa/873K, and nanocrystalline silicon carbide forms at higher temperatures.

  7. Silicon micro-mold and method for fabrication

    DOE Patents [OSTI]

    Morales, Alfredo M.

    2005-01-11

    The present invention describes a method for rapidly fabricating a robust 3-dimensional silicon micro-mold for use in preparing complex metal micro-components. The process begins by depositing a conductive metal layer onto one surface of a silicon wafer. A thin photoresist and a standard lithographic mask are then used to transfer a trace image pattern onto the opposite surface of the wafer by exposing and developing the resist. The exposed portion of the silicon substrate is anisotropically etched through the wafer thickness down to conductive metal layer to provide an etched pattern consisting of a series of rectilinear channels and recesses in the silicon which serve as the silicon micro-mold. Microcomponents are prepared with this mold by first filling the mold channels and recesses with a metal deposit, typically by electroplating, and then removing the silicon micro-mold by chemical etching.

  8. Predicting fracture in micron-scale polycrystalline silicon MEMS

    Office of Scientific and Technical Information (OSTI)

    structures. (Technical Report) | SciTech Connect Technical Report: Predicting fracture in micron-scale polycrystalline silicon MEMS structures. Citation Details In-Document Search Title: Predicting fracture in micron-scale polycrystalline silicon MEMS structures. Designing reliable MEMS structures presents numerous challenges. Polycrystalline silicon fractures in a brittle manner with considerable variability in measured strength. Furthermore, it is not clear how to use a measured tensile

  9. Making silicon stronger. (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Making silicon stronger. Citation Details In-Document Search Title: Making silicon stronger. Silicon microfabrication has seen many decades of development, yet the structural reliability of microelectromechanical systems (MEMS) is far from optimized. The fracture strength of Si MEMS is limited by a combination of poor toughness and nanoscale etch-induced defects. A MEMS-based microtensile technique has been used to characterize the fracture strength distributions of both standard and custom

  10. Measurement of thermal conductivity in proton irradiated silicon (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Measurement of thermal conductivity in proton irradiated silicon Citation Details In-Document Search Title: Measurement of thermal conductivity in proton irradiated silicon We investigate the influence of proton irradiation on thermal conductivity in single crystal silicon. We apply laser based modulated thermoreflectance technique to extract the change in conductivity of the thin layer damaged by proton irradiation. Unlike time domain thermoreflectance techniques

  11. Molybdenum enhanced low-temperature deposition of crystalline silicon nitride

    DOE Patents [OSTI]

    Lowden, R.A.

    1994-04-05

    A process for chemical vapor deposition of crystalline silicon nitride is described which comprises the steps of: introducing a mixture of a silicon source, a molybdenum source, a nitrogen source, and a hydrogen source into a vessel containing a suitable substrate; and thermally decomposing the mixture to deposit onto the substrate a coating comprising crystalline silicon nitride containing a dispersion of molybdenum silicide. 5 figures.

  12. Predicting fracture in micron-scale polycrystalline silicon MEMS

    Office of Scientific and Technical Information (OSTI)

    structures. (Technical Report) | SciTech Connect Technical Report: Predicting fracture in micron-scale polycrystalline silicon MEMS structures. Citation Details In-Document Search Title: Predicting fracture in micron-scale polycrystalline silicon MEMS structures. Designing reliable MEMS structures presents numerous challenges. Polycrystalline silicon fractures in a brittle manner with considerable variability in measured strength. Furthermore, it is not clear how to use a measured tensile

  13. Crystallization Behavior of Virgin TR-55 Silicone Rubber Measured Using

    Office of Scientific and Technical Information (OSTI)

    Dynamic Mechanical Thermal Analysis with Liquid Nitrogen Cooling (Technical Report) | SciTech Connect Crystallization Behavior of Virgin TR-55 Silicone Rubber Measured Using Dynamic Mechanical Thermal Analysis with Liquid Nitrogen Cooling Citation Details In-Document Search Title: Crystallization Behavior of Virgin TR-55 Silicone Rubber Measured Using Dynamic Mechanical Thermal Analysis with Liquid Nitrogen Cooling Dynamic mechanical thermal analysis (DMTA) of virgin TR-55 silicone rubber

  14. Atomic Layer Deposition for Stabilization of Amorphous Silicon Anodes |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Atomic Layer Deposition for Stabilization of Amorphous Silicon Anodes Atomic Layer Deposition for Stabilization of Amorphous Silicon Anodes 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es145_dillon_2012_p.pdf More Documents & Publications Nanostructured Metal Oxide Anodes Atomic Layer Deposition for Stabilization of Silicon Anodes Development of Industrially Viable Battery Electrode

  15. Direct-Write of Silicon and Germanium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct-Write of Silicon and Germanium Nanostructures Direct-Write of Silicon and Germanium Nanostructures Print Wednesday, 29 June 2011 00:00 Nanostructured materials (nanowires, nanotubes, nanoclusters, graphene) are attractive possible alternatives to traditionally microfabricated silicon in continuing the miniaturization trend in the electronics industry. To go from nanomaterials to electronics, however, the precise one-by-one assembly of billions of nanoelements into a functioning circuit is

  16. Liquid-Phase Deposition of Silicon Nanocrystal Films - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Liquid-Phase Deposition of Silicon Nanocrystal Films University of Minnesota DOE Grant Recipients Contact GRANT About This Technology Technology Marketing Summary Silicon Nanocrystal Deposition A method to deposit colloidal silicon nanocrystal thin films using a liquid-phase process has been developed. The method lowers costs because the films are deposited unfunctionalized (no insulating ligand termination). The process allows for precise control of the size of the crystals; giving

  17. Designing Silicon Nanostructures for High Energy Lithium Ion Battery Anodes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Designing Silicon Nanostructures for High Energy Lithium Ion Battery Anodes Designing Silicon Nanostructures for High Energy Lithium Ion Battery Anodes 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es148_cui_2012_p.pdf More Documents & Publications Wiring up Silicon Nanoparticles for High Performance Lithium-ion Battery Anodes Vehicle Technologies Office Merit Review 2014: Wiring

  18. Silicon Nanostructure-based Technology for Next Generation Energy Storage |

    Energy Savers [EERE]

    Department of Energy Silicon Nanostructure-based Technology for Next Generation Energy Storage Silicon Nanostructure-based Technology for Next Generation Energy Storage 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es126_stefan_2013_p.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2012: Silicon Nanostructure-based Technology for Next Generation Energy Storage Vehicle

  19. Synthesis and Characterization of Silicon Clathrates for Anode Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Lithium-Ion Batteries | Department of Energy Silicon Clathrates for Anode Applications in Lithium-Ion Batteries Synthesis and Characterization of Silicon Clathrates for Anode Applications in Lithium-Ion Batteries 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es149_chan_2012_p.pdf More Documents & Publications Synthesis and Characterization of Silicon Clathrates for Anode Applications in Lithium-Ion

  20. Vehicle Technologies Office Merit Review 2014: Silicon Nanowire Anodes for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next Generation Energy Storage | Department of Energy Silicon Nanowire Anodes for Next Generation Energy Storage Vehicle Technologies Office Merit Review 2014: Silicon Nanowire Anodes for Next Generation Energy Storage Presentation given by Amprius, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about silicon nanowire anodes for next generation energy storage. PDF icon es126_stefan_2014_p.pdf More Documents

  1. And the Award Goes to... Silicon Ink Solar Technology Supported...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    When paired with Innovalight's industrial screen printing process, this silicon ink technology offers a novel path to producing solar cells with higher conversion efficiencies at ...

  2. Atomic Layer Deposition for Stabilization of Amorphous Silicon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Nanostructured Metal Oxide Anodes Atomic Layer Deposition for Stabilization of Silicon Anodes Development of Industrially Viable Battery Electrode Coatings...

  3. Silicon CPV Plc formerly Akhter Renewables | Open Energy Information

    Open Energy Info (EERE)

    Silicon CPV Plc (formerly Akhter Renewables) Place: Harlow, United Kingdom Zip: CM18 7PN Product: Developing CPV, using its own Fresnel lens design and tracking systems....

  4. Buckeye Silicon BeSi | Open Energy Information

    Open Energy Info (EERE)

    Name: Buckeye Silicon (BeSi) Place: Toledo, Ohio Product: Ohio-based polysilicon startup focusing on modular production. Coordinates: 46.440613, -122.847838 Show Map...

  5. Soitec SA Silicon on Insulator Technologies | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Soitec SA (Silicon on Insulator Technologies) Place: Bernin, France Zip: 38190 Product: Has an 'atomic scalpel' technology which allows extremely thin...

  6. Silicon-film{trademark} on ceramic solar cells. Final report

    SciTech Connect (OSTI)

    Hall, R.B.; Bacon, C.; DiReda, V.; Ford, D.H.; Ingram, A.E.; Lampo, S.M.; Rand, J.A.; Ruffins, T.R.; Barnett, A.M.

    1993-02-01

    The Silicon-Film{trademark} design achieves high performance through the use of a thin silicon layer. Optimally designed thin crystalline solar cells (<50 microns thick) have performance advantages over conventional thick devices. The enhancement in performance requires the incorporation of back-surface passivation and light trapping. The high-performance Silicon-Film{trademark} design employs a metallurgical barrier between the low-cost substrate and the thin silicon layer. The properties of the metallurgical barrier must be engineered to implement specific device requirements, such as high back-surface reflectivity. Recent advances in process development are described here.

  7. Designing Silicon Nanostructures for High Energy Lithium Ion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Wiring up Silicon Nanoparticles for High Performance Lithium-ion Battery Anodes Vehicle Technologies Office Merit Review 2014: Wiring Up...

  8. Synthesis and Characterization of Silicon Clathrates for Anode...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Batteries Synthesis and Characterization of Silicon Clathrates for Anode Applications in Lithium-Ion Batteries 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies...

  9. Dongfang Chengda Silicon Technology Development Co Ltd | Open...

    Open Energy Info (EERE)

    Technology Development Co Ltd Place: Chengdu, Sichuan Province, China Product: A Chinese company mainly engaged in the R&D of silicon production technology. References:...

  10. Unusual lithiation and fracture behavior of silicon mesoscale...

    Office of Scientific and Technical Information (OSTI)

    of silicon mesoscale pillars: roles of ultrathin atomic layer coatings and initial geometry Citation Details In-Document Search Title: Unusual lithiation and fracture behavior...

  11. Wanxiang Silicon Peak Electronics Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    silicon ingots and wafers and subsidiary of the Wanxiang Group which includes solar cell and module maker Wanxiang Solar. Coordinates: 29.140209, 118.405113 Show...

  12. Direct-Write of Silicon and Germanium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of removing-silicon (and germanium) nanostructures at precise wafer locations. This strategy holds the potential for fabricating transistors in fewer steps with less material...

  13. Silicon Recycling Services Inc SRS | Open Energy Information

    Open Energy Info (EERE)

    Place: Camarillo, California Zip: 93011 Product: Takes 'waste' silicon, containing contamination and impurities and processes it into PV feedstock. Coordinates: 34.222895,...

  14. TBEA Xinjiang Silicon Material Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Xinjiang Autonomous Region, China Product: A JV formed to develop a 1500t polysilicon manufacturing plant. References: TBEA Xinjiang Silicon Material Co Ltd1 This article is...

  15. Solar Fabrik Silicon Services Ltd formerly OJAS Energy | Open...

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: Solar-Fabrik Silicon Services Ltd (formerly OJAS Energy) Place: Chennai, India Product: PV wafer manufacturer, legally based in the British...

  16. Thin Silicon MEMS Contact-Stress Sensor Kotovksy, J; Tooker,...

    Office of Scientific and Technical Information (OSTI)

    A; Horsley, D 42 ENGINEERING; 42 ENGINEERING; ACCURACY; ACTUATORS; SILICON This thin, MEMS contact-stress sensor continuously and accurately measures time-varying, solid...

  17. Thin Silicon MEMS Contact-Stress Sensor Kotovsky, J; Tooker,...

    Office of Scientific and Technical Information (OSTI)

    ACCURACY; ACTUATORS; CALIBRATION; DIAPHRAGM; SILICON; STABILITY; THICKNESS This thin, MEMS contact-stress (CS) sensor continuously and accurately measures time-varying, solid...

  18. Thin Silicon MEMS Contact-Stress Sensor Kotovsky, J; Tooker,...

    Office of Scientific and Technical Information (OSTI)

    LIFETIME; PACKAGING; PERFORMANCE; SILICON; THICKNESS This work offers the first, thin, MEMS contact-stress (CS) sensor capable of accurate in situ measruement of time-varying,...

  19. Method and apparatus for producing high purity silicon

    DOE Patents [OSTI]

    Olson, Jerry M. (Lakewood, CO)

    1984-01-01

    A method for producing high purity silicon includes forming a copper silie alloy and positioning the alloy within an enclosure. A filament member is also placed within the enclosure opposite the alloy. The enclosure is then filled with a chemical vapor transport gas adapted for transporting silicon. Finally, both the filament member and the alloy are heated to temperatures sufficient to cause the gas to react with silicon at the alloy surface and deposit the reacted silicon on the filament member. In addition, an apparatus for carrying out this method is also disclosed.

  20. Thinner Film Silicon Solar Cells - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    thin film silicon solar cells with a potential increase in photon energy conversion of up to 20%, a significant improvement over conventional thin film photovoltaic technologies. ...

  1. Process and apparatus for obtaining silicon from fluosilicic acid

    DOE Patents [OSTI]

    Sanjurjo, Angel (San Jose, CA)

    1988-06-28

    Process and apparatus for producing low cost, high purity solar grade silicon ingots in single crystal or quasi single crystal ingot form in a substantially continuous operation in a two stage reactor starting with sodium fluosilicate and a metal more electropositive than silicon (preferably sodium) in separate compartments having easy vapor transport therebetween and thermally decomposing the sodium fluosilicate to cause formation of substantially pure silicon and a metal fluoride which may be continuously separated in the melt and silicon may be directly and continuously cast from the melt.

  2. Silicon Valley Technology Centre SVTC | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Silicon Valley Technology Centre (SVTC) Place: San Jose, California Zip: 915134 Product: Development foundry which offers start-up and...

  3. Sumitomo Mitsubishi Silicon Corp SUMCO | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Sumitomo Mitsubishi Silicon Corp (SUMCO) Place: Tokyo, Tokyo, Japan Zip: 105 8634 Product: Holding company; Japanese manufacturer of monocrystalline...

  4. Method and apparatus for producing high purity silicon

    DOE Patents [OSTI]

    Olson, J.M.

    1983-05-27

    A method for producing high purity silicon includes forming a copper silicide alloy and positioning the alloy within an enclosure. A filament member is also placed within the enclosure opposite the alloy. The enclosure is then filled with a chemical vapor transport gas adapted for transporting silicon. Finally, both the filament member and the alloy are heated to temperatures sufficient to cause the gas to react with silicon at the alloy surface and deposit the reacted silicon on the filament member. In addition, an apparatus for carrying out this method is also disclosed.

  5. California: TetraCell Silicon Solar Cell Improves Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TetraSun, in partnership with the National Renewable Energy Laboratory, developed a novel crystalline silicon photovoltaic (PV) cell architecture and manufacturing process that ...

  6. Silicon Valley Clean Tech Alliance | Open Energy Information

    Open Energy Info (EERE)

    Alliance Jump to: navigation, search Name: Silicon Valley Clean Tech Alliance Address: Box 1855 Place: Cupertino, California Zip: 95015 Region: Bay Area Website:...

  7. Deposition of device quality, low hydrogen content, amorphous silicon films by hot filament technique using "safe" silicon source gas

    DOE Patents [OSTI]

    Mahan, Archie Harvin (Golden, CO); Molenbroek, Edith C. (Boulder, CO); Nelson, Brent P. (Golden, CO)

    1998-01-01

    A method of producing hydrogenated amorphous silicon on a substrate by flowing a stream of safe (diluted to less than 1%) silane gas past a heated filament.

  8. NREL Develops ZnSiP2 for Silicon-Based Tandem Solar Cells (Fact...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an Earth-abundant chalcopyrite with a silicon layer could significantly boost conversion efficiency above that of single-junction silicon solar cells. A current technological...

  9. Jefferson Lab Signs Contract Wth SensL For Silicon Photomultiplier...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    articlesjefferson-lab-signs-contract-wth-sensl-silicon-photomultiplier-technology-photonics-o... Jefferson Lab Signs Contract Wth SensL For Silicon Photomultiplier Technology...

  10. Asia Silicon Qinghai Co Ltd aka Asia Si Material | Open Energy...

    Open Energy Info (EERE)

    Silicon Qinghai Co Ltd aka Asia Si Material Jump to: navigation, search Name: Asia Silicon (Qinghai) Co Ltd (aka Asia Si Material) Place: Xining, Qinghai Province, China Zip:...

  11. NREL Develops ZnSiP2 for Silicon-Based Tandem Solar Cells (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01

    Combining an Earth-abundant chalcopyrite with a silicon layer could significantly boost conversion efficiency above that of single-junction silicon solar cells.

  12. (Preoxidation cleaning optimization for crystalline silicon)

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    A series of controlled experiments has been performed in Sandia's Photovoltaic Device Fabrication Laboratory to evaluate the effect of various chemical surface treatments on the recombination lifetime of crystalline silicon wafers subjected to a high-temperature dry oxidation. From this series of experiments we have deduced a relatively simple yet effective cleaning sequence. We have also evaluated the effect of different chemical damage-removal etches for improving the recombination lifetime and surface smoothness of mechanically lapped wafers. This paper presents the methodology used, the experimental results obtained, and our experience with using this process on a continuing basis over a period of many months. 7 refs., 4 figs., 1 tab.

  13. Silicon concentrator cell-assembly development

    SciTech Connect (OSTI)

    Not Available

    1982-08-01

    The purpose of this program is to develop an improved cell assembly design for photovoltaic concentrator receivers. Efforts were concentrated on a study of adhesive/separator systems that might be applied between cell and substrate, because this area holds the key to improved heat transfer, electrical isolation and adhesion. It is also the area in which simpler construction methods offer the greatest benefits for economy and reliability in the manufacturing process. Of the ten most promising designs subjected to rigorous environmental testing, eight designs featuring acrylic and silicon adhesives and fiberglass and polyester separators performed very well.

  14. Origami-enabled deformable silicon solar cells

    SciTech Connect (OSTI)

    Tang, Rui; Huang, Hai; Liang, Hanshuang; Liang, Mengbing; Tu, Hongen; Xu, Yong; Song, Zeming; Jiang, Hanqing; Yu, Hongyu

    2014-02-24

    Deformable electronics have found various applications and elastomeric materials have been widely used to reach flexibility and stretchability. In this Letter, we report an alternative approach to enable deformability through origami. In this approach, the deformability is achieved through folding and unfolding at the creases while the functional devices do not experience strain. We have demonstrated an example of origami-enabled silicon solar cells and showed that this solar cell can reach up to 644% areal compactness while maintaining reasonable good performance upon cyclic folding/unfolding. This approach opens an alternative direction of producing flexible, stretchable, and deformable electronics.

  15. Arrays of ultrathin silicon solar microcells

    DOE Patents [OSTI]

    Rogers, John A; Rockett, Angus A; Nuzzo, Ralph; Yoon, Jongseung; Baca, Alfred

    2014-03-25

    Provided are solar cells, photovoltaics and related methods for making solar cells, wherein the solar cell is made of ultrathin solar grade or low quality silicon. In an aspect, the invention is a method of making a solar cell by providing a solar cell substrate having a receiving surface and assembling a printable semiconductor element on the receiving surface of the substrate via contact printing. The semiconductor element has a thickness that is less than or equal to 100 .mu.m and, for example, is made from low grade Si.

  16. Hybrid stretchable circuits on silicone substrate

    SciTech Connect (OSTI)

    Robinson, A., E-mail: adam.1.robinson@nokia.com; Aziz, A., E-mail: a.aziz1@lancaster.ac.uk [Nanoscience Centre, University of Cambridge, Cambridge CB01FF (United Kingdom); Liu, Q.; Suo, Z. [School of Engineering and Applied Sciences and Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, Massachusetts 02138 (United States); Lacour, S. P., E-mail: stephanie.lacour@epfl.ch [Centre for Neuroprosthetics and Laboratory for Soft Bioelectronics Interfaces, School of Engineering, Ecole Polytechnique Fdrale de Lausanne, Lausanne 1015 (Switzerland)

    2014-04-14

    When rigid and stretchable components are integrated onto a single elastic carrier substrate, large strain heterogeneities appear in the vicinity of the deformable-non-deformable interfaces. In this paper, we report on a generic approach to manufacture hybrid stretchable circuits where commercial electronic components can be mounted on a stretchable circuit board. Similar to printed circuit board development, the components are electrically bonded on the elastic substrate and interconnected with stretchable electrical traces. The substratea silicone matrix carrying concentric rigid disksensures both the circuit elasticity and the mechanical integrity of the most fragile materials.

  17. Arrays of ultrathin silicon solar microcells

    SciTech Connect (OSTI)

    Rogers, John A.; Rockett, Angus A.; Nuzzo, Ralph; Yoon, Jongseung; Baca, Alfred

    2015-08-11

    Provided are solar cells, photovoltaics and related methods for making solar cells, wherein the solar cell is made of ultrathin solar grade or low quality silicon. In an aspect, the invention is a method of making a solar cell by providing a solar cell substrate having a receiving surface and assembling a printable semiconductor element on the receiving surface of the substrate via contact printing. The semiconductor element has a thickness that is less than or equal to 100 .mu.m and, for example, is made from low grade Si.

  18. Molybdenum disilicide composites reinforced with zirconia and silicon carbide

    DOE Patents [OSTI]

    Petrovic, J.J.

    1995-01-17

    Compositions are disclosed consisting essentially of molybdenum disilicide, silicon carbide, and a zirconium oxide component. The silicon carbide used in the compositions is in whisker or powder form. The zirconium oxide component is pure zirconia or partially stabilized zirconia or fully stabilized zirconia.

  19. Molybdenum disilicide composites reinforced with zirconia and silicon carbide

    DOE Patents [OSTI]

    Petrovic, John J. (Los Alamos, NM)

    1995-01-01

    Compositions consisting essentially of molybdenum disilicide, silicon carbide, and a zirconium oxide component. The silicon carbide used in the compositions is in whisker or powder form. The zirconium oxide component is pure zirconia or partially stabilized zirconia or fully stabilized zirconia.

