Slim Holes At Maui Area (DOE GTP) | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a gHigh4-FD-a < RAPIDâ€Ž | RoadmapSolarSABRESinton Consulting Inc JumpSleepingSlim Holes At Maui
Slim Holes At Silver Peak Area (DOE GTP) | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a gHigh4-FD-a < RAPIDâ€Ž | RoadmapSolarSABRESinton Consulting Inc JumpSleepingSlim HolesSlimSlim
Slim Holes At Newberry Caldera Area (DOE GTP) | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a gHigh4-FD-a < RAPIDâ€Ž | RoadmapSolarSABRESinton Consulting Inc JumpSleepingSlim HolesSlim Holes
Slim Holes At Fort Bliss Area (DOE GTP) | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a gHigh4-FD-a < RAPIDâ€Ž | RoadmapSolarSABRESinton Consulting Inc JumpSleeping ChildSlim HolesSlim
Slim Holes At Glass Buttes Area (DOE GTP) | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a gHigh4-FD-a < RAPIDâ€Ž | RoadmapSolarSABRESinton Consulting Inc JumpSleeping ChildSlimSlim Holes
Slim Holes At Black Warrior Area (DOE GTP) | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a gHigh4-FD-a < RAPIDâ€Ž | RoadmapSolarSABRESinton Consulting Inc JumpSleeping Child HotSlim Holes
Slim Holes At Flint Geothermal Area (DOE GTP) | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a gHigh4-FD-a < RAPIDâ€Ž | RoadmapSolarSABRESinton Consulting Inc JumpSleeping ChildSlim Holes At
Slim Holes At New River Area (DOE GTP) | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a gHigh4-FD-a < RAPIDâ€Ž | RoadmapSolarSABRESinton Consulting Inc JumpSleepingSlim Holes At
Slim Holes At Crump's Hot Springs Area (DOE GTP) | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a gHigh4-FD-a < RAPIDâ€Ž | RoadmapSolarSABRESinton Consulting Inc JumpSleeping Child HotSlimSlim
Slim Holes At Hot Pot Area (DOE GTP) | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a gHigh4-FD-a < RAPIDâ€Ž | RoadmapSolarSABRESinton Consulting Inc JumpSleeping ChildSlimSlim
Slim Holes At Gabbs Valley Area (DOE GTP) | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a gHigh4-FD-a < RAPIDâ€Ž | RoadmapSolarSABRESinton Consulting Inc JumpSleeping ChildSlim
Slim Holes At Snake River Plain Region (DOE GTP) | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a gHigh4-FD-a < RAPIDâ€Ž | RoadmapSolarSABRESinton Consulting Inc JumpSleepingSlim
Slim Holes At Blue Mountain Geothermal Area (Fairbank Engineering...
Search Page Edit with form History Slim Holes At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...
Slim Holes At Alum Area (DOE GTP) | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a gHigh4-FD-a < RAPIDâ€Ž | RoadmapSolarSABRESinton Consulting Inc JumpSleeping Child Hot
New bits, motors improve economics of slim hole horizontal wells
McDonald, S. [Hughes Christensen Co., New Orleans, LA (United States); Felderhoff, F. [Hughes Christensen Co., Midland, TX (United States); Fisher, K. [Baker Hughes Inteq, New Orleans, LA (United States)
1996-03-11T23:59:59.000Z
The latest generation of small-diameter bits, combined with a new extended power section positive displacement motor (PDM), has improved the economics of slim hole drilling programs. As costs are driven down, redevelopment reserves are generated in the older, more established fields. New reserves result from increases in the ultimate recovery and accelerated production rates from the implementation of horizontal wells in reentry programs. This logic stimulated an entire development program for a Gulf of Mexico platform, which was performed without significant compromises in well bore geometry. The savings from this new-generation drilling system come from reducing the total number of trips required during the drilling phase. This paper reviews the design improvements of roller cone bits, PDC bits, and positive displacement motors for offshore directional drilling operations.
Slim Holes At Blue Mountain Geothermal Area (Fairbank Engineering Ltd,
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onsource History View New PagessourceRavenand Some InitialSissonville, West Virginia: EnergySkyInformation Slim
Slim Holes At Reese River Area (Henkle & Ronne, 2008) | Open Energy
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a gHigh4-FD-a < RAPIDâ€Ž | RoadmapSolarSABRESinton Consulting Inc JumpSleepingSlim HolesSlim
Slim Holes At Alvord Hot Springs Area (Combs, Et Al., 1999) | Open Energy
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onsource History View New PagessourceRavenand Some InitialSissonville, West Virginia: EnergySkyInformation Slim Holes
Slim Holes At Salton Sea Area (Sabin, Et Al., 2010) | Open Energy
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onsource History View New PagessourceRavenand Some InitialSissonville, West Virginia:Information Slim Holes At Salton
Slim Holes At Vale Hot Springs Area (Combs, Et Al., 1999) | Open Energy
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onsource History View New PagessourceRavenand Some InitialSissonville, West Virginia:Information Slim Holes At
Slim Holes At Fort Bliss Area (Combs, Et Al., 1999) | Open Energy
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a gHigh4-FD-a < RAPIDâ€Ž | RoadmapSolarSABRESinton Consulting Inc JumpSleeping ChildSlim Holes
Slim Holes At Newberry Caldera Area (Combs, Et Al., 1999) | Open Energy
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a gHigh4-FD-a < RAPIDâ€Ž | RoadmapSolarSABRESinton Consulting Inc JumpSleepingSlim Holes
Slim Holes At Steamboat Springs Area (Warpinski, Et Al., 2004) | Open
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a gHigh4-FD-a < RAPIDâ€Ž | RoadmapSolarSABRESinton Consulting IncEnergy Information Slim Holes
Slim Holes At Jemez Pueblo Area (DOE GTP) | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a gHigh4-FD-a < RAPIDâ€Ž | RoadmapSolarSABRESinton Consulting Inc JumpSleeping
Phase 2 and 3 Slim Hole Drilling and Testing at the Lake City, California Geothermal Field
Dick Benoit; David Blackwell; Joe Moore; Colin Goranson
2005-10-27T23:59:59.000Z
During Phases 2 and 3 of the Lake City GRED II project two slim holes were cored to depths of 1728 and 4727 ft. Injection and production tests with temperature and pressure logging were performed on the OH-1 and LCSH-5 core holes. OH-1 was permanently modified by cementing an NQ tubing string in place below a depth of 947 ft. The LCSH-1a hole was drilled in Quaternary blue clay to a depth of 1727 ft and reached a temperature of 193 oF at a depth of 1649 ft. This hole failed to find evidence of a shallow geothermal system east of the Mud Volcano but the conductive temperature profile indicates temperatures near 325 oF could be present below depth of 4000 ft. The LCSH-5 hole was drilled to a depth of 4727 ft and encountered a significant shallow permeability between depths of 1443 and 1923 ft and below 3955 ft. LCSH-5 drilled impermeable Quaternary fanglomerate to a depth of 1270 ft. Below 1270 ft the rocks consist primarily of Tertiary sedimentary rocks. The most significant formation deep in LCSH-5 appears to be a series of poikoilitic mafic lava flows below a depth of 4244 ft that host the major deep permeable fracture encountered. The maximum static temperature deep in LCSH-5 is 323 oF and the maximum flowing temperature is 329 oF. This hole extended the known length of the geothermal system by ¾ of a mile toward the north and is located over ½ mile north of the northernmost hot spring. The OH-1 hole was briefly flow tested prior to cementing the NQ rods in place. This flow test confirmed the zone at 947 ft is the dominant permeability in the hole. The waters produced during testing of OH-1 and LCSH-5 are generally intermediate in character between the deep geothermal water produced by the Phipps #2 well and the thermal springs. Geothermometers applied to deeper fluids tend to predict higher subsurface temperatures with the maximum being 382 oF from the Phipps #2 well. The Lake City geothermal system can be viewed as having shallow (elevation > 4000 ft and temperatures of 270 to 310 oF), intermediate (elevation 2800 to 3700 ft and temperatures 270 to 320 oF ) and deep (elevations < 1000 ft and temperatures 323 to 337 oF) components. In the south part of the field, near Phipps #2 the shallow and deep components are present. In the central part of the field, near OH-1 the shallow and intermediate components are present and presumably the deep component is also present. In the north part of the field, the intermediate and deep components are present. Most or all of the fractures in the core have dips between 45 degrees and vertical and no strong stratigraphic control on the resource has yet been demonstrated. Conceptually, the Lake City geothermal resource seems to be located along the north-south trending range front in a relatively wide zone of fractured rock. The individual fractures do not seem to be associated with any readily identifiable fault. In fact, no major hydraulically conductive faults were identified by the core drilling.
Slim Holes At International Geothermal Area, Japan (Combs, Et Al., 1999) |
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a gHigh4-FD-a < RAPIDâ€Ž | RoadmapSolarSABRESinton Consulting Inc JumpSleeping ChildSlimSlimOpen
Slim Holes At Blue Mountain Area (Warpinski, Et Al., 2002) | Open Energy
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a gHigh4-FD-a < RAPIDâ€Ž | RoadmapSolarSABRESinton Consulting Inc JumpSleeping Child HotSlim
Slim Holes At Steamboat Springs Area (Combs, Et Al., 1999) | Open Energy
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a gHigh4-FD-a < RAPIDâ€Ž | RoadmapSolarSABRESinton Consulting Inc JumpSleepingSlimInformation
Thermal Gradient Holes At Alum Area (DOE GTP) | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a gHigh4-FD-a < RAPIDâ€Ž |SpaceThe German Wind Energy InstituteThermal Gradient Holes At Alum Area
Slim Lake, Minnesota: Energy Resources | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onsource History View New PagessourceRavenand Some InitialSissonville, West Virginia:Information Slim Holes AtSlim
Slim Holes | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a g eWorks -09-0018-CXNuonYucheng Xinyuan Heat PowerSimplo Technology Co Ltd|
SLIM, Short-pulse Technology for High Gradient Induction Accelerators
Krasnykh, A.; /SLAC; Kardo-Sysoev, A.; /Ioffe Phys. Tech. Inst.; Arntz, F.; /Diversified Tech., Bedford
2009-12-09T23:59:59.000Z
The conclusions of this paper are: (1) The gradient of the SLIM-based technology is believed to be achievable in the same range as it is for the gradient of a modern rf-linac technology ({approx}100 MeV per meter). (2) The SLIM concept is based on the nsec TEM pulse mode operation with no laser or rf systems. (3) Main components of SLIM are not stressed while the energy is pumped into the induction system. Components can accept the hard environment conditions such as a radiation dose, mismatch, hard electromagnetic nose level, etc. Only for several nanoseconds the switch is OFF and produces a stress in the induction system. At that time, the delivery of energy to the beam takes place. (4) The energy in the induction system initially is storied in the magnetic field when the switch is ON. That fact makes another benefit: a low voltage power supplies can be used. The reliability of a lower voltage power supply is higher and they are cheaper. (5) The coreless SLIM concept offers to work in the MHz range of repetition rate. The induction system has the high electric efficiency (much higher than the DWA). (6) The array of lined up and activated SLIM cells is believed to be a solid state structure of novel accelerating technology. The electron-hole plasma in the high power solid state structure is precisely controlled by the electromagnetic process of a pulsed power supply.
Category:Slim Holes | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a g eWorksVillage ofInformationCampbell Hill Windsource History ViewNewsourceSRML Mapsourcesource
Crystal of GTP Cyclohydrolase Type IB
Swairjo, Manal A.; Iwata-Reuyl, Dirk; de Crecy-Lagard, Valerie
2012-12-11T23:59:59.000Z
This invention relates to a novel, bacterial GTP Cyclohydrolase Type IB enzyme, and the crystal structure thereof.
GTP energy production from low-temperature resources, coproduced...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
GTP energy production from low-temperature resources, coproduced fluids, and geopressured resources. GTP energy production from low-temperature resources, coproduced fluids, and...
SLIM, Short-pulse Technology for High Gradient Induction Accelerators
Arntz, Floyd; /Diversified Tech., Bedford; Kardo-Sysoev, A.; /Ioffe Phys. Tech. Inst.; Krasnykh, A.; /SLAC
2008-12-16T23:59:59.000Z
A novel short-pulse concept (SLIM) suited to a new generation of a high gradient induction particle accelerators is described herein. It applies advanced solid state semiconductor technology and modern microfabrication techniques to a coreless induction method of charged particle acceleration first proven on a macro scale in the 1960's. Because this approach avoids use of magnetic materials there is the prospect of such an accelerator working efficiently with accelerating pulses in the nanosecond range and, potentially, at megahertz pulse rates. The principal accelerator section is envisioned as a stack of coreless induction cells, the only active element within each being a single, extremely fast (subnanosecond) solid state opening switch: a Drift Step Recovery Diode (DSRD). Each coreless induction cell incorporates an electromagnetic pulse compressor in which inductive energy developed within a transmission-line feed structure over a period of tens of nanoseconds is diverted to the acceleration of the passing charge packet for a few nanoseconds by the abrupt opening of the DSRD switch. The duration of this accelerating output pulse--typically two-to-four nanoseconds--is precisely determined by a microfabricated pulse forming line connected to the cell. Because the accelerating pulse is only nanoseconds in duration, longitudinal accelerating gradients approaching 100 MeV per meter are believed to be achievable without inciting breakdown. Further benefits of this approach are that, (1) only a low voltage power supply is required to produce the high accelerating gradient, and, (2) since the DSRD switch is normally closed, voltage stress is limited to a few nanoseconds per period, hence the susceptibility to hostile environment conditions such as ionizing radiation, mismatch (e.g. in medical applications the peak beam current may be low), strong electromagnetic noise levels, etc is expected to be minimal. Finally, we observe the SLIM concept is not limited to linac applications; for instance, it could be employed to both accelerate the beam and to stabilize the superbunch mode of operation in circular track machines.
Topography and refractometry of nanostructures using spatial light interference microscopy (SLIM)
Gillette, Martha U.
Topography and refractometry of nanostructures using spatial light interference microscopy (SLIM topography at a single atomic layer in graphene. Further, using a decoupling procedure that we developed high- throughput topography and refractometry of man-made and biological nanostructures. Quantitative
Lasota, Jean-Pierre
2015-01-01T23:59:59.000Z
This is an introduction to models of accretion discs around black holes. After a presentation of the non-relativistic equations describing the structure and evolution of geometrically thin accretion discs we discuss their steady-state solutions and compare them to observation. Next we describe in detail the thermal-viscous disc instability model and its application to dwarf novae for which it was designed and its X-ray irradiated-disc version which explains the soft X--ray transients, i.e. outbursting black-hole low-mass X-ray binaries. We then turn to the role of advection in accretion flow onto black holes illustrating its action and importance with a toy model describing both ADAFs and slim discs. We conclude with a presentation of the general-relativistic formalism describing accretion discs in the Kerr space-time.
Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling and Testing
Henkle, William R.; Ronne, Joel
2008-06-15T23:59:59.000Z
This report covers the drilling and testing of the slim well 56-4 at the Reese River Geothermal Project in Lander County, Nevada. This well was partially funded through a GRED III Cooperative Funding Agreement # DE-FC36-04GO14344, from USDOE.
Slim Holes At Fish Lake Valley Area (Deymonaz, Et Al., 2008) | Open Energy
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a gHigh4-FD-a < RAPIDâ€Ž | RoadmapSolarSABRESinton Consulting Inc JumpSleeping Child
Slim Holes At Steamboat Springs Area (Warpinski, Et Al., 2002) | Open
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a gHigh4-FD-a < RAPIDâ€Ž | RoadmapSolarSABRESinton Consulting Inc
Slim Holes At Hawthorne Area (Sabin, Et Al., 2010) | Open Energy
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onsource History View New PagessourceRavenand Some InitialSissonville, West Virginia: EnergySkyInformation
Slim Holes At Salt Wells Area (Combs, Et Al., 1999) | Open Energy
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onsource History View New PagessourceRavenand Some InitialSissonville, West Virginia:
Garimella, Venkata BS; Ibrahim, Yehia M.; Webb, Ian K.; Tolmachev, Aleksey V.; Zhang, Xinyu; Prost, Spencer A.; Anderson, Gordon A.; Smith, Richard D.
2014-11-01T23:59:59.000Z
We report a conceptual study and computational evaluation of novel planar electrode Structures for Lossless Ion Manipulations (SLIM). Planar electrode SLIM devices were designed that allow for flexible ion confinement, transport and storage using a combination of RF and DC fields. Effective potentials can be generated that provide near ideal regions for confining ions in the presence of a gas. Ion trajectory simulations using SIMION 8.1 demonstrated the capability for lossless ion motion in these devices over a wide m/z range and a range of electric fields at low pressures (e.g. a few torr). More complex ion manipulations, e.g. turning ions by 90o and dynamically switching selected ion species into orthogonal channels, are also feasible. The performance of SLIM devices at ~4 torr pressure for performing ion mobility based separations (IMS) is computationally evaluated and compared to initial experimental results, and both of which agree closely with experimental and theoretical IMS performance for a conventional drift tube design.
Role of Disk models in Indentifying Astrophysical Black Holes
Sandip K. Chakrabarti
2005-01-14T23:59:59.000Z
We discuss how disk models may limit the scope of identifying astrophysical black holes. We show that the standard Keplerian thin disk model, the thick disk model, slim disks, ADAFs etc. are fundamentally limited. We present the most complete solution to date called the advective accretion disk and discuss how it has the scope to address every observational aspects of a black hole. Though the magnetic field is not fully self-consistently taken care of yet, the details with which the present model can handle various issues successfully are astounding. We present some of the examples.
Thermal Gradient Holes At Pilgrim Hot Springs Area (DOE GTP) | Open Energy
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onsource History View New PagessourceRavenandEconomies |Information Texas'sTheEnergyAl., 1993) ||
Thermal Gradient Holes At Crump's Hot Springs Area (DOE GTP) | Open Energy
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a gHigh4-FD-a < RAPIDâ€Ž |SpaceThe German Wind Energy InstituteThermal Gradient
Thermal Gradient Holes At Fish Lake Valley Area (DOE GTP) | Open Energy
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a gHigh4-FD-a < RAPIDâ€Ž |SpaceThe German Wind Energy InstituteThermal GradientAl., 1974) |
Thermal Gradient Holes At Flint Geothermal Area (DOE GTP) | Open Energy
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a gHigh4-FD-a < RAPIDâ€Ž |SpaceThe German Wind Energy InstituteThermal GradientAl., 1974)
Thermal Gradient Holes At Fort Bliss Area (DOE GTP) | Open Energy
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a gHigh4-FD-a < RAPIDâ€Ž |SpaceThe German Wind Energy InstituteThermal GradientAl.,
Thermal Gradient Holes At Hot Pot Area (DOE GTP) | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a gHigh4-FD-a < RAPIDâ€Ž |SpaceThe German Wind Energy InstituteThermal GradientAl.,EnergyThermal
Thermal Gradient Holes At Mccoy Geothermal Area (DOE GTP) | Open Energy
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a gHigh4-FD-a < RAPIDâ€Ž |SpaceThe German Wind Energy InstituteThermalEnergy2005) |Al., 1978)
Thermal Gradient Holes At Mcgee Mountain Area (DOE GTP) | Open Energy
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a gHigh4-FD-a < RAPIDâ€Ž |SpaceThe German Wind Energy InstituteThermalEnergy2005) |Al.,
Thermal Gradient Holes At Newberry Caldera Area (DOE GTP) | Open Energy
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a gHigh4-FD-a < RAPIDâ€Ž |SpaceThe German Wind Energy InstituteThermalEnergy2005)Information
Thermal Gradient Holes At San Emidio Desert Area (DOE GTP) | Open Energy
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a gHigh4-FD-a < RAPIDâ€Ž |SpaceThe German Wind EnergyEnergy Information Thermal Gradient
Thermal Gradient Holes At Silver Peak Area (DOE GTP) | Open Energy
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a gHigh4-FD-a < RAPIDâ€Ž |SpaceThe German Wind EnergyEnergy Information Thermal
Ras-GTP dimers activate the mitogen-activated protein kinase (MAPK) pathway
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Nan, Xiaolin; Tamgüney, Tanja M.; Collisson, Eric A.; Lin, Li -Jung; Pitt, Cameron; Galeas, Jacqueline; Lewis, Sophia; Gray, Joe W.; McCormick, Frank; Chu, Steven
2015-06-16T23:59:59.000Z
Rat sarcoma (Ras) GTPases regulate cell proliferation and survival through effector pathways including Raf-MAPK, and are the most frequently mutated genes in human cancer. Although it is well established that Ras activity requires binding to both GTP and the membrane, details of how Ras operates on the cell membrane to activate its effectors remain elusive. Efforts to target mutant Ras in human cancers to therapeutic benefit have also been largely unsuccessful. Here we show that Ras-GTP forms dimers to activate MAPK. We used quantitative photoactivated localization microscopy (PALM) to analyze the nanoscale spatial organization of PAmCherry1-tagged KRas 4B (hereafter referredmore »to KRas) on the cell membrane under various signaling conditions. We found that at endogenous expression levels KRas forms dimers, and KRasG12D, a mutant that constitutively binds GTP, activates MAPK. Overexpression of KRas leads to formation of higher order Ras nanoclusters. Conversely, at lower expression levels, KRasG12D is monomeric and activates MAPK only when artificially dimerized. Moreover, dimerization and signaling of KRas are both dependent on an intact CAAX (C, cysteine; A, aliphatic; X, any amino acid) motif that is also known to mediate membrane localization. These results reveal a new, dimerization-dependent signaling mechanism of Ras, and suggest Ras dimers as a potential therapeutic target in mutant Ras-driven tumors.« less
FMI Log At New River Area (DOE GTP) | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP aCentrothermDepew, New York:Essex County, New York:Inyo Co. ,FMI Log At New River Area (DOE GTP) Jump
Grand Unified Model of Accretion Disks Around Black Holes: the Sub-Keplerian Paradigm
Sandip K. Chakrabarti
1995-02-06T23:59:59.000Z
We show that viscous, transonic accretion disks which start with sub-Keplerian angular momentum at the outer boundary reproduce the features of the so-called thick, thin, slim and other accretion disk models depending upon the accretion rates and viscosity parameters. These disks are advection dominated in the pre-shock region and rotation dominated in the post-shock region when viscosity is less than a critical value. For a higher viscosity the shock disappears, and the flow has significant radial velocity only close to the black hole.
Dreyfuss, Gideon
Import and export of the nuclear protein import receptor transportin by a mechanism independent of GTP hydrolysis Sara Nakielny and Gideon Dreyfuss Background: Nuclear protein import and export are mediated by receptor proteins that recognize nuclear localization sequences (NLSs) or nuclear export
Black Warrior: Sub-soil gas and fluid inclusion exploration and slim well drilling
Broader source: Energy.gov [DOE]
DOE Geothermal Peer Review 2010 - Presentation. Project Objectives: Discover a blind, low-moderate temperature resource: Apply a combination of detailed sub-soil gas, hydrocarbon, and isotope data to define possible upflow areas; Calibrate the sub-soil chemistry with down-hole fluid inclusion stratigraphy and fluid analyses to define a follow-up exploration drilling target; Create short term jobs and long term employment through resource exploration, development and power plant operation; Extend and adapt the DOE sub-soil 2 meter probe technology to gas sampling.
Morrison, S.D.; Roberts, S.A.; Zegeer, A.M.; Montfort, W.R.; Bandarian, V.
2009-05-26T23:59:59.000Z
GTP cyclohydrolase (GCH) III from Methanocaldococcus jannaschii, which catalyzes the conversion of GTP to 2-amino-5-formylamino-6-ribosylamino-4(3H)-pyrimidinone 5'-phosphate (FAPy), has been shown to require Mg{sup 2+} for catalytic activity and is activated by monovalent cations such as K{sup +} and ammonium [Graham, D. E., Xu, H., and White, R. H. (2002) Biochemistry 41, 15074-15084]. The reaction is formally identical to that catalyzed by a GCH II ortholog (SCO 6655) from Streptomyces coelicolor; however, SCO 6655, like other GCH II proteins, is a zinc-containing protein. The structure of GCH III complexed with GTP solved at 2 {angstrom} resolution clearly shows that GCH III adopts a distinct fold that is closely related to the palm domains of phosphodiesterases, such as DNA polymerase I. GCH III is a tetramer of identical subunits; each monomer is composed of an N- and a C-terminal domain that adopt nearly superimposible structures, suggesting that the protein has arisen by gene duplication. Three metal ions were located in the active site, two of which occupy positions that are analogous to those occupied by divalent metal ions in the structures of a number of palm domain containing proteins, such as DNA polymerase I. Two conserved Asp residues that coordinate the metal ions, which are also found in palm domain containing proteins, are observed in GCH III. Site-directed variants (Asp{yields}Asn) of these residues in GCH III are less active than wild-type. The third metal ion, most likely a potassium ion, is involved in substrate recognition through coordination of O6 of GTP. The arrangement of the metal ions in the active site suggests that GCH III utilizes two metal ion catalysis. The structure of GCH III extends the repertoire of possible reactions with a palm fold to include cyclohydrolase chemistry.
Demarco, Rafael Senos; Struckhoff, Eric Charles; Lundquist, Erik A.
2012-04-26T23:59:59.000Z
is understood about how these molecules interact in growth cone outgrowth or how the activities of these molecules are regulated in distinct contexts. UNC-73/Trio is a well-characterized Rac GTP exchange factor in Caenorhabditis elegans axon pathfinding, yet UNC...
Park, Su Hyun; Park, Tae Jun; Lim, In Kyoung, E-mail: iklim@ajou.ac.kr
2011-04-15T23:59:59.000Z
We have previously reported that G-actin accumulation in nuclei is a universal phenomenon of cellular senescence. By employing primary culture of human diploid fibroblast (HDF) and stress-induced premature senescence (SIPS), we explored whether the failure of actin export to cytoplasm is responsible for actin accumulation in nuclei of senescent cells. Expression of exportin 6 (Exp6) and small G-protein, Ran, was significantly reduced in the replicative senescence, but not yet in SIPS, whereas nuclear import of actin by cofilin was already increased in SIPS. After treatment of young HDF cells with H{sub 2}O{sub 2}, rapid reduction of nuclear RanGTP was observed along with cytoplasmic increase of RanGDP. Furthermore, significantly reduced interaction of Exp6 with RanGTP was found by GST-Exp6 pull-down analysis. Failure of RanGTP restoration was accompanied with inhibition of ATP synthesis and NTF2 sequestration in the nuclei along with accordant change of senescence morphology. Indeed, knockdown of Exp6 expression significantly increased actin molecule in the nuclei of young HDF cells. Therefore, actin accumulation in nuclei of senescent cells is most likely due to the failure of RanGTP restoration with ATP deficiency and NTF2 accumulation in nuclei, which result in the decrease of actin export via Exp6 inactivation, in addition to actin import by cofilin activation.
Cranmer, Steven R
2009-01-01T23:59:59.000Z
Coronal holes are the darkest and least active regions of the Sun, as observed both on the solar disk and above the solar limb. Coronal holes are associated with rapidly expanding open magnetic fields and the acceleration of the high-speed solar wind. This paper reviews measurements of the plasma properties in coronal holes and how these measurements are used to reveal details about the physical processes that heat the solar corona and accelerate the solar wind. It is still unknown to what extent the solar wind is fed by flux tubes that remain open (and are energized by footpoint-driven wave-like fluctuations), and to what extent much of the mass and energy is input intermittently from closed loops into the open-field regions. Evidence for both paradigms is summarized in this paper. Special emphasis is also given to spectroscopic and coronagraphic measurements that allow the highly dynamic non-equilibrium evolution of the plasma to be followed as the asymptotic conditions in interplanetary space are establish...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Black Holes at RHIC? Further discussion by Physicist Dmitri Kharzeev on why RHIC cannot produce a real gravitational black hole Black holes are among the most mysterious objects in...
Laura Ferrarese; David Merritt
2002-06-13T23:59:59.000Z
After a brief historical introduction, we summarize current efforts and accomplishments in the study of supermassive black holes.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Mahboobi, Seyed Hanif; Javanpour, Alex A.; Mofrad, Mohammad R. K.
2015-02-27T23:59:59.000Z
Molecular traffic between the nucleus and the cytoplasm is regulated by the nuclear pore complex (NPC), which acts as a highly selective channel perforating the nuclear envelope in eukaryotic cells. The human immunodeficiency virus (HIV) exploits the nucleocytoplasmic pathway to export its RNA transcripts across the NPC to the cytoplasm. Despite extensive study on the HIV life cycle and the many drugs developed to target this cycle, no current drugs have been successful in targeting the critical process of viral nuclear export, even though HIV’s reliance on a single host protein, CRM1, to export its unspliced and partially spliced RNAmore »transcripts makes it a tempting target. Due to recent findings implicating a DEAD-box helicase, DDX3, in HIV replication and a member of the export complex, it has become an appealing target for anti-HIV drug inhibition. In the present research, we have applied a hybrid computational protocol to analyze protein-protein interactions in the HIV mRNA export cycle. This method is based on molecular docking followed by molecular dynamics simulation and accompanied by approximate free energy calculation (MM/GBSA), computational alanine scanning, clustering, and evolutionary analysis. We highlight here some of the most likely binding modes and interfacial residues between DDX3 and CRM1 both in the absence and presence of RanGTP. This work shows that although DDX3 can bind to free CRM1, addition of RanGTP leads to more concentrated distribution of binding modes and stronger binding between CRM1 and RanGTP.« less
PROOF COPY [GTP-08-1324] 002001GTP [GTP-08-1324]002001GTP
Aggarwal, Suresh K.
and vapor/gas, when the local pressure drops below the vapor pressure of the fluid. Funda- mentally, the liquid to vapor transition can occur by heating the fluid at a constant pressure, known as boiling, or by decreasing the pressure at a constant temperature, which is known as cavitation. Since vapor density
Sean A. Hayward
2009-02-28T23:59:59.000Z
This is a review of current theory of black-hole dynamics, concentrating on the framework in terms of trapping horizons. Summaries are given of the history, the classical theory of black holes, the defining ideas of dynamical black holes, the basic laws, conservation laws for energy and angular momentum, other physical quantities and the limit of local equilibrium. Some new material concerns how processes such as black-hole evaporation and coalescence might be described by a single trapping horizon which manifests temporally as separate horizons.
