National Library of Energy BETA

Sample records for guiding structure contacts

  1. Procuring Solar Energy Guide Contacts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Procuring Solar Energy Guide Contacts Procuring Solar Energy Guide Contacts Contact information for the Procuring Solar Energy: A Guide for Federal Facility Decision Makers is ...

  2. Contact structure for use in catalytic distillation

    DOE Patents [OSTI]

    Jones, E.M. Jr.

    1985-08-20

    A method and apparatus are disclosed for conducting catalytic chemical reactions and fractionation of the reaction mixture, comprising and feeding reactants into a distillation column reactor contracting said reactant in a liquid phase with a fixed bed catalyst in the form of a contact catalyst structure, consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column. 7 figs.

  3. Contact structure for use in catalytic distillation

    DOE Patents [OSTI]

    Jones, Jr., Edward M.

    1984-01-01

    A method for conducting catalytic chemical reactions and fractionation of the reaction mixture comprising feeding reactants into a distillation column reactor contracting said reactant in liquid phase with a fixed bed catalyst in the form of a contact catalyst structure consisting of closed porous containers containing the catatlyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column.

  4. Contact structure for use in catalytic distillation

    DOE Patents [OSTI]

    Jones, Jr., Edward M.

    1985-01-01

    A method and apparatus for conducting catalytic chemical reactions and fractionation of the reaction mixture, comprising and feeding reactants into a distillation column reactor contracting said reactant in a liquid phase with a fixed bed catalyst in the form of a contact catalyst structure, consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column.

  5. Contact structure for use in catalytic distillation

    DOE Patents [OSTI]

    Jones, E.M. Jr.

    1984-03-27

    A method is described for conducting catalytic chemical reactions and fractionation of the reaction mixture comprising feeding reactants into a distillation column reactor, contracting said reactant in liquid phase with a fixed bed catalyst in the form of a contact catalyst structure consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column. 7 figs.

  6. FAQS Reference Guide – Civil/ Structural Engineering

    Office of Energy Efficiency and Renewable Energy (EERE)

    This reference guide has been developed to address the competency statements in the March 2004 edition of DOE-STD-1182-2004, Civil/Structural Engineering Functional Area Qualification Standard.

  7. Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contacts Contacts Please, if you have questions, feel free to contact us! Matt Ahlquist (505) 665-7357 ahlquist@lanl.gov Carmela Rodriguez (505) 665-5237 carmela@lanl.gov

  8. Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contacts Additional Contacts MaRIE is the experimental facility needed to control the time-dependent properties of materials for national security science missions. It fils the...

  9. Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contacts Contacts Questions? Contact us! Protecting the future by securing and safeguarding nuclear materials at LANL Your hosts for this meeting: Michael Duvall Assistant Manager, Safeguards and Security NA-00-LA Field Office (505) 665-5036 Michael.duvall@nnsa.doe.gov Michael Lansing Associate Director for Security and Safeguards Los Alamos National Laboratory (505) 667-4875 lansing@lanl.gov Your contact for registration, clearances, other logistics: Christy Archuleta Chief of Staff, Associate

  10. Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contacts Contacts Feel free to contact us for more information. Program Director Bill Archer (505) 665-7235 Email Executive Advisor Mark Anderson (505) 667-4772 Email Program Specialist Jean Harris (505) 667-5778 Email Executive Administrator Roberta Viarreal (505) 667-9128 Email

  11. Contact

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CAMD Safety Home MSDS Search MSDS Help Safety Training and Tests Contact Links LSU Campus Safety Glossary Name: Email Address Subject: Message: Submit The J. Bennett Johnston, Sr....

  12. Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P-27 Group Information Names and phone numbers for P-27 group management and office administrators. Group Contacts P-27 Name Phone Group Leader Aaron Couture 667-1730 Deputy Group Leader Charles Kelsey 665-5579 Deputy Group Leader Fredrik Tovesson 665-9652 Group Administrator Julie Quintana-Valdez 665-5390 User Office Tanya Herrera 667-6797 User Office Alternate Howard Nekimken 667-3629 Experimental Area Manager Charles Kelsey 665-5579 Safety Officer Frances Aull 667-6095 Links Group Contacts

  13. CONTACT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CONTACT The nuclear and materials science research ca- pabilities at LANSCE are operated as a DOE-des- ignated user facility in service to the nation. We provide neutron and proton beams as well as instrumentation and sample environments for basic, applied, industry, and defense-related re- search in nuclear physics and materials science. A yearly call invites proposals for beam time for experiments from other national laboratories, academia, and industry users. Proprietary and nonproprietary

  14. Contacts:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy's Critical Materials Institute offers membership program Contacts: Stacy Joiner, program coordinator, Ames Laboratory joiner@ameslab.gov or 515-294-5932 Laura Millsaps, public affairs, Ames Laboratory, millsaps@ameslab.gov or 515-294-3474 The Critical Materials Institute, a U.S. Department of Energy (DOE) Innovation Hub, is offering a membership program for organizations with a stake in rare-earth and other critical element research. The Critical Materials Institute is a

  15. WAVE DELAYING STRUCTURE FOR RECTANGULAR WAVE-GUIDES

    DOE Patents [OSTI]

    Robertson-Shersby-Harvie, R.B.; Dain, J.

    1956-11-13

    This patent relates to wave-guides and in particular describes wave delaying structure located within a wave-guide. The disclosed wave-guide has an elongated fiat metal sheet arranged in a central plane of the guide and formed with a series of transverse inductive slots such that each face presents an inductive impedance to the guide. The sheet is thickened in the area between slots to increase the self capacity of the slots. Experimental results indicate that in a wave-guide loaded in accordance with the invention the guided wavelength changes more slowly as the air wavelength is changed than the guided wavelength does in wave-guides loaded by means of corrugations.

  16. Screenable contact structure and method for semiconductor devices

    DOE Patents [OSTI]

    Ross, Bernd

    1980-08-26

    An ink composition for deposition upon the surface of a semiconductor device to provide a contact area for connection to external circuitry is disclosed, the composition comprising an ink system containing a metal powder, a binder and vehicle, and a metal frit. The ink is screened onto the semiconductor surface in the desired pattern and is heated to a temperature sufficient to cause the metal frit to become liquid. The metal frit dissolves some of the metal powder and densifies the structure by transporting the dissolved metal powder in a liquid sintering process. The sintering process typically may be carried out in any type of atmosphere. A small amount of dopant or semiconductor material may be added to the ink systems to achieve particular results if desired.

  17. Surface Mercury Geochemistry As A Guide To Volcanic Vent Structure...

    Open Energy Info (EERE)

    Mercury Geochemistry As A Guide To Volcanic Vent Structure And Zones Of High Heat Flow In The Valley Of Ten Thousand Smokes, Katmai National Park, Alaska Jump to: navigation,...

  18. Effect of realistic metal electronic structure on the lower limit of contact resistivity of epitaxial metal-semiconductor contacts

    SciTech Connect (OSTI)

    Hegde, Ganesh Chris Bowen, R.

    2014-08-04

    The effect of realistic metal electronic structure on the lower limit of resistivity in [100] oriented n-Si is investigated using full band Density Functional Theory and Semi-Empirical Tight Binding calculations. It is shown that the ideal metal assumption may fail in some situations and, consequently, underestimate the lower limit of contact resistivity in n-Si by at least an order of magnitude at high doping concentrations. The mismatch in transverse momentum space in the metal and the semiconductor, the so-called valley filtering effect, is shown to be sensitive to the details of the transverse boundary conditions for the unit cells used. The results emphasize the need for explicit inclusion of the metal atomic and electronic structure in the atomistic modeling of transport across metal-semiconductor contacts.

  19. Structure of the NiFe2O4(001) surface in contact with gaseous...

    Office of Scientific and Technical Information (OSTI)

    Structure of the NiFe2O4(001) surface in contact with gaseous O2 and water vapor Citation ... Title: Structure of the NiFe2O4(001) surface in contact with gaseous O2 and water vapor ...

  20. Center for Lignocellulose Structure and Function - Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Daniel Cosgrove, Director Biology Department, Pennsylvania State University Phone: 814-863-3892 Email: dcosgrove@psu.edu Candace Haigler, Associate Director Department of Crop Sciences, North Carolina State University Phone: 540-231-4601 Email: Candace_Haigler@ncsu.edu Laura Ullrich (Gilliland), Manager Office Location: South Frear 304A Mailing address: Mueller 208, Biology The Pennsylvania State University University Park, PA 16802 email: LUG11@psu.edu Telephone: (814) 867-4132 For

  1. Electrical contact structures for solid oxide electrolyte fuel cell

    DOE Patents [OSTI]

    Isenberg, Arnold O.

    1984-01-01

    An improved electrical output connection means is provided for a high temperature solid oxide electrolyte type fuel cell generator. The electrical connection of the fuel cell electrodes to the electrical output bus, which is brought through the generator housing to be connected to an electrical load line maintains a highly uniform temperature distribution. The electrical connection means includes an electrode bus which is spaced parallel to the output bus with a plurality of symmetrically spaced transversely extending conductors extending between the electrode bus and the output bus, with thermal insulation means provided about the transverse conductors between the spaced apart buses. Single or plural stages of the insulated transversely extending conductors can be provided within the high temperatures regions of the fuel cell generator to provide highly homogeneous temperature distribution over the contacting surfaces.

  2. Properties and features of structure formation CuCr-contact alloys in electron beam cladding

    SciTech Connect (OSTI)

    Durakov, Vasiliy G.; Dampilon, Bair V. E-mail: gnusov@rambler.ru; Gnyusov, Sergey F. E-mail: gnusov@rambler.ru

    2014-11-14

    The microstructure and properties of the contact CuCr alloy produced by electron-beam cladding have been investigated. The effect of the electron beam cladding parameters and preheating temperature of the base metal on the structure and the properties of the coatings has been determined. The bimodal structure of the cladding coating has been established. The short circuit currents tests have been carried out according to the Weil-Dobke synthetic circuit simulating procedure developed for vacuum circuit breakers (VCB) test in real electric circuits. Test results have shown that the electron beam cladding (EBC) contact material has better breaking capacity than that of commercially fabricated sintered contact material. The application of the technology of electron beam cladding for production of contact material would significantly improve specific characteristics and reliability of vacuum switching equipment.

  3. Chemical structure of vanadium-based contact formation on n-AlN

    SciTech Connect (OSTI)

    Pookpanratana, S.; France, R.; Blum, M.; Bell, A.; Bar, M.; Weinhardt, L.; Zhang, Y.; Hofmann, T.; Fuchs, O.; Yang, W.; Denlinger, J. D.; Mulcahy, S.; Moustakas, T. D.; Heske, Clemens

    2010-05-17

    We have investigated the chemical interaction between a Au/V/Al/V layer structure and n-type AlN epilayers using soft x-ray photoemission, x-ray emission spectroscopy, and atomic force microscopy. To understand the complex processes involved in this multicomponent system, we have studied the interface before and after a rapid thermal annealing step. We find the formation of a number of chemical phases at the interface, including VN, metallic vanadium, aluminum oxide, and metallic gold. An interaction mechanism for metal contact formation on the entire n-(Al,Ga)N system is proposed.

  4. Contact | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Contact Information

  5. JLF Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jlf contacts JLF Contacts JLF Staff - March 2015

  6. Guide to FEMP-Designated Parking Structure Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Structure Lighting Guide to FEMP-Designated Parking Structure Lighting Document provides acquisition guidance and federal efficiency requirements across a variety of product cate-gories, including parking garage luminaires, which are a FEMP-designated product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Download the guide to FEMP-designated parking

  7. Process and structures for fabrication of solar cells with laser ablation steps to form contact holes

    DOE Patents [OSTI]

    Harley, Gabriel; Smith, David D; Dennis, Tim; Waldhauer, Ann; Kim, Taeseok; Cousins, Peter John

    2013-11-19

    Contact holes of solar cells are formed by laser ablation to accomodate various solar cell designs. Use of a laser to form the contact holes is facilitated by replacing films formed on the diffusion regions with a film that has substantially uniform thickness. Contact holes may be formed to deep diffusion regions to increase the laser ablation process margins. The laser configuration may be tailored to form contact holes through dielectric films of varying thickness.

  8. Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Proposals Agreement Mechanisms Innovations Technologies Patents Publications Contact Us LACED Contact Us Contact Us . Contacts If you have a complex problem related to...

  9. Guide to FEMP-Designated Parking Structure Lighting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Renewable Energy Laboratory's parking structure utilizes many measures to achieve a parking structure that uses 90% less energy than the baseline energy code. TABLE OF CONTENTS 1 INTRODUCTION * FEMP-DESIGNATED PRODUCTS * ENERGY EFFICIENCY METRICS 3 DESIGN PROCESS * STEP-BY-STEP OVERVIEW 6 COMPONENTS OF THE DESIGN * BUILDING DESIGN CONSIDERATIONS * MATERIAL SELECTION * LIGHTING DESIGN CONSIDERATIONS * LUMINAIRE DISTRIBUTION * COLOR QUALITIES * LUMINAIRE LAYOUT 13 PARKING STRUCTURE

  10. A Structural Model Guide For Geothermal Exploration In Ancestral...

    Open Energy Info (EERE)

    traverse the base of the AMB volcano. This master fault induced fracture-controlled permeability where fluids in the Tongonan Geothermal Field circulate. The structural model...

  11. Effect of annealing temperature on the contact properties of Ni/V/4H-SiC structure

    SciTech Connect (OSTI)

    Dai, Chong-Chong; Zhou, Tian-Yu; University of Chinese Academy of Sciences, Beijing 100049 ; Liu, Xue-Chao Zhuo, Shi-Yi; Kong, Hai-Kuan; Yang, Jian-Hua; Shi, Er-Wei

    2014-04-15

    A sandwich structure of Ni/V/4H-SiC was prepared and annealed at different temperatures from 650?C to 1050?C. The electrical properties and microstructures were characterized by transmission line method, X-ray diffraction, Raman spectroscopy and transmission electron microscopy. A low specific contact resistance of 3.3 10{sup -5} ?cm{sup 2} was obtained when the Ni/V contact was annealed at 1050?C for 2 min. It was found that the silicide changed from Ni{sub 3}Si to Ni{sub 2}Si with increasing annealing temperature, while the vanadium compounds appeared at 950?C and their concentration increased at higher annealing temperature. A schematic diagram was proposed to explain the ohmic contact mechanism of Ni/V/4H-SiC structure.

  12. MHTool User's Guide - Software for Manufactured Housing Structural Design

    SciTech Connect (OSTI)

    W. D. Richins

    2005-07-01

    Since the late 1990s, the Department of Energy's Idaho National Laboratory (INL) has worked with the US Department of Housing and Urban Development (HUD), the Manufactured Housing Institute (MHI), the National Institute of Standards and Technology (NIST), the National Science Foundation (NSF), and an industry committee to measure the response of manufactured housing to both artificial and natural wind loads and to develop a computational desktop tool to optimize the structural performance of manufactured housing to HUD Code loads. MHTool is the result of an 8-year intensive testing and verification effort using single and double section homes. MHTool is the first fully integrated structural analysis software package specifically designed for manufactured housing. To use MHTool, industry design engineers will enter information (geometries, materials, connection types, etc.) describing the structure of a manufactured home, creating a base model. Windows, doors, and interior walls can be added to the initial design. Engineers will input the loads required by the HUD Code (wind, snow loads, interior live loads, etc.) and run an embedded finite element solver to find walls or connections where stresses are either excessive or very low. The designer could, for example, substitute a less expensive and easier to install connection in areas with very low stress, then re-run the analysis for verification. If forces and stresses are still within HUD Code requirements, construction costs would be saved without sacrificing quality. Manufacturers can easily change geometries or component properties to optimize designs of various floor plans then submit MHTool input and output in place of calculations for DAPIA review. No change in the regulatory process is anticipated. MHTool, while not yet complete, is now ready for demonstration. The pre-BETA version (Build-16) was displayed at the 2005 National Congress & Expo for Manufactured & Modular Housing. Additional base models and an

  13. Contact Information | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Information Contact Information

  14. Advanced Energy Design Guides

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... ADVANCED ENERGY DESIGN GUIDES FACT SHEET EERE Information Center 1-877-EERE-INFO ... For more information, contact: Jerome Lam Energy Technology Program Specialist Commercial ...

  15. 2008 buyer's guide

    SciTech Connect (OSTI)

    2008-10-15

    The guide contains brief descriptions and contact details of 124 US companies supplying coal preparation equipment. An index of categories of equipment available from the manufacturers is included.

  16. WINDExchange: Contacts

    Wind Powering America (EERE)

    WINDExchange Printable Version Bookmark and Share Contacts Website and program contacts are provided below. Website Contact Send us your comments, report problems, and/or ask questions about information on this site. WINDExchange Contacts Contact information for the WINDExchange initiative. WINDExchange is a resource of the Department of Energy's Wind Program. Contact Us | Wind Program | Office of Energy Efficiency & Renewable Energy Content Last Updated: 11/4/2014

  17. Contacts | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contacts Contacts Contact Information Below you will find contact information related to FORGE: FORGE For questions about current FORGE activity, please contact: FORGECommunications@ee.doe.gov For questions about the FORGE FOA, please contact: de-foa-0000890-forge@netl.doe.gov Geothermal Office U.S. Department of Energy Geothermal Technologies Office 1000 Independence Avenue, SW Washington, DC 20585 geothermal@ee.doe.gov 202-287-1818 FORGE Team Principal Investigators Idaho National Laboratory -

  18. Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact-Us Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects & Initiatives Finance & Rates...

  19. Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact-Us-ei Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects & Initiatives Finance & Rates...

  20. Thermal green protein, an extremely stable, nonaggregating fluorescent protein created by structure-guided surface engineering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Close, Devin W.; Paul, Craig Don; Langan, Patricia S.; Wilce, Matthew C. J.; Traore, Daouda A. K.; Halfmann, Randal; Rocha, Reginaldo C.; Waldo, Geoffery S.; Payne, Riley J.; Rucker, Joseph B.; et al

    2015-05-08

    In this paper, we describe the engineering and X-ray crystal structure of Thermal Green Protein (TGP), an extremely stable, highly soluble, non-aggregating green fluorescent protein. TGP is a soluble variant of the fluorescent protein eCGP123, which despite being highly stable, has proven to be aggregation-prone. The X-ray crystal structure of eCGP123, also determined within the context of this paper, was used to carry out rational surface engineering to improve its solubility, leading to TGP. The approach involved simultaneously eliminating crystal lattice contacts while increasing the overall negative charge of the protein. Despite intentional disruption of lattice contacts and introduction ofmore » high entropy glutamate side chains, TGP crystallized readily in a number of different conditions and the X-ray crystal structure of TGP was determined to 1.9 Å resolution. The structural reasons for the enhanced stability of TGP and eCGP123 are discussed. We demonstrate the utility of using TGP as a fusion partner in various assays and significantly, in amyloid assays in which the standard fluorescent protein, EGFP, is undesirable because of aberrant oligomerization.« less

  1. Thermal green protein, an extremely stable, nonaggregating fluorescent protein created by structure-guided surface engineering

    SciTech Connect (OSTI)

    Close, Devin W.; Paul, Craig Don; Langan, Patricia S.; Wilce, Matthew C. J.; Traore, Daouda A. K.; Halfmann, Randal; Rocha, Reginaldo C.; Waldo, Geoffery S.; Payne, Riley J.; Rucker, Joseph B.; Prescott, Mark; Bradbury, Andrew R. M.

    2015-05-08

    In this paper, we describe the engineering and X-ray crystal structure of Thermal Green Protein (TGP), an extremely stable, highly soluble, non-aggregating green fluorescent protein. TGP is a soluble variant of the fluorescent protein eCGP123, which despite being highly stable, has proven to be aggregation-prone. The X-ray crystal structure of eCGP123, also determined within the context of this paper, was used to carry out rational surface engineering to improve its solubility, leading to TGP. The approach involved simultaneously eliminating crystal lattice contacts while increasing the overall negative charge of the protein. Despite intentional disruption of lattice contacts and introduction of high entropy glutamate side chains, TGP crystallized readily in a number of different conditions and the X-ray crystal structure of TGP was determined to 1.9 Å resolution. The structural reasons for the enhanced stability of TGP and eCGP123 are discussed. We demonstrate the utility of using TGP as a fusion partner in various assays and significantly, in amyloid assays in which the standard fluorescent protein, EGFP, is undesirable because of aberrant oligomerization.

  2. Trench process and structure for backside contact solar cells with polysilicon doped regions

    DOE Patents [OSTI]

    De Ceuster, Denis; Cousins, Peter John; Smith, David D.

    2010-12-14

    A solar cell includes polysilicon P-type and N-type doped regions on a backside of a substrate, such as a silicon wafer. An interrupted trench structure separates the P-type doped region from the N-type doped region in some locations but allows the P-type doped region and the N-type doped region to touch in other locations. Each of the P-type and N-type doped regions may be formed over a thin dielectric layer. Among other advantages, the resulting solar cell structure allows for increased efficiency while having a relatively low reverse breakdown voltage.

  3. Trench process and structure for backside contact solar cells with polysilicon doped regions

    DOE Patents [OSTI]

    De Ceuster, Denis; Cousins, Peter John; Smith, David D

    2013-05-28

    A solar cell includes polysilicon P-type and N-type doped regions on a backside of a substrate, such as a silicon wafer. An interrupted trench structure separates the P-type doped region from the N-type doped region in some locations but allows the P-type doped region and the N-type doped region to touch in other locations. Each of the P-type and N-type doped regions may be formed over a thin dielectric layer. Among other advantages, the resulting solar cell structure allows for increased efficiency while having a relatively low reverse breakdown voltage.

  4. Trench process and structure for backside contact solar cells with polysilicon doped regions

    DOE Patents [OSTI]

    De Ceuster, Denis; Cousins, Peter John; Smith, David D

    2014-03-18

    A solar cell includes polysilicon P-type and N-type doped regions on a backside of a substrate, such as a silicon wafer. An interrupted trench structure separates the P-type doped region from the N-type doped region in some locations but allows the P-type doped region and the N-type doped region to touch in other locations. Each of the P-type and N-type doped regions may be formed over a thin dielectric layer. Among other advantages, the resulting solar cell structure allows for increased efficiency while having a relatively low reverse breakdown voltage.

  5. Contact Information | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Information

  6. Contacts & Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contacts & Resources Contacts & Resources Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 envoutreach@lanl.gov Public...

  7. Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Contact Us The Research Library staff is happy to answer questions that you may have regarding our collection, access services and more. We are also available to assist...

  8. Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us About ESnet Our Mission The Network ESnet History Governance & Policies Career Opportunities ESnet Staff & Org Chart Contact Us Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net Contact Us ESnet Administration Operations Research Outreach and Communications Inder Monga Division Director (Interim) Scientific

  9. Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contacts CAMD Contacts: John Scott, Scientific Director (225) 578-4605 office Craig Stevens, Director for Administration (225) 578-4603 office For more information: LSU-CAMD 6980 Jefferson Hwy. Baton Rouge, LA 70806 (225) 578-8887 Tel. (main office) (225) 578-6954 Fax A tour of the facility can be arranged by contacting Craig Stevens.

  10. Enhancement of maximum attainable ion energy in the radiation pressure acceleration regime using a guiding structure

    SciTech Connect (OSTI)

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Pegoraro, F.; Leemans, W. P.

    2015-03-13

    Radiation Pressure Acceleration is a highly efficient mechanism of laser driven ion acceleration, with the laser energy almost totally transferrable to the ions in the relativistic regime. There is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. In the case of a tightly focused laser pulses, which are utilized to get the highest intensity, another factor limiting the maximum ion energy comes into play, the transverse expansion of the target. Transverse expansion makes the target transparent for radiation, thus reducing the effectiveness of acceleration. Utilization of an external guiding structure for the accelerating laser pulse may provide a way of compensating for the group velocity and transverse expansion effects.

  11. WINDExchange: Contacts

    Wind Powering America (EERE)

    About Printable Version Bookmark and Share Contacts WINDExchange Staff Contacts This page introduces the WINDExchange team. If you have questions, please contact the Webmaster. Photo of Margaret Yancey Margaret Yancey Energy Technology Program Specialist, U.S. Department of Energy 202-586-4536 Photo of Bret Barker Bret Barker Strategic Advisor for Distributed Wind, U.S. Department of Energy 202-586-7821 Photo of Suzanne Tegen Suzanne Tegen Manager, Wind and Water Deployment Section, National

  12. LANL Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Contacts Lab Contacts Addresses and phone numbers for general information, journalistic queries, business needs, community programs and employee resources. General Employee directory Emergency communication Communications Office (505) 667-7000 Ethics & Audits Internal Audit: (505) 665-3104 Ethics Office: (505) 667-7506 Fax: (505) 665-3664 ethics@lanl.gov Journalist queries Communications Office (505) 667-7000 Media contacts Lab mailing address Los Alamos National Laboratory P.O. Box 1663

  13. Contact Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    default Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects & Initiatives Finance & Rates...

  14. ARM - Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contacts Related Links RHUBC Home NSA Home ARM Data Discovery Browse Data Experiment ... instrument mentor for the GVR Mark Ivey, NSA site manager Hans Verlinde, NSA site ...

  15. Durability-Based Design Guide for an Automotive Structural Composite: Part 2. Background Data and Models

    SciTech Connect (OSTI)

    Corum, J.M.; Battiste, R.L.; Brinkman, C.R.; Ren, W.; Ruggles, M.B.; Weitsman, Y.J.; Yahr, G.T.

    1998-02-01

    This background report is a companion to the document entitled ''Durability-Based Design Criteria for an Automotive Structural Composite: Part 1. Design Rules'' (ORNL-6930). The rules and the supporting material characterization and modeling efforts described here are the result of a U.S. Department of Energy Advanced Automotive Materials project entitled ''Durability of Lightweight Composite Structures.'' The overall goal of the project is to develop experimentally based, durability-driven design guidelines for automotive structural composites. The project is closely coordinated with the Automotive Composites Consortium (ACC). The initial reference material addressed by the rules and this background report was chosen and supplied by ACC. The material is a structural reaction injection-molded isocyanurate (urethane), reinforced with continuous-strand, swirl-mat, E-glass fibers. This report consists of 16 position papers, each summarizing the observations and results of a key area of investigation carried out to provide the basis for the durability-based design guide. The durability issues addressed include the effects of cyclic and sustained loadings, temperature, automotive fluids, vibrations, and low-energy impacts (e.g., tool drops and roadway kickups) on deformation, strength, and stiffness. The position papers cover these durability issues. Topics include (1) tensile, compressive, shear, and flexural properties; (2) creep and creep rupture; (3) cyclic fatigue; (4) the effects of temperature, environment, and prior loadings; (5) a multiaxial strength criterion; (6) impact damage and damage tolerance design; (7) stress concentrations; (8) a damage-based predictive model for time-dependent deformations; (9) confirmatory subscale component tests; and (10) damage development and growth observations.