  20. Method for improving the stability of amorphous silicon

    DOE Patents [OSTI]

    Branz, Howard M.

    2004-03-30

    A method of producing a metastable degradation resistant amorphous hydrogenated silicon film is provided, which comprises the steps of growing a hydrogenated amorphous silicon film, the film having an exposed surface, illuminating the surface using an essentially blue or ultraviolet light to form high densities of a light induced defect near the surface, and etching the surface to remove the defect.

  1. Ultratough, Thermally Stable Polycrystalline Diamond/Silicon Carbide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanocomposites for Drill Bits | Department of Energy Ultratough, Thermally Stable Polycrystalline Diamond/Silicon Carbide Nanocomposites for Drill Bits Ultratough, Thermally Stable Polycrystalline Diamond/Silicon Carbide Nanocomposites for Drill Bits PDF icon nanocomposites_drill_bits.pdf More Documents & Publications ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing Processes and Applications to Accelerate Commercial Use of Nanomaterials, January 2011 A History or

  2. Low cost routes to high purity silicon and derivatives thereof

    DOE Patents [OSTI]

    Laine, Richard M; Krug, David James; Marchal, Julien Claudius; Mccolm, Andrew Stewart

    2013-07-02

    The present invention is directed to a method for providing an agricultural waste product having amorphous silica, carbon, and impurities; extracting from the agricultural waste product an amount of the impurities; changing the ratio of carbon to silica; and reducing the silica to a high purity silicon (e.g., to photovoltaic silicon).

  3. RF Sputtering for preparing substantially pure amorphous silicon monohydride

    DOE Patents [OSTI]

    Jeffrey, Frank R. (Ames, IA); Shanks, Howard R. (Ames, IA)

    1982-10-12

    A process for controlling the dihydride and monohydride bond densities in hydrogenated amorphous silicon produced by reactive rf sputtering of an amorphous silicon target. There is provided a chamber with an amorphous silicon target and a substrate therein with the substrate and the target positioned such that when rf power is applied to the target the substrate is in contact with the sputtering plasma produced thereby. Hydrogen and argon are fed to the chamber and the pressure is reduced in the chamber to a value sufficient to maintain a sputtering plasma therein, and then rf power is applied to the silicon target to provide a power density in the range of from about 7 watts per square inch to about 22 watts per square inch to sputter an amorphous silicon hydride onto the substrate, the dihydride bond density decreasing with an increase in the rf power density. Substantially pure monohydride films may be produced.

  4. Micromachined cutting blade formed from {211}-oriented silicon

    DOE Patents [OSTI]

    Fleming, James G.; Sniegowski, Jeffry J.; Montague, Stephen

    2003-09-09

    A cutting blade is disclosed fabricated of micromachined silicon. The cutting blade utilizes a monocrystalline silicon substrate having a {211} crystalline orientation to form one or more cutting edges that are defined by the intersection of {211} crystalline planes of silicon with {111} crystalline planes of silicon. This results in a cutting blade which has a shallow cutting-edge angle .theta. of 19.5.degree.. The micromachined cutting blade can be formed using an anisotropic wet etching process which substantially terminates etching upon reaching the {111} crystalline planes of silicon. This allows multiple blades to be batch fabricated on a common substrate and separated for packaging and use. The micromachined cutting blade, which can be mounted to a handle in tension and optionally coated for increased wear resistance and biocompatibility, has multiple applications including eye surgery (LASIK procedure).

  5. Micromachined cutting blade formed from {211}-oriented silicon

    DOE Patents [OSTI]

    Fleming, James G. (Albuquerque, NM); Fleming, legal representative, Carol (Burbank, CA); Sniegowski, Jeffry J. (Tijeras, NM); Montague, Stephen (Albuquerque, NM)

    2011-08-09

    A cutting blade is disclosed fabricated of micromachined silicon. The cutting blade utilizes a monocrystalline silicon substrate having a {211} crystalline orientation to form one or more cutting edges that are defined by the intersection of {211} crystalline planes of silicon with {111} crystalline planes of silicon. This results in a cutting blade which has a shallow cutting-edge angle .theta. of 19.5.degree.. The micromachined cutting blade can be formed using an anisotropic wet etching process which substantially terminates etching upon reaching the {111} crystalline planes of silicon. This allows multiple blades to be batch fabricated on a common substrate and separated for packaging and use. The micromachined cutting blade, which can be mounted to a handle in tension and optionally coated for increased wear resistance and biocompatibility, has multiple applications including eye surgery (LASIK procedure).

  6. Back contact to film silicon on metal for photovoltaic cells

    DOE Patents [OSTI]

    Branz, Howard M.; Teplin, Charles; Stradins, Pauls

    2013-06-18

    A crystal oriented metal back contact for solar cells is disclosed herein. In one embodiment, a photovoltaic device and methods for making the photovoltaic device are disclosed. The photovoltaic device includes a metal substrate with a crystalline orientation and a heteroepitaxial crystal silicon layer having the same crystal orientation of the metal substrate. A heteroepitaxial buffer layer having the crystal orientation of the metal substrate is positioned between the substrate and the crystal silicon layer to reduce diffusion of metal from the metal foil into the crystal silicon layer and provide chemical compatibility with the heteroepitaxial crystal silicon layer. Additionally, the buffer layer includes one or more electrically conductive pathways to electrically couple the crystal silicon layer and the metal substrate.

  7. Thermo-mechanical characterization of silicone foams

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rangaswamy, Partha; Smith, Nickolaus A.; Cady, Carl M.; Lewis, Matthew W.

    2015-10-01

    Cellular solids such as elastomeric foams are used in many structural applications to absorb and dissipate energy, due to their light weight (low density) and high energy absorption capability. In this paper we will discuss foams derived from S5370, a silicone foam formulation developed by Dow Corning. In the application presented, the foam is consolidated into a cushion component of constant thickness but variable density. A mechanical material model developed by Lewis (2013), predicts material response, in part, as a function of relative density. To determine the required parameters for this model we have obtained the mechanical response in compressionmorefor ambient, cold and hot temperatures. The variable density cushion provided samples sufficient samples so that the effect of sample initial density on the mechanical response could be studied. The mechanical response data showed extreme sensitivity to relative density. We also observed at strains corresponding to 1 MPa a linear relationship between strain and initial density for all temperatures. Samples taken from parts with a history of thermal cycling demonstrated a stiffening response that was a function of temperature, with the trend of more stiffness as temperature increased above ambient. This observation is in agreement with the entropic effects on the thermo-mechanical behavior of silicone polymers. In this study, we present the experimental methods necessary for the development of a material model, the testing protocol, analysis of test data, and a discussion of load (stress) and gap (strain) as a function of sample initial densities and temperaturesless

  8. The future of amorphous silicon photovoltaic technology

    SciTech Connect (OSTI)

    Crandall, R.; Luft, W.

    1995-06-01

    Amorphous silicon modules are commercially available. They are the first truly commercial thin-film photovoltaic (PV) devices. Well-defined production processes over very large areas (>1 m{sup 2}) have been implemented. There are few environmental issues during manufacturing, deployment in the field, or with the eventual disposal of the modules. Manufacturing safety issues are well characterized and controllable. The highest measured initial efficiency to date is 13.7% for a small triple-stacked cell and the highest stabilized module efficiency is 10%. There is a consensus among researchers, that in order to achieve a 15% stabilized efficiency, a triple-junction amorphous silicon structure is required. Fundamental improvements in alloys are needed for higher efficiencies. This is being pursued through the DOE/NREL Thin-Film Partnership Program. Cost reductions through improved manufacturing processes are being pursued under the National Renewable Energy Laboratory/US Department of Energy (NREL/DOE)-sponsored research in manufacturing technology (PVMaT). Much of the work in designing a-Si devices is a result of trying to compensate for the Staebler-Wronski effect. Some new deposition techniques hold promise because they have produced materials with lower stabilized defect densities. However, none has yet produced a high efficiency device and shown it to be more stable than those from standard glow discharge deposited material.

  9. Silicone injection restores failing submarine cables

    SciTech Connect (OSTI)

    Tilstra, M.

    1995-12-01

    Faced with the prospect of replacing nearly 10 miles of aging undersea cables, Orcas Power & Light Co (Opalco) elected instead to inject silicone into as many of the cables as possible. Silicone injection has been used extensively on underground residential distribution (URD) and feeder cables, but only two underwater cables had previously been injected: a feeder cable for Florida Power Corp under an intercoastal waterway and a cable for Washington Water Power Co under a lake in western Idaho. The compound restores power cables damaged by water treeing and prevents further water damage. Selection criteria included age, type, and whether the cables had ever been spliced. Older, soldered, hand-wrapped splices were avoided as they block the CableCure fluid from flowing through. This makes the cable uninjectable unless the splices are replaced with the molded type. The first cables chosen for injection were between 15 and 30 years old and clear of soldered splices. They also were free from faults. 4 figs.

  10. High resolution amorphous silicon radiation detectors

    DOE Patents [OSTI]

    Street, R.A.; Kaplan, S.N.; Perez-Mendez, V.

    1992-05-26

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n-type, intrinsic, p-type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography. 18 figs.

  11. High resolution amorphous silicon radiation detectors

    DOE Patents [OSTI]

    Street, Robert A.; Kaplan, Selig N.; Perez-Mendez, Victor

    1992-01-01

    A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n type, intrinsic, p type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography.

  12. Thermo-mechanical characterization of silicone foams

    SciTech Connect (OSTI)

    Rangaswamy, Partha; Smith, Nickolaus A.; Cady, Carl M.; Lewis, Matthew W.

    2015-10-01

    Cellular solids such as elastomeric foams are used in many structural applications to absorb and dissipate energy, due to their light weight (low density) and high energy absorption capability. In this paper we will discuss foams derived from S5370, a silicone foam formulation developed by Dow Corning. In the application presented, the foam is consolidated into a cushion component of constant thickness but variable density. A mechanical material model developed by Lewis (2013), predicts material response, in part, as a function of relative density. To determine the required parameters for this model we have obtained the mechanical response in compression for ambient, cold and hot temperatures. The variable density cushion provided samples sufficient samples so that the effect of sample initial density on the mechanical response could be studied. The mechanical response data showed extreme sensitivity to relative density. We also observed at strains corresponding to 1 MPa a linear relationship between strain and initial density for all temperatures. Samples taken from parts with a history of thermal cycling demonstrated a stiffening response that was a function of temperature, with the trend of more stiffness as temperature increased above ambient. This observation is in agreement with the entropic effects on the thermo-mechanical behavior of silicone polymers. In this study, we present the experimental methods necessary for the development of a material model, the testing protocol, analysis of test data, and a discussion of load (stress) and gap (strain) as a function of sample initial densities and temperatures

  13. Cordierite silicon nitride filters. Final report

    SciTech Connect (OSTI)

    Sawyer, J.; Buchan, B.; Duiven, R.; Berger, M.; Cleveland, J.; Ferri, J.

    1992-02-01

    The objective of this project was to develop a silicon nitride based crossflow filter. This report summarizes the findings and results of the project. The project was phased with Phase I consisting of filter material development and crossflow filter design. Phase II involved filter manufacturing, filter testing under simulated conditions and reporting the results. In Phase I, Cordierite Silicon Nitride (CSN) was developed and tested for permeability and strength. Target values for each of these parameters were established early in the program. The values were met by the material development effort in Phase I. The crossflow filter design effort proceeded by developing a macroscopic design based on required surface area and estimated stresses. Then the thermal and pressure stresses were estimated using finite element analysis. In Phase II of this program, the filter manufacturing technique was developed, and the manufactured filters were tested. The technique developed involved press-bonding extruded tiles to form a filter, producing a monolithic filter after sintering. Filters manufactured using this technique were tested at Acurex and at the Westinghouse Science and Technology Center. The filters did not delaminate during testing and operated and high collection efficiency and good cleanability. Further development in areas of sintering and filter design is recommended.

  14. Methods and apparatuses for manufacturing geometric multicrystalline cast silicon and geometric multicrystalline cast silicon bodies for photovoltaics

    DOE Patents [OSTI]

    Stoddard, Nathan G

    2015-02-10

    Methods and apparatuses are provided for casting silicon for photovoltaic cells and other applications. With such methods and apparatuses, a cast body of geometrically ordered multi-crystalline silicon may be formed that is free or substantially free of radially-distributed impurities and defects and having at least two dimensions that are each at least about 10 cm is provided.

  15. Method for making circular tubular channels with two silicon wafers

    DOE Patents [OSTI]

    Yu, Conrad M. (Antioch, CA); Hui, Wing C. (Campbell, CA)

    1996-01-01

    A two-wafer microcapillary structure is fabricated by depositing boron nitride (BN) or silicon nitride (Si.sub.3 N.sub.4) on two separate silicon wafers (e.g., crystal-plane silicon with [100] or [110] crystal orientation). Photolithography is used with a photoresist to create exposed areas in the deposition for plasma etching. A slit entry through to the silicon is created along the path desired for the ultimate microcapillary. Acetone is used to remove the photoresist. An isotropic etch, e.g., such as HF/HNO.sub.3 /CH.sub.3 COOH, then erodes away the silicon through the trench opening in the deposition layer. A channel with a half-circular cross section is then formed in the silicon along the line of the trench in the deposition layer. Wet etching is then used to remove the deposition layer. The two silicon wafers are aligned and then bonded together face-to-face to complete the microcapillary.

  16. Performance Testing using Silicon Devices - Analysis of Accuracy: Preprint

    SciTech Connect (OSTI)

    Sengupta, M.; Gotseff, P.; Myers, D.; Stoffel, T.

    2012-06-01

    Accurately determining PV module performance in the field requires accurate measurements of solar irradiance reaching the PV panel (i.e., Plane-of-Array - POA Irradiance) with known measurement uncertainty. Pyranometers are commonly based on thermopile or silicon photodiode detectors. Silicon detectors, including PV reference cells, are an attractive choice for reasons that include faster time response (10 us) than thermopile detectors (1 s to 5 s), lower cost and maintenance. The main drawback of silicon detectors is their limited spectral response. Therefore, to determine broadband POA solar irradiance, a pyranometer calibration factor that converts the narrowband response to broadband is required. Normally this calibration factor is a single number determined under clear-sky conditions with respect to a broadband reference radiometer. The pyranometer is then used for various scenarios including varying airmass, panel orientation and atmospheric conditions. This would not be an issue if all irradiance wavelengths that form the broadband spectrum responded uniformly to atmospheric constituents. Unfortunately, the scattering and absorption signature varies widely with wavelength and the calibration factor for the silicon photodiode pyranometer is not appropriate for other conditions. This paper reviews the issues that will arise from the use of silicon detectors for PV performance measurement in the field based on measurements from a group of pyranometers mounted on a 1-axis solar tracker. Also we will present a comparison of simultaneous spectral and broadband measurements from silicon and thermopile detectors and estimated measurement errors when using silicon devices for both array performance and resource assessment.

  17. Method for enhancing the solubility of dopants in silicon

    DOE Patents [OSTI]

    Sadigh, Babak; Lenosky, Thomas J.; De La Rubia, Tomas Diaz

    2003-09-30

    A method for enhancing the equilibrium solid solubility of dopants in silicon, germanium and silicon-germanium alloys. The method involves subjecting silicon-based substrate to biaxial or compression strain. It has been determined that boron solubility was largely enhanced (more than 100%) by a compressive bi-axial strain, based on a size-mismatch theory since the boron atoms are smaller than the silicon atoms. It has been found that the large enhancement or mixing properties of dopants in silicon and germanium substrates is primarily governed by their, and to second order by their size-mismatch with the substrate. Further, it has been determined that the dopant solubility enhancement with strain is most effective when the charge and the size-mismatch of the impurity favor the same type of strain. Thus, the solid solubility of small p-type (e.g., boron) as well as large n-type (e.g., arsenic) dopants can be raised most dramatically by appropriate bi-axial (compressive) strain, and that solubility of a large p-type dopant (e.g, indium) in silicon will be raised due to size-mismatch with silicon, which favors tensile strain, while its negative charge prefers compressive strain, and thus the two effects counteract each other.

  18. Role of point defects/defect complexes in silicon device processing. Book of abstracts, fourth workshop

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The 41 abstracts are arranged into 6 sessions: impurities and defects in commercial substrates: their sources, effects on material yield, and material quality; impurity gettering in silicon: limits and manufacturability of impurity gettering and in silicon solar cells; impurity/defect passivation; new concepts in silicon growth: improved initial quality and thin films; and silicon solar cell design opportunities.

  19. Method of and apparatus for removing silicon from a high temperature sodium coolant

    DOE Patents [OSTI]

    Yunker, Wayne H.; Christiansen, David W.

    1987-01-01

    A method of and system for removing silicon from a high temperature liquid sodium coolant system for a nuclear reactor. The sodium is cooled to a temperature below the silicon saturation temperature and retained at such reduced temperature while inducing high turbulence into the sodium flow for promoting precipitation of silicon compounds and ultimate separation of silicon compound particles from the liquid sodium.

  20. Antifuse with a single silicon-rich silicon nitride insulating layer

    DOE Patents [OSTI]

    Habermehl, Scott D.; Apodaca, Roger T.

    2013-01-22

    An antifuse is disclosed which has an electrically-insulating region sandwiched between two electrodes. The electrically-insulating region has a single layer of a non-hydrogenated silicon-rich (i.e. non-stoichiometric) silicon nitride SiN.sub.X with a nitrogen content X which is generally in the range of 0silicon. Arrays of antifuses can also be formed.

  1. Method of casting silicon into thin sheets

    DOE Patents [OSTI]

    Sanjurjo, Angel; Rowcliffe, David J.; Bartlett, Robert W.

    1982-10-26

    Silicon (Si) is cast into thin shapes within a flat-bottomed graphite crucible by providing a melt of molten Si along with a relatively small amount of a molten salt, preferably NaF. The Si in the resulting melt forms a spherical pool which sinks into and is wetted by the molten salt. Under these conditions the Si will not react with any graphite to form SiC. The melt in the crucible is pressed to the desired thinness with a graphite tool at which point the tool is held until the mass in the crucible has been cooled to temperatures below the Si melting point, at which point the Si shape can be removed.

  2. Diamond coated silicon field emitter array

    SciTech Connect (OSTI)

    S. Albin; W. Fu; A. Varghese; A. C. Lavarias; G. R. Myneni

    1999-07-01

    Diamond coated silicon tip arrays, with and without a self-aligned gate, were fabricated, and current-voltage characteristics of 400 tips were measured. Diamond films were grown uniformly on Si tips using microwave plasma after nucleation with 10 nm diamond suspension and substrate bias. An emission current of 57 ?A was obtained at 5 V from the ungated array tips separated from an anode at 2 ?m. In the case of the gated arrays with 1.5 ?m aperture, an emission current of 3.4 ?A was measured at a gate voltage of 80 V for an anode separation of 200 ?m. The turn-on voltages for these two types of devices were 0.2 and 40 V, respectively. Diamond coated Si tip arrays have potential applications in field emission based low voltage vacuum electronic devices and microsensors.

  3. Bipolar monolithic preamplifiers for SSC silicon calorimetry

    SciTech Connect (OSTI)

    Britton, C.L. Jr.; Todd, R.A.; Bauer, M.L. ); Kennedy, E.J. . Dept. of Electrical and Computer Engineering Oak Ridge National Lab., TN ); Bugg, W.M. . Dept. of Physics)

    1990-01-01

    This paper describes preamplifiers designed specifically to address the requirements of silicon calorimetry for the Superconducting Super Collider (SSC). Eight different preamplifiers designed for detector capacitances ranging from 20 pF to 500 pF and operating temperatures from 25{degree}C to {minus}20{degree}C are discussed. The preamplifiers were fabricated with two different high-frequency processes (one with the VTC, Inc. VJ900 process, seven with the Harris Semiconductor VHF Process). The different topologies and their features are discussed in addition to the design methodologies employed. The results for noise, power consumption, speed, and radiation damage effects as well as data for post-damage annealing are presented for the VTC process preamplifier. Simulations for the VHF Process circuits are presented. This work was funded through SSC Generic Detector funding, SSC Detector Subsystem funding, and the Oak Ridge National Laboratory (ORNL) Detector Center.

  4. Junction-side illuminated silicon detector arrays

    DOE Patents [OSTI]

    Iwanczyk, Jan S.; Patt, Bradley E.; Tull, Carolyn

    2004-03-30

    A junction-side illuminated detector array of pixelated detectors is constructed on a silicon wafer. A junction contact on the front-side may cover the whole detector array, and may be used as an entrance window for light, x-ray, gamma ray and/or other particles. The back-side has an array of individual ohmic contact pixels. Each of the ohmic contact pixels on the back-side may be surrounded by a grid or a ring of junction separation implants. Effective pixel size may be changed by separately biasing different sections of the grid. A scintillator may be coupled directly to the entrance window while readout electronics may be coupled directly to the ohmic contact pixels. The detector array may be used as a radiation hardened detector for high-energy physics research or as avalanche imaging arrays.

  5. Method of producing silicon carbide articles

    DOE Patents [OSTI]

    Milewski, John V. (Los Alamos, NM)

    1985-01-01

    A method of producing articles comprising reaction-bonded silicon carbide (SiC) and graphite (and/or carbon) is given. The process converts the graphite (and/or carbon) in situ to SiC, thus providing the capability of economically obtaining articles made up wholly or partially of SiC having any size and shape in which graphite (and/or carbon) can be found or made. When the produced articles are made of an inner graphite (and/or carbon) substrate to which SiC is reaction bonded, these articles distinguish SiC-coated graphite articles found in the prior art by the feature of a strong bond having a gradual (as opposed to a sharply defined) interface which extends over a distance of mils. A method for forming SiC whisker-reinforced ceramic matrices is also given. The whisker-reinforced articles comprise SiC whiskers which substantially retain their structural integrity.