B. Kleihaus; J. Kunz
2000-12-20T23:59:59.000Z
We construct stationary black holes in SU(2) Einstein-Yang-Mills theory, which carry angular momentum and electric charge. Possessing non-trivial non-abelian magnetic fields outside their regular event horizon, they represent non-perturbative rotating hairy black holes.
Disregarding the 'Hole Argument'
Bryan W. Roberts
2014-12-17T23:59:59.000Z
Jim Weatherall has suggested that Einstein's hole argument, as presented by Earman and Norton (1987), is based on a misleading use of mathematics. I argue on the contrary that Weatherall demands an implausible restriction on how mathematics is used. The hole argument, on the other hand, is in no new danger at all.
Black Holes and Galaxy Evolution
David Merritt
1999-10-29T23:59:59.000Z
Supermassive binary black holes and their influence on the structure and evolution of galaxies is reviewed.
Fontana, Peter R.; Srivastava, Rajendra P.
1973-06-01T23:59:59.000Z
The decay of an atom in the presence of a static perturbation is investigated. The perturbation couples a decaying state with a nondecaying state. A "hole" appears in the emission line at a frequency equal to the frequency difference between...
J. W. Moffat
1993-02-22T23:59:59.000Z
The problem of information loss in black hole formation and the associated violations of basic laws of physics, such as conservation of energy, causality and unitarity, are avoided in the nonsymmetric gravitational theory, if the NGT charge of a black hole and its mass satisfy an inequality that does not violate any known experimental data and allows the existence of white dwarfs and neutron stars.
Deep Blue No.1-A Slimhole Geothermal Discovery At Blue Mountain...
Area (Fairbank & Niggemann, 2004) Slim Holes At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank &...
Mei, Jianwei
2010-10-12T23:59:59.000Z
This dissertation covers two di erent but related topics: the construction of new black hole solutions and the study of the microscopic origin of black hole entropy. In the solution part, two di erent sets of new solutions ...
Towards noncommutative quantum black holes
Lopez-Dominguez, J. C.; Obregon, O.; Sabido, M.; Ramirez, C. [Instituto de Fisica de la Universidad de Guanajuato, P.O. Box E-143, 37150 Leon Gto. (Mexico); Facultad de Ciencias Fisico Matematicas, Universidad Autonoma de Puebla, P.O. Box 1364, 72000 Puebla (Mexico)
2006-10-15T23:59:59.000Z
In this paper we study noncommutative black holes. We use a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate the Hawking's temperature and entropy for the noncommutative Schwarzschild black hole.
Thermodynamical instability of black holes
V. V. Kiselev
2012-08-07T23:59:59.000Z
In contrast to Hawking radiation of black hole with a given spacetime structure, we consider a competitive transition due to a heat transfer from a hotter inner horizon to a colder outer horizon of Kerr black hole, that results in a stable thermodynamical state of extremal black hole. In this process, by supposing an emission of gravitational quanta, we calculate the mass of extremal black hole in the final state of transition.
M. B. Altaie
2001-05-07T23:59:59.000Z
In this paper we follow a new approach for particle creation by a localized strong gravitational field. The approach is based on a definition of the physical vacuum drawn from Heisenberg uncertainty principle. Using the fact that the gravitational field red-shifts the frequency modes of the vacuum, a condition on the minimum stregth of the gravitational field required to achieve real particle creation is derived. Application of this requirement on a Schwartzchid black hole resulted in deducing an upper limit on the region, outside the event horizon, where real particles can be created. Using this regional upper limit, and considering particle creation by black holes as a consequence of the Casimir effect, with the assumption that the created quanta are to be added to the initial energy, we deduce a natural power law for the development of the event horizon, and consequently a logarithmic law for the area spectrum of an inflating black hole. Application of the results on a cosmological model shows that if we start with a Planck-dimensional black hole, then through the process of particle creation we end up with a universe having the presently estimated critical density. Such a universe will be in a state of eternal inflation.
Underwood, Lance D; Norton, Ryan J; McKay, Ryan P; Mesnard, David R; Fraze, Jason D; Zediker, Mark S; Faircloth, Brian O
2014-01-14T23:59:59.000Z
There is provided for laser bottom hole assembly for providing a high power laser beam having greater than 5 kW of power for a laser mechanical drilling process to advance a borehole. This assembly utilizes a reverse Moineau motor type power section and provides a self-regulating system that addresses fluid flows relating to motive force, cooling and removal of cuttings.
Bryan Webber
2006-04-06T23:59:59.000Z
In theories with large extra dimensions and TeV-scale gravity, black holes are copiously produced in particle collisions at energies well above the Planck scale. I briefly review some recent work on the phenomenology of this process, with emphasis on theoretical uncertainties and possible strategies for measuring the number of extra dimensions.
Statistical Mechanics of Black Holes
B. Harms; Y. Leblanc
1992-05-11T23:59:59.000Z
We analyze the statistical mechanics of a gas of neutral and charged black holes. The microcanonical ensemble is the only possible approach to this system, and the equilibrium configuration is the one for which most of the energy is carried by a single black hole. Schwarzschild black holes are found to obey the statistical bootstrap condition. In all cases, the microcanonical temperature is identical to the Hawking temperature of the most massive black hole in the gas. U(1) charges in general break the bootstrap property. The problems of black hole decay and of quantum coherence are also addressed.
Laura Ferrarese
2002-03-04T23:59:59.000Z
The purpose of this contribution is to review the current status of black hole demographics in light of recent advances in the study of high redshift QSOs (section 2), local AGNs (section 3) and local quiescent galaxies (section 4). I will then outline the prospects for future progress (section 5), and discuss what I believe will be the challenges for the years to come [ABRIDGED].
Identification of Astrophysical Black Holes
Sandip K. Chakrabarti
1998-03-19T23:59:59.000Z
Black holes are by definition black, and therefore cannot be directly observed by using electromagnetic radiations. Convincing identification of black holes must necessarily depend on the identification of a very specially behaving matter and radiation which surround them. A major problem in this subject of black hole astrophysics is to quantify the behaviour of matter and radiation close to the horizon. In this review, the subject of black hole accretion and outflow is systematically developed. It is shown that both the stationary as well as the non-stationary properties of the observed spectra could be generally understood by these solutions. It is suggested that the solutions of radiative hydrodynamic equations may produce clear spectral signatures of black holes. Other circumstantial evidences of black holes, both in the galactic centers as well as in binary systems, are also presented.
Black holes in general relativity
Visser, Matt
2009-01-01T23:59:59.000Z
What is going on (as of August 2008) at the interface between theoretical general relativity, string-inspired models, and observational astrophysics? Quite a lot. In this mini-survey I will make a personal choice and focus on four specific questions: Do black holes "exist"? (For selected values of the word "exist".) Is black hole formation and evaporation unitary? Can one mimic a black hole to arbitrary accuracy? Can one detect the presence of a horizon using local physics?
Observational Evidence for Black Holes
Ramesh Narayan; Jeffrey E. McClintock
2014-07-20T23:59:59.000Z
Astronomers have discovered two populations of black holes: (i) stellar-mass black holes with masses in the range 5 to 30 solar masses, millions of which are present in each galaxy in the universe, and (ii) supermassive black holes with masses in the range 10^6 to 10^{10} solar masses, one each in the nucleus of every galaxy. There is strong circumstantial evidence that all these objects are true black holes with event horizons. The measured masses of supermassive black hole are strongly correlated with properties of their host galaxies, suggesting that these black holes, although extremely small in size, have a strong influence on the formation and evolution of entire galaxies. Spin parameters have recently been measured for a handful of black holes. Based on the data, there is an indication that the kinetic power of at least one class of relativistic jet ejected from accreting black holes may be correlated with black hole spin. If verified, it would suggest that these jets are powered by a generalized Penrose process mediated by magnetic fields.
Quantum Mechanics and Black Holes
Jose N. Pecina-Cruz
2005-11-27T23:59:59.000Z
This paper discusses the existence of black holes from the foundations of quantum mechanics. It is found that quantum mechanics rule out a possible gravitational collapse.
S. N. Dolya
2014-10-18T23:59:59.000Z
This article considers an opportunity of disinfecting a part of the Earth surface, occupying a large area of ten thousand square kilometers. The sunlight will cause dissociation of molecular bromine into atoms; each bromine atom kills thirty thousand molecules of ozone. Each bromine plate has a mass of forty milligrams grams and destroys ozone in the area of hundred square meters. Thus, to form the ozone hole over the area of ten thousand square kilometers, it is required to have the total mass of bromine equal to the following four tons.
R. B. Mann
1997-05-06T23:59:59.000Z
I demonstrate that, under certain circumstances, regions of negative energy density can undergo gravitational collapse into a black hole. The resultant exterior black hole spacetimes necessarily have negative mass and non-trivial topology. A full theory of quantum gravity, in which topology-changing processes take place, could give rise to such spacetimes.
The Ozone Hole Some perspective
Toohey, Darin W.
The Ozone Hole · Some perspective · The British Antarctic Survey · The "Ozone Hole" · International of the predicted ozone losses! This was quite a controversy. Ultimately, ozone losses started appearing in the late 1980s (see Figure below), but by then, there was already a credibility issue for ozone scientists. #12
Optical black holes and solitons
Shawn Westmoreland
2010-12-21T23:59:59.000Z
We exhibit a static, cylindrically symmetric, exact solution to the Euler-Heisenberg field equations (EHFE) and prove that its effective geometry contains (optical) black holes. It is conjectured that there are also soliton solutions to the EHFE which contain black hole geometries.
Mei, Jianwei
2010-10-12T23:59:59.000Z
This dissertation covers two di erent but related topics: the construction of new black hole solutions and the study of the microscopic origin of black hole entropy. In the solution part, two di erent sets of new solutions are found. The rst...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankShale_Gas.pdfService on the TargetFY12 DOE - CERTSofProducts; Notice of ProposedW We We We5Projected
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankShale_Gas.pdfService on the TargetFY12 DOE - CERTSofProducts; Notice of ProposedW We We
The Woods Hole Laboratory, 1885-1985
The Woods Hole Laboratory, 1885-1985: A Century of Service Woods Hole Laboratory Northeast, Lectures, and Rededication of the Woods Hole Laboratory Contents Foreword and Acknowledgments Committees and Contributions of the Woods Hole Fisheries Laboratory Centennial Lecture II: The MBL and the Fisheries-A Century
Strings, higher curvature corrections, and black holes
Thomas Mohaupt
2005-12-05T23:59:59.000Z
We review old and recent results on subleading contributions to black hole entropy in string theory.
You Cannot Press Out the Black Hole
Daisuke Ida; Takahiro Okamoto
2012-01-03T23:59:59.000Z
It is shown that a ball-shaped black hole region homeomorphic with D**n cannot be pressed out, along whichever axis penetrating the black hole region, into a black ring with a doughnut-shaped black hole region homeomorphic with S**1 x D**(n-1). A more general prohibition law for the change of the topology of black holes, including a version of no-bifurcation theorems for black holes, is given.
Black Holes and Nuclear Dynamics
David Merritt
2006-02-17T23:59:59.000Z
Supermassive black holes inhabit galactic nuclei, and their presence influences in crucial ways the evolution of the stellar distribution. The low-density cores observed in bright galaxies are probably a result of black hole infall, while steep density cusps like those at the Galactic center are a result of energy exchange between stars moving in the gravitational field of the single black hole. Loss-cone dynamics are substantially more complex in galactic nuclei than in collisionally-relaxed systems like globular clusters due to the wider variety of possible geometries and orbital populations. The rate of star-black hole interactions has begun to be constrained through observations of energetic events associated with stellar tidal disruptions.
Thermodynamics of regular black hole
Yun Soo Myung; Yong-Wan Kim; Young-Jai Park
2008-09-21T23:59:59.000Z
We investigate thermodynamics for a magnetically charged regular black hole (MCRBH), which comes from the action of general relativity and nonlinear electromagnetics, comparing with the Reissner-Norstr\\"om (RN) black hole in both four and two dimensions after dimensional reduction. We find that there is no thermodynamic difference between the regular and RN black holes for a fixed charge $Q$ in both dimensions. This means that the condition for either singularity or regularity at the origin of coordinate does not affect the thermodynamics of black hole. Furthermore, we describe the near-horizon AdS$_2$ thermodynamics of the MCRBH with the connection of the Jackiw-Teitelboim theory. We also identify the near-horizon entropy as the statistical entropy by using the AdS$_2$/CFT$_1$ correspondence.
Black hole horizons Eric Gourgoulhon
Gourgoulhon, Eric
on a black hole: up to 42% of the mass-energy mc2 of accreted matter ! NB: thermonuclear reactions release: a very deep gravitational potential well Release of potential gravitational energy by accretion
A. Brotas
2006-09-01T23:59:59.000Z
The coordinate system $(\\bar{x},\\bar{t})$ defined by $r = 2m + K\\bar{x}- c K \\bar{t}$ and $t=\\bar{x}/cK - 1 /cK \\int_{r_a}^r (1- 2m/r + K^2)^{1/2} (1 - 2m/r)^{-1}dr$ allow us to write the Schwarzschild metric in the form: \\[ds^2=c^2 d\\bar{t}^2 + (W^2/K^2 - 2W/K) d\\bar{x}^2 + 2c (1 + W/K) d\\bar{x}d\\bar{t} - r^2 (d\\theta^2 + cos^2\\theta d\\phi^2)\\] with $W=(1 - 2m/r + K^2)^{1/2}$, in which the coefficients' pathologies are moved to $r_K = 2m/(1+K^2)$. This new coordinate system is used to study the entrance into a black hole of a rigid line (a line in which the shock waves propagate with velocity c).
Sadeghi, J
2015-01-01T23:59:59.000Z
As we know, the cosmological constant in different theories of gravity acts as a thermodynamics variable. The cosmological constant exists in different actions of gravity and also appears in the solution of such theories. These lead to use the black hole as a heat engines. Also, there are two values for the cosmological constant as positive and negative values. The case of negative cosmological constant supplies a natural realization of these engines in terms of the field theory description of the fluids to which they are holographically dual. In this paper, we are going to define heat engines for two different black holes as Dyonic BH and Kerr BH. And also, we calculate maximum efficiency for two black holes.
J. Sadeghi; Kh. Jafarzade
2015-04-29T23:59:59.000Z
As we know, the cosmological constant in different theories of gravity acts as a thermodynamics variable. The cosmological constant exists in different actions of gravity and also appears in the solution of such theories. These lead to use the black hole as a heat engines. Also, there are two values for the cosmological constant as positive and negative values. The case of negative cosmological constant supplies a natural realization of these engines in terms of the field theory description of the fluids to which they are holographically dual. In this paper, we are going to define heat engines for two different black holes as Dyonic BH and Kerr BH. And also, we calculate maximum efficiency for two black holes.
Quantum Criticality and Black Holes
Sachdev, Subir [Harvard University, Cambridge, Massachusetts, United States
2009-09-01T23:59:59.000Z
I will describe the behavior of a variety of condensed matter systems in the vicinity of zero temperature quantum phase transitions. There is a remarkable analogy between the hydrodynamics of such systems and the quantum theory of black holes. I will show how insights from this analogy have shed light on recent experiments on the cuprate high temperature superconductors. Studies of new materials and trapped ultracold atoms are yielding new quantum phases, with novel forms of quantum entanglement. Some materials are of technological importance: e.g. high temperature superconductors. Exact solutions via black hole mapping have yielded first exact results for transport coefficients in interacting many-body systems, and were valuable in determining general structure of hydrodynamics. Theory of VBS order and Nernst effect in cuprates. Tabletop 'laboratories for the entire universe': quantum mechanics of black holes, quark-gluon plasma, neutrons stars, and big-bang physics.
Energy on black hole spacetimes
Alejandro Corichi
2012-07-18T23:59:59.000Z
We consider the issue of defining energy for test particles on a background black hole spacetime. We revisit the different notions of energy as defined by different observers. The existence of a time-like isometry allows for the notion of a total conserved energy to be well defined, and subsequently the notion of a gravitational potential energy is also meaningful. We then consider the situation in which the test particle is adsorbed by the black hole, and analyze the energetics in detail. In particular, we show that the notion of horizon energy es defined by the isolated horizons formalism provides a satisfactory notion of energy compatible with the particle's conserved energy. As another example, we comment a recent proposal to define energy of the black hole as seen by an observer at rest. This account is intended to be pedagogical and is aimed at the level of and as a complement to the standard textbooks on the subject.
J. Sadeghi; Kh. Jafarzade
2015-06-23T23:59:59.000Z
As we know, the cosmological constant in different theories of gravity acts as a thermodynamics variable. The cosmological constant exists in different actions of gravity and also appears in the solution of such theories. These lead to use the black hole as a heat engines. Also, there are two values for the cosmological constant as positive and negative values. The case of negative cosmological constant supplies a natural realization of these engines in terms of the field theory description of the fluids to which they are holographically dual. In this paper, we are going to define heat engines for two different black holes as Dyonic BH and Kerr BH. And also, we calculate maximum efficiency for two black holes.
Black Holes and Galaxy Dynamics
David Merritt
1999-06-02T23:59:59.000Z
The consequences of nuclear black holes for the structure and dynamics of stellar spheroids are reviewed. Slow growth of a black hole in a pre-existing core produces a steep power-law density profile similar to the cusps seen in faint elliptical galaxies. The weaker cusps in bright ellipticals may result from ejection of stars by a coalescing black-hole binary; there is marginal kinematical evidence for such a process having occurred in M87. Stellar orbits in a triaxial nucleus are mostly regular at radii where the gravitational force is dominated by the black hole; however the orbital shapes are not conducive to reinforcing the triaxial figure, hence nuclei are likely to be approximately axisymmetric. In triaxial potentials, a ``zone of chaos'' extends outward to a radius where the enclosed stellar mass is roughly 100 times the mass of the black hole; in this chaotic zone, no regular, box-like orbits exist. At larger radii, the phase space in triaxial potentials is complex, consisting of stochastic orbits as well as regular orbits associated with stable resonances. Figure rotation tends to increase the degree of stochasticity. Both test-particle integrations and N-body simulations suggest that a triaxial galaxy responds globally to the presence of a central mass concentration by evolving toward more axisymmetric shapes; the evolution occurs rapidly when the mass of the central object exceeds roughly 2% of the mass in stars. The lack of significant triaxiality in most early-type galaxies may be a consequence of orbital evolution induced by nuclear black holes.
Introduction to Black Hole Evaporation
Pierre-Henry Lambert
2014-01-16T23:59:59.000Z
These lecture notes are an elementary and pedagogical introduction to the black hole evaporation, based on a lecture given by the author at the Ninth Modave Summer School in Mathematical Physics and are intended for PhD students. First, quantum field theory in curved spacetime is studied and tools needed for the remaining of the course are introduced. Then, quantum field theory in Rindler spacetime in 1+1 dimensions and in the spacetime of a spherically collapsing star are considered, leading to Unruh and Hawking effects, respectively. Finally, some consequences such as thermodynamics of black holes and information loss paradox are discussed.
Hawking Emission and Black Hole Thermodynamics
Don N. Page
2006-12-18T23:59:59.000Z
A brief review of Hawking radiation and black hole thermodynamics is given, based largely upon hep-th/0409024.
TIPS TO REMAIN SLIM * Set realistic goals.
Srivastava, Kumar Vaibhav
a week. * Aerobic exercise like jogging, swimming, cycling, running accelerates weight loss. Consult in the morning. * Go for skimmed milk. * As far as possible avoid weight loss supplements. * When you have a physician before starting any weight loss program. Aerobic exercise combined with healthy eating
Scattering by regular black holes: Planar massless scalar waves impinging upon a Bardeen black hole
Macedo, Caio F B; Crispino, Luís C B
2015-01-01T23:59:59.000Z
Singularities are common features of general relativity black holes. However, within general relativity, one can construct black holes that present no singularities. These regular black hole solutions can be achieved by, for instance, relaxing one of the energy conditions on the stress energy tensor sourcing the black hole. Some regular black hole solutions were found in the context of non-linear electrodynamics, the Bardeen black hole being the first one proposed. In this paper, we consider a planar massless scalar wave scattered by a Bardeen black hole. We compare the scattering cross section computed using a partial-wave description with the classical geodesic scattering of a stream of null geodesics, as well as with the semi-classical glory approximation. We obtain that, for some values of the corresponding black hole charge, the scattering cross section of a Bardeen black hole has a similar interference pattern of a Reissner-Nordstr\\"om black hole.
Scattering by regular black holes: Planar massless scalar waves impinging upon a Bardeen black hole
Caio F. B. Macedo; Ednilton S. de Oliveira; Luís C. B. Crispino
2015-06-26T23:59:59.000Z
Singularities are common features of general relativity black holes. However, within general relativity, one can construct black holes that present no singularities. These regular black hole solutions can be achieved by, for instance, relaxing one of the energy conditions on the stress energy tensor sourcing the black hole. Some regular black hole solutions were found in the context of non-linear electrodynamics, the Bardeen black hole being the first one proposed. In this paper, we consider a planar massless scalar wave scattered by a Bardeen black hole. We compare the scattering cross section computed using a partial-wave description with the classical geodesic scattering of a stream of null geodesics, as well as with the semi-classical glory approximation. We obtain that, for some values of the corresponding black hole charge, the scattering cross section of a Bardeen black hole has a similar interference pattern of a Reissner-Nordstr\\"om black hole.
High precision, rapid laser hole drilling
Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.
2007-03-20T23:59:59.000Z
A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.
High precision, rapid laser hole drilling
Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.
2005-03-08T23:59:59.000Z
A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.
High precision, rapid laser hole drilling
Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.
2013-04-02T23:59:59.000Z
A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.
Signatures of black holes at the LHC
Marco Cavaglia; Romulus Godang; Lucien M. Cremaldi; Donald J. Summers
2007-07-02T23:59:59.000Z
Signatures of black hole events at CERN's Large Hadron Collider are discussed. Event simulations are carried out with the Fortran Monte Carlo generator CATFISH. Inelasticity effects, exact field emissivities, color and charge conservation, corrections to semiclassical black hole evaporation, gravitational energy loss at formation and possibility of a black hole remnant are included in the analysis.
Fenimore, Edward E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2014-10-06T23:59:59.000Z
Pinhole photography has made major contributions to astrophysics through the use of “coded apertures”. Coded apertures were instrumental in locating gamma-ray bursts and proving that they originate in faraway galaxies, some from the birth of black holes from the first stars that formed just after the big bang.
Einstein, Black Holes Gravitational Waves
Cook, Greg
1 #12;Einstein, Black Holes and Gravitational Waves Gregory B. Cook Wake Forest University 2 #12;Einstein's Miraculous Year: 1905 · Einstein, A. "¨Uber einen die Erzeugung und Verwandlung des Lichtes Concerning the Production and Transformation of Light. · Einstein, A. "¨Uber die von der molekularkinetischen
Black Hole Radiation and Volume Statistical Entropy
Mario Rabinowitz
2005-06-29T23:59:59.000Z
The simplest possible equation for Hawking radiation, and other black hole radiated power is derived in terms of black hole density. Black hole density also leads to the simplest possible model of a gas of elementary constituents confined inside a gravitational bottle of Schwarzchild radius at tremendous pressure, which yields identically the same functional dependence as the traditional black hole entropy. Variations of Sbh can be obtained which depend on the occupancy of phase space cells. A relation is derived between the constituent momenta and the black hole radius which is similar to the Compton wavelength relation.
Detecting small holes in packages
Kronberg, James W. (Aiken, SC); Cadieux, James R. (Aiken, SC)
1996-01-01T23:59:59.000Z
A package containing a tracer gas, and a method for determining the presence of a hole in the package by sensing the presence of the gas outside the package. The preferred tracer gas, especially for food packaging, is sulfur hexafluoride. A quantity of the gas is added to the package and the package is closed. The concentration of the gas in the atmosphere outside the package is measured and compared to a predetermined value of the concentration of the gas in the absence of the package. A measured concentration greater than the predetermined value indicates the presence of a hole in the package. Measuring may be done in a chamber having a lower pressure than that in the package.
Detecting small holes in packages
Kronberg, J.W.; Cadieux, J.R.
1996-03-19T23:59:59.000Z
A package containing a tracer gas, and a method for determining the presence of a hole in the package by sensing the presence of the gas outside the package are disclosed. The preferred tracer gas, especially for food packaging, is sulfur hexafluoride. A quantity of the gas is added to the package and the package is closed. The concentration of the gas in the atmosphere outside the package is measured and compared to a predetermined value of the concentration of the gas in the absence of the package. A measured concentration greater than the predetermined value indicates the presence of a hole in the package. Measuring may be done in a chamber having a lower pressure than that in the package. 3 figs.
Black Hole Thermodynamics and Electromagnetism
Burra G. Sidharth
2005-07-15T23:59:59.000Z
We show a strong parallel between the Hawking, Beckenstein black hole Thermodynamics and electromagnetism: When the gravitational coupling constant transform into the electromagnetic coupling constant, the Schwarzchild radius, the Beckenstein temperature, the Beckenstein decay time and the Planck mass transform to respectively the Compton wavelength, the Hagedorn temperature, the Compton time and a typical elementary particle mass. The reasons underlying this parallalism are then discussed in detail.
Quantum chaos inside Black Holes
Andrea Addazi
2015-08-30T23:59:59.000Z
We show how semiclassical black holes can be reinterpreted as an effective geometry, composed of a large ensamble of horizonless naked singularities (eventually smoothed at the Planck scale). We call this new items {\\it frizzyballs}, which can be rigorously defined by euclidean path integral approach. This has interesting implications regarding information paradoxes. We demonstrate that infalling information will chaotically propagate inside this system before going to the full quantum gravity regime (Planck scale).
Quantum chaos inside Black Holes
Addazi, Andrea
2015-01-01T23:59:59.000Z
We show how semiclassical black holes can be reinterpreted as an effective geometry, composed of a large ensamble of horizonless naked singularities (eventually smoothed at the Planck scale). We call this new items {\\it frizzyballs}, which can be rigorously defined by euclidean path integral approach. This has interesting implications regarding information paradoxes. We demonstrate that infalling information will chaotically propagate inside this system before going to the full quantum gravity regime (Planck scale).
Erik Curiel
2014-11-09T23:59:59.000Z
In the early 1970s it is was realized that there is a striking formal analogy between the Laws of black-hole mechanics and the Laws of classical thermodynamics. Before the discovery of Hawking radiation, however, it was generally thought that the analogy was only formal, and did not reflect a deep connection between gravitational and thermodynamical phenomena. It is still commonly held that the surface gravity of a stationary black hole can be construed as a true physical temperature and its area as a true entropy only when quantum effects are taken into account; in the context of classical general relativity alone, one cannot cogently construe them so. Does the use of quantum field theory in curved spacetime offer the only hope for taking the analogy seriously? I think the answer is `no'. To attempt to justify that answer, I shall begin by arguing that the standard argument to the contrary is not physically well founded, and in any event begs the question. Looking at the various ways that the ideas of "temperature" and "entropy" enter classical thermodynamics then will suggest arguments that, I claim, show the analogy between classical black-hole mechanics and classical thermodynamics should be taken more seriously, without the need to rely on or invoke quantum mechanics. In particular, I construct an analogue of a Carnot cycle in which a black hole "couples" with an ordinary thermodynamical system in such a way that its surface gravity plays the role of temperature and its area that of entropy. Thus, the connection between classical general relativity and classical thermodynamics on their own is already deep and physically significant, independent of quantum mechanics.
Down hole periodic seismic generator
Hardee, Harry C. (Albuquerque, NM); Hills, Richard G. (Las Cruces, NM); Striker, Richard P. (Albuquerque, NM)
1989-01-01T23:59:59.000Z
A down hole periodic seismic generator system for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.
Submicron patterned metal hole etching
McCarthy, Anthony M. (Menlo Park, CA); Contolini, Robert J. (Lake Oswego, OR); Liberman, Vladimir (Needham, MA); Morse, Jeffrey (Martinez, CA)
2000-01-01T23:59:59.000Z
A wet chemical process for etching submicron patterned holes in thin metal layers using electrochemical etching with the aid of a wetting agent. In this process, the processed wafer to be etched is immersed in a wetting agent, such as methanol, for a few seconds prior to inserting the processed wafer into an electrochemical etching setup, with the wafer maintained horizontal during transfer to maintain a film of methanol covering the patterned areas. The electrochemical etching setup includes a tube which seals the edges of the wafer preventing loss of the methanol. An electrolyte composed of 4:1 water: sulfuric is poured into the tube and the electrolyte replaces the wetting agent in the patterned holes. A working electrode is attached to a metal layer of the wafer, with reference and counter electrodes inserted in the electrolyte with all electrodes connected to a potentiostat. A single pulse on the counter electrode, such as a 100 ms pulse at +10.2 volts, is used to excite the electrochemical circuit and perform the etch. The process produces uniform etching of the patterned holes in the metal layers, such as chromium and molybdenum of the wafer without adversely effecting the patterned mask.
Relationship of Black Holes to Bulges
David Merritt; Laura Ferrarese
2001-07-08T23:59:59.000Z
Supermassive black holes appear to be uniquely associated with galactic bulges. The mean ratio of black hole mass to bulge mass was until recently very uncertain, with ground based, stellar kinematical data giving a value roughly an order of magnitude larger than other techniques. The discrepancy was resolved with the discovery of the M-sigma relation, which simultaneously established a tight corrrelation between black hole mass and bulge velocity dispersion, and confirmed that the stellar kinematical mass estimates were systematically too large due to failure to resolve the black hole's sphere of influence. There is now excellent agreement between the various techniques for estimating the mean black hole mass, including dynamical mass estimation in quiescent galaxies; reverberation mapping in active galaxies and quasars; and computation of the mean density of compact objects based on integrated quasar light. Implications of the M-sigma relation for the formation of black holes are discussed.