  16. Media Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Media Contacts Media Contacts x General News Media Questions Kevin Roark, (505) 665-9202 Science, Technology, Engineering Nancy Ambrosiano, (505) 667-0471 Accelerators, electrodynamics Bioscience, biosecurity, health Chemical science Earth, space sciences Energy, energy security Engineering High energy density plasmas, fluids Information science, supercomputing New materials Nuclear physics, astrophysics Sensors, instrumentation systems Global Security Laura Mullane, (505) 667-6012 Nuclear

  17. PNNL: Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contacts Have a Question or Comment? Please use our feedback form. We would love to hear from you. Looking for a Staff Member at PNNL? Use our searchable staff directory to find staff contact information. Information returned includes staff name and telephone number. Phone Numbers and Addresses View our phone and address book for mailing addresses and important phone numbers

  18. A study on nondestructive evaluation technique by the use of interface guided waves on shrink fit structure

    SciTech Connect (OSTI)

    Lee, Jaesun; Cho, Younho; Park, Jun-Pil; Rose, Joseph L.; Huh, Hyung; Park, Keun-Bae; Kim, Dong-Ok

    2014-02-18

    Guided wave was widely studied for plate and pipe due to the great application area. Guided wave has advantage on long distance inspection for an inaccessible area and apart from transducer. Quite often shrink fit structures were found in nuclear power facilities. In this paper, two pipes were designed with perfect shrink fit condition for Stainless Steel 316. The displacement distribution was calculated with boundary condition. The interface wave propagation pattern was analyzed by the numerical modeling. The experimental results show a possibility of weld delamination and defect detection.

  19. Structural Diagnostics of CFRP Composite Aircraft Components by Ultrasonic Guided Waves and Built-In Piezoelectric Transducers

    SciTech Connect (OSTI)

    Howard M. Matt

    2007-02-15

    To monitor in-flight damage and reduce life-cycle costs associated with CFRP composite aircraft, an autonomous built-in structural health monitoring (SHM) system is preferred over conventional maintenance routines and schedules. This thesis investigates the use of ultrasonic guided waves and piezoelectric transducers for the identification and localization of damage/defects occurring within critical components of CFRP composite aircraft wings, mainly the wing skin-to-spar joints. The guided wave approach for structural diagnostics was demonstrated by the dual application of active and passive monitoring techniques. For active interrogation, the guided wave propagation problem was initially studied numerically by a semi-analytical finite element method, which accounts for viscoelastic damping, in order to identify ideal mode-frequency combinations sensitive to damage occurring within CFRP bonded joints. Active guided wave tests across three representative wing skin-to-spar joints at ambient temperature were then conducted using attached Macro Fiber Composite (MFC) transducers. Results from these experiments demonstrate the importance of intelligent feature extraction for improving the sensitivity to damage. To address the widely neglected effects of temperature on guided wave base damage identification, analytical and experimental analyses were performed to characterize the influence of temperature on guided wave signal features. In addition, statistically-robust detection of simulated damage in a CFRP bonded joint was successfully achieved under changing temperature conditions through a dimensionally-low, multivariate statistical outlier analysis. The response of piezoceramic patches and MFC transducers to ultrasonic Rayleigh and Lamb wave fields was analytically derived and experimentally validated. This theory is useful for designing sensors which possess optimal sensitivity toward a given mode-frequency combination or for predicting the frequency dependent

  20. WINDExchange: Contacts

    Wind Powering America (EERE)

    If you have questions, please contact the Webmaster. Photo of Patrick Gilman Patrick Gilman Wind Energy Deployment Manager, U.S. Department of Energy 720-356-1420 Photo of Bret ...

  1. Website Contact

    Broader source: Energy.gov [DOE]

    Contact the website administrator with questions, comments, or issues related to the Federal Energy Management Program website. If your inquiry is in regard to a specific Web page, please include...

  2. Contacts | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NISACContacts content top Contacts Posted by Admin on Feb 27, 2012 in | Comments 0 comments Sandia National Laboratories Department of Homeland Security Los Alamos National Laboratory SNL Resilient Infrastructure Systems Senior Program Manager Bill Rhodes wgrhode@sandia.gov 505-844-4597 SNL NISAC Program Manager Lori Parrott lkparro@sandia.gov 505-844-2745 SNL NISAC Technical Program Lead Theresa... Read More Contacts

  3. Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Contact Us Print Advanced Light Source 1 Cyclotron Road Lawrence Berkeley National Laboratory Berkeley, CA 94720-8229 ALS Division Office Tel: 510-486-7477 Fax: 510-486-4960 Mailstop: 80R0114 ALS User Services Tel: 510-486-7745 Fax: 510-486-4773 Mailstop: 6-2100 General Inquiries: This e-mail address is being protected from spambots. You need JavaScript enabled to view it Proposals: This e-mail address is being protected from spambots. You need JavaScript enabled to view it Parking

  4. Contact us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About » Contact us Contact us Technical Questions, Computer Operations, Passwords, Account Support 1-800-666-3772 (or 1-510-486-8600) Computer Operations Account Support HPC Consulting menu option 1 (for passwords and off-hours problem reports/inquiries) Hours: 24/7, 365 days a year menu option 2 or accounts@nersc.gov or http://nim.nersc.gov Hours: Weekdays 8-5 Pacific menu option 3 or consult@nersc.gov Hours: Weekdays 8-5 Pacific or http://help.nersc.gov (On-line Help Desk) NERSC Center

  5. Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Us - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  6. MEDIA CONTACTS:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MEDIA CONTACTS: Jim Giusti, DOE-SR, (803) 952-7684 August 4, 2016 james-r.giusti@srs.gov DOE-SR Exercises Option on Management and Operating Contract The Department of Energy (DOE), Savannah River Operations Office, will exercise an option to extend the term of the current management and operating contract with Savannah River Nuclear Solutions (SRNS) for an additional 22 months, from Oct. 1, 2016 to July 31, 2018. Execution of the contract extension ensures uninterrupted management and operation

  7. Media contact:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    contact: Release date: June 15, 2016 Peter Bengtson (509) 372-9031 media@wch-rcc.com Washington Closure Hanford reaches a new safety milestone - 7 million safe consecutive work hours as contract comes to an end September 30 RICHLAND, Wash. - Washington Closure Hanford (WCH) and its subcontractor employees have achieved a significant safety milestone by working 7 million hours without a lost workday injury; that is 3 ½ years since the last on the job injury that required an employee to spend

  8. Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us The TRACC Service Desk provides user support and assistance for issues related to TRACC resources. It is dedicated to helping users make the best use of TRACC resources. Support analysts will draw upon Argonne's expertise in computational and scientific domains to respond to a variety of user needs. The preferred method of requesting assistance from the TRACC Service Desk is through e-mail. Additionally, the TRACC Service Desk staff is available from 9:00 AM to 4:00 PM, Monday through

  9. Point contacts in encapsulated graphene

    SciTech Connect (OSTI)

    Handschin, Clevin; Fülöp, Bálint; Csonka, Szabolcs; Makk, Péter; Blanter, Sofya; Weiss, Markus; Schönenberger, Christian; Watanabe, Kenji; Taniguchi, Takashi

    2015-11-02

    We present a method to establish inner point contacts with dimensions as small as 100 nm on hexagonal boron nitride (hBN) encapsulated graphene heterostructures by pre-patterning the top-hBN in a separate step prior to dry-stacking. 2- and 4-terminal field effect measurements between different lead combinations are in qualitative agreement with an electrostatic model assuming point-like contacts. The measured contact resistances are 0.5–1.5 kΩ per contact, which is quite low for such small contacts. By applying a perpendicular magnetic field, an insulating behaviour in the quantum Hall regime was observed, as expected for inner contacts. The fabricated contacts are compatible with high mobility graphene structures and open up the field for the realization of several electron optical proposals.

  10. Direct-contact condensers for open-cycle OTEC applications: Model validation with fresh water experiments for structured packings

    SciTech Connect (OSTI)

    Bharathan, D.; Parsons, B.K.; Althof, J.A.

    1988-10-01

    The objective of the reported work was to develop analytical methods for evaluating the design and performance of advanced high-performance heat exchangers for use in open-cycle thermal energy conversion (OC-OTEC) systems. This report describes the progress made on validating a one-dimensional, steady-state analytical computer of fresh water experiments. The condenser model represents the state of the art in direct-contact heat exchange for condensation for OC-OTEC applications. This is expected to provide a basis for optimizing OC-OTEC plant configurations. Using the model, we examined two condenser geometries, a cocurrent and a countercurrent configuration. This report provides detailed validation results for important condenser parameters for cocurrent and countercurrent flows. Based on the comparisons and uncertainty overlap between the experimental data and predictions, the model is shown to predict critical condenser performance parameters with an uncertainty acceptable for general engineering design and performance evaluations. 33 refs., 69 figs., 38 tabs.

  11. Mechanism of corrosion of structural materials in contact with coal chars in coal gasifier atmospheres. Final report

    SciTech Connect (OSTI)

    Douglass, D.L.; Bhide, V.S.; Vineberg, E.

    1980-05-01

    Six alloys, 310 stainless steel, Hastelloy X, Inconel 671, Incoloy 800, Haynes 188, and FeCrAlY (GE1541 and MA956), were corroded in two chars at 1600 and 1800/sup 0/F. The chars, FMC and Husky, contained 2.7 and 0.9% sulfur, respectively. Various parameters were investigated, including char size, cover gas, char quantity, char replenishment period, gas composition, and the use of coatings. The corrosion process was strictly sulfidation when the char was replenished every 24 hours or less. The kinetics of reaction were nearly linear with time. The reaction resulted in thick external sulfide scales with extensive internal sulfidation in the substrate. The kinetics and reaction-product morphologies suggested that diffusion through the sulfide scale played a minor role and that an interfacial reaction was the rate-controlling step. A mathematical model was developed which supported this hypothesis. The reaction rates showed a relatively minor role on alloy composition, depending upon whether the alloys were tested singularly or in combination with others. Inconel 671, the best alloy in CGA environments, consistently corroded the most rapidly of the chromia-former types regardless of char sulfur content or of the temperature. Type 310 stainless was marginally better than Inconel 671. Incoloy 800 was intermediate, whereas, Haynes 188 and Hastelloy X exhibited the best corrosion resistance. The FeCrAlY alloys reacted very rapidly in the absence of preoxidation treatments. All alloys corroded in char at least 1000 times more rapidly than in the CGA (MPC-ITTRI) environment. None of the alloys will be acceptable for use in contact with char unless coatings are applied.

  12. 2005 buyer's guide

    SciTech Connect (OSTI)

    2005-11-01

    The guide gives contact details of about 90 companies in the USA specialising in a full range of equipment for use in the coal industry. The companies are listed by category. Equipment for coal preparation, materials handling, haulage, and transport, coal mining and fire and environmental protection is included.

  13. Load monitoring and compensation strategies for guided-waves based structural health monitoring using piezoelectric transducers

    SciTech Connect (OSTI)

    Roy, Surajit; Ladpli, Purim; Chang, Fu-Kuo

    2015-09-01

    Accurate interpretation of in-situ piezoelectric sensor signals is a challenging task. This article presents the development of a numerical compensation model based on physical insight to address the influence of structural loads on piezo-sensor signals. The model requires knowledge of in-situ strain and temperature distribution in a structure while acquiring sensor signals. The parameters of the numerical model are obtained using experiments on flat aluminum plate under uniaxial tensile loading. It is shown that the model parameters obtained experimentally can be used for different structures, and sensor layout. Furthermore, the combined effects of load and temperature on the piezo-sensor response are also investigated and it is observed that both of these factors have a coupled effect on the sensor signals. It is proposed to obtain compensation model parameters under a range of operating temperatures to address this coupling effect. An important outcome of this study is a new load monitoring concept using in-situ piezoelectric sensor signals to track changes in the load paths in a structure.

  14. Interdigitated Electrical Contacts for Low Electronic Mobility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Semiconductor Photovoltaic Devices - Energy Innovation Portal Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Interdigitated Electrical Contacts for Low Electronic Mobility Semiconductor Photovoltaic Devices Brookhaven National Laboratory Contact BNL About This Technology Technology Marketing Summary Structures useful for forming contacts to materials having low charge carrier mobility are described. Methods for their formation and use are also described. These

  15. Cost and schedule control systems criteria for contract performance measurement: work breakdown structure guide

    SciTech Connect (OSTI)

    Not Available

    1981-10-01

    This document provides guidance on development and use of the Work Breakdown Structure (WBS) technique. It describes the types of work breakdown structures, their preparation, and their effective use for organizing, planning, and controlling projects and contracts managed by the Department of Energy (DOE). The WBS technique is the preferred management tool for identifying and defining work. It provides an ordered framework for planning and controlling the work efforts to be performed in achieving technical objectives and for summarizing data, and the quantitative and narrative reports used for monitoring cost, schedule and technical performance. A WBS is developed for first identifying the major end items or systems to be produced, followed by their successive subdivision into increasingly detailed and manageable subsidiary products. Most of these subsidiary products are the direct result of work, while others are simply the aggregation of selected products into a logical set for management control purposes. In either case, detailed tasks are eventually identified for each product on the WBS at the level where work will be performed. As a minimum, these detailed tasks or work packages identify the product, describe the effort to be performed, identify the resources to be applied, specify the budget and schedule constraints, and the technical requirements, and identify the organizational element responsible for work accomplishment.

  16. Contacts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contacts Contacts For information about Solid-State Lighting, contact James Brodrick Lighting Program Manager Building Technologies Office U.S. Department of Energy 1000 Independence Avenue, SW Washington, DC 20585 1-202-586-5000

  17. Contacts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contacts Contacts Contact Information Below you will find contact information related to FORGE: FORGE For questions about current FORGE activity, please contact: FORGECommunications@ee.doe.gov For questions about the FORGE FOA, please contact: de-foa-0000890-forge@netl.doe.gov Geothermal Office U.S. Department of Energy Geothermal Technologies Office 1000 Independence Avenue, SW Washington, DC 20585 geothermal@ee.doe.gov 202-287-1818 FORGE Team Principal Investigators Idaho National Laboratory -

  18. Enhancement of maximum attainable ion energy in the radiation pressure acceleration regime using a guiding structure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Pegoraro, F.; Leemans, W. P.

    2015-03-13

    Radiation Pressure Acceleration is a highly efficient mechanism of laser driven ion acceleration, with the laser energy almost totally transferrable to the ions in the relativistic regime. There is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. In the case of a tightly focused laser pulses, which are utilized to get the highest intensity, another factor limiting the maximum ion energy comes into play, the transverse expansion of the target. Transverse expansion makes the target transparent for radiation, thus reducing the effectiveness of acceleration. Utilization of an external guidingmore » structure for the accelerating laser pulse may provide a way of compensating for the group velocity and transverse expansion effects.« less

  19. US ITER | Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organizational Charts ABOUT US ITER | WHY FUSION? | DOING BUSINESS WITH US ITER | MEDIA CORNER | JOBS | CONTACT US Visitor Information Key Contact Staff Directory Organizational ...

  20. Transmission - Contact Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact-Information-Transmission Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects &...

  1. Transmission Contact Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact-Information Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects & Initiatives Finance &...

  2. Contact Us - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford Site Wide Programs Health & Safety Exposition Contact Us About Us Booth Awards Special Events Exhibitor Information What is EXPO Electronic Registration Form Contact Us...

  3. A Guide for DOE Employees Working with Indian Tribal Nations (2000)

    Broader source: Energy.gov [DOE]

    The purpose of this guide is to help DOE employees and contractors initiate contact with tribes and build effective relationships.

  4. A Guide for DOE Employees Working with Indian Tribal Nations (DOE, 2000)

    Broader source: Energy.gov [DOE]

    The purpose of this guide is to help DOE employees and contractors initiate contact with tribes and build effective relationships.

  5. Pre-Oxidized and Nitrided Stainless Steel Foil for Proton Exchange Membrane Fuel Cell Bipolar Plates: Part 1 Corrosion, Interfacial Contact Resistance, and Surface Structure

    SciTech Connect (OSTI)

    Brady, Michael P; Wang, Heli; Turner, John; Meyer III, Harry M; More, Karren Leslie; Tortorelli, Peter F; McCarthy, Brian D

    2010-01-01

    Thermal (gas) nitridation of stainless steels can yield low interfacial contact resistance (ICR), electrically-conductive and corrosion-resistant nitride containing surfaces (Cr2N, CrN, TiN, V2N, VN, etc) of interest for fuel cells, batteries, and sensors. This paper presents the results of scale up studies to determine the feasibility of extending the nitridation approach to thin 0.1 mm stainless steel alloy foils for proton exchange membrane fuel cell (PEMFC) bipolar plates. A major emphasis was placed on selection of alloy foil composition and nitidation conditions potentially capable of meeting the stringent cost goals for automotive PEMFC applications. Developmental Fe-20Cr-4V alloy and type 2205 stainless steel foils were treated by pre-oxidation and nitridation to form low-ICR, corrosion-resistant surfaces. Promising behavior was observed under simulated aggressive anode- and cathode- side bipolar plate conditions for both materials. Variation in ICR values were observed for treated 2205 foil, with lower (better) values generally observed for the treated Fe-20Cr-4V. This behavior was linked to the nature of the pre-oxidized and nitrided surface structure, which contained through surface layer thickness V-nitride particles in the case of Fe-20Cr-4V but near continuous chromia in the case of 2205 stainless steel. The implications of these findings for stamped bipolar plate foils are discussed.

  6. Structure-Guided, Single-Point Modifications in the Phosphinic Dipeptide Structure Yield Highly Potent and Selective Inhibitors of Neutral Aminopeptidases

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vassiliou, Stamatia; Węglarz-Tomczak, Ewelina; Berlicki, Łukasz; Pawełczak, Małgorzata; Nocek, Bogusław; Mulligan, Rory; Joachimiak, Andrzej; Mucha, Artur

    2014-10-09

    Seven crystal structures of alanyl aminopeptidase from Neisseria meningitides (the etiological agent of meningitis, NmAPN) complexed with organophosphorus compounds were resolved to determine the optimal inhibitor–enzyme interactions. The enantiomeric phosphonic acid analogs of Leu and hPhe, which correspond to the P1 amino acid residues of well-processed substrates, were used to assess the impact of the absolute configuration and the stereospecific hydrogen bond network formed between the aminophosphonate polar head and the active site residues on the binding affinity. For the hPhe analog, an imperfect stereochemical complementarity could be overcome by incorporating an appropriate P1 side chain. The constitution of P1'-extendedmore » structures was rationally designed and the lead, phosphinic dipeptide hPhePψ[CH2]Phe, was modified in a single position. Introducing a heteroatom/heteroatom-based fragment to either the P1 or P1' residue required new synthetic pathways. The compounds in the refined structure were low nanomolar and subnanomolar inhibitors of N. meningitides, porcine and human APNs, and the reference leucine aminopeptidase (LAP). The unnatural phosphinic dipeptide analogs exhibited a high affinity for monozinc APNs associated with a reasonable selectivity versus dizinc LAP. In conclusion, another set of crystal structures containing the NmAPN dipeptide ligand were used to verify and to confirm the predicted binding modes; furthermore, novel contacts, which were promising for inhibitor development, were identified, including a π–π stacking interaction between a pyridine ring and Tyr372.« less

  7. Chemical Management Contacts

    Broader source: Energy.gov [DOE]

    Contacts for additional information on Chemical Management and brief description on Energy Facility Contractors Group

  8. Microsoft Word - Appendix B - Example Contact Record.docx

    Office of Legacy Management (LM)

    Example Contact Record This page intentionally left blank U.S. Department of Energy Rocky Flats Site Operations Guide July 2013 Doc. No. S03037-6.0 Page B-1 Rocky Flats Site...

  9. Contact ORP - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact ORP Office of River Protection About ORP ORP Projects & Facilities Newsroom Contracts & Procurements Contact ORP Contact ORP Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size Do you have a question? Contact the Office of River Protection DOE Logo Street Address: DOE ORP 2440 Stevens Center Place, H660 Richland, WA, 99354 Mailing Address: DOE ORP PO Box 450 Richland, WA 99352 Phone Contact: Hanford Site Operator 509-376-7411 ORP Office of

  10. Presto 4.16 users guide.

    SciTech Connect (OSTI)

    Not Available

    2010-05-01

    Presto is a three-dimensional transient dynamics code with a versatile element library, nonlinear material models, large deformation capabilities, and contact. It is built on the SIERRA Framework [1, 2]. SIERRA provides a data management framework in a parallel computing environment that allows the addition of capabilities in a modular fashion. Contact capabilities are parallel and scalable. The Presto 4.16 User's Guide provides information about the functionality in Presto and the command structure required to access this functionality in a user input file. This document is divided into chapters based primarily on functionality. For example, the command structure related to the use of various element types is grouped in one chapter; descriptions of material models are grouped in another chapter. The input and usage of Presto is similar to that of the code Adagio [3]. Adagio is a three-dimensional quasi-static code with a versatile element library, nonlinear material models, large deformation capabilities, and contact. Adagio, like Presto, is built on the SIERRA Framework [1]. Contact capabilities for Adagio are also parallel and scalable. A significant feature of Adagio is that it offers a multilevel, nonlinear iterative solver. Because of the similarities in input and usage between Presto and Adagio, the user's guides for the two codes are structured in the same manner and share common material. (Once you have mastered the input structure for one code, it will be easy to master the syntax structure for the other code.) To maintain the commonality between the two user's guides, we have used a variety of techniques. For example, references to Adagio may be found in the Presto user's guide and vice versa, and the chapter order across the two guides is the same. On the other hand, each of the two user's guides is expressly tailored to the features of the specific code and documents the particular functionality for that code. For example, though both Presto and Adagio

  11. Presto 4.14 users guide.

    SciTech Connect (OSTI)

    Spencer, Benjamin Whiting

    2009-10-01

    Presto is a three-dimensional transient dynamics code with a versatile element library, nonlinear material models, large deformation capabilities, and contact. It is built on the SIERRA Framework [1, 2]. SIERRA provides a data management framework in a parallel computing environment that allows the addition of capabilities in a modular fashion. Contact capabilities are parallel and scalable. The Presto 4.14 User's Guide provides information about the functionality in Presto and the command structure required to access this functionality in a user input file. This document is divided into chapters based primarily on functionality. For example, the command structure related to the use of various element types is grouped in one chapter; descriptions of material models are grouped in another chapter. The input and usage of Presto is similar to that of the code Adagio [3]. Adagio is a three-dimensional quasi-static code with a versatile element library, nonlinear material models, large deformation capabilities, and contact. Adagio, like Presto, is built on the SIERRA Framework [1]. Contact capabilities for Adagio are also parallel and scalable. A significant feature of Adagio is that it offers a multilevel, nonlinear iterative solver. Because of the similarities in input and usage between Presto and Adagio, the user's guides for the two codes are structured in the same manner and share common material. (Once you have mastered the input structure for one code, it will be easy to master the syntax structure for the other code.) To maintain the commonality between the two user's guides, we have used a variety of techniques. For example, references to Adagio may be found in the Presto user's guide and vice versa, and the chapter order across the two guides is the same. On the other hand, each of the two user's guides is expressly tailored to the features of the specific code and documents the particular functionality for that code. For example, though both Presto and Adagio

  12. RACORO Data Guide

    SciTech Connect (OSTI)

    Vogelmann, A

    2010-10-12

    This document provides an overview to the five-month RACORO Campaign. There are many details in such an extensive program that this document cannot capture; therefore, it should be thought of as a guide for acquainting yourself with the program and you are encouraged to contact the members involved. In particular, users of the data are strongly urged to contact instrument principal investigators (PIs) about use of the data. Further, it is highly recommended that studies using the data be done in collaboration with the instrument PIs, since they are in the best position to provide insights and or caveats associated with the data that should be considered.

  13. Advanced Energy Design Guides Slash Energy Use in Schools and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Note: The AEDGs were written in partnership with ASHRAE, the American Institute of ... The guides can be downloaded for free at www.ashrae.orgaedg. Technical Contact: Eric ...

  14. Contact Us | DOE Patents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Contact Us If you have a question or comment about DOEpatents, check to see if it is on our list of frequently asked questions. If your question isn't answered there, you may contact us using the information below. Thanks in advance. Your help is appreciated. Contact us by email Email doepatentscomments@osti.gov NOTE: Email messages are answered Monday - Friday, 9 a.m. - 4 p.m. We do our best to respond within 48 hours. Contact us by phone Phone Phone (865) 576-1333 Contact us in

  15. Adagio 4.14 users guide.

    SciTech Connect (OSTI)

    Spencer, Benjamin Whiting

    2009-10-01

    This document is a user's guide for the code Adagio. Adagio is a three-dimensional, implicit solid mechanics code with a versatile element library, nonlinear material models, and capabilities for modeling large deformation and contact. Adagio is a parallel code, and its nonlinear solver and contact capabilities enable scalable solutions of large problems. It is built on the SIERRA Framework [1, 2]. SIERRA provides a data management framework in a parallel computing environment that allows the addition of capabilities in a modular fashion. The Adagio 4.14 User's Guide provides information about the functionality in Adagio and the command structure required to access this functionality in a user input file. This document is divided into chapters based primarily on functionality. For example, the command structure related to the use of various element types is grouped in one chapter; descriptions of material models are grouped in another chapter. The input and usage of Adagio is similar to that of the code Presto [3]. Presto, like Adagio, is a solid mechanics code built on the SIERRA Framework. The primary difference between the two codes is that Presto uses explicit time integration for transient dynamics analysis, whereas Adagio is an implicit code. Because of the similarities in input and usage between Adagio and Presto, the user's guides for the two codes are structured in the same manner and share common material. (Once you have mastered the input structure for one code, it will be easy to master the syntax structure for the other code.) To maintain the commonality between the two user's guides, we have used a variety of techniques. For example, references to Presto may be found in the Adagio user's guide and vice versa, and the chapter order across the two guides is the same. On the other hand, each of the two user's guides is expressly tailored to the features of the specific code and documents the particular functionality for that code. For example, though

  16. Contact Us | Geothermal

    Office of Scientific and Technical Information (OSTI)

    Contact us by phone Phone Phone 865-241-6435 Contact us in writing Mail U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge,TN 37831

  17. US ITER | Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    US Key Contact Key Contact Mark Uhran Communications Manager 865-574-8381 ITER International Department of Energy Office of Science Oak Ridge National Laboratory Princeton Plasma Physics Laboratory Savannah River National Laboratory Last updated: 05/21/2013

  18. NETL Contact Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NETL Contact Information Contact U.S. Department of Energy National Energy Technology Laboratory PITTSBURGH, PA 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940...

  19. ARM - SGP Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contacts SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility...

  20. Acquisition Guide

    Energy Savers [EERE]

    _____________________________________________________________ __________________________________________________Chapter 15.4-4 (December 2010) GENERAL GUIDE FOR TECHNICAL ANALYSIS OF COST PROPOSALS FOR ACQUISITION CONTRACTS Acquisition Guide _____________________________________________________________ __________________________________________________Chapter 15.4-4 (November 2010) TABLE OF CONTENT CHAPTER 1 - INTRODUCTION KEY CONCEPTS

  1. ARM - Ingest Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contacts Ingest Ingest Workflow Graphic Supporting Workflow Documentation Supporting Tools and Forms Process Configuration Manager (PCM) Metadata Management Tool (MMT) ARM Data Integrator (ADI) Ingest Readiness Form Associated Status Reports Contacts Engineering Processes Engineering Home Workflow Graphic Engineering Workflow Document Tools for Workflow ECR ECO BCR Ingests Value-Added Products Reprocessing Instruments Data System Elements Field Campaign Startup Ingest Contacts Brian Ermold

  2. Guide Title

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE G XXX.X-X xx-xx-20XX Guide Title [This Guide describes acceptable, but not mandatory means for complying with requirements. Guides are not requirements documents and are not to be construed as requirements in any audit or appraisal for compliance with associated rule or directives.] U.S. Department of Energy Office of Primary Interest FOREWORD (optional) THE FOREWORD SHOULD DESCRIBE THE DOE REQUIREMENTS, DIRECTIVES, OR RULES THAT MAY BE SATISFIED BY IMPLEMENTING THIS GUIDE. CONTENTS

  3. Crofutt's Transcontinental Tourist's Guide | Open Energy Information

    Open Energy Info (EERE)

    York, NY: () . 153p. Retrieved from "http:en.openei.orgwindex.php?titleCrofutt%27sTranscontinentalTourist%27sGuide&oldid726204" Feedback Contact needs updating...