  6. Theory Of Alkyl Terminated Silicon Quantum Dots

    SciTech Connect (OSTI)

    Reboredo, F; Galli, G

    2004-08-19

    We have carried out a series of ab-initio calculations to investigate changes in the optical properties of Si quantum dots as a function of surface passivation. In particular, we have compared hydrogen passivated dots with those having alkyl groups at the surface. We find that, while on clusters with reconstructed surfaces a complete alkyl passivation is possible, steric repulsion prevents full passivation of Si dots with unreconstructed surfaces. In addition, our calculations show that steric repulsion may have a dominant effect in determining the surface structure, and eventually the stability of alkyl passivated clusters, with results dependent on the length of the carbon chain. Alkyl passivation weakly affects optical gaps of silicon quantum dots, while it substantially decreases ionization potentials and electron affinities and affect their excited state properties. On the basis of our results we propose that alkyl terminated quantum dots may be size selected taking advantage of the change in ionization potential as a function of the cluster size.

  7. Control of carbon balance in a silicon smelting furnace

    DOE Patents [OSTI]

    Dosaj, V.D.; Haines, C.M.; May, J.B.; Oleson, J.D.

    1992-12-29

    The present invention is a process for the carbothermic reduction of silicon dioxide to form elemental silicon. Carbon balance of the process is assessed by measuring the amount of carbon monoxide evolved in offgas exiting the furnace. A ratio of the amount of carbon monoxide evolved and the amount of silicon dioxide added to the furnace is determined. Based on this ratio, the carbon balance of the furnace can be determined and carbon feed can be adjusted to maintain the furnace in carbon balance.

  8. Method of fabricating silicon carbide coatings on graphite surfaces

    DOE Patents [OSTI]

    Varacalle, D.J. Jr.; Herman, H.; Burchell, T.D.

    1994-07-26

    The vacuum plasma spray process produces well-bonded, dense, stress-free coatings for a variety of materials on a wide range of substrates. The process is used in many industries to provide for the excellent wear, corrosion resistance, and high temperature behavior of the fabricated coatings. In this application, silicon metal is deposited on graphite. This invention discloses the optimum processing parameters for as-sprayed coating qualities. The method also discloses the effect of thermal cycling on silicon samples in an inert helium atmosphere at about 1,600 C which transforms the coating to silicon carbide. 3 figs.

  9. Method for forming fibrous silicon carbide insulating material

    DOE Patents [OSTI]

    Wei, George C. (Oak Ridge, TN)

    1984-01-01

    A method whereby silicon carbide-bonded SiC fiber composites are prepared from carbon-bonded C fiber composites is disclosed. Carbon-bonded C fiber composite material is treated with gaseous silicon monoxide generated from the reaction of a mixture of colloidal silica and carbon black at an elevated temperature in an argon atmosphere. The carbon in the carbon bond and fiber is thus chemically converted to SiC resulting in a silicon carbide-bonded SiC fiber composite that can be used for fabricating dense, high-strength high-toughness SiC composites or as thermal insulating materials in oxidizing environments.

  10. Silicon nitride protective coatings for silvered glass mirrors

    DOE Patents [OSTI]

    Tracy, C.E.; Benson, D.K.

    1984-07-20

    A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate prior to metal deposition thereon to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors.

  11. Method for fabricating transistors using crystalline silicon devices on glass

    DOE Patents [OSTI]

    McCarthy, Anthony M. (Menlo Park, CA)

    1997-01-01

    A method for fabricating transistors using single-crystal silicon devices on glass. This method overcomes the potential damage that may be caused to the device during high voltage bonding and employs a metal layer which may be incorporated as part of the transistor. This is accomplished such that when the bonding of the silicon wafer or substrate to the glass substrate is performed, the voltage and current pass through areas where transistors will not be fabricated. After removal of the silicon substrate, further metal may be deposited to form electrical contact or add functionality to the devices. By this method both single and gate-all-around devices may be formed.

  12. Silicon Carbide in the Cleanroom | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inside the GE Global Research Clean Room: Silicon Carbide Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Inside the GE Global Research Clean Room: Silicon Carbide GE Global Research is working on nanoscale silicon carbide devices. Find out what we're doing. You Might Also Like 2-1-10-v-working-at-ge-research The Dirt

  13. Method of fabricating silicon carbide coatings on graphite surfaces

    DOE Patents [OSTI]

    Varacalle, Jr., Dominic J. (Idaho Falls, ID); Herman, Herbert (Port Jefferson, NY); Burchell, Timothy D. (Oak Ridge, TN)

    1994-01-01

    The vacuum plasma spray process produces well-bonded, dense, stress-free coatings for a variety of materials on a wide range of substrates. The process is used in many industries to provide for the excellent wear, corrosion resistance, and high temperature behavior of the fabricated coatings. In this application, silicon metal is deposited on graphite. This invention discloses the optimum processing parameters for as-sprayed coating qualities. The method also discloses the effect of thermal cycling on silicon samples in an inert helium atmosphere at about 1600.degree.C. which transforms the coating to silicon carbide.

  14. Dynamic Mechanical Thermal Analysis of Virgin TR-55 Silicone Rubber

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Dynamic Mechanical Thermal Analysis of Virgin TR-55 Silicone Rubber Citation Details In-Document Search Title: Dynamic Mechanical Thermal Analysis of Virgin TR-55 Silicone Rubber Dynamic mechanical thermal analysis (DMTA) of virgin TR-55 silicone rubber specimens was conducted. Dynamic frequency/temperature sweep tests were conducted over the ranges 0.1-100 rad/s and 30-100 C using a parallel plate test geometry. A strain of 0.2% was used, which was near

  15. Method for forming fibrous silicon carbide insulating material

    DOE Patents [OSTI]

    Wei, G.C.

    1983-10-12

    A method whereby silicon carbide-bonded SiC fiber composites are prepared from carbon-bonded C fiber composites is disclosed. Carbon-bonded C fiber composite material is treated with gaseous silicon monoxide generated from the reaction of a mixture of colloidal silica and carbon black at an elevated temperature in an argon atmosphere. The carbon in the carbon bond and fiber is thus chemically converted to SiC resulting in a silicon carbide-bonded SiC fiber composite that can be used for fabricating dense, high-strength high-toughness SiC composites or as thermal insulating materials in oxidizing environments.

  16. Silicon nitride protective coatings for silvered glass mirrors

    DOE Patents [OSTI]

    Tracy, C. Edwin (Golden, CO); Benson, David K. (Golden, CO)

    1988-01-01

    A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate before metal deposition to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors.

  17. Metal-assisted chemical etch porous silicon formation method

    DOE Patents [OSTI]

    Li, Xiuling; Bohn, Paul W.; Sweedler, Jonathan V.

    2004-09-14

    A thin discontinuous layer of metal such as Au, Pt, or Au/Pd is deposited on a silicon surface. The surface is then etched in a solution including HF and an oxidant for a brief period, as little as a couple seconds to one hour. A preferred oxidant is H.sub.2 O.sub.2. Morphology and light emitting properties of porous silicon can be selectively controlled as a function of the type of metal deposited, Si doping type, silicon doping level, and/or etch time. Electrical assistance is unnecessary during the chemical etching of the invention, which may be conducted in the presence or absence of illumination.

  18. Silicon Carbide Emitter Turn-Off Thyristor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Jun; Wang, Gangyao; Li, Jun; Huang, Alex Q.; Melcher, Jerry; Atcitty, Stan

    2008-01-01

    A novel MOS-conmore » trolled SiC thyristor device, the SiC emitter turn-off thyristor (ETO) is a promising technology for future high-voltage switching applications because it integrates the excellent current conduction capability of a SiC thyristor with a simple MOS-control interface. Through unity-gain turn-off, the SiC ETO also achieves excellent Safe Operation Area (SOA) and faster switching speeds than silicon ETOs. The world's first 4.5-kV SiC ETO prototype shows a forward voltage drop of 4.26 V at 26.5  A / cm 2 current density at room and elevated temperatures. Tested in an inductive circuit with a 2.5 kV DC link voltage and a 9.56-A load current, the SiC ETO shows a fast turn-off time of 1.63 microseconds and a low 9.88 mJ turn-off energy. The low switching loss indicates that the SiC ETO could operate at about 4 kHz if 100  W / cm 2 conduction and the 100  W / cm 2 turn-off losses can be removed by the thermal management system. This frequency capability is about 4 times higher than 4.5-kV-class silicon power devices. The preliminary demonstration shows that the SiC ETO is a promising candidate for high-frequency, high-voltage power conversion applications, and additional developments to optimize the device for higher voltage (>5 kV) and higher frequency (10 kHz) are needed.« less

  19. Method of preparing silicon carbide particles dispersed in an electrolytic bath for composite electroplating of metals

    DOE Patents [OSTI]

    Peng, Yu-Min (Hsinchu, TW); Wang, Jih-Wen (Hsinchu, TW); Liue, Chun-Ying (Tau-Yung, TW); Yeh, Shinn-Horng (Kaohsiung, TW)

    1994-01-01

    A method for preparing silicon carbide particles dispersed in an electrolytic bath for composite electroplating of metals includes the steps of washing the silicon carbide particles with an organic solvent; washing the silicon carbide particles with an inorganic acid; grinding the silicon carbide particles; and heating the silicon carbide particles in a nickel-containing solution at a boiling temperature for a predetermined period of time.

  20. Silicon Valley Power- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Silicon Valley Power (SVP) offers a variety rebates to its business customers, capped at a maximum total incentive of $500,000 per customer per year. In addition, Customer Directed Rebates are...

  1. Synthesis and study of novel silicon-based unsaturated polymers

    SciTech Connect (OSTI)

    Lin, J.

    1995-06-19

    Novel unsaturated polymers have been synthesized and studied as precursors to silicon carbide and third order nonlinear optical materials. X ray structures were obtained. Kinetic and mechanistic studies of the unique thermal isomerization of dimethylenedisilacyclobutane to a carbene were conducted.

  2. Silicon-based sleeve devices for chemical reactions

    DOE Patents [OSTI]

    Northrup, M.A.; Mariella, R.P. Jr.; Carrano, A.V.; Balch, J.W.

    1996-12-31

    A silicon-based sleeve type chemical reaction chamber is described that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis. 32 figs.

  3. Polymer mold makes perfect silicon nanostructures > EMC2 News...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    made such a mold for nanostructures that can shape liquid silicon out of an organic polymer material. This paves the way for perfect, 3-D, single crystal nanostructures. The...

  4. Direct-patterned optical waveguides on amorphous silicon films

    DOE Patents [OSTI]

    Vernon, Steve; Bond, Tiziana C.; Bond, Steven W.; Pocha, Michael D.; Hau-Riege, Stefan

    2005-08-02

    An optical waveguide structure is formed by embedding a core material within a medium of lower refractive index, i.e. the cladding. The optical index of refraction of amorphous silicon (a-Si) and polycrystalline silicon (p-Si), in the wavelength range between about 1.2 and about 1.6 micrometers, differ by up to about 20%, with the amorphous phase having the larger index. Spatially selective laser crystallization of amorphous silicon provides a mechanism for controlling the spatial variation of the refractive index and for surrounding the amorphous regions with crystalline material. In cases where an amorphous silicon film is interposed between layers of low refractive index, for example, a structure comprised of a SiO.sub.2 substrate, a Si film and an SiO.sub.2 film, the formation of guided wave structures is particularly simple.

  5. Indium oxide/n-silicon heterojunction solar cells

    DOE Patents [OSTI]

    Feng, Tom (Morris Plains, NJ); Ghosh, Amal K. (New Providence, NJ)

    1982-12-28

    A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.

  6. Protective shells may boost silicon lithium-ion batteries | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protective shells may boost silicon lithium-ion batteries By Sarah Schlieder * August 5, 2015 Tweet EmailPrint Imagine a cell a phone that charges in less than an hour and lasts...

  7. Silicon Valley Solar Inc SV Solar | Open Energy Information

    Open Energy Info (EERE)

    Solar Inc SV Solar Jump to: navigation, search Name: Silicon Valley Solar Inc (SV Solar) Place: Santa Clara, California Zip: 95051 Sector: Solar Product: A US-based manufacturer of...

  8. Investigation of the texture surface silicon solar cell

    SciTech Connect (OSTI)

    Rongqiang, C.; Huilan, Q.

    1983-10-01

    The optical and electrical properties of the texture surface silicon solar cell are analyzed and discussed. A new method of etching a texture surface by LiOH is presented and the mechanism of etching a texture surface is investigated.

  9. Spectroscopic ellipsometry characterization of thin-film silicon nitride

    SciTech Connect (OSTI)

    Jellison, G.E. Jr.; Modine, F.A.; Doshi, P.; Rohatgi, A.

    1997-05-01

    We have measured and analyzed the optical characteristics of a series of silicon nitride thin films prepared by plasma-enhanced chemical vapor deposition on silicon substrates for photovoltaic applications. Spectroscopic ellipsometry measurements were made by using a two-channel spectroscopic polarization modulator ellipsometer that measures N, S, and C data simultaneously. The data were fit to a model consisting of air / roughness / SiN / crystalline silicon. The roughness was modeled using the Bruggeman effective medium approximation, assuming 50% SiN, 50% voids. The optical functions of the SiN film were parameterized using a model by Jellison and Modine. All the {Chi}{sup 2} are near 1, demonstrating that this model works extremely well for all SiN films. The measured dielectric functions were used to make optimized SiN antireflection coatings for crystalline silicon solar cells.

  10. Silicon Valley Power- Solar Electric Buy Down Program

    Broader source: Energy.gov [DOE]

    Silicon Valley Power (SVP) offers incentives for the installation of new grid-connected solar electric (photovoltaic, or PV) systems. Incentive levels will step down over the life of the program...

  11. Silicon carbidonitride based phosphors and lighting devices using the same

    DOE Patents [OSTI]

    Li, Yuanqiang; Romanelli, Michael Dennis; Tian, Yongchi

    2013-09-17

    Disclosed herein are novel families of silicon carbidonitride phosphor compositions. In certain embodiments, optimal ranges of carbon content have been identified which provide excellent luminescence and thermal stability characteristics.

  12. Pulsed energy synthesis and doping of silicon carbide

    DOE Patents [OSTI]

    Truher, J.B.; Kaschmitter, J.L.; Thompson, J.B.; Sigmon, T.W.

    1995-06-20

    A method for producing beta silicon carbide thin films by co-depositing thin films of amorphous silicon and carbon onto a substrate is disclosed, whereafter the films are irradiated by exposure to a pulsed energy source (e.g. excimer laser) to cause formation of the beta-SiC compound. Doped beta-SiC may be produced by introducing dopant gases during irradiation. Single layers up to a thickness of 0.5-1 micron have been produced, with thicker layers being produced by multiple processing steps. Since the electron transport properties of beta silicon carbide over a wide temperature range of 27--730 C is better than these properties of alpha silicon carbide, they have wide application, such as in high temperature semiconductors, including HETEROJUNCTION-junction bipolar transistors and power devices, as well as in high bandgap solar arrays, ultra-hard coatings, light emitting diodes, sensors, etc.

  13. Pulsed energy synthesis and doping of silicon carbide

    DOE Patents [OSTI]

    Truher, Joel B. (San Rafael, CA); Kaschmitter, James L. (Pleasanton, CA); Thompson, Jesse B. (Brentwood, CA); Sigmon, Thomas W. (Beaverton, OR)

    1995-01-01

    A method for producing beta silicon carbide thin films by co-depositing thin films of amorphous silicon and carbon onto a substrate, whereafter the films are irradiated by exposure to a pulsed energy source (e.g. excimer laser) to cause formation of the beta-SiC compound. Doped beta-SiC may be produced by introducing dopant gases during irradiation. Single layers up to a thickness of 0.5-1 micron have been produced, with thicker layers being produced by multiple processing steps. Since the electron transport properties of beta silicon carbide over a wide temperature range of 27.degree.-730.degree. C. is better than these properties of alpha silicon carbide, they have wide application, such as in high temperature semiconductors, including hetero-junction bipolar transistors and power devices, as well as in high bandgap solar arrays, ultra-hard coatings, light emitting diodes, sensors, etc.

  14. Silicon-based sleeve devices for chemical reactions

    DOE Patents [OSTI]

    Northrup, M. Allen (Berkeley, CA); Mariella, Jr., Raymond P. (Danville, CA); Carrano, Anthony V. (Livermore, CA); Balch, Joseph W. (Livermore, CA)

    1996-01-01

    A silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.

  15. Uncertainty of silicon 1-MeV damage function

    SciTech Connect (OSTI)

    Danjaji, M.B.; Griffin, P.J.

    1997-02-01

    The electronics radiation hardness-testing community uses the ASTM E722-93 Standard Practice to define the energy dependence of the nonionizing neutron damage to silicon semiconductors. This neutron displacement damage response function is defined to be equal to the silicon displacement kerma as calculated from the ORNL Si cross-section evaluation. Experimental work has shown that observed damage ratios at various test facilities agree with the defined response function to within 5%. Here, a covariance matrix for the silicon 1-MeV neutron displacement damage function is developed. This uncertainty data will support the electronic radiation hardness-testing community and will permit silicon displacement damage sensors to be used in least squares spectrum adjustment codes.

  16. Solution-processed amorphous silicon surface passivation layers

    SciTech Connect (OSTI)

    Mews, Mathias Sontheimer, Tobias; Korte, Lars; Rech, Bernd; Mader, Christoph; Traut, Stephan; Wunnicke, Odo

    2014-09-22

    Amorphous silicon thin films, fabricated by thermal conversion of neopentasilane, were used to passivate crystalline silicon surfaces. The conversion is investigated using X-ray and constant-final-state-yield photoelectron spectroscopy, and minority charge carrier lifetime spectroscopy. Liquid processed amorphous silicon exhibits high Urbach energies from 90 to 120?meV and 200?meV lower optical band gaps than material prepared by plasma enhanced chemical vapor deposition. Applying a hydrogen plasma treatment, a minority charge carrier lifetime of 1.37?ms at an injection level of 10{sup 15}/cm{sup 3} enabling an implied open circuit voltage of 724?mV was achieved, demonstrating excellent silicon surface passivation.

  17. Anti-reflective nanoporous silicon for efficient hydrogen production

    DOE Patents [OSTI]

    Oh, Jihun; Branz, Howard M

    2014-05-20

    Exemplary embodiments are disclosed of anti-reflective nanoporous silicon for efficient hydrogen production by photoelectrolysis of water. A nanoporous black Si is disclosed as an efficient photocathode for H.sub.2 production from water splitting half-reaction.

  18. Process and apparatus for casting multiple silicon wafer articles

    DOE Patents [OSTI]

    Nanis, Leonard (Palo Alto, CA)

    1992-05-05

    Method and apparatus of casting silicon produced by the reaction between SiF.sub.4 and an alkaline earth metal into thin wafer-shaped articles suitable for solar cell fabrication.

  19. Photoluminescent 1-2 nm sized silicon nanoparticles: A surface...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photoluminescent 1-2 nm sized silicon nanoparticles: A surface-dependent system Authors: Romero, J.J., Llansola-Portols, M.J., Dell'Arciprete, M.L., Rodrguez, H.B., Moore,...

  20. Silicon Genesis Corp SiGen | Open Energy Information

    Open Energy Info (EERE)

    Corp SiGen Jump to: navigation, search Name: Silicon Genesis Corp (SiGen) Place: San Jose, California Zip: 95134 Product: US-based manufacturer of proton-shooting wafer slicing...

  1. Raman and FTIR Studies on Nanostructure Formation on Silicon Carbide

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Raman and FTIR Studies on Nanostructure Formation on Silicon Carbide Citation Details In-Document Search Title: Raman and FTIR Studies on Nanostructure Formation on Silicon Carbide No abstract prepared. Authors: Muntele, Iulia C. [1] ; Muntele, C. I. [1] ; Ila, Dr. Daryush [1] ; Poker, David B [2] ; Hensley, Dale K [2] + Show Author Affiliations Alabama A&M University, Normal ORNL Publication Date: 2003-01-01 OSTI Identifier: 978142 DOE Contract Number:

  2. Mechanistic aspects of vapor phase lubrication of silicon. (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Mechanistic aspects of vapor phase lubrication of silicon. Citation Details In-Document Search Title: Mechanistic aspects of vapor phase lubrication of silicon. No abstract prepared. Authors: Dugger, Michael Thomas ; Dirk, Shawn M. ; Ohlhausen, James Anthony Publication Date: 2010-10-01 OSTI Identifier: 1028381 Report Number(s): SAND2010-7362C TRN: US201122%%249 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: Proposed for

  3. Predicting fracture in micron-scale polycrystalline silicon MEMS

    Office of Scientific and Technical Information (OSTI)

    structures. (Technical Report) | SciTech Connect Predicting fracture in micron-scale polycrystalline silicon MEMS structures. Citation Details In-Document Search Title: Predicting fracture in micron-scale polycrystalline silicon MEMS structures. × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional

  4. Synthesis of silicon nanotubes by DC arc plasma method

    SciTech Connect (OSTI)

    Tank, C. M.; Bhoraskar, S. V.; Mathe, V. L.

    2012-06-05

    Plasma synthesis is a novel technique of synthesis of nanomaterials as they provide high rate of production and promote metastable reactions. Very thin walled silicon nanotubes were synthesized in a DC direct arc thermal plasma reactor. The effect of parameters of synthesis i.e. arc current and presence of hydrogen on the morphology of Si nanoparticles is reported. Silicon nanotubes were characterized by Transmission Electron Microscopy (TEM), Local Energy Dispersive X-ray analysis (EDAX), and Scanning Tunneling Microscopy (STM).