Black holes are almost optimal quantum cloners
C. Adami; G. Ver Steeg
2015-04-15T23:59:59.000Z
If black holes were able to clone quantum states, a number of paradoxes in black hole physics would disappear. However, the linearity of quantum mechanics forbids exact cloning of quantum states. Here we show that black holes indeed clone incoming quantum states with a fidelity that depends on the black hole's absorption coefficient, without violating the no-cloning theorem because the clones are only approximate. Perfectly reflecting black holes are optimal universal "quantum cloning machines" and operate on the principle of stimulated emission, exactly as their quantum optical counterparts. In the limit of perfect absorption, the fidelity of clones is equal to what can be obtained via quantum state estimation methods. But for any absorption probability less than one, the cloning fidelity is nearly optimal as long as $\\omega/T\\geq10$, a common parameter for modest-sized black holes.
Black hole initial data without elliptic equations
István Rácz; Jeffrey Winicour
2015-02-24T23:59:59.000Z
We explore whether a new method to solve the constraints of Einstein's equations, which does not involve elliptic equations, can be applied to provide initial data for black holes. We show that this method can be successfully applied to a nonlinear perturbation of a Schwarzschild black hole by establishing the well-posedness of the resulting constraint problem. We discuss its possible generalization to the boosted, spinning multiple black hole problem.
Hole cleaning requirements with seabed returns
Nordt, David Paul
1988-01-01T23:59:59.000Z
of different non-Newtonian fluids 56 INTRODUCTION A drilling fluid is used for removing cuttings from the hole, controlling subsurface pressures, preventing caving-in of the formations, suspension of cuttings, weighting materials, and many other uses... of the hole. The drilling problems related to hole cleaning can occur at low as well as high annular velocities. Cuttings can travel no faster than the fluid in which they are transported; however, they can travel more slowly. Their fall (slip) rate...
Lower Dimensional Black Holes: Inside and Out
R. B. Mann
1995-01-27T23:59:59.000Z
I survey the physics of black holes in two and three spacetime dimensions, with special attention given to an understanding of their exterior and interior properties.
Thermoelectric DC conductivities from black hole horizons
Aristomenis Donos; Jerome P. Gauntlett
2014-10-14T23:59:59.000Z
An analytic expression for the DC electrical conductivity in terms of black hole horizon data was recently obtained for a class of holographic black holes exhibiting momentum dissipation. We generalise this result to obtain analogous expressions for the DC thermoelectric and thermal conductivities. We illustrate our results using some holographic Q-lattice black holes as well as for some black holes with linear massless axions, in both $D=4$ and $D=5$ bulk spacetime dimensions, which include both spatially isotropic and anisotropic examples. We show that some recently constructed ground states of holographic Q-lattices, which can be either electrically insulating or metallic, are all thermal insulators.
Mineral Test Hole Regulatory Act (Tennessee)
Broader source: Energy.gov [DOE]
The Mineral Hole Regulatory Act is applicable to any person (individual, corporation, company, association, joint venture, partnership, receiver, trustee, guardian, executor, administrator,...
Approximate initial data for binary black holes
Kenneth A. Dennison; Thomas W. Baumgarte; Harald P. Pfeiffer
2006-08-26T23:59:59.000Z
We construct approximate analytical solutions to the constraint equations of general relativity for binary black holes of arbitrary mass ratio in quasicircular orbit. We adopt the puncture method to solve the constraint equations in the transverse-traceless decomposition and consider perturbations of Schwarzschild black holes caused by boosts and the presence of a binary companion. A superposition of these two perturbations then yields approximate, but fully analytic binary black hole initial data that are accurate to first order in the inverse of the binary separation and the square of the black holes' momenta.
Black Holes: from Speculations to Observations
Thomas W. Baumgarte
2006-04-13T23:59:59.000Z
This paper provides a brief review of the history of our understanding and knowledge of black holes. Starting with early speculations on ``dark stars'' I discuss the Schwarzschild "black hole" solution to Einstein's field equations and the development of its interpretation from "physically meaningless" to describing the perhaps most exotic and yet "most perfect" macroscopic object in the universe. I describe different astrophysical black hole populations and discuss some of their observational evidence. Finally I close by speculating about future observations of black holes with the new generation of gravitational wave detectors.
Rotating embedded black holes: Entropy and Hawking's radiation
Ng Ibohal
2004-12-27T23:59:59.000Z
In this paper we derive a class of rotating embedded black holes. Then we study Hawking's radiation effects on these embedded black holes. The surface gravity, entropy and angular velocity are given for each of these black holes.
Black Holes at the LHC: Progress since 2002
Park, Seong Chan [FRDP, Department of Physics and Astronomy, Seoul National University, Seoul (Korea, Republic of)
2008-11-23T23:59:59.000Z
We review the recent noticeable progresses in black hole physics focusing on the up-coming super-collider, the LHC. We discuss the classical formation of black holes by particle collision, the greybody factors for higher dimensional rotating black holes, the deep implications of black hole physics to the 'energy-distance' relation, the security issues of the LHC associated with black hole formation and the newly developed Monte-Carlo generators for black hole events.
Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank...
Holes Activity Date 1999 - 1999 Usefulness useful DOE-funding Unknown Exploration Basis Thermal gradient holes were drilled in an effort to determine the feasibility of...
Phosphine Oxide Based Electron Transporting and Hole Blocking...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Oxide Based Electron Transporting and Hole Blocking Materials for Blue Electrophosphorescent Organic Light Emitting Phosphine Oxide Based Electron Transporting and Hole Blocking...
Strings, black holes, and quantum information
Kallosh, Renata; Linde, Andrei [Department of Physics, Stanford University, Stanford, California 94305 (United States)
2006-05-15T23:59:59.000Z
We find multiple relations between extremal black holes in string theory and 2- and 3-qubit systems in quantum information theory. We show that the entropy of the axion-dilaton extremal black hole is related to the concurrence of a 2-qubit state, whereas the entropy of the STU black holes, Bogomol'nyi-Prasad-Sommerfield (BPS) as well as non-BPS, is related to the 3-tangle of a 3-qubit state. We relate the 3-qubit states with the string theory states with some number of D-branes. We identify a set of large black holes with the maximally entangled Greenberger, Horne, Zeilinger (GHZ) class of states and small black holes with separable, bipartite, and W states. We sort out the relation between 3-qubit states, twistors, octonions, and black holes. We give a simple expression for the entropy and the area of stretched horizon of small black holes in terms of a norm and 2-tangles of a 3-qubit system. Finally, we show that the most general expression for the black hole and black ring entropy in N=8 supergravity/M theory, which is given by the famous quartic Cartan E{sub 7(7)} invariant, can be reduced to Cayley's hyperdeterminant describing the 3-tangle of a 3-qubit state.
Quantum Entropy of Charged Rotating Black Holes
R. B. Mann
1996-07-10T23:59:59.000Z
I discuss a method for obtaining the one-loop quantum corrections to the tree-level entropy for a charged Kerr black hole. Divergences which appear can be removed by renormalization of couplings in the tree-level gravitational action in a manner similar to that for a static black hole.
Topological Black Holes in Quantum Gravity
J. Kowalski-Glikman; D. Nowak-Szczepaniak
2000-07-31T23:59:59.000Z
We derive the black hole solutions with horizons of non-trivial topology and investigate their properties in the framework of an approach to quantum gravity being an extension of Bohm's formulation of quantum mechanics. The solutions we found tend asymptotically (for large $r$) to topological black holes. We also analyze the thermodynamics of these space-times.
Fractal Statistics and Quantum Black Hole Entropy
Wellington da Cruz
2000-11-18T23:59:59.000Z
Simple considerations about the fractal characteristic of the quantum-mechanical path give us the opportunity to derive the quantum black hole entropy in connection with the concept of fractal statistics. We show the geometrical origin of the numerical factor of four of the quantum black hole entropy expression and the statistics weight appears as a counting of the quanta of geometry.
Primordial black holes and asteroid danger
Alexander Shatskiy
2008-02-21T23:59:59.000Z
Probability for a primordial black hole to invade the Kuiper belt was calculated. We showed that primordial black holes of certain masses can significantly change asteroids' orbits. These events may result in disasters, local for our solar system and global for the Earth (like the Tunguska meteorite). We also estimated how often such events occur.
Dynamics of Primordial Black Hole Formation
J. C. Niemeyer; K. Jedamzik
1999-01-21T23:59:59.000Z
We present a numerical investigation of the gravitational collapse of horizon-size density fluctuations to primordial black holes (PBHs) during the radiation-dominated phase of the Early Universe. The collapse dynamics of three different families of initial perturbation shapes, imposed at the time of horizon crossing, is computed. The perturbation threshold for black hole formation, needed for estimations of the cosmological PBH mass function, is found to be $\\delta_{\\rm c} \\approx 0.7$ rather than the generally employed $\\delta_{\\rm c} \\approx 1/3$, if $\\delta$ is defined as $\\Delta M/\\mh$, the relative excess mass within the initial horizon volume. In order to study the accretion onto the newly formed black holes, we use a numerical scheme that allows us to follow the evolution for long times after formation of the event horizon. In general, small black holes (compared to the horizon mass at the onset of the collapse) give rise to a fluid bounce that effectively shuts off accretion onto the black hole, while large ones do not. In both cases, the growth of the black hole mass owing to accretion is insignificant. Furthermore, the scaling of black hole mass with distance from the formation threshold, known to occur in near-critical gravitational collapse, is demonstrated to apply to primordial black hole formation.
Black holes cannot support conformal scalar hair
T. Zannias
1994-09-14T23:59:59.000Z
It is shown that the only static asymptotically flat non-extrema black hole solution of the Einstein-conformally invariant scalar field equations having the scalar field bounded on the horizon, is the Schwarzschild one. Thus black holes cannot be endowed with conformal scalar hair of finite length.
Class Transitions in Black Holes
Sandip K. Chakrabarti
2005-01-14T23:59:59.000Z
A black hole spectrum is known to change from the hard state to the soft state when the energy spectral index $\\alpha$ ($F_E \\propto E^{-\\alpha}$) in, say, 2-20 keV range changes from $\\alpha \\sim 0.5$ to $\\sim 1.5$. However, this `classical' definition which characterizes black holes like Cyg X-1, becomes less useful for many objects such as GRS 1915+105 in which the spectral slope is seen to vary from one to the other in a matter of seconds and depending on whether or not winds form, the spectral slope also changes. The light curves and the colour-colour diagrams may look completely different on different days depending on the frequency and mode of switching from one spectral state to the other. Though RXTE observations have yielded wealth of information on such `variability classes' in GRS 1915+105, very rarely one has been able to observe how the object goes from one class to the other. In the present review, we discuss possible origins of the class transition and present several examples of such transitions. In this context, we use mostly the results of the Indian X-ray Astronomy Experiment (IXAE) which observed GRS 1915+105 more regularly.
Gravitating discs around black holes
V. Karas; J. -M. Hure; O. Semerak
2004-01-16T23:59:59.000Z
Fluid discs and tori around black holes are discussed within different approaches and with the emphasis on the role of disc gravity. First reviewed are the prospects of investigating the gravitational field of a black hole--disc system by analytical solutions of stationary, axially symmetric Einstein's equations. Then, more detailed considerations are focused to middle and outer parts of extended disc-like configurations where relativistic effects are small and the Newtonian description is adequate. Within general relativity, only a static case has been analysed in detail. Results are often very inspiring, however, simplifying assumptions must be imposed: ad hoc profiles of the disc density are commonly assumed and the effects of frame-dragging and completely lacking. Astrophysical discs (e.g. accretion discs in active galactic nuclei) typically extend far beyond the relativistic domain and are fairly diluted. However, self-gravity is still essential for their structure and evolution, as well as for their radiation emission and the impact on the environment around. For example, a nuclear star cluster in a galactic centre may bear various imprints of mutual star--disc interactions, which can be recognised in observational properties, such as the relation between the central mass and stellar velocity dispersion.
Lake, Matthew J
2015-01-01T23:59:59.000Z
The discovery of a large number of supermassive black holes at redshifts $z> 6$, when the Universe was only nine hundred million years old, has raised the fundamental question of how such massive compact objects could form in a (cosmologically) short time interval. Each of the proposed standard scenarios for black hole formation, involving rapid accretion of seed black holes, or black hole mergers, faces severe theoretical difficulties in explaining the short time formation of supermassive objects. In the present Letter, we propose an alternative scenario for the formation of supermassive black holes in the early Universe in which energy transfer from superconducting cosmic strings, piercing small seed black holes, is the main physical process leading to rapid mass increase. The increase in mass of a primordial seed black hole pierced by two antipodal strings is estimated and it is shown that this increases linearly in time. Due to the high energy transfer rate from the cosmic strings, we find that supermassi...
Fourier Analysis of the BTZ Black Hole
Ian M. Tolfree
2009-11-11T23:59:59.000Z
In this paper we extend our previous work regarding the role of the Fourier transformation in bulk to boundary mappings to include the BTZ black hole. We follow standard procedures for modifying Fourier Transformations to accommodate quotient spaces and arrive at a bulk to boundary mapping in a black hole background. We show that this mapping is consistent with known results and lends a new insight into the AdS/CFT duality. We find that the micro-states corresponding to the entropy of a bulk scalar field are the Fourier coefficients on the boundary, which transform under the principal series representation of $SL(2,R)$. Building upon this we present a toy model to analyze the implications of this for the origin of black hole entropy. We find that the black hole micro-states live on the boundary and correspond to the possible emission modes of the black hole
How fast can a black hole rotate?
Herdeiro, Carlos A R
2015-01-01T23:59:59.000Z
Kerr black holes have their angular momentum, $J$, bounded by their mass, $M$: $Jc\\leqslant GM^2$. There are, however, known black hole solutions violating this Kerr bound. We propose a very simple universal bound on the rotation, rather than on the angular momentum, of four-dimensional, stationary and axisymmetric, asymptotically flat black holes, given in terms of an appropriately defined horizon linear velocity, $v_H$. The $v_H$ bound is simply that $v_H$ cannot exceed the velocity of light. We verify the $v_H$ bound for known black hole solutions, including some that violate the Kerr bound, and conjecture that only extremal Kerr black holes saturate the $v_H$ bound.
Fermionic greybody factors in dilaton black holes
Jahed Abedi; Hessamaddin Arfaei
2014-09-17T23:59:59.000Z
In this paper the question of emission of fermions in the process of dilaton black hole evolution and its characters for different dilaton coupling constants $\\alpha$ is studied. The main quantity of interest, the greybody factors are calculated both numerically and in analytical approximation. The dependence of rates of evaporation and behaviour on the dilaton coupling constant is analyzed. Having calculated the greybody factors we are able to address the question of the final fate of the dilaton black hole. For that we also need to make dynamical treatment of the solution by considering the backreaction which will show a crucial effect on the final result. We find a transition line in $(Q/M, \\alpha)$ plane that separates the two regimes for the fate of the black hole, decay regime and extremal regime. In the decay regime the black hole completely evaporates, while in the extremal regime the black hole approaches the extremal limit by radiation and becomes stable.
Evidence for the Black Hole Event Horizon
Ramesh Narayan
2003-10-23T23:59:59.000Z
Astronomers have discovered many candidate black holes in X-ray binaries and in the nuclei of galaxies. The candidate objects are too massive to be neutron stars, and for this reason they are considered to be black holes. While the evidence based on mass is certainly strong, there is no proof yet that any of the objects possesses the defining characteristic of a black hole, namely an event horizon. Type I X-ray bursts, which are the result of thermonuclear explosions when gas accretes onto the surface of a compact star, may provide important evidence in this regard. Type I bursts are commonly observed in accreting neutron stars, which have surfaces, but have never been seen in accreting black hole candidates. It is argued that the lack of bursts in black hole candidates is compelling evidence that these objects do not have surfaces. The objects must therefore possess event horizons.
Nonthermal correction to black hole spectroscopy
Wen-Yu Wen
2014-11-14T23:59:59.000Z
Area spectrum of black holes have been obtained via various methods such as quasinormal modes, adiabatic invariance and angular momentum. Among those methods, calculations were done by assuming black holes in thermal equilibrium. Nevertheless, black holes in the asymptotically flat space usually have negative specific heat and therefore tend to stay away from thermal equilibrium. Even for those black holes with positive specific heat, temperature may still not be well defined in the process of radiation, due to the back reaction of decreasing mass. Respect to these facts, it is very likely that Hawking radiation is nonthermal and the area spectrum is no longer equidistant. In this note, we would like to illustrate how the area spectrum of black holes is corrected by this nonthermal effect.
Quantum Black Hole Model and Hawking's Radiation
V. A. Berezin
1996-02-12T23:59:59.000Z
The black hole model with a self-gravitating charged spherical symmetric dust thin shell as a source is considered. The Schroedinger-type equation for such a model is derived. This equation appeared to be a finite differences equation. A theory of such an equation is developed and general solution is found and investigated in details. The discrete spectrum of the bound state energy levels is obtained. All the eigenvalues appeared to be infinitely degenerate. The ground state wave functions are evaluated explicitly. The quantum black hole states are selected and investigated. It is shown that the obtained black hole mass spectrum is compatible with the existence of Hawking's radiation in the limit of low temperatures both for large and nearly extreme Reissner-Nordstrom black holes. The above mentioned infinite degeneracy of the mass (energy) eigenvalues may appeared helpful in resolving the well known information paradox in the black hole physics.
Krotov, D. [Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary prospect 7a, Moscow 117312 (Russian Federation); Moscow State University, Department of Physics, Vorobjevy Gory, Moscow, 119899 (Russian Federation); Institute of Theoretical and Experimental Physics, B. Cheremushkinskaya, 25, Moscow, 117259 (Russian Federation); Rebbi, C. [Department of Physics, Boston University, 590 Commonwealth Avenue, Boston Massachusetts 02215 (United States); Rubakov, V. [Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary prospect 7a, Moscow 117312 (Russian Federation); Zakharov, V. [Max-Planck Institut fuer Physik, Foeringer Ring 6, 80805, Munichn (Germany)
2005-02-15T23:59:59.000Z
In a recently proposed model of 'ghost condensation', spatially homogeneous states may mix, via tunneling, with inhomogeneous states which are somewhat similar to bubbles in the theory of false vacuum decay, the corresponding bubble nucleation rate being exponentially sensitive to the ultraviolet completion of the model. The conservation of energy and charge requires that the energy density is negative and the field is strongly unstable in a part of the nucleated bubble. Unlike in the theory of false vacuum decay, this region does not expand during subsequent real-time evolution. In the outer part, positive energy outgoing waves develop, which eventually form shocks. Behind the outgoing waves and away from the bubble center, the background settles down to its original value. The outcome of the entire process is thus a microscopic region of negative energy and strong field - 'hole in the ghost condensate' - plus a collection of outgoing waves (particles of the ghost condensate field) carrying away finite energy.
Gravitational waves versus black holes
Trevor W. Marshall
2007-07-02T23:59:59.000Z
It is argued that, in order for the gravitational field to be propagated as a wave, it is necessary for it to satisfy a further set of field equations, in addition to those of Einstein and Hilbert, and these equations mean there is a preferred coordinate frame, called the Global Inertial Frame, giving rise to a unique metric . The implication is that a true gravitational field is not compatible with Einstein's Principle of Equivalence, which is in contradiction with his other fundamental concept of locality. The additional field equations ensure that gravitational collapse does not go below the Schwarzschild radius, thereby excluding the possibility of singular solutions (black holes) of the Einstein-Hilbert equations. Such solutions would also violate Einstein's locality principle.
Radion clouds around evaporating black holes
J. R. Morris
2009-09-03T23:59:59.000Z
A Kaluza-Klein model, with a matter source associated with Hawking radiation from an evaporating black hole, is used to obtain a simple form for the radion effective potential. The environmental effect generally causes a matter-induced shift of the radion vacuum, resulting in the formation of a radion cloud around the hole. There is an albedo due to the radion cloud, with an energy dependent reflection coefficient that depends upon the size of the extra dimensions and the temperature of the hole.
Testing black hole candidates with electromagnetic radiation
Bambi, Cosimo
2015-01-01T23:59:59.000Z
Astrophysical black hole candidates are thought to be the Kerr black holes of general relativity, but there is currently no direct observational evidence that the spacetime geometry around these objects is described by the Kerr solution. The study of the properties of the electromagnetic radiation emitted by gas or stars orbiting these objects can potentially test the Kerr black hole hypothesis. In this paper, I review the state of the art of this research field, describing the possible approaches to test the Kerr metric with current and future observational facilities and discussing current constraints.
Marcelo Samuel Berman
2008-08-06T23:59:59.000Z
Pathria(1972) has shown, for a pressureless closed Universe, that it is inside a black (or white) hole. We show now, that the Universe with a cosmic pressure obeying Einstein's field equations, can be inside a white-hole. In the closed case, a positive cosmological constant does the job; for the flat and open cases, the condition we find is not verified for the very early Universe, but with the growth of the scale-factor, the condition will be certainly fulfilled for a positive cosmological constant, after some time. We associate the absolute temperature of the Universe, with the temperature of the corresponding white-hole.
Thermodynamics of Dyonic Lifshitz Black Holes
Tobias Zingg
2011-07-15T23:59:59.000Z
Black holes with asymptotic anisotropic scaling are conjectured to be gravity duals of condensed matter system close to quantum critical points with non-trivial dynamical exponent z at finite temperature. A holographic renormalization procedure is presented that allows thermodynamic potentials to be defined for objects with both electric and magnetic charge in such a way that standard thermodynamic relations hold. Black holes in asymptotic Lifshitz spacetimes can exhibit paramagnetic behavior at low temperature limit for certain values of the critical exponent z, whereas the behavior of AdS black holes is always diamagnetic.
Some remarks on black hole thermodynamics
R. Y. Chiao
2011-02-04T23:59:59.000Z
Two thermodynamic "paradoxes" of black hole physics are re-examined. The first is that there is a thermal instability involving two coupled blackbody cavities containing two black holes, and second is that a classical black hole can swallow up entropy in the form of ambient blackbody photons without increasing its mass. The resolution of the second paradox by Bekenstein and by Hawking is re-visited. The link between Hawking radiation and Wigner's superluminal tunneling time is discussed using two equivalent Feynman diagrams, and Feynman's re-interpretation principle.
Thermodynamics of Schwarzschild-de Sitter black hole: thermal stability of Nariai black hole
Yun Soo Myung
2008-03-28T23:59:59.000Z
We study thermodynamics of the Schwarzschild-de Sitter black hole in five dimensions by introducing two temperatures based on the standard and Bousso-Hawking normalizations. We use the first-law of thermodynamics to derive thermodynamic quantities. The two temperatures indicate that the Nariai black hole is thermodynamically unstable. However, it seems that black hole thermodynamics favors the standard normalization, and does not favor the Bousso-Hawking normalization.
Black hole evolution: I. Supernova-regulated black hole growth
Dubois, Yohan; Silk, Joseph; Devriendt, Julien; Slyz, Adrianne; Teyssier, Romain
2015-01-01T23:59:59.000Z
The growth of a supermassive black hole (BH) is determined by how much gas the host galaxy is able to feed it, which in turn is controlled by the cosmic environment, through galaxy mergers and accretion of cosmic flows that time how galaxies obtain their gas, but also by internal processes in the galaxy, such as star formation and feedback from stars and the BH itself. In this paper, we study the growth of a 10^12 Msun halo at z=2, which is the progenitor of an archetypical group of galaxies at z=0, and of its central BH by means of a high-resolution zoomed cosmological simulation, the Seth simulation. We study the evolution of the BH driven by the accretion of cold gas in the galaxy, and explore the efficiency of the feedback from supernovae (SNe). For a relatively inefficient energy input from SNe, the BH grows at the Eddington rate from early times, and reaches self-regulation once it is massive enough. We find that at early cosmic times z>3.5, efficient feedback from SNe forbids the formation of a settled...
Spacetime noncommutative effect on black hole as particle accelerators
Chikun Ding; Changqing Liu; Qian Guo
2013-01-08T23:59:59.000Z
We study the spacetime noncommutative effect on black hole as particle accelerators and, find that particle falling from infinity with zero velocity cannot collide with unbound energy when the noncommutative Kerr black hole is exactly extremal. Our results also show that the bigger of the spinning black hole's mass is, the higher of center of mass energy that the particles obtain. For small and medium noncommutative Schwarzschild black hole, the collision energy depends on the black holes' mass.
Thermodynamics and evaporation of the noncommutative black hole
Yun Soo Myung; Yong-Wan Kim; Young-Jai Park
2007-01-21T23:59:59.000Z
We investigate the thermodynamics of the noncommutative black hole whose static picture is similar to that of the nonsingular black hole known as the de Sitter-Schwarzschild black hole. It turns out that the final remnant of extremal black hole is a thermodynamically stable object. We describe the evaporation process of this black hole by using the noncommutativity-corrected Vaidya metric. It is found that there exists a close relationship between thermodynamic approach and evaporation process.
Topological Black Holes -- Outside Looking In
R. B. Mann
1997-09-15T23:59:59.000Z
I describe the general mathematical construction and physical picture of topological black holes, which are black holes whose event horizons are surfaces of non-trivial topology. The construction is carried out in an arbitrary number of dimensions, and includes all known special cases which have appeared before in the literature. I describe the basic features of massive charged topological black holes in $(3+1)$ dimensions, from both an exterior and interior point of view. To investigate their interiors, it is necessary to understand the radiative falloff behaviour of a given massless field at late times in the background of a topological black hole. I describe the results of a numerical investigation of such behaviour for a conformally coupled scalar field. Significant differences emerge between spherical and higher genus topologies.
Spacetime constraints on accreting black holes
Garofalo, David [Jet Propulsion Laboratory, California Institute of Technology, Pasadena California 91109 (United States)
2009-06-15T23:59:59.000Z
We study the spin dependence of accretion onto rotating Kerr black holes using analytic techniques. In its linear regime, angular momentum transport in MHD turbulent accretion flow involves the generation of radial magnetic field connecting plasma in a differentially rotating flow. We take a first principles approach, highlighting the constraint that limits the generation and amplification of radial magnetic fields, stemming from the transfer of energy from mechanical to magnetic form. Because the energy transferred in magnetic form is ultimately constrained by gravitational potential energy or Killing energy, the spin dependence of the latter allows us to derive spin-dependent constraints on the success of the accreting plasma to expel its angular momentum. We find an inverse relationship between this ability and black hole spin. If this radial magnetic field generation forms the basis for angular momentum transfer in accretion flows, accretion rates involving Kerr black holes are expected to be lower as the black hole spin increases in the prograde sense.
Towards Black Hole Entropy in Shape Dynamics
Gabriel Herczeg; Vasudev Shyam
2014-10-21T23:59:59.000Z
Shape dynamics is classical theory of gravity which agrees with general relativity in many important cases, but possesses different gauge symmetries and constraints. Rather than spacetime diffeomorphism invariance, shape dynamics takes spatial diffeomorphism invariance and spatial Weyl invariance as the fundamental gauge symmetries associated with the gravitational field. Since the area of the event horizon of a black hole transforms under a generic spatial Weyl transformation, there has been some doubt that one can speak sensibly about the thermodynamics of black holes in shape dynamics. The purpose of this paper is to show that by treating the event horizon of a black hole as an interior boundary, one can recover familiar notions of black hole thermodynamics in shape dynamics and define a gauge invariant entropy that agrees with general relativity.
Time-bin entangled photon holes
J. Liang; J. D. Franson; T. B. Pittman
2012-08-23T23:59:59.000Z
The general concept of entangled photon holes is based on a correlated absence of photon pairs in an otherwise constant optical background. Here we consider the specialized case when this background is confined to two well-defined time bins, which allows the formation of time-bin entangled photon holes. We show that when the typical coherent state background is replaced by a true single-photon (Fock state) background, the basic time-bin entangled photon-hole state becomes equivalent to one of the time-bin entangled photon-pair states. We experimentally demonstrate these ideas using a parametric down-conversion photon-pair source, linear optics, and post-selection to violate a Bell inequality with time-bin entangled photon holes.
Scattering map for two black holes
Alessandro P. S. de Moura; Patricio S. Letelier
1999-10-25T23:59:59.000Z
We study the motion of light in the gravitational field of two Schwarzschild black holes, making the approximation that they are far apart, so that the motion of light rays in the neighborhood of one black hole can be considered to be the result of the action of each black hole separately. Using this approximation, the dynamics is reduced to a 2-dimensional map, which we study both numerically and analytically. The map is found to be chaotic, with a fractal basin boundary separating the possible outcomes of the orbits (escape or falling into one of the black holes). In the limit of large separation distances, the basin boundary becomes a self-similar Cantor set, and we find that the box-counting dimension decays slowly with the separation distance, following a logarithmic decay law.
Multipole moments of bumpy black holes
Vigeland, Sarah Jane
General relativity predicts the existence of black holes, compact objects whose spacetimes depend only on their mass, spin, and charge in vacuum (the “no-hair” theorem). As various observations probe deeper into the strong ...
Evidence for the Black Hole Event Horizon
Ramesh Narayan; Jeremy S. Heyl
2002-04-26T23:59:59.000Z
Roughly a dozen X-ray binaries are presently known in which the compact accreting primary stars are too massive to be neutron stars. These primaries are identified as black holes, though there is as yet no definite proof that any of the candidate black holes actually possesses an event horizon. We discuss how Type I X-ray bursts may be used to verify the presence of the event horizon in these objects. Type I bursts are caused by thermonuclear explosions when gas accretes onto a compact star. The bursts are commonly seen in many neutron star X-ray binaries, but they have never been seen in any black hole X-ray binary. Our model calculations indicate that black hole candidates ought to burst frequently if they have surfaces. Based on this, we argue that the lack of bursts constitutes strong evidence for the presence of event horizons in these objects.
Radioactive hot cell access hole decontamination machine
Simpson, William E. (Richland, WA)
1982-01-01T23:59:59.000Z
Radioactive hot cell access hole decontamination machine. A mobile housing has an opening large enough to encircle the access hole and has a shielding door, with a door opening and closing mechanism, for uncovering and covering the opening. The housing contains a shaft which has an apparatus for rotating the shaft and a device for independently translating the shaft from the housing through the opening and access hole into the hot cell chamber. A properly sized cylindrical pig containing wire brushes and cloth or other disks, with an arrangement for releasably attaching it to the end of the shaft, circumferentially cleans the access hole wall of radioactive contamination and thereafter detaches from the shaft to fall into the hot cell chamber.