  4. Neutron guide

    DOE Patents [OSTI]

    Greene, Geoffrey L.

    1999-01-01

    A neutron guide in which lengths of cylindrical glass tubing have rectangular glass plates properly dimensioned to allow insertion into the cylindrical glass tubing so that a sealed geometrically precise polygonal cross-section is formed in the cylindrical glass tubing. The neutron guide provides easier alignment between adjacent sections than do the neutron guides of the prior art.

  5. Contact Us - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us Contact Us Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size Contact Us Do you have a question? Contact Hanford DOE Logo Street Address: Federal Bldg: 825 Jadwin Ave., Suite 1 Richland, WA 99352 Map Mailing Address: DOE RL PO Box 550 Richland, WA 99352 Street Address: DOE ORP 2440 Stevens Center Place, H660 Richland, WA, 99354 Mailing Address: DOE ORP PO Box 450

  6. Presto 2.9 user's guide.

    SciTech Connect (OSTI)

    Jung, Joseph

    2008-05-01

    Presto is a Lagrangian, three-dimensional explicit, transient dynamics code that is used to analyze solids subjected to large, suddenly applied loads. The code is designed for a parallel computing environment and for problems with large deformations, nonlinear material behavior, and contact. Presto also has a versatile element library that incorporates both continuum elements and structural elements. This user's guide describes the input for Presto that gives users access to all the current functionality in the code. The environment in which Presto is built allows it to be coupled with other engineering analysis codes. Using a concept called scope, the input structure reflects the fact that Presto can be used in a coupled environment. The user's guide describes how scope is implemented from the outermost to the innermost scopes. Within a given scope, the descriptions of input commands are grouped based on functionality of the code. For example, all material input command lines are described in a chapter of the user's guide for all the material models that can be used in Presto.

  7. Presto 4.18 user's guide.

    SciTech Connect (OSTI)

    Spencer, Benjamin Whiting

    2010-09-01

    Presto is a Lagrangian, three-dimensional explicit, transient dynamics code that is used to analyze solids subjected to large, suddenly applied loads. The code is designed for a parallel computing environment and for problems with large deformations, nonlinear material behavior, and contact. Presto also has a versatile element library that incorporates both continuum elements and structural elements. This user's guide describes the input for Presto that gives users access to all the current functionality in the code. The environment in which Presto is built allows it to be coupled with other engineering analysis codes. Using a concept called scope, the input structure reflects the fact that Presto can be used in a coupled environment. The user's guide describes how scope is implemented from the outermost to the innermost scopes. Within a given scope, the descriptions of input commands are grouped based on functionality of the code. For example, all material input command lines are described in a chapter of the user's guide for all the material models that can be used in Presto.

  8. Contact Us | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Us » Contact Us Contact Us Student and Recent Graduate Contacts List of recruiter liaisons for student and other employment opportunities. Veteran's Contacts Lists veteran employment contacts by location and DOE organization. Disability Employment POCs Lists disability employment contact information by location. Reasonable Accommodation POCs Lists reasonable accommodation contacts by location.

  9. Adagio 4.16 users guide.

    SciTech Connect (OSTI)

    Not Available

    2010-05-01

    Adagio is a three-dimensional, implicit solid mechanics code with a versatile element library, nonlinear material models, and capabilities for modeling large deformation and contact. Adagio is a parallel code, and its nonlinear solver and contact capabilities enable scalable solutions of large problems. It is built on the SIERRA Framework [1, 2]. SIERRA provides a data management framework in a parallel computing environment that allows the addition of capabilities in a modular fashion. The Adagio 4.16 User's Guide provides information about the functionality in Adagio and the command structure required to access this functionality in a user input file. This document is divided into chapters based primarily on functionality. For example, the command structure related to the use of various element types is grouped in one chapter; descriptions of material models are grouped in another chapter. The input and usage of Adagio is similar to that of the code Presto [3]. Presto, like Adagio, is a solid mechanics code built on the SIERRA Framework. The primary difference between the two codes is that Presto uses explicit time integration for transient dynamics analysis, whereas Adagio is an implicit code. Because of the similarities in input and usage between Adagio and Presto, the user's guides for the two codes are structured in the same manner and share common material. (Once you have mastered the input structure for one code, it will be easy to master the syntax structure for the other code.) To maintain the commonality between the two user's guides, we have used a variety of techniques. For example, references to Presto may be found in the Adagio user's guide and vice versa, and the chapter order across the two guides is the same. On the other hand, each of the two user's guides is expressly tailored to the features of the specific code and documents the particular functionality for that code. For example, though both Presto and Adagio have contact functionality, the

  10. Points of Contact - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Points of Contact About Us Hanford Site Solid Waste Acceptance Program What's New Acceptance Criteria Acceptance Process Tools Points of Contact Points of Contact Email Email Page...

  11. ARM - ENA Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AtlanticENA Contacts ENA Related Links Facilities and Instruments ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site ENA Fact Sheet (PDF, 512KB) Images Information for Guest Scientists Contacts ENA Contacts Site Manager - Heath Powers, Los Alamos National Laboratory Operations Manager - Paul Ortega, Los Alamos National Laboratory Eastern North Atlantic Office Mailing Address: Los Alamos National Laboratory PO Box 1663, MS J577 Los Alamos, NM 87545 U.S.A. Shipping

  12. ARM - NSA Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contacts NSA Related Links Virtual Tour Facilities and Instruments Barrow Atqasuk Oliktok Point (AMF3) ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site NSA Fact Sheet Images Information for Guest Scientists Contacts NSA Contacts Site Manager - Mark Ivey, Sandia National Laboratories Barrow Site Manager - Dan Lucero, Sandia National Laboratories Barrow Site Facilities Manager - Walter Brower, UIC Science, LLC, Cell: 907.878.4780 Rapid Response Team Manager - Martin

  13. Contact - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Website Manager Bruce Hyman Email: hyman@comp.tamu.edu Mailing Address Cyclotron Institute Texas A&M University 3366 TAMU College Station, TX, 77843-3366 Campus Location Luedecke Building / Building #434 Campus Map Google Map Phone Number 979-845-1411 Fax Number 979-845-1899 Directory Graduate Faculty Full Directory For Information about Graduate Studies Contact: Professor Che Ming Ko Email: ko@comp.tamu.edu For Potential Use of Our Facility Contact: Professor Sherry J. Yennello

  14. Contact Us - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ©bobpaz.com0083.JPG Contact Us Connect With JCAP Contact Us Partnerships For Researchers Partnerships For Industry Visit JCAP Connect with JCAP Contact Us Partnerships For Researchers Partnerships For Industry Visit JCAP jcap @ Caltech Join Center for Artificial Photosynthesis California Institute of Technology Jorgensen Laboratory, Mail Code 132-80 1200 East California Boulevard Pasadena, CA 91125 Phone: (626) 395-1570 JCAP @ lbnl Joint Center for Artificial Photosynthesis Lawrence Berkley

  15. Media Contacts - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Media Contacts Newsroom Press Releases Media Contacts Photo Gallery The Hanford Story Hanford Blog Hanford YouTube Channel Media Contacts Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size Richland Operations Office Office of River Protection River Corridor cleanup Reactor/facility cleanout and demolition Solid waste burial ground cleanup Groundwater remediation Central Plateau cleanup Waste Treatment (Vitrification) Plant construction Underground tank waste storage

  16. Contacts / Hours - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contacts / Hours Hanford Meteorological Station Real Time Met Data from Around the Site Current and Past 48 Hours HMS Observations Daily HMS Extremes in Met Data Met and Climate Data Summary Products Contacts / Hours Current NWS Forecast for the Tri-Cities NWS Windchill Chart Contacts / Hours Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size Note: Using the telephone is the ONLY way to get up to the minute information. On duty Forecaster (509) 373-2716 Current

  17. Contacts | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contacts for the Advanced Manufacturing Office Contacts for the Advanced Manufacturing Office Welcome to the Advanced Manufacturing Office (AMO). Our address, email, and phone number are provided below. U.S. Department of Energy - Advanced Manufacturing Office (formerly Industrial Technologies Program) Room 5F-065, MS EE-5A 1000 Independence Ave, SW Washington, DC 20585 Phone: (202) 586-9488 Nearest Metro stop: Smithsonian (blue/orange line) Get directions Website Contact: Send us your comments,

  18. 2009 coal preparation buyer's guide

    SciTech Connect (OSTI)

    2009-04-15

    The guide contains brief descriptions and contact details of 926 US companies supplying coal preparation equipment who exhibited at the 26th annual Coal Prep exhibition and conference, 28-30 April - May 2009, in Lexington, KY, USA. An index of categories of equipment available from the manufacturers is included.

  19. Wind Energy Information Guide 2004

    SciTech Connect (OSTI)

    anon.

    2004-01-01

    The guide provides a list of contact information and Web site addresses for resources that provide a range of general and technical information about wind energy, including general information, wind and renewable energy, university programs and research institutes, international wind energy associations and others.

  20. ARM - Contact Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TWP-ICE Proposal Abstract Detailed Experiment Description Science Plan (pdf, 1M) Operations Plan (pdf, 321K) Maps Contact Info Related Links Daily Report Report Archives Press ...

  1. EWA Contact List

    Energy Savers [EERE]

    CompanyProduct Description Contract Number Contract Holders (contact directly) Small Business Product POCs DOE POC Adobe Adobe's Government Cumulative Licenses Program (CLP) and ...

  2. ARM - AMF Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 AMF Contacts Science AMF1 Site Scientist - Mark Miller, Rutgers...

  3. ARM - TWP Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contacts TWP Related Links Facilities and Instruments Manus Island Nauru Island Darwin, AUS ES&H Guidance Statement Operations Science Field Campaigns Year of Tropical Convection...

  4. Optical contact micrometer

    DOE Patents [OSTI]

    Jacobson, Steven D.

    2014-08-19

    Certain examples provide optical contact micrometers and methods of use. An example optical contact micrometer includes a pair of opposable lenses to receive an object and immobilize the object in a position. The example optical contact micrometer includes a pair of opposable mirrors positioned with respect to the pair of lenses to facilitate viewing of the object through the lenses. The example optical contact micrometer includes a microscope to facilitate viewing of the object through the lenses via the mirrors; and an interferometer to obtain one or more measurements of the object.

  5. CAES Contact Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    View all events >> x CAES Home Home About Us Contact Information Our CAES Building FAQs Affiliated Centers Research Core Capabilities Laboratories and Equipment Technology Transfer...

  6. Subject Guides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Subject Guides Choose your subject area to find relevant resources. Business Chemistry Computer Science Data Management Earth & Environmental Science Engineering Global Security ...

  7. EERE Program Management Quick Reference Guide | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quick Reference Guide EERE Program Management Quick Reference Guide Provides information on the EERE program management structure, program and project management roles...

  8. Acquisition Guide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Acquisition Guide ------------------------ Chapter 71.1 (Dec 2014) HEADQUARTERS BUSINESS CLEARANCE PROCESS Guiding Principles  Timely acquisition planning is critical  Effective oversight control systems are essential to ensuring the high quality/integrity of procurement transactions  Collaboration and cooperation are required for timely, effective procurement processes Overview This chapter provides guidance regarding the policies and procedures governing the Field Assistance and

  9. Seismic Safety Guide

    SciTech Connect (OSTI)

    Eagling, D.G.

    1983-09-01

    This guide provides managers with practical guidelines for administering a comprehensive earthquake safety program. The Guide is comprehensive with respect to earthquakes in that it covers the most important aspects of natural hazards, site planning, evaluation and rehabilitation of existing buildings, design of new facilities, operational safety, emergency planning, special considerations related to shielding blocks, non-structural elements, lifelines, fire protection and emergency facilities. Management of risk and liabilities is also covered. Nuclear facilities per se are not dealt with specifically. The principles covered also apply generally to nuclear facilities but the design and construction of such structures are subject to special regulations and legal controls.

  10. Contact Us - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    contact Contact Us For further information concerning the SRS Community Reuse Organization, contact: Mailing Address: SRSCRO P. O. Box 696 Aiken, SC 29802 Physical Address: SRSCRO 2276 Jefferson Davis Hwy, Room 230 Graniteville, SC 29829 FAX (803) 593-4296 Staff: Rick McLeod, Executive Director; P: 803-508-7402; Email: rick.mcleod@srscro.org Mindy Mets, NWI Program Manager; P: 803-508-7403; Email: mindy.mets@srscro.org Amy Merry, Business Manager; P: 803-508-7401; Email: amy.merry@srscro.org Kim

  11. Alternative Fuels Data Center: Contacts

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    About Printable Version Share this resource Send a link to Alternative Fuels Data Center: Contacts to someone by E-mail Share Alternative Fuels Data Center: Contacts on Facebook Tweet about Alternative Fuels Data Center: Contacts on Twitter Bookmark Alternative Fuels Data Center: Contacts on Google Bookmark Alternative Fuels Data Center: Contacts on Delicious Rank Alternative Fuels Data Center: Contacts on Digg Find More places to share Alternative Fuels Data Center: Contacts on AddThis.com...

  12. National Laboratory Contacts

    Broader source: Energy.gov [DOE]

    The Geothermal Technologies Office works closely with several DOE national laboratories in managing and contributing to research and development projects. Below are the primary contacts at these...

  13. Contacts | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (on-call pager) From on-site phone: 2-0101 General Inquiries & Media Contact Rick Fenner fenner@aps.anl.gov 630-252-5280 Important Numbers Off-hour access: 630-252-0101 Safety...

  14. Clean Cities Program Contacts

    SciTech Connect (OSTI)

    2015-07-31

    Contact information for the U.S. Department of Energy's Clean Cities program staff and for the coordinators of the nearly 100 local Clean Cities coalitions across the country.

  15. SRNL LDRD - Program Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Contacts Dr. Elizabeth Hoffman LDRD Program Manager Elizabeth.Hoffman@srnl.doe.gov 803.725.5475 Nixon J. Peralta Program Manager, CEM Office of Laboratory Oversight U.S....

  16. Contacts | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    information to contact the State and Local Solution Center by mail or email: U.S. Department of Energy State and Local Solution Center Mail Stop EE-5W 1000 Independence Ave., SW...

  17. ELECTRIC CONTACT MEANS

    DOE Patents [OSTI]

    Grear, J.W. Jr.

    1959-03-10

    A switch adapted to maintain electrical connections under conditions of vibration or acceleration is described. According to the invention, thc switch includes a rotatable arm carrying a conductive bar arranged to close against two contacts spaced in the same plane. The firm and continuous engagement of the conductive bar with the contacts is acheived by utilizeing a spring located betwenn the vbar and athe a rem frzme and slidable mounting the bar in channel between two arms suspendef from the arm frame.

  18. Contacts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contacts Contacts U.S. Department of Energy SunShot Initiative Phone: 202-287-1862 Email: solar@ee.doe.gov Mailing Address: 1000 Independence Avenue, SW Washington, DC, 20585 Additional information about visiting our offices. EPA Green Power Partnership Phone: 202-343-9859 Email: James Critchfield, GPP Program Manager critchfield.james@epa.gov Mailing address: U.S. Environmental Protection Agency 1200 Pennsylvania Ave., NW Mail Code 6202J Washington, DC 20460

  19. Fermilab | Contact Fermilab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    feature photo feature photo feature photo feature photo feature photo Contact Fermilab Navbar Toggle About Quick Info Science History Leadership and Organization Leadership Organizational chart Committees and Councils Photo and Video Gallery Diversity Education Safety Sustainability and Environment Contact Related Links DOE FRA UChicago URA Newsroom Spotlight Press releases Fact sheets and brochures symmetry Interactions.org Photo and video archive Resources for ... Employees Researchers,

  20. HERO contact: Deb Kasparek,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Board Holland America's "Westerdam" in Seattle to explore Southeast Alaska in style! , For more information - HERO contact: Deb Kasparek, 376-8840, Debra_S_Kasparek@rl.gov To book your cabin contact: Jim Carey, Cruise Holidays, 628-9555, jcarey@cruiseholidays.com Price Includes*: * Stateroom * Meals * Entertainment * Room Service * Theatre Shows *Not included: Gratuities & taxes/fees/port expenses There are a few cabins left! Prices are per person (double occupancy) Call Jim Carey

  1. Jefferson Lab Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Privacy and Security Notice Skip over navigation Search the JLab Site Search Please upgrade your browser. This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? Jefferson Lab Navigation Home Search News Insight print version Jefferson Lab 12000 Jefferson Avenue Newport News, VA 23606 Phone: (757) 269-7100 Fax: (757) 269-7363 Contact Jefferson Lab Jefferson Lab's service departments and divisional

  2. Contacts & Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contacts & Resources Contacts & Resources Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 envoutreach@lanl.gov Public Information Los Alamos National Laboratory environmental website Public meetings and tours Mailing and emailing lists Public notification in local newspapers Events calendar Intellus database Information repositories Resources Illustrated Long-Term Strategy for Environmental Stewardship and Sustainability

  3. CAMD contact person

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Craig Stevens is the CAMD contact for answering questions about getting started on new projects or proposals, and/or how to go about getting facility access, etc. Contact Info: 225-578-4603 Tel. 225-578-6954 Fax Email: evstev@lsu.edu Or call CAMD's Main Office at 225-578-8887. Registration & Test Application for Facility Access & Radiation Badge

  4. Permitting Guides

    Broader source: Energy.gov [DOE]

    Standardized procedures for permitting hydrogen technologies and systems are not yet well established. As a first step, DOE sponsored the development of a new guide designed to help regulators sort...

  5. Password Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-11-23

    This Department of Energy (DOE) Guide provides detailed guidance to supplement DOE N 205.3, Password Generation, Protection, and Use. No cancellations. Canceled by DOE N 205.18

  6. User Guide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guide User Guide Print 1. Register with the ALS Create an account on ALSHub-the ALS user portal. 2. Apply for Beam Time 3. Establish a User Agreement 4. Comply with Experiment Safety Requirements Upon receiving beam time, complete an Experiment Safety Sheet. 5. Get Access to Work Onsite 6. Complete Online Safety Training 7. Utilize Available Resources 8. Complete the User Satisfaction Survey 9. Report Publications, Awards, Talks, Acknowledging Work at ALS

  7. Structural Determinants of Nitroxide Motion in Spin-labeled Proteins: Tertiary Contact and Solvent-inaccessible Sties in Helix G of T4 Lysozyme

    SciTech Connect (OSTI)

    Guo,Z.; Cascio, D.; Hideg, K.; Kalai, T.; Hubbell, W.

    2007-01-01

    A nitroxide side chain (R1) has been substituted at single sites along a helix-turn-helix motif in T4 lysozyme (residues 114-135). Together with previously published data, the new sites reported complete a continuous scan through the motif. Mutants with R1 at sites 115 and 118 were selected for crystallographic analysis to identify the structural origins of the corresponding two-component EPR spectra. At 115, R1 is shown to occupy two rotamers in the room temperature crystal structure, one of which has not been previously reported. The two components in the EPR spectrum apparently arise from differential interactions of the two rotamers with the surrounding structure, the most important of which is a hydrophobic interaction of the nitroxide ring. Interestingly, the crystal structure at 100 K reveals a single rotamer, emphasizing the possibility of rotamer selection in low-temperature crystal structures. Residue 118 is at a solvent-inaccessible site in the protein core, and the structure of 118R1, the first reported for the R1 side chain at a buried site, reveals how the side chain is accommodated in an overpacked core.

  8. SAND contact in DYNA3D

    SciTech Connect (OSTI)

    Whirley, R.G.; Engelmann, B.E.

    1992-08-25

    This paper describes some recent developments in adaptive contact algorithms for the transient analysis of penetration and material failure in DYNA3D. A failure criterion is defined for volumes of potentially failing material on each side of a contact surface. As material within an element fails, the element is deleted from the calculation and the contact surface is adaptively redefined to include the newly exposed outer material boundary. This algorithm admits arbitrary combinations of shell and solid elements to allow modeling of composite or honeycomb structures. The algorithms and their efficiency are illustrated with several DYNA3D simulations and results are compared with experimental data.

  9. DOE Media Contact: Jim Giusti, ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Media Contact: Jim Giusti, (803) 952-7684, james-r.giusti@srs.gov EPA Media Contact: James Pinkney, (404) 562-9183, pinkney.james@epa.gov SCDHEC Media Contact: Jim Beasley, (803)...

  10. Contact Us | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    To contact us by mail: Office of the Chief Human Capital Officer U.S. Department of ... HR Contacts by Sub Agency Servicing Area HC Contacts by Functional Area Human Resource ...

  11. Contact Us | Department of Energy

    Office of Environmental Management (EM)

    Contact Us Contact Us Contact the IG Hotline BY INTERNET Web Form BY E-MAIL ighotline@hq.doe.gov CORRESPONDENCE U.S. Department of Energy Office of Inspector General ATTN: IG ...

  12. Low-loss bloch wave guiding in open structures and highly compact efficient waveguide-crossing arrays

    DOE Patents [OSTI]

    Popovic, Milos

    2011-03-08

    Low-loss waveguide structures may comprise a multimode waveguide supporting a periodic light intensity pattern, and attachments disposed at the waveguide adjacent low-intensity regions of the light intensity pattern.

  13. Contact Us | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contact Us Contact Us Contact the Office of the General Counsel The Office of the General Counsel welcomes your comments and questions. A complete listing of contact information for attorneys and staff in the Headquarters Offices of the General Counsel is listed below. For Field Counsel contact information, please click here. Index of Contacts for Headquarters Offices Office of the General Counsel (GC-1) Office of the Deputy General Counsel for Litigation, Regulation and Enforcement (GC-30)

  14. Contact Us | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contact Us Contact Us Christopher Clark Deschene, Director Main phone: (202) 586-1272 Email: IndianEnergy@hq.doe.gov

  15. Contact EPSCI | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact EPSCI The EPSCI program is directed by Dr. David P. Baldwin. Please contact him with any questions regarding the EPSCI program. David P. Baldwin, Director Phone: (515)...

  16. Safety Staff Contact Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Staff Contact Information Print Contact Extension Location CONTROL ROOM (24/7) 4969 80-140 Floor Operations Floor Operators 7464 (RING) 80-159 Building Manager This e-mail address is being protected from spambots. You need JavaScript enabled to view it 7358 80-151 Building Emergency Team (BET) This e-mail address is being protected from spambots. You need JavaScript enabled to view it (Leader) This e-mail address is being protected from spambots. You need JavaScript enabled to view it

  17. Safety Staff Contact Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Staff Contact Information Print Contact Extension Location CONTROL ROOM (24/7) 4969 80-140 Floor Operations Floor Operators 7464 (RING) 80-159 Building Manager This e-mail address is being protected from spambots. You need JavaScript enabled to view it 7358 80-151 Building Emergency Team (BET) This e-mail address is being protected from spambots. You need JavaScript enabled to view it (Leader) This e-mail address is being protected from spambots. You need JavaScript enabled to view it

  18. Contact Us - Pantex Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Contact Us Page Content Pantex Phone Numbers Main Phone Number (806) 477-3000 Press 3 for personnel directory. Toll-Free 1 (877) 843-3455 Accounts Payable (806) 477-6930 Benefits (806) 477-5655 Employment Verification (806) 477-5568 FAX External Missions Center (806) 477-3962 pantex_wfo@pantex.com Fire Department (806) 477-4454 Human Resources (806) 477-6565 Occupational Medicine (806) 477-3033 Operations Center (806) 477-5000 Pantex Christmas Project (806) 477-5533 Payroll (806)

  19. Contact Us | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Contact Us By E-mail: You can send an email to the Secretary of Energy at The.Secretary@hq.doe.gov By Phone: 202-586-5000 (Main Switchboard) or use the National Phone Directory For Hearing and/or Speech Impaired: 1-800-877-8339 By Fax: 202-586-4403 *By Mail: U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 *Please note: mail may take up to 3 weeks to arrive. As such, we strongly encourage you to use the email address provided above or the form provided below.

  20. Safety Staff Contact Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Staff Contact Information Print Contact Extension Location CONTROL ROOM (24/7) 4969 80-140 Floor Operations Floor Operators 7464 (RING) 80-159 Building Manager This e-mail address is being protected from spambots. You need JavaScript enabled to view it 7358 80-151 Building Emergency Team (BET) This e-mail address is being protected from spambots. You need JavaScript enabled to view it (Leader) This e-mail address is being protected from spambots. You need JavaScript enabled to view it

  1. Safety Staff Contact Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Staff Contact Information Print Contact Extension Location CONTROL ROOM (24/7) 4969 80-140 Floor Operations Floor Operators 7464 (RING) 80-159 Building Manager This e-mail address is being protected from spambots. You need JavaScript enabled to view it 7358 80-151 Building Emergency Team (BET) This e-mail address is being protected from spambots. You need JavaScript enabled to view it (Leader) This e-mail address is being protected from spambots. You need JavaScript enabled to view it

  2. Elink - Contact Us

    Office of Scientific and Technical Information (OSTI)

    Contact Us EMAIL Email messages are answered Monday - Friday, 9 a.m. - 4 p.m. We do our best to respond within 48 hours. PHONE 865-576-1228 MAIL U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge,TN 37831

  3. Contact Us | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contact Us Contact Us For general information from the Policy and Analysis Team, please contact us at EERE.Analysis@ee.doe.gov For EERE Program Evaluation, please contact: Jeff Dowd at EERE.Evaluation@ee.doe.gov Yaw Agyeman at Yoagyeman@lbl.gov

  4. Emergency Guides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems at Nevada National Security Site | National Nuclear Security Administration | (NNSA) and on Facebook, Twitter, Tumblr, YouTube and Flickr Systems at Nevada National Security Site | National Nuclear Security Administration | (NNSA)

    and on Facebook, Twitter, Tumblr, YouTube and Flickr

    Emergency Guides

  5. New Hire Relocation Travel Information Guide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Hire Relocation Travel Information Guide This information guide is provided by the CFO Travel Relocation Office to assist you in planning your relocation to Los Alamos. Please contact the Relocation Office at least two to four weeks prior to your relocation to discuss your relocation plans. You can contact the Relocation Office at (505) 665-4484 or by e-mail at relocation@lanl.gov. You must have met all contingencies, if any, of your hire as well as have proper work authorization before the

  6. LTS Contact Us - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us About Us Hanford Cultural Resources LTS Home Page LTS Project Management LTS Transition and Timeline LTS Execution LTS Background LTS Information Management LTS Fact Sheets / Briefings LTS In The News LTS Related Links LTS Contact Us LTS Contact Us Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size Contact Us Do you have a question? Contact Long-Term Stewardship Program DOE Logo Street Address: Federal Bldg: 825 Jadwin Ave., Suite 1 Richland, WA 99352 Map

  7. CONTACTS FOR INFORMATION MANAGEMENT: Forms & Records | Department...

    Office of Environmental Management (EM)

    Records Contacts: By Organization: Program Records Official (PRO) Contact List Records Management Field Officer (RMFO) Contact List Records Liaison Officers (RLO) Contact List ...