  5. Direct-Write of Silicon and Germanium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct-Write of Silicon and Germanium Nanostructures Print Nanostructured materials (nanowires, nanotubes, nanoclusters, graphene) are attractive possible alternatives to traditionally microfabricated silicon in continuing the miniaturization trend in the electronics industry. To go from nanomaterials to electronics, however, the precise one-by-one assembly of billions of nanoelements into a functioning circuit is required-clearly not a simple task. An interdisciplinary team from the University

  6. Direct-Write of Silicon and Germanium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct-Write of Silicon and Germanium Nanostructures Print Nanostructured materials (nanowires, nanotubes, nanoclusters, graphene) are attractive possible alternatives to traditionally microfabricated silicon in continuing the miniaturization trend in the electronics industry. To go from nanomaterials to electronics, however, the precise one-by-one assembly of billions of nanoelements into a functioning circuit is required-clearly not a simple task. An interdisciplinary team from the University

  7. Direct-Write of Silicon and Germanium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct-Write of Silicon and Germanium Nanostructures Print Nanostructured materials (nanowires, nanotubes, nanoclusters, graphene) are attractive possible alternatives to traditionally microfabricated silicon in continuing the miniaturization trend in the electronics industry. To go from nanomaterials to electronics, however, the precise one-by-one assembly of billions of nanoelements into a functioning circuit is required-clearly not a simple task. An interdisciplinary team from the University

  8. Direct-Write of Silicon and Germanium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct-Write of Silicon and Germanium Nanostructures Print Nanostructured materials (nanowires, nanotubes, nanoclusters, graphene) are attractive possible alternatives to traditionally microfabricated silicon in continuing the miniaturization trend in the electronics industry. To go from nanomaterials to electronics, however, the precise one-by-one assembly of billions of nanoelements into a functioning circuit is required-clearly not a simple task. An interdisciplinary team from the University

  9. Target molecules detection by waveguiding in a photonic silicon membrane

    DOE Patents [OSTI]

    Letant, Sonia E. (Livermore, CA); Van Buuren, Anthony (Livermore, CA); Terminello, Louis (Danville, CA); Hart, Bradley R. (Brentwood, CA)

    2006-12-26

    Disclosed herein is a porous silicon filter capable of binding and detecting biological and chemical target molecules in liquid or gas samples. A photonic waveguiding silicon filter with chemical and/or biological anchors covalently attached to the pore walls bind target molecules. The system uses transmission curve engineering principles to allow measurements to be made in situ and in real time to detect the presence of various target molecules and calculate the concentration of bound target.

  10. Project Profile: Hybrid Organic Silicone HTF Utilizing Endothermic Chemical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reactions for Latent Heat Storage | Department of Energy Concentrating Solar Power » Project Profile: Hybrid Organic Silicone HTF Utilizing Endothermic Chemical Reactions for Latent Heat Storage Project Profile: Hybrid Organic Silicone HTF Utilizing Endothermic Chemical Reactions for Latent Heat Storage Los Alamos National Lab logo Los Alamos National Laboratory, under an ARRA CSP Award, is developing a thermally stable, working heat transfer fluid (HTF) that is integrated with chemical

  11. Engineering Metal Impurities in Multicrystalline Silicon Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Metal Impurities in Multicrystalline Silicon Solar Cells Engineering Metal Impurities in Multicrystalline Silicon Solar Cells Print Wednesday, 26 October 2005 00:00 Transition metals are one of the main culprits in degrading the efficiency of multicrystalline solar cells. With a suite of x-ray microprobe techniques, a multi-institutional collaboration led by researchers from the University of California, Berkeley, and Berkeley Lab studied the distribution of metal clusters in a

  12. 3D, Flash, Induced Current Readout for Silicon Sensors

    SciTech Connect (OSTI)

    Parker, Sherwood I.

    2014-06-07

    A new method for silicon microstrip and pixel detector readout using (1) 65 nm-technology current amplifers which can, for the first time with silicon microstrop and pixel detectors, have response times far shorter than the charge collection time (2) 3D trench electrodes large enough to subtend a reasonable solid angle at most track locations and so have adequate sensitivity over a substantial volume of pixel, (3) induced signals in addition to, or in place of, collected charge

  13. Longer Life Lithium Ion Batteries with Silicon Anodes - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Longer Life Lithium Ion Batteries with Silicon Anodes Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing Summary Researchers have developed a new technology to advance the life of lithium-ion batteries. A catechol-based polymer binder, developed at Berkeley Lab, interacting with the oxide layer on the surface of commercial silicon (Si), generates powerful adhesion strength and maintains electrode integrity during the drastic volume changes

  14. Synthesis and tribological behavior of silicon oxycarbonitride thin films

    Office of Scientific and Technical Information (OSTI)

    derived from poly(urea)methyl vinyl silazane. (Journal Article) | SciTech Connect Journal Article: Synthesis and tribological behavior of silicon oxycarbonitride thin films derived from poly(urea)methyl vinyl silazane. Citation Details In-Document Search Title: Synthesis and tribological behavior of silicon oxycarbonitride thin films derived from poly(urea)methyl vinyl silazane. No abstract prepared. Authors: Prasad, Somuri V. ; Tallant, David Robert ; Raj, Rishi [1] ; Cross, Tsali + Show

  15. Method for forming silicon on a glass substrate

    DOE Patents [OSTI]

    McCarthy, A.M.

    1995-03-07

    A method by which single-crystal silicon microelectronics may be fabricated on glass substrates at unconventionally low temperatures. This is achieved by fabricating a thin film of silicon on glass and subsequently forming the doped components by a short wavelength (excimer) laser doping procedure and conventional patterning techniques. This method may include introducing a heavily boron doped etch stop layer on a silicon wafer using an excimer laser, which permits good control of the etch stop layer removal process. This method additionally includes dramatically reducing the remaining surface roughness of the silicon thin films after etching in the fabrication of silicon on insulator wafers by scanning an excimer laser across the surface of the silicon thin film causing surface melting, whereby the surface tension of the melt causes smoothing of the surface during recrystallization. Applications for this method include those requiring a transparent or insulating substrate, such as display manufacturing. Other applications include sensors, actuators, optoelectronics, radiation hard and high temperature electronics. 15 figs.

  16. Laterally inherently thin amorphous-crystalline silicon heterojunction photovoltaic cell

    SciTech Connect (OSTI)

    Chowdhury, Zahidur R. Kherani, Nazir P.

    2014-12-29

    This article reports on an amorphous-crystalline silicon heterojunction photovoltaic cell concept wherein the heterojunction regions are laterally narrow and distributed amidst a backdrop of well-passivated crystalline silicon surface. The localized amorphous-crystalline silicon heterojunctions consisting of the laterally thin emitter and back-surface field regions are precisely aligned under the metal grid-lines and bus-bars while the remaining crystalline silicon surface is passivated using the recently proposed facile grown native oxideplasma enhanced chemical vapour deposited silicon nitride passivation scheme. The proposed cell concept mitigates parasitic optical absorption losses by relegating amorphous silicon to beneath the shadowed metallized regions and by using optically transparent passivation layer. A photovoltaic conversion efficiency of 13.6% is obtained for an untextured proof-of-concept cell illuminated under AM 1.5 global spectrum; the specific cell performance parameters are V{sub OC} of 666?mV, J{sub SC} of 29.5?mA-cm{sup ?2}, and fill-factor of 69.3%. Reduced parasitic absorption, predominantly in the shorter wavelength range, is confirmed with external quantum efficiency measurement.

  17. Deposition of device quality, low hydrogen content, amorphous silicon films by hot filament technique using ``safe`` silicon source gas

    DOE Patents [OSTI]

    Mahan, A.H.; Molenbroek, E.C.; Nelson, B.P.

    1998-07-07

    A method is described for producing hydrogenated amorphous silicon on a substrate by flowing a stream of safe (diluted to less than 1%) silane gas past a heated filament. 7 figs.

  18. Method for fabricating an ultra-low expansion mask blank having a crystalline silicon layer

    DOE Patents [OSTI]

    Cardinale, Gregory F. (Oakland, CA)

    2002-01-01

    A method for fabricating masks for extreme ultraviolet lithography (EUVL) using Ultra-Low Expansion (ULE) substrates and crystalline silicon. ULE substrates are required for the necessary thermal management in EUVL mask blanks, and defect detection and classification have been obtained using crystalline silicon substrate materials. Thus, this method provides the advantages for both the ULE substrate and the crystalline silicon in an Extreme Ultra-Violet (EUV) mask blank. The method is carried out by bonding a crystalline silicon wafer or member to a ULE wafer or substrate and thinning the silicon to produce a 5-10 .mu.m thick crystalline silicon layer on the surface of the ULE substrate. The thinning of the crystalline silicon may be carried out, for example, by chemical mechanical polishing and if necessary or desired, oxidizing the silicon followed by etching to the desired thickness of the silicon.

  19. Process for producing high purity silicon nitride by the direct reaction between elemental silicon and nitrogen-hydrogen liquid reactants

    DOE Patents [OSTI]

    Pugar, E.A.; Morgan, P.E.D.

    1987-09-15

    A process is disclosed for producing, at a low temperature, a high purity reaction product consisting essentially of silicon, nitrogen, and hydrogen which can then be heated to produce a high purity alpha silicon nitride. The process comprises: reacting together a particulate elemental high purity silicon with a high purity nitrogen-hydrogen reactant in its liquid state (such as ammonia or hydrazine) having the formula: N/sub n/H/sub (n+m)/ wherein: n = 1--4 and m = 2 when the nitrogen-hydrogen reactant is straight chain, and 0 when the nitrogen-hydrogen reactant is cyclic. High purity silicon nitride can be formed from this intermediate product by heating the intermediate product at a temperature of from about 1200--1700/degree/C for a period from about 15 minutes up to about 2 hours to form a high purity alpha silicon nitride product. The discovery of the existence of a soluble Si/endash/N/endash/H intermediate enables chemical pathways to be explored previously unavailable in conventional solid-state approaches to silicon-nitrogen ceramics

  20. Process for producing high purity silicon nitride by the direct reaction between elemental silicon and nitrogen-hydrogen liquid reactants

    DOE Patents [OSTI]

    Pugar, Eloise A.; Morgan, Peter E. D.

    1990-01-01

    A process is disclosed for producing, at a low temperature, a high purity reaction product consisting essentially of silicon, nitrogen, and hydrogen which can then be heated to produce a high purity alpha silicon nitride. The process comprises: reacting together a particulate elemental high purity silicon with a high purity nitrogen-hydrogen reactant in its liquid state (such as ammonia or hydrazine) having the formula: N.sub.n H.sub.(n+m) wherein: n=1-4 and m=2 when the nitrogen-hydrogen reactant is straight chain, and 0 when the nitrogen-hydrogen reactant is cyclic. High purity silicon nitride can be formed from this intermediate product by heating the intermediate product at a temperature of from about 1200.degree.-1700.degree. C. for a period from about 15 minutes up to about 2 hours to form a high purity alpha silicon nitride product. The discovery of the existence of a soluble Si-N-H intermediate enables chemical pathways to be explored previously unavailable in conventional solid state approaches to silicon-nitrogen ceramics.

  1. Flexible Thin-Film Silicon Solar Cells

    SciTech Connect (OSTI)

    Vijh, Aarohi; Cao, Simon; Mohring, Brad

    2014-01-11

    High fuel costs, environmental concerns and issues of national energy security have brought increasing attention to a distributed generation program for electricity based on solar technology. Rooftop photovoltaic (PV) systems provide distributed generation since the power is consumed at the point of production, thus eliminating the need for costly additional transmission lines. However, most current photovoltaic modules are heavy and require a significant amount of labor and accessory hardware such as mounting frames for installation on rooftops. This makes rooftop systems impractical or cost prohibitive in many instances. Under this project, Xunlight has advanced its manufacturing process for the production of lightweight, flexible thin-film silicon based photovoltaic modules, and has enhanced the reliability and performance of Xunlights products. These modules are easily unrolled and adhered directly to standard commercial roofs without mounting structures or integrated directly into roofing membrane materials for the lowest possible installation costs on the market. Importantly, Xunlight has now established strategic alliances with roofing material manufacturers and other OEMs for the development of building integrated photovoltaic roofing and other PV-enabled products, and has deployed its products in a number of commercial installations with these business partners.

  2. Crystalline to amorphous transformation in silicon

    SciTech Connect (OSTI)

    Cheruvu, S.M.

    1982-09-01

    In the present investigation, an attempt was made to understand the fundamental mechanism of crystalline-to-amorphous transformation in arsenic implanted silicon using high resolution electron microscopy. A comparison of the gradual disappearance of simulated lattice fringes with increasing Frenkel pair concentration with the experimental observation of sharp interfaces between crystalline and amorphous regions was carried out leading to the conclusion that when the defect concentration reaches a critical value, the crystal does relax to an amorphous state. Optical diffraction experiments using atomic models also supported this hypothesis. Both crystalline and amorphous zones were found to co-exist with sharp interfaces at the atomic level. Growth of the amorphous fraction depends on the temperature, dose rate and the mass of the implanted ion. Preliminary results of high energy electron irradiation experiments at 1.2 MeV also suggested that clustering of point defects occurs near room temperature. An observation in a high resolution image of a small amorphous zone centered at the core of a dislocation is presented as evidence that the nucleation of an amorphous phase is heterogeneous in nature involving clustering or segregation of point defects near existing defects.

  3. Toward quantitative modeling of silicon phononic thermocrystals

    SciTech Connect (OSTI)

    Lacatena, V.; Haras, M.; Robillard, J.-F. Dubois, E.; Monfray, S.; Skotnicki, T.

    2015-03-16

    The wealth of technological patterning technologies of deca-nanometer resolution brings opportunities to artificially modulate thermal transport properties. A promising example is given by the recent concepts of 'thermocrystals' or 'nanophononic crystals' that introduce regular nano-scale inclusions using a pitch scale in between the thermal phonons mean free path and the electron mean free path. In such structures, the lattice thermal conductivity is reduced down to two orders of magnitude with respect to its bulk value. Beyond the promise held by these materials to overcome the well-known “electron crystal-phonon glass” dilemma faced in thermoelectrics, the quantitative prediction of their thermal conductivity poses a challenge. This work paves the way toward understanding and designing silicon nanophononic membranes by means of molecular dynamics simulation. Several systems are studied in order to distinguish the shape contribution from bulk, ultra-thin membranes (8 to 15 nm), 2D phononic crystals, and finally 2D phononic membranes. After having discussed the equilibrium properties of these structures from 300 K to 400 K, the Green-Kubo methodology is used to quantify the thermal conductivity. The results account for several experimental trends and models. It is confirmed that the thin-film geometry as well as the phononic structure act towards a reduction of the thermal conductivity. The further decrease in the phononic engineered membrane clearly demonstrates that both phenomena are cumulative. Finally, limitations of the model and further perspectives are discussed.

  4. Photoresponsive properties of ultrathin silicon nanowires

    SciTech Connect (OSTI)

    Tran, Duy P.; Macdonald, Thomas J.; Nann, Thomas; Thierry, Benjamin E-mail: benjamin.thierry@unisa.edu.au; Wolfrum, Bernhard; Stockmann, Regina; Offenhusser, Andreas E-mail: benjamin.thierry@unisa.edu.au

    2014-12-08

    Functional silicon nanowires (SiNWs) are promising building blocks in the design of highly sensitive photodetectors and bio-chemical sensors. We systematically investigate the photoresponse properties of ultrathin SiNWs (20?nm) fabricated using a size-reduction method based on e-beam lithography and tetramethylammonium hydroxide wet-etching. The high-quality SiNWs were able to detect light from the UV to the visible range with excellent sensitivity (?1 pW/array), good time response, and high photoresponsivity (R???2.5??10{sup 4?}A/W). Improvement of the ultrathin SiNWs' photoresponse has been observed in comparison to 40?nm counter-part nanowires. These properties are attributable to the predominance surface-effect due to the high surface-to-volume ratio of ultrathin SiNWs. Long-term measurements at different temperatures in both the forward and reverse bias directions demonstrated the stability and reliability of the fabricated device. By sensitizing the fabricated SiNW arrays with cadmium telluride quantum dots (QDs), hybrid QD SiNW devices displayed an improvement in photocurrent response under UV light, while preserving their performance in the visible light range. The fast, stable, and high photoresponse of these hybrid nanostructures is promising towards the development of optoelectronic and photovoltaic devices.

  5. Etching process for improving the strength of a laser-machined silicon-based ceramic article

    DOE Patents [OSTI]

    Copley, S.M.; Tao, H.; Todd-Copley, J.A.

    1991-06-11

    A process is disclosed for improving the strength of laser-machined articles formed of a silicon-based ceramic material such as silicon nitride, in which the laser-machined surface is immersed in an etching solution of hydrofluoric acid and nitric acid for a duration sufficient to remove substantially all of a silicon film residue on the surface but insufficient to allow the solution to unduly attack the grain boundaries of the underlying silicon nitride substrate. This effectively removes the silicon film as a source of cracks that otherwise could propagate downwardly into the silicon nitride substrate and significantly reduce its strength. 1 figure.

  6. Porous silicon based anode material formed using metal reduction

    DOE Patents [OSTI]

    Anguchamy, Yogesh Kumar; Masarapu, Charan; Deng, Haixia; Han, Yongbong; Venkatachalam, Subramanian; Kumar, Sujeet; Lopez, Herman A.

    2015-09-22

    A porous silicon based material comprising porous crystalline elemental silicon formed by reducing silicon dioxide with a reducing metal in a heating process followed by acid etching is used to construct negative electrode used in lithium ion batteries. Gradual temperature heating ramp(s) with optional temperature steps can be used to perform the heating process. The porous silicon formed has a high surface area from about 10 m.sup.2/g to about 200 m.sup.2/g and is substantially free of carbon. The negative electrode formed can have a discharge specific capacity of at least 1800 mAh/g at rate of C/3 discharged from 1.5V to 0.005V against lithium with in some embodiments loading levels ranging from about 1.4 mg/cm.sup.2 to about 3.5 mg/cm.sup.2. In some embodiments, the porous silicon can be coated with a carbon coating or blended with carbon nanofibers or other conductive carbon material.

  7. Defect behavior of polycrystalline solar cell silicon

    SciTech Connect (OSTI)

    Schroder, D.K.; Park, S.H.; Hwang, I.G.; Mohr, J.B.; Hanly, M.P.

    1993-05-01

    The major objective of this study, conducted from October 1988 to September 1991, was to gain an understanding of the behavior of impurities in polycrystalline silicon and the influence of these impurities on solar cell efficiency. The authors studied edge-defined film-fed growth (EFG) and cast poly-Si materials and solar cells. With EFG Si they concentrated on chromium-doped materials and cells to determine the role of Cr on solar cell performance. Cast poly-Si samples were not deliberately contaminated. Samples were characterized by cell efficiency, current-voltage, deep-level transient spectroscopy (DLTS), surface photovoltage (SPV), open-circuit voltage decay, secondary ion mass spectrometry, and Fourier transform infrared spectroscopy measurements. They find that Cr forms Cr-B pairs with boron at room temperature and these pairs dissociate into Cr{sub i}{sup +} and B{sup {minus}} during anneals at 210{degrees}C for 10 min. Following the anneal, Cr-B pairs reform at room temperature with a time constant of 230 h. Chromium forms CrSi{sub 2} precipitates in heavily contaminated regions and they find evidence of CrSi{sub 2} gettering, but a lack of chromium segregation or precipitation to grain boundaries and dislocations. Cr-B pairs have well defined DLTS peaks. However, DLTS spectra of other defects are not well defined, giving broad peaks indicative of defects with a range of energy levels in the band gap. In some high-stress, low-efficiency cast poly-Si they detect SiC precipitates, but not in low-stress, high-efficiency samples. SPV measurements result in nonlinear SPV curves in some materials that are likely due to varying optical absorption coefficients due to locally varying stress in the material.

  8. Silicon bulk micromachined hybrid dimensional artifact.

    SciTech Connect (OSTI)

    Claudet, Andre A.; Tran, Hy D.; Bauer, Todd Marks; Shilling, Katherine Meghan; Oliver, Andrew David

    2010-03-01

    A mesoscale dimensional artifact based on silicon bulk micromachining fabrication has been developed and manufactured with the intention of evaluating the artifact both on a high precision coordinate measuring machine (CMM) and video-probe based measuring systems. This hybrid artifact has features that can be located by both a touch probe and a video probe system with a k=2 uncertainty of 0.4 {micro}m, more than twice as good as a glass reference artifact. We also present evidence that this uncertainty could be lowered to as little as 50 nm (k=2). While video-probe based systems are commonly used to inspect mesoscale mechanical components, a video-probe system's certified accuracy is generally much worse than its repeatability. To solve this problem, an artifact has been developed which can be calibrated using a commercially available high-accuracy tactile system and then be used to calibrate typical production vision-based measurement systems. This allows for error mapping to a higher degree of accuracy than is possible with a glass reference artifact. Details of the designed features and manufacturing process of the hybrid dimensional artifact are given and a comparison of the designed features to the measured features of the manufactured artifact is presented and discussed. Measurement results from vision and touch probe systems are compared and evaluated to determine the capability of the manufactured artifact to serve as a calibration tool for video-probe systems. An uncertainty analysis for calibration of the artifact using a CMM is presented.

  9. Silicon Tracker Design for the ILC (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Conference: Silicon Tracker Design for the ILC Citation Details In-Document Search Title: Silicon Tracker Design for the ILC You are accessing a document from the Department of...

  10. EERE Success Story-Silicon Ink Technology Offers Path to Higher...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Silicon Ink Technology Offers Path to Higher Efficiency Solar Cells at Lower Cost EERE Success Story-Silicon Ink Technology Offers Path to Higher Efficiency Solar Cells at Lower ...

  11. Solar EnerTech PAIS Jin Yu Silicon Wuhai Municipal Gvrnt JV ...

    Open Energy Info (EERE)

    Solar EnerTech PAIS Jin Yu Silicon Wuhai Municipal Gvrnt JV Jump to: navigation, search Name: Solar EnerTech, PAIS, Jin Yu Silicon, & Wuhai Municipal Gvrnt JV Place: Inner Mongolia...

  12. High-performance porous silicon solar cell development. Final report, October 1, 1993--September 30, 1995

    SciTech Connect (OSTI)

    Maruska, P.

    1996-09-01

    The goal of the program was to demonstrate use of porous silicon in new solar cell structures. Porous silicon technology has been developed at Spire for producing visible light-emitting diodes (LEDs). The major aspects that they have demonstrated are the following: porous silicon active layers have been made to show photovoltaic action; porous silicon surface layers can act as antireflection coatings to improve the performance of single-crystal silicon solar cells; and porous silicon surface layers can act as antireflection coatings on polycrystalline silicon solar cells. One problem with the use of porous silicon is to achieve good lateral conduction of electrons and holes through the material. This shows up in terms of poor blue response and photocurrents which increase with increasing reverse bias applied to the diode.

  13. Silicon Ink for High-Efficiency Solar Cells Captures a Share of the Market (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    Fact sheet on 2011 R&D 100 Award winner Silicon Ink. Liquid silicon has arrived, and with it comes a power boost for solar cells and dramatic cost savings for cell manufacturers.