Horizon Operator Approach to Black Hole Quantization
G. 't Hooft
1994-02-21T23:59:59.000Z
The $S$-matrix Ansatz for the construction of a quantum theory of black holes is further exploited. We first note that treating the metric tensor $g_{\\m\
Black Hole Thermodynamics in Modified Gravity
Jonas R. Mureika; John W. Moffat; Mir Faizal
2015-03-03T23:59:59.000Z
We analyze the thermodynamics of a non-rotating and rotating black hole in a modified theory of gravity that includes scalar and vector modifications to general relativity, which results in a modified gravitational constant $G = G_N(1+\\alpha)$ and a new gravitational charge $Q = \\sqrt{\\alpha G_N}M$. The influence of the parameter $\\alpha$ alters the non-rotating black hole's lifetime, temperature and entropy profiles from the standard Schwarzschild case. The thermodynamics of a rotating black hole is analyzed and it is shown to possess stable, cold remnants. The thermodynamic properties of a vacuum solution regular at $r=0$ are investigated and the solution without a horizon called a "gray hole" is not expected to possess an information loss problem.
Energy of 4-Dimensional Black Hole, etc
Dmitriy Palatnik
2011-07-18T23:59:59.000Z
In this letter I suggest possible redefinition of mass density, not depending on speed of the mass element, which leads to a more simple stress-energy for an object. I calculate energy of black hole.
Local temperature for dynamical black holes
Sean A. Hayward; R. Di Criscienzo; M. Nadalini; L. Vanzo; S. Zerbini
2008-12-13T23:59:59.000Z
A local Hawking temperature was recently derived for any future outer trapping horizon in spherical symmetry, using a Hamilton-Jacobi tunneling method, and is given by a dynamical surface gravity as defined geometrically. Descriptions are given of the operational meaning of the temperature, in terms of what observers measure, and its relation to the usual Hawking temperature for static black holes. Implications for the final fate of an evaporating black hole are discussed.
Classical and thermodynamic stability of black holes
Monteiro, Ricardo
2010-07-06T23:59:59.000Z
Perturbations of the asymptotic charges . . . . . . . . . . . . . . . . 169 IV Conclusion 171 9 Conclusion and outlook 173 A Spectral numerical method 177 2 CONTENTS Part I Introduction 3 Chapter 1 Black holes Black holes are arguably the most interesting... to Newto- nian dynamics in the Solar system, and the indirect detection of gravitational waves from binary pulsars [1]. A crucial distinction from Newtonian gravity is that the “action-at-a-distance” is substituted by a built-in causality structure...
Comment on "Black holes constrain varying constants"
V. V. Flambaum
2002-08-20T23:59:59.000Z
A recent paper [DDL] claims that the increase of the proton electric charge e leads to a (forbidden) decrease of black hole entropy, therefore, possible evidence for variation of $\\alpha=e^2/\\hbar c$ [alpha] must be interpreted as a decrease of the speed of light. We argue that purely theoretical consideration of black holes possibly cannot give any model-independent limitations on variation of fundamental constants.
Fractionated Branes and Black Hole Interiors
Martinec, Emil J
2015-01-01T23:59:59.000Z
Combining a variety of results in string theory and general relativity, a picture of the black hole interior is developed wherein spacetime caps off at an inner horizon, and the inter-horizon region is occupied by a Hagedorn gas of a very low tension state of fractionated branes. This picture leads to natural resolutions of a variety of puzzles concerning quantum black holes. Gravity Research Foundation 2015 Fourth Prize Award for Essays on Gravitation.
Fractionated Branes and Black Hole Interiors
Emil J. Martinec
2015-05-20T23:59:59.000Z
Combining a variety of results in string theory and general relativity, a picture of the black hole interior is developed wherein spacetime caps off at an inner horizon, and the inter-horizon region is occupied by a Hagedorn gas of a very low tension state of fractionated branes. This picture leads to natural resolutions of a variety of puzzles concerning quantum black holes. Gravity Research Foundation 2015 Fourth Prize Award for Essays on Gravitation.
Broader source: Energy.gov [DOE]
This simple spreadsheet model estimates either the flow rate required to produce a specified level of power output, or the power output that can be produced from a specified flow rate.
GTP ARRA Spreadsheet | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a g eWorksVillagesourceEuromoneyForest City MilitaryFrisco, Texas:GEM ResourcesGISInformation
Improving hole injection efficiency by manipulating the hole transport mechanism through
Demir, Hilmi Volkan
-emitting diodes (LEDs) for elec- tron overflow suppression. However, a typical EBL also reduces the hole injection to be the key to enhancing the hole injection efficiency. InGaN/ GaN LEDs with the proposed p-type AlGaN/GaN/AlGaN EBL have demonstrated substantially higher optical output power and external quantum efficiency
The Revival of White Holes as Small Bangs
Alon Retter; Shlomo Heller
2011-07-17T23:59:59.000Z
Black holes are extremely dense and compact objects from which light cannot escape. There is an overall consensus that black holes exist and many astronomical objects are identified with black holes. White holes were understood as the exact time reversal of black holes, therefore they should continuously throw away material. It is accepted, however, that a persistent ejection of mass leads to gravitational pressure, the formation of a black hole and thus to the "death of while holes". So far, no astronomical source has been successfully tagged a white hole. The only known white hole is the Big Bang which was instantaneous rather than continuous or long-lasting. We thus suggest that the emergence of a white hole, which we name a 'Small Bang', is spontaneous - all the matter is ejected at a single pulse. Unlike black holes, white holes cannot be continuously observed rather their effect can only be detected around the event itself. Gamma ray bursts are the most energetic explosions in the universe. Long gamma-ray bursts were connected with supernova eruptions. There is a new group of gamma-ray bursts, which are relatively close to Earth, but surprisingly lack any supernova emission. We propose identifying these bursts with white holes. White holes seem like the best explanation of gamma-ray bursts that appear in voids. We also predict the detection of rare gigantic gamma-ray bursts with energies much higher than typically observed.
Holographic superconductor in the exact hairy black hole
Yun Soo Myung; Chanyong Park
2011-09-13T23:59:59.000Z
We study the charged black hole of hyperbolic horizon with scalar hair (charged Martinez-Troncoso-Zanelli: CMTZ black hole) as a model of analytic hairy black hole for holographic superconductor. For this purpose, we investigate the second order phase transition between CMTZ and hyperbolic Reissner-Nordstr\\"om-AdS (HRNAdS) black holes. However, this transition unlikely occur. As an analytic treatment for holographic superconductor, we develop superconductor in the bulk and superfluidity on the boundary using the CMTZ black hole below the critical temperature. The presence of charge destroys the condensates around the zero temperature, which is in accord with the thermodynamic analysis of the CMTZ black hole.
The Environmental Impact of Supermassive Black Holes
Abraham Loeb
2004-08-10T23:59:59.000Z
The supermassive black holes observed at the centers of almost all present-day galaxies, had a profound impact on their environment. I highlight the principle of self-regulation, by which supermassive black holes grow until they release sufficient energy to unbind the gas that feeds them from their host galaxy. This principle explains several observed facts, including the correlation between the mass of a central black hole and the depth of the gravitational potential well of its host galaxy, and the abundance and clustering properties of bright quasars in the redshift interval of z~2-6. At lower redshifts, quasars might have limited the maximum mass of galaxies through the suppression of cooling flows in X-ray clusters. The seeds of supermassive black holes were likely planted in dwarf galaxies at redshifts z>10, through the collapse of massive or supermassive stars. The minimum seed mass can be identified observationally through the detection of gravitational waves from black hole binaries by Advanced LIGO or LISA. Aside from shaping their host galaxies, quasar outflows filled the intergalactic medium with magnetic fields and heavy elements. Beyond the reach of these outflows, the brightest quasars at z>6 have ionized exceedingly large volumes of gas (tens of comoving Mpc) prior to global reionization, and must have suppressed the faint end of the galaxy luminosity function in these volumes before the same occurred through the rest of the universe.
Perturbative String Thermodynamics near Black Hole Horizons
Thomas G. Mertens; Henri Verschelde; Valentin I. Zakharov
2015-07-01T23:59:59.000Z
We provide further computations and ideas to the problem of near-Hagedorn string thermodynamics near (uncharged) black hole horizons, building upon our earlier work JHEP 1403 (2014) 086. The relevance of long strings to one-loop black hole thermodynamics is emphasized. We then provide an argument in favor of the absence of $\\alpha'$-corrections for the (quadratic) heterotic thermal scalar action in Rindler space. We also compute the large $k$ limit of the cigar orbifold partition functions (for both bosonic and type II superstrings) which allows a better comparison between the flat cones and the cigar cones. A discussion is made on the general McClain-Roth-O'Brien-Tan theorem and on the fact that different torus embeddings lead to different aspects of string thermodynamics. The black hole/string correspondence principle for the 2d black hole is discussed in terms of the thermal scalar. Finally, we present an argument to deal with arbitrary higher genus partition functions, suggesting the breakdown of string perturbation theory (in $g_s$) to compute thermodynamical quantities in black hole spacetimes.
Black Hole Spin in AGN and GBHCs
Christopher S. Reynolds; Laura W. Brenneman; David Garofalo
2004-10-05T23:59:59.000Z
We discuss constraints on black hole spin and spin-related astrophysics as derived from X-ray spectroscopy. After a brief discussion about the robustness with which X-ray spectroscopy can be used to probe strong gravity, we summarize how these techniques can constrain black hole spin. In particular, we highlight XMM-Newton studies of the Seyfert galaxy MCG-6-30-15 and the stellar-mass black hole GX339-4. The broad X-ray iron line profile, together with reasonable and general astrophysical assumptions, allow a non-rotating black hole to be rejected in both of these sources. If we make the stronger assertion of no emission from within the innermost stable circular orbit, the MCG-6-30-15 data constrain the dimensionless spin parameter to be a>0.93. Furthermore, these XMM-Newton data are already providing evidence for exotic spin-related astrophysics in the central regions of this object. We conclude with a discussion of the impact that Constellation-X will have on the study of strong gravity and black hole spin.
Investigating Dark Energy with Black Hole Binaries
Laura Mersini-Houghton; Adam Kelleher
2009-06-08T23:59:59.000Z
The accelerated expansion of the universe is ascribed to the existence of dark energy. Black holes accretion of dark energy induces a mass change proportional to the energy density and pressure of the background dark energy fluid. The time scale during which the mass of black holes changes considerably is too long relative to the age of the universe, thus beyond detection possibilities. We propose to take advantage of the modified black hole masses for exploring the equation of state $w[z]$ of dark energy, by investigating the evolution of supermassive black hole binaries on a dark energy background. Deriving the signatures of dark energy accretion on the evolution of binaries, we find that dark energy imprints on the emitted gravitational radiation and on the changes in the orbital radius of the binary can be within detection limits for certain supermassive black hole binaries. In this talk I describe how binaries can provide a useful tool in obtaining complementary information on the nature of dark energy, based on the work done with A.Kelleher.
BLACK HOLE FORAGING: FEEDBACK DRIVES FEEDING
Dehnen, Walter; King, Andrew, E-mail: wd11@leicester.ac.uk, E-mail: ark@astro.le.ac.uk [Theoretical Astrophysics Group, University of Leicester, Leicester LE1 7RH (United Kingdom)] [Theoretical Astrophysics Group, University of Leicester, Leicester LE1 7RH (United Kingdom)
2013-11-10T23:59:59.000Z
We suggest a new picture of supermassive black hole (SMBH) growth in galaxy centers. Momentum-driven feedback from an accreting hole gives significant orbital energy, but little angular momentum to the surrounding gas. Once central accretion drops, the feedback weakens and swept-up gas falls back toward the SMBH on near-parabolic orbits. These intersect near the black hole with partially opposed specific angular momenta, causing further infall and ultimately the formation of a small-scale accretion disk. The feeding rates into the disk typically exceed Eddington by factors of a few, growing the hole on the Salpeter timescale and stimulating further feedback. Natural consequences of this picture include (1) the formation and maintenance of a roughly toroidal distribution of obscuring matter near the hole; (2) random orientations of successive accretion disk episodes; (3) the possibility of rapid SMBH growth; (4) tidal disruption of stars and close binaries formed from infalling gas, resulting in visible flares and ejection of hypervelocity stars; (5) super-solar abundances of the matter accreting on to the SMBH; and (6) a lower central dark-matter density, and hence annihilation signal, than adiabatic SMBH growth implies. We also suggest a simple subgrid recipe for implementing this process in numerical simulations.
Perturbative String Thermodynamics near Black Hole Horizons
Thomas G. Mertens; Henri Verschelde; Valentin I. Zakharov
2014-10-29T23:59:59.000Z
We provide further computations and ideas to the problem of near-Hagedorn string thermodynamics near (uncharged) black hole horizons, building upon our earlier work JHEP 1403 (2014) 086. The relevance of long strings to one-loop black hole thermodynamics is emphasized. We then provide an argument in favor of the absence of $\\alpha'$-corrections for the (quadratic) heterotic thermal scalar action in Rindler space. We also compute the large $k$ limit of the cigar orbifold partition functions (for both bosonic and type II superstrings) which allows a better comparison between the flat cones and the cigar cones. A discussion is made on the general McClain-Roth-O'Brien-Tan theorem and on the fact that different torus embeddings lead to different aspects of string thermodynamics. The black hole/string correspondence principle for the 2d black hole is discussed in terms of the thermal scalar. Finally, we present an argument to deal with arbitrary higher genus partition functions, suggesting the breakdown of string perturbation theory (in $g_s$) to compute thermodynamical quantities in black hole spacetimes.
No Supermassive Black Hole in M33?
David Merritt; Laura Ferrarese; Charles L. Joseph
2001-07-20T23:59:59.000Z
We analyze optical long-slit spectroscopy of the nucleus of M33 obtained from the Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope. Rather than the steep rise expected within the radius of influence of a supermassive black hole, the velocity dispersion drops significantly within the inner parsec. Dynamical modelling yields an estimated upper limit of 3000 solar masses for the mass of a central compact object. This upper limit is however consistent within the uncertainties with the mass predicted by the M-sigma relation, which is between 2000 and 20,000 solar masses. We therefore can not conclude that the presence of a massive black hole in the nucleus of M33 would require a different formation mechanism from that of the black holes detected in galaxies with more luminous bulges.
Structure of the Spherical Black Hole Interior
A. Bonanno; S. Droz; W. Israel; S. M. Morsink
1994-11-18T23:59:59.000Z
The internal structure of a charged spherical black hole is still a topic of debate. In a nonrotating but aspherical gravitational collapse to form a spherical charged black hole, the backscattered gravitational wave tails enter the black hole and are blueshifted at the Cauchy horizon. This has a catastrophic effect if combined with an outflux crossing the Cauchy horizon: a singularity develops at the Cauchy horizon and the effective mass inflates. Recently a numerical study of a massless scalar field in the \\RN background suggested that a spacelike singularity may form before the Cauchy horizon forms. We will show that there exists an approximate analytic solution of the scalar field equations which allows the mass inflation singularity at the Cauchy horizon to exist. In particular, we see no evidence that the Cauchy horizon is preceded by a spacelike singularity.
Gravitational energy of rotating black holes
J. W. Maluf; E. F. Martins; A. Kneip
1996-08-21T23:59:59.000Z
In the teleparallel equivalent of general relativity the energy density of asymptotically flat gravitational fields can be naturaly defined as a scalar density restricted to a three-dimensional spacelike hypersurface $\\Sigma$. Integration over the whole $\\Sigma$ yields the standard ADM energy. After establishing the reference space with zero gravitational energy we obtain the expression of the localized energy for a Kerr black hole. The expression of the energy inside a surface of constant radius can be explicitly calculated in the limit of small $a$, the specific angular momentum. Such expression turns out to be exactly the same as the one obtained by means of the method preposed recently by Brown and York. We also calculate the energy contained within the outer horizon of the black hole for {\\it any} value of $a$. The result is practically indistinguishable from $E=2M_{ir}$, where $M_{ir}$ is the irreducible mass of the black hole.
Hole interactions with molecular vibrations on DNA
A. Omerzu; M. Licer; T. Mertelj; V. V. Kabanov; D. Mihailovic
2004-05-13T23:59:59.000Z
We report on a study of the interactions between holes and molecular vibrations on dry DNA using photoinduced infrared absorption spectroscopy. Laser photoexcited (PE) holes are found to have a room-temperature lifetime in excess of 1 ms, clearly indicating the presence of localization. However, from a quantitative model analysis of the frequency shifts of vibrational modes caused by the PE holes, we find the holevibrational coupling constant to be relatively small, 0.2. This interaction leads to a change in the conformational energy of 0.015 eV, which is too small to cause selftrapping at room temperature. We conclude that, at least in the dry (A) form, DNA is best understood in terms of a double chain of coupled quantum dots arising from the pseudo-random chain sequence of base pairs, in which Anderson localization prevents the formation of a metallic state.
Neutrino Majorana Mass from Black Hole
Yosuke Uehara
2002-05-25T23:59:59.000Z
We propose a new mechanism to generate the neutrino Majorana mass in TeV-scale gravity models. The black hole violates all non-gauged symmetries and can become the origin of lepton number violating processes. The fluctuation of higher-dimensional spacetime can result in the production of a black hole, which emits 2 neutrinos. If neutrinos are Majorana particles, this process is equivalent to the free propagation of a neutrino with the insertion of the black hole. From this fact, we derive the neutrino Majorana mass. The result is completely consistent with the recently observed evidence of neutrinoless double beta decay. And the obtained neutrino Majorana mass satisfies the constraint from the density of the neutrino dark matter, which affects the cosmic structure formation. Furthermore, we can explain the ultrahigh energy cosmic rays by the Z-burst scenario with it.
Numerical Analysis of Black Hole Evaporation
Tsvi Piran; Andrew Strominger
1993-04-28T23:59:59.000Z
Black hole formation/evaporation in two-dimensional dilaton gravity can be described, in the limit where the number $N$ of matter fields becomes large, by a set of second-order partial differential equations. In this paper we solve these equations numerically. It is shown that, contrary to some previous suggestions, black holes evaporate completely a finite time after formation. A boundary condition is required to evolve the system beyond the naked singularity at the evaporation endpoint. It is argued that this may be naturally chosen so as to restore the system to the vacuum. The analysis also applies to the low-energy scattering of $S$-wave fermions by four-dimensional extremal, magnetic, dilatonic black holes.
Livermore scientists assist in solving riddle of black hole spin...
National Nuclear Security Administration (NNSA)
black hole. Matter flowing into the center forms an accretion disk around it and the black hole's spin creates an outflowing jet of energetic particles. Feb 27, 2013 at 6...
Dynamics of galaxy cores and supermassive black holes
David Merritt
2006-05-02T23:59:59.000Z
Recent work on the dynamical evolution of galactic nuclei containing supermassive black holes is reviewed. Topics include galaxy structural properties; collisionless and collisional equilibria; loss-cone dynamics; and dynamics of binary and multiple supermassive black holes.
Evaluation of Coso Geothermal Exploratory Hole No. 1 (CGEH-1...
hole with drill cuttings. The second test, on November 2, 1978, utilized a nitrogen-foam-water mixture to clean residual particles from bottom hole, following which nitrogen was...
Yield, variance and spatial distribution of electron–hole...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Yield, variance and spatial distribution of electron–hole pairs in CsI. Yield, variance and spatial distribution of electron–hole pairs in CsI. Abstract: A Monte Carlo...
Magnetized black hole as a gravitational lens
R. A. Konoplya
2006-11-19T23:59:59.000Z
We use the Ernst-Schwarzschild solution for a black hole immersed in a uniform magnetic field to estimate corrections to the bending angle and time delay due-to presence of weak magnetic fields in galaxies and between galaxies, and also due-to influence of strong magnetic field near supermassive black holes. The magnetic field creates a kind of confinement in space, that leads to increasing of the bending angle and time delay for a ray of light propagating in the equatorial plane.
Einstein-Yang-Mills-Lorentz Black Holes
Jose A. R. Cembranos; Jorge Gigante Valcarcel
2015-01-28T23:59:59.000Z
Different black hole solutions of the coupled Einstein-Yang-Mills equations are well known from long time. They have attracted much attention from mathematicians and physicists from their discovery. In this work, we analyze black holes associated with the gauge Lorentz group. In particular, we study solutions which identify the gauge connection with the spin connection. This ansatz allows to find exact solutions to the complete system of equations. By using this procedure, we show the equivalence between the Yang-Mills-Lorentz model in curved space-time and a particular set of extended gravitational theories.
Thermal Gravitational Waves from Primordial Black Holes
C. Sivaram; Kenath Arun
2010-05-19T23:59:59.000Z
Thermal gravitational waves can be generated in various sources such as, in the cores of stars, white dwarfs and neutron stars due to the fermion collisions in the dense degenerate Fermi gas. Such high frequency thermal gravitational waves can also be produced during the collisions in a gamma ray burst or during the final stages of the evaporation of primordial black holes. Here we estimate the thermal gravitational waves from primordial black holes and estimate the integrated energy of the gravitational wave emission over the entire volume of the universe and over Hubble time. We also estimate the gravitational wave flux from gamma ray bursts and jets.
Black Hole Thermodynamics and Statistical Mechanics
Steven Carlip
2008-07-28T23:59:59.000Z
We have known for more than thirty years that black holes behave as thermodynamic systems, radiating as black bodies with characteristic temperatures and entropies. This behavior is not only interesting in its own right; it could also, through a statistical mechanical description, cast light on some of the deep problems of quantizing gravity. In these lectures, I review what we currently know about black hole thermodynamics and statistical mechanics, suggest a rather speculative "universal" characterization of the underlying states, and describe some key open questions.
CHARYBDIS: A Black Hole Event Generator
C. M. Harris; P. Richardson; B. R. Webber
2003-07-29T23:59:59.000Z
CHARYBDIS is an event generator which simulates the production and decay of miniature black holes at hadronic colliders as might be possible in certain extra dimension models. It interfaces via the Les Houches accord to general purpose Monte Carlo programs like HERWIG and PYTHIA which then perform the parton evolution and hadronization. The event generator includes the extra-dimensional `grey-body' effects as well as the change in the temperature of the black hole as the decay progresses. Various options for modelling the Planck-scale terminal decay are provided.
Bindal, P. K.; Youngblood, David H.; Kozub, R. L.; Hoffmannpinther, P. H.
1975-01-01T23:59:59.000Z
VO LU ME 12, NUMBER 6 Neutron hole states of Mo'f DECEMBER 1975 P. K. Bindal, D. H. Youngblood, and R. L. Kozub* Cyclotron Institute and Physics Department, Texas A &M University, College Station, Texas 77843 P. H. Hoffmann-Pinther Physics... Department, Ohio University, Athens, Ohio 45701 (Received 7 August 1975) The (p, d) and (d, t) reactions on ' Mo have been used at bombarding energies of -40 MeV to populate neutron hole states of ' Mo. Excitation energies and angular distributions were...
Thermal stability of radiant black holes
Parthasarathi Majumdar
2006-04-06T23:59:59.000Z
Beginning with a brief sketch of the derivation of Hawking's theorem of horizon area increase, based on the Raychaudhuri equation, we go on to discuss the issue as to whether generic black holes, undergoing Hawking radiation, can ever remain in stable thermal equilibrium with that radiation. We derive a universal criterion for such a stability, which relates the black hole mass and microcanonical entropy, both of which are well-defined within the context of the Isolated Horizon, and in principle calculable within Loop Quantum Gravity. The criterion is argued to hold even when thermal fluctuations of electric charge are considered, within a {\\it grand} canonical ensemble.
Entropy and Area of Black Holes in Loop Quantum Gravity
I. B. Khriplovich
2002-03-31T23:59:59.000Z
Simple arguments related to the entropy of black holes strongly constrain the spectrum of the area operator for a Schwarzschild black hole in loop quantum gravity. In particular, this spectrum is fixed completely by the assumption that the black hole entropy is maximum. Within the approach discussed, one arrives in loop quantum gravity at a quantization rule with integer quantum numbers $n$ for the entropy and area of a black hole.
Entropy of charged dilaton-axion black hole
Tanwi Ghosh; Soumitra SenGupta
2008-06-06T23:59:59.000Z
Using brick wall method the entropy of charged dilaton-axion black hole is determined for both asymptotically flat and non-flat cases. The entropy turns out to be proportional to the horizon area of the black hole confirming the Beckenstien, Hawking area-entropy formula for black holes. The leading order logarithmic corrections to the entropy are also derived for such black holes.
The Role of Primordial Kicks on Black Hole Merger Rates
Miroslav Micic; Tom Abel; Steinn Sigurdsson
2006-09-06T23:59:59.000Z
Primordial stars are likely to be very massive $\\geq30\\Msun$, form in isolation, and will likely leave black holes as remnants in the centers of their host dark matter halos in the mass range $10^{6}-10^{10}\\Ms$. Such early black holes, at redshifts z$\\gtsim10$, could be the seed black holes for the many supermassive black holes found in galaxies in the local universe. If they exist, their mergers with nearby supermassive black holes may be a prime signal for long wavelength gravitational wave detectors. We simulate formation of black holes in the center of high redshift dark matter halos and explore implications of initial natal kick velocities conjectured by some formation models. The central concentration of early black holes in present day galaxies is reduced if they are born even with moderate kicks of tens of km/s. The modest kicks allow the black holes to leave their parent halo, which consequently leads to dynamical friction being less effective on the lower mass black holes as compared to those still embedded in their parent halos. Therefore, merger rates may be reduced by more than an order of magnitude. Using analytical and illustrative cosmological N--body simulations we quantify the role of natal kicks of black holes formed from massive metal free stars on their merger rates with supermassive black holes in present day galaxies. Our results also apply to black holes ejected by the gravitational slingshot mechanism.
Einstein Algebras and the Hole Argument JONATHAN BAIN
Aronov, Boris
1 Einstein Algebras and the Hole Argument JONATHAN BAIN Department of Humanities and Social@duke.poly.edu word count: 5498 #12;2 word count: 5498 Einstein Algebras and the Hole Argument ABSTRACT. Einstein. In particular, I suggest that a gauge-invariant interpretation of Einstein algebras that avoids the hole
Charged fermions tunneling from accelerating and rotating black holes
Rehman, Mudassar; Saifullah, K., E-mail: mudassir051@yahoo.com, E-mail: saifullah@qau.edu.pk [Department of Mathematics, Quaid-i-Azam University, Islamabad (Pakistan)
2011-03-01T23:59:59.000Z
We study Hawking radiation of charged fermions from accelerating and rotating black holes with electric and magnetic charges. We calculate the tunneling probabilities of incoming and outgoing fermionic particles and find the Hawking temperature of these black holes. We also provide an explicit expression of the classical action for the massive and massless particles in the background of these black holes.
ANCHIALINE ECOSYSTEMS Microbial hotspots in anchialine blue holes
Iliffe, Thomas M.
ANCHIALINE ECOSYSTEMS Microbial hotspots in anchialine blue holes: initial discoveries from+Business Media B.V. 2011 Abstract Inland blue holes of the Bahamas are anchialine ecosystems with distinct fresh and geomicrobiology exploration of blue holes are providing a first glimpse of the geochemistry and microbial life
Light in tiny holes & T. W. Ebbesen1
Turro, Nicholas J.
REVIEWS Light in tiny holes C. Genet1 & T. W. Ebbesen1 The presence of tiny holes in an opaque metal film, with sizes smaller than the wavelength of incident light, leads to a wide variety of unexpected optical properties such as strongly enhanced transmission of light through the holes
MOTION OF ELECTRON-HOLE DROPS IN Ge
Westervelt, R.M.
2011-01-01T23:59:59.000Z
MOTION OF ELECTRON-HOLE DROPS IN Ge R. M. Westervelt, J. C.MOTION OF ELECTRON-HOLE DROPS IN Ge R. M. Westervelt, J. C.OF ELECTRON-HOLE DROPS IN Ge R M Westervelt, J C Culbertson
Flip-flopping binary black holes
Carlos O. Lousto; James Healy
2015-03-14T23:59:59.000Z
We study binary spinning black holes to display the long term individual spin dynamics. We perform a full numerical simulation starting at an initial proper separation of $d\\approx25M$ between equal mass holes and evolve them down to merger for nearly 48 orbits, 3 precession cycles, and half of a flip-flop cycle. The simulation lasts for $t=20000M$ and displays a total change in the orientation of the spin of one of the black holes from initially aligned with the orbital angular momentum to a complete anti-alignment after half of a flip-flop cycle. We compare this evolution with an integration of the 3.5 Post-Newtonian equations of motion and spin evolution to show that this process continuously flip-flops the spin during the lifetime of the binary until merger. We also provide lower order analytic expressions for the maximum flip-flop angle and frequency. We discuss the effects this dynamics may have on spin growth in accreting binaries and on the observational consequences for galactic and supermassive binary black holes.
Area products for black hole horizons
Visser, Matt
2013-01-01T23:59:59.000Z
Area products for multi-horizon black holes often have intriguing properties, and are often independent of the mass of the black hole (depending only on various charges, angular momenta, and moduli). Such products are often formulated in terms of the areas of inner (Cauchy) horizons and event horizons, and often include the effects of unphysical "virtual'" horizons. For the Schwarzschild-de Sitter [Kottler] black hole in (3+1) dimensions it is shown by explicit exact calculation that the product of event horizon area and cosmological horizon area is not mass independent. (Including the effect of the third "virtual" horizon does not improve the situation.) Similarly, in the Reissner-Nordstrom-anti-de Sitter black hole in (3+1) dimensions the product of inner (Cauchy) horizon area and event horizon area is calculated (perturbatively), and is shown to be not mass independent. That is, the mass-independence of the product of physical horizon areas is not generic. In the generic situation, whenever the quasi-local...