  8. Technical Assistance Guide: Working with DOE National Laboratories (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    Guide to inform agencies of the capabilities and expertise of DOE national laboratories, as well as process and contacts for Federal agencies to enter work for others agreements with DOE national labs.

  9. Contact stress sensor

    DOE Patents [OSTI]

    Kotovsky, Jack

    2012-02-07

    A contact stress sensor includes one or more MEMS fabricated sensor elements, where each sensor element of includes a thin non-recessed portion, a recessed portion and a pressure sensitive element adjacent to the recessed portion. An electric circuit is connected to the pressure sensitive element. The circuit includes a thermal compensator and a pressure signal circuit element configured to provide a signal upon movement of the pressure sensitive element.

  10. Contact stress sensor

    DOE Patents [OSTI]

    Kotovsky, Jack

    2014-02-11

    A method for producing a contact stress sensor that includes one or more MEMS fabricated sensor elements, where each sensor element of includes a thin non-recessed portion, a recessed portion and a pressure sensitive element adjacent to the recessed portion. An electric circuit is connected to the pressure sensitive element. The circuit includes a pressure signal circuit element configured to provide a signal upon movement of the pressure sensitive element.

  11. Contact: Rod Hunt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact: Rod Hunt (208) 386-5254 Washington Group International Receives Contract Extension To Manage Transuranic Nuclear Waste for U.S. Department of Energy Five-Year Option Includes Aggressive New Performance Goals BOISE, Idaho - Washington Group International, Inc. (NASDAQ: WGII) today announced that its Washington TRU Solutions subsidiary has received a five-year contract extension to manage and operate the United States Department of Energy's Waste Isolation Pilot Plant (WIPP) in Carlsbad,

  12. Contact Interface Verification for DYNA3D Scenario 1: Basic Contact

    SciTech Connect (OSTI)

    McMichael, L D

    2006-05-10

    A suite of test problems has been developed to examine contact behavior within the nonlinear, three-dimensional, explicit finite element analysis (FEA) code DYNA3D (Lin, 2005). The test problems address the basic functionality of the contact algorithms, including the behavior of various kinematic, penalty, and Lagrangian enforcement formulations. The results from the DYNA3D analyses are compared to closed form solutions to verify the contact behavior. This work was performed as part of the Verification and Validation efforts of LLNL W Program within the NNSA's Advanced Simulation and Computing (ASC) Program. DYNA3D models the transient dynamic response of solids and structures including the interactions between disjoint bodies (parts). A wide variety of contact surfaces are available to represent the diverse interactions possible during an analysis, including relative motion (sliding), separation and gap closure (voids), and fixed relative position (tied). The problem geometry may be defined using a combination of element formulations, including one-dimensional beam and truss elements, two-dimensional shell elements, and three-dimensional solid elements. Consequently, it is necessary to consider various element interactions for each contact algorithm being verified. Most of the contact algorithms currently available in DYNA3D are examined; the exceptions are the Type 4--Single Surface Contact and Type 11--SAND algorithms. It is likely that these algorithms will be removed since their functionality is embodied in other, more robust, contact algorithms. The automatic contact algorithm is evaluated using the Type 12 interface. Two other variations of automatic contact, Type 13 and Type 14, offer additional means to adapt the interface domain, but share the same search and restoration algorithms as Type 12. The contact algorithms are summarized in Table 1. This report and associated test problems examine the scenario where one contact surface exists between two

  13. Dual contact pogo pin assembly

    DOE Patents [OSTI]

    Hatch, Stephen McGarry

    2015-01-20

    A contact assembly includes a base and a pair of electrical contacts supported by the base. A first end of the first electrical contact corresponds to a first end of the base and is configured to engage a first external conductive circuit element. A first end of the second electrical contact also corresponds to the first end of the base and is configured to engage a second external conductive circuit element. The first contact and the second contact are electrically isolated from one another and configured to compress when engaging an external connector element. The base includes an aperture positioned on a second end of the base outboard of a second end of the first and second electrical contacts. The aperture presents a narrowing shape with a wide mouth distal the electrical contacts and a narrow internal through-hole proximate the electrical contacts.

  14. Structures for Three Membrane Transport Proteins Yield Functional Insights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structures for Three Membrane Transport Proteins Yield Functional Insights Structures for Three Membrane Transport Proteins Yield Functional Insights Print Wednesday, 27 January 2010 00:00 Cells depend on contact with their outside environment in order to thrive. Two examples illustrate why: In one, information needed to guide cellular processes is constantly transmitted across cell membranes by specialized proteins, and in the other, maintaining the right gradient of ions across the membrane is

  15. User Guide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Guide Print 1. Register with the ALS Create an account on ALSHub-the ALS user portal. 2. Apply for Beam Time 3. Establish a User Agreement 4. Comply with Experiment Safety Requirements Upon receiving beam time, complete an Experiment Safety Sheet. 5. Get Access to Work Onsite 6. Complete Online Safety Training 7. Utilize Available Resources 8. Complete the User Satisfaction Survey 9. Report Publications, Awards, Talks, Acknowledging Work at ALS

  16. User Guide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Guide Print 1. Register with the ALS Create an account on ALSHub-the ALS user portal. 2. Apply for Beam Time 3. Establish a User Agreement 4. Comply with Experiment Safety Requirements Upon receiving beam time, complete an Experiment Safety Sheet. 5. Get Access to Work Onsite 6. Complete Online Safety Training 7. Utilize Available Resources 8. Complete the User Satisfaction Survey 9. Report Publications, Awards, Talks, Acknowledging Work at ALS

  17. Modulation of FadR Binding Capacity for Acyl-CoA Fatty Acids Through Structure-Guided Mutagenesis

    SciTech Connect (OSTI)

    Bacik, John-Paul; Yeager, Chris M.; Twary, Scott N.; Martí-Arbona, Ricardo

    2015-09-18

    FadR is a versatile global regulator in Escherichia coli that controls fatty acid metabolism and thereby modulates the ability of this bacterium to grow using fatty acids or acetate as the sole carbon source. FadR regulates fatty acid metabolism in response to intra-cellular concentrations of acyl-CoA lipids. The ability of FadR to bind acyl-CoA fatty acids is hence of significant interest for the engineering of biosynthetic pathways for the production of lipid-based biofuels and commodity chemicals. Based on the available crystal structure of E. coli bound to myristoyl- CoA, we predicted amino acid positions within the effector binding pocket that would alter the ability of FadR to bind acyl-CoA fatty acids without affecting DNA binding. We utilized fluorescence polarization to characterize the in-vitro binding properties of wild type and mutant FadR. We found that a Leu102Ala mutant enhanced binding of the effector, likely by increasing the size of the binding pocket for the acyl moiety of the molecule. Conversely, the elimination of the guanidine side chain (Arg213Ala and Arg213Met mutants) of the CoA moiety binding site severely diminished the ability of FadR to bind the acyl-CoA effector. These results demonstrate the ability to fine tune FadR binding capacity. The validation of an efficient method to fully characterize all the binding events involved in the specific activity (effector and DNA operator binding) of FadR has allowed us to increase our understanding of the role of specific amino acids in the binding and recognition of acyl-CoA fatty acids and will greatly facilitate efforts aimed at engineering tunable FadR regulators for synthetic biology.

  18. Modulation of FadR Binding Capacity for Acyl-CoA Fatty Acids Through Structure-Guided Mutagenesis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bacik, John-Paul; Yeager, Chris M.; Twary, Scott N.; Martí-Arbona, Ricardo

    2015-09-18

    FadR is a versatile global regulator in Escherichia coli that controls fatty acid metabolism and thereby modulates the ability of this bacterium to grow using fatty acids or acetate as the sole carbon source. FadR regulates fatty acid metabolism in response to intra-cellular concentrations of acyl-CoA lipids. The ability of FadR to bind acyl-CoA fatty acids is hence of significant interest for the engineering of biosynthetic pathways for the production of lipid-based biofuels and commodity chemicals. Based on the available crystal structure of E. coli bound to myristoyl- CoA, we predicted amino acid positions within the effector binding pocket thatmore » would alter the ability of FadR to bind acyl-CoA fatty acids without affecting DNA binding. We utilized fluorescence polarization to characterize the in-vitro binding properties of wild type and mutant FadR. We found that a Leu102Ala mutant enhanced binding of the effector, likely by increasing the size of the binding pocket for the acyl moiety of the molecule. Conversely, the elimination of the guanidine side chain (Arg213Ala and Arg213Met mutants) of the CoA moiety binding site severely diminished the ability of FadR to bind the acyl-CoA effector. These results demonstrate the ability to fine tune FadR binding capacity. The validation of an efficient method to fully characterize all the binding events involved in the specific activity (effector and DNA operator binding) of FadR has allowed us to increase our understanding of the role of specific amino acids in the binding and recognition of acyl-CoA fatty acids and will greatly facilitate efforts aimed at engineering tunable FadR regulators for synthetic biology.« less

  19. RingCentral User Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    User Guide RingCentral User Guide This is the guide on the use of DOE's Personnel Accountability phone service called RingCentral. RingCentral User Guide (4.75 MB) Responsible Contacts Bruce Murray HR Policy Advisor E-mail bruce.murray@hq.doe.gov Phone 202-586-3372 More Documents & Publications US Department of Energy Office of the Chief Information Officer Nortel CallPilot A-Style Command Comparison Card NTER Authoring Training Participant_Guide_2012

  20. Clean Cities Program Contacts

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Coordinators Each Clean Cities coalition is led by a coordinator. Contact a coordinator to find out more about Clean Cities activities in your area. AL-Alabama Mark Bentley 205-402-2755 mark@alabamacleanfuels.org AR-Arkansas Patti Springs 501-682-8065 psprings@arkansasedc.com AZ-Valley of the Sun (Phoenix) Bill Sheaffer 480-314-0360 bill@cleanairaz.org AZ-Tucson Colleen Crowninshield 520-792-1093, x426 ccrowninshield@pagregion.com CA-Central Coast (San Luis Obispo) Melissa Guise 805-305-5491

  1. WNR Instrument Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instrument Contacts Name Flight Path Position Phone Pager Cell Ullmann, John 1FP14(DANCE) Instrument Scientist 667-2517 664-3523 Couture, Aaron 1FP14(DANCE) Instrument Assistant 667-1730 664-1163 Mosby, Shea 1FP14(DANCE) Instrument Assistant 665-5414 664-7412 Tovesson, Fredrik 1FP12 Instrument Assistant 665-9652 500-5073 Vogel, Sven 1FP05 Instrument Scientist 667-7016 412-7547 Nelson, Ron 1FP05 Instrument Scientist 667-7107 664-2191 690-4220 Devlin, Matt 4FP15L(Chi-Nu) Instrument Scientist

  2. Contacts | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contacts Mailing Address Jefferson Lab 12000 Jefferson Avenue, Suite 15 Newport News, VA 23606 fax (757) 269-7398 Public Affairs Manager Public Affairs Specialist Debbie Magaldi magaldi@jlab.org (757) 269-5102 Government Relations Specialist Deborah Dowd dowd@jlab.org (757) 269-7180 Public Affairs Associate Michael Robbins mrobbins@jlab.org (757) 269-7617 Science Writer (Acting Manager) Kandice Carter kcarter@jlab.org (757) 269-7263 Assembling a Cryomodule Jefferson Lab is a world leader in

  3. Contact Us | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contact Us Contact Us BY MAIL: Office of Project Management Oversight & Assessments U.S. Department of Energy 1000 Independence Ave, SW Washington, DC 20585 BY PHONE: (202) 586-5000 (Main DOE Switchboard)

  4. Contact Us | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contact Us Contact Us Address: 200 Administration Road Oak Ridge, TN 37831 Phone: (865) 576-0742 Operator & Personnel Directory: (865) 574-1000 Email: OakRidgeEM@orem.doe.gov

  5. Contact Information | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Information Contact Information Debra Covey covey@ameslab.gov 515-294-1048 Stacy Joiner joiner@ameslab.gov 515-294-5932 Tessa Lemons tlemons@ameslab.gov 515-294-2618...

  6. Contact Us | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Contact Us Division Director Supratik Guha Phone: 630-252-7740 Deputy Division Director Director, Nano Design Works Andreas Roelofs Phone: 630.252.2504 Fax: 630.252.6866...

  7. SRI2007 Conference - Contact Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Information For further information about the conference, please click on the following link. E-mail Ms. Lee Ann Murphey or contact Ms. Lee Ann Murphey CAMDLSU 6980...

  8. Contact Us | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Contact Us Postdoctoral Program Lead Kristene (Tina) Henne Phone: 630.252.2907 E-mail: khenne@anl.gov Administrative Support Kathy Eggers Phone: 630.252.6034 E-mail:...

  9. Contact Us | DOE Data Explorer

    Office of Scientific and Technical Information (OSTI)

    Data Explorer Contact Us Contact Us If you have a question or comment about DOE Data Explorer, check to see if it is on our list of frequently asked questions. If your question ...

  10. Contact Us | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contact Us Contact Us We welcome any questions or feedback you may have about the Better Buildings Neighborhood Program. Office of Building Technologies EE-2J U.S. Department of ...

  11. Contact Us | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Address and phone Argonne National Laboratory 9700 S. Cass Avenue Lemont, IL 60439. Phone: 630/252-2000 For members of the news media News releases online Argonne media contacts For collaboration opportunities For information on joint research or licensing of Argonne technologies and inventions, please contact Technology Development and Commercialization. For student appointments Please see Student and Faculty Opportunities For additional assistance, contact education@anl.gov. For job

  12. Contact | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Contact For general inquiries, please contact the administrative core at parc-efrc@wustl.edu. Manager, Research Administration and Operations Kaslina Love Mosley 314.935.3168 Administrative Coordinator Erin Plut 314.935.4499 fax 314.935.4925 Mailing Address: Photosynthetic Antenna Research Center (PARC) Washington University One Brookings Drive Campus Box 1129 St. Louis, MO 63130 Physical Address: Seigle Hall, Suite 435 St. Louis, MO 63130 Use our Contact us webform for comments ,

  13. Contact Us | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About Us » Contact Us Contact Us For information about the Office of Nuclear Energy and its programs, please contact us at the following: By Mail: Office of Nuclear Energy U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 By Phone: (202) 586-2240 (Office of Nuclear Energy) (202) 586-5000 (Main DOE Switchboard) News Leadership Organization Budget History Careers Contact Us

  14. Contact Us | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contact Us Contact Us For general questions regarding the Bioenergy Technologies Office, please use the contact information below. U.S. Department of Energy - Bioenergy Technologies Office General Contact Information Phone: 202-586-5188 Email: Bioenergy Technologies Office 1000 Independence Avenue, SW, EE-3B, 5H-021 Washington, DC, 20585 Please note: Due to strict mail screening procedures for federal agencies, your letter may take up to 6 weeks to reach the Bioenergy Technologies Office. Media

  15. Contact Us | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Us Contact Us Contact Us provides contact information for employees working in the various functional areas, such as Administrative Services, Aviation, History and Heritage, Freedom of Information, Procurement, and Personal Property, within the Office of Management. Some of the information includes contacts at the Department of Energy field sites. Although these organizations have activities that the Office of Management oversees, in most cases, they do not report directly to the Director of the

  16. contact | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact NETL Technology Transfer Group For any inquiries regarding technology transfer, please email techtransfer@netl.doe.gov or contact: Jessica Sosenko Technology Transfer Analyst National Energy Technology Laboratory Office: 412.386.7417 Email: jessica.sosenko@netl.doe.gov For any legal issues involving technology transfer, please contact the NETL Technology Transfer Ombudsman: Charles Zeh Email: charles.zeh@netl.doe.gov

  17. Contact Us | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About Us » Contact Us Contact Us Address: 1000 Independence Ave. SW Washington DC 20585 Operator & Personnel Directory: 202-586-5000 Office of Technology Transition: OTT@hq.doe.gov Clean Energy Investment Center: CEIC@hq.doe.gov Contact Us News OTT Team OTT Factsheet

  18. New Guide Helps Clarify Complex Clean Air Laws

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guide Helps Clarify Complex Clean Air Laws For information contact: e:mail: Public Affairs Golden, Colo., February 20, 1998 — The U.S. Department of Energy (DOE), in cooperation with the U.S. Environmental Protection Agency (EPA), has released A Guide to the Emissions Certification Procedures for Aftermarket Conversions. This new federal guide can help fleet managers, equipment manufacturers and installers of vehicle conversion kits navigate through emissions regulations for vehicles converted

  19. New Guide Helps Industry Link with Department of Energy Labs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Guide Helps Industry Link with Department of Energy Labs For more information contact: George Douglas, 303-275-4096 email: George Douglas Golden, Colo., May. 4, 2001 - Working with U. S. Department of Energy (DOE) laboratories became easier with the recent release of the guide, Doing Business with the Laboratories of the Laboratory Coordinating Council. The guide explains how the DOE's Laboratory Coordinating Council gives U.S. industry access to a "virtual" laboratory that can be

  20. Contact | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events Publications History Contact BES Home Contact Print Text Size: A A A FeedbackShare Page The scientific directions of the EFRCs are overseen by program staff in the Basic Energy Sciences program within the Office of Science to ensure a unified management strategy and structure. This BES EFRC management team includes program managers from each of the BES Divisions and acts in

  1. Publications desktop survival guide

    SciTech Connect (OSTI)

    1995-06-01

    Purpose of this guide is to document and simplify the writing, reviewing, and production process for the Uranium Mill Tailings Remedial Action (UMTRA) Project Technical Assistance Contractor (TAC) staff and to provide specific answers concerning the content, style, and format of UMTRA Project documents. Goal of the UMTRA Project document preparation process is to deliver to the US DOE high-quality documents that meet requirements (meets expressed client needs; accurate and consistent technical content; clear writing; well organized document; consistent style). A document review process has been established to ensure that TAC documents are accurate, consistent, and well organized. The editing process applies standard rules for style and format, spelling, grammar, punctuation, and sentence structure to make the document consistent and easier to read. This guide sets forth the rules to be applied to UMTRA Project documents.

  2. Active alignment/contact verification system

    DOE Patents [OSTI]

    Greenbaum, William M.

    2000-01-01

    A system involving an active (i.e. electrical) technique for the verification of: 1) close tolerance mechanical alignment between two component, and 2) electrical contact between mating through an elastomeric interface. For example, the two components may be an alumina carrier and a printed circuit board, two mating parts that are extremely small, high density parts and require alignment within a fraction of a mil, as well as a specified interface point of engagement between the parts. The system comprises pairs of conductive structures defined in the surfaces layers of the alumina carrier and the printed circuit board, for example. The first pair of conductive structures relate to item (1) above and permit alignment verification between mating parts. The second pair of conductive structures relate to item (2) above and permit verification of electrical contact between mating parts.

  3. CNM Scientific Contact List | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CNM Scientific Contact List A list of scientific contacts for the Center for Nanoscale Materials PDF icon CNM Scientific Contact sheet 716

  4. Privacy Points of Contact | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Microsoft Word - PrivacyContactListingSeptember212010 More Documents & Publications Privacy Act Officers Contact LIst DOE Privacy Program Contact Listing as of September 21,...

  5. Contact Us | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Livermore Field Office Contact Us Contact Us If you have questions about the activities at the Livermore Field Office, please contact the LFO Public Affairs at the following...

  6. Optical fiber having wave-guiding rings

    DOE Patents [OSTI]

    Messerly, Michael J.; Dawson, Jay W.; Beach, Raymond J.; Barty, Christopher P. J.

    2011-03-15

    A waveguide includes a cladding region that has a refractive index that is substantially uniform and surrounds a wave-guiding region that has an average index that is close to the index of the cladding. The wave-guiding region also contains a thin ring or series of rings that have an index or indices that differ significantly from the index of the cladding. The ring or rings enable the structure to guide light.

  7. Contact SEP | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contact SEP Contact SEP Superior Energy Performance logo Please send questions, comments, and inquiries to: Paul Scheihing paul.scheihing@ee.doe.gov 202-586-7234 Receive SEP Updates Enter your email address to receive updates about the SEP Program. Subscribe Enroll or Apply Today Navigate the SEP Site Superior Energy Performance SEP and ISO 50001 Certification Process The Business Case for SEP Case Studies Certified Facilities Toolbox and Expertise SEP Webinars About SEP About ISO 50001 Contact

  8. Sandia National Laboratories: Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Contact Us New Mexico California Sandia National Laboratories, New Mexico P.O. Box 5800 Albuquerque, NM 87185-(mail stop)* Non-mail deliveries: 1515 Eubank SE Albuquerque, NM 87123 Sandia National Laboratories, California P.O. Box 969 Livermore, CA 94551-0969 Non-mail deliveries: 7011 East Avenue Livermore, CA 94550 * All mail must contain an appropriate mail stop to ensure delivery. For employee mail stops, reference our Employee Locator. Contact Information General Inquiries New

  9. Method for forming metal contacts

    DOE Patents [OSTI]

    Reddington, Erik; Sutter, Thomas C; Bu, Lujia; Cannon, Alexandra; Habas, Susan E; Curtis, Calvin J; Miedaner, Alexander; Ginley, David S; Van Hest, Marinus Franciscus Antonius Maria

    2013-09-17

    Methods of forming metal contacts with metal inks in the manufacture of photovoltaic devices are disclosed. The metal inks are selectively deposited on semiconductor coatings by inkjet and aerosol apparatus. The composite is heated to selective temperatures where the metal inks burn through the coating to form an electrical contact with the semiconductor. Metal layers are then deposited on the electrical contacts by light induced or light assisted plating.

  10. Hanford Site Hazards Guide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford Site Hazards Guide 2016 Approved for Public Release; Further Dissemination Unlimited Hanford Site Hazards Guide Contents ASBESTOS .............................................................................................................................................. 2 BERYLLIUM ........................................................................................................................................... 4 CHEMICAL SAFETY

  11. Contact Us | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contact Us Contact Us Contact Us For information about the Northern New Mexico Citizens' Advisory board and its programs; for assistance with information on this website; or for general information purposes please contact: William Alexander Technical Writer/Website Administrator william.alexander@em.doe.gov 1 (505) 988-1749 office 1 (800) 218-5942 toll free 1 (505) 989-1752 fax Lee Bishop Designated Federal Officer lee.bishop@em.doe.gov 1 (505) 606-0393 Mike Gardipe Designated Federal Officer

  12. Contact PPPO | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About Us » Contact PPPO Contact PPPO For more information about the Department of Energy's Portsmouth/Paducah Project Office and its programs, contact us: By Mail: Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, KY 40513 By Phone: Lexington : (859) 219-4000 Portsmouth : (740) 897-5010 Paducah : (270) 441-6800 By E-mail: Send general information to the PPPO office at: PPPOinfo@lex.doe.gov Contact PPPO Human Resources by email at: HumanResources.PPPO@lex.doe.gov For

  13. Contact Us | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About Us » Contact Us Contact Us For more information about the Department of Energy's Environmental Management Los Alamos Field Office and its programs, contact us: By Mail Department of Energy Environmental Management Los Alamos Field Office Pueblo Complex 1900 Diamond Drive MS-M984 Los Alamos, New Mexico 87544 By Phone (505)-665-5658 Media Inquiries For Public Information and News Media Inquiries call: (505) 665-7768 or email: PublicAffairs.EMLA@em.doe.gov News Public Participation Contact

  14. Contact Us | Robotics Internship Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us General QuestionsInformation Robotics.Internships@orau.org Current Robotics Interns Kerri Fomby, Program Specialist Robotics.Internships@orau.org Phone: 865-574-4651...

  15. Contact Information | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Information Human Resources Office 151 TASF 294-2680 Diane Muncrief Manager 294-5731 Labor Relations - Professional Performance Management HR Policies and interpretation...

  16. Contact DMSE | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact DMSE Division of Materials Sciences and Engineering Director Business Manager General Inquiries Web Queries Matthew Kramer Susan Elsner Julie Dredla Sarah Wiley 125 Metals...

  17. Lithium-drifted silicon detector with segmented contacts

    DOE Patents [OSTI]

    Tindall, Craig S.; Luke, Paul N.

    2006-06-13

    A method and apparatus for creating both segmented and unsegmented radiation detectors which can operate at room temperature. The devices include a metal contact layer, and an n-type blocking contact formed from a thin layer of amorphous semiconductor. In one embodiment the material beneath the n-type contact is n-type material, such as lithium compensated silicon that forms the active region of the device. The active layer has been compensated to a degree at which the device may be fully depleted at low bias voltages. A p-type blocking contact layer, or a p-type donor material can be formed beneath a second metal contact layer to complete the device structure. When the contacts to the device are segmented, the device is capable of position sensitive detection and spectroscopy of ionizing radiation, such as photons, electrons, and ions.

  18. Contact | Solid State Solar Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact ADDRESS 77 Massachusetts Ave., Rm 3-174 Cambridge MA 02139 CONTACT 617-253-7413

  19. Contact Us | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Contact Us Your name * Your e-mail address * Subject * Message * Leave this field blank Submit...