  14. Joint Solar Silicon GmbH Co KG JSSI | Open Energy Information

    Open Energy Info (EERE)

    Name: Joint Solar Silicon GmbH & Co KG (JSSI) Place: Germany Sector: Solar Product: Joint venture between Degussa and SolarWorld for the production of solar-grade silicon on...

  15. Cyber Power Group Ltd aka Fine Silicon Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Cyber Power Group Ltd aka Fine Silicon Co Ltd Jump to: navigation, search Name: Cyber Power Group Ltd (aka Fine Silicon Co Ltd) Place: Baoding, Hebei Province, China Product:...

  16. PV Crystalox Solar AG formerly PV Silicon AG | Open Energy Information

    Open Energy Info (EERE)

    PV Crystalox Solar AG formerly PV Silicon AG Jump to: navigation, search Name: PV Crystalox Solar AG (formerly PV Silicon AG) Place: Abingdon, England, United Kingdom Zip: OX14 4SE...

  17. GaP/Silicon Tandem Solar Cell with Extended Temperature Range...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    crystalline silicon (Si) substrate, offering lower weight and lower cost. GRC's multi-junction solar cell has bottom solar cell junctions of silicon and a top solar cell junction...

  18. Method for fabricating transistors using crystalline silicon devices on glass

    DOE Patents [OSTI]

    McCarthy, A.M.

    1997-09-02

    A method for fabricating transistors using single-crystal silicon devices on glass. This method overcomes the potential damage that may be caused to the device during high voltage bonding and employs a metal layer which may be incorporated as part of the transistor. This is accomplished such that when the bonding of the silicon wafer or substrate to the glass substrate is performed, the voltage and current pass through areas where transistors will not be fabricated. After removal of the silicon substrate, further metal may be deposited to form electrical contact or add functionality to the devices. By this method both single and gate-all-around devices may be formed. 13 figs.

  19. Silicon-embedded copper nanostructure network for high energy storage

    DOE Patents [OSTI]

    Yu, Tianyue

    2016-03-15

    Provided herein are nanostructure networks having high energy storage, electrochemically active electrode materials including nanostructure networks having high energy storage, as well as electrodes and batteries including the nanostructure networks having high energy storage. According to various implementations, the nanostructure networks have high energy density as well as long cycle life. In some implementations, the nanostructure networks include a conductive network embedded with electrochemically active material. In some implementations, silicon is used as the electrochemically active material. The conductive network may be a metal network such as a copper nanostructure network. Methods of manufacturing the nanostructure networks and electrodes are provided. In some implementations, metal nanostructures can be synthesized in a solution that contains silicon powder to make a composite network structure that contains both. The metal nanostructure growth can nucleate in solution and on silicon nanostructure surfaces.

  20. Enhanced densification under shock compression in porous silicon

    SciTech Connect (OSTI)

    Lane, J. Matthew; Thompson, Aidan Patrick; Vogler, Tracy

    2014-10-27

    Under shock compression, most porous materials exhibit lower densities for a given pressure than that of a full-dense sample of the same material. However, some porous materials exhibit an anomalous, or enhanced, densification under shock compression. The mechanism driving this behavior was not completely determined. We present evidence from atomistic simulation that pure silicon belongs to this anomalous class of materials and demonstrate the associated mechanisms responsible for the effect in porous silicon. Atomistic response indicates that local shear strain in the neighborhood of collapsing pores catalyzes a local solid-solid phase transformation even when bulk pressures are below the thermodynamic phase transformation pressure. This metastable, local, and partial, solid-solid phase transformation, which accounts for the enhanced densification in silicon, is driven by the local stress state near the void, not equilibrium thermodynamics. This mechanism may also explain the phenomenon in other covalently bonded materials.

  1. Protective coating for alumina-silicon carbide whisker composites

    DOE Patents [OSTI]

    Tiegs, Terry N. (Lenoir City, TN)

    1989-01-01

    Ceramic composites formed of an alumina matrix reinforced with silicon carbide whiskers homogenously dispersed therein are provided with a protective coating for preventing fracture strength degradation of the composite by oxidation during exposure to high temperatures in oxygen-containing atmospheres. The coating prevents oxidation of the silicon carbide whiskers within the matrix by sealing off the exterior of the matrix so as to prevent oxygen transport into the interior of the matrix. The coating is formed of mullite or mullite plus silicon oxide and alumina and is formed in place by heating the composite in air to a temperature greater than 1200.degree. C. This coating is less than about 100 microns thick and adequately protects the underlying composite from fracture strength degradation due to oxidation.

  2. Enhanced densification under shock compression in porous silicon

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lane, J. Matthew; Thompson, Aidan Patrick; Vogler, Tracy

    2014-10-27

    Under shock compression, most porous materials exhibit lower densities for a given pressure than that of a full-dense sample of the same material. However, some porous materials exhibit an anomalous, or enhanced, densification under shock compression. The mechanism driving this behavior was not completely determined. We present evidence from atomistic simulation that pure silicon belongs to this anomalous class of materials and demonstrate the associated mechanisms responsible for the effect in porous silicon. Atomistic response indicates that local shear strain in the neighborhood of collapsing pores catalyzes a local solid-solid phase transformation even when bulk pressures are below the thermodynamicmore » phase transformation pressure. This metastable, local, and partial, solid-solid phase transformation, which accounts for the enhanced densification in silicon, is driven by the local stress state near the void, not equilibrium thermodynamics. This mechanism may also explain the phenomenon in other covalently bonded materials.« less

  3. Modelling and fabrication of high-efficiency silicon solar cells

    SciTech Connect (OSTI)

    Rohatgi, A.; Smith, A.W.; Salami, J.

    1991-10-01

    This report covers the research conducted on modelling and development of high-efficiency silicon solar cells during the period May 1989 to August 1990. First, considerable effort was devoted toward developing a ray-tracing program for the photovoltaic community to quantify and optimize surface texturing for solar cells. Second, attempts were made to develop a hydrodynamic model for device simulation. Such a model is somewhat slower than drift-diffusion type models like PC-1D, but it can account for more physical phenomena in the device, such as hot carrier effects, temperature gradients, thermal diffusion, and lattice heat flow. In addition, Fermi-Dirac statistics have been incorporated into the model to deal with heavy doping effects more accurately. Third and final component of the research includes development of silicon cell fabrication capabilities and fabrication of high-efficiency silicon cells. 84 refs., 46 figs., 10 tabs.

  4. Deposition of device quality low H content, amorphous silicon films

    DOE Patents [OSTI]

    Mahan, A.H.; Carapella, J.C.; Gallagher, A.C.

    1995-03-14

    A high quality, low hydrogen content, hydrogenated amorphous silicon (a-Si:H) film is deposited by passing a stream of silane gas (SiH{sub 4}) over a high temperature, 2,000 C, tungsten (W) filament in the proximity of a high temperature, 400 C, substrate within a low pressure, 8 mTorr, deposition chamber. The silane gas is decomposed into atomic hydrogen and silicon, which in turn collides preferably not more than 20--30 times before being deposited on the hot substrate. The hydrogenated amorphous silicon films thus produced have only about one atomic percent hydrogen, yet have device quality electrical, chemical, and structural properties, despite this lowered hydrogen content. 7 figs.

  5. Deposition of device quality low H content, amorphous silicon films

    DOE Patents [OSTI]

    Mahan, Archie H. (Golden, CO); Carapella, Jeffrey C. (Evergreen, CO); Gallagher, Alan C. (Louisville, CO)

    1995-01-01

    A high quality, low hydrogen content, hydrogenated amorphous silicon (a-Si:H) film is deposited by passing a stream of silane gas (SiH.sub.4) over a high temperature, 2000.degree. C., tungsten (W) filament in the proximity of a high temperature, 400.degree. C., substrate within a low pressure, 8 mTorr, deposition chamber. The silane gas is decomposed into atomic hydrogen and silicon, which in turn collides preferably not more than 20-30 times before being deposited on the hot substrate. The hydrogenated amorphous silicon films thus produced have only about one atomic percent hydrogen, yet have device quality electrical, chemical, and structural properties, despite this lowered hydrogen content.

  6. Electric field geometries dominate quantum transport coupling in silicon nanoring

    SciTech Connect (OSTI)

    Lee, Tsung-Han E-mail: sfhu.hu@gmail.com; Hu, Shu-Fen E-mail: sfhu.hu@gmail.com

    2014-03-28

    Investigations on the relation between the geometries of silicon nanodevices and the quantum phenomenon they exhibit, such as the AharonovBohm (AB) effect and the Coulomb blockade, were conducted. An arsenic doped silicon nanoring coupled with a nanowire by electron beam lithography was fabricated. At 1.47?K, Coulomb blockade oscillations were observed under modulation from the top gate voltage, and a periodic AB oscillation of ?B?=?0.178?T was estimated for a ring radius of 86?nm under a high sweeping magnetic field. Modulating the flat top gate and the pointed side gate was performed to cluster and separate the many electron quantum dots, which demonstrated that quantum confinement and interference effects coexisted in the doped silicon nanoring.

  7. Cooled silicon nitride stationary turbine vane risk reduction. Final report

    SciTech Connect (OSTI)

    Holowczak, John

    1999-12-31

    The purpose of this program was to reduce the technical risk factors for demonstration of air cooled silicon nitride turbine vanes. The effort involved vane prototype fabrication efforts at two U.S. based gas turbine grade silicon nitride component manufacturers. The efficacy of the cooling system was analyzed via a thermal time/temperature flow test technique previously at UTRC. By having multiple vendors work on parts fabrication, the chance of program success increased for producing these challenging components. The majority of the effort under this contract focused on developing methods for, and producing, the complex thin walled silicon nitride vanes. Components developed under this program will undergo engine environment testing within N00014-96-2-0014.

  8. A strained silicon cold electron bolometer using Schottky contacts

    SciTech Connect (OSTI)

    Brien, T. L. R. Ade, P. A. R.; Barry, P. S.; Dunscombe, C.; Morozov, D. V.; Sudiwala, R. V.; Leadley, D. R.; Myronov, M.; Parker, E. H. C.; Prest, M. J.; Whall, T. E.; Prunnila, M.; Mauskopf, P. D.

    2014-07-28

    We describe optical characterisation of a strained silicon cold electron bolometer (CEB), operating on a 350 mK stage, designed for absorption of millimetre-wave radiation. The silicon cold electron bolometer utilises Schottky contacts between a superconductor and an n{sup ++} doped silicon island to detect changes in the temperature of the charge carriers in the silicon, due to variations in absorbed radiation. By using strained silicon as the absorber, we decrease the electron-phonon coupling in the device and increase the responsivity to incoming power. The strained silicon absorber is coupled to a planar aluminium twin-slot antenna designed to couple to 160?GHz and that serves as the superconducting contacts. From the measured optical responsivity and spectral response, we calculate a maximum optical efficiency of 50% for radiation coupled into the device by the planar antenna and an overall noise equivalent power, referred to absorbed optical power, of 1.110{sup ?16}?W?Hz{sup ?1/2} when the detector is observing a 300?K source through a 4?K throughput limiting aperture. Even though this optical system is not optimized, we measure a system noise equivalent temperature difference of 6?mK?Hz{sup ?1/2}. We measure the noise of the device using a cross-correlation of time stream data, measured simultaneously with two junction field-effect transistor amplifiers, with a base correlated noise level of 300?pV?Hz{sup ?1/2} and find that the total noise is consistent with a combination of photon noise, current shot noise, and electron-phonon thermal noise.

  9. Chemically Etched Silicon Nanowires as Anodes for Lithium-Ion Batteries

    SciTech Connect (OSTI)

    West, Hannah Elise

    2015-08-01

    This study focused on silicon as a high capacity replacement anode for Lithium-ion batteries. The challenge of silicon is that it expands ~270% upon lithium insertion which causes particles of silicon to fracture, causing the capacity to fade rapidly. To account for this expansion chemically etched silicon nanowires from the University of Maine were studied as anodes. They were built into electrochemical half-cells and cycled continuously to measure the capacity and capacity fade.

  10. NREL's Black Silicon Increases Solar Cell Efficiency by Reducing Reflected Sunlight (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01

    A fact sheet detailing the R&D 100 Award-winning Black Silicon Nanocatalytic Wet-Chemical Etch technology.

  11. Method of and apparatus for removing silicon from a high temperature sodium coolant

    DOE Patents [OSTI]

    Yunker, W.H.; Christiansen, D.W.

    1983-11-25

    This patent discloses a method of and system for removing silicon from a high temperature liquid sodium coolant system for a nuclear reactor. The sodium is cooled to a temperature below the silicon saturation temperature and retained at such reduced temperature while inducing high turbulence into the sodium flow for promoting precipitation of silicon compounds and ultimate separation of silicon compound particles from the liquid sodium.

  12. Owens Corning and Silicon Valley Power Partner to Make Energy Savings a

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reality | Department of Energy Owens Corning and Silicon Valley Power Partner to Make Energy Savings a Reality Owens Corning and Silicon Valley Power Partner to Make Energy Savings a Reality This case study describes how the Owens Corning plant in Santa Clara, California, used DOE energy assessments and Silicon Valley Power utility incentives to save $252,000 annually through plant-wide improvements. PDF icon Owens Corning and Silicon Valley Power Partner to Make Energy Savings a Reality

  13. Silicon Tracker Design for the ILC (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Conference: Silicon Tracker Design for the ILC Citation Details In-Document Search Title: Silicon Tracker Design for the ILC The task of tracking charged particles in energy frontier collider experiments has been largely taken over by solid-state detectors. While silicon microstrip trackers offer many advantages in this environment, large silicon trackers are generally much more massive than their gaseous counterparts. Because of the properties of the machine itself, much of the material that

  14. The role of polymer formation during vapor phase lubrication of silicon.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect The role of polymer formation during vapor phase lubrication of silicon. Citation Details In-Document Search Title: The role of polymer formation during vapor phase lubrication of silicon. The lubrication of silicon surfaces with alcohol vapors has recently been demonstrated. With a sufficient concentration of pentanol vapor present, sliding of a silica ball on an oxidized silicon wafer can proceed with no measurable wear. The initial results of time-of-flight

  15. Silicon Ink Technology Offers Path to Higher Efficiency Solar Cells at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lower Cost | Department of Energy Silicon Ink Technology Offers Path to Higher Efficiency Solar Cells at Lower Cost Silicon Ink Technology Offers Path to Higher Efficiency Solar Cells at Lower Cost April 18, 2013 - 12:00am Addthis Silicon Ink Technology Offers Path to Higher Efficiency Solar Cells at Lower Cost Partnering with Sunnyvale-based Innovalight, which was acquired by DuPont in July 2011, EERE supported the development of the first commercially available liquid silicon offering a

  16. Alternative Fuels Data Center: Silicon Valley-based Electric Vehicle Parade

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Breaks Guinness World Record Silicon Valley-based Electric Vehicle Parade Breaks Guinness World Record to someone by E-mail Share Alternative Fuels Data Center: Silicon Valley-based Electric Vehicle Parade Breaks Guinness World Record on Facebook Tweet about Alternative Fuels Data Center: Silicon Valley-based Electric Vehicle Parade Breaks Guinness World Record on Twitter Bookmark Alternative Fuels Data Center: Silicon Valley-based Electric Vehicle Parade Breaks Guinness World Record on

  17. Transmissive metallic contact for amorphous silicon solar cells

    DOE Patents [OSTI]

    Madan, A.

    1984-11-29

    A transmissive metallic contact for amorphous silicon semiconductors includes a thin layer of metal, such as aluminum or other low work function metal, coated on the amorphous silicon with an antireflective layer coated on the metal. A transparent substrate, such as glass, is positioned on the light reflective layer. The metallic layer is preferably thin enough to transmit at least 50% of light incident thereon, yet thick enough to conduct electricity. The antireflection layer is preferably a transparent material that has a refractive index in the range of 1.8 to 2.2 and is approximately 550A to 600A thick.

  18. Computational Approach to Photonic Drilling of Silicon Carbide

    SciTech Connect (OSTI)

    Samant, Anoop N; Daniel, Claus; Chand, Ronald H; Blue, Craig A; Dahotre, Narendra B

    2009-01-01

    The ability of lasers to carry out drilling processes in silicon carbide ceramic was investigated in this study. A JK 701 pulsed Nd:YAG laser was used for drilling through the entire depth of silicon carbide plates of different thicknesses. The laser parameters were varied in different combinations for a well controlled drilling through the entire thickness of the SiC plates. A drilling model incorporating effects of various physical phenomena such as decomposition, evaporation induced recoil pressure, and surface tension was developed. Such comprehensive model was capable of advance prediction of the energy and time required for drilling a hole through any desired depth of material.

  19. Porous silicon ring resonator for compact, high sensitivity biosensing applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rodriguez, Gilberto A.; Hu, Shuren; Weiss, Sharon M.

    2015-01-01

    A ring resonator is patterned on a porous silicon slab waveguide to produce a compact, high quality factor biosensor with a large internal surface area available for enhanced recognition of biological and chemical molecules. The porous nature of the ring resonator allows molecules to directly interact with the guided mode. Quality factors near 10,000 were measured for porous silicon ring resonators with a radius of 25 μm. A bulk detection sensitivity of 380 nm/RIU was measured upon exposure to salt water solutions. Specific detection of nucleic acid molecules was demonstrated with a surface detection sensitivity of 4 pm/nM.

  20. Porous silicon ring resonator for compact, high sensitivity biosensing applications

    SciTech Connect (OSTI)

    Rodriguez, Gilberto A.; Hu, Shuren; Weiss, Sharon M.

    2015-01-01

    A ring resonator is patterned on a porous silicon slab waveguide to produce a compact, high quality factor biosensor with a large internal surface area available for enhanced recognition of biological and chemical molecules. The porous nature of the ring resonator allows molecules to directly interact with the guided mode. Quality factors near 10,000 were measured for porous silicon ring resonators with a radius of 25 ?m. A bulk detection sensitivity of 380 nm/RIU was measured upon exposure to salt water solutions. Specific detection of nucleic acid molecules was demonstrated with a surface detection sensitivity of 4 pm/nM.

  1. Preliminary Results From the GLAST Silicon Tracker Beam Test (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Conference: Preliminary Results From the GLAST Silicon Tracker Beam Test Citation Details In-Document Search Title: Preliminary Results From the GLAST Silicon Tracker Beam Test The Large Area Telescope (LAT) on board the Gamma-ray Large Area Space Telescope (GLAST) is a pair-conversion gamma-ray detector designed to explore the gamma-ray universe in the 20 MeV-300 GeV energy band. The Tracker subsystem of the LAT will perform tracking of electrons and positrons to determine

  2. Method to prevent recession loss of silica and silicon-containing materials in combustion gas environments

    DOE Patents [OSTI]

    Brun, Milivoj Konstantin (Ballston Lake, NY); Luthra, Krishan Lal (Niskayuna, NY)

    2003-01-01

    While silicon-containing ceramics or ceramic composites are prone to material loss in combustion gas environments, this invention introduces a method to prevent or greatly reduce the thickness loss by injecting directly an effective amount, generally in the part per million level, of silicon or silicon-containing compounds into the combustion gases.

  3. Porous silicon with embedded tritium as a stand-alone prime power source for optoelectronic applications

    DOE Patents [OSTI]

    Tam, Shiu-Wing

    1997-01-01

    An illumination source comprising a porous silicon having a source of electrons on the surface and/or interticies thereof having a total porosity in the range of from about 50 v/o to about 90 v/o. Also disclosed are a tritiated porous silicon and a photovoltaic device and an illumination source of tritiated porous silicon.

  4. Porous silicon with embedded tritium as a stand-alone prime power source for optoelectronic applications

    DOE Patents [OSTI]

    Tam, Shiu-Wing

    1998-01-01

    An illumination source comprising a porous silicon having a source of electrons on the surface and/or interticies thereof having a total porosity in the range of from about 50 v/o to about 90 v/o. Also disclosed are a tritiated porous silicon and a photovoltaic device and an illumination source of tritiated porous silicon.

  5. Electrochemical method for defect delineation in silicon-on-insulator wafers

    DOE Patents [OSTI]

    Guilinger, Terry R. (Albuquerque, NM); Jones, Howland D. T. (Albuquerque, NM); Kelly, Michael J. (Albuquerque, NM); Medernach, John W. (Albuquerque, NM); Stevenson, Joel O. (Albuquerque, NM); Tsao, Sylvia S. (Albuquerque, NM)

    1991-01-01

    An electrochemical method for defect delineation in thin-film SOI or SOS wafers in which a surface of a silicon wafer is electrically connected so as to control the voltage of the surface within a specified range, the silicon wafer is then contacted with an electrolyte, and, after removing the electrolyte, defects and metal contamination in the silicon wafer are identified.

  6. Porous silicon with embedded tritium as a stand-alone prime power source for optoelectronic applications

    DOE Patents [OSTI]

    Tam, S.W.

    1997-02-25

    Disclosed is an illumination source comprising a porous silicon having a source of electrons on the surface and/or interstices thereof having a total porosity in the range of from about 50 v/o to about 90 v/o. Also disclosed are a tritiated porous silicon and a photovoltaic device and an illumination source of tritiated porous silicon. 1 fig.

  7. Porous silicon with embedded tritium as a stand-alone prime power source for optoelectronic applications

    DOE Patents [OSTI]

    Tam, S.W.

    1998-06-16

    An illumination source is disclosed comprising a porous silicon having a source of electrons on the surface and/or interstices thereof having a total porosity in the range of from about 50 v/o to about 90 v/o. Also disclosed are a tritiated porous silicon and a photovoltaic device and an illumination source of tritiated porous silicon. 1 fig.