Vector particles tunneling from BTZ black holes
Ge-Rui Chen; Shiwei Zhou; Yong-Chang Huang
2014-09-21T23:59:59.000Z
In this paper we investigate vector particles' Hawking radiation from a BTZ black hole. By applying the WKB approximation and the Hamilton-Jacobi Ansatz to the Proca equation, we obtain the tunneling spectrum of vector particles. The expected Hawking temperature is recovered.
Remote down-hole well telemetry
Briles, Scott D. (Los Alamos, NM); Neagley, Daniel L. (Albuquerque, NM); Coates, Don M. (Santa Fe, NM); Freund, Samuel M. (Los Alamos, NM)
2004-07-20T23:59:59.000Z
The present invention includes an apparatus and method for telemetry communication with oil-well monitoring and recording instruments located in the vicinity of the bottom of gas or oil recovery pipes. Such instruments are currently monitored using electrical cabling that is inserted into the pipes; cabling has a short life in this environment, and requires periodic replacement with the concomitant, costly shutdown of the well. Modulated reflectance, a wireless communication method that does not require signal transmission power from the telemetry package will provide a long-lived and reliable way to monitor down-hole conditions. Normal wireless technology is not practical since batteries and capacitors have to frequently be replaced or recharged, again with the well being removed from service. RF energy generated above ground can also be received, converted and stored down-hole without the use of wires, for actuating down-hole valves, as one example. Although modulated reflectance reduces or eliminates the loss of energy at the sensor package because energy is not consumed, during the transmission process, additional stored extra energy down-hole is needed.
Black hole formation in the early universe
Latif, M A; Schmidt, W; Niemeyer, J
2013-01-01T23:59:59.000Z
Supermassive black holes with up to a $\\rm 10^{9}~M_{\\odot}$ dwell in the centers of present-day galaxies, and their presence has been confirmed at z $\\geq$ 6. Their formation at such early epochs is still an enigma. Different pathways have been suggested to assemble supermassive black holes in the first billion years after the Big Bang. Direct collapse has emerged as a highly plausible scenario to form black holes as it provides seed masses of $\\rm 10^{5}-10^{6}~M_{\\odot}$. Gravitational collapse in atomic cooling haloes with virial temperatures T$_{vir} \\geq 10^{4}$~K may lead to the formation of massive seed black holes in the presence of an intense background UV flux. Turbulence plays a central role in regulating accretion and transporting angular momentum. We present here the highest resolution cosmological large-eddy simulations to date which track the evolution of high-density regions on scales of $0.25$~AU beyond the formation of the first peak, and study the impact of subgrid-scale turbulence. The pe...
Schwarzschild black hole in dark energy background
Ngangbam Ishwarchandra; Ng. Ibohal; K. Yugindro Singh
2014-09-27T23:59:59.000Z
In this paper we present an exact solution of Einstein's field equations describing the Schwarzschild black hole in dark energy background. It is also regarded as an embedded solution that the Schwarzschild black hole is embedded into the dark energy space producing Schwarzschild-dark energy black hole. It is found that the space-time geometry of Schwarzschild-dark energy solution is non-vacuum Petrov type $D$ in the classification of space-times. We study the energy conditions (like weak, strong and dominant conditions) for the energy-momentum tensor of the Schwarzschild-dark energy solution. We also find that the energy-momentum tensor of the Schwarzschild-dark energy solution violates the strong energy condition due to the negative pressure leading to a repulsive gravitational force of the matter field in the space-time. It is shown that the time-like vector field for an observer in the Schwarzschild-dark energy space is expanding, accelerating, shearing and non-rotating. We investigate the surface gravity and the area of the horizons for the Schwarzschild-dark energy black hole.
Lower-Dimensional Black Hole Chemistry
Antonia M. Frassino; Robert B. Mann; Jonas R. Mureika
2015-09-18T23:59:59.000Z
The connection between black hole thermodynamics and chemistry is extended to the lower-dimensional regime by considering the rotating and charged BTZ metric in the $(2+1)$-D and a $(1+1)$-D limits of Einstein gravity. The Smarr relation is naturally upheld in both BTZ cases, where those with $Q \
The river model of black holes
Andrew J. S. Hamilton; Jason P. Lisle
2006-08-31T23:59:59.000Z
This paper presents an under-appreciated way to conceptualize stationary black holes, which we call the river model. The river model is mathematically sound, yet simple enough that the basic picture can be understood by non-experts. %that can by understood by non-experts. In the river model, space itself flows like a river through a flat background, while objects move through the river according to the rules of special relativity. In a spherical black hole, the river of space falls into the black hole at the Newtonian escape velocity, hitting the speed of light at the horizon. Inside the horizon, the river flows inward faster than light, carrying everything with it. We show that the river model works also for rotating (Kerr-Newman) black holes, though with a surprising twist. As in the spherical case, the river of space can be regarded as moving through a flat background. However, the river does not spiral inward, as one might have anticipated, but rather falls inward with no azimuthal swirl at all. Instead, the river has at each point not only a velocity but also a rotation, or twist. That is, the river has a Lorentz structure, characterized by six numbers (velocity and rotation), not just three (velocity). As an object moves through the river, it changes its velocity and rotation in response to tidal changes in the velocity and twist of the river along its path. An explicit expression is given for the river field, a six-component bivector field that encodes the velocity and twist of the river at each point, and that encapsulates all the properties of a stationary rotating black hole.
Predictability in Quantum Gravity and Black Hole Evaporation
J. W. Moffat
1993-12-09T23:59:59.000Z
A possible resolution of the information loss paradox for black holes is proposed in which a phase transition occurs when the temperature of an evaporating black hole equals a critical value, $T_c$, and Lorentz invariance and diffeomorphism invariance are spontaneously broken. This allows a generalization of Schr\\"odinger's equation for the quantum mechanical density matrix, such that a pure state can evolve into a mixed state, because in the symmetry broken phase the conservation of energy-momentum is spontaneously violated. TCP invariance is also spontaneously broken together with time reversal invariance, allowing the existence of white holes, which are black holes moving backwards in time. Domain walls would form which separate the black holes and white holes (anti-black holes) in the broken symmetry regime, and the system could evolve into equilibrium producing a balance of information loss and gain.
The Role of Primordial Kicks on Black Hole Merger Rates
Miroslav Micic; Tom Abel; Steinn Sigurdsson
2006-09-15T23:59:59.000Z
Primordial stars are likely to be very massive >30 Msun, form in isolation, and will likely leave black holes as remnants in the centers of their host dark matter halos. We expect primordial stars to form in halos in the mass range 10^6-10^10 Msun. Some of these early black holes, formed at redshifts z>10, could be the seed black hole for a significant fraction of the supermassive black holes found in galaxies in the local universe. If the black hole descendants of the primordial stars exist, their mergers with nearby supermassive black holes may be a prime candidate for long wavelength gravitational wave detectors. We simulate formation and evolution of dark matter halos in LambdaCDM universe. We seed high-redshift dark matter halos with early black holes, and explore the merger history of the host halos and the implications of black hole's kick velocities arising from their coalescence. The central concentration of low mass early black holes in present day galaxies is reduced if they experience even moderate kicks of tens of km/s. Even such modest kicks allow the black holes to leave their parent halo, which consequently leads to dynamical friction being less effective on the low mass black holes that were ejected, compared to those still embedded in their parent halos. Therefore, merger rates with central supermassive black holes in the largest halos may be reduced by more than an order of magnitude. Using analytical and illustrative cosmological N-body simulations, we quantify the role of kicks on the merger rates of black holes formed from massive metal free stars with supermassive black holes in present day galaxies.
José P. S. Lemos
2013-12-27T23:59:59.000Z
The analogy between sound wave propagation and light waves led to the study of acoustic holes, the acoustic analogues of black holes. Many black hole features have their counterparts in acoustic holes. The Kerr metric, the rotating metric for black holes in general relativity, has as analogue the draining bathtub metric, a metric for a rotating acoustic hole. Here we report on the progress that has been made in the understanding of features, such as quasinormal modes and tails, superresonance, and instabilities when the hole is surrounded by a reflected mirror, in the draining bathtub metric. Given then the right settings one can build up from these instabilities an apparatus that stores energy in the form of amplified sound waves. This can be put to wicked purposes as in a bomb, or to good profit as in a sonic plant.
Brunetto Marco Ziosi; Michela Mapelli; Marica Branchesi; Giuseppe Tormen
2014-05-20T23:59:59.000Z
In this paper, we study the formation and dynamical evolution of black hole-black hole (BH-BH) binaries in young star clusters (YSCs), by means of N-body simulations. The simulations include metallicity-dependent recipes for stellar evolution and stellar winds, and have been run for three different metallicities (Z = 0.01, 0.1 and 1 Zsun). Following recent theoretical models of wind mass-loss and core-collapse supernovae, we assume that the mass of the stellar remnants depends on the metallicity of the progenitor stars. We find that BH-BH binaries form efficiently because of dynamical exchanges: in our simulations, we find about 10 times more BH-BH binaries than double neutron star binaries. The simulated BH-BH binaries form earlier in metal-poor YSCs, which host more massive black holes (BHs) than in metal-rich YSCs. The simulated BH-BH binaries have very large chirp masses (up to 80 Msun), because the BH mass is assumed to depend on metallicity, and because BHs can grow in mass due to the merger with stars. The simulated BH-BH binaries span a wide range of orbital periods (10^-3-10^7 yr), and only a small fraction of them (0.3 per cent) is expected to merge within a Hubble time. We discuss the estimated merger rate from our simulations and the implications for Advanced VIRGO and LIGO.
Slant hole completion test. Final report
Mann, R.L.
1993-07-01T23:59:59.000Z
One of the Department of Energy`s (DOE) Strategies and Objectives in the Natural Gas Program is to conduct activities to transfer technology from R&D programs to potential users. The Slant Hole Completion Test has achieved exactly this objective. The Slant Hole site is essentially the same as the Multiwell site and is located in the southeastern portion of the Piceance Basin near Rifle, Colorado. The Piceance Basin is typical of the Western low permeability basins that contain thick sequences of sands, silts and coals deposited during the Cretaceous period. These sequences contain vast amounts of natural gas but have proven to be resistant to commercial production because of the low permeability of the host rocks. Using the knowledge gained from the DOE`s earlier Multiwell experiment, the SHCT-1 was drilled to demonstrate that by intersecting the natural fractures found in these ``tight rocks,`` commercial gas production can be obtained.
Gravitational radiation from dynamical black holes
Sean A. Hayward
2005-12-26T23:59:59.000Z
An effective energy tensor for gravitational radiation is identified for uniformly expanding flows of the Hawking mass-energy. It appears in an energy conservation law expressing the change in mass due to the energy densities of matter and gravitational radiation, with respect to a Killing-like vector encoding a preferred flow of time outside a black hole. In a spin-coefficient formulation, the components of the effective energy tensor can be understood as the energy densities of ingoing and outgoing, transverse and longitudinal gravitational radiation. By anchoring the flow to the trapping horizon of a black hole in a given sequence of spatial hypersurfaces, there is a locally unique flow and a measure of gravitational radiation in the strong-field regime.
Formation and Evolution of Galactic Black Holes
F. Combes
2002-08-06T23:59:59.000Z
The main requirements for fueling an active galactic nucleus and to form massive black holes are reviewed. Low-luminosity AGN can be fueled easily from the local star clusters, near the nucleus, and the various stellar processes are described. Above a certain luminosity (and therefore accretion rate) large-scale gas flows from galactic scales are required. These can be driven by gravity torques of non-axisymmetric perturbations, such as bars, spirals, galaxy interactions. Observational evidence that these mechanisms are in action is found for high enough luminosities. It is very frequent that starbursts are also triggered through the same mechanisms, and the dense nuclear star clusters formed provide fuel for the AGN over a longer time-scale. Secular internal evolution and more violent evolution through interactions and mergers contribute to grow both a massive black hole and a bulge, and this could explain the observed proportionality relation between the mass of these two components.
Laser stabilization using spectral hole burning
L. Rippe; B. Julsgaard; A. Walther; S. Kröll
2006-11-05T23:59:59.000Z
We have frequency stabilized a Coherent CR699-21 dye laser to a transient spectral hole on the 606 nm transition in Pr^{+3}:Y_2SiO_5. A frequency stability of 1 kHz has been obtained on the 10 microsecond timescale together with a long-term frequency drift below 1 kHz/s. RF magnetic fields are used to repopulate the hyperfine levels allowing us to control the dynamics of the spectral hole. A detailed theory of the atomic response to laser frequency errors has been developed which allows us to design and optimize the laser stabilization feedback loop, and specifically we give a stability criterion that must be fulfilled in order to obtain very low drift rates. The laser stability is sufficient for performing quantum gate experiments in Pr^{+3}:Y_2SiO_5.
Stable gravastars - an alternative to black holes?
Matt Visser; David L. Wiltshire
2003-12-04T23:59:59.000Z
The "gravastar" picture developed by Mazur and Mottola is one of a very small number of serious challenges to our usual conception of a "black hole". In the gravastar picture there is effectively a phase transition at/ near where the event horizon would have been expected to form, and the interior of what would have been the black hole is replaced by a segment of de Sitter space. While Mazur and Mottola were able to argue for the thermodynamic stability of their configuration, the question of dynamic stability against spherically symmetric perturbations of the matter or gravity fields remains somewhat obscure. In this article we construct a model that shares the key features of the Mazur-Mottola scenario, and which is sufficiently simple for a full dynamical analysis. We find that there are some physically reasonable equations of state for the transition layer that lead to stability.
Phase Structure of Higher Spin Black Holes
Abhishek Chowdhury; Arunabha Saha
2015-02-12T23:59:59.000Z
We revisit the study of the phase structure of higher spin black holes carried out in arXiv$:1210.0284$ using the "canonical formalism". In particular we study the low as well as high temperature regimes. We show that the Hawking-Page transition takes place in the low temperature regime. The thermodynamically favoured phase changes from conical surplus to black holes and then again to conical surplus as we increase temperature. We then show that in the high temperature regime the diagonal embedding gives the appropriate description. We also give a map between the parameters of the theory near the IR and UV fixed points. This makes the "good" solutions near one end map to the "bad" solutions near the other end and vice versa.
The hydraulic jump as a white hole
G. E. Volovik
2005-10-21T23:59:59.000Z
In the geometry of the circular hydraulic jump, the velocity of the liquid in the interior region exceeds the speed of capillary-gravity waves (ripplons), whose spectrum is `relativistic' in the shallow water limit. The velocity flow is radial and outward, and thus the relativistic ripplons cannot propagating into the interior region. In terms of the effective 2+1 dimensional Painleve-Gullstrand metric appropriate for the propagating ripplons, the interior region imitates the white hole. The hydraulic jump represents the physical singularity at the white-hole horizon. The instability of the vacuum in the ergoregion inside the circular hydraulic jump and its observation in recent experiments on superfluid 4He by E. Rolley, C. Guthmann, M.S. Pettersen and C. Chevallier in physics/0508200 are discussed.
Hovering Black Holes from Charged Defects
Gary T. Horowitz; Nabil Iqbal; Jorge E. Santos; Benson Way
2015-05-05T23:59:59.000Z
We construct the holographic dual of an electrically charged, localised defect in a conformal field theory at strong coupling, by applying a spatially dependent chemical potential. We find that the IR behaviour of the spacetime depends on the spatial falloff of the potential. Moreover, for sufficiently localized defects with large amplitude, we find that a new gravitational phenomenon occurs: a spherical extremal charged black hole nucleates in the bulk: a hovering black hole. This is a second order quantum phase transition. We construct this new phase with several profiles for the chemical potential and study its properties. We find an apparently universal behaviour for the entropy of the defect as a function of its amplitude. We comment on the possible field theory implications of our results.
Thermodynamics and Luminosities of Rainbow Black Holes
Mu, Benrong; Yang, Haitang
2015-01-01T23:59:59.000Z
Doubly special relativity (DSR) is an effective model for encoding quantum gravity in flat spacetime. As a result of the nonlinearity of the Lorentz transformation, the energy-momentum dispersion relation is modified. One simple way to import DSR to curved spacetime is \\textquotedblleft Gravity's rainbow", where the spacetime background felt by a test particle would depend on its energy. Focusing on the \\textquotedblleft Amelino-Camelia dispersion relation" which is $E^{2}=m^{2}+p^{2}\\left[ 1-\\eta\\left( E/m_{p}\\right) ^{n}\\right] $ with $n>0$, we investigate the thermodynamical properties of a Schwarzschild black hole and a static uncharged black string for all possible values of $\\eta$ and $n$ in the framework of rainbow gravity. It shows that there are non-vanishing minimum masses for these two black holes in the cases with $\\etacompute lum...
Geometric description of BTZ black holes thermodynamics
Hernando Quevedo; Alberto Sanchez
2008-11-15T23:59:59.000Z
We study the properties of the space of thermodynamic equilibrium states of the Ba\\~nados-Teitelboim-Zanelli (BTZ) black hole in (2+1)-gravity. We use the formalism of geometrothermodynamics to introduce in the space of equilibrium states a $2-$dimensional thermodynamic metric whose curvature is non-vanishing, indicating the presence of thermodynamic interaction, and free of singularities, indicating the absence of phase transitions. Similar results are obtained for generalizations of the BTZ black hole which include a Chern-Simons term and a dilatonic field. Small logarithmic corrections of the entropy turn out to be represented by small corrections of the thermodynamic curvature, reinforcing the idea that thermodynamic curvature is a measure of thermodynamic interaction.
Electromagnetic wave scattering by Schwarzschild black holes
Luís C. B. Crispino; Sam R. Dolan; Ednilton S. Oliveira
2009-05-20T23:59:59.000Z
We analyze the scattering of a planar monochromatic electromagnetic wave incident upon a Schwarzschild black hole. We obtain accurate numerical results from the partial wave method for the electromagnetic scattering cross section, and show that they are in excellent agreement with analytical approximations. The scattering of electromagnetic waves is compared with the scattering of scalar, spinor and gravitational waves. We present a unified picture of the scattering of all massless fields for the first time.
Charged Cylindrical Black Holes in Conformal Gravity
Jackson Levi Said; Joseph Sultana; Kristian Zarb Adami
2013-01-04T23:59:59.000Z
Considering cylindrical topology we present the static solution for a charged black hole in conformal gravity. We show that unlike the general relativistic case there are two different solutions, both including a factor that when set to zero recovers the familiar static charged black string solution in Einstein's theory. This factor gives rise to a linear term in the potential that also features in the neutral case and may have significant ramifications for particle trajectories.
Big Bang Nucleosynthesis and Primordial Black Holes
C. Sivaram; Kenath Arun
2010-06-28T23:59:59.000Z
There are ongoing efforts in detecting Hawking radiation from primordial black holes (PBH) formed during the early universe. Here we put an upper limit on the PBH number density that could have been formed prior to the big bang nucleosynthesis era, based on the constraint that the PBH evaporation energy consisting of high energy radiation not affect the observed abundances' of elements, by disintegrating the nuclei.
Lagrangian perfect fluids and black hole mechanics
Vivek Iyer
1996-10-15T23:59:59.000Z
The first law of black hole mechanics (in the form derived by Wald), is expressed in terms of integrals over surfaces, at the horizon and spatial infinity, of a stationary, axisymmetric black hole, in a diffeomorphism invariant Lagrangian theory of gravity. The original statement of the first law given by Bardeen, Carter and Hawking for an Einstein-perfect fluid system contained, in addition, volume integrals of the fluid fields, over a spacelike slice stretching between these two surfaces. When applied to the Einstein-perfect fluid system, however, Wald's methods yield restricted results. The reason is that the fluid fields in the Lagrangian of a gravitating perfect fluid are typically nonstationary. We therefore first derive a first law-like relation for an arbitrary Lagrangian metric theory of gravity coupled to arbitrary Lagrangian matter fields, requiring only that the metric field be stationary. This relation includes a volume integral of matter fields over a spacelike slice between the black hole horizon and spatial infinity, and reduces to the first law originally derived by Bardeen, Carter and Hawking when the theory is general relativity coupled to a perfect fluid. We also consider a specific Lagrangian formulation for an isentropic perfect fluid given by Carter, and directly apply Wald's analysis. The resulting first law contains only surface integrals at the black hole horizon and spatial infinity, but this relation is much more restrictive in its allowed fluid configurations and perturbations than that given by Bardeen, Carter and Hawking. In the Appendix, we use the symplectic structure of the Einstein-perfect fluid system to derive a conserved current for perturbations of this system: this current reduces to one derived ab initio for this system by Chandrasekhar and Ferrari.
Comparing quantum black holes and naked singularities
T. P. Singh
2000-12-21T23:59:59.000Z
There are models of gravitational collapse in classical general relativity which admit the formation of naked singularities as well as black holes. These include fluid models as well as models with scalar fields as matter. Even if fluid models were to be regarded as unphysical in their matter content, the remaining class of models (based on scalar fields) generically admit the formation of visible regions of finite but arbitrarily high curvature. Hence it is of interest to ask, from the point of view of astrophysics, as to what a stellar collapse leading to a naked singularity (or to a visible region of very high curvature) will look like, to a far away observer. The emission of energy during such a process may be divided into three phases - (i) the classical phase, during which matter and gravity can both be treated according to the laws of classical physics, (ii) the semiclassical phase, when gravity is treated classically but matter behaves as a quantum field, and (iii) the quantum gravitational phase. In this review, we first give a summary of the status of naked singularities in classical relativity, and then report some recent results comparing the semiclassical phase of black holes with the semiclassical phase of spherical collapse leading to a naked singularity. In particular, we ask how the quantum particle creation during the collapse leading to a naked singularity compares with the Hawking radiation from a star collapsing to form a black hole. It turns out that there is a fundamental difference between the two cases. A spherical naked star emits only about one Planck energy during its semiclassical phase, and the further evolution can only be determined by the laws of quantum gravity. This contrasts with the semiclassical evaporation of a black hole.
Noncommutative Inspired Black Holes in Extra Dimensions
Rizzo, Thomas G.
2006-06-07T23:59:59.000Z
In a recent string theory motivated paper, Nicolini, Smailagic and Spallucci (NSS) presented an interesting model for a noncommutative inspired, Schwarzschild-like black hole solution in 4-dimensions. The essential effect of having noncommutative co-ordinates in this approach is to smear out matter distributions on a scale associated with the turn-on of noncommutativity which was taken to be near the 4-d Planck mass. In particular, NSS assumed that this smearing was essentially Gaussian. This energy scale is sufficiently large that in 4-d such effects may remain invisible indefinitely. Extra dimensional models which attempt to address the gauge hierarchy problem, however, allow for the possibility that the effective fundamental scale may not be far from {approx} 1 TeV, an energy regime that will soon be probed by experiments at both the LHC and ILC. In this paper we generalize the NSS model to the case where flat, toroidally compactified extra dimensions are accessible at the TeV-scale and examine the resulting modifications in black hole properties due to the existence of noncommutativity. We show that while many of the noncommutativity-induced black hole features found in 4-d by NSS persist, in some cases there can be significant modifications due the presence of extra dimensions. We also demonstrate that the essential features of this approach are not particularly sensitive to the Gaussian nature of the smearing assumed by NSS.
Probing Dark Energy with Black Hole Binaries
Laura Mersini-Houghton; Adam Kelleher
2008-08-25T23:59:59.000Z
The equation of state (EoS) of dark energy $w$ remains elusive despite enormous experimental efforts to pin down its value and its time variation. Yet it is the single most important handle we have in our understanding of one of the most mysterious puzzle in nature, dark energy. This letter proposes a new method for measuring the EoS of dark energy by using the gravitational waves (GW) of black hole binaries. The method described here offers an alternative to the standard way of large scale surveys. It is well known that the mass of a black hole changes due to the accretion of dark energy but at an extremely slow rate. However, a binary of supermassive black holes (SBH) radiates gravitational waves with a power proportional to the masses of these accreting stars and thereby carries information on dark energy. These waves can propagate through the vastness of structure in the universe unimpeded. The orbital changes of the binary, induced by the energy loss from gravitational radiation, receive a large contribution from dark energy accretion. This contribution is directly proportional to $(1+w)$ and is dominant for SBH binaries with separation $R \\ge 1000$ parsec, thereby accelerating the merging process for $w > -1$ or ripping the stars apart for phantom dark energy with $w < -1$. Such orbital changes, therefore $w$, can be detected with LIGO and LISA near merging time, or with X-ray and radio measurements of Chandra and VLBA experiments.
Thermodynamics and Luminosities of Rainbow Black Holes
Benrong Mu; Peng Wang; Haitang Yang
2015-07-14T23:59:59.000Z
Doubly special relativity (DSR) is an effective model for encoding quantum gravity in flat spacetime. As a result of the nonlinearity of the Lorentz transformation, the energy-momentum dispersion relation is modified. One simple way to import DSR to curved spacetime is \\textquotedblleft Gravity's rainbow", where the spacetime background felt by a test particle would depend on its energy. Focusing on the \\textquotedblleft Amelino-Camelia dispersion relation" which is $E^{2}=m^{2}+p^{2}\\left[ 1-\\eta\\left( E/m_{p}\\right) ^{n}\\right] $ with $n>0$, we investigate the thermodynamical properties of a Schwarzschild black hole and a static uncharged black string for all possible values of $\\eta$ and $n$ in the framework of rainbow gravity. It shows that there are non-vanishing minimum masses for these two black holes in the cases with $\\etacompute luminosities of a 2D black hole, a Schwarzschild one and a static uncharged black string. It is found that the luminosities can be significantly suppressed or boosted depending on the values of $\\eta$ and $n$.
Accretion Processes On a Black Hole
Sandip K. Chakrabarti
1996-05-03T23:59:59.000Z
We describe astrophysical processes around a black hole keeping primarily the physics of accretion in mind. In Section 1, we briefly discuss the formation, evolution and detection of black holes. We also discuss the difference of flow properties around a black hole and a Newtonian star. In Section 2, we present past and present developments in the study of spherically accreting flows. We study the properties of Bondi flow with and without radiative transfer. In the presence of significant angular momentum, which is especially true in a binary system, matter will be accreted as a thin Keplerian disk. In Section 3, we discuss a large number of models of these disks including the more popular standard disk model. We present magnetized disk models as well. Since the angular momentum is high in these systems, rotational motion is the most dominant component compared to the radial or the vertical velocity components. In Section 4, we study thick disk models which are of low angular momentum but still have no significant radial motion. The accretion rates could be very high causing the flow to become radiation dominated and the disk to be geometrically thick. For low accretion rates, ion pressure supported disks are formed. In Section 5, we extensively discuss the properties of transonic flows which has with sub-Keplerian angular momentum. In the absence of shock discontinuities, these sub-Keplerian flows are basically advecting, similar to Bondi flows, close to the black holes, though far away they match Keplerian or sub-Keplerian disks. In presence of shocks, the post-shock flow becomes rotation dominated similar to thick disks. In Section 6, we present results of important numerical simulations of accretion flows. Significant results from the studies of evolution of viscous transonic flows are reported. In Section 7, we discuss some observational evidences of the black hole accretion. We also present a detailed model of a generalized accretion disk and present its spectra and compare with observations. In Section 8, we summarize the review and make concluding remarks.
Articles which include chevron film cooling holes, and related processes
Bunker, Ronald Scott; Lacy, Benjamin Paul
2014-12-09T23:59:59.000Z
An article is described, including an inner surface which can be exposed to a first fluid; an inlet; and an outer surface spaced from the inner surface, which can be exposed to a hotter second fluid. The article further includes at least one row or other pattern of passage holes. Each passage hole includes an inlet bore extending through the substrate from the inlet at the inner surface to a passage hole-exit proximate to the outer surface, with the inlet bore terminating in a chevron outlet adjacent the hole-exit. The chevron outlet includes a pair of wing troughs having a common surface region between them. The common surface region includes a valley which is adjacent the hole-exit; and a plateau adjacent the valley. The article can be an airfoil. Related methods for preparing the passage holes are also described.
Galaxy bulges and their massive black holes: a review
Alister W. Graham
2015-02-17T23:59:59.000Z
With references to both key and oft-forgotten pioneering works, this article starts by presenting a review into how we came to believe in the existence of massive black holes at the centres of galaxies. It then presents the historical development of the near-linear (black hole)-(host spheroid) mass relation, before explaining why this has recently been dramatically revised. Past disagreement over the slope of the (black hole)-(velocity dispersion) relation is also explained, and the discovery of sub-structure within the (black hole)-(velocity dispersion) diagram is discussed. As the search for the fundamental connection between massive black holes and their host galaxies continues, the competing array of additional black hole mass scaling relations for samples of predominantly inactive galaxies are presented.
Thermodynamic Product Formula for Taub-NUT Black Hole
Parthapratim Pradhan
2015-08-20T23:59:59.000Z
We derive various important thermodynamic relations of the inner and outer horizon in the background of Taub-NUT(Newman-Unti-Tamburino) black hole in four dimensional \\emph{Lorentzian geometry}. We compare these properties with the properties of Reissner Nordstr{\\o}m black hole. We compute \\emph{area product, area sum, area minus and area division} of black hole horizons. We show that they all are not universal quantities. Based on these relations, we compute the area bound of all horizons. From area bound, we derive entropy bound and irreducible mass bound for both the horizons. We further study the stability of such black hole by computing the specific heat for both the horizons. It is shown that due to negative specific heat the black hole is thermodynamically unstable. All these calculations might be helpful to understanding the nature of black hole entropy both \\emph{interior} and exterior at the microscopic level.
Thermodynamic Product Formula for Taub-NUT Black Hole
Pradhan, Parthapratim
2015-01-01T23:59:59.000Z
We derive various important thermodynamic relations of the inner and outer horizon in the background of Taub-NUT(Newman-Unti-Tamburino) black hole in four dimensional \\emph{Lorentzian geometry}. We compare these properties with the properties of Reissner Nordstr{\\o}m black hole. We compute \\emph{area product, area sum, area minus and area division} of black hole horizons. We show that they all are not universal quantities. Based on these relations, we compute the area bound of all horizons. From area bound, we derive entropy bound and irreducible mass bound for both the horizons. We further study the stability of such black hole by computing the specific heat for both the horizons. It is shown that due to negative specific heat the black hole is thermodynamically unstable. All these calculations might be helpful to understanding the nature of black hole entropy both \\emph{interior} and exterior at the microscopic level.