  20. Sandia National Laboratories: Contact Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electromagnetics Bioscience Computing and Information Science Electromagnetics Facilities Programs & Capabilities Partnership Opportunities EM News & Reports Contact Information Engineering Science Geoscience Materials Science Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Contact Information Steve Glover 505-845-9620 sfglove@sandia.gov

  1. Contact Information | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Information Contact Information Margaret Evans mevans@ameslab.gov 515-294-2056 Kori Grooms groomsk@ameslab.gov 515-294-2056 Lisa Ingalls-Hurley lhurley@ameslab.gov 515-294-2056 Whitney Groomes wgroomes@ameslab.gov 515-294-8036

  2. Contact Us | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us The Training Office is located in 105 TASF. If you have any questions, please contact us at one of the numbers listed below: Hiliary Burns, Training Coordinator - (515)294-1376 Molly Daub, Program Assistant - (515)294-2864 Training Office Front Desk - (515)294-9972

  3. Structures for Three Membrane Transport Proteins Yield Functional Insights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structures for Three Membrane Transport Proteins Yield Functional Insights Print Cells depend on contact with their outside environment in order to thrive. Two examples illustrate why: In one, information needed to guide cellular processes is constantly transmitted across cell membranes by specialized proteins, and in the other, maintaining the right gradient of ions across the membrane is a process critical to the life and death of a cell. Membrane transport proteins-functioning either as

  4. Structures for Three Membrane Transport Proteins Yield Functional Insights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structures for Three Membrane Transport Proteins Yield Functional Insights Print Cells depend on contact with their outside environment in order to thrive. Two examples illustrate why: In one, information needed to guide cellular processes is constantly transmitted across cell membranes by specialized proteins, and in the other, maintaining the right gradient of ions across the membrane is a process critical to the life and death of a cell. Membrane transport proteins-functioning either as

  5. Structures for Three Membrane Transport Proteins Yield Functional Insights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structures for Three Membrane Transport Proteins Yield Functional Insights Print Cells depend on contact with their outside environment in order to thrive. Two examples illustrate why: In one, information needed to guide cellular processes is constantly transmitted across cell membranes by specialized proteins, and in the other, maintaining the right gradient of ions across the membrane is a process critical to the life and death of a cell. Membrane transport proteins-functioning either as

  6. Structures for Three Membrane Transport Proteins Yield Functional Insights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structures for Three Membrane Transport Proteins Yield Functional Insights Print Cells depend on contact with their outside environment in order to thrive. Two examples illustrate why: In one, information needed to guide cellular processes is constantly transmitted across cell membranes by specialized proteins, and in the other, maintaining the right gradient of ions across the membrane is a process critical to the life and death of a cell. Membrane transport proteins-functioning either as

  7. Contact Us | ScienceCinema

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Contact the NNSA Los Alamos Field Office NNSA Los Alamos Field Office (NA-00-LA) 3747 West Jemez Road Los Alamos, NM 87544 (505) 667-6691 Please send any comments, questions, or feedback to Toni Chiri Featured Links LANL Phonebook Los Alamos National Laboratory Los Alamos County USA Gov Department of Energy (DOE) New Mexico Environmental Department - LANL U.S. Department of Homeland Security

    Contact Us NPO Public Affairs Manager Steven Wyatt (865) 576-9918 NPO Mailing Address NNSA

  8. Acquisition Guide Chapter 15 1 - Source Selection Guide | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 5 1 - Source Selection Guide Acquisition Guide Chapter 15 1 - Source Selection Guide Acquisition Guide Chapter 15 1 - (Final - Changes Accepted)(April 2013).pdf (917.82 KB) More Documents & Publications DOE Source Evaluation Board (SEB) Document Templates DOE Acquisition Guide Chapter 15.1 Source Selection Guide OPAM Policy Acquisition Guides

  9. Contact Us | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Occupational Medicine: 515-294-2056 G11 Technical Administrative Services Facility (TASF) om@ameslab.gov Tell us how we may improve services to you. We value your opinion

  10. FOIA Contacts | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Phone: 202-586-5955 Fax: 202-586-0575 FOIA Web Page: http:energy.govmanagement... Poli A. Marmolejos FOIA Appeals Officer Phone: 202-287-1400 Appeals Contact Web Page: ...

  11. Fermilab | Contact Fermilab | Email Fermilab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    feature photo feature photo feature photo feature photo feature photo Contact Fermilab Navbar Toggle About Quick Info Science History Leadership and Organization Leadership Organizational chart Committees and Councils Photo and Video Gallery Diversity Education Safety Sustainability and Environment Contact Related Links DOE FRA UChicago URA Newsroom Spotlight Press releases Fact sheets and brochures symmetry Interactions.org Photo and video archive Resources for ... Employees Researchers,

  12. Working with SRNL - AMC - Contact

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact To learn more about the Advanced Manufacturing Collaborative or the Savannah River National Laboratory, contact: Charles Meyers 803-725-3020 Chuck.Meyers@srnl.doe.gov Thad Adams 803-725-5510 Thad.Adams@srnl.doe.gov Steven Tibrea 803-725-3978 Steven.Tibrea@srnl.doe.gov Lana Patterson Corporate Communications Savannah River National Laboratory 803-725-4396 Lana.Patterson

  13. Method for lubricating contacting surfaces

    DOE Patents [OSTI]

    Dugger, Michael T.; Ohlhausen, James A.; Asay, David B.; Kim, Seong H.

    2011-12-06

    A method is provided for tribological lubrication of sliding contact surfaces, where two surfaces are in contact and in motion relative to each other, operating in a vapor-phase environment containing at least one alcohol compound at a concentration sufficiently high to provide one monolayer of coverage on at least one of the surfaces, where the alcohol compound continuously reacts at the surface to provide lubrication.

  14. Media Contacts | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Media Contacts Matthew Howard Argonne National Laboratory Matthew Howard is Argonne's Director of Communications, Education and Public Affairs. Christopher J. Kramer Argonne National Laboratory Christopher J. Kramer is the manager of media relations and external affairs for Argonne. Contact him at 630-252-5580 or media@anl.gov. Louise Lerner Argonne National Laboratory Louise Lerner is the lab science writer and editor of Argonne Now, the lab's semiannual science magazine, and handles external

  15. Contact Us | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contact Us Contact Us Office of Economic Impact & Diversity 1000 Independence Ave., SW Washington, DC 20585 Phone: (202) 586-8383 Fax: (202) 586-3075 Office of the Director Director, The Honorable LaDoris 'Dot' Harris Principal Deputy Director, Andre H. Sayles, Ph.D. Office of Minority Education and Community Development Deputy Director, Annie Whatle Annie.Whatley@hq.doe.gov Office of Minority Business and Economic Development Deputy Director, Karen Atkinson Karen.Atkinson@hq.doe.gov Office

  16. FOIA Contacts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contacts FOIA Contacts FOIA REQUESTER SERVICE CENTERS, FOIA PUBLIC LIASONS, AND FOIA OFFICERS DOE Headquarters (HQ) FOIA Requester Service Center 1000 Independence Avenue, SW Washington, DC 20585 Phone: 202-586-5955 Fax: 202-586-0575 FOIA Web Page: http://energy.gov/management/office-management/operational-management/freedom-information-act Ingrid A. Kolb Chief FOIA Officer Kevin T. Hagerty FOIA Public Liaison Phone: 202-586-5955 Alexander C. Morris FOIA Officer Phone: 202-586-3159 Poli A.

  17. Contact Us | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Administration (EIA) Contact Us Natural Gas Monthly Contacts The Natural Gas Monthly (NGM) is prepared under the direction of the Assistant Administrator of the Office of Energy Statistics, Thomas Leckey. Natural Gas Production Jeffrey Little ...........................202.586.6284 Supplemental Gaseous Fuels Jennifer Wade .......................202.586.4749 Imports and Exports Jose Villar .............................202.586.9613 Consumption and Consumer Prices Jennifer Wade

  18. Sandia Publishes New Guide to Assist Homebuilders

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Guide to Assist Homebuilders - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs

  19. NTERTraining Guides | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NTERTraining Guides NTERTraining Guides Advanced Authoring Training Participant_Guide_2012.pdf (1.36 MB) Kuda TrainingGuide_053013.pdf (1.67 MB) NTER Authoring Training Participant_Guide_2012.pdf (4.43 MB) Creating a Test in NTER Participant_Guide_2012.pdf (1.18 MB) More Documents & Publications Kuda Training Guide_053013 NTER Authoring Training Participant_Guide_2012 Creating a Test in NTER Participant_Guide_2012

  20. Ferromagnetic tunnel contacts to graphene: Contact resistance and spin signal

    SciTech Connect (OSTI)

    Cubukcu, M.; Laczkowski, P.; Vergnaud, C.; Marty, A.; Attan, J.-P.; Notin, L.; Vila, L. Jamet, M.; Martin, M.-B.; Seneor, P.; Anane, A.; Deranlot, C.; Fert, A.; Auffret, S.; Ducruet, C.

    2015-02-28

    We report spin transport in CVD graphene-based lateral spin valves using different magnetic contacts. We compared the spin signal amplitude measured on devices where the cobalt layer is directly in contact with the graphene to the one obtained using tunnel contacts. Although a sizeable spin signal (up to ?2 ?) is obtained with direct contacts, the signal is strongly enhanced (?400 ?) by inserting a tunnel barrier. In addition, we studied the resistance-area product (R.A) of a variety of contacts on CVD graphene. In particular, we compared the R.A products of alumina and magnesium oxide tunnel barriers grown by sputtering deposition of aluminum or magnesium and subsequent natural oxidation under pure oxygen atmosphere or by plasma. When using an alumina tunnel barrier on CVD graphene, the R.A product is high and exhibits a large dispersion. This dispersion can be highly reduced by using a magnesium oxide tunnel barrier, as for the R.A value. This study gives insight in the material quest for reproducible and efficient spin injection in CVD graphene.

  1. Solar cell with back side contacts

    DOE Patents [OSTI]

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J; Wanlass, Mark Woodbury; Clews, Peggy J

    2013-12-24

    A III-V solar cell is described herein that includes all back side contacts. Additionally, the positive and negative electrical contacts contact compoud semiconductor layers of the solar cell other than the absorbing layer of the solar cell. That is, the positive and negative electrical contacts contact passivating layers of the solar cell.

  2. Contact Interface Verification for DYNA3D Scenario 2: Multi-Surface Contact

    SciTech Connect (OSTI)

    McMichael, L D

    2006-05-10

    A suite of test problems has been developed to examine contact behavior within the nonlinear, three-dimensional, explicit finite element analysis (FEA) code DYNA3D (Lin, 2005). The test problems use multiple interfaces and a combination of enforcement methods to assess the basic functionality of the contact algorithms. The results from the DYNA3D analyses are compared to closed form solutions to verify the contact behavior. This work was performed as part of the Verification and Validation efforts of LLNL W Program within the NNSA's Advanced Simulation and Computing (ASC) Program. DYNA3D models the transient dynamic response of solids and structures including the interactions between disjoint bodies (parts). A wide variety of contact surfaces are available to represent the diverse interactions possible during an analysis, including relative motion (sliding), separation and gap closure (voids), and fixed relative position (tied). The problem geometry may be defined using a combination of element formulations, including one-dimensional beam and truss elements, two-dimensional shell elements, and three-dimensional solid elements. Consequently, it is necessary to consider various element interactions during contact. This report and associated test problems examine the scenario where multiple bodies interact with each other via multiple interfaces. The test problems focus on whether any ordering issues exist in the contact logic by using a combination of interface types, contact enforcement options (i.e., penalty, Lagrange, and kinematic), and element interactions within each problem. The influence of rigid materials on interface behavior is also examined. The companion report (McMichael, 2006) and associated test problems address the basic contact scenario where one contact surface exists between two disjoint bodies. The test problems are analyzed using version 5.2 (compiled on 12/22/2005) of DYNA3D. The analytical results are used to form baseline solutions for

  3. Small Wind Electric Systems: A Maine Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2003-06-01

    The purpose of the Small Wind Electric Systems Consumer's: A Maine Consumer's Guide is to provide consumers with enough information to help them determine if a small wind electric system will work for them based on their wind resource, the type and size of their sites, and their economics. The cover of this guide contains a wind resource map for the state of Maine and information about state incentives and contacts for more information.

  4. Working with Indian Tribal Nations. A guide for DOE employees

    SciTech Connect (OSTI)

    2000-12-31

    U.S. Department of Energy (DOE) employees and contractors frequently work with Indian tribes or nations as part of their jobs. The purpose of this guide is to help DOE employees and contractors initiate contact with tribes and build effective relationships. DOE maintains a unique government-to government relationship with tribal nations. This guide presents an overview of the history of the relationship between the tribes and the Federal government, as well as the laws and Executive Orders that define that relationship. The guide discusses the Federal government’s trust responsibility to the tribes, tribal treaty rights, and the Department of Energy’s American Indian policy. The guide also discusses important cultural differences that could lead to communication problems if not understood and provides examples of potential cultural misunderstandings. In particular the guide discusses tribal environmental beliefs that shape tribal responses to DOE actions. The guide also provides pointers on tribal etiquette during meetings and cultural ceremonies and when visiting tribal reservations. Appendix 1 gives examples of the tribal nations with whom DOE currently has Memoranda of Understanding. While this guide provides an introduction and overview of tribal relations for DOE staff and contractors, DOE has also designated Tribal Issues Points of Contacts at each of its facilities. A list of these Points of Contact for all DOE facilities is provided in Appendix 2. DOE staff and contractors should consult with the appropriate tribal representatives at their site before initiating contact with a tribal nation, because many tribes have rules and procedures that must be complied with before DOE staff or contractors may go on tribal lands or conduct interviews with tribal members. Appendix 3 is the complete DOE American Indian Policy. Appendices 4-6 are Executive Orders that govern the relationship of all federal agencies with tribal nations. DOE employees and staff are

  5. Operations & Maintenance Best Practices Guide: Release 3.0

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    C � Resources � Appendix C Resources for Energy and Facilities Professionals The references and resources provided below are by no means all-inclusive. The listed organiza- tions are not endorsed by the authors of this guide and are provided for your information only. To locate additional resources, the authors of this guide recommend contacting relevant trade groups, databases, and the world-wide web. Organizations American Society for Healthcare Engineering (ASHE) � Website: www.ashe.org

  6. Small Wind Electric Systems: A New Hampshire Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2003-06-01

    The purpose of the Small Wind Electric Systems Consumer's: A New Hampshire Consumer's Guide is to provide consumers with enough information to help them determine if a small wind electric system will work for them based on their wind resource, the type and size of their sites, and their economics. The cover of this guide contains a New Hampshire wind resource map and information about state incentives and contacts for more information.

  7. Non-contact contour gage

    DOE Patents [OSTI]

    Bieg, Lothar F.

    1990-12-18

    A fluid probe for measuring the surface contour of a machined part is provided whereby the machined part can remain on the machining apparatus during surface contour measurement. A measuring nozzle in a measuring probe directs a measuring fluid flow onto the surface. The measuring nozzle is on the probe situated midway between two guide nozzles that direct guide fluid flows onto the surface. When the guide fluid flows interact with the surface, they cause the measuring flow and measuring probe to be oriented perpendicular to the surface. The measuring probe includes a pressure chamber whose pressure is monitored. As the measuring fluid flow encounters changes in surface contour, pressure changes occur in the pressure chamber. The surface contour is represented as data corresponding to pressure changes in the pressure chamber as the surface is scanned.

  8. WORLD EDITOR TRAINING GUIDE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WORLD EDITOR TRAINING GUIDE Doc number: ESD-12-P19313 Revision: 1.0, April 2013 World Editor Training Guide April 2013 i . CONTENTS CONTENTS ............................................................................................................................... I INTRODUCTION .....................................................................................................................1 Learning Objectives

  9. Sandia National Laboratories: Contact Z-Machine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Z Z Research Z News Contact Us Facebook Twitter YouTube Flickr RSS Z-Machine Contact Z For more information, please contact us. * Items are Required First Name * Last Name *...

  10. Contact the GTT | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contact the GTT Contact the GTT Contact the GTT General Interest, Comments or Feedback? The DOE Grid Tech Team is intended to both help coordinate efforts from within DOE, and also ...

  11. Points of Contact and Privacy Act Advisory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Points of Contact Points of Contact and Privacy Act Advisory If you are trying to contact an agency other than the Department of Energy, use the web address: http:...

  12. Contacts | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contacts Contacts The primary contact for more information about New Hope Center's public use areas is the Y̩12 NHC community coordinator: Anna Lisa Conover Work: 865.574.3615 Pager: 865.916.3504 Fax: 865.241.1943

  13. Mounting apparatus for a nozzle guide vane assembly

    DOE Patents [OSTI]

    Boyd, G.L.; Shaffer, J.E.

    1995-09-12

    The present invention provides a ceramic nozzle guide assembly with an apparatus for mounting it to a metal nozzle case that includes an intermediate ceramic mounting ring. The mounting ring includes a plurality of projections that are received within a plurality of receptacles formed in the nozzle case. The projections of the mounting ring are secured within the receptacles by a ceramic retainer that allows contact between the two components only along arcuate surfaces thus eliminating sliding contact between the components. 8 figs.

  14. Mounting apparatus for a nozzle guide vane assembly

    DOE Patents [OSTI]

    Boyd, Gary L. (Alpine, CA); Shaffer, James E. (Maitland, FL)

    1995-01-01

    The present invention provides a ceramic nozzle guide assembly with an apparatus for mounting it to a metal nozzle case that includes an intermediate ceramic mounting ring. The mounting ring includes a plurality of projections that are received within a plurality of receptacles formed in the nozzle case. The projections of the mounting ring are secured within the receptacles by a ceramic retainer that allows contact between the two components only along arcuate surfaces thus eliminating sliding contact between the components.

  15. Generic TriBITS Project, Build, Test, and Install Reference Guide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generic TriBITS Project, Build, Test, and Install Reference Guide Author: Roscoe A. Bartlett Contact: bartlett.roscoe@gmail.com Date: 2015-08-27 Version: tribitsstart-1317-g4908e4...

  16. Geothermal Technologies Office Contacts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contacts Geothermal Technologies Office Contacts This page lists key Geothermal Technologies Office (GTO) staff, their assignments, and contact information. GTO is part of the Office of Energy Efficiency and Renewable Energy (EERE) at the U.S. Department of Energy (DOE). For general inquiries, please use the general contact information below. To provide feedback on this site or report technical issues, contact our Webmaster. General Contact Information U.S. Department of Energy Geothermal

  17. Contact Information Systems | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Information Systems Questions about Ames Laboratory network issues, contact networks@ameslab.gov Questions about Ames Laboratory websites, contact webrequest@ameslab.gov To report spam and other suspicious email, contact abuse@ameslab.gov For questions about Ames Laboratory cyber security issues, or to report suspicious computer activity, contact cybersec@ameslab.gov For all other questions, contact the Information Systems Help Desk, During normal business hours, and for non-urgent

  18. DOE - NNSA/NFO -- Contact Us Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Information NNSANFO Language Options U.S. DOENNSA - Nevada Field Office Nevada Field Office Contact Information Street Address: 232 Energy Way North Las Vegas, NV 89030 ...

  19. Contact the Sustainability Performance Office | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home About Contact the Sustainability Performance Office Contact the Sustainability Performance Office The U.S. Department of Energy Sustainability Performance Office ...

  20. Oregon Department of Environmental Quality Contacts Webpage ...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Web Site: Oregon Department of Environmental Quality Contacts Webpage Abstract Contact information for DEQ. Author Oregon...

  1. TEPP Points of Contact | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Emergency Preparedness Program TEPP Points of Contact TEPP Points of Contact TEPP is a national program managed at a headquarters level and implemented through...

  2. Contact Us - Working With Us | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us - Working With Us Contact us to learn more about working with NREL. Your name (Required) Your email address (Required) Your telephone number Your organization Your role...

  3. Federal NEPA Contacts | Department of Energy

    Energy Savers [EERE]

    Federal NEPA Contacts CEQ and most Federal agencies identify primary points of contact for NEPA compliance. Normally a senior environmental professional, environmental law...

  4. Non- contacting capacitive diagnostic device

    DOE Patents [OSTI]

    Ellison, Timothy

    2005-07-12

    A non-contacting capacitive diagnostic device includes a pulsed light source for producing an electric field in a semiconductor or photovoltaic device or material to be evaluated and a circuit responsive to the electric field. The circuit is not in physical contact with the device or material being evaluated and produces an electrical signal characteristic of the electric field produced in the device or material. The diagnostic device permits quality control and evaluation of semiconductor or photovoltaic device properties in continuous manufacturing processes.

  5. Contact Jefferson Lab | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Jefferson Lab General Inquiries 757-269-7100 News Media Inquiries 757-269-7689 Security/Emergency 757-269-5822 Status Information 757-234-6236 Street Address 12000 Jefferson Avenue Newport News, VA 23606 E-Mail Address jlabinfo@jlab.org To search the lab's staff directory, click here. Contact Page Visiting researchers - dubbed Users - come from across the country and around the world to use the facilities at Jefferson Lab in order to carry out basic physics experiments. Additional Links

  6. Contact EM | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About Us » Contact EM Contact EM For information about the Office of Environmental Management and its programs; for assistance in information on this website; or for general information purposes: By E-Mail: EM.WebContentManager@em.doe.gov By Mail: U.S. Department of Energy ATTENTION: Office of Environmental Management 1000 Independence Ave., SW Washington, DC 20585 By Phone: 202-586-5000 (Main DOE Switchboard) 202-586-7709 (Office of Environmental Management) National DOE Phone Directory For

  7. Contact Us | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contact Us Contact Us For general information about the Department of Energy: Phone: 202-586-5000 For more info or help with iManage: Phone: Headquarters (301) 903-2500, or use Toll Free: 1-866-834-6246 - Option #4, then choose: For iPortal/STARS Support For Travel/GovTrip Support For STRIPES Support For Payroll Support For DARTS/PARS-II Support For iBudget/FDS Support For ePerformance Support For ESS Support For EPAT Support For more information about BEARS - bearssupport@oro.doe.gov For more

  8. Contact Us | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contact Us Contact Us For information about the Office of Fossil Energy and its programs; for assistance with information on this website; or for general information purposes: General Email: FE Office of Communications Mail: Office of Fossil Energy (FE) U.S. Department of Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 Phone: 202-586-7920 Office of Clean Coal 202-586-5600 Office of Oil and Natural Gas 202-586-9478 Office of Natural Gas Regulation Docket Room

  9. Contact Us | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Us » Contact Us Contact Us Mailing Address: U.S. Department of Energy Office of Legacy Management 1000 Independence Avenue, SW Washington, DC 20585 Phone: (202) 586-3559 Fax: (202) 586-1540 Email: LM@hq.doe.gov Technical Assistance: LMWebsiteSupport@LM.doe.gov EEOICPA Program The U.S. Department of Labor (DOL) administers the EEOICPA Program. For information on how to submit an EEOICPA claim, please go to: U.S. Department of Labor, Division of Energy Employees Occupational Illness Compensation

  10. Contact Us | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contact Us Contact Us TITLE XVII LOAN GUARANTEE PROGRAM U.S. Department of Energy LP 10 1000 Independence Avenue, SW Washington D.C. 20585 Phone: 202-586-8336 Fax: 202-586-7366 Email: lgprogram@hq.doe.gov PRESS RELATED INQUIRIES Office of Public Affairs U.S. Department of Energy 1000 Independence Avenue, SW Washington D.C. 20585 Phone: 202-287-6574 Fax: 202-586-7366 ATVM DIRECT LOAN PROGRAM U.S. Department of Energy LP 20 1000 Independence Avenue, SW Washington D.C. 20585 Phone: 202-586-8146

  11. Contact Us | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contact Us Contact Us By E-mail: You can send an email to the Secretary of Energy at The.Secretary@hq.doe.gov By Phone: 202-586-5000 (Main Switchboard) or use the National Phone Directory For Hearing and/or Speech Impaired: 1-800-877-8339 By Fax: 202-586-4403 *By Mail: U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 *Please note: mail may take up to 3 weeks to arrive. As such, we strongly encourage you to use the email address provided above or the form provided below.

  12. Contact Us | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contact Us Contact Us U.S. Department of Energy SunShot Initiative Phone: 202-287-1862 Email: solar@ee.doe.gov Mailing Address: 1000 Independence Avenue, SW Washington, DC, 20585 Additional information about visiting our offices. Media Inquiries For media inquiries, please email the media team for the Office of Energy Efficiency and Renewable Energy at EE.Media@ee.doe.gov and be sure to reference "SunShot Initiative" in the email subject line. Sign up for the Energy Department's media

  13. Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Email Collections Wendy Strohmeyer Email Exhibits Omar Juveland Email Exhibit Shop Robert Naranjo Email Facilities Mike Martinez Email Science Education Gordon McDonough...

  14. Contact

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consumption & Efficiency Glossary › FAQS › Overview Data Residential Energy Consumption Survey data Commercial Energy Consumption Survey data Manufacturing Energy Consumption Survey data Vehicle Energy Consumption Survey data Energy intensity Consumption summaries Average cost of fossil-fuels for electricity generation All consumption & efficiency data reports Analysis & Projections Major Topics Most popular All sectors Commercial buildings Efficiency Manufacturing Projections

  15. Electrical contact tool set station

    DOE Patents [OSTI]

    Byers, M.E.

    1988-02-22

    An apparatus is provided for the precise setting to zero of electrically conductive cutting tools used in the machining of work pieces. An electrically conductive cylindrical pin, tapered at one end to a small flat, rests in a vee-shaped channel in a base so that its longitudinal axis is parallel to the longitudinal axis of the machine's spindle. Electronic apparatus is connected between the cylindrical pin and the electrically conductive cutting tool to produce a detectable signal when contact between tool and pin is made. The axes of the machine are set to zero by contact between the cutting tool and the sides, end or top of the cylindrical pin. Upon contact, an electrical circuit is completed, and the detectable signal is produced. The tool can then be set to zero for that axis. Should the tool contact the cylindrical pin with too much force, the cylindrical pin would be harmlessly dislodged from the vee-shaped channel, preventing damage either to the cutting tool or the cylindrical pin. 5 figs.

  16. Help:Contacts | Open Energy Information

    Open Energy Info (EERE)

    1.1 Uses of Contacts 1.2 Adding Contacts 1.3 Edit existing Contacts 1.4 Remove a Contact 1.5 Example in Use 1.6 Documentation 1.6.1 Parameters 1.6.2 Dependencies 1.6.3 Usage...

  17. Collegiate Wind Competition Contacts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contacts Collegiate Wind Competition Contacts Contact information for the Collegiate Wind Competition and its support staff are listed below. Collegiate Wind Competition Project Coordinator Elise DeGeorge elise.degeorge@nrel.gov 303-384-7136 Website contact Wind Tunnel Specifications

  18. Connecticut Rooftop Solar PV Permitting Guide

    Broader source: Energy.gov [DOE]

    The Connecticut Rooftop Solar PV Permitting Guide is a compilation of best practices and resources for solar PV permitting. The guide includes a summary of current codes and regulations affecting solar PV, best practices for streamlining the municipal permitting process, and tools to assist municipalities in creating a streamlined permit process for residential solar PV. Resources include a solar PV permit application, a structural review worksheet, an inspection checklist, and a model solar zoning ordinance.

  19. Energy Materials Network Contacts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contacts Energy Materials Network Contacts If you have questions about lab capabilities in a specific area of energy materials R&D, or if you have media questions related to a particular EMN consortium, please contact the appropriate EMN consortia below. LightMat Email: contact@lightmat.org Call: 509-375-3822 Visit www.lightmat.org for more contact information. ElectroCat Email: contact@electrocat.org Visit www.electrocat.org for more contact information. For media questions related to EMN,

  20. Improved Electrical Contact For Dowhhole Drilling Networks

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Dahlgren, Scott; Fox, Joe; Sneddon, Cameron

    2005-08-16

    An electrical contact system for transmitting information across tool joints while minimizing signal reflections that occur at the tool joints includes a first electrical contact comprising an annular resilient material. An annular conductor is embedded within the annular resilient material and has a surface exposed from the annular resilient material. A second electrical contact is provided that is substantially equal to the first electrical contact. Likewise, the second electrical contact has an annular resilient material and an annular conductor. The two electrical contacts configured to contact one another such that the annular conductors of each come into physical contact. The annular resilient materials of each electrical contact each have dielectric characteristics and dimensions that are adjusted to provide desired impedance to the electrical contacts.

  1. VPP POINTS OF CONTACT | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    VPP POINTS OF CONTACT VPP POINTS OF CONTACT July 9, 2015 The VPP Points of Contact document provides a current listing of all current DOE VPP participants Points of Contact for both Federal and Contractor positions. VPP Points of Contact - July 9, 2015 (204.36 KB) More Documents & Publications 2009 Voluntary Protection Programs Participants' Association (VPPPA) Presentation: Conducting your Annual VPP Self Assessment 2009 Voluntary Protection Programs Participants' Association (VPPPA)

  2. Contact OSUR Program | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Education Outreach Efforts Graduate Programs Off Site University Research (OSUR) Purpose PPPL Scientific and Engineering Capabilities Examples of OSUR Assisted Projects Contact OSUR Program Organization Contact Us Science Education Outreach Efforts Graduate Programs Off Site University Research (OSUR) Purpose PPPL Scientific and Engineering Capabilities Examples of OSUR Assisted Projects Contact OSUR Program Contact OSUR Program Contact OSUR Program The Off-Site University program is

  3. DOE Employee Concerns Program (ECP) Contact List | Department...

    Energy Savers [EERE]

    DOE Employee Concerns Program (ECP) Contact List DOE Employee Concerns Program (ECP) Contact List DOE Employee Concerns Program (ECP) Contact List PDF icon ECP Contact List May...