  8. SILICON CARBIDE CERAMICS FOR COMPACT HEAT EXCHANGERS

    SciTech Connect (OSTI)

    DR. DENNIS NAGLE; DR. DAJIE ZHANG

    2009-03-26

    Silicon carbide (SiC) materials are prime candidates for high temperature heat exchangers for next generation nuclear reactors due to their refractory nature and high thermal conductivity at elevated temperatures. This research has focused on demonstrating the potential of liquid silicon infiltration (LSI) for making SiC to achieve this goal. The major advantage of this method over other ceramic processing techniques is the enhanced capability of making high dense, high purity SiC materials in complex net shapes. For successful formation of net shape SiC using LSI techniques, the carbon preform reactivity and pore structure must be controlled to allow the complete infiltration of the porous carbon structure which allows complete conversion of the carbon to SiC. We have established a procedure for achieving desirable carbon properties by using carbon precursors consisting of two readily available high purity organic materials, crystalline cellulose and phenolic resin. Phenolic resin yields a glassy carbon with low chemical reactivity and porosity while the cellulose carbon is highly reactive and porous. By adjusting the ratio of these two materials in the precursor mixtures, the properties of the carbons produced can be controlled. We have identified the most favorable carbon precursor composition to be a cellulose resin mass ratio of 6:4 for LSI formation of SiC. The optimum reaction conditions are a temperature of 1800 C, a pressure of 0.5 Torr of argon, and a time of 120 minutes. The fully dense net shape SiC material produced has a density of 2.96 g cm{sup -3} (about 92% of pure SiC) and a SiC volume fraction of over 0.82. Kinetics of the LSI SiC formation process was studied by optical microscopy and quantitative digital image analysis. This study identified six reaction stages and provided important understanding of the process. Although the thermal conductivity of pure SiC at elevated temperatures is very high, thermal conductivities of most commercial SiC materials are much lower due to phonon scattering by impurities (e.g., sintering aids located at the grain boundaries of these materials). The thermal conductivity of our SiC was determined using the laser flash method and it is 214 W/mK at 373 K and 64 W/mK at 1273 K. These values are very close to those of pure SiC and are much higher than those of SiC materials made by industrial processes. This SiC made by our LSI process meets the thermal properties required for use in high temperature heat exchanger. Cellulose and phenolic resin carbons lack the well-defined atomic structures associated with common carbon allotropes. Atomic-scale structure was studied using high resolution transmission electron microscopy (HRTEM), nitrogen gas adsorption and helium gas pycnometry. These studies revealed that cellulose carbon exhibits a very high degree of atomic disorder and angstrom-scale porosity. It has a density of only 93% of that of pure graphite, with primarily sp2 bonding character and a low concentration of graphene clusters. Phenolic resin carbon shows more structural order and substantially less angstrom-scale porosity. Its density is 98% of that of pure graphite, and Fourier transform analysis of its TEM micrographs has revealed high concentrations of sp3 diamond and sp2 graphene nano-clusters. This is the first time that diamond nano-clusters have been observed in carbons produced from phenolic resin. AC and DC electrical measurements were made to follow the thermal conversion of microcrystalline cellulose to carbon. This study identifies five regions of electrical conductivity that can be directly correlated to the chemical decomposition and microstructural evolution during carbonization. In Region I, a decrease in overall AC conductivity occurs due to the initial loss of the polar groups from cellulose molecules. In Region II, the AC conductivity starts to increase with heat treatment temperature due to the formation and growth of conducting carbon clusters. In Region III, a further increase of AC conductivity with increasing heat treatment temperature is obs

  9. Nuclear breeder reactor fuel element with silicon carbide getter

    DOE Patents [OSTI]

    Christiansen, David W. (Kennewick, WA); Karnesky, Richard A. (Richland, WA)

    1987-01-01

    An improved cesium getter 28 is provided in a breeder reactor fuel element or pin in the form of an extended surface area, low density element formed in one embodiment as a helically wound foil 30 located with silicon carbide, and located at the upper end of the fertile material upper blanket 20.

  10. Method of deposition of silicon carbide layers on substrates

    DOE Patents [OSTI]

    Angelini, P.; DeVore, C.E.; Lackey, W.J.; Blanco, R.E.; Stinton, D.P.

    1982-03-19

    A method for direct chemical vapor deposition of silicon carbide to substrates, especially nuclear waste particles, is provided by the thermal decomposition of methylsilane at 800 to 1050/sup 0/C when the substrates have been confined within a suitable coating environment.

  11. Processes for producing low cost, high efficiency silicon solar cells

    DOE Patents [OSTI]

    Rohatgi, Ajeet; Chen, Zhizhang; Doshi, Parag

    1996-01-01

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. Silicon solar cell efficiencies of 16.9% have been achieved. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x.

  12. NREL Success Stories - Quest for Inexpensive Silicon Solar Cells

    ScienceCinema (OSTI)

    Branz, Howard

    2013-05-29

    Scientists at the National Renewable Energy Laboratory (NREL) share their story about a successful partnership with Oak Ridge National Laboratory and the Ampulse Corporation and how support from the US Department of Energy's Technology Commercialization & Deployment Fund has helped it and their silicon solar cell research thrive.

  13. Sandia starts silicon wafer production for three nuclear weapon programs |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration starts silicon wafer production for three nuclear weapon programs | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact

  14. Micro-miniature gas chromatograph column disposed in silicon wafers

    DOE Patents [OSTI]

    Yu, Conrad M. (Antioch, CA)

    2000-01-01

    A micro-miniature gas chromatograph column is fabricated by forming matching halves of a circular cross-section spiral microcapillary in two silicon wafers and then bonding the two wafers together using visual or physical alignment methods. Heating wires are deposited on the outside surfaces of each wafer in a spiral or serpentine pattern large enough in area to cover the whole microcapillary area inside the joined wafers. The visual alignment method includes etching through an alignment window in one wafer and a precision-matching alignment target in the other wafer. The two wafers are then bonded together using the window and target. The physical alignment methods include etching through vertical alignment holes in both wafers and then using pins or posts through corresponding vertical alignment holes to force precision alignment during bonding. The pins or posts may be withdrawn after curing of the bond. Once the wafers are bonded together, a solid phase of very pure silicone is injected in a solution of very pure chloroform into one end of the microcapillary. The chloroform lowers the viscosity of the silicone enough that a high pressure hypodermic needle with a thumbscrew plunger can force the solution into the whole length of the spiral microcapillary. The chloroform is then evaporated out slowly to leave the silicone behind in a deposit.

  15. APIVT-Grown Silicon Thin Layers and PV Devices: Preprint

    SciTech Connect (OSTI)

    Wang, T. H.; Ciszek, T. F.; Page, M. R.; Bauer, R. E.; Wang, Q.; Landry, M. D.

    2002-05-01

    Large-grained (5-20 ..mu..m) polycrystalline silicon layers have been grown at intermediate temperatures of 750-950C directly on foreign substrates without a seeding layer by iodine vapor transport at atmospheric pressure with rates as high as 3 mm/min. A model is constructed to explain the atypical temperature dependence of growth rate. We have also used this technique to grow high-quality epitaxial layers on heavily doped CZ-Si and on upgraded MG-Si substrates. Possible solar cell structures of thin-layer polycrystalline silicon on foreign substrates with light trapping have been examined, compared, and optimized by two-dimensional device simulations. The effects of grain boundary re-combination on device performance are presented for two grain sizes of 2 and 20 mm. We found that 104 cm/s recombination velocity is adequate for 20-m m grain-sized thin silicon, whereas a very low recombination velocity of 103 cm/s must be accomplished in order to achieve reasonable performance for a 2- mm grain-sized polycrystalline silicon device.

  16. Method for silicon carbide production by reacting silica with hydrocarbon gas

    DOE Patents [OSTI]

    Glatzmaier, G.C.

    1994-06-28

    A method is described for producing silicon carbide particles using a silicon source material and a hydrocarbon. The method is efficient and is characterized by high yield. Finely divided silicon source material is contacted with hydrocarbon at a temperature of 400 C to 1000 C where the hydrocarbon pyrolyzes and coats the particles with carbon. The particles are then heated to 1100 C to 1600 C to cause a reaction between the ingredients to form silicon carbide of very small particle size. No grinding of silicon carbide is required to obtain small particles. The method may be carried out as a batch process or as a continuous process. 5 figures.

  17. Method of making selective crystalline silicon regions containing entrapped hydrogen by laser treatment

    DOE Patents [OSTI]

    Pankove, Jacques I. (Princeton, NJ); Wu, Chung P. (Trenton, NJ)

    1982-01-01

    A novel hydrogen rich single crystalline silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystalline silicon without out-gasing the hydrogen. The new material can be used to fabricate semi-conductor devices such as single crystalline silicon solar cells with surface window regions having a greater band gap energy than that of single crystalline silicon without hydrogen.

  18. Modeling the Process of Mining Silicon Through a Single Displacement/Redox Reaction

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    As the popularity of photovoltaic (PV) cells and integrated circuits (IC) increases, the need for silicon also increases. Silicon is one of the most used materials in these two industries. It is an inexpensive and abundant semiconductor. However, the process of producing pure silicon adds cost, and it is generally unknown to the public. One of the first steps in producing silicon is a process called carbon-thermic reduction. Silicon dioxide (SiO2) that is found in beach sand and quartz is melted down in a caldron at a temperature of 1450 degrees Celsius.

  19. Method for producing silicon thin-film transistors with enhanced forward current drive

    DOE Patents [OSTI]

    Weiner, Kurt H. (San Jose, CA)

    1998-01-01

    A method for fabricating amorphous silicon thin film transistors (TFTs) with a polycrystalline silicon surface channel region for enhanced forward current drive. The method is particularly adapted for producing top-gate silicon TFTs which have the advantages of both amorphous and polycrystalline silicon TFTs, but without problem of leakage current of polycrystalline silicon TFTs. This is accomplished by selectively crystallizing a selected region of the amorphous silicon, using a pulsed excimer laser, to create a thin polycrystalline silicon layer at the silicon/gate-insulator surface. The thus created polysilicon layer has an increased mobility compared to the amorphous silicon during forward device operation so that increased drive currents are achieved. In reverse operation the polysilicon layer is relatively thin compared to the amorphous silicon, so that the transistor exhibits the low leakage currents inherent to amorphous silicon. A device made by this method can be used, for example, as a pixel switch in an active-matrix liquid crystal display to improve display refresh rates.

  20. Method for producing silicon thin-film transistors with enhanced forward current drive

    DOE Patents [OSTI]

    Weiner, K.H.

    1998-06-30

    A method is disclosed for fabricating amorphous silicon thin film transistors (TFTs) with a polycrystalline silicon surface channel region for enhanced forward current drive. The method is particularly adapted for producing top-gate silicon TFTs which have the advantages of both amorphous and polycrystalline silicon TFTs, but without problem of leakage current of polycrystalline silicon TFTs. This is accomplished by selectively crystallizing a selected region of the amorphous silicon, using a pulsed excimer laser, to create a thin polycrystalline silicon layer at the silicon/gate-insulator surface. The thus created polysilicon layer has an increased mobility compared to the amorphous silicon during forward device operation so that increased drive currents are achieved. In reverse operation the polysilicon layer is relatively thin compared to the amorphous silicon, so that the transistor exhibits the low leakage currents inherent to amorphous silicon. A device made by this method can be used, for example, as a pixel switch in an active-matrix liquid crystal display to improve display refresh rates. 1 fig.

  1. Tribological interaction between polytetrafluoroethylene and silicon oxide surfaces

    SciTech Connect (OSTI)

    Uar, A.; opuro?lu, M.; Suzer, S.; Baykara, M. Z.; Ar?kan, O.

    2014-10-28

    We investigated the tribological interaction between polytetrafluoroethylene (PTFE) and silicon oxide surfaces. A simple rig was designed to bring about a friction between the surfaces via sliding a piece of PTFE on a thermally oxidized silicon wafer specimen. A very mild inclination (?0.5) along the sliding motion was also employed in order to monitor the tribological interaction in a gradual manner as a function of increasing contact force. Additionally, some patterns were sketched on the silicon oxide surface using the PTFE tip to investigate changes produced in the hydrophobicity of the surface, where the approximate water contact angle was 45 before the transfer. The nature of the transferred materials was characterized by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). XPS results revealed that PTFE was faithfully transferred onto the silicon oxide surface upon even at the slightest contact and SEM images demonstrated that stable morphological changes could be imparted onto the surface. The minimum apparent contact pressure to realize the PTFE transfer is estimated as 5 kPa, much lower than reported previously. Stability of the patterns imparted towards many chemical washing processes lead us to postulate that the interaction is most likely to be chemical. Contact angle measurements, which were carried out to characterize and monitor the hydrophobicity of the silicon oxide surface, showed that upon PTFE transfer the hydrophobicity of the SiO{sub 2} surface could be significantly enhanced, which might also depend upon the pattern sketched onto the surface. Contact angle values above 100 were obtained.

  2. A micron resolution optical scanner for characterization of silicon detectors

    SciTech Connect (OSTI)

    Shukla, R. A.; Dugad, S. R. Gopal, A. V.; Gupta, S. K.; Prabhu, S. S.; Garde, C. S.

    2014-02-15

    The emergence of high position resolution (?10 ?m) silicon detectors in recent times have highlighted the urgent need for the development of new automated optical scanners of micron level resolution suited for characterizing microscopic features of these detectors. More specifically, for the newly developed silicon photo-multipliers (SiPM) that are compact, possessing excellent photon detection efficiency with gain comparable to photo-multiplier tube. In a short time, since their invention the SiPMs are already being widely used in several high-energy physics and astrophysics experiments as the photon readout element. The SiPM is a high quantum efficiency, multi-pixel photon counting detector with fast timing and high gain. The presence of a wide variety of photo sensitive silicon detectors with high spatial resolution requires their performance evaluation to be carried out by photon beams of very compact spot size. We have designed a high resolution optical scanner that provides a monochromatic focused beam on a target plane. The transverse size of the beam was measured by the knife-edge method to be 1.7 ?m at 1 ? ? level. Since the beam size was an order of magnitude smaller than the typical feature size of silicon detectors, this optical scanner can be used for selective excitation of these detectors. The design and operational details of the optical scanner, high precision programmed movement of target plane (0.1 ?m) integrated with general purpose data acquisition system developed for recording static and transient response photo sensitive silicon detector are reported in this paper. Entire functionality of scanner is validated by using it for selective excitation of individual pixels in a SiPM and identifying response of active and dead regions within SiPM. Results from these studies are presented in this paper.

  3. Method for rapid, controllable growth and thickness, of epitaxial silicon films

    DOE Patents [OSTI]

    Wang, Qi; Stradins, Paul; Teplin, Charles; Branz, Howard M.

    2009-10-13

    A method of producing epitaxial silicon films on a c-Si wafer substrate using hot wire chemical vapor deposition by controlling the rate of silicon deposition in a temperature range that spans the transition from a monohydride to a hydrogen free silicon surface in a vacuum, to obtain phase-pure epitaxial silicon film of increased thickness is disclosed. The method includes placing a c-Si substrate in a HWCVD reactor chamber. The method also includes supplying a gas containing silicon at a sufficient rate into the reaction chamber to interact with the substrate to deposit a layer containing silicon thereon at a predefined growth rate to obtain phase-pure epitaxial silicon film of increased thickness.

  4. Carbothermic reduction and prereduced charge for producing aluminum-silicon alloys

    DOE Patents [OSTI]

    Stevenson, D.T.; Troup, R.L.

    1985-01-01

    Disclosed is a method for the carbothermic reduction of aluminum oxide to form an aluminum alloy including producing silicon carbide by heating a first mix of carbon and silicon oxide in a combustion reactor to an elevated temperature sufficient to produce silicon carbide at an accelerated rate, the heating being provided by an in situ combustion with oxygen gas, and then admixing the silicon carbide with carbon and aluminum oxide to form a second mix and heating the second mix in a second reactor to an elevated metal-forming temperature sufficient to produce aluminum-silicon alloy. The prereduction step includes holding aluminum oxide substantially absent from the combustion reactor. The metal-forming step includes feeding silicon oxide in a preferred ratio with silicon carbide. 1 fig.

  5. Carbothermic reduction and prereduced charge for producing aluminum-silicon alloys

    DOE Patents [OSTI]

    Stevenson, David T. (Washington Township, Armstrong County, PA); Troup, Robert L. (Murrysville, PA)

    1985-01-01

    Disclosed is a method for the carbothermic reduction of aluminum oxide to form an aluminum alloy including producing silicon carbide by heating a first mix of carbon and silicon oxide in a combustion reactor to an elevated temperature sufficient to produce silicon carbide at an accelerated rate, the heating being provided by an in situ combustion with oxygen gas, and then admixing the silicon carbide with carbon and aluminum oxide to form a second mix and heating the second mix in a second reactor to an elevated metal-forming temperature sufficient to produce aluminum-silicon alloy. The prereduction step includes holding aluminum oxide substantially absent from the combustion reactor. The metal-forming step includes feeding silicon oxide in a preferred ratio with silicon carbide.

  6. Forming high-efficiency silicon solar cells using density-graded anti-reflection surfaces

    DOE Patents [OSTI]

    Yuan, Hao-Chih; Branz, Howard M.; Page, Matthew R.

    2015-07-07

    A method (50) is provided for processing a graded-density AR silicon surface (14) to provide effective surface passivation. The method (50) includes positioning a substrate or wafer (12) with a silicon surface (14) in a reaction or processing chamber (42). The silicon surface (14) has been processed (52) to be an AR surface with a density gradient or region of black silicon. The method (50) continues with heating (54) the chamber (42) to a high temperature for both doping and surface passivation. The method (50) includes forming (58), with a dopant-containing precursor in contact with the silicon surface (14) of the substrate (12), an emitter junction (16) proximate to the silicon surface (14) by doping the substrate (12). The method (50) further includes, while the chamber is maintained at the high or raised temperature, forming (62) a passivation layer (19) on the graded-density silicon anti-reflection surface (14).

  7. Forming high efficiency silicon solar cells using density-graded anti-reflection surfaces

    DOE Patents [OSTI]

    Yuan, Hao-Chih; Branz, Howard M.; Page, Matthew R.

    2014-09-09

    A method (50) is provided for processing a graded-density AR silicon surface (14) to provide effective surface passivation. The method (50) includes positioning a substrate or wafer (12) with a silicon surface (14) in a reaction or processing chamber (42). The silicon surface (14) has been processed (52) to be an AR surface with a density gradient or region of black silicon. The method (50) continues with heating (54) the chamber (42) to a high temperature for both doping and surface passivation. The method (50) includes forming (58), with a dopant-containing precursor in contact with the silicon surface (14) of the substrate (12), an emitter junction (16) proximate to the silicon surface (14) by doping the substrate (12). The method (50) further includes, while the chamber is maintained at the high or raised temperature, forming (62) a passivation layer (19) on the graded-density silicon anti-reflection surface (14).

  8. Strong visible electroluminescence from silicon nanocrystals embedded in a silicon carbide film

    SciTech Connect (OSTI)

    Huh, Chul Kim, Tae-Youb; Ahn, Chang-Geun; Kim, Bong Kyu

    2015-05-25

    We report the strong visible light emission from silicon (Si) nanocrystals (NCs) embedded in a Si carbide (SiC) film. Compared to Si NC light-emitting diode (LED) by employing the Si nitride (SiN{sub x}) film as a surrounding matrix, the turn-on voltage of the Si NC LED with the SiC film was significantly decreased by 4 V. This was attributed to a smaller barrier height for injecting the electrons into the Si NCs due to a smaller band gap of SiC film than a SiN{sub x} film. The electroluminescence spectra increases with increasing forward voltage, indicating that the electrons are efficiently injected into the Si NCs in the SiC film. The light output power shows a linear increase with increasing forward voltage. The light emission originated from the Si NCs in a SiC film was quite uniform. The power efficiency of the Si NC LED with the SiC film was 1.56 times larger than that of the Si NC LED with the SiN{sub x} film. The Si NCs in a SiC film show unique advantages and are a promising candidate for application in optical devices.

  9. Amorphous silicon enhanced metal-insulator-semiconductor contacts for silicon solar cells

    SciTech Connect (OSTI)

    Bullock, J. Cuevas, A.; Yan, D.; Demaurex, B.; Hessler-Wyser, A.; De Wolf, S.

    2014-10-28

    Carrier recombination at the metal-semiconductor contacts has become a significant obstacle to the further advancement of high-efficiency diffused-junction silicon solar cells. This paper provides the proof-of-concept of a procedure to reduce contact recombination by means of enhanced metal-insulator-semiconductor (MIS) structures. Lightly diffused n{sup +} and p{sup +} surfaces are passivated with SiO{sub 2}/a-Si:H and Al{sub 2}O{sub 3}/a-Si:H stacks, respectively, before the MIS contacts are formed by a thermally activated alloying process between the a-Si:H layer and an overlying aluminum film. Transmission/scanning transmission electron microscopy (TEM/STEM) and energy dispersive x-ray spectroscopy are used to ascertain the nature of the alloy. Idealized solar cell simulations reveal that MIS(n{sup +}) contacts, with SiO{sub 2} thicknesses of ?1.55?nm, achieve the best carrier-selectivity producing a contact resistivity ?{sub c} of ?3 m? cm{sup 2} and a recombination current density J{sub 0c} of ?40 fA/cm{sup 2}. These characteristics are shown to be stable at temperatures up to 350?C. The MIS(p{sup +}) contacts fail to achieve equivalent results both in terms of thermal stability and contact characteristics but may still offer advantages over directly metallized contacts in terms of manufacturing simplicity.

  10. STATUS OF HIGH FLUX ISOTOPE REACTOR IRRADIATION OF SILICON CARBIDE/SILICON CARBIDE JOINTS

    SciTech Connect (OSTI)

    Katoh, Yutai; Koyanagi, Takaaki; Kiggans, Jim; Cetiner, Nesrin; McDuffee, Joel

    2014-09-01

    Development of silicon carbide (SiC) joints that retain adequate structural and functional properties in the anticipated service conditions is a critical milestone toward establishment of advanced SiC composite technology for the accident-tolerant light water reactor (LWR) fuels and core structures. Neutron irradiation is among the most critical factors that define the harsh service condition of LWR fuel during the normal operation. The overarching goal of the present joining and irradiation studies is to establish technologies for joining SiC-based materials for use as the LWR fuel cladding. The purpose of this work is to fabricate SiC joint specimens, characterize those joints in an unirradiated condition, and prepare rabbit capsules for neutron irradiation study on the fabricated specimens in the High Flux Isotope Reactor (HFIR). Torsional shear test specimens of chemically vapor-deposited SiC were prepared by seven different joining methods either at Oak Ridge National Laboratory or by industrial partners. The joint test specimens were characterized for shear strength and microstructures in an unirradiated condition. Rabbit irradiation capsules were designed and fabricated for neutron irradiation of these joint specimens at an LWR-relevant temperature. These rabbit capsules, already started irradiation in HFIR, are scheduled to complete irradiation to an LWR-relevant dose level in early 2015.