Method and apparatus of assessing down-hole drilling conditions
Hall, David R. (Provo, UT); Pixton, David S. (Lehl, UT); Johnson, Monte L. (Orem, UT); Bartholomew, David B. (Springville, UT); Fox, Joe (Spanish Fork, UT)
2007-04-24T23:59:59.000Z
A method and apparatus for use in assessing down-hole drilling conditions are disclosed. The apparatus includes a drill string, a plurality of sensors, a computing device, and a down-hole network. The sensors are distributed along the length of the drill string and are capable of sensing localized down-hole conditions while drilling. The computing device is coupled to at least one sensor of the plurality of sensors. The data is transmitted from the sensors to the computing device over the down-hole network. The computing device analyzes data output by the sensors and representative of the sensed localized conditions to assess the down-hole drilling conditions. The method includes sensing localized drilling conditions at a plurality of points distributed along the length of a drill string during drilling operations; transmitting data representative of the sensed localized conditions to a predetermined location; and analyzing the transmitted data to assess the down-hole drilling conditions.
Connecting horizon pixels and interior voxels of a black hole
Piero Nicolini; Douglas Singleton
2014-10-03T23:59:59.000Z
In this paper we discuss to what extent one can infer details of the interior structure of a black hole based on its horizon. Recalling that black hole thermal properties are connected to the non-classical nature of gravity, we circumvent the restrictions of the no hair theorem by postulating that the black hole interior is singularity free due to violations of the usual energy conditions. Further these conditions allow one to establish a one-to-one, holographic projection between Planckian areal "bits" on the horizon and "voxels", representing the gravitational degrees of freedom in the black hole interior. We illustrate the repercussions of this idea by discussing an example of the black hole interior consisting of a de Sitter core postulated to arise from the local graviton quantum vacuum energy. It is shown that the black hole entropy can emerge as the statistical entropy of a gas of voxels.
A mathematical simulation of horizontal drain-hole performance
Cheng, Thomas Ru-Kang
1984-01-01T23:59:59.000Z
Flow Rate Obtained From This Model and From BOSS-AIM. 22 Comparison of The Gas-Oil Ratio Obtained From This Model and From BOSS-AIM. 24 Relative Positions of Conventional Well and Horizontal Drain-Hole in Simulation Runs. . . . . 27 Comparison... of The Economic Oil Recovery Obtained From Horizontal Drain-Hole and From Conventional Well. . . . . . . 28 Comparison of The Cumulative Gas-Oil Ratio Obtained From Horizontal Drain-Hole and From Conventional Well. . . 29 Effect of Horizontal Drain...
Classical and Quantum Properties of Liouville Black Holes
R. B. Mann
1994-04-25T23:59:59.000Z
Black hole spacetimes can arise when a Liouville field is coupled to two- dimensional gravity. Exact solutions are obtained both classically and when quantum corrections due to back reaction effects are included. The black hole temperature depends upon the mass and the thermodynamic limit breaks down before evaporation of the black hole is complete, indicating that higher-loop effects must be included for a full description of the process.
Optoelectronic device with nanoparticle embedded hole injection/transport layer
Wang, Qingwu (Chelmsford, MA); Li, Wenguang (Andover, MA); Jiang, Hua (Methuen, MA)
2012-01-03T23:59:59.000Z
An optoelectronic device is disclosed that can function as an emitter of optical radiation, such as a light-emitting diode (LED), or as a photovoltaic (PV) device that can be used to convert optical radiation into electrical current, such as a photovoltaic solar cell. The optoelectronic device comprises an anode, a hole injection/transport layer, an active layer, and a cathode, where the hole injection/transport layer includes transparent conductive nanoparticles in a hole transport material.
A Quantum Material Model of Static Schwarzschild Black Holes
S. -T. Sung
1997-03-16T23:59:59.000Z
A quantum-mechanical prescription of static Einstein field equation is proposed in order to construct the matter-metric eigen-states in the interior of a static Schwarzschild black hole where the signature of space-time is chosen as (--++). The spectrum of the quantum states is identified to be the integral multiples of the surface gravity. A statistical explanation of black hole entropy is given and a quantisation rule for the masses of Schwarzschild black holes is proposed.
Moduli vacuum bubbles produced by evaporating black holes
Morris, J. R. [Physics Department, Indiana University Northwest, 3400 Broadway, Gary, Indiana 46408 (United States)
2007-10-15T23:59:59.000Z
We consider a model with a toroidally compactified extra dimension giving rise to a temperature-dependent 4D effective potential with one-loop contributions due to the Casimir effect, along with a 5D cosmological constant. The forms of the effective potential at low and high temperatures indicate a possibility for the formation of a domain wall bubble, formed by the modulus scalar field, surrounding an evaporating black hole. This is viewed as an example of a recently proposed black hole vacuum bubble arising from matter-sourced moduli fields in the vicinity of an evaporating black hole [D. Green, E. Silverstein, and D. Starr, Phys. Rev. D 74, 024004 (2006)]. The black hole bubble can be highly opaque to lower-energy particles and photons, and thereby entrap them within. For high-temperature black holes, there may also be a symmetry-breaking black hole bubble of false vacuum of the type previously conjectured by Moss [I. G. Moss, Phys. Rev. D 32, 1333 (1985)], tending to reflect low-energy particles from its wall. A double bubble composed of these two different types of bubble may form around the black hole, altering the hole's emission spectrum that reaches outside observers. Smaller mass black holes that have already evaporated away could have left vacuum bubbles behind that contribute to the dark matter.
Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank...
Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank & Niggemann, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...
Thermal Gradient Holes At Upper Hot Creek Ranch Area (Benoit...
Thermal Gradient Holes At Upper Hot Creek Ranch Area (Benoit & Blackwell, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient...
Thermal Gradient Holes At North Brawley Geothermal Area (Matlick...
Thermal Gradient Holes At North Brawley Geothermal Area (Matlick & Jayne, 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient...
Thermal Gradient Holes At Neal Hot Springs Geothermal Area (U...
Thermal Gradient Holes At Neal Hot Springs Geothermal Area (U.S. Geothermal Inc., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...
Thermal Gradient Holes At Long Valley Caldera Geothermal Area...
Thermal Gradient Holes At Long Valley Caldera Geothermal Area (Conservation, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...
Thermal Gradient Holes At Lightning Dock Geothermal Area (Cunniff...
Thermal Gradient Holes At Lightning Dock Geothermal Area (Cunniff, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient...
Thermal Gradient Holes At Long Valley Caldera Geothermal Area...
Thermal Gradient Holes At Long Valley Caldera Geothermal Area (Sorey, Et Al., 1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...
Thermal Gradient Holes At Waunita Hot Springs Geothermal Area...
Thermal Gradient Holes At Waunita Hot Springs Geothermal Area (Zacharakis, 1981) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient...
Thermal Gradient Holes At Lake City Hot Springs Area (Warpinski...
Thermal Gradient Holes At Lake City Hot Springs Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient...
Core Holes At Valles Caldera - Sulphur Springs Geothermal Area...
understand the stratigraphy, structure, hydrothermal alteration, and subsurface architecture of the Valles caldera. Several authors have reported results from these core holes,...
Core Holes At Valles Caldera - Redondo Geothermal Area (Goff...
understand the stratigraphy, structure, hydrothermal alteration, and subsurface architecture of the Valles caldera. Several authors have reported results from these core holes,...
Moduli Vacuum Bubbles Produced by Evaporating Black Holes
J. R. Morris
2007-08-14T23:59:59.000Z
We consider a model with a toroidally compactified extra dimension giving rise to a temperature-dependent 4d effective potential with one-loop contributions due to the Casimir effect, along with a 5d cosmological constant. The forms of the effective potential at low and high temperatures indicates a possibility for the formation of a domain wall bubble, formed by the modulus scalar field, surrounding an evaporating black hole. This is viewed as an example of a recently proposed black hole vacuum bubble arising from matter-sourced moduli fields in the vicinity of an evaporating black hole [D. Green, E. Silverstein, and D. Starr, Phys. Rev. D74, 024004 (2006), arXiv:hep-th/0605047]. The black hole bubble can be highly opaque to lower energy particles and photons, and thereby entrap them within. For high temperature black holes, there may also be a symmetry-breaking black hole bubble of false vacuum of the type previously conjectured by Moss [I.G. Moss, Phys. Rev. D32,1333 (1985)], tending to reflect low energy particles from its wall. A double bubble composed of these two different types of bubble may form around the black hole, altering the hole's emission spectrum that reaches outside observers. Smaller mass black holes that have already evaporated away could have left vacuum bubbles behind that contribute to the dark matter.
Thermal Gradient Holes At Breitenbush Hot Springs Area (Ingebritsen...
(1993) Heat Flow From Four New Research Drill Holes In The Western Cascades, Oregon, Usa Additional References Retrieved from "http:en.openei.orgwindex.php?titleThermalGr...
Energy Distribution of a Charged Regular Black Hole
Irina Radinschi
2000-11-20T23:59:59.000Z
We calculate the energy distribution of a charged regular black hole by using the energy-momentum complexes of Einstein and M{\\o}ller.
Particle Acceleration Around 5-dimensional Kerr Black Hole
Ahmadjon Abdujabbarov; Naresh Dadhich; Bobomurat Ahmedov; Husan Eshkuvatov
2013-12-11T23:59:59.000Z
On the lines of the 4-dimensional Kerr black hole we consider the particle acceleration near a 5-dimensional Kerr black hole which has the two rotation parameters. It turns out that the center of mass energy of the two equal mass colliding particles as expected diverges for the extremal black hole and there is a symmetry in the results for $\\theta = 0, \\pi/2$. Because of the two rotation parameters, $r=0$ can be a horizon without being a curvature singularity. It is shown that the acceleration of particles to high energies near the 5-D extreme rotating black hole avoids fine-tuning of the angular momentum of particles.
Core Holes At Long Valley Caldera Geothermal Area (Eichelberger...
Eichelberger, Et Al., 1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Holes At Long Valley Caldera Geothermal Area (Eichelberger, Et...
Complete single-horizon quantum corrected black hole spacetime
Peltola, Ari; Kunstatter, Gabor [Department of Physics and Winnipeg Institute for Theoretical Physics, University of Winnipeg, 515 Portage Avenue, Winnipeg, Manitoba, R3B 2E9 (Canada)
2009-03-15T23:59:59.000Z
We show that a semiclassical polymerization of the interior of Schwarzschild black holes gives rise to a tantalizing candidate for a nonsingular, single-horizon black hole spacetime. The exterior has nonzero quantum stress energy but closely approximates the classical spacetime for macroscopic black holes. The interior exhibits a bounce at a microscopic scale and then expands indefinitely to a Kantowski-Sachs spacetime. Polymerization therefore removes the singularity and produces a scenario reminiscent of past proposals for universe creation via quantum effects inside a black hole.
Hydrodynamic model for electron-hole plasma in graphene
D. Svintsov; V. Vyurkov; S. Yurchenko; T. Otsuji; V. Ryzhii
2012-01-03T23:59:59.000Z
We propose a hydrodynamic model describing steady-state and dynamic electron and hole transport properties of graphene structures which accounts for the features of the electron and hole spectra. It is intended for electron-hole plasma in graphene characterized by high rate of intercarrier scattering compared to external scattering (on phonons and impurities), i.e., for intrinsic or optically pumped (bipolar plasma), and gated graphene (virtually monopolar plasma). We demonstrate that the effect of strong interaction of electrons and holes on their transport can be treated as a viscous friction between the electron and hole components. We apply the developed model for the calculations of the graphene dc conductivity, in particular, the effect of mutual drag of electrons and holes is described. The spectra and damping of collective excitations in graphene in the bipolar and monopolar limits are found. It is shown that at high gate voltages and, hence, at high electron and low hole densities (or vice-versa), the excitations are associated with the self-consistent electric field and the hydrodynamic pressure (plasma waves). In intrinsic and optically pumped graphene, the waves constitute quasineutral perturbations of the electron and hole densities (electron-hole sound waves) with the velocity being dependent only on the fundamental graphene constants.
Thermal Gradient Holes At Central Nevada Seismic Zone Region...
tests of various methods on eight hypothetical 'model' basing-and-range geothermal systems. "The 300-meter heat flow holes are essentially useless for finding the "hidden"...
Thermal Gradient Holes At Walker-Lane Transitional Zone Region...
tests of various methods on eight hypothetical 'model' basing-and-range geothermal systems. "The 300-meter heat flow holes are essentially useless for finding the "hidden"...
Thermal Gradient Holes At Northern Basin & Range Region (Pritchett...
tests of various methods on eight hypothetical 'model' basing-and-range geothermal systems. "The 300-meter heat flow holes are essentially useless for finding the "hidden"...
Minimal Length Effects on Tunnelling from Spherically Symmetric Black Holes
Benrong Mu; Peng Wang; Haitang Yang
2015-01-24T23:59:59.000Z
In this paper, we investigate effects of the minimal length on quantum tunnelling from spherically symmetric black holes using the Hamilton-Jacobi method incorporating the minimal length. We first derive the deformed Hamilton-Jacobi equations for scalars and fermions, both of which have the same expressions. The minimal length correction to the Hawking temperature is found to depend on the black hole's mass and the mass and angular momentum of emitted particles. Finally, we calculate a Schwarzschild black hole's luminosity and find the black hole evaporates to zero mass in infinite time.
Minimal Length Effects on Tunnelling from Spherically Symmetric Black Holes
Mu, Benrong; Yang, Haitang
2015-01-01T23:59:59.000Z
In this paper, we investigate effects of the minimal length on quantum tunnelling from spherically symmetric black holes using the Hamilton-Jacobi method incorporating the minimal length. We first derive the deformed Hamilton-Jacobi equations for scalars and fermions, both of which have the same expressions. The minimal length correction to the Hawking temperature is found to depend on the black hole's mass and the mass and angular momentum of emitted particles. Finally, we calculate a Schwarzschild black hole's luminosity and find the black hole evaporates to zero mass in infinite time.
Exploring higher dimensional black holes at the large hadron collider.
Harris, Chris M; Palmer, M J; Parker, Michael A; Richardson, P
cross section for production of black holes not too much heavier than the fundamental Planck scale corresponds to a production rate of a few Hertz at the LHC design luminosity. In the following sections, the process of the black hole production and decay... scattering in quantum gravity, hep-th/9906038. [7] R. Emparan, G. T. Horowitz, and R. C. Myers, Exact description of black holes on branes, JHEP 01 (2000) 007, [hep-th/9911043]. [8] S. B. Giddings and S. Thomas, High energy colliders as black hole factories...
Thermal Fluctuations in a Charged AdS Black Hole
Pourhassan, B
2015-01-01T23:59:59.000Z
In this paper, we will analyze the effects of thermal fluctuations on a charged AdS black hole. This will be done by analyzing the corrections to black hole thermodynamics due to these thermal fluctuations. We will demonstrate that the entropy of this black hole get corrected by logarithmic term. We will also calculate other corrections to other important thermodynamic quantities for this black hole. Finally, we will use the corrected value of the specific heat to analyze the phase transition in this system.
Thermal Fluctuations in a Charged AdS Black Hole
B. Pourhassan; Mir Faizal
2015-08-12T23:59:59.000Z
In this paper, we will analyze the effects of thermal fluctuations on a charged AdS black hole. This will be done by analyzing the corrections to black hole thermodynamics due to these thermal fluctuations. We will demonstrate that the entropy of this black hole get corrected by logarithmic term. We will also calculate other corrections to other important thermodynamic quantities for this black hole. Finally, we will use the corrected value of the specific heat to analyze the phase transition in this system.
Spectroscopy of the Einstein-Maxwell-Dilaton-Axion black hole
Deyou Chen; Haitang Yang
2012-10-03T23:59:59.000Z
The entropy spectrum of a spherically symmetric black hole was derived via the Bohr-Sommerfeld quantization rule in Majhi and Vagenas's work. Extending this work to charged and rotating black holes, we quantize the horizon area and the entropy of an Einstein-Maxwell-Dilaton-Axion (EMDA) black hole via the Bohr-Sommerfeld quantization rule and the adiabatic invariance. The result shows the area spectrum and the entropy spectrum are respectively equally spaced and independent on the parameters of the black hole.
Density matrix of black hole radiation
Lasma Alberte; Ram Brustein; Andrei Khmelnitsky; A. J. M. Medved
2015-02-09T23:59:59.000Z
Hawking's model of black hole evaporation is not unitary and leads to a mixed density matrix for the emitted radiation, while the Page model describes a unitary evaporation process in which the density matrix evolves from an almost thermal state to a pure state. We compare a recently proposed model of semiclassical black hole evaporation to the two established models. In particular, we study the density matrix of the outgoing radiation and determine how the magnitude of the off-diagonal corrections differs for the three frameworks. For Hawking's model, we find power-law corrections to the two-point functions that induce exponentially suppressed corrections to the off-diagonal elements of the full density matrix. This verifies that the Hawking result is correct to all orders in perturbation theory and also allows one to express the full density matrix in terms of the single-particle density matrix. We then consider the semiclassical theory for which the corrections, being non-perturbative from an effective field-theory perspective, are much less suppressed and grow monotonically in time. In this case, the R\\'enyi entropy for the outgoing radiation is shown to grow linearly at early times; but this growth slows down and the entropy eventually starts to decrease at the Page time. In addition to comparing models, we emphasize the distinction between the state of the radiation emitted from a black hole, which is highly quantum, and that of the radiation emitted from a typical classical black body at the same temperature.
ACCRETION-JET CONNECTION IN BLACK HOLES THE ORIGIN OF STELLAR BLACK HOLES &
Maryland at College Park, University of
of a sudden drop of the hard X-rays..." ·"The particles (corona/inner disk) are blown away..." ·"Jets have Direct collapse depends on: ·Metal content ·Mass of the core ·Angular momentum Can this model be tested observationally ? #12;HOW ARE FORM BLACK HOLE BINARIES ? CORE COLLAPSE MODELS: (Fryer & Kalogera ; Woosley & Heger
Tunneling into black hole, escape from black hole, reflection from horizon and pair creation
V. V. Flambaum
2004-08-05T23:59:59.000Z
Within classical general relativity, a particle cannot reach the horizon of a black hole during a finite time, in the reference frame of an external observer; a particle inside cannot escape from a black hole; and the horizon does not produce any reflection. We argue that these processes may possibly be allowed in the quantum world. It is known that quantum mechanics allows pair creation at the horizon (one particle inside, another particle outside) and Hawking radiation. One can extend this idea to propose other processes. Tunneling of an external particle inside black hole may be produced by the creation of a pair at the horizon, followed by the annihilation of one created particle with the initial particle outside, with the other created particle appearing inside. Escape of a particle from a black hole may result from the creation of a pair, followed by the annihilation of one created particle with the particle inside, with the other created particle appearing outside. The escape may allow the transfer of information to the outside.Finally, the reflection of an external particle from the horizon may be modelled by a combination of the two processes presented above. The relationship between these "pair creation-annihilation'' mechanisms and the "horizon tunneling" calculations [1-5] is discussed.
False Vacuum Black Holes and Universes
R. G. Daghigh; J. I. Kapusta; Y. Hosotani
2000-08-01T23:59:59.000Z
We construct a black hole whose interior is the false vacuum and whose exterior is the true vacuum of a classical field theory. From the outside the metric is the usual Schwarzschild one, but from the inside the space is de Sitter with a cosmological constant determined by the energy of the false vacuum. The parameters of the field potential may allow for the false vacuum to exist for more than the present age of the universe. A potentially relevant effective field theory within the context of QCD results in a Schwarzschild radius of about 200 km.
Collective Excitations in Electron-Hole Bilayers
Kalman, G. J. [Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467 (United States); Hartmann, P.; Donko, Z. [Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Golden, K. I. [Department of Mathematics and Statistics and Department of Physics, University of Vermont, Burlington, Vermont 05401 (United States)
2007-06-08T23:59:59.000Z
We report a combined analytic and molecular dynamics analysis of the collective mode spectrum of a bipolar (electron-hole) bilayer in the strong coupling classical limit. A robust, isotropic energy gap is identified in the out-of-phase spectra, generated by the combined effect of correlations and of the excitation of the bound dipoles. In the in-phase spectra we identify longitudinal and transverse acoustic modes wholly maintained by correlations. Strong nonlinear generation of higher harmonics of the fundamental dipole oscillation frequency and the transfer of harmonics between different modes is observed.
The effects of fastener hole defects
Andrews, Scot D.
1991-01-01T23:59:59.000Z
) August 1991 ABSTRACT The Effects of Fastener Hole Defects. (August 1991) Scot D. Andrews, B. S. , Texas A8rM University Chair of Advisory Committee: Dr. Orden O. Ochoa The influence of drilling-induced defects, such as delamination, on the fatigue... ambient and elevated temperature wet conditions. Specimens were tested in a bearing tension frame to static failure in order to measure the failure load and to calculate pin bearing stress. From static test results, a fatigue load was selected as 66...
Down-hole periodic seismic generator
Hardee, H.C.; Hills, R.G.; Striker, R.P.
1982-10-28T23:59:59.000Z
A down hole periodic seismic generator system is disclosed for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.
SLIM: A Scalable Location-Sensitive Information Monitoring Service
Liu, Ling
. A typical example of such services is "alert me when the gas price at a gas station within 5 miles of my current location drops to $4 per gallon". Such a service needs to monitor the gas price changes gas prices at gas stations, traffic conditions at major junctions or pollution levels in different
High Precision Geophysics & Detailed Structural Exploration & Slim Well
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP aCentrothermDepew, NewAl.,HardinHelios Energy Private LtdHewitt,Hidralia Energia JumpHigh
Wontae Kim; Edwin J. Son; Myungseok Yoon
2008-01-09T23:59:59.000Z
We study thermodynamic quantities of an acoustic black hole and its thermodynamic stability in a cavity based on the generalized uncertainty principle. It can be shown that there is a minimal black hole which can be a stable remnant after black hole evaporation. Moreover, the behavior of the free energy shows that the large black hole is stable too. Therefore, the acoustic black hole can decay into the remnant or the large black hole.
Zhao, Qian; Zhou, Yun-Song; Wang, Huai-Yu
2011-01-01T23:59:59.000Z
We investigate the mechanism of extraordinary optical transmission in subwave-length metal hole arrays. Experimental results for the arrays consisting of square or rectangle holes are well explained about the dependence of transmission strength on the polarization direction of the incident light. This polarization dependence occurs in each single-hole. For a hole array, there is in addition an interplay between the adjacent holes which is caused by the transverse magnetic field of surface plasmon polariton on the metal film surfaces. Based on the detailed study of a single-hole and two-hole structures, a simple method to calculate the total tranmissivity of hole arrays is proposed.
Energy decomposition within Einstein-Born-Infeld black holes
Jonas P. Pereira; Jorge A. Rueda
2015-03-09T23:59:59.000Z
We analyze the consequences of the recently found generalization of the Christodoulou-Ruffini black hole mass decomposition for Einstein-Born-Infeld black holes [characterized by the parameters $(Q,M,b)$, where $M = M(M_{irr},Q,b)$, $b$ scale field, $Q$ charge, $M_{irr}$ "irreducible mass", physically meaning the energy of a black hole when its charge is null] and their interactions. We show in this context that their description is largely simplified and can basically be split into two families depending upon the parameter $b|Q|$. If $b|Q|\\leq 1/2$, then black holes could have even zero irreducible masses and they always exhibit single, non degenerated, horizons. If $b|Q|>1/2$, then an associated black hole must have a minimum irreducible mass (related to its minimum energy) and has two horizons up to a transitional irreducible mass. For larger irreducible masses, single horizon structures raise again. By assuming that black holes emit thermal uncharged scalar particles, we further show in light of the black hole mass decomposition that one satisfying $b|Q|>1/2$ takes an infinite amount of time to reach the zero temperature, settling down exactly at its minimum energy. Finally, we argue that depending on the fundamental parameter $b$, the radiation (electromagnetic and gravitational) coming from Einstein-Born-Infeld black holes could differ significantly from Einstein-Maxwell ones. Hence, it could be used to assess such a parameter.
Analysis of spherically symmetric black holes in Braneworld models
A. B. Pavan
2010-05-25T23:59:59.000Z
Research on black holes and their physical proprieties has been active on last 90 years. With the appearance of the String Theory and the Braneworld models as alternative descriptions of our Universe, the interest on black holes, in these context, increased. In this work we studied black holes in Braneworld models. A class of spherically symmetric black holes is investigaded as well its stability under general perturbations. Thermodynamic proprieties and quasi-normal modes are discussed. The black holes studied are the SM (zero mass) and CFM solutions, obtained by Casadio {\\it et al.} and Bronnikov {\\it et al.}. The geometry of bulk is unknown. However the Campbell-Magaard Theorem guarantees the existence of a 5-dimensional solution in the bulk whose projection on the brane is the class of black holes considered. They are stable under scalar perturbations. Quasi-normal modes were observed in both models. The tail behavior of the perturbations is the same. The entropy upper bound of a body absorved by the black holes studied was calculated. This limit turned out to be independent of the black hole parameters.
Pair Production of Topological anti de Sitter Black Holes
R. B. Mann
1996-07-28T23:59:59.000Z
The pair creation of black holes with event horizons of non-trivial topology is described. The spacetimes are all limiting cases of the cosmological $C$ metric. They are generalizations of the $(2+1)$ dimensional black hole and have asymptotically anti de Sitter behaviour. Domain walls instantons can mediate their pair creation for a wide range of mass and charge.
Extracting Energy from Black Hole through Transition Region
Li-Xin Li
2000-07-24T23:59:59.000Z
A new scenario for extracting energy from a Kerr black hole is proposed. With magnetic field lines connecting plasma particles inside the ergosphere with remote loads, the frame dragging twists the field lines so that energy and angular momentum are extracted from the plasma particles. If the magnetic field is strong enough, the energy extracted from the particles can be so large that the particles have negative energy as they fall into the black hole. So effectively the energy is extracted from the black hole. The particles inside the ergosphere can be continuously replenished with accretion from a disk surrounding the black hole, so a transition region with sufficient amount of plasma is formed between the black hole's horizon and the inner edge of the disk. Thus the energy can be continuously extracted from the black hole through the transition region. This may be the most efficient way for extracting energy from a Kerr black hole: in principle almost all of the rotational energy (up to $\\approx 29%$ of the total energy of the black hole) can be extracted.
Accretion Disks Around Black Holes: Twenty Five Years Later
Sandip K. Chakrabarti
1998-07-10T23:59:59.000Z
We study the progress of the theory of accretion disks around black holes in last twenty five years and explain why advective disks are the best bet in explaining varied stationary and non-stationary observations from black hole candidates. We show also that the recently proposed advection dominated flows are incorrect.
Particle Acceleration in Rotating Modified Hayward and Bardeen Black Holes
Behnam Pourhassan; Ujjal Debnath
2015-06-10T23:59:59.000Z
In this paper we consider rotating modified Hayward and Bardeen black holes as particle accelerators. We investigate the the center of mass energy of two colliding neutral particles with same rest masses falling from rest at infinity to near the horizons of the mentioned black holes. We also investigate the range of the particle's angular momentum and the orbit of the particle.
Particle Acceleration in Rotating Modified Hayward and Bardeen Black Holes
Pourhassan, Behnam
2015-01-01T23:59:59.000Z
In this paper we consider rotating modified Hayward and Bardeen black holes as particle accelerators. We investigate the the center of mass energy of two colliding neutral particles with same rest masses falling from rest at infinity to near the horizons of the mentioned black holes. We also investigate the range of the particle's angular momentum and the orbit of the particle.
Electric Charge in Interaction with Magnetically Charged Black Holes
J. H. Kim; Sei-Hoon Moon
2007-10-02T23:59:59.000Z
We examine the angular momentum of an electric charge e placed at rest outside a dilaton black hole with magnetic charge Q. The electromagnetic angular momentum which is stored in the electromagnetic field outside the black hole shows several common features regardless of the dilaton coupling strength, though the dilaton black holes are drastically different in their spacetime structure depending on it. First, the electromagnetic angular momentum depends on the separation distance between the two objects and changes monotonically from eQ to 0 as the charge goes down from infinity to the horizon, if rotational effects of the black hole are discarded. Next, as the black hole approaches extremality, however, the electromagnetic angular momentum tends to be independent of the distance between the two objects. It is then precisely $eQ$ as in the electric charge and monopole system in flat spacetime. We discuss why these effects are exhibited and argue that the above features are to hold in widely generic settings including black hole solutions in theories with more complicated field contents, by addressing the no hair theorem for black holes and the phenomenon of field expulsion exhibited by extremal black holes.
A note on regular black holes in a brane world
Neves, J C S
2015-01-01T23:59:59.000Z
In this work, we show that regular black holes in a Randall-Sundrum-type brane world model are generated by the non-local bulk influence, expressed by a constant parameter in the brane metric, only in the spherical case. In the axial case (black holes with rotation), this influence forbids them.
Synchronization Helps Robots to Detect Black Holes in Directed Graphs
Pinotti, Maria Cristina
nodes are the so called black hole nodes, and once a robot enters in one of them, it is destroyed supported by the Italian CNR Short-Term Mobility Program. #12;1 Introduction The subject of exploring that destroy any entering entity. Such nodes are called black holes, and the exploration of a graph
Nonrotating black hole in a post-Newtonian tidal environment
Stephanne Taylor; Eric Poisson
2008-09-11T23:59:59.000Z
We examine the motion and tidal dynamics of a nonrotating black hole placed within a post-Newtonian external spacetime. The tidal perturbation created by the external environment is treated as a small perturbation. At a large distance from the black hole, the gravitational field of the external distribution of matter is assumed to be sufficiently weak to be adequately described by the (first) post-Newtonian approximation to general relativity. There, the black hole is treated as a monopole contribution to the total gravitational field. There exists an overlap in the domains of validity of each description, and the black-hole and post-Newtonian metrics are matched in the overlap. The matching procedure produces the equations of motion for the black hole and the gravito-electric and gravito-magnetic tidal fields acting on the black hole. We first calculate the equations of motion and tidal fields by making no assumptions regarding the nature of the post-Newtonian environment; this could contain a continuous distribution of matter or any number of condensed bodies. We next specialize our discussion to a situation in which the black hole is a member of a post-Newtonian two-body system. As an application of our results, we examine the geometry of the deformed event horizon and calculate the tidal heating of the black hole, the rate at which it acquires mass as a result of its tidal interaction with the companion body.