  4. Remedial Action Contacts Directory - 1997

    SciTech Connect (OSTI)

    1997-05-01

    This document, which was prepared for the US Department of Energy (DOE) Office of Environmental Restoration (ER), is a directory of 2628 individuals interested or involved in environmental restoration and/or remedial actions at radioactively contaminated sites. This directory contains a list of mailing addresses and phone numbers of DOE operations, area, site, project, and contractor offices; an index of DOE operations, area, site, project, and contractor office sorted by state; a list of individuals, presented by last name, facsimile number, and e-mail address; an index of affiliations presented alphabetically, with individual contacts appearing below each affiliation name; and an index of foreign contacta sorted by country and affiliation. This document was generated from the Remedial Action Contacts Database, which is maintained by the Remedial Action Program Information Center (RAPIC).

  5. contacts | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    contacts Non-Fossil Energy Research Director, Office of Energy Project Management Charles Zeh 304-285-4265 Deputy Director, Office of Energy Project Management Robert Bedick 304-285-4505 Director, Buildings & Efficiency Technologies James Ferguson 412-386-6043 Director, Power & Vehicles Technologies Hank Hinkle 304-285-6545 Director, Energy Delivery Technologies Eddie Christy 304-285-4604 Senior Energy Analyst, Smart Grid Steven Bossart 304-285-4643

  6. Sensor Characteristics Reference Guide

    SciTech Connect (OSTI)

    none,

    2013-04-01

    The purpose of the guide is to inform building owners and operators of the current status, capabilities, and limitations of sensor technologies. It is hoped that this guide will aid in the design and procurement process and result in successful implementation of building sensor and control systems. DOE will also use this guide to identify research priorities, develop future specifications for potential market adoption, and provide market clarity through unbiased information.

  7. Relativistic Guiding Center Equations

    SciTech Connect (OSTI)

    White, R. B.; Gobbin, M.

    2014-10-01

    In toroidal fusion devices it is relatively easy that electrons achieve relativistic velocities, so to simulate runaway electrons and other high energy phenomena a nonrelativistic guiding center formalism is not sufficient. Relativistic guiding center equations including flute mode time dependent field perturbations are derived. The same variables as used in a previous nonrelativistic guiding center code are adopted, so that a straightforward modifications of those equations can produce a relativistic version.

  8. Service Center Evaluation Guide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation Guide, Selected Bibliography on Electric Motor Repair, Model Repair Specifications for Low Voltage Motors, and Motor Repair Tech Brief- were produced by the U.S. ...

  9. Precision guided antiaircraft munition

    DOE Patents [OSTI]

    Hirschfeld, Tomas B.

    1987-01-01

    A small diameter, 20 mm to 50 mm, guided projectile is used in antiaircraft defense. A pulsing laser designator illuminates the target aircraft. Energy reflected from the aircraft is received by the guided projectile. The guided projectile is fired from a standard weapon but the spining caused by the riflings are removed before active tracking and guidance occurs. The received energy is focused by immersion optics onto a bridge cell. AC coupling and gating removes background and allows steering signals to move extended vanes by means of piezoelectric actuators in the rear of the guided projectile.

  10. Change Control Management Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-07-29

    The Guide provides a suggested approach and uniform guidance for managing project and contract changes through applying the requirements of DOE O 413.3B. No cancellation.

  11. Work for Others Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-09-24

    The Guide has been developed to assist Operations/Field Offices in developing their local WFO processes. Does not cancel/supersede other directives.

  12. Asset Protection Analysis Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-08-21

    The Guide provides examples of the application of as set protection analysis to several common problems. Canceled by DOE N 251.80.

  13. Direct-Write Contacts: Metallization and Contact Formation; Preprint

    SciTech Connect (OSTI)

    van Hest, M. F. A. M.; Curtis, C. J.; Miedaner, A.; Pasquarelli, R. M.; Kaydonova, T.; Hersh, P.; Ginley, D. S.

    2008-05-01

    Using direct-write approaches in photovoltaics for metallization and contact formation can significantly reduce the cost per watt of producing photovoltaic devices. Inks have been developed for various materials, such as Ag, Cu, Ni and Al, which can be used to inkjet print metallizations for various kinds of photovoltaic devices. Use of these inks results in metallization with resistivities close to those of bulk materials. By means of inkjet printing a metallization grid can be printed with better resolution, i.e. smaller lines, than screen-printing. Also inks have been developed to deposit transparent conductive oxide films by means of ultrasonic spraying.

  14. Contact order revisited: Influence of protein size on the folding rate

    SciTech Connect (OSTI)

    Ivankov, Dmitry N.; Garbuzynskiy, Sergiy O.; Alm, Eric; Plaxco, Kevin W.; Baker, David; Finkelstein, Alexei V.

    2003-05-28

    Guided by the recent success of empirical model predicting the folding rates of small two-state folding proteins from the relative contact order (CO) of their native structures, by a theoretical model of protein folding that predicts that logarithm of the folding rate decreases with the protein chain length L as L2/3, and by the finding that the folding rates of multistate folding proteins strongly correlate with their sizes and have very bad correlation with CO, we reexamined the dependence of folding rate on CO and L in attempt to find a structural parameter that determines folding rates for the totality of proteins. We show that the Abs{sub CO} = CO x L, is able to predict rather accurately folding rates for both two-state and multistate folding proteins, as well as short peptides, and that this Abs{sub CO} scales with the protein chain length as L0.70 {+-} 0.07 for the totality of studied single-domain proteins and peptides.

  15. Enhanced Semiconductor Nanocrystal Conductance via Solution Grown Contacts

    SciTech Connect (OSTI)

    Sheldon, Matthew T.; Trudeau, Paul-Emile; Mokari, Taleb; Wang, Lin-Wang; Alivisatos, A. Paul

    2009-08-19

    We report a 100,000-fold increase in the conductance of individual CdSe nanorods when they are electrically contacted via direct solution phase growth of Au tips on the nanorod ends. Ensemble UV-Vis and X-Ray photoelectron spectroscopy indicate this enhancement does not result from alloying of the nanorod. Rather, low temperature tunneling and high temperature (250-400 K) thermionic emission across the junction at the Au contact reveal a 75percent lower interface barrier to conduction compared to a control sample. We correlate this barrier lowering with the electronic structure at the Au-CdSe interface. Our results emphasize the importance of nanocrystal surface structure for robust device performance and the advantage of this contact method.

  16. Solar cell contact formation using laser ablation

    DOE Patents [OSTI]

    Harley, Gabriel; Smith, David D.; Cousins, Peter John

    2014-07-22

    The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline materiat layer; and forming conductive contacts in the plurality of contact holes.

  17. Solar cell contact formation using laser ablation

    DOE Patents [OSTI]

    Harley, Gabriel; Smith, David; Cousins, Peter

    2012-12-04

    The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.

  18. Solar cell contact formation using laser ablation

    SciTech Connect (OSTI)

    Harley, Gabriel; Smith, David D.; Cousins, Peter John

    2015-07-21

    The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.

  19. HQ Leave Guide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    is to provide you, as a Headquarters employee, advice and guidance concerning issues ... should contact the Headquarters EmployeeLabor Relations Services Team on (202) ...

  20. OPAM Policy Acquisition Guides | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    75.04 KB) More Documents & Publications DOE Acquisition Guide Chapter 15.1 Source Selection Guide Acquisition Guide Chapter 15 1 - Source Selection Guide Acquisition Templates

  1. First principles study of metal contacts to monolayer black phosphorous

    SciTech Connect (OSTI)

    Chanana, Anuja; Mahapatra, Santanu

    2014-11-28

    Atomically thin layered black phosphorous (BP) has recently appeared as an alternative to the transitional metal dichalcogenides for future channel material in a metal-oxide-semiconductor transistor due to its lower carrier effective mass. Investigation of the electronic property of source/drain contact involving metal and two-dimensional material is essential as it impacts the transistor performance. In this paper, we perform a systematic and rigorous study to evaluate the Ohmic nature of the side-contact formed by the monolayer BP (mBP) and metals (gold, titanium, and palladium), which are commonly used in experiments. Employing the Density Functional Theory, we analyse the potential barrier, charge transfer and atomic orbital overlap at the metal-mBP interface in an optimized structure to understand how efficiently carriers could be injected from metal contact to the mBP channel. Our analysis shows that gold forms a Schottky contact with a higher tunnel barrier at the interface in comparison to the titanium and palladium. mBP contact with palladium is found to be purely Ohmic, where as titanium contact demonstrates an intermediate behaviour.

  2. 2010 buyer's guide

    SciTech Connect (OSTI)

    2009-12-15

    This annual buyers' guide provides a resource for identifying the companies that provide the products and services required in the power generation industry. It is divided into 3 sections, namely products, services and companies. More than 1750 suppliers mostly in the USA are listed in over 400 product categories. The Buyer's Guide is also available online at www.power-eng.com.

  3. contacts | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solid Oxide Fuel Cells Contacts Shailesh Vora SOFC R&D Portfolio Manager U.S. Department of Energy National Energy Technology Laboratory P.O. Box 10940 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 Phone: 412-386-7515 Email: shailesh.vora@netl.doe.gov Heather Quedenfeld Supervisor, Advanced Energy Systems Team U.S. Department of Energy National Energy Technology Laboratory P.O. Box 10940 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 Phone: 412-386-5781 Email:

  4. contacts | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    contacts Strategic Center for Natural Gas and Oil Director Jared Ciferno 412-386-5862 Deputy Maria Vargas 412-386-5470 Technology Manager, Ultra-Deep Water Roy Long 281-494-2520 Technology Manager, Oil Technology R&D Eric Smistad 281-494-2619 Technology Manager, Natural Gas Technology R&D Ray Boswell 304-285-4541 Senior Management and Technical Advisor (SMTA) Al Yost 304-285-4479 Arctic Energy Coordinator Joel Lindstrom 907-271-3618 Program Analysis and Support Team Lead Maria Vargas

  5. Contact Information | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Information Environment, Safety, Health & Assurance (ESH&A), G40 TASF, 294-2153 Sean Whalen ESH&A Manager, Quality Assurance Manager Safety and Security Management 515-294-4965 sbwhale@ameslab.gov Shawn Nelson ESH&A Assistant Manager Safety Oversight Audit and Assessment Coordination Corrective Action Tracking 515-294-9769 nelsons@ameslab.gov Kent Hertzke Program Coordinator Budget Planning and Execution Contractor Assurance System 515-294-2325 hertzke@ameslab.gov Julia

  6. Revised Guide for Financial Assistance

    Office of Energy Efficiency and Renewable Energy (EERE)

    Attached is a revised Guide for Financial Assistance. The Guide has been updated to reflect changes to web sites, organization names, systems, and DOE policies and practices since the guide was last issued.

  7. SC e-journals Contact page

    Office of Scientific and Technical Information (OSTI)

    Contact Us If you have questions or are in need of assistance, please contact us at the following: E-Mail scejournals@osti.gov Phone: 865-576-1290 or 865-576-5600 Fax: 865-241-3826 ...

  8. L Contact sro | Open Energy Information

    Open Energy Info (EERE)

    sro Jump to: navigation, search Name: L-Contact sro Place: Praha 4, Czech Republic Zip: 140 00 Product: Czech developer of PV projects in the Czech Republic. References: L-Contact...

  9. Clean Cities Program Contacts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet provides contact information for program staff of the U.S. Department of Energy's Clean Cities program, as well as contact information for the nearly 100 local Clean Cities coalitions across the country.

  10. Contact Us | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    NNSA Production Office Contact Us Contact Us NPO Public Affairs Manager Steven Wyatt (865) 576-9918 NPO Mailing Address NNSA Production Office PO Box 2050 Oak Ridge, TN 37831 Fax...

  11. Contact Us | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Contact Us If you have questions about activities at the Sandia Field Office, please contact the SFO Public Affairs Director at (505) 845-5264. Our mailing address is: U. S. ...

  12. ORISE Science Education Programs: Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us David Duncan Director, Scientific Assessment and Workforce Development Work: 865.576.3424 science.education@orau.org

  13. Contact the GTT | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contact the GTT Contact the GTT Contact the GTT General Interest, Comments or Feedback? The DOE Grid Tech Team is intended to both help coordinate efforts from within DOE, and also be a conduit for information and collaboration with those outside of DOE. As events and documents are posted to this website, we welcome your comments and interest in the GTT's efforts. Please feel free to contact the GTT via email: gridtechteam@hq.doe.gov.

  14. Microsoft Word - Current Contact Information2.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Information: Name: Date: Z Number: Home Phone: ( ) Cell Phone: ( ) Work Phone: ( ) Mailing Address: Street or PO Box Apt...

  15. Computing and Computational Sciences Directorate - Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home About Us Contacts Jeff Nichols Associate Laboratory Director Computing and Computational Sciences Becky Verastegui Directorate Operations Manager Computing and...

  16. TEPP Points of Contact | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TEPP Points of Contact TEPP Points of Contact TEPP is a national program managed at a headquarters level and implemented through the TEPP Central Operations Center managed by Technical Resources Group, Inc. For additional information on the TEPP, or to find out how you can obtain TEPP materials or schedule a class, contact either the HQ Program Manager or TEPP Central Operations. EM Contact EM Headquarters Program Manager Ellen Edge, Office of Transportation Ellen.Edge@em.doe.gov U.S. Department

  17. Privacy Act Officers Contact List | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Privacy Act Officers Contact List Privacy Act Officers Contact List Privacy Act Officers Contact List.docx (20.94 KB) More Documents & Publications Technical Standards Managers Contact List DOE-TSL-2-2002 VPP POINTS OF CONTACT

  18. DOE - NNSA/NFO -- FRMAC Contact Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Information NNSA/NFO Language Options U.S. DOE/NNSA - Nevada Field Office FRMAC Contact Information For any distribution of FRMAC Manuals, FRMAC CD's, FRMAC Conference Calls, FRMAC Events Calendar, or CMweb please contact Elizabeth Becerril, becerre@nv.doe.gov. ^ TOP ^ Print Icon PRINT PAGE | Email Icon EMAIL PAGE Date Last Modified: November 18

  19. Contact Funding Opportunities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contact Funding Opportunities Contact Funding Opportunities Contact the Office of Energy Efficiency and Renewable Energy with additional questions about the funding application process or project requirements. For questions about the EERE funding website, fill out the form below. Your Email Message Here * CAPTCHA This question is for testing whether you are a human visitor and to prevent automated spam submissions. Submit

  20. Uniform Methods Project Contacts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    » Uniform Methods Project Contacts Uniform Methods Project Contacts The primary contacts for the Uniform Methods Project are below. Send comments, questions, and feedback to ump@ee.doe.gov. U.S. Department of Energy Michael Li National Renewable Energy Laboratory Dan Beckley Chuck Kurnik

  1. Beryllium Program Points of Contact - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Points of Contact About Us Hanford Cultural Resources Beryllium Program Beryllium Program Points of Contact Beryllium Facilities & Areas Beryllium Program Information Hanford CBDPP Committee Beryllium FAQs Beryllium Related Links Hanford Beryllium Awareness Group (BAG) Program Performance Assessments Beryllium Program Feedback Beryllium Health Advocates Primary Contractors/Employers Medical Testing and Surveillance Facilities General Resources Beryllium Program Points of Contact

  2. Energy Literacy Social Studies Guides

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    does transportation impact the environment? Energy Literacy Essential Principle 7: The quality of life of individuals and societies is affected by energy choices. C3 Framework for Social Studies Focus Indicators D1: Identify disciplinary ideas associated with a compelling question. (D1.2.K-2) D2: Identify the benefits and costs of making various personal decisions. (D2.Eco.2.K-2) D3: Gather relevant information from one or two sources while using the origin and structure to guide the selection.

  3. Single-contact tunneling thermometry

    DOE Patents [OSTI]

    Maksymovych, Petro

    2016-02-23

    A single-contact tunneling thermometry circuit includes a tunnel junction formed between two objects. Junction temperature gradient information is determined based on a mathematical relationship between a target alternating voltage applied across the junction and the junction temperature gradient. Total voltage measured across the junction indicates the magnitude of the target alternating voltage. A thermal gradient is induced across the junction. A reference thermovoltage is measured when zero alternating voltage is applied across the junction. An increasing alternating voltage is applied while measuring a thermovoltage component and a DC rectification voltage component created by the applied alternating voltage. The target alternating voltage is reached when the thermovoltage is nullified or doubled by the DC rectification voltage depending on the sign of the reference thermovoltage. Thermoelectric current and current measurements may be utilized in place of the thermovoltage and voltage measurements. The system may be automated with a feedback loop.

  4. Product Guide Product Guide Volumes Category Prices Table Crude...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -- 49 Product Guide Volumes Category Prices Table Energy Information Administration Petroleum Marketing...

  5. Product Guide Product Guide Volumes Category Prices Table Crude...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    suppliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -- 49 Product Guide Volumes Category Prices Table Energy Information Administration Petroleum...

  6. Operations & Maintenance Best Practices Guide: Chapter 3

    Broader source: Energy.gov [DOE]

    Guide describes chapter 3 of the Operations & Maintenance Best Practices: A Guide to Achieving Operational Efficiency.

  7. Risk Management Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-01-18

    This Guide provides non-mandatory risk management approaches for implementing the requirements of DOE O 413.3B, Program and Project Management for the Acquisition of Capital Assets. Supersedes DOE G 413.3-7.

  8. Cost Estimating Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-05-09

    This Guide provides uniform guidance and best practices that describe the methods and procedures that could be used in all programs and projects at DOE for preparing cost estimates.

  9. Quality Assurance Program Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-08-16

    This Guide provides information on principles, requirements, and practices used to establish and implement an effective Quality Assurance Program. Admin Chg 2, dated 5-8-13, Admin Chg 1.

  10. Cost Estimating Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    The objective of this Guide is to improve the quality of cost estimates and further strengthen the DOE program/project management system. The original 25 separate chapters and three appendices have been combined to create a single document.

  11. Risk Management Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-01-12

    The purpose of this guide is to describe effective risk management processes. The continuous and iterative process includes updating project risk documents and the risk management plan and emphasizes implementation communication of the risks and actions taken.

  12. Cost Estimating Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-05-09

    This Guide provides uniform guidance and best practices that describe the methods and procedures that could be used in all programs and projects at DOE for preparing cost estimates. No cancellations.

  13. Guides and Specifications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cody Taylor Building Technologies Program U.S. Department of Energy Guides and ... for Real Buildings 3. 10:00 - 10:30 Best Practices for Controlling Capital Costs in ...

  14. Technology Readiness Assessment Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-09-15

    The Guide assists individuals and teams involved in conducting Technology Readiness Assessments (TRAs) and developing Technology Maturation Plans (TMPs) for the DOE capital asset projects subject to DOE O 413.3B. Supersedes DOE G 413.3-4.

  15. Service Center Evaluation Guide

    Office of Energy Efficiency and Renewable Energy (EERE)

    To be assured of a quality product, customers of motor repair service centers need to be knowledgeable about the service they're purchasing. This guide provides information to assist in evaluating motor repair service centers.

  16. EERE Peer Review Guide

    SciTech Connect (OSTI)

    2009-01-18

    The primary purpose of this guide is to provide managers and staff guidance in establishing formal in-progress peer review that provides intellectually fair expert evaluation of EERE RD3 and supporting business administration programs, both retrospective and prospective.

  17. Change Control Management Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-07-29

    The Guide provides a suggested approach and uniform guidance for managing project and contract changes through applying the requirements of DOE O 413.3B. Admin Chg 1 dated 10-22-2015.

  18. User Guide for San José Finance Tool

    Broader source: Energy.gov [DOE]

    This user guide is intended primarily for the finance tool itself rather than an introduction to photovoltaics (PV) and PV finance. Users who do not have a basic understanding of PV systems, terminology, and financing structures are encouraged to review the documents referenced at the end of the guide...

  19. Wind Energy Teachers Guide

    SciTech Connect (OSTI)

    anon.

    2003-01-01

    This guide, created by the American Wind Association, with support from the U.S. Department of Energy, is a learning tool about wind energy targeted toward grades K-12. The guide provides teacher information, ideas for sparking children's and students' interest, suggestions for activities to undertake in and outside the classroom, and research tools for both teachers and students. Also included is an additional resources section.

  20. Security guide for subcontractors

    SciTech Connect (OSTI)

    Adams, R.C.

    1991-01-01

    This security guide of the Department of Energy covers contractor and subcontractor access to DOE and Mound facilities. The topics of the security guide include responsibilities, physical barriers, personnel identification system, personnel and vehicular access controls, classified document control, protecting classified matter in use, storing classified matter repository combinations, violations, security education clearance terminations, security infractions, classified information nondisclosure agreement, personnel security clearances, visitor control, travel to communist-controlled or sensitive countries, shipment security, and surreptitious listening devices.

  1. Corrective Action Program Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-03-02

    This Guide was developed to assist the Department of Energy (DOE) organizations and contractors in the development, implementation, and followup of corrective action programs utilizing the feedback and improvement core safety function within DOE's Integrated Safety Management System. This Guide outlines some of the basic principles, concepts, and lessons learned that DOE managers and contractors might consider when implementing corrective action programs based on their specific needs. Canceled by DOE G 414.1-2B. Does not cancel other directives.

  2. EIA Writing Style Guide

    Gasoline and Diesel Fuel Update (EIA)

    Writing Style Guide April 2015 U.S. Energy Information Administration Office of Communications This publication is available on the EIA employee intranet and at: www.eia.gov/eiawritingstyleguide.pdf U.S. government publications are not subject to copyright protection, but you should acknowledge EIA as the source if you use or reproduce this content. Contents Introduction to the EIA Writing Style Guide ........................................................................ Chapter 1: Editorial

  3. Unveiling the Implementation Guide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oak Ridge National Laboratory www.ornl.gov Unveiling the Implementation Guide October 11, 2011 Michaela Martin Program Manager Residential, Commercial, and Industrial Energy Efficiency Oak Ridge National Laboratory 2 | Oak Ridge National Laboratory www.ornl.gov Guiding Principles for Successfully Implementing Industrial Energy Assessment Recommendations * New resource for industry * Identifies key principles and actions that lead to successful implementation of energy assessment recommendations

  4. VOLTTRON: User Guide

    SciTech Connect (OSTI)

    Lutes, Robert G.; Katipamula, Srinivas; Akyol, Bora A.; Tenney, Nathan D.; Haack, Jereme N.; Monson, Kyle E.; Carpenter, Brandon J.

    2014-04-24

    This document is a user guide for the deployment of the Transactional Network platform and agent/application development within the VOLTTRON. The intent of this user guide is to provide a description of the functionality of the Transactional Network Platform. This document describes how to deploy the platform, including installation, use, guidance, and limitations. It also describes how additional features can be added to enhance its current functionality.

  5. Hydrogen Equipment Certification Guide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Equipment Certification Guide U.S. Department of Energy Fuel Cell Technologies Office December 10 th , 2015 Presenter: Nick Barilo Pacific Northwest National Laboratory (PNNL) Hydrogen Safety Program Manager DOE Host: Will James - DOE Fuel Cell Technologies Office 2 | Fuel Cell Technologies Office eere.energy.gov Question and Answer * Please type your questions into the question box 2 / / Hydrogen Equipment Certification Guide: Introduction and Kickoff for the Stakeholder Review Nick Barilo PNNL

  6. Presto users guide version 2.6.

    SciTech Connect (OSTI)

    Gullerud, Arne S.; Koteras, James Richard; Hales, Jason Dean; Crane, Nathan Karl

    2006-10-01

    Presto is a Lagrangian, three-dimensional explicit, transient dynamics code for the analysis of solids subjected to large, suddenly applied loads. Presto is designed for problems with large deformations, nonlinear material behavior, and contact. There is a versatile element library incorporating both continuum and structural elements. The code is designed for a parallel computing environment. This document describes the input for the code that gives users access to all of the current functionality in the code. Presto is built in an environment that allows it to be coupled with other engineering analysis codes. The input structure for the code, which uses a concept called scope, reflects the fact that Presto can be used in a coupled environment. This guide describes the scope concept and the input from the outermost to the innermost input scopes. Within a given scope, the descriptions of input commands are grouped based on code functionality. For example, all material input command lines are described in a section of the user's guide for all of the material models in the code.

  7. Structure-Guided Lead Optimization of Triazolopyrimidine-Ring Substituents Identifies Potent Plasmodium falciparum Dihydroorotate Dehydrogenase Inhibitors with Clinical Candidate Potential

    SciTech Connect (OSTI)

    Coteron, Jose M.; Marco, Maria; Esquivias, Jorge; Deng, Xiaoyi; White, Karen L.; White, John; Koltun, Maria; El Mazouni, Farah; Kokkonda, Sreekanth; Katneni, Kasiram; Bhamidipati, Ravi; Shackleford, David M.; Angulo-Barturen, Inigo; Ferrer, Santiago B.; Jimenez-Diaz, Maria Belen; Gamo, Francisco-Javier; Goldsmith, Elizabeth J.; Charman, William N.; Bathurst, Ian; Floyd, David; Matthews, David; Burrows, Jeremy N.; Rathod, Pradipsinh K.; Charman, Susan A.; Phillips, Margaret A.

    2012-02-27

    Drug therapy is the mainstay of antimalarial therapy, yet current drugs are threatened by the development of resistance. In an effort to identify new potential antimalarials, we have undertaken a lead optimization program around our previously identified triazolopyrimidine-based series of Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors. The X-ray structure of PfDHODH was used to inform the medicinal chemistry program allowing the identification of a potent and selective inhibitor (DSM265) that acts through DHODH inhibition to kill both sensitive and drug resistant strains of the parasite. This compound has similar potency to chloroquine in the humanized SCID mouse P. falciparum model, can be synthesized by a simple route, and rodent pharmacokinetic studies demonstrated it has excellent oral bioavailability, a long half-life and low clearance. These studies have identified the first candidate in the triazolopyrimidine series to meet previously established progression criteria for efficacy and ADME properties, justifying further development of this compound toward clinical candidate status.

  8. Control system design guide

    SciTech Connect (OSTI)

    Sellers, David; Friedman, Hannah; Haasl, Tudi; Bourassa, Norman; Piette, Mary Ann

    2003-05-01

    The ''Control System Design Guide'' (Design Guide) provides methods and recommendations for the control system design process and control point selection and installation. Control systems are often the most problematic system in a building. A good design process that takes into account maintenance, operation, and commissioning can lead to a smoothly operating and efficient building. To this end, the Design Guide provides a toolbox of templates for improving control system design and specification. HVAC designers are the primary audience for the Design Guide. The control design process it presents will help produce well-designed control systems that achieve efficient and robust operation. The spreadsheet examples for control valve schedules, damper schedules, and points lists can streamline the use of the control system design concepts set forth in the Design Guide by providing convenient starting points from which designers can build. Although each reader brings their own unique questions to the text, the Design Guide contains information that designers, commissioning providers, operators, and owners will find useful.