  11. The ternary system cerium-palladium-silicon

    SciTech Connect (OSTI)

    Lipatov, Alexey; Gribanov, Alexander; Grytsiv, Andriy; Rogl, Peter; Murashova, Elena; Seropegin, Yurii; Giester, Gerald; Kalmykov, Konstantin

    2009-09-15

    Phase relations in the ternary system Ce-Pd-Si have been established for the isothermal section at 800 deg. C based on X-ray powder diffraction and EMPA techniques on about 130 alloys, which were prepared by arc-melting under argon or powder reaction sintering. Eighteen ternary compounds have been observed to participate in the phase equilibria at 800 deg. C. Atom order was determined by direct methods from X-ray single-crystal counter data for the crystal structures of tau{sub 8}-Ce{sub 3}Pd{sub 4}Si{sub 4} (U{sub 3}Ni{sub 4}Si{sub 4}-type, Immm; a=0.41618(1), b=0.42640(1), c=2.45744(7) nm), tau{sub 16}-Ce{sub 2}Pd{sub 14}Si (own structure type, P4/nmm; a=0.88832(2), c=0.69600(2) nm) and also for tau{sub 18}-CePd{sub 1-x}Si{sub x} (x=0.07; FeB-type, Pnma; a=0.74422(5), b=0.45548(3), c=0.58569(4) nm). Rietveld refinements established the atom arrangement in the structures of tau{sub 5}-Ce{sub 3}PdSi{sub 3} (Ba{sub 3}Al{sub 2}Ge{sub 2}-type, Immm; a=0.41207(1), b=0.43026(1), c=1.84069(4) nm) and tau{sub 13}-Ce{sub 3-x}Pd{sub 20+x}Si{sub 6} (0<=x<=1, Co{sub 20}Al{sub 3}B{sub 6}-type, Fm3-barm; a=1.21527(2) nm). The ternary compound Ce{sub 2}Pd{sub 3}Si{sub 3} (structure-type Ce{sub 2}Rh{sub 1.35}Ge{sub 4.65}, Pmmn; a=0.42040(1), b=0.42247(1), c=1.72444(3) nm) was detected as a high-temperature compound, however, does not participate in the equilibria at 800 deg. C. Phase equilibria in Ce-Pd-Si are characterized by the absence of cerium solubility in palladium silicides. Mutual solubility among cerium silicides and cerium-palladium compounds are significant whereby random substitution of the almost equally sized atom species palladium and silicon is reflected in extended homogeneous regions at constant Ce-content such as for tau{sub 2}-Ce(Pd{sub x}Si{sub 1-x}){sub 2} (AlB{sub 2}-derivative type), tau{sub 6}-Ce(Pd{sub x}Si{sub 1-x}){sub 2} (ThSi{sub 2}-type) and tau{sub 7}-CePd{sub 2-x}Si{sub 2+x}. The crystal structures of compounds tau{sub 4}-Ce{sub a}pprox{sub 8}Pd{sub a}pprox{sub 46}Si{sub a}pprox{sub 46}, tau{sub 12}-Ce{sub a}pprox{sub 29}Pd{sub a}pprox{sub 49}Si{sub a}pprox{sub 22}, tau{sub 15}-Ce{sub a}pprox{sub 22}Pd{sub a}pprox{sub 67}Si{sub a}pprox{sub 11}, tau{sub 17}-Ce{sub a}pprox{sub 5}Pd{sub a}pprox{sub 77}Si{sub a}pprox{sub 18} and tau{sub 18}-CePd{sub 1-x}Si{sub x} (xapprox0.1) are still unknown. - Abstract: Phase relations in the ternary system Ce-Pd-Si have been established for the isothermal section at 800 deg. C based on X-ray powder diffraction, metallography, SEM and EMPA techniques on about 130 alloys. 18 ternary compounds were observed. Display Omitted

  12. Low-resistivity photon-transparent window attached to photo-sensitive silicon detector

    DOE Patents [OSTI]

    Holland, Stephen Edward (Hercules, CA)

    2000-02-15

    The invention comprises a combination of a low resistivity, or electrically conducting, silicon layer that is transparent to long or short wavelength photons and is attached to the backside of a photon-sensitive layer of silicon, such as a silicon wafer or chip. The window is applied to photon sensitive silicon devices such as photodiodes, charge-coupled devices, active pixel sensors, low-energy x-ray sensors and other radiation detectors. The silicon window is applied to the back side of a photosensitive silicon wafer or chip so that photons can illuminate the device from the backside without interference from the circuit printed on the frontside. A voltage sufficient to fully deplete the high-resistivity photosensitive silicon volume of charge carriers is applied between the low-resistivity back window and the front, patterned, side of the device. This allows photon-induced charge created at the backside to reach the front side of the device and to be processed by any circuitry attached to the front side. Using the inventive combination, the photon sensitive silicon layer does not need to be thinned beyond standard fabrication methods in order to achieve full charge-depletion in the silicon volume. In one embodiment, the inventive backside window is applied to high resistivity silicon to allow backside illumination while maintaining charge isolation in CCD pixels.

  13. Lithium Ion Battery Performance of Silicon Nanowires With Carbon Skin

    SciTech Connect (OSTI)

    Bogart, Timothy D.; Oka, Daichi; Lu, Xiaotang; Gu, Meng; Wang, Chong M.; Korgel, Brian A.

    2013-12-06

    Silicon (Si) nanomaterials have emerged as a leading candidate for next generation lithium-ion battery anodes. However, the low electrical conductivity of Si requires the use of conductive additives in the anode film. Here we report a solution-based synthesis of Si nanowires with a conductive carbon skin. Without any conductive additive, the Si nanowire electrodes exhibited capacities of over 2000 mA h g-1 for 100 cycles when cycled at C/10 and over 1200 mA h g-1 when cycled more rapidly at 1C against Li metal.. In situ transmission electron microscopy (TEM) observation reveals that the carbon skin performs dual roles: it speeds lithiation of the Si nanowires significantly, while also constraining the final volume expansion. The present work sheds light on ways to optimize lithium battery performance by smartly tailoring the nanostructure of composition of materials based on silicon and carbon.

  14. The electron beam hole drilling of silicon nitride thin films

    SciTech Connect (OSTI)

    Howitt, D. G.; Chen, S. J.; Gierhart, B. C.; Smith, R. L.; Collins, S. D.

    2008-01-15

    The mechanism by which an intense electron beam can produce holes in thin films of silicon nitride has been investigated using a combination of in situ electron energy loss spectrometry and electron microscopy imaging. A brief review of electron beam interactions that lead to material loss in different materials is also presented. The loss of nitrogen and silicon decreases with decreasing beam energy and although still observable at a beam energy of 150 keV ceases completely at 120 keV. The linear behavior of the loss rate coupled with the energy dependency indicates that the process is primarily one of direct displacement, involving the sputtering of atoms from the back surface of the specimen with the rate controlling mechanism being the loss of nitrogen.

  15. Polarization-independent silicon metadevices for efficient optical wavefront control

    SciTech Connect (OSTI)

    Chong, Katie E.; Staude, Isabelle; James, Anthony Randolph; Dominguez, Jason James; Liu, Sheng; Campione, Salvatore; Subramania, Ganapathi Subramanian; Luk, Ting S.; Decker, Manuel; Neshev, Dragomir N.; Brener, Igal; Kivshar, Yuri S.

    2015-07-20

    In this study, we experimentally demonstrate a functional silicon metadevice at telecom wavelengths that can efficiently control the wavefront of optical beams by imprinting a spatially varying transmittance phase independent of the polarization of the incident beam. Near-unity transmittance efficiency and close to 0–2π phase coverage are enabled by utilizing the localized electric and magnetic Mie-type resonances of low-loss silicon nanoparticles tailored to behave as electromagnetically dual-symmetric scatterers. We apply this concept to realize a metadevice that converts a Gaussian beam into a vortex beam. The required spatial distribution of transmittance phases is achieved by a variation of the lattice spacing as a single geometric control parameter.

  16. Quantitative Analysis of Spectral Impacts on Silicon Photodiode Radiometers

    SciTech Connect (OSTI)

    Myers, D. R.

    2011-01-01

    Inexpensive broadband pyranometers with silicon photodiode detectors have a non-uniform spectral response over the spectral range of 300-1100 nm. The response region includes only about 70% to 75% of the total energy in the terrestrial solar spectral distribution from 300 nm to 4000 nm. The solar spectrum constantly changes with solar position and atmospheric conditions. Relative spectral distributions of diffuse hemispherical irradiance sky radiation and total global hemispherical irradiance are drastically different. This analysis convolves a typical photodiode response with SMARTS 2.9.5 spectral model spectra for different sites and atmospheric conditions. Differences in solar component spectra lead to differences on the order of 2% in global hemispherical and 5% or more in diffuse hemispherical irradiances from silicon radiometers. The result is that errors of more than 7% can occur in the computation of direct normal irradiance from global hemispherical irradiance and diffuse hemispherical irradiance using these radiometers.

  17. Quantitative Analysis of Spectral Impacts on Silicon Photodiode Radiometers: Preprint

    SciTech Connect (OSTI)

    Myers, D. R.

    2011-04-01

    Inexpensive broadband pyranometers with silicon photodiode detectors have a non-uniform spectral response over the spectral range of 300-1100 nm. The response region includes only about 70% to 75% of the total energy in the terrestrial solar spectral distribution from 300 nm to 4000 nm. The solar spectrum constantly changes with solar position and atmospheric conditions. Relative spectral distributions of diffuse hemispherical irradiance sky radiation and total global hemispherical irradiance are drastically different. This analysis convolves a typical photodiode response with SMARTS 2.9.5 spectral model spectra for different sites and atmospheric conditions. Differences in solar component spectra lead to differences on the order of 2% in global hemispherical and 5% or more in diffuse hemispherical irradiances from silicon radiometers. The result is that errors of more than 7% can occur in the computation of direct normal irradiance from global hemispherical irradiance and diffuse hemispherical irradiance using these radiometers.

  18. Chemical method for producing smooth surfaces on silicon wafers

    DOE Patents [OSTI]

    Yu, Conrad (Antioch, CA)

    2003-01-01

    An improved method for producing optically smooth surfaces in silicon wafers during wet chemical etching involves a pre-treatment rinse of the wafers before etching and a post-etching rinse. The pre-treatment with an organic solvent provides a well-wetted surface that ensures uniform mass transfer during etching, which results in optically smooth surfaces. The post-etching treatment with an acetic acid solution stops the etching instantly, preventing any uneven etching that leads to surface roughness. This method can be used to etch silicon surfaces to a depth of 200 .mu.m or more, while the finished surfaces have a surface roughness of only 15-50 .ANG. (RMS).

  19. The reliability and stability of multijunction amorphous silicon PV modules

    SciTech Connect (OSTI)

    Carlson, D.E.

    1995-11-01

    Solarex is developing a manufacturing process for the commercial production of 8 ft{sup 2} multijunction amorphous silicon (a-Si) PV modules starting in 1996. The device structure used in these multijunction modules is: glass/textured tin oxide/p-i-n/p-i-n/ZnO/Al/EVA/Tedlar where the back junction of the tandem structure contains an amorphous silicon germanium alloy. As an interim step, 4 ft{sup 2} multijunction modules have been fabricated in a pilot production mode over the last several months. The distribution of initial conversion efficiencies for an engineering run of 67 modules (4 ft{sup 2}) is shown. Measurements recently performed at NREL indicate that the actual efficiencies are about 5% higher than those shown, and thus exhibit an average initial conversion efficiency of about 9.5%. The data indicates that the process is relatively robust since there were no modules with initial efficiencies less than 7.5%.

  20. The OPAL silicon-tungsten calorimeter front end electronics

    SciTech Connect (OSTI)

    Anderson, B.E.; Charalambous, A. . Dept. of Physics and Astronomy); Anderson, K. )

    1994-08-01

    A pair of small angle silicon-tungsten (Si-W) calorimeters has been built to measure the luminosity to a precision better than 0.1% in the OPAL experiment at the Large Electron Positron (LEP) collider at CERN near Geneva. Each calorimeter contains 19 layers of tungsten (W) plates and silicon (Si) detectors, corresponding to a total of 22 radiation lengths, sampled by about 1 m[sup 2] of detectors divided into 304 x64 independently read out channels. A complete electronics system has been developed, from the preamplifier up to the VME read out and control interface. It includes a fast trigger based on analogue sums. This paper describes how a large number of channels have been implemented in a dense environment, thanks to the use of ASIC's directly bonded on the detector.

  1. Polarization-independent silicon metadevices for efficient optical wavefront control

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chong, Katie E.; Staude, Isabelle; James, Anthony Randolph; Dominguez, Jason James; Liu, Sheng; Campione, Salvatore; Subramania, Ganapathi Subramanian; Luk, Ting S.; Decker, Manuel; Neshev, Dragomir N.; et al

    2015-07-20

    In this study, we experimentally demonstrate a functional silicon metadevice at telecom wavelengths that can efficiently control the wavefront of optical beams by imprinting a spatially varying transmittance phase independent of the polarization of the incident beam. Near-unity transmittance efficiency and close to 0–2π phase coverage are enabled by utilizing the localized electric and magnetic Mie-type resonances of low-loss silicon nanoparticles tailored to behave as electromagnetically dual-symmetric scatterers. We apply this concept to realize a metadevice that converts a Gaussian beam into a vortex beam. The required spatial distribution of transmittance phases is achieved by a variation of the latticemore » spacing as a single geometric control parameter.« less

  2. MeV Au Ion Irradiation in Silicon and Nanocrystalline Zirconia Film Deposited on Silicon Substrate

    SciTech Connect (OSTI)

    Chang, Yongqin; Zhang, Yanwen; Zhu, Zihua; Edmondson, Philip D.; Weber, William J.

    2012-09-01

    Nanocrystalline zirconia (ZrO2) film with thickness of 305 nm deposited on a silicon substrate was irradiated with 2 MeV Au ions to different fluences at different temperatures. The implanted ion profiles were measured by time-of-flight secondary ion mass spectrometry (ToF-SIMS) and simulated using the stopping and range of ions inmatter (SRIM) code, respectively. The experimental results show that a large fraction of the incident Au ions penetrates through the ZrO2 film and are deposited into the Si substrate. At the interface of ZrO2 and Si, a sudden decrease of Au concentration is observed due to the much larger scattering cross section of Au in ZrO2 than in Si. The depth profile of the Au ions is measured in both the ZrO2 films and the Si substrates, and the results show that the Au distribution profiles do not exhibit a dependence on irradiation temperature. The local Au concentration increases proportionally with the irradiation fluence, suggesting that no thermal or irradiation-induced redistribution of the implanted Au ions. However, the Au concentration in the ZrO2 films, as determined by SIMS, is considerably lower than that predicted by the SRIM results, and the penetration depth from the SIMS measurements is much deeper than that from the SRIM predictions. These observations can be explained by an overestimation of the electronic stopping power, used in the SRIM program, for heavy incident ions in light targets. Over-estimation of the heavy-ion electronic stopping power may lead to errors in local dose calculation and underestimation of the projected range of slow heavy ions in targets that contain light elements. A quick estimate based on a reduced target density may be used to compensate the overestimation of the electronic stopping power in the SRIM program to provide better ion profile prediction.

  3. MeV Au Ion Irradiation in Silicon and Nanocrystalline Zirconia Film Deposited on Silicon Substrate

    SciTech Connect (OSTI)

    Chang, Yongqin; Zhang, Yanwen; Zhu, Zihua; Edmondson, Dr. Philip; Weber, William J

    2012-01-01

    Nanocrystalline zirconia (ZrO2) film with thickness of 305 nm deposited on a silicon substrate was irradiated with 2 MeV Au ions to different fluences at different temperatures. The implanted ion profiles were measured by time-of-flight secondary ion mass spectrometry (ToF-SIMS) and simulated using the stopping and range of ions in matter (SRIM) code, respectively. The experimental results show that a large fraction of the incident Au ions penetrates through the ZrO2 film and are deposited into the Si substrate. At the interface of ZrO2 and Si, a sudden decrease of Au concentration is observed due to the much larger scattering cross section of Au in ZrO2 than in Si. The depth profile of the Au ions is measured in both the ZrO2 films and the Si substrates, and the results show that the Au distribution profiles do not exhibit a dependence on irradiation temperature. The local Au concentration increases proportionally with the irradiation fluence, suggesting that no thermal or irradiation-induced redistribution of the implanted Au ions. However, the Au concentration in the ZrO2 films, as determined by SIMS, is considerably lower than that predicted by the SRIM results, and the penetration depth from the SIMS measurements is much deeper than that from the SRIM predictions. These observations can be explained by an overestimation of the electronic stopping power, used in the SRIM program, for heavy incident ions in light targets. Overestimation of the heavy-ion electronic stopping power may lead to errors in local dose calculation and underestimation of the projected range of slow heavy ions in targets that contain light elements. A quick estimate based on a reduced target density may be used to compensate the overestimation of the electronic stopping power in the SRIM program to provide better ion profile prediction.

  4. Medium and high energy phosphorus implants into silicon

    SciTech Connect (OSTI)

    Whalen, P.M.; Lavine, J.P.; Zheng, L.

    1996-12-31

    The present investigation explores MeV phosphorus implants into silicon through an oxide. Secondary ion mass spectrometry (SIMS) provides the experimental depth profiles, which are compared to simulations that include the crystal structure. The calculated results are noticeably shallower than the data. The experimental results do not agree with depth profiles based on published moments. The effect of the oxide thickness is studied with the aid of the simulations and the trends of the moments with oxide thickness are presented.

  5. Silicon Micromachined Dimensional Calibration Artifact for Mesoscale Measurement Machines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Micromachined Dimensional Calibration Artifact for Mesoscale Measurement Machines 1 Silicon Micromachined Dimensional Calibration Artifact for Mesoscale Measurement Machines 2 Sandia National Laboratories PO Box 5800 Albuquerque, NM 87185 USA Hy D. Tran, PhD, PE Phone: (505)844-5417 Fax: (505)844-4372 hdtran@sandia.gov AFFIRMATION: I affirm that all information submitted as a part of, or supplemental to, this entry is a fair and accurate representation of this product.

  6. Formation of thin-film resistors on silicon substrates

    DOE Patents [OSTI]

    Schnable, George L. (Montgomery County, PA); Wu, Chung P. (Hamilton Township, Mercer County, NJ)

    1988-11-01

    The formation of thin-film resistors by the ion implantation of a metallic conductive layer in the surface of a layer of phosphosilicate glass or borophosphosilicate glass which is deposited on a silicon substrate. The metallic conductive layer materials comprise one of the group consisting of tantalum, ruthenium, rhodium, platinum and chromium silicide. The resistor is formed and annealed prior to deposition of metal, e.g. aluminum, on the substrate.

  7. Junction Transport in Epitaxial Film Silicon Heterojunction Solar Cells

    SciTech Connect (OSTI)

    Young, D. L.; Li, J. V.; Teplin, C. W.; Stradins, P.; Branz, H. M.

    2011-01-01

    We report our progress toward low-temperature HWCVD epitaxial film silicon solar cells on inexpensive seed layers, with a focus on the junction transport physics exhibited by our devices. Heterojunctions of i/p hydrogenated amorphous Si (a-Si) on our n-type epitaxial crystal Si on n{sup ++} Si wafers show space-charge-region recombination, tunneling or diffusive transport depending on both epitaxial Si quality and the applied forward voltage.

  8. Junction Transport in Epitaxial Film Silicon Heterojunction Solar Cells: Preprint

    SciTech Connect (OSTI)

    Young, D. L.; Li, J. V.; Teplin, C. W.; Stradins, P.; Branz, H. M.

    2011-07-01

    We report our progress toward low-temperature HWCVD epitaxial film silicon solar cells on inexpensive seed layers, with a focus on the junction transport physics exhibited by our devices. Heterojunctions of i/p hydrogenated amorphous Si (a-Si) on our n-type epitaxial crystal Si on n++ Si wafers show space-charge-region recombination, tunneling or diffusive transport depending on both epitaxial Si quality and the applied forward voltage.

  9. Engineering Metal Impurities in Multicrystalline Silicon Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Metal Impurities in Multicrystalline Silicon Solar Cells Print Transition metals are one of the main culprits in degrading the efficiency of multicrystalline solar cells. With a suite of x-ray microprobe techniques, a multi-institutional collaboration led by researchers from the University of California, Berkeley, and Berkeley Lab studied the distribution of metal clusters in a variety of multicrystalline solar cells before and after processing. Their discovery that the size, spatial

  10. Engineering Metal Impurities in Multicrystalline Silicon Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Metal Impurities in Multicrystalline Silicon Solar Cells Print Transition metals are one of the main culprits in degrading the efficiency of multicrystalline solar cells. With a suite of x-ray microprobe techniques, a multi-institutional collaboration led by researchers from the University of California, Berkeley, and Berkeley Lab studied the distribution of metal clusters in a variety of multicrystalline solar cells before and after processing. Their discovery that the size, spatial

  11. Multilayer Graphene-Silicon Structures for Lithium Ion Battery Anodes -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Multilayer Graphene-Silicon Structures for Lithium Ion Battery Anodes Lawrence Berkeley National Laboratory Contact LBL About This Technology Publications: PDF Document Publication Ji, L., Zheng, H., Ismach, A., Tan, Z., Xun, S., Lin, E., Battaglia, V., Srinivasan, V., Zhang, Y., "Graphene/Si multilayer structure anodes for advanced half and full lithium-ion cells," Nano Energy, August 27, 2011. (1,629 KB) PDF Document Publication Ji, L., Zhang, X.,

  12. Electrically Integrated Graphene on Silicon Nitride Liquid Flow Cells for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Resolution TEM - Energy Innovation Portal Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search Electrically Integrated Graphene on Silicon Nitride Liquid Flow Cells for High Resolution TEM Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing Summary A Berkeley Lab research team led by Paul Alivisatos and Alex Zettl has developed liquid flow cells providing unprecedented resolution and contrast in

  13. Engineering Metal Impurities in Multicrystalline Silicon Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Metal Impurities in Multicrystalline Silicon Solar Cells Print Transition metals are one of the main culprits in degrading the efficiency of multicrystalline solar cells. With a suite of x-ray microprobe techniques, a multi-institutional collaboration led by researchers from the University of California, Berkeley, and Berkeley Lab studied the distribution of metal clusters in a variety of multicrystalline solar cells before and after processing. Their discovery that the size, spatial

  14. Engineering Metal Impurities in Multicrystalline Silicon Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Metal Impurities in Multicrystalline Silicon Solar Cells Print Transition metals are one of the main culprits in degrading the efficiency of multicrystalline solar cells. With a suite of x-ray microprobe techniques, a multi-institutional collaboration led by researchers from the University of California, Berkeley, and Berkeley Lab studied the distribution of metal clusters in a variety of multicrystalline solar cells before and after processing. Their discovery that the size, spatial

  15. Engineering Metal Impurities in Multicrystalline Silicon Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Metal Impurities in Multicrystalline Silicon Solar Cells Print Transition metals are one of the main culprits in degrading the efficiency of multicrystalline solar cells. With a suite of x-ray microprobe techniques, a multi-institutional collaboration led by researchers from the University of California, Berkeley, and Berkeley Lab studied the distribution of metal clusters in a variety of multicrystalline solar cells before and after processing. Their discovery that the size, spatial

  16. Engineering Metal Impurities in Multicrystalline Silicon Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Metal Impurities in Multicrystalline Silicon Solar Cells Print Transition metals are one of the main culprits in degrading the efficiency of multicrystalline solar cells. With a suite of x-ray microprobe techniques, a multi-institutional collaboration led by researchers from the University of California, Berkeley, and Berkeley Lab studied the distribution of metal clusters in a variety of multicrystalline solar cells before and after processing. Their discovery that the size, spatial

  17. Process for growing silicon carbide whiskers by undercooling

    DOE Patents [OSTI]

    Shalek, P.D.