Proton Hole States of Nb,95,97,99
Bindal, P. K.; Youngblood, David H.; Kozub, R. L.
1974-01-01T23:59:59.000Z
-lying proton hole states in the Nb isotopes is from the study of Ohnuma and Yntema. ' Our recent study of hole state analogs of Nb levels in the Mo iso- topes' revealed a dramatic drop in analog state strength, particularly for / =1 states as one pro...
Is the Universe the only existing Black Hole?
Andrea Gregori
2010-06-30T23:59:59.000Z
We investigate the physics of black holes in the light of the quantum theoretical framework proposed in [1]. It is argued that black holes are completely non-local objects, and that the only one which really exists is the universe itself.
Renyi entropies of a black hole from Hawking radiation
A. Bialas; W. Czyz
2008-01-30T23:59:59.000Z
Renyi entropies of a black hole are evaluated by counting the states of the Hawking radiation which fills a thin shell surrounding the horizon. The width of the shell is determined from its energy content and the corresponding mass defect. The Bekenstein-Hawking formula for the entropy of the black hole is correctly reproduced.
Large rotating AdS black holes from fluid mechanics
Sayantani Bhattacharyya; Subhaneil Lahiri; R. Loganayagam; Shiraz Minwalla
2008-07-25T23:59:59.000Z
We use the AdS/CFT correspondence to argue that large rotating black holes in global AdS(D) spaces are dual to stationary solutions of the relativistic Navier-Stokes equations on S**(D-2). Reading off the equation of state of this fluid from the thermodynamics of non-rotating black holes, we proceed to construct the nonlinear spinning solutions of fluid mechanics that are dual to rotating black holes. In all known examples, the thermodynamics and the local stress tensor of our solutions are in precise agreement with the thermodynamics and boundary stress tensor of the spinning black holes. Our fluid dynamical description applies to large non-extremal black holes as well as a class of large non-supersymmetric extremal black holes, but is never valid for supersymmetric black holes. Our results yield predictions for the thermodynamics of all large black holes in all theories of gravity on AdS spaces, for example, string theory on AdS(5) x S**5 and M theory on AdS(4) x S**7 and AdS(7) x S**4.
Modified Black Hole with Polar Jet and Vortex
T. Tmmalm
2001-12-06T23:59:59.000Z
There are many models relating an accretion disk of Black Hole to jet outflow. The herein heuristic model describes the continuation of an external accretion disk to an internal accretion disk for less than Black Hole horizon, and subsequent polar jet outflow along polar axis out of polar vortex wherein the event horizon is no longer descriptive.
Filing Holes in Complex Surfaces Using Volumetric Diffusion
Kazhdan, Michael
components (red) Accurate filling requires knowledge of surface topology #12;Complications of Hole Filling components Complex hole geometry Construction of an arbitrary mesh can result in non-manifold surface Results of subsequent iterations are combined using a variation of alpha blending d0, v0=ds ,[ws0] di
Accretion onto the First Stellar Mass Black Holes
Marcelo A. Alvarez; John H. Wise; Tom Abel
2008-11-07T23:59:59.000Z
The first stars in the universe, forming at redshifts z>15 in minihalos with masses of order 10^6 Msun, may leave behind black holes as their remnants. These objects could conceivably serve as "seeds" for much larger black holes observed at redshifts z~6. We study the growth of the remnant black holes through accretion including for the first time the emitted accretion radiation with adaptive mesh refinement cosmological radiation-hydrodynamical simulations. The effects of photo-ionization and heating dramatically affect the accretion flow from large scales, resulting in negligible mass growth of the black hole. We compare cases with the accretion luminosity included and neglected to show that the accretion radiation drastically changes the environment within 100 pc of the black hole, where gas temperatures are increased by an order of magnitude. The gas densities are reduced and further star formation in the same minihalo prevented for the two hundred million years of evolution we followed. These calculations show that even without the radiative feedback included most seed black holes do not gain mass as efficiently as has been hoped for in previous theories, implying that black hole remnants of Pop III stars that formed in minihalos are not likely to be the origin of miniquasars. Most importantly, however, these calculations demonstrate that if early stellar mass black holes are indeed accreting close to the Bondi-Hoyle rate with ten percent efficiency they have a dramatic local effect in regulating star formation in the first galaxies.
On the Energy of Stringy Black Holes
Irina Radinschi; I-Ching Yang
2004-06-14T23:59:59.000Z
It is well-known that one of the most interesting and challenging problems of General Relativity is the energy and momentum localization. There are many attempts to evaluate the energy distribution in a general relativistic system. One of the methods used for the energy and momentum localization is the one which used the energy-momentum complexes. After the Einstein work, a large number of definitions for the energy distribution was given. We mention the expressions proposed by Landau and Lifshitz, Papapetrou, Bergmann, Weinberg and M{\\o}ller. The Einstein, Landau and Lifshitz, Papapetrou, Bergmann and Weinberg energy-momentum complexes are restricted to calculate the energy distribution in quasi-Cartesian coordinates. The energy-momentum complex of M{\\o}ller gives the possibility to make the calculations in any coordinate system. In this paper we calculate the energy distribution of three stringy black hole solutions in the M{\\o}ller prescription. The M{\\o}ller energy-momentum complex gives us a consistent result for these three situations. Keywords: M{\\o}ller energy-momentum complex, charged black hole solution in heterotic string theory PACS: 04. 20 Dw, 04. 70. Bw,
Extremal Limits of Rotating Black Holes
Laura Andrianopoli; Riccardo D'Auria; Antonio Gallerati; Mario Trigiante
2013-05-30T23:59:59.000Z
We consider non-extremal, stationary, axion-dilaton solutions to ungauged symmetric supergravity models, obtained by Harrison transformations of the non-extremal Kerr solution. We define a general algebraic procedure, which can be viewed as an Inonu-Wigner contraction of the Noether charge matrix associated with the effective D=3 sigma-model description of the solution, yielding, through different singular limits, the known BPS and non-BPS extremal black holes (which include the under-rotating non-BPS one). The non-extremal black hole can thus be thought of as "interpolating" among these limit-solutions. The algebraic procedure that we define generalizes the known Rasheed-Larsen limit which yielded, in the Kaluza-Klein theory, the first instance of under-rotating extremal solution. As an example of our general result, we discuss in detail the non-extremal solution in the T^3-model, with either (q_0, p^1) or (p^0, q_1) charges switched on, and its singular limits. Such solutions, computed in D=3 through the solution-generating technique, is completely described in terms of D=4 fields, which include the fully integrated vector fields.
Hadrons As Kerr-Newman Black Holes
R. L. Oldershaw
2010-03-15T23:59:59.000Z
The scale invariance of the source-free Einstein field equations suggests that one might be able to model hadrons as "strong gravity" black holes, if one uses an appropriate rescaling of units or a revised gravitational coupling factor. The inner consistency of this hypothesis is tested by retrodicting a close approximation to the mass of the proton from an equation that relates the angular momentum and mass of a Kerr black hole. More accurate mass and radius values for the proton are then retrodicted using the geometrodynamics form of the full Kerr-Newman solution of the Einstein-Maxwell equations. The radius of an alpha particle is calculated as an additional retrodictive test. In a third retrodictive test of the "strong gravity" hypothesis, the subatomic particle mass spectrum in the 100 MeV to 7,000 MeV range is retrodicted to a first approximation using the Kerr solution of General Relativity. The particle masses appear to form a restricted set of quantized values of the Kerr solution: n^1/2 M, where values of n are a set of discrete integers and M is the revised Planck mass. The accuracy of the 27 retrodicted masses averages 98.4%. Finally, the new atomic scale gravitational coupling constant suggests a radical revision of the assumptions governing the Planck scale, and leads to a natural explanation for the fine structure constant.
Black Holes are neither Particle Accelerators nor Dark Matter Probes
Sean T. McWilliams
2012-12-06T23:59:59.000Z
It has been suggested that maximally spinning black holes can serve as particle accelerators, reaching arbitrarily high center-of-mass energies. Despite several objections regarding the practical achievability of such high energies, and demonstrations past and present that such large energies could never reach a distant observer, interest in this problem has remained substantial. We show that, unfortunately, a maximally spinning black hole can never serve as a probe of high energy collisions, even in principle and despite the correctness of the original diverging energy calculation. Black holes can indeed facilitate dark matter annihilation, but the most energetic photons can carry little more than the rest energy of the dark matter particles to a distant observer, and those photons are actually generated relatively far from the black hole where relativistic effects are negligible. Therefore, any strong gravitational potential could probe dark matter equally well, and an appeal to black holes for facilitating such collisions is unnecessary.
Weighing Black Holes in high-z SCUBA Galaxies
Alexander, D M
2006-01-01T23:59:59.000Z
Deep SCUBA surveys have uncovered a population of dust-enshrouded star-forming galaxies at z~2. Using the ultra-deep 2 Ms Chandra Deep Field-North survey we recently showed that a large fraction of these systems are also undergoing intense black-hole growth. Here we provide further constraints on the properties of the black holes in SCUBA galaxies using the virial black-hole mass estimator. We show that typical SCUBA galaxies are likely to host black holes with M_BH~10^7-10^8 M_solar which are accreting at, or close to, the Eddington limit. These results provide qualitative support for our earlier conclusion that the growth of the black hole lags that of the host galaxy in these massive ultraluminous galaxies.
Adaptive computation of gravitational waves from black hole interactions
Philippos Papadopoulos; Edward Seidel; Lee Wild
1998-02-27T23:59:59.000Z
We construct a class of linear partial differential equations describing general perturbations of non-rotating black holes in 3D Cartesian coordinates. In contrast to the usual approach, a single equation treats all radiative $\\ell -m$ modes simultaneously, allowing the study of wave perturbations of black holes with arbitrary 3D structure, as would be present when studying the full set of nonlinear Einstein equations describing a perturbed black hole. This class of equations forms an excellent testbed to explore the computational issues of simulating black spacetimes using a three dimensional adaptive mesh refinement code. Using this code, we present results from the first fully resolved 3D solution of the equations describing perturbed black holes. We discuss both fixed and adaptive mesh refinement, refinement criteria, and the computational savings provided by adaptive techniques in 3D for such model problems of distorted black holes.
Quasinormal modes of test fields around regular black holes
Bobir Toshmatov; Ahmadjon Abdujabbarov; Zden?k Stuchlík; Bobomurat Ahmedov
2015-04-25T23:59:59.000Z
We study scalar, electromagnetic and gravitational test fields in the Hayward, Bardeen and Ay\\'on-Beato-Garc\\'ia regular black hole spacetimes and demonstrate that the test fields are stable in all these spacetimes. Using the sixth order WKB approximation of the linear "axial" perturbative scheme, we determine dependence of the quasinormal mode (QNM) frequencies on the characteristic parameters of the test fields and the spacetime charge parameters of the regular black holes. We give also the greybody factors, namely the transmission and reflection coefficients of scattered scalar, electromagnetic and gravitational waves. We show that damping of the QNMs in regular black hole spacetimes is suppressed in comparison to the case of Schwarzschild black holes, and increasing charge parameter of the regular black holes increases reflection and decreases transmission factor of incident waves for each of the test fields.
Brian Kong; Youngsub Yoon
2015-04-14T23:59:59.000Z
By pointing out an error in the previous derivation of the area spectrum based on Ashtekar's variables, we suggest a new area spectrum; in the previous derivation of the area spectrum, area operator is expressed in terms of Levi-Civita symbol instead of Levi-Civita tensor, which should have been used. At first glance, this consideration may not seem to make any difference in the actual area spectrum, but upon quantization it yields a difference, as classical equivalence doesn't always imply quantum equivalence. For this purpose, we construct our "newer" variables. In particular, our "newer" variables are mathematically consistent; the constraint algebra is closed. Moreover, by using our new area spectrum, we "almost correctly" predict the Bekenstein-Hawking entropy without adjusting Immirzi parameter; we show that a numerical formula actually turned out to be $0.997\\cdots$ which is very close to 1, the expected value with the black hole entropy given as $A/4$. We conjecture that the difference, 0.003, is due to the extra dimensions which may modify the area spectrum. Then, we derive a formula for the degeneracy for a single-partition black hole, (i.e. black hole made out of single unit area) and explicitly show that our area spectrum correctly reproduces the degeneracy. Furthermore, by two totally different methods, we obtain the proportionality constant "$C$" related to the degeneracy. The first method based on fitting yields 172$\\sim$173, while the second method yields 172.87$\\cdots$, which strongly suggest that our area spectrum is on the right track. We also show that the area spectrums based on Ashtekar variables neither reproduces the degeneracy of single-partition black hole nor yields the agreement for $C$ obtained by the two methods.
Collisions with Black Holes and Deconfined Plasmas
Amsel, Aaron J; Virmani, Amitabh
2008-01-01T23:59:59.000Z
We use AdS/CFT to investigate i) high energy collisions with balls of deconfined plasma surrounded by a confining phase and ii) the rapid localized heating of a deconfined plasma. Both of these processes are dual to collisions with black holes, where they result in the nucleation of a new "arm" of the horizon reaching out in the direction of the incident object. We study the resulting non-equilibrium dynamics in a universal limit of the gravitational physics which may indicate universal behavior of deconfined plasmas at large N_c. Process (i) produces "virtual" arms of the plasma ball, while process (ii) can nucleate surprisingly large bubbles of a higher temperature phase.
Collisions with Black Holes and Deconfined Plasmas
Aaron J. Amsel; Donald Marolf; Amitabh Virmani
2007-12-13T23:59:59.000Z
We use AdS/CFT to investigate i) high energy collisions with balls of deconfined plasma surrounded by a confining phase and ii) the rapid localized heating of a deconfined plasma. Both of these processes are dual to collisions with black holes, where they result in the nucleation of a new "arm" of the horizon reaching out in the direction of the incident object. We study the resulting non-equilibrium dynamics in a universal limit of the gravitational physics which may indicate universal behavior of deconfined plasmas at large N_c. Process (i) produces "virtual" arms of the plasma ball, while process (ii) can nucleate surprisingly large bubbles of a higher temperature phase.
Absolute conservation law for black holes
D. Grumiller; W. Kummer
1999-11-08T23:59:59.000Z
In all 2d theories of gravity a conservation law connects the (space-time dependent) mass aspect function at all times and all radii with an integral of the matter fields. It depends on an arbitrary constant which may be interpreted as determining the initial value together with the initial values for the matter field. We discuss this for spherically reduced Einstein-gravity in a diagonal metric and in a Bondi-Sachs metric using the first order formulation of spherically reduced gravity, which allows easy and direct fixations of any type of gauge. The relation of our conserved quantity to the ADM and Bondi mass is investigated. Further possible applications (ideal fluid, black holes in higher dimensions or AdS spacetimes etc.) are straightforward generalizations.
The (Unstable) Threshold of Black Hole Formation
M. W. Choptuik
1998-03-23T23:59:59.000Z
In recent years it has become apparent that intriguing phenomenology exists at the threshold of black hole formation in a large class of general relativistic collapse models. This phenomenology, which includes scaling, self-similarity and universality, is largely analogous to statistical mechanical critical behaviour, a fact which was first noted empirically, and subsequently clarified by perturbative calculations which borrow on ideas and techniques from dynamical systems theory and renormalization group theory. This contribution, which closely parallels my talk at the conference, consists of an overview of the considerable ``zoo''' of critical solutions which have been discovered thus far, along with a brief discussion of how we currently understand the nature of these solutions from the point of view of perturbation theory.
Black Hole Attractors and Pure Spinors
Hsu, Jonathan P.; Maloney, Alexander; Tomasiello, Alessandro
2006-02-21T23:59:59.000Z
We construct black hole attractor solutions for a wide class of N = 2 compactifications. The analysis is carried out in ten dimensions and makes crucial use of pure spinor techniques. This formalism can accommodate non-Kaehler manifolds as well as compactifications with flux, in addition to the usual Calabi-Yau case. At the attractor point, the charges fix the moduli according to {Sigma}f{sub k} = Im(C{Phi}), where {Phi} is a pure spinor of odd (even) chirality in IIB (A). For IIB on a Calabi-Yau, {Phi} = {Omega} and the equation reduces to the usual one. Methods in generalized complex geometry can be used to study solutions to the attractor equation.
Quantum-Gravity Fluctuations and the Black-Hole Temperature
Hod, Shahar
2015-01-01T23:59:59.000Z
Bekenstein has put forward the idea that, in a quantum theory of gravity, a black hole should have a discrete energy spectrum with concomitant discrete line emission. The quantized black-hole radiation spectrum is expected to be very different from Hawking's semi-classical prediction of a thermal black-hole radiation spectrum. One naturally wonders: Is it possible to reconcile the {\\it discrete} quantum spectrum suggested by Bekenstein with the {\\it continuous} semi-classical spectrum suggested by Hawking ? In order to address this fundamental question, in this essay we shall consider the zero-point quantum-gravity fluctuations of the black-hole spacetime. In a quantum theory of gravity, these spacetime fluctuations are closely related to the characteristic gravitational resonances of the corresponding black-hole spacetime. Assuming that the energy of the black-hole radiation stems from these zero-point quantum-gravity fluctuations of the black-hole spacetime, we derive the effective temperature of the quanti...
Following Black Hole Scaling Relations Through Gas-Rich Mergers
Medling, Anne M; Max, Claire E; Sanders, David B; Armus, Lee; Holden, Bradford; Mieda, Etsuko; Wright, Shelley A; Larkin, James E
2015-01-01T23:59:59.000Z
We present black hole mass measurements from kinematic modeling of high-spatial resolution integral field spectroscopy of the inner regions of 9 nearby (ultra-)luminous infrared galaxies in a variety of merger stages. These observations were taken with OSIRIS and laser guide star adaptive optics on the Keck I and Keck II telescopes, and reveal gas and stellar kinematics inside the spheres of influence of these supermassive black holes. We find that this sample of black holes are overmassive ($\\sim10^{7-9}$ M$_{Sun}$) compared to the expected values based on black hole scaling relations, and suggest that the major epoch of black hole growth occurs in early stages of a merger, as opposed to during a final episode of quasar-mode feedback. The black hole masses presented are the dynamical masses enclosed in $\\sim$25pc, and could include gas which is gravitationally bound to the black hole but has not yet lost sufficient angular momentum to be accreted. If present, this gas could in principle eventually fuel AGN f...
Thermodynamic Product Formula for Ho?ava Lifshitz Black Hole
Parthapratim Pradhan
2015-06-10T23:59:59.000Z
We examine the thermodynamic properties of inner and outer horizons in the background of Ho\\v{r}ava Lifshitz black hole. We compute the \\emph{horizon radii product, the surface area product, the entropy product, the surface temperature product, the Komar energy product and the specific heat product} for both the horizons of said black hole. We show that surface area product, entropy product and irreducible mass product are \\emph{universal} quantities, whereas the surface temperature product, Komar energy product and specific heat product are \\emph{not universal} quantities because they all are depends on mass parameter. We also observe that the \\emph{First law} of black hole thermodynamics and \\emph {Smarr-Gibbs-Duhem } relations do not hold for this black hole. The underlying reason behind this failure due to the scale invariance of the coupling constant. We further derive the \\emph{Smarr mass formula} and \\emph{Christodolou-Ruffini mass formula} for such black hole spacetime. Moreover we study the stability of such black hole by computing the specific heat for both the horizons. It has been observed that under certain condition the black hole possesses second order phase transition.
The Evolution of Accreting Black Holes in Outburst
John A. Tomsick
2004-01-12T23:59:59.000Z
Black hole binaries exhibit dramatic changes in their X-ray spectral and timing properties over time, providing important clues about the physical processes that occur in these systems. Black holes and black hole candidates are prime targets for RXTE with observational goals including the study of extreme gravitational fields and jet formation mechanisms. The great wealth of data from RXTE has helped us to learn about these systems as well as raising new questions about accreting black holes. RXTE observations have allowed us to study a wide range of black hole science topics including the connection between the accretion disk and jets, the geometry of the inner accretion flow, and the physical changes that occur between spectral states. In this presentation, I discuss significant results on these topics that have been obtained for persistent and transient black holes over the past several years, and I present results from our program of X-ray and radio observations during the decays of black hole transient outbursts.
Spin orientation of supermassive black holes in active galaxies
W. Kollatschny
2003-11-12T23:59:59.000Z
Accretion of gas onto a central supermassive black hole is generally accepted to be the source of the emitted energy in active galactic nuclei.The broad emission lines we observe in their optical spectra are probably formed in the wind of an accretion disk at distances of light days to light years from the central black hole. The variable fraction of the emission lines originates at typical distances of only 1 to 50 light days from the central supermassive black hole. We derived a central black hole mass of M_orbital = 1.8 +/-0.4 x 10^7 M_sun in the Seyfert galaxy Mrk110 assuming the broad emission lines are generated in gas clouds orbiting within an accretion disk. This figure depends on the inclination angle of the accretion disk. Here we report on the detection of gravitational redshifted emission in the variable fraction of the broad emission lines. We derive a central black hole mass of M_grav = 14.0 +/-3.0 x 10^7 M_sun. These measurements are independent on the orientation of the accretion disk. The comparison of both black hole mass estimates allows to determine the projection of the central accretion disk angle i to 21 +/-5 deg. in Mrk110 and therefore the orientation of the spin axis of the central black hole.
Higgs Boson Production from Black Holes at the LHC
Gouranga C. Nayak; J. Smith
2006-06-09T23:59:59.000Z
If the fundamental Planck scale is near a TeV, then TeV scale black holes should be produced in proton-proton collisions at the LHC where \\sqrt{s} = 14 TeV. As the temperature of the black holes can be ~ 1 TeV we also expect production of Higgs bosons from them via Hawking radiation. This is a different production mode for the Higgs boson, which would normally be produced via direct pQCD parton fusion processes. In this paper we compare total cross sections and transverse momentum distributions d\\sigma/dp_T for Higgs production from black holes at the LHC with those from direct parton fusion processes at next-to-next-to-leading order and next-to-leading order respectively. We find that the Higgs production from black holes can be larger or smaller than the direct pQCD production depending upon the Planck mass and black hole mass. We also find that d\\sigma/dp_T of Higgs production from black holes increases as a function of p_T which is in sharp contrast with the pQCD predictions where d\\sigma/dp_T decreases so we suggest that the measurement of an increase in d\\sigma/dp_T as p_T increases for Higgs (or any other heavy particle) production can be a useful signature for black holes at the LHC.
Reconstructing the massive black hole cosmic history through gravitational waves
Alberto Sesana; Jonathan R. Gair; Emanuele Berti; Marta Volonteri
2010-11-25T23:59:59.000Z
The massive black holes we observe in galaxies today are the natural end-product of a complex evolutionary path, in which black holes seeded in proto-galaxies at high redshift grow through cosmic history via a sequence of mergers and accretion episodes. Electromagnetic observations probe a small subset of the population of massive black holes (namely, those that are active or those that are very close to us), but planned space-based gravitational-wave observatories such as the Laser Interferometer Space Antenna (LISA) can measure the parameters of ``electromagnetically invisible'' massive black holes out to high redshift. In this paper we introduce a Bayesian framework to analyze the information that can be gathered from a set of such measurements. Our goal is to connect a set of massive black hole binary merger observations to the underlying model of massive black hole formation. In other words, given a set of observed massive black hole coalescences, we assess what information can be extracted about the underlying massive black hole population model. For concreteness we consider ten specific models of massive black hole formation, chosen to probe four important (and largely unconstrained) aspects of the input physics used in structure formation simulations: seed formation, metallicity ``feedback'', accretion efficiency and accretion geometry. For the first time we allow for the possibility of ``model mixing'', by drawing the observed population from some combination of the ``pure'' models that have been simulated. A Bayesian analysis allows us to recover a posterior probability distribution for the ``mixing parameters'' that characterize the fractions of each model represented in the observed distribution. Our work shows that LISA has enormous potential to probe the underlying physics of structure formation.
Inferring black hole charge from backscattered electromagnetic radiation
Luís C. B. Crispino; Sam R. Dolan; Atsushi Higuchi; Ednilton S. de Oliveira
2014-09-16T23:59:59.000Z
We compute the scattering cross section of Reissner-Nordstr\\"om black holes for the case of an incident electromagnetic wave. We describe how scattering is affected by both the conversion of electromagnetic to gravitational radiation, and the parity-dependence of phase shifts induced by the black hole charge. The latter effect creates a helicity-reversed scattering amplitude that is non-zero in the backward direction. We show that from the character of the electromagnetic wave scattered in the backward direction it is possible, in principle, to infer if a static black hole is charged.
Recent Progresses Of Accretion Disk Models Around Black Holes
Sandip K. Chakrabarti
1997-03-09T23:59:59.000Z
Accretion disk models have evolved from Bondi flows in the 1950s to Keplerian disks in the 1970s and finally to advective transonic flows in the 1990s. We discuss recent progresses in this subject and show that sub-Keplerian flows play a major role in determining the spectral properties of black holes. Centrifugal pressure supported enhanced density region outside the black hole horizon produces hard X-rays and gamma rays by reprocessing intercepted soft photons emitted by the Keplerian disk terminated farther out from the black holes. Quasi-periodic oscillations can also be understood from the dynamic or thermal resonance effects of the enhanced density region.
Non-extremal Kerr black holes as particle accelerators
Sijie Gao; Changchun Zhong
2011-08-03T23:59:59.000Z
It has been shown that extremal Kerr black holes can be used as particle accelerators and arbitrarily high energy may be obtained near the event horizon. We study particle collisions near the event horizon (outer horizon) and Cauchy horizon (inner horizon) of a non-extremal Kerr black hole. Firstly, we provide a general proof showing that particles cannot collide with arbitrarily high energies at the outter horizon. Secondly, we show that ultraenergetic collisions can occur near the inner horizon of a Kerr black hole with any spin parameter $a$.
Acceleration of particles in Einstein-Maxwell-Dilaton black hole
Pu-Jian Mao; Ran Li; Lin-Yu Jia; Ji-Rong Ren
2011-03-08T23:59:59.000Z
It has been recently pointed out that, under certain conditions, the energy of particles accelerated by black holes in the center-of-mass frame can become arbitrarily high. In this Letter, we study the collision of two particles around the four-dimensional Kaluza-Klein black hole in Einstein-Maxwell-Dilaton theory. We find that the center-of-mass energy for a pair of colliding particles is unlimited at the horizon of charged nonrotating and extremal rotating Kaluza-Klein black hole.
String black hole: Can it be a particle accelerator ?
Sharmanthie Fernando
2014-08-21T23:59:59.000Z
In this paper we have studied the possibility of the center-of-mass energy of two particles colliding near the horizon of a static charged black hole in string theory. Various cases corresponding to the electric charge and the angular momentum of the particles were considered. The studies were done for the general black hole as well as for the extreme black hole. There were two scenarios where the center-of-mass energy reach very large values if the appropriate properties of the particles are chosen.
Accretion onto a black hole in a string cloud background
Apratim Ganguly; Sushant G. Ghosh; Sunil D. Maharaj
2014-09-28T23:59:59.000Z
We examine the accretion process onto the black hole with a string cloud background, where the horizon of the black hole has an enlarged radius $r_H=2 M/(1-\\alpha)$, due to the string cloud parameter $\\alpha\\; (0 \\leq \\alpha cloud parameter $\\alpha$. We also find the gas compression ratios and temperature profiles below the accretion radius and at the event horizon. It is shown that the mass accretion rate, for both the relativistic and the non-relativistic fluid by a black hole in the string cloud model, increases with increase in $\\alpha$.
Rotating charged cylindrical black holes as particle accelerators
Said, Jackson Levi [Physics Department, University of Malta, Msida MSD 2080 (Malta); Adami, Kristian Zarb [Physics Department, University of Malta, Msida MSD 2080 (Malta); Physics Department, University of Oxford, Oxford, OX1 3RH (United Kingdom)
2011-05-15T23:59:59.000Z
It has recently been pointed out that arbitrary center-of-mass energies may be obtained for particle collisions near the horizon of an extremal Kerr black hole. We investigate this mechanism in cylindrical topology. In particular we consider the center-of-mass energies of a cylindrical black hole with an extremal rotation and charge parameter. The geodesics are first derived with a rotating charged cylindrical black hole producing the background gravitational field. Finally the center-of-mass is determined for this background and its extremal limit is taken.
Static Charged Black Hole Solutions in Horava-Lifshitz Gravity
Jin-Zhang Tang
2010-01-12T23:59:59.000Z
In the present work, we search static charged black hole solutions to Ho\\v{r}ava-Lifshitz gravity with or without projectability condition. We consider the most general form of action which electromagnetic field couples with Ho\\v{r}ava-Lifshitz gravity. With the projectability condition, we find dS-Reissner-Nordstrom black hole solution in Painlev\\'e-Gullstrand type coordinates in the IR region and a de-Sitter space-time solution in the UV region. Without the projectability condition, in the IR region, we find an especial static charged black hole solution.
Little Black Holes:Dark Matter And Ball Lightning
Mario Rabinowitz
2002-12-11T23:59:59.000Z
Small,quiescent black holes can be considered as candidates for the missing dark matter of the universe,and as the core energy source of ball lightning.By means of gravitational tunneling,directed radiation is emitted from black holes in a process much attenuated from that of Hawking radiation,P SH, which has proven elusive to detect.Gravitational tunneling emission is similar to electric field emission of electronsfrom a metal in that a second body is involved which lowers the barrier and gives the barrier a finite rather than infinite width.Hawking deals with a single isolated black hole.
Scalar emission in a rotating Gödel black hole
Songbai Chen; Bin Wang; Jiliang Jing
2008-08-23T23:59:59.000Z
We study the absorption probability and Hawking radiation of the scalar field in the rotating G\\"{o}del black hole in minimal five-dimensional gauged supergravity. We find that G\\"{o}del parameter $j$ imprints in the greybody factor and Hawking radiation. It plays a different role from the angular momentum of the black hole in the Hawking radiation and super-radiance. These information can help us know more about rotating G\\"{o}del black holes in minimal five-dimensional gauged supergravity.