  9. A guide for the gas and oil industry

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    This guide has been prepared to assist those in the natural gas and oil industry who may not be familiar with how the Federal government, particularly the U.S. Department of Energy (DOE or Department), does business with private sector companies. Basic information is provided on what DOE is trying to do, why it wants to work with the natural gas and oil industry, how it can work with companies, who to contact, and where to inquire for further information. This last item is noteworthy because it is important for users of this guide to be able to access information about subjects that may interest them. Selected other Federal agencies and their activities related to those of DOE`s Office of Fossil Energy (FE or Fossil Energy) also are included in this document as Appendix A. This guide provides an address and/or phone number for every topic covered to prevent any information impasse. If a question is not adequately answered by the guide, please do not hesitate to contact the appropriate person or office. It is hoped that the information provided in this guide will lead to a better understanding of the mission, roles, and procedures of DOE and result in more and better cooperative working relationships between the natural gas and oil industry and DOE. Such relationships will provide a significant benefit to our Nation`s economic, technological, and energy security.

  10. Switch contact device for interrupting high current, high voltage, AC and DC circuits

    DOE Patents [OSTI]

    Via, Lester C.; Witherspoon, F. Douglas; Ryan, John M.

    2005-01-04

    A high voltage switch contact structure capable of interrupting high voltage, high current AC and DC circuits. The contact structure confines the arc created when contacts open to the thin area between two insulating surfaces in intimate contact. This forces the arc into the shape of a thin sheet which loses heat energy far more rapidly than an arc column having a circular cross-section. These high heat losses require a dramatic increase in the voltage required to maintain the arc, thus extinguishing it when the required voltage exceeds the available voltage. The arc extinguishing process with this invention is not dependent on the occurrence of a current zero crossing and, consequently, is capable of rapidly interrupting both AC and DC circuits. The contact structure achieves its high performance without the use of sulfur hexafluoride.

  11. Energy Smart Guide to Campus Cost Savings: Today's Trends in Project Finance, Clean Fuel Fleets, Combined Heat& Power, Emissions Markets

    SciTech Connect (OSTI)

    Not Available

    2003-07-01

    The Energy Smart Guide to Campus Cost Savings covers today's trends in project finance, combined heat& power, clean fuel fleets and emissions trading. The guide is directed at campus facilities and business managers and contains general guidance, contact information and case studies from colleges and universities across the country.

  12. Technical Standards Managers Contact List | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Standards Managers Contact List Technical Standards Managers Contact List May 2016 Contact list for Technical Standards Managers in DOE, Field offices and National ...

  13. EIA-Voluntary Reporting of Greenhouse Gases Program - Contact

    U.S. Energy Information Administration (EIA) Indexed Site

    Contact Voluntary Reporting of Greenhouse Gases Program Contact For more information on the Voluntary Reporting of Greenhouse Gases Program, contact us via e-mail, phone, fax, or ...

  14. POINT OF CONTACT RESPONSIBILITIES FOR RECORDS MANAGEMENT | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    POINT OF CONTACT RESPONSIBILITIES FOR RECORDS MANAGEMENT POINT OF CONTACT RESPONSIBILITIES FOR RECORDS MANAGEMENT A list of point of contact responsibilites for Records Management...

  15. OpenEI Contacts | OpenEI Community

    Open Energy Info (EERE)

    to improve efficiency and user experience. Contacts on OpenEI are designed to provide contact information for industry professionals or organization positions. Contact information...

  16. DOE Privacy Program Contact Listing as of September 21, 2010...

    Broader source: Energy.gov (indexed) [DOE]

    DOE Privacy Program Contact Listing as of September 21, 2010 DOE Privacy Program Contact Listing as of September 21, 2010 More Documents & Publications Privacy Act Officers Contact...

  17. Category:RAPID Roadmap Contact Properties | Open Energy Information

    Open Energy Info (EERE)

    RAPID Roadmap Contact Properties Jump to: navigation, search This page contains properties that are used with Contacts to set RAPID Roadmap Section contact values, and provide that...

  18. Operations & Maintenance Best Practices Guide: Release 3.0

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    � FEMP Staff Contact List � O&M Best Practices Guide, Release 3.0 B.1 The U.S. Department of Energy (DOE) Federal Energy Management Program facilitates the Federal Government's implementation of sound, cost-effective energy management and investment practices to enhance the nation's energy security and environmental stewardship. General Contact Information EE-2L 1000 Independence Avenue, SW Washington, DC 20585-0121 202-586-5772 www.femp.energy.gov Leadership Team Richard Kidd Program

  19. Realistic-contact-induced enhancement of rectifying in carbon-nanotube/graphene-nanoribbon junctions

    SciTech Connect (OSTI)

    Zhang, Xiang-Hua [School of Physics and Microelectronics Science, Hunan University, Changsha 410082 (China); Department of Electrical and Information Engineering, Hunan Institute of Engineering, Xiangtan 411101 (China); Li, Xiao-Fei, E-mail: xfli@theochem.kth.se [School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054 (China); Wang, Ling-Ling, E-mail: llwang@hnu.edu.cn; Xu, Liang; Luo, Kai-Wu [School of Physics and Microelectronics Science, Hunan University, Changsha 410082 (China)

    2014-03-10

    Carbon-nanotube/graphene-nanoribbon junctions were recently fabricated by the controllable etching of single-walled carbon-nanotubes [Wei et al., Nat. Commun. 4, 1374 (2013)] and their electronic transport properties were studied here. First principles results reveal that the transmission function of the junctions show a heavy dependence on the shape of contacts, but rectifying is an inherent property which is insensitive to the details of contacts. Interestingly, the rectifying ratio is largely enhanced in the junction with a realistic contact and the enhancement is insensitive to the details of contact structures. The stability of rectifying suggests a significant feasibility to manufacture realistic all-carbon rectifiers in nanoelectronics.

  20. Contact Us | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Overview History Staff Directory Our Teams User Advisory Council Careers Margaret Butler Fellowship Visiting Us Contact Us Contact Us Your name * Your e-mail address * Subject * Message * Verification * Refresh Type the characters you see in this picture. Type the characters you see in the picture; if you can't read them, submit the form and a new image will be generated. Not case sensitive. Switch to audio verification. Home page Send message Staff Contacts Michael Papka Division Director

  1. Contact Technology Transitions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contact Technology Transitions Contact Technology Transitions Please use this form to send us your comments, report problems, and/or ask questions about information on the Office of Technology Transition website. All entries on the form will go to the Office of Technology Transitions at the Department of Energy. If you wish to contact a specific laboratory, please do so directly on this page. Your Email Message Here * CAPTCHA This question is for testing whether you are a human visitor and to

  2. Weatherization and Intergovernmental Program Contacts | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy You are here Home » About the Office » Weatherization and Intergovernmental Program Contacts Weatherization and Intergovernmental Program Contacts For information about how the Weatherization and Intergovernmental Programs Office is organized, see the organization chart. You can contact the office by email or via postal delivery at: U.S. Department of Energy Energy Efficiency and Renewable Energy 1000 Independence Ave, SW, Mail Stop EE-2K U.S. Department of Energy Washington, DC

  3. Contact Us | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Contact Us Please contact us if you have questions or would like for us to help identify opportunities for your participation in Y-12 procurements. Socioeconomic Programs Office Consolidated Nuclear Security, L.L.C. P.O. Box 2009 Oak Ridge TN 37831-6501 smallbusiness@y12.doe.gov Suppliers Important notice to suppliers Procurement Accounts Payable Socioeconomic Programs Small-Business Policy In-Reach/Outreach Activities Mentor Protégé Program

  4. Non-contact feature detection using ultrasonic Lamb waves

    DOE Patents [OSTI]

    Sinha, Dipen N.

    2011-06-28

    Apparatus and method for non-contact ultrasonic detection of features on or within the walls of hollow pipes are described. An air-coupled, high-power ultrasonic transducer for generating guided waves in the pipe wall, and a high-sensitivity, air-coupled transducer for detecting these waves, are disposed at a distance apart and at chosen angle with respect to the surface of the pipe, either inside of or outside of the pipe. Measurements may be made in reflection or transmission modes depending on the relative position of the transducers and the pipe. Data are taken by sweeping the frequency of the incident ultrasonic waves, using a tracking narrow-band filter to reduce detected noise, and transforming the frequency domain data into the time domain using fast Fourier transformation, if required.

  5. TriBITS Developers Guide and Reference

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TriBITS Developers Guide and Reference Ross Bartlett Oak Ridge National Laboratory March 31, 2014 CASL-U-2014-0075-000-E CASL-U-2014-0075-000-b TriBITS Developers Guide and Reference Author: Roscoe A. Bartlett (bartlettra@ornl.gov) Abstract This document describes the usage of TriBITS to build, test, and deploy complex software. The primary audience are those individuals who develop on a software project which uses TriBITS. The overall structure of a TriBITS project is described including all of

  6. Contacts | National Nuclear Security Administration (NNSA) |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing Contacts ASC Program Managers - Headquarters Acting Director, Office of Advanced ... Codes, and Verification and Validation Program Manager Thuc Hoang - Computational ...

  7. Methods of contacting substances and microsystem contactors

    DOE Patents [OSTI]

    TeGrotenhuis, Ward E [Kennewick, WA; Rassat, Scot D [Benton City, WA; Stenkamp, Victoria S [Richland, WA

    2005-05-22

    A microchannel contactor and methods of contacting substances in microchannel apparatus are described. Some preferred embodiments are combined with microchannel heat exchange.

  8. BISON Contact Improvements CASL FY14 Report

    SciTech Connect (OSTI)

    B. W. Spencer; J. D. Hales; D. R. Gaston; D. A. Karpeev; R. L. Williamson; S. R. Novascone; D. M. Perez; R. J. Gardner; K. A. Gamble

    2014-09-01

    The BISON code is the foundation for multiple fuel performance modeling efforts, and is cur- rently under heavy development. For a variety of fuel forms, the effects of heat conduction across a gap and mechanical contact between components of a fuel system are very significant. It is thus critical that BISON have robust capabilities for enforcement of thermal and mechanical contact. BISON’s solver robustness has generally been quite good before mechanical contact between the fuel and cladding occurs, but there have been significant challenges obtaining converged so- lutions once that contact occurs and the solver begins to enforce mechanical contact constraints. During the current year, significant development effort has been focused on the enforcement of mechanical contact to provide improved solution robustness. In addition to this work to improve mechanical contact robustness, an investigation into ques- tionable results attributable to thermal contact has been performed. This investigation found that the order of integration typically used on the surfaces involved in thermal contact was not suffi- ciently high. To address this problem, a new option was provided to permit the use of a different integration order for surfaces, and new usage recommendations were provided.

  9. DOE Headquarters Contact Information: Employee Concerns Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Employee Concerns Program http:energy.govdiversity 1 DOE Headquarters Contact Information: Employee Concerns Program Patricia Zarate Phone: 202-586-2248 Fax: 202-586-3075 ...

  10. ORISE Health Communication and Training: Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Marcus Weseman Senior Associate Director; Health, Energy and Environment Work: 865.576.3420 health.communication@orau.org or technical.training@orau.org...

  11. EV Everywhere: Contact Us | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    For information on workplace charging, please see the Workplace Charging Challenge's website. For technical questions about research and development on EVs, please contact a ...

  12. Registration Contact List: Electricity Transmission System Workshop

    Broader source: Energy.gov (indexed) [DOE]

    ... Gordon H. Matthews General Engineer Bonneville Power Administration PO Box 3621 Portland OR 97208 United States 503-230-3275 Registration Contact List: Electricity Transmission ...

  13. ARM - ARM Engineering and Operations Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send ARM Engineering and Operations Contacts Technical Coordination Office Person Role Responsible Area PhoneEmail Jim Mather ARM Technical DirectorEngineering Manager...

  14. Polycrystalline silicon passivated tunneling contacts for high...

    Office of Scientific and Technical Information (OSTI)

    efficiency silicon solar cells Citation Details In-Document Search Title: Polycrystalline silicon passivated tunneling contacts for high efficiency silicon solar cells Authors: ...

  15. Administrative Contacts | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administrative Contacts Business and Administration Stephanie Carlson SSRL Business Manager x2033 Natalie Cramar SSRL Financial Planner Budgets, Proposals, Financial planning,...

  16. ORISE: Contact Us - Scientific Peer Review

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Tony Lester Senior Associate Director, Scientific Assessment and Workforce Development Work: 865.576.3304 peerreview@orau.org

  17. ARM - AMF2 Organization and Contact Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 AMF2 Organization and Contact Information The Argonne AMF2...

  18. Emergency Contacts - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emergency Contacts Emergency Contacts EMERGENCY CONTACTS During your stay, in the event of an emergency, you may contact any of the following people: During the day (8:30AM - 4:30PM): Professor C.K. Law 609.258.5271 (O); 609.306.8450 (C) Dr Abhishek Saha 609.258.4083 (O) Michelle Horgan (CES) 609.258.6116 Conference & Events Services (CES) 609.258.6115 During the day and also after hours: Princeton University Department of Public Safety, 609.258.1000 Top © 2016 The Trustees of Princeton

  19. Contacts and Staff | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contacts and Staff Contacts and Staff Contacts Contact the U.S. Department of Energy (DOE) Office of Indian Energy by mail, email, or phone. Washington, D.C. DOE Office of Indian Energy 1000 Independence Ave. SW Room 8E-060 Washington, D.C. 20585 Help Desk Phone: 720-356-1352 Email: tribal@ee.doe.gov Leadership Christopher Clark Deschene Director, Office of Indian Energy Policy and Programs Christopher Clark Deschene (Navajo Nation) is the director of the Office of Indian Energy. Mr. Deschene

  20. Laboratory Equipment Donation Program - Contact Us

    Office of Scientific and Technical Information (OSTI)

    Contact Us If you have a question about the Laboratory Equipment Donation Program (LEDP), we recommend you check frequently asked questions. If your question still has not been ...

  1. NREL: Energy Systems Integration Facility - Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For more information about the Energy Systems Integration Facility, contact us. Photo of four people standing in front of laboratory equipment. Connect and collaborate with NREL's ...

  2. ARM - ARM Education and Outreach Contact Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox ...

  3. Contact the Sustainability Performance Office | Department of...

    Office of Environmental Management (EM)

    Performance Office Contact the Sustainability Performance Office The U.S. Department of Energy (DOE) Sustainability Performance Office (SPO) oversees departmental sustainability...

  4. Clean Cities Program Contacts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-10-01

    This fact sheet contains contact information for program staff and coalition coordinators for the U.S. Department of Energy's Clean Cities program.

  5. Clean Cities Program Contacts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-01-01

    This fact sheet contains contact information for program staff and coalition coordinators for the U.S. Department of Energy's Clean Cities program.

  6. Clean Cities Program Contacts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    This fact sheet contains contact information for program staff and coalition coordinators for the U.S. Department of Energy's Clean Cities program.

  7. Contact Hanford Fire Department - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department Contact Hanford Fire Department Hanford Fire Department Hanford Fire Department Home About Hanford Fire Department Fire and Life Safety Information Hot Links to Cool...

  8. RAPID/Contact | Open Energy Information

    Open Energy Info (EERE)

    RAPIDContact < RAPID(Redirected from RAPID toolkitContact) Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission...

  9. Contact us | Energy Frontier Research Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact us Home Director Donald T Morelli Professor of Materials Science and Director, MSUDOE Energy Frontier Research Center Department of Chemical Engineering & Materials...

  10. RAPID/Contact | Open Energy Information

    Open Energy Info (EERE)

    Contact < RAPID Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute...

  11. LEDSGP/contact | Open Energy Information

    Open Energy Info (EERE)

    contact < LEDSGP(Redirected from LEDSGPaboutcontacts) Jump to: navigation, search Low Emission Development Strategies Global Partnership Advancing climate-resilient, low-emission...

  12. Template:ContactInfo | Open Energy Information

    Open Energy Info (EERE)

    designed for use by Companies, Organizations and Government Agencies. To specify the contact info for an organization, go to that organization's page and click Edit with Form....

  13. Montana Watershed Protection Section Contacts Webpage | Open...

    Open Energy Info (EERE)

    contact information for the Watershed Protection Section of the Water Quality Planning Bureau. Author Montana Water Quality Planning Bureau Published State of Montana, Date Not...

  14. MaxxContact | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: MaxxContact Place: Wolfen, Saxony-Anhalt, Germany Zip: 6766 Product: Germany-based cable and wire company. The firm also produces...

  15. Phoenix Contact Gmbh | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Phoenix Contact Gmbh Place: Blomberg, Lower Saxony, Germany Zip: 32825 Product: Germany-based firm in electrical connection, interface and...

  16. Contacts for Cybersecurity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cybersecurity Contacts for Cybersecurity Office of the Associate CIO for Cybersecurity Office of the Chief Information Officer US Department of Energy 202-586-0166

  17. Federal NEPA Contacts | Department of Energy

    Office of Environmental Management (EM)

    CEQ and most Federal agencies identify primary points of contact for NEPA compliance. Normally a senior environmental professional, environmental law attorney, or member of agency ...

  18. Contact Us - HPMC Occupational Health Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Us » Contact PPPO Contact PPPO For more information about the Department of Energy's Portsmouth/Paducah Project Office and its programs, contact us: By Mail: Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, KY 40513 By Phone: Lexington : (859) 219-4000 Portsmouth : (740) 897-5010 Paducah : (270) 441-6800 By E-mail: Send general information to the PPPO office at: PPPOinfo@lex.doe.gov Contact PPPO Human Resources by email at: HumanResources.PPPO@lex.doe.gov For

  19. Accommodation Program Contacts | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The US Department of Energy (DOE) point of contact for DOE employees wishing to request assistive technology at no cost through the Department of Defense (DOD) Computer ...

  20. EERE Communications Contacts | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Find the contact information for key members of the Office of Energy Efficiency and Renewable Energy (EERE) Web and print teams. EERE Web Project Manager EERE Web Template ...

  1. VPP Points of Contact web version 07092015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Updated 792015 VPP POINTS OF CONTACT Organization DOE POC Contractor DOE Federal POC Advanced Technologies and Laboratories International, Inc. (ATL)222-S Laboratory Analytical ...

  2. CRISPR RNA-guided Surveillance in Escherichia Coli | Stanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CRISPR RNA-guided Surveillance in Escherichia Coli Friday, January 30, 2015 CRISPR figure Figure 1. Overview of the Cascade crystal structure (PDB 4TVX). A) Shown is a schematic of...

  3. Manifold tool guide

    DOE Patents [OSTI]

    Djordjevic, A.

    1983-12-27

    A tool guide is described that makes possible the insertion of cleaning and/or inspection tools into a manifold pipe that will dislocate and extract the accumulated sediment in such manifold pipes. The tool guide basically comprises a right angled tube (or other angled tube as required) which can be inserted in a large tube and locked into a radially extending cross pipe by adjustable spacer rods and a spring-loaded cone, whereby appropriate cleaning tools can be inserted into the cross pipe for cleaning, inspection, etc. 3 figs.

  4. Manifold tool guide

    DOE Patents [OSTI]

    Djordjevic, Aleksandar

    1983-12-27

    A tool guide that makes possible the insertion of cleaning and/or inspection tools into a manifold pipe that will dislocate and extract the accumulated sediment in such manifold pipes. The tool guide basically comprises a right angled tube (or other angled tube as required) which can be inserted in a large tube and locked into a radially extending cross pipe by adjustable spacer rods and a spring-loaded cone, whereby appropriate cleaning tools can be inserted into to cross pipe for cleaning, inspection, etc.

  5. Synthetic guide star generation

    SciTech Connect (OSTI)

    Payne, Stephen A; Page, Ralph H; Ebbers, Christopher A; Beach, Raymond J

    2008-06-10

    A system for assisting in observing a celestial object and providing synthetic guide star generation. A lasing system provides radiation at a frequency at or near 938 nm and radiation at a frequency at or near 1583 nm. The lasing system includes a fiber laser operating between 880 nm and 960 nm and a fiber laser operating between 1524 nm and 1650 nm. A frequency-conversion system mixes the radiation and generates light at a frequency at or near 589 nm. A system directs the light at a frequency at or near 589 nm toward the celestial object and provides synthetic guide star generation.

  6. Synthetic guide star generation

    DOE Patents [OSTI]

    Payne, Stephen A.; Page, Ralph H.; Ebbers, Christopher A.; Beach, Raymond J.

    2004-03-09

    A system for assisting in observing a celestial object and providing synthetic guide star generation. A lasing system provides radiation at a frequency at or near 938 nm and radiation at a frequency at or near 1583 nm. The lasing system includes a fiber laser operating between 880 nm and 960 nm and a fiber laser operating between 1524 nm and 1650 nm. A frequency-conversion system mixes the radiation and generates light at a frequency at or near 589 nm. A system directs the light at a frequency at or near 589 nm toward the celestial object and provides synthetic guide star generation.

  7. Manifold tool guide

    DOE Patents [OSTI]

    Djordjevic, A.

    1982-07-08

    A tool guide that makes possible the insertion of cleaning and/or inspection tools into a manifold pipe that will dislocate and extract the accumulated sediment in such manifold pipes. The tool guide basically comprises a right angled tube (or other angled tube as required) which can be inserted in a large tube and locked into a radially extending cross pipe by adjustable spacer rods and a spring-loaded cone, whereby appropriate cleaning tools can be inserted into to cross pipe for cleaning, inspection, etc.

  8. CINT Computer Simulation Guide for Designing Polymeric Nanoparticles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Published Computer Simulation Guide for Designing Polymeric Nanoparticles Published - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery

  9. Method of making a back contacted solar cell

    DOE Patents [OSTI]

    Gee, James M. (Albuquerque, NM)

    1995-01-01

    A back-contacted solar cell having laser-drilled vias connecting the front-surface carrier-collector junction to an electrode grid on the back surface. The structure may also include a rear surface carrier-collector junction connected to the same grid. The substrate is connected to a second grid which is interdigitated with the first. Both grids are configured for easy series connection with neighboring cells. Several processes are disclosed to produce the cell.

  10. Energy and momentum conserving algorithms for rigid body contact

    SciTech Connect (OSTI)

    Puso, M.A.; Zywicz, E.

    1998-04-09

    Energy-momentum conserving methods are developed for rigid body dynamics with contact. Because these methods are unconditionally stable, they are not time step dependent and, hence, are well suited for incorporation into structural mechanics finite element codes. Both penalty and Lagrange multiplier methods are developed herein and are the extension of the energy-momentum conserving integration schemes for rigid bodies given by Simo and Wong [1].

  11. Method of making a back contacted solar cell

    DOE Patents [OSTI]

    Gee, J.M.

    1995-11-21

    A back-contacted solar cell is described having laser-drilled vias connecting the front-surface carrier-collector junction to an electrode grid on the back surface. The structure may also include a rear surface carrier-collector junction connected to the same grid. The substrate is connected to a second grid which is interdigitated with the first. Both grids are configured for easy series connection with neighboring cells. Several processes are disclosed to produce the cell. 2 figs.

  12. Contact CEFRC - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact CEFRC Contact CEFRC Combustion Energy Frontier Research Center Princeton University Engineering Quadrangle Suite D-334 Olden Street Princeton, NJ 08544-5263 Phone: 609.258.4083 Fax: 609.258.6233 Email: asaha@princeton.edu © 2016 The Trustees of Princeton University Last update: February 17, 2016

  13. DOE Research and Development Accomplishments Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us If you wish to provide comments or suggestions, please see the contact information below. email EMAIL Phone PHONE 865-576-1188 Mailing address MAIL DOE R&D Accomplishments U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge,TN 37831

  14. Contact micromechanics in granular media with clay

    SciTech Connect (OSTI)

    Ita, S.L.

    1994-08-01

    Many granular materials, including sedimentary rocks and soils, contain clay particles in the pores, grain contacts, or matrix. The amount and location of the clays and fluids can influence the mechanical and hydraulic properties of the granular material. This research investigated the mechanical effects of clay at grain-to-grain contacts in the presence of different fluids. Laboratory seismic wave propagation tests were conducted at ultrasonic frequencies using spherical glass beads coated with Montmorillonite clay (SWy-1) onto which different fluids were adsorbed. For all bead samples, seismic velocity increased and attenuation decreased as the contact stiffnesses increased with increasing stress demonstrating that grain contacts control seismic transmission in poorly consolidated and unconsolidated granular material. Coating the beads with clay added stiffness and introduced viscosity to the mechanical contact properties that increased the velocity and attenuation of the propagating seismic wave. Clay-fluid interactions were studied by allowing the clay coating to absorb water, ethyl alcohol, and hexadecane. Increasing water amounts initially increased seismic attenuation due to clay swelling at the contacts. Attenuation decreased for higher water amounts where the clay exceeded the plastic limit and was forced from the contact areas into the surrounding open pore space during sample consolidation. This work investigates how clay located at grain contacts affects the micromechanical, particularly seismic, behavior of granular materials. The need for this work is shown by a review of the effects of clays on seismic wave propagation, laboratory measurements of attenuation in granular media, and proposed mechanisms for attenuation in granular media.

  15. Energy Basics Website Contact | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Basics Website Contact Energy Basics Website Contact Use this form to send us your comments, report problems, and/or ask questions about information on the Energy Basics website. Your Email Message Here * CAPTCHA This question is for testing whether you are a human visitor and to prevent automated spam submissions. Submit

  16. PM Website Contact | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PM Website Contact PM Website Contact Use this form to send us your comments, report problems, and/or ask questions about information on the PM website. Your Email Message Here CAPTCHA This question is for testing whether you are a human visitor and to prevent automated spam submissions. Submit

  17. Communication Standards Website Contact | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Communication Standards Website Contact Communication Standards Website Contact Use this form to send us your comments, report problems, and/or ask questions about information on the Communication Standards website. Your Email Message Here * CAPTCHA This question is for testing whether you are a human visitor and to prevent automated spam submissions. Submit

  18. Modulation of contact resistance between metal and graphene by controlling the graphene edge, contact area, and point defects: An ab initio study

    SciTech Connect (OSTI)

    Ma, Bo; Wen, Yanwei E-mail: bshan@mail.hust.edu.cn; Gong, Cheng; Cho, Kyeongjae; Chen, Rong; Shan, Bin E-mail: bshan@mail.hust.edu.cn

    2014-05-14

    A systematic first-principles non-equilibrium Green's function study is conducted on the contact resistance between a series of metals (Au, Ag, Pt, Cu, Ni, and Pd) and graphene in the side contact geometry. Different factors such as the termination of the graphene edge, contact area, and point defect in contacted graphene are investigated. Notable differences are observed in structural configurations and electronic transport characteristics of these metal-graphene contacts, depending on the metal species and aforementioned influencing factors. It is found that the enhanced chemical reactivity of the graphene due to dangling bonds from either the unsaturated graphene edge or point defects strengthens the metal-graphene bonding, leading to a considerable contact resistance reduction for weakly interacting metals Au and Ag. For stronger interacting metals Pt and Cu, a slightly reduced contact resistance is found due to such influencing factors. However, the wetting metals Ni and Pd most strongly hybridize with graphene, exhibiting negligible dependence on the above influencing factors. This study provides guidance for the optimization of metal-graphene contacts at an atomic scale.