    1987-10-27

    A method of growing silicon carbide whiskers, especially in the [beta] form, is disclosed using a heating schedule wherein the temperature of the atmosphere in the growth zone of a furnace is first heated to or beyond the growth temperature and then is cooled to or below the growth temperature to induce nucleation of whiskers at catalyst sites at a desired point in time which results in the selection. 3 figs.

  18. Process for growing silicon carbide whiskers by undercooling

    DOE Patents [OSTI]

    Shalek, Peter D. (Los Alamos, NM)

    1987-01-01

    A method of growing silicon carbide whiskers, especially in the .beta. form, using a heating schedule wherein the temperature of the atmosphere in the growth zone of a furnace is first heated to or beyond the growth temperature and then is cooled to or below the growth temperature to induce nucleation of whiskers at catalyst sites at a desired point in time which results in the selection.

  19. Bagdad Plant Raymond J. Polinski 585 Silicon Drive General Manager

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bagdad Plant Raymond J. Polinski 585 Silicon Drive General Manager Leechburg, PA 15656 Grain-Oriented Electrical Steel e-mail: Raymond.Polinski@ATImetals.com E. Below are Allegheny Technologies Incorporated's comments on certain issues in which the DOE sought comment. 17. DOE seeks comment on nanotechnology composites and their potential for use in distribution transformers. Soft magnetic and amorphous particles with excellent magnetic properties can be and are currently produced, but the

  20. Silicon Nanowire Anodes for Next Generation Energy Storage

    Energy Savers [EERE]

    Silicon Nanowire Anodes for Next Generation Energy Storage Ionel C. Stefan, Principal Investigator Yoni Cohen, Program Manager Amprius, Inc. June 16-20, 2014 ES126 This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 * Start date: October 2011 * End date: September 2014 * Percent complete: 85% * Performance - Energy Density - Specific Energy - Power * Life - Cycle life - Shelf life * Total project funding: $8,215,077 - DOE share: $4,998,336 -

  1. Advanced process control and novel test methods for PVD silicon and elastomeric silicone coatings utilized on ion implant disks, heatsinks and selected platens

    SciTech Connect (OSTI)

    Springer, J.; Allen, B.; Wriggins, W.; Kuzbyt, R.; Sinclair, R.

    2012-11-06

    Coatings play multiple key roles in the proper functioning of mature and current ion implanters. Batch and serial implanters require strategic control of elemental and particulate contamination which often includes scrutiny of the silicon surface coatings encountering direct beam contact. Elastomeric Silicone Coatings must accommodate wafer loading and unloading as well as direct backside contact during implant plus must maintain rigid elemental and particulate specifications. The semiconductor industry has had a significant and continuous effort to obtain ultra-pure silicon coatings with sustained process performance and long life. Low particles and reduced elemental levels for silicon coatings are a major requirement for process engineers, OEM manufacturers, and second source suppliers. Relevant data will be presented. Some emphasis and detail will be placed on the structure and characteristics of a relatively new PVD Silicon Coating process that is very dense and homogeneous. Wear rate under typical ion beam test conditions will be discussed. The PVD Silicon Coating that will be presented here is used on disk shields, wafer handling fingers/fences, exclusion zones of heat sinks, beam dumps and other beamline components. Older, legacy implanters can now provide extended process capability using this new generation PVD silicon - even on implanter systems that were shipped long before the advent of silicon coating for contamination control. Low particles and reduced elemental levels are critical performance criteria for the silicone elastomers used on disk heatsinks and serial implanter platens. Novel evaluation techniques and custom engineered tools are used to investigate the surface interaction characteristics of multiple Elastomeric Silicone Coatings currently in use by the industry - specifically, friction and perpendicular stiction. These parameters are presented as methods to investigate the critical wafer load and unload function. Unique tools and test methods have been developed that deliver accurate and repeatable data, which will be described.

  2. Rapid Formation of Soft Hydrophilic Silicone Elastomer Surfaces

    SciTech Connect (OSTI)

    Efimenko,K.; Crowe, J.; Manias, E.; Schwark, D.; Fischer, D.; Genzer, J.

    2005-01-01

    We report on the rapid formation of hydrophilic silicone elastomer surfaces by ultraviolet/ozone (UVO) irradiation of poly(vinylmethylsiloxane) (PVMS) network films. Our results reveal that the PVMS network surfaces render hydrophilic upon only a short UVO exposure time (seconds to a few minutes). We also provide evidence that the brief UVO irradiation treatment does not cause dramatic changes in the surface modulus of the PVMS network. We compare the rate of formation of hydrophilic silicone elastomer surfaces made of PVMS to those of model poly(dimethyl siloxane) (PDMS) and commercial-grade PDMS (Sylgard-184). We find that relative to PVMS, 20 times longer UVO treatment times are needed to oxidize the PDMS network surfaces in order to achieve a comparable density of surface-bound hydrophilic moieties. The longer UVO treatment times for PDMS are in turn responsible for the dramatic increase in surface modulus of UVO treated PDMS, relative to PVMS. We also study the formation of self-assembled monolayers (SAMs) made of semifluorinated organosilane precursors on the PVMSUVO and PDMS-UVO network surfaces. By tuning the UVO treatment times and by utilizing mono- and tri-functional organosilanes we find that while mono-functionalized organosilanes attach directly to the substrate, SAMs of tri-functionalized organosilanes form in-plane networks on the underlying UVO-modified silicone elastomer surface, even with only short UVO exposure times.

  3. Test-to-Failure of Crystalline Silicon Modules: Preprint

    SciTech Connect (OSTI)

    Hacke, P.; Terwilliger, K.; Glick, S.; Trudell, D.; Bosco, N.; Johnston, S.; Kurtz, S. R.

    2010-10-01

    Accelerated lifetime testing of five crystalline silicon module designs was carried out according to the Terrestrial Photovoltaic Module Accelerated Test-to-Failure Protocol. This protocol compares the reliability of various module constructions on a quantitative basis. The modules under test are subdivided into three accelerated lifetime testing paths: 85..deg..C/85% relative humidity with system bias, thermal cycling between ?40..deg..C and 85..deg..C, and a path that alternates between damp heat and thermal cycling. The most severe stressor is damp heat with system bias applied to simulate the voltages that modules experience when connected in an array. Positive 600 V applied to the active layer with respect to the grounded module frame accelerates corrosion of the silver grid fingers and degrades the silicon nitride antireflective coating on the cells. Dark I-V curve fitting indicates increased series resistance and saturation current around the maximum power point; however, an improvement in junction recombination characteristics is obtained. Shunt paths and cell-metallization interface failures are seen developing in the silicon cells as determined by electroluminescence, thermal imaging, and I-V curves in the case of negative 600 V bias applied to the active layer. Ability to withstand electrolytic corrosion, moisture ingress, and ion drift under system voltage bias are differentiated.

  4. Ceramic composites reinforced with modified silicon carbide whiskers

    DOE Patents [OSTI]

    Tiegs, Terry N. (Lenoir City, TN); Lindemer, Terrence B. (Oak Ridge, TN)

    1990-01-01

    Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparaging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.

  5. Method for removing oxide contamination from silicon carbide powders

    DOE Patents [OSTI]

    Brynestad, J.; Bamberger, C.E.

    1984-08-01

    The described invention is directed to a method for removing oxide contamination in the form of oxygen-containing compounds such as SiO/sub 2/ and B/sub 2/O/sub 3/ from a charge of finely divided silicon carbide. The silicon carbide charge is contacted with a stream of hydrogen fluoride mixed with an inert gas carrier such as argon at a temperature in the range of about 200/sup 0/ to 650/sup 0/C. The oxides in the charge react with the heated hydrogen fluoride to form volatile gaseous fluorides such as SiF/sub 4/ and BF/sub 3/ which pass through the charge along with unreacted hydrogen fluoride and the carrier gas. Any residual gaseous reaction products and hydrogen fluoride remaining in the charge are removed by contacting the charge with the stream of inert gas which also cools the powder to room temperature. The removal of the oxygen contamination by practicing the present method provides silicon carbide powders with desirable pressing and sintering characteristics. 1 tab.

  6. Exceptional gettering response of epitaxially grown kerfless silicon

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Powell, D. M.; Markevich, V. P.; Hofstetter, J.; Jensen, M. A.; Morishige, A. E.; Castellanos, S.; Lai, B.; Peaker, A. R.; Buonassisi, T.

    2016-02-08

    The bulk minority-carrier lifetime in p- and n-type kerfless epitaxial (epi) crystalline silicon wafers is shown to increase >500 during phosphorus gettering. We employ kinetic defect simulations and microstructural characterization techniques to elucidate the root cause of this exceptional gettering response. Simulations and deep-level transient spectroscopy (DLTS) indicate that a high concentra- tion of point defects (likely Pt) is “locked in” during fast (60 C/min) cooling during epi wafer growth. The fine dispersion of moderately fast-diffusing recombination-active point defects limits as-grown lifetime but can also be removed during gettering, confirmed by DLTS measurements. Synchrotron-based X-ray fluorescence microscopy indicates metal agglomeratesmore » at structural defects, yet the structural defect density is sufficiently low to enable high lifetimes. Consequently, after phosphorus diffusion gettering, epi silicon exhibits a higher lifetime than materials with similar bulk impurity contents but higher densities of structural defects, including multicrystalline ingot and ribbon silicon materials. As a result, device simulations suggest a solar-cell efficiency potential of this material >23%.« less

  7. Electroluminescence efficiencies of erbium in silicon-based hosts

    SciTech Connect (OSTI)

    Cueff, Sbastien E-mail: christophe.labbe@ensicaen.fr; Manel Ramrez, Joan; Berencn, Yonder; Garrido, Blas; Kurvits, Jonathan A.; Zia, Rashid; Department of Physics, Brown University, Providence, Rhode Island 02912 ; Rizk, Richard; Labb, Christophe E-mail: christophe.labbe@ensicaen.fr

    2013-11-04

    We report on room-temperature 1.5??m electroluminescence from trivalent erbium (Er{sup 3+}) ions embedded in three different CMOS-compatible silicon-based hosts: SiO{sub 2}, Si{sub 3}N{sub 4}, and SiN{sub x}. We show that although the insertion of either nitrogen or excess silicon helps enhance electrical conduction and reduce the onset voltage for electroluminescence, it drastically decreases the external quantum efficiency of Er{sup 3+} ions from 2% in SiO{sub 2} to 0.001% and 0.0004% in SiN{sub x} and Si{sub 3}N{sub 4}, respectively. Furthermore, we present strong evidence that hot carrier injection is significantly more efficient than defect-assisted conduction for the electrical excitation of Er{sup 3+} ions. These results suggest strategies to optimize the engineering of on-chip electrically excited silicon-based nanophotonic light sources.

  8. Photonic crystal enhanced silicon cell based thermophotovoltaic systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yeng, Yi Xiang; ; Chan, Walker R.; Rinnerbauer, Veronika; Stelmakh, Veronika; Senkevich, Jay J.; Joannopoulos, John D.; Soljacic, Marin; ?elanovi?, Ivan

    2015-01-30

    We report the design, optimization, and experimental results of large area commercial silicon solar cell based thermophotovoltaic (TPV) energy conversion systems. Using global non-linear optimization tools, we demonstrate theoretically a maximum radiative heat-to-electricity efficiency of 6.4% and a corresponding output electrical power density of 0.39 W cm? at temperature T = 1660 K when implementing both the optimized two-dimensional (2D) tantalum photonic crystal (PhC) selective emitter, and the optimized 1D tantalum pentoxide silicon dioxide PhC cold-side selective filter. In addition, we have developed an experimental large area TPV test setup that enables accurate measurement of radiative heat-to-electricity efficiency formoreany emitter-filter-TPV cell combination of interest. In fact, the experimental results match extremely well with predictions of our numerical models. Our experimental setup achieved a maximum output electrical power density of 0.10W cm? and radiative heat-to-electricity efficiency of 1.18% at T = 1380 K using commercial wafer size back-contacted silicon solar cells.less

  9. Processes for producing low cost, high efficiency silicon solar cells

    DOE Patents [OSTI]

    Rohatgi, A.; Doshi, P.; Tate, J.K.; Mejia, J.; Chen, Z.

    1998-06-16

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime {tau} and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime {tau} and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO{sub x}. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure. 28 figs.

  10. Processes for producing low cost, high efficiency silicon solar cells

    DOE Patents [OSTI]

    Rohatgi, Ajeet; Doshi, Parag; Tate, John Keith; Mejia, Jose; Chen, Zhizhang

    1998-06-16

    Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure.

  11. Atomic-Layer-Deposited Transparent Electrodes for Silicon Heterojunction Solar Cells

    SciTech Connect (OSTI)

    Demaurex, Benedicte; Seif, Johannes P.; Smit, Sjoerd; Macco, Bart; Kessels, W. M.; Geissbuhler, Jonas; De Wolf, Stefaan; Ballif, Christophe

    2014-11-01

    We examine damage-free transparent-electrode deposition to fabricate high-efficiency amorphous silicon/crystalline silicon heterojunction solar cells. Such solar cells usually feature sputtered transparent electrodes, the deposition of which may damage the layers underneath. Using atomic layer deposition, we insert thin protective films between the amorphous silicon layers and sputtered contacts and investigate their effect on device operation. We find that a 20-nm-thick protective layer suffices to preserve, unchanged, the amorphous silicon layers beneath. Insertion of such protective atomic-layer-deposited layers yields slightly higher internal voltages at low carrier injection levels. However, we identify the presence of a silicon oxide layer, formed during processing, between the amorphous silicon and the atomic-layer-deposited transparent electrode that acts as a barrier, impeding hole and electron collection.

  12. Transparent electrodes in silicon heterojunction solar cells: Influence on contact passivation

    SciTech Connect (OSTI)

    Tomasi, Andrea; Sahli, Florent; Seif, Johannes Peter; Fanni, Lorenzo; de Nicolas Agut, Silvia Martin; Geissbuhler, Jonas; Paviet-Salomon, Bertrand; Nicolay, Sylvain; Barraud, Loris; Niesen, Bjoern; De Wolf, Stefaan; Ballif, Christophe

    2015-10-26

    Charge carrier collection in silicon heterojunction solar cells occurs via intrinsic/doped hydrogenated amorphous silicon layer stacks deposited on the crystalline silicon wafer surfaces. Usually, both the electron and hole collecting stacks are externally capped by an n-type transparent conductive oxide, which is primarily needed for carrier extraction. Earlier, it has been demonstrated that the mere presence of such oxides can affect the carrier recombination in the crystalline silicon absorber. Here, we present a detailed investigation of the impact of this phenomenon on both the electron and hole collecting sides, including its consequences for the operating voltages of silicon heterojunction solar cells. As a result, we define guiding principles for improved passivating contact design for high-efficiency silicon solar cells.

  13. Atomic-Layer-Deposited Transparent Electrodes for Silicon Heterojunction Solar Cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Demaurex, Benedicte; Seif, Johannes P.; Smit, Sjoerd; Macco, Bart; Kessels, W. M.; Geissbuhler, Jonas; De Wolf, Stefaan; Ballif, Christophe

    2014-11-01

    We examine damage-free transparent-electrode deposition to fabricate high-efficiency amorphous silicon/crystalline silicon heterojunction solar cells. Such solar cells usually feature sputtered transparent electrodes, the deposition of which may damage the layers underneath. Using atomic layer deposition, we insert thin protective films between the amorphous silicon layers and sputtered contacts and investigate their effect on device operation. We find that a 20-nm-thick protective layer suffices to preserve, unchanged, the amorphous silicon layers beneath. Insertion of such protective atomic-layer-deposited layers yields slightly higher internal voltages at low carrier injection levels. However, we identify the presence of a silicon oxide layer, formed during processing,more » between the amorphous silicon and the atomic-layer-deposited transparent electrode that acts as a barrier, impeding hole and electron collection.« less

  14. Transparent electrodes in silicon heterojunction solar cells: Influence on contact passivation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tomasi, Andrea; Sahli, Florent; Seif, Johannes Peter; Fanni, Lorenzo; de Nicolas Agut, Silvia Martin; Geissbuhler, Jonas; Paviet-Salomon, Bertrand; Nicolay, Sylvain; Barraud, Loris; Niesen, Bjoern; et al

    2015-10-26

    Charge carrier collection in silicon heterojunction solar cells occurs via intrinsic/doped hydrogenated amorphous silicon layer stacks deposited on the crystalline silicon wafer surfaces. Usually, both the electron and hole collecting stacks are externally capped by an n-type transparent conductive oxide, which is primarily needed for carrier extraction. Earlier, it has been demonstrated that the mere presence of such oxides can affect the carrier recombination in the crystalline silicon absorber. Here, we present a detailed investigation of the impact of this phenomenon on both the electron and hole collecting sides, including its consequences for the operating voltages of silicon heterojunction solarmore » cells. As a result, we define guiding principles for improved passivating contact design for high-efficiency silicon solar cells.« less

  15. Toward a Monolithic Lattice-Matched III-V on Silicon Tandem Solar Cell

    SciTech Connect (OSTI)

    Geisz, J. F.; Olson, J. M.; Friedman, D. J.

    2004-09-01

    A two-junction device consisting of a 1.7-eV GaNPAs junction on a 1.1-eV silicon junction has the theoretical potential to achieve nearly optimal efficiency for a two-junction tandem cell. We have demonstrated some of the key components toward realizing such a cell, including GaNPAs top cells grown on silicon substrates, GaP-based tunnel junctions grown on silicon substrates, and diffused silicon junctions formed during the epitaxial growth of GaNP on silicon. These components have required the development of techniques for the growth of high crystalline quality GaNPAs on silicon by metal-organic vapor-phase epitaxy.

  16. Percolation network in resistive switching devices with the structure of silver/amorphous silicon/p-type silicon

    SciTech Connect (OSTI)

    Liu, Yanhong; Gao, Ping; Bi, Kaifeng; Peng, Wei [School of Physics and Optoelectronic Engineering, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian 116024 (China); Jiang, Xuening; Xu, Hongxia [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian116024 (China)

    2014-01-27

    Conducting pathway of percolation network was identified in resistive switching devices (RSDs) with the structure of silver/amorphous silicon/p-type silicon (Ag/a-Si/p-Si) based on its gradual RESET-process and the stochastic complex impedance spectroscopy characteristics (CIS). The formation of the percolation network is attributed to amounts of nanocrystalline Si particles as well as defect sites embedded in a-Si layer, in which the defect sites supply positions for Ag ions to nucleate and grow. The similar percolation network has been only observed in Ag-Ge-Se based RSD before. This report provides a better understanding for electric properties of RSD based on the percolation network.

  17. Beyond Silicon: Cutting the Costs of Solar Power | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beyond Silicon: Cutting the Costs of Solar Power Stories of Discovery & Innovation Beyond Silicon: Cutting the Costs of Solar Power Enlarge Photo Courtesy of University of Illinois Mechanically flexible, high efficiency solar module that uses an interconnected array of microscale GaAs photovoltaic cells, grown in a multilayer stack on a wafer and then printed onto a sheet of plastic. Enlarge Photo 04.15.11 Beyond Silicon: Cutting the Costs of Solar Power New method of fabricating

  18. Seventh workshop on the role of impurities and defects in silicon device processing

    SciTech Connect (OSTI)

    1997-08-01

    This workshop is the latest in a series which has looked at technological issues related to the commercial development and success of silicon based photovoltaic (PV) modules. PV modules based on silicon are the most common at present, but face pressure from other technologies in terms of cell performance and cell cost. This workshop addresses a problem which is a factor in the production costs of silicon based PV modules.

  19. PROJECT PROFILE: Silicon-Based Tandem Solar Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROJECT PROFILE: Silicon-Based Tandem Solar Cells PROJECT PROFILE: Silicon-Based Tandem Solar Cells Funding Opportunity: SuNLaMP SunShot Subprogram: Photovoltaics Location: National Renewable Energy Laboratory, Golden, CO Amount Awarded: $1,500,000 The project will demonstrate bonded gallium indium phosphide (GaInP) on silicon tandem cells, evaluate the advantages and disadvantages of this method of forming higher-efficiency tandem cells, and compare two- and three-terminal device

  20. Fact Sheet: Award-Winning Silicon Carbide Power Electronics (October 2012)

    Energy Savers [EERE]

    | Department of Energy Award-Winning Silicon Carbide Power Electronics (October 2012) Fact Sheet: Award-Winning Silicon Carbide Power Electronics (October 2012) Operating at high temperatures and with reduced energy losses, two silicon carbide power electronics (PE) projects were awarded the prestigious R&D 100 Award. This technology was funded as a Small Business Innovation Research project as part of DOE's Energy Storage Program effort to develop and commercialize a new generation of