  19. Modeling fault-zone guided waves of microearthquakes in a geothermal...

    Open Energy Info (EERE)

    velocity structure have been estimated. It is suggested here that the identification and modeling of such guided waves is an effective tool to locate fracture-induced,...

  20. Caltrans Encroachment Permit Application Guide | Open Energy...

    Open Energy Info (EERE)

    Application GuidePermittingRegulatory GuidanceGuideHandbook Abstract This guide sets forth the application procedure for encroachment permits under Caltrans. Author Caltrans...

  1. Guide to Scientific Management | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guide to Scientific Management A Practical Guide to Scientifıc Management for Postdocs and New Faculty. PDF icon Guide to Scientific Management second edition.pdf

  2. TTWG Licensing Guide | Department of Energy

    Energy Savers [EERE]

    TTWG Licensing Guide TTWG Licensing Guide PDF icon TTWG Licensing Guide More Documents & Publications ITP Aluminum: Technical Working Group on Inert Anode Technologies EIS-0333:...

  3. Source Selection Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Source Selection Guide PDF icon Source Selection Guide More Documents & Publications Acquisition Guide Chapter 50.1- Extraordinary Contractual Actions (January 2009) Chapter...

  4. Guiding SSL Technology Advances | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guiding SSL Technology Advances Guiding SSL Technology Advances PDF icon Guiding Solid-State Lighting Technology Advances More Documents & Publications Doing Business with DOE's ...

  5. Program Planning Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Planning Guide Program Planning Guide SEP program planning guide.pdf More Documents & Publications SEP Presentations Materials SEP Toolkit Overview The Cummins Rocky Mount...

  6. RFLMA Contact Record 2015-01 ROCKY FLATS SITE REGULATORY CONTACT RECORD 2015-01

    Office of Legacy Management (LM)

    5-01 ROCKY FLATS SITE REGULATORY CONTACT RECORD 2015-01 Purpose: Reportable condition for uranium 12-month rolling average at Point of Compliance WALPOC (this Contact Record supersedes RFLMA CR 2014-10) Contact Record Approval Date: January 14, 2015 Site Contact(s)/Affiliation(s): Scott Surovchak, U.S. Department of Energy (DOE); George Squibb, Linda Kaiser, David Ward, Stoller Newport News Nuclear, Inc., (SN3), a wholly owned subsidiary of Huntington Ingalls Industries, Inc. Regulatory

  7. Sensor Characteristics Reference Guide

    SciTech Connect (OSTI)

    Cree, Johnathan V.; Dansu, A.; Fuhr, P.; Lanzisera, Steven M.; McIntyre, T.; Muehleisen, Ralph T.; Starke, M.; Banerjee, Pranab; Kuruganti, T.; Castello, C.

    2013-04-01

    The Buildings Technologies Office (BTO), within the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), is initiating a new program in Sensor and Controls. The vision of this program is: • Buildings operating automatically and continuously at peak energy efficiency over their lifetimes and interoperating effectively with the electric power grid. • Buildings that are self-configuring, self-commissioning, self-learning, self-diagnosing, self-healing, and self-transacting to enable continuous peak performance. • Lower overall building operating costs and higher asset valuation. The overarching goal is to capture 30% energy savings by enhanced management of energy consuming assets and systems through development of cost-effective sensors and controls. One step in achieving this vision is the publication of this Sensor Characteristics Reference Guide. The purpose of the guide is to inform building owners and operators of the current status, capabilities, and limitations of sensor technologies. It is hoped that this guide will aid in the design and procurement process and result in successful implementation of building sensor and control systems. DOE will also use this guide to identify research priorities, develop future specifications for potential market adoption, and provide market clarity through unbiased information

  8. Mission Need Statement Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-06-20

    The guide supports DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, dated 7-28-06, by providing suggested content, definitions, and examples for writing a clear statement to support an acquisition executive's decision to initiate exploration of options to fulfill a capability gap, which may include a capital asset acquisition. No cancellation.

  9. Risk Management Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-09-16

    This Guide provides a framework for identifying and managing key technical, schedule, and cost risks through applying the requirements of DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, dated 7-28-06. Canceled by DOE G 413.3-7A, dated 1-12-11. Does not cancel other directives.

  10. Information Technology Project Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-09-12

    This Guide provides Department of Energy recommended guidelines to ensure that the acquisition of information technology capital assets is performed in compliance with DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, dated 7-28-06. Canceled by DOE N 251.105.

  11. Hydrodynamic blade guide

    DOE Patents [OSTI]

    Blaedel, Kenneth L.; Davis, Pete J.; Landram, Charles S.

    2000-01-01

    A saw having a self-pumped hydrodynamic blade guide or bearing for retaining the saw blade in a centered position in the saw kerf (width of cut made by the saw). The hydrodynamic blade guide or bearing utilizes pockets or grooves incorporated into the sides of the blade. The saw kerf in the workpiece provides the guide or bearing stator surface. Both sides of the blade entrain cutting fluid as the blade enters the kerf in the workpiece, and the trapped fluid provides pressure between the blade and the workpiece as an inverse function of the gap between the blade surface and the workpiece surface. If the blade wanders from the center of the kerf, then one gap will increase and one gap will decrease and the consequent pressure difference between the two sides of the blade will cause the blade to re-center itself in the kerf. Saws using the hydrodynamic blade guide or bearing have particular application in slicing slabs from boules of single crystal materials, for example, as well as for cutting other difficult to saw materials such as ceramics, glass, and brittle composite materials.

  12. 2008 buyer's guide

    SciTech Connect (OSTI)

    2007-12-15

    This annual buyers' guide provides a resource for identifying the companies that provide the products and services required in the power generation industry. It is divided into 3 sections, namely products, services and companies. More than 1750 suppliers mostly in the USA are listed in over 400 product categories.

  13. 2006 buyers' guide

    SciTech Connect (OSTI)

    2005-12-01

    This annual buyers' guide provides a resource for identifying the companies that provide the products and services required in the power generation industry. It is divided into 3 sections, namely products, services and companies. More than 1750 suppliers mostly in the USA are listed in over 400 product categories.

  14. Quality Assurance Program Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-08-16

    This Guide provides information on principles, requirements, and practices used to establish and implement an effective Quality Assurance Program. Cancels DOE G 414.1-2A, DOE G 414.1-3 and DOE G 414.1-5. Admin Chg 1, dated 9-27-11. Admin Chg 2, dated 5-8-13.

  15. Transition Implementation Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-04-24

    This Guide was prepared to aid in the development, planning, and implementation of requirements and activities during the transition phase at Department of Energy (DOE) facilities that have been declared or are forecast to become excess to any future mission requirements.

  16. Consumer Guide for Solar

    Broader source: Energy.gov [DOE]

    MARC’s Consumer Guide to Solar provides answers to frequently asked questions, as well as guidance on how to get started with solar energy. The objective in creating this resource was to provide clear information to consumers in the Kansas City region who are interested in installing solar on their home or business.

  17. Mail Services User's Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-10-03

    This Guide provides information on using Department of Energy (DOE) mail services in accordance with U.S. Postal Service, General Services Administration (GSA), and DOE regulations. Cancels DOE M 573.1-1. Canceled by DOE N 251.89.

  18. Silicone oil contamination and electrical contact resistance degradation of low-force gold contacts.

    SciTech Connect (OSTI)

    Dugger, Michael Thomas; Dickrell, Daniel John, III

    2006-02-01

    Hot-switched low-force gold electrical contact testing was performed using a nanomechanical test apparatus to ascertain the sensitivity of simulated microelectromechanical systems (MEMS) contact to silicone oil contamination. The observed cyclic contact resistance degradation was dependent on both closure rate and noncontact applied voltage. The decomposition of silicone oil from electrical arcing was hypothesized as the degradation mechanism.

  19. Small Wind Electric Systems: A Maine Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Small Wind Electric Systems: A Maine Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  20. Small Wind Electric Systems: An Ohio Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Small Wind Electric Systems: An Ohio Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  1. Small Wind Electric Systems: A Maryland Consumer's Guide (Revised)

    SciTech Connect (OSTI)

    Not Available

    2009-08-01

    Small Wind Electric Systems: A Maryland Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.

  2. Small Wind Electric Systems: A North Carolina Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2005-03-01

    Small Wind Electric Systems: A North Carolina Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  3. Small Wind Electric Systems: A Nebraska Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-12-01

    Small Wind Electric Systems: A Nebraska Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  4. Small Wind Electric Systems: A Utah Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Small Wind Electric Systems: A Utah Consumer's Guide provides Utah consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  5. Small Wind Electric Systems: A U.S. Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Small Wind Electric Systems: A U.S. Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  6. Small Wind Electric Systems: A Hawaii Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Small Wind Electric Systems: A Hawaii Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  7. Small Wind Electric Systems: A Pennsylvania Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Small Wind Electric Systems: A Pennsylvania Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  8. Small Wind Electric Systems: A Kansas Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Small Wind Electric Systems: A Kansas Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  9. 2009 Coal Age Buyers Guide

    SciTech Connect (OSTI)

    2009-07-15

    The buyers guide lists more than 1200 companies mainly based in the USA, that provide equipment and services to US coal mines and coal preparation plants. The guide is subdivided by product categories.

  10. 2008 Coal Age buyers guide

    SciTech Connect (OSTI)

    2008-07-15

    The buyers guide lists more than 1200 companies mainly based in the USA, that provide equipment and services to US coal mines and coal preparation plants. The guide is subdivided by product categories.

  11. H2 Educate! Teacher Guide

    Fuel Cell Technologies Publication and Product Library (EERE)

    H2 Educate! Teacher and Student Guides - These new guides were developed by the National Energy Education Development (NEED) Project's Teacher Advisory Board for the DOE Hydrogen Program. Sentech, Inc

  12. H2 Educate! Student Guide

    Fuel Cell Technologies Publication and Product Library (EERE)

    H2 Educate! Teacher and Student Guides - These new guides were developed by the National Energy Education Development (NEED) Project's Teacher Advisory Board for the DOE Hydrogen Program. Sentech, Inc

  13. Portland's Residential Solar Permitting Guide

    Broader source: Energy.gov [DOE]

    This program guide outlines the application and review procedures for obtaining the necessary permit(s) to install a solar energy system for a new or existing residential building. The guide also...

  14. Business Model Guide Executive Summary

    Broader source: Energy.gov [DOE]

    The Business Model Guide Executive Summary by the U.S. Department of Energy's Better Buildings Neighborhood Program.

  15. Residential Retrofit Design Guide Overview

    Broader source: Energy.gov [DOE]

    This webinar covered the Residential Retrofit Program Design Guide and its elements, including assess, plan, implement, and evaluate.

  16. Better Buildings Alliance Solar Decision Guide

    Broader source: Energy.gov [DOE]

    Businesses considering implementing solar PV may encounter widespread geographic differences regarding utility incentive structures (buy-down incentives, performance based incentives, feed-in tariffs, etc.), utility policies (net metering, interconnection requirements), regulatory structures, and permitting requirements. They might also have uncertainty about how to assess the different ownership structures (PPA, lease, own, etc.). The Solar Decision Guide can help companies navigate this complex environment to determine if investing in solar makes financial sense and to identify the regions that offer the most promising returns on solar investment.

  17. SciTech Connect: Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Contact Us If you have a question or comment about SciTech Connect, check to see if it is on our list of frequently asked questions. If your question isn't answered there, you may contact us using the information below. Thanks in advance. Your help is appreciated. Email NOTE: Email messages are answered Monday - Friday, 9 a.m. - 4 p.m. We do our best to respond within 48 hours. Phone Phone (865) 241-4615 Mail U.S. Department of Energy Office of Scientific and Technical Information

  18. DOE Community Transition Contacts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About Us » Contact Us » DOE Community Transition Contacts DOE Community Transition Contacts Headquarters Tom Pauling, Acting Director Office of Legacy Management, LM-1 U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 (202) 586-1782 (202) 586-8403 (FAX) thomas.pauling@hq.doe.gov Field HANFORD Colleen French U.S. Department of Energy Richland Operations Office P.O. Box 550 A7-75 Richland, WA 99352 (509) 373-5985 (509) 373-1563 (FAX) colleen_c_french@rl.gov IDAHO NATIONAL

  19. Contact Us | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Contact Us Mail and delivery address information: Y-12 National Security Complex P.O. Box 2009 Oak Ridge, TN 37831-8245* Non-mail deliveries: Bear Creek Road P.O. Box 2009 Oak Ridge, TN 37830 *This mailstop is for general inquiries. For other mail, please contact the intended recipient for the appropriate mailstop. Verification of employment 865.574.4424 Employment Staffing 865.576.1377 Benefits One Call, 865.574.1500 Partnerships Tom Berg, 865.574.0907 Procurement

  20. GE Global Research Contact | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Looking for more details? Please contact one of these individuals or visit the Newsroom for the latest information. Home > About GE Global Research > Contact Us GE Global Research 1 Research Circle, Niskayuna, NY 12309, USA Todd Alhart +1.518.387.7914 todd.alhart@ge.com Communications and Public Relations GE Brazil Technology Center Rua Trinta e Seis (Praia dos Coqueiros), s/n, Supl. Ilha do Bom Jesus 840 Ilha do Fundão - Cidade Universitária Rio de Janeiro, RJ - CEP 21941-593

  1. EERE Business Operations Contacts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Operations » EERE Business Operations Contacts EERE Business Operations Contacts If you have a question for the Office of Business Operations, you can use this contact information to reach the office you're interested in: Office of Budget EE-3B / Forrestal Building U.S. Department of Energy 1000 Independence Avenue, SW Washington, D.C. 20585-0121 Phone: 202-586-8302 Workforce Management Office EE-3A / Forrestal Building U.S. Department of Energy 1000 Independence Avenue, SW Washington, D.C.

  2. EERE Strategic Programs Contacts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategic Programs Contacts EERE Strategic Programs Contacts If you have a question for the Office of Strategic Programs, you can use this contact information to reach the office you're interested in: Technology-to-Market EE-13 / Forrestal Building U.S. Department of Energy 1000 Independence Avenue, SW Washington, D.C. 20585-0121 Policy Analysis EE-13 / Forrestal Building U.S. Department of Energy 1000 Independence Avenue, SW Washington, D.C. 20585 Phone: 202-586-9220 Stakeholder Engagement

  3. Golden Field Office Contacts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Golden Field Office » Golden Field Office Contacts Golden Field Office Contacts On this page you will find address and contact information for the Golden Field Office of the Office of Energy Efficiency and Renewable Energy (EERE). Mailing Address U.S. Department of Energy Golden Field Office 15013 Denver West Parkway Golden, Colorado 80401 Main Number: 720-356-1800 Main Fax: 720-356-1750 Media Inquiries For media inquiries, please email the EERE communications team at EE.Media@ee.doe.gov.

  4. Hybrid emitter all back contact solar cell

    DOE Patents [OSTI]

    Loscutoff, Paul; Rim, Seung

    2016-04-12

    An all back contact solar cell has a hybrid emitter design. The solar cell has a thin dielectric layer formed on a backside surface of a single crystalline silicon substrate. One emitter of the solar cell is made of doped polycrystalline silicon that is formed on the thin dielectric layer. The other emitter of the solar cell is formed in the single crystalline silicon substrate and is made of doped single crystalline silicon. The solar cell includes contact holes that allow metal contacts to connect to corresponding emitters.

  5. Algorithms for Contact in a Mulitphysics Environment

    Energy Science and Technology Software Center (OSTI)

    2001-12-19

    Many codes require either a contact capability or a need to determine geometric proximity of non-connected topological entities (which is a subset of what contact requires). ACME is a library to provide services to determine contact forces and/or geometric proximity interactions. This includes generic capabilities such as determining points in Cartesian volumes, finding faces in Cartesian volumes, etc. ACME can be run in single or multi-processor mode (the basic algorithms have been tested up tomore » 4500 processors).« less

  6. SciTech Connect: Contact Us

    Office of Scientific and Technical Information (OSTI)

    Contact Us Contact Us If you have a question or comment about SciTech Connect, check to see if it is on our list of frequently asked questions. If your question isn't answered there, you may contact us using the information below. Thanks in advance. Your help is appreciated. Email NOTE: Email messages are answered Monday - Friday, 9 a.m. - 4 p.m. We do our best to respond within 48 hours. Phone Phone (865) 241-4615 Mail U.S. Department of Energy Office of Scientific and Technical Information

  7. Evaluation of the electrical contact area in contact-mode scanning probe microscopy

    SciTech Connect (OSTI)

    Celano, Umberto E-mail: u.celano@gmail.com; Chintala, Ravi Chandra; Vandervorst, Wilfried; Hantschel, Thomas; Giammaria, Guido; Conard, Thierry; Bender, Hugo

    2015-06-07

    The tunneling current through an atomic force microscopy (AFM) tip is used to evaluate the effective electrical contact area, which exists between tip and sample in contact-AFM electrical measurements. A simple procedure for the evaluation of the effective electrical contact area is described using conductive atomic force microscopy (C-AFM) in combination with a thin dielectric. We characterize the electrical contact area for coated metal and doped-diamond tips operated at low force (<200 nN) in contact mode. In both cases, we observe that only a small fraction (<10?nm{sup 2}) of the physical contact (?100?nm{sup 2}) is effectively contributing to the transport phenomena. Assuming this reduced area is confined to the central area of the physical contact, these results explain the sub-10?nm electrical resolution observed in C-AFM measurements.

  8. Kuda Training Guide_053013 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kuda Training Guide_053013 Kuda Training Guide_053013 Kuda TrainingGuide_053013.pdf (1.67 MB) More Documents & Publications NTERTraining Guides Weatherization Installer/Technician Mobile Homes - Chapter 7: Other Mobile Home Measures Energy Walkabout

  9. Appendix C Conducting Structured Walkthroughs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-05-21

    This guide describes how to conduct a structured walkthroughs during the lifecycle stages of software engineering projects, regardless of hardware platform.

  10. Structural Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structural Materials Structural Materials Development enables advanced technologies through the discovery, development, and demonstration of cost-effective advanced structural materials for use in extreme environments (high-temperature, high-stress, erosive, and corrosive environments, including the performance of materials in contact with molten slags and salts). Research includes materials design and discovery, materials processing and manufacturing, and service-life prediction of materials

  11. Cancellation Guide - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guide by Website Administrator Microsoft Word Document icon CancellationNotice-Guides (4).doc - Microsoft Word Document, 30 KB (31232

  12. Operations & Maintenance Best Practices Guide: Chapter 6

    Broader source: Energy.gov [DOE]

    Guide describes chapter 6 of the Operations and Maintenance Best Practices: A Guide to Achieving Operational Efficiency.

  13. Operations & Maintenance Best Practices Guide: Chapter 9

    Broader source: Energy.gov [DOE]

    Guide describes chapter 9 of the Operations and Maintenance Best Practices: A Guide to Achieving Operational Efficiency.

  14. Guiding Principles for Successfully Implementing Industrial Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guiding Principles for Successfully Implementing Industrial Energy Assessment Recommendations Guiding Principles for Successfully Implementing Industrial Energy Assessment ...

  15. Operations & Maintenance Best Practices Guide: Appendix a

    Broader source: Energy.gov [DOE]

    Guide describes Appendix A of the Operations and Maintenance Best Practices: A Guide to Achieving Operational Efficiency.

  16. Operations & Maintenance Best Practices Guide: Front Matter

    Broader source: Energy.gov [DOE]

    Guide describes the front matter of the Operations and Maintenance Best Practices: a Guide to Achieving Operational Efficiency.

  17. Operations & Maintenance Best Practices Guide: Appendix d

    Broader source: Energy.gov [DOE]

    Guide describes Appendix D of the Operations and Maintenance Best Practices: A Guide to Achieving Operational Efficiency.

  18. Operations & Maintenance Best Practices Guide: Chapter 2

    Broader source: Energy.gov [DOE]

    Guide describes chapter 2 of the Operations and Maintenance Best Practices: A Guide to Achieving Operational Efficiency.

  19. Operations & Maintenance Best Practices Guide: Chapter 1

    Broader source: Energy.gov [DOE]

    Guide describes chapter 1 of the Operations and Maintenance Best Practices: A Guide to Achieving Operational Efficiency.

  20. Operations & Maintenance Best Practices Guide: Chapter 5

    Broader source: Energy.gov [DOE]

    Guide describes chapter 5 of the Operations and Maintenance Best Practices: A Guide to Achieving Operational Efficiency.

  1. Operations & Maintenance Best Practices Guide: Chapter 8

    Broader source: Energy.gov [DOE]

    Guide describes chapter 8 of the Operations and Maintenance Best Practices: A Guide to Achieving Operational Efficiency.

  2. Operations & Maintenance Best Practices Guide: Chapter 7

    Broader source: Energy.gov [DOE]

    Guide describes chapter 7 of the Operations and Maintenance Best Practices: A Guide to Achieving Operational Efficiency.

  3. Operations & Maintenance Best Practices Guide: Chapter 10

    Broader source: Energy.gov [DOE]

    Guide describes chapter 10 of the Operations and Maintenance Best Practices: A Guide to Achieving Operational Efficiency.

  4. Operations & Maintenance Best Practices Guide: Appendix c

    Broader source: Energy.gov [DOE]

    Guide describes Appendix C of the Operations and Maintenance Best Practices: A Guide to Achieving Operational Efficiency.

  5. Operations & Maintenance Best Practices Guide: Appendix B

    Broader source: Energy.gov [DOE]

    Guide describes Appendix B of the Operations and Maintenance Best Practices: A Guide to Achieving Operational Efficiency.

  6. Operations & Maintenance Best Practices Guide: Chapter 11

    Broader source: Energy.gov [DOE]

    Guide describes chapter 11 of the Operations and Maintenance Best Practices: A Guide to Achieving Operational Efficiency.

  7. RELAP-7 User's Guide

    SciTech Connect (OSTI)

    Zhang, Hongbin; Zhao, Haihua; Zou, Ling; Andrs, David; Berry, Ray Alden; Martineau, Richard Charles

    2014-12-01

    The document contains a user's guide on how to run the RELAP-7 code. The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at the Idaho National Laboratory. RELAP-7 will become the main reactor systems simulation toolkit for the LWRS (Light Water Reactor Sustainability) program’s RISMC (Risk Informed Safety Margin Characterization) effort and the next generation tool in the RELAP reactor safety/systems analysis application series. RELAP-7 is written with object oriented programming language C++. A number of example problems and their associated input files are presented in this document to guide users to run the RELAP-7 code starting with simple pipe problems to problems with increasing complexity.

  8. Guide to research facilities

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

  9. The NEPA reference guide

    SciTech Connect (OSTI)

    Swartz, L.L.; Reinke, D.C.

    1999-10-01

    The NEPA Reference Guide conveniently organizes and indexes National Environmental Policy Act (NEPA) and Council on Environmental Quality (CEQ) regulations and guidance, along with relevant federal case law, all in one place. It allows the user to quickly learn the statutory, regulatory, and case law authority for a large number of NEPA subjects. A unique feature of The NEPA Reference Guide is its detailed index that includes a large number of diverse NEPA subjects. The index enables users to find and compile any statutory, regulatory (including CEQ guidance), and case law original source material and references on virtually any NEPA subject. This will be an especially useful tool for new NEPA practitioners who need to become immersed in a particular subject quickly.

  10. Environmental Compliance Guide

    SciTech Connect (OSTI)

    1981-02-01

    The Guide is intended to assist Department of Energy personnel by providing information on the NEPA process, the processes of other environmental statutes that bear on the NEPA process, the timing relationships between the NEPA process and these other processes, as well as timing relationships between the NEPA process and the development process for policies, programs, and projects. This information should be helpful not only in formulating environmental compliance plans but also in achieving compliance with NEPA and various other environmental statutes. The Guide is divided into three parts with related appendices: Part I provides guidance for developing environmental compliance plans for DOE actions; Part II is devoted to NEPA with detailed flowcharts depicting the compliance procedures required by CEQ regulations and Department of Energy NEPA Guidelines; and Part III contains a series of flowcharts for other Federal environmental requirements that may apply to DOE projects.

  11. Nanoparticle derived contacts for photovoltaic cells

    SciTech Connect (OSTI)

    Ginley, D.S.

    1999-10-20

    Contacts are becoming increasingly important as PV devices move to higher efficiency and lower cost. The authors present an approach to developing contacts using nanoparticle-based precursors. Both elemental, alloy and compound nanoparticles can be employed for contacts. Ink based approaches can be utilized at low temperatures and utilize direct write techniques such as ink jet and screen printing. The ability to control the composition of the nanoparticle allows improved control of the contact metallurgy and the potential for thermodynamically stable interfaces. A key requirement is the ability to control the interface between particles and between particles and the substrate. The authors illustrate some of these principals with recent results on Al, Cu and (Hg,Cu)Te. They show that for the elemental materials control of the surface can prevent oxide formation and act as glue to control the reactivity of the nanoparticles.

  12. Contact Us | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    For general information about NNSA, please feel free to contact us: Mailing Address National Nuclear Security Administration U.S. Department of Energy 1000 Independence Ave., S.W. ...

  13. Contact Information | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Information Head of Office of Technology Transfer: Laurie Bagley Princeton Plasma Physics Laboratory P.O. Box 451 Princeton, NJ 08543 Telephone: 609-243-2425 E-mail:...

  14. Front contact solar cell with formed emitter

    DOE Patents [OSTI]

    Cousins, Peter John

    2014-11-04

    A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.

  15. Front contact solar cell with formed emitter

    DOE Patents [OSTI]

    Cousins, Peter John

    2012-07-17

    A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.

  16. Clean Cities Program Contacts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-12-01

    Contact information for the U.S. Department of Energy's Clean Cities program staff and for the coordinators of the nearly 100 local Clean Cities coalitions across the country.

  17. NUMERICAL MODELING OF CATHODE CONTACT MATERIAL DENSIFICATION

    SciTech Connect (OSTI)

    Koeppel, Brian J.; Liu, Wenning N.; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2011-11-01

    Numerical modeling was used to simulate the constrained sintering process of the cathode contact layer during assembly of solid oxide fuel cells (SOFCs). A finite element model based on the continuum theory for sintering of porous bodies was developed and used to investigate candidate low-temperature cathode contact materials. Constitutive parameters for various contact materials under investigation were estimated from dilatometry screening tests, and the influence of processing time, processing temperature, initial grain size, and applied compressive stress on the free sintering response was predicted for selected candidate materials. The densification behavior and generated stresses within a 5-cell planar SOFC stack during sintering, high temperature operation, and room temperature shutdown were predicted. Insufficient constrained densification was observed in the stack at the proposed heat treatment, but beneficial effects of reduced grain size, compressive stack preload, and reduced thermal expansion coefficient on the contact layer densification and stresses were observed.

  18. Multi Contact AG | Open Energy Information

    Open Energy Info (EERE)

    firm in the field of renewable energy, produces Solarline - connector systems for photovoltaics. References: Multi-Contact AG1 This article is a stub. You can help OpenEI by...

  19. CONTACT INFORMATION: Steve Karsjen Public Affairs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    water. Each stream travels through a separate set of tubes. The first stream comes in contact with the warm metal while the magnet is still located close by. This stream cools the...

  20. Contact Us | Mickey Leland Energy Fellowship (MLEF)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us General QuestionsInformation Sandra Cortez mlef@hq.doe.gov U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 Phone: 301-903-7938 Technical...