From Special Geometry to Black Hole Partition Functions
Thomas Mohaupt
2008-12-22T23:59:59.000Z
These notes are based on lectures given at the Erwin-Schrodinger Insitut in Vienna in 2006/07 and at the 2007 School on Attractor Mechanism in Frascati. Lecture I: special geometry from the superconformal point of view. Lecture II: black hole attractor mechanism, its underlying variational principle, and black hole partition functions. Lecture III: large and small BPS black holes in N=4 supergravity. Lecture IV: state counting for N=4 string compactifications. Appendix A: special geometry from the mathematical point of view. Appendix B: review of modular forms. Contains four problems which allow the readers to develop some of the key concepts by themselves.
The r-Process in Black Hole Winds
Shinya Wanajo; Hans-Thomas Janka
2010-06-11T23:59:59.000Z
All the current r-process scenarios relevant to core-collapse supernovae are facing severe difficulties. In particular, recent core-collapse simulations with neutrino transport show no sign of a neutron-rich wind from the proto-neutron star. In this paper, we discuss nucleosynthesis of the r-process in an alternative astrophysical site, "black hole winds", which are the neutrino-driven outflow from the accretion torus around a black hole. This condition is assumed to be realized in double neutron star mergers, neutron star - black hole mergers, or hypernovae.
Rotordynamic evaluation of frequency dependent impedances of hole-pattern gas damper seals
Holt, Christopher George
2000-01-01T23:59:59.000Z
Two hole-pattern seals are compared with one smooth bore seal. The two hole-pattern seals have cell depths of 2.03 mm and 3.18 mm with a cell diameter of 1.59 mm. The hole area density factor for both hole-pattern seals is 43%. The L/D ratio...
MEMS Materials and Temperature Sensors for Down Hole Geothermal System Monitoring
Wodin-Schwartz, Sarah
2013-01-01T23:59:59.000Z
Monitoring Geothermal Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . .down hole environment monitoring. Harsh environment sensorsfor Geothermal Monitoring Harsh environment MEMS sensors
Rotordynamic evaluation of frequency dependent impedances of hole-pattern gas damper seals
Holt, Christopher George
2000-01-01T23:59:59.000Z
Two hole-pattern seals are compared with one smooth bore seal. The two hole-pattern seals have cell depths of 2.03 mm and 3.18 mm with a cell diameter of 1.59 mm. The hole area density factor for both hole-pattern seals is 43%. The L/D ratio...
Energy Distribution of a Stringy Charged Black Hole
Ragab M. Gad
2003-06-22T23:59:59.000Z
The energy distribution associated with a stringy charged black hole is studied using M{\\o}ller's energy-momentum complex. Our result is reasonable and it differs from that known in literature using Einstein's energy-momentum complex.
Energy of a Conformal Scalar Dyon Black Hole
Irina Radinschi
2000-10-25T23:59:59.000Z
We obtain the energy of a conformal scalar dyon black hole (CSD) by using the energy-momentum complexes of Tolman and M{\\o}ller. The total gravitational energy is given by the CSD charge in the both prescriptions.
Spectral Properties of Galactic and Extragalactic Black Hole Candidates
Sandip K. Chakrabarti
1996-11-10T23:59:59.000Z
We review current theoretical understanding of the spectral properties (low and high states, transition of states, quasi-periodic oscillations etc.) of the low mass as well as supermassive black hole candidates.
Black hole remnant in asymptotic Anti-de Sitter space
Wen, Wen-Yu
2015-01-01T23:59:59.000Z
It is known that a solution of remnant were suggested for black hole ground state after surface gravity is corrected by loop quantum effect. On the other hand, a Schwarzschild black hole in asymptotic Anti-de Sitter space would tunnel into the thermal soliton solution known as the Hawking-Page phase transition. In this letter, we investigate the low temperature phase of three-dimensional BTZ black hole and four-dimensional AdS Schwarzschild black hole. We find that the thermal soliton is energetically favored than the remnant solution at low temperature in three dimensions, while Planck-size remnant is still possible in four dimensions. Though the BTZ remnant seems energetically disfavored, we argue that it is still possible to be found in the overcooled phase if strings were present and its implication is discussed.
Rotating Hayward's regular black hole as particle accelerator
Muhammed Amir; Sushant G. Ghosh
2015-06-10T23:59:59.000Z
Recently, Ban\\~{a}dos, Silk and West (BSW) demonstrated that the extremal Kerr black hole can act as a particle accelerator with arbitrarily high center-of-mass energy ($E_{CM}$) when the collision takes place near the horizon. The rotating Hayward's regular black hole, apart from Mass ($M$) and angular momentum ($a$), has a new parameter $g$ ($g>0$ is a constant) that provides a deviation from the Kerr black hole. We demonstrate that for each $g$, with $M=1$, there exist critical $a_{E}$ and $r_{H}^{E}$, which corresponds to a regular extremal black hole with degenerate horizon, and $a_{E}$ decreases and $r_{H}^{E}$ increases with increase in $g$. While $aparticle accelerator and thus in turn may provide a suitable framework for Plank-scale physics. For a non-extremal case, there always exist a finite upper bound of $E_{CM}$, which increases with deviation parameter $g$.
Tensile Strength and the Mining of Black Holes
Adam R. Brown
2012-07-13T23:59:59.000Z
There are a number of important thought experiments that involve raising and lowering boxes full of radiation in the vicinity of black hole horizons. This paper looks at the limitations placed on these thought experiments by the null energy condition, which imposes a fundamental bound on the tensile-strength-to-weight ratio of the materials involved, makes it impossible to build a box near the horizon that is wider than a single wavelength of the Hawking quanta and puts a severe constraint on the operation of 'space elevators' near black holes. In particular, it is shown that proposals for mining black holes by lowering boxes near the horizon, collecting some Hawking radiation and dragging it out to infinity cannot proceed nearly as rapidly as has previously been claimed and that as a consequence of this limitation the boxes and all the moving parts are superfluous and black holes can be destroyed equally rapidly by threading the horizon with strings.
An Energy Extremum Principle for Charged Black Holes
Fraser, Scott
2015-01-01T23:59:59.000Z
For a set of asymptotically flat black holes with arbitrary charges and masses, all initially at rest and well-separated, we prove the following extremum principle: the extremal charge configuration ($|q_i|=m_i$ for each black hole) can be derived by extremizing the total energy, for variations of the black hole apparent horizon areas, at fixed charges and fixed Euclidean separations. If all charges have the same sign, this result is a variational principle that reinterprets the static equilibrium of the Majumdar-Papapetrou-Hartle-Hawking solution as an extremum of total energy, rather than as a balance of forces; this result augments a list of related variational principles for static black holes, and is consistent with the independently known BPS energy minimum.
On the black hole limit of rotating discs and rings
Andreas Kleinwächter; Hendrick Labranche; Reinhard Meinel
2010-07-20T23:59:59.000Z
Solutions to Einstein's field equations describing rotating fluid bodies in equilibrium permit parametric (i.e. quasi-stationary) transitions to the extreme Kerr solution (outside the horizon). This has been shown analytically for discs of dust and numerically for ring solutions with various equations of state. From the exterior point of view, this transition can be interpreted as a (quasi) black hole limit. All gravitational multipole moments assume precisely the values of an extremal Kerr black hole in the limit. In the present paper, the way in which the black hole limit is approached is investigated in more detail by means of a parametric Taylor series expansion of the exact solution describing a rigidly rotating disc of dust. Combined with numerical calculations for ring solutions our results indicate an interesting universal behaviour of the multipole moments near the black hole limit.
Lovelock black holes in a string cloud background
Tae-Hun Lee; Dharmanand Baboolal; Sushant G. Ghosh
2015-06-11T23:59:59.000Z
We present an exact static, spherically symmetric black hole solution to the third order Lovelock gravity with a string cloud background in seven dimensions for the special case when the second and third order Lovelock coefficients are related via $\\tilde{\\alpha}^2_2=3\\tilde{\\alpha}_3\\;(\\equiv\\alpha^2)$. Further, we examine thermodynamic properties of this black hole to obtain exact expressions for mass, temperature, entropy and also perform the thermodynamic stability analysis. We see that a string cloud background makes a profound influence on horizon structure, thermodynamic properties and the stability of black holes. Interestingly the entropy of the black hole is unaffected due to a string cloud background. However, the critical solution for thermodynamic stability is being affected by a string cloud background.
Could there be a hole in type Ia supernovae?
Kasen, Daniel; Nugent, Peter; Thomas, R.C.; Wang, Lifan
2004-01-01T23:59:59.000Z
Highlight: The Physics of Supernovae. Pro- ceedings of the EThere Be A Hole In Type l a Supernovae? Daniel Kasen, Peterscenario, Type l a Supernovae (SNe la) arise from a white
COSO Geothermal Exploratory Hole No. 1, CGEH No. 1. Completion...
COSO Geothermal Exploratory Hole No. 1, CGEH No. 1. Completion report. (Coso Hot Springs KGRA) Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: COSO...
Selected Data from Continental Scientific Drilling Core Holes...
p?titleSelectedDatafromContinentalScientificDrillingCoreHolesVC-1andVC-2A,VallesCaldera,NewMexico&oldid740208" Categories: Reference Materials References Geothermal...
Statistics of black hole radiance and the horizon area spectrum
Bekenstein, Jacob D
2015-01-01T23:59:59.000Z
The statistical response of a Kerr black hole to incoming quantum radiation has heretofore been studied by the methods of maximum entropy or quantum field theory in curved spacetime. Neither approach pretends to take into account the quantum structure of the black hole itself. To address this last issue we calculate here the conditional probability distribution associated with the hole's response by assuming that the horizon area has a discrete quantum spectrum, and that its quantum evolution corresponds to jumps between adjacent area eigenvalues, possibly occurring in series, with consequent emission or absorption of quanta, possibly in the same mode. This "atomic" model of the black hole is implemented in two different ways and recovers the previously calculated radiation statistics in both cases. The corresponding conditional probably distribution is here expressed in closed form in terms of an hypergeometric function.
Strong gravitational lensing in a noncommutative black-hole spacetime
Ding Chikun; Kang Shuai; Chen Changyong; Chen Songbai; Jing Jiliang [Department of Physics and Information Engineering, Hunan Institute of Humanities Science and Technology, Loudi, Hunan 417000 (China); Institute of Physics and Department of Physics, Hunan Normal University, Changsha, Hunan 410081 (China) and Key Laboratory of Low Dimensional Quantum Structures and Quantum Control (Hunan Normal University), Ministry of Education (China)
2011-04-15T23:59:59.000Z
Noncommutative geometry may be a starting point to a quantum gravity. We study the influence of the spacetime noncommutative parameter on the strong field gravitational lensing in the noncommutative Schwarzschild black-hole spacetime and obtain the angular position and magnification of the relativistic images. Supposing that the gravitational field of the supermassive central object of the galaxy can be described by this metric, we estimate the numerical values of the coefficients and observables for strong gravitational lensing. In comparison to the Reissner-Norstroem black hole, we find that the influences of the spacetime noncommutative parameter is similar to those of the charge, but these influences are much smaller. This may offer a way to distinguish a noncommutative black hole from a Reissner-Norstroem black hole, and may permit us to probe the spacetime noncommutative constant {theta} by the astronomical instruments in the future.
Black hole evaporation in a noncommutative charged Vaidya model
Sharif, M., E-mail: msharif.math@pu.edu.pk; Javed, W. [University of the Punjab, Department of Mathematics (Pakistan)
2012-06-15T23:59:59.000Z
We study the black hole evaporation and Hawking radiation for a noncommutative charged Vaidya black hole. For this purpose, we determine a spherically symmetric charged Vaidya model and then formulate a noncommutative Reissner-Nordstroem-like solution of this model, which leads to an exact (t - r)-dependent metric. The behavior of the temporal component of this metric and the corresponding Hawking temperature are investigated. The results are shown in the form of graphs. Further, we examine the tunneling process of charged massive particles through the quantum horizon. We find that the tunneling amplitude is modified due to noncommutativity. Also, it turns out that the black hole evaporates completely in the limits of large time and horizon radius. The effect of charge is to reduce the temperature from a maximum value to zero. We note that the final stage of black hole evaporation is a naked singularity.
Improvements to the construction of binary black hole initial data
Serguei Ossokine; Francois Foucart; Harald P. Pfeiffer; Michael Boyle; Béla Szilágyi
2015-06-04T23:59:59.000Z
Construction of binary black hole initial data is a prerequisite for numerical evolutions of binary black holes. This paper reports improvements to the binary black hole initial data solver in the Spectral Einstein Code, to allow robust construction of initial data for mass-ratio above 10:1, and for dimensionless black hole spins above 0.9, while improving efficiency for lower mass-ratios and spins. We implement a more flexible domain decomposition, adaptive mesh refinement and an updated method for choosing free parameters. We also introduce a new method to control and eliminate residual linear momentum in initial data for precessing systems, and demonstrate that it eliminates gravitational mode mixing during the evolution. Finally, the new code is applied to construct initial data for hyperbolic scattering and for binaries with very small separation.
Black Hole Demographics from the M(BH)-sigma Relation
David Merritt; Laura Ferrarese
2001-03-03T23:59:59.000Z
We analyze a sample of 32 galaxies for which a dynamical estimate of the mass of the hot stellar component, M_bulge, is available. For each of these galaxies, we calculate the mass of the central black hole, M_BH, using the tight empirical correlation between M_BH and the bulge stellar velocity dispersion. The frequency function N(log M_BH/M_bulge) is reasonably well described as a Gaussian with ~ -2.90 and standard deviation 0.45; the implied mean ratio of black hole to bulge mass is a factor 5 smaller than generally quoted in the literature. We present marginal evidence for a lower, average black-hole mass fraction in more massive galaxies. The total mass density in black holes in the local Universe is estimated to be 5 x 10^5 solar masses per cubic megaparsec, consistent with that inferred from high redshift (z ~ 2) AGNs.
Circumnuclear Media and Accretion Rates of Quiescent Supermassive Black Holes
Generozov, Aleksey; Metzger, Brian D
2015-01-01T23:59:59.000Z
We calculate steady-state, one-dimensional hydrodynamic profiles of hot gas in slowly accreting ("quiescent") galactic nuclei for a range of central black hole masses, parameterized gas heating rates, and observationally-motivated stellar density profiles. Mass is supplied to the circumnuclear medium by stellar winds, while energy is injected primarily by stellar winds, supernovae, and black hole feedback. Analytic estimates are derived for the stagnation radius (where the radial velocity of the gas passes through zero) and the black hole accretion rate, as a function of the black hole mass and the gas heating efficiency, the latter being related to the star-formation history. We assess the conditions under which radiative instabilities develop in the hydrostatic region near the stagnation radius, both in the case of a single burst of star formation and for the average star formation history predicted by cosmological simulations. By combining a sample of measured nuclear X-ray luminosities from nearby quiesce...
Structure of the Inner Singularity of a Spherical Black Hole
A. Bonanno; S. Droz; W. Israel; S. M. Morsink
1994-03-10T23:59:59.000Z
We review the evidence for and against the possibility that the inner singularity of a black hole contains a lightlike segment which is locally mild and characterized by mass inflation.
Flow localization in sheet specimens with pairs of holes
Geltmacher, A.B. [FM Technologies, Fairfax, VA (United States); Koss, D.A. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Metals Science and Engineering; Stout, M.G. [Los Alamos National Lab., NM (United States); Matic, P. [Naval Research Lab., Washington, DC (United States). Mechanics of Materials Dept.
1998-03-01T23:59:59.000Z
The deformation localization behavior of sheet specimens containing geometric perturbations in the form of pairs of through-thickness holes is examined. Both experiments and computational modeling are performed in either uniaxial or equal-biaxial tension in order to examine the effect of applied loading path on the far-field strain needed to initiate localized necking in the ligament between the hole pairs. The models also examine the influence of hole spacing and matrix strain hardening on ligament localization. The far-field strain needed to cause the localization of the ligament is shown to increase as the biaxiality of the loading path increases, the hole spacing increases, and the strain-hardening exponent increases. The present study also indicates that the onset of localized necking can be predicted by employing the Hill criterion, if the local strain states within the ligament are taken into account.
An Energy Extremum Principle for Charged Black Holes
Scott Fraser; Shaker Von Price Funkhouser
2015-09-13T23:59:59.000Z
For a set of asymptotically flat black holes with arbitrary charges and masses, all initially at rest and well-separated, we prove the following extremum principle: the extremal charge configuration ($|q_i|=m_i$ for each black hole) can be derived by extremizing the total energy, for variations of the black hole apparent horizon areas, at fixed charges and fixed Euclidean separations. If all charges have the same sign, this result is a variational principle that reinterprets the static equilibrium of the Majumdar-Papapetrou-Hartle-Hawking solution as an extremum of total energy, rather than as a balance of forces; this result augments a list of related variational principles for static black holes, and is consistent with the independently known BPS energy minimum.
Quantum Emission from Two-Dimensional Black Holes
Steven B. Giddings; W. M. Nelson
2009-11-27T23:59:59.000Z
We investigate Hawking radiation from two-dimensional dilatonic black holes using standard quantization techniques. In the background of a collapsing black hole solution the Bogoliubov coefficients can be exactly determined. In the regime after the black hole has settled down to an `equilibrium' state but before the backreaction becomes important these give the known result of a thermal distribution of Hawking radiation at temperature lambda/(2pi). The density matrix is computed in this regime and shown to be purely thermal. Similar techniques can be used to derive the stress tensor. The resulting expression agrees with the derivation based on the conformal anomaly and can be used to incorporate the backreaction. Corrections to the thermal density matrix are also examined, and it is argued that to leading order in perturbation theory the effect of the backreaction is to modify the Bogoliubov transformation, but not in a way that restores information lost to the black holes.
New Coordinate Systems for Axisymmetric Black Hole Collisions
P. Anninos; S. R. Brandt; P. Walker
1997-12-10T23:59:59.000Z
We describe a grid generation procedure designed to construct new classes of orthogonal coordinate systems for binary black hole spacetimes. The computed coordinates offer an alternative approach to current methods, in addition to providing a framework for potentially more stable and accurate evolutions of colliding black holes. As a particular example, we apply our procedure to generate appropriate numerical grids to evolve Misner's axisymmetric initial data set representing two equal mass black holes colliding head-on. These new results are compared with previously published calculations, and we find generally good agreement in both the waveform profiles and total radiated energies over the allowable range of separation parameters. Furthermore, because no specialized treatment of the coordinate singularities is required, these new grids are more easily extendible to unequal mass and spinning black hole collisions.
Black hole physics: recent developments and observational perspectives
Gourgoulhon, Eric
on a black hole: up to 42% of the mass-energy mc2 of accreted matter ! NB: thermonuclear reactions release: a very deep gravitational potential well Release of potential gravitational energy by accretion
Hole in one: Technicians smoothly install the center stack in...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Hole in one: Technicians smoothly install the center stack in the NSTX-U vacuum vessel By John Greenwald November 10, 2014 Tweet Widget Google Plus One Share on Facebook Closeup of...
Giant black hole ringings induced by massive gravity
Yves Decanini; Antoine Folacci; Mohamed Ould El Hadj
2014-01-01T23:59:59.000Z
A distorted black hole radiates gravitational waves in order to settle down in one of the geometries permitted by the no-hair theorem. During that relaxation phase, a characteristic damped ringing is generated. It can be theoretically constructed from the black hole quasinormal frequencies (which govern its oscillating behavior and its decay) and from the associated excitation factors (which determine intrinsically its amplitude) by carefully taking into account the source of the distortion. Here, by considering the Schwarzschild black hole in the framework of massive gravity, we show that the excitation factors have an unexpected strong resonant behavior leading to giant ringings which are, moreover, slowly decaying. Such extraordinary black hole ringings could be observed by the next generations of gravitational wave detectors and allow us to test the various massive gravity theories or their absence could be used to impose strong constraints on the graviton mass.
Neural network calibration for miniature multi-hole pressure probes
Vijayagopal, Rajesh
1998-01-01T23:59:59.000Z
A robust and accurate neural network based algorithm phics. for the calibration of miniature multi-hole pressure probes has been developed and a detailed description of its features and use is presented. The code that was developed was intended...
Numerical investigation of the threshold for primordial black hole formation
J. C. Niemeyer
1998-06-02T23:59:59.000Z
First results of a numerical investigation of primordial black hole formation in the radiation dominated phase of the Early Universe are presented. The simulations follow the gravitational collapse of three different families of high-amplitude density fluctuations imposed at the time of horizon crossing. The threshold for black hole formation, \\delta_{c} \\approx 0.7, is found to be nearly identical for all perturbation families if the control parameter, \\delta, is chosen as the total excess mass within the initial horizon volume. Furthermore, we demonstrate that the scaling of black hole mass with distance from the formation threshold, known to occur in near-critical gravitational collapse, applies to primordial black hole formation.
Core Holes At Valles Caldera - Sulphur Springs Geothermal Area...
Dennis L. Nielson, Pisto Larry, C.W. Criswell, R. Gribble, K. Meeker, J.A. Musgrave, T. Smith, D. Wilson (1989) Scientific Core Hole Valles Caldera No. 2B (VC-2B), New Mexico:...
Black holes and tests of gravitation Eric Gourgoulhon
Gourgoulhon, Eric
potential well Release of potential gravitational energy by accretion on a black hole: up to 42% of the mass-energy mc2 of accreted matter ! NB: thermonuclear reactions release less than 1% mc2 Matter falling
Electromagnetic quasinormal modes of D-dimensional black holes
A. López-Ortega
2006-11-02T23:59:59.000Z
Using the monodromy method we calculate the asymptotic quasinormal (QN) frequencies of an electromagnetic field moving in D-dimensional Schwarzschild and Schwarzschild de Sitter (SdS) black holes ($D\\geq 4$). For the D-dimensional Schwarzschild anti-de Sitter (SadS) black hole we also compute these frequencies with a similar method. Moreover, we calculate the electromagnetic normal modes of the D-dimensional anti-de Sitter (AdS) spacetime.
Black Hole Radiation On and Off the Brane
Roberto Emparan
2000-09-26T23:59:59.000Z
After a brief review of the description of black holes on branes, we examine the evaporation of a small black hole on a brane in a world with large extra dimensions. We show that, contrary to previous claims, most of the energy is radiated into the modes on the brane. This raises the possibility of observing Hawking radiation in future high energy colliders if there are large extra dimensions.
Hawking Radiation as Tunnelling in Static Black Holes
Wenbiao Liu
2005-12-16T23:59:59.000Z
Hawking radiation can usefully be viewed as a semi-classical tunnelling process that originates at the black hole horizon. The conservation of energy implies the effect of self-gravitation. For a static black hole, a generalized Painleve coordinate system is introduced, and Hawking radiation as tunnelling under the effect of self-gravitation is investigated. The corrected radiation is consistent with the underlying unitary theory.
Hawking Radiation as Tunnelling in Static Black Holes
Liu, W
2005-01-01T23:59:59.000Z
Hawking radiation can usefully be viewed as a semi-classical tunnelling process that originates at the black hole horizon. The conservation of energy implies the effect of self-gravitation. For a static black hole, a generalized Painleve coordinate system is introduced, and Hawking radiation as tunnelling under the effect of self-gravitation is investigated. The corrected radiation is consistent with the underlying unitary theory.
Spectral Properties of Black Holes in Gamma Rays
Sandip K. Chakrabarti
2005-01-14T23:59:59.000Z
Black holes are the most compact objects in the universe. Therefore, matter accreting onto is likely to radiate photons of energy comparable to very high gravitational potential energy. We discuss the nature of the emitted radiation in X-rays and gamma-rays from black hole candidates. We present theoretical solutions which comprise both Keplerian and sub-Keplerian components and suggest that shocks in accretion and outflows
Bounding the greybody factors for Schwarzschild black holes
Boonserm, Petarpa
2008-01-01T23:59:59.000Z
Greybody factors in black hole physics modify the naive Planckian spectrum that is predicted for Hawking radiation when working in the limit of geometrical optics. We consider the Schwarzschild geometry in (3+1) dimensions, and analyze the Regge-Wheeler equation for arbitrary particle spin S and wave-mode angular momentum L, deriving rigourous bounds on the greybody factors as a function of S, L, wave frequency (omega), and the black hole mass, m.
Flux avalanches in superconducting films with periodic arrays of holes.
Vlasko-Vlasov, V.; Welp, U.; Metlushko, V.; Crabtree, G. W.; Materials Science Division; Inst. of Solid State Physics RAS
2000-01-01T23:59:59.000Z
The magnetic flux dynamics in Nb films with periodic hole arrays is studied magneto-optically. Flux motion in the shape of microavalanches along {l_brace}100{r_brace} and {l_brace}110{r_brace} directions of the hole lattice is observed. At lower temperatures anisotropic large scale thermo-magnetic avalanches dominate flux entry and exit. At T-T{sub c} critical-state-like field patterns periodically appear at fractions of the matching field.
Drill wear: its effect on the diameter of drilled holes
Reichert, William Frederick
1955-01-01T23:59:59.000Z
. I RTRONCTIOE ~ ~ ~ ~ ~ ~ e s ~ o e o o o ~ N I I DRILLS AND DRXLLXNG ~ ~ ~ ~ ~ o e ~ o ~ ~ Twist Drills Drill Presses Cutting Fluids . . . ~ Drill Pigs IIX DESCRIPTXOM OF EQUIPRERT AND PROCEXlIRE 6 13 19 23 27 Drilliag Eguipeeat... with the toleranoes of drilled holes. The Natal Cutting Tool Institute, in compunction with aumerous aanufacturers of twist drills, has dose considerable research to obtaia the probable oversize values of holes (I) . Their worh consisted of coapiliag the results...
Exploring the string axiverse with precision black hole physics
Arvanitaki, Asimina [Berkeley Center for Theoretical Physics, University of California, Berkeley, California, 94720 (United States); Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, California, 94720 (United States); Dubovsky, Sergei [Department of Physics, Stanford University, Stanford, California, 94305 (United States); Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary Prospect, 7a, 117312 Moscow (Russian Federation)
2011-02-15T23:59:59.000Z
It has recently been suggested that the presence of a plenitude of light axions, an Axiverse, is evidence for the extra dimensions of string theory. We discuss the observational consequences of these axions on astrophysical black holes through the Penrose superradiance process. When an axion Compton wavelength is comparable to the size of a black hole, the axion binds to the black hole ''nucleus'' forming a gravitational atom in the sky. The occupation number of superradiant atomic levels, fed by the energy and angular momentum of the black hole, grows exponentially. The black hole spins down and an axion Bose-Einstein condensate cloud forms around it. When the attractive axion self-interactions become stronger than the gravitational binding energy, the axion cloud collapses, a phenomenon known in condensed matter physics as 'bosenova'. The existence of axions is first diagnosed by gaps in the mass vs spin plot of astrophysical black holes. For young black holes the allowed values of spin are quantized, giving rise to ''Regge trajectories'' inside the gap region. The axion cloud can also be observed directly either through precision mapping of the near-horizon geometry or through gravitational waves coming from the bosenova explosion, as well as axion transitions and annihilations in the gravitational atom. Our estimates suggest that these signals are detectable in upcoming experiments, such as Advanced LIGO, AGIS, and LISA. Current black hole spin measurements imply an upper bound on the QCD axion decay constant of 2x10{sup 17} GeV, while Advanced LIGO can detect signals from a QCD axion cloud with a decay constant as low as the GUT scale. We finally discuss the possibility of observing the {gamma}-rays associated with the bosenova explosion and, perhaps, the radio waves from axion-to-photon conversion for the QCD axion.
Discovering the QCD Axion with Black Holes and Gravitational Waves
Asimina Arvanitaki; Masha Baryakhtar; Xinlu Huang
2015-03-23T23:59:59.000Z
Advanced LIGO may be the first experiment to detect gravitational waves. Through superradiance of stellar black holes, it may also be the first experiment to discover the QCD axion with decay constant above the GUT scale. When an axion's Compton wavelength is comparable to the size of a black hole, the axion binds to the black hole, forming a "gravitational atom." Through the superradiance process, the number of axions occupying the bound levels grows exponentially, extracting energy and angular momentum from the black hole. Axions transitioning between levels of the gravitational atom and axions annihilating to gravitons can produce observable gravitational wave signals. The signals are long-lasting, monochromatic, and can be distinguished from ordinary astrophysical sources. We estimate up to O(1) transition events at aLIGO for an axion between 10^-11 and 10^-10 eV and up to 10^4 annihilation events for an axion between 10^-13 and 10^-11 eV. In the event of a null search, aLIGO can constrain the axion mass for a range of rapidly spinning black hole formation rates. Axion annihilations are also promising for much lighter masses at future lower-frequency gravitational wave observatories; the rates have large uncertainties, dominated by supermassive black hole spin distributions. Our projections for aLIGO are robust against perturbations from the black hole environment and account for our updated exclusion on the QCD axion of 6*10^-13 eV < ma < 2*10^-11 eV suggested by stellar black hole spin measurements.
On the Quantum-Corrected Black Hole Thermodynamics
Kourosh Nozari; S. Hamid Mehdipour
2006-01-15T23:59:59.000Z
Bekenstein-Hawking Black hole thermodynamics should be corrected to incorporate quantum gravitational effects. Generalized Uncertainty Principle(GUP) provides a perturbational framework to perform such modifications. In this paper we consider the most general form of GUP to find black holes thermodynamics in microcanonical ensemble. Our calculation shows that there is no logarithmic pre-factor in perturbational expansion of entropy. This feature will solve part of controversies in literatures regarding existence or vanishing of this pre-factor.
Dissipative accretion flows around a rotating black hole
Santabrata Das; Sandip K. Chakrabarti
2008-06-12T23:59:59.000Z
We study the dynamical structure of a cooling dominated rotating accretion flow around a spinning black hole. We show that non-linear phenomena such as shock waves can be studied in terms of only three flow parameters, namely, the specific energy (${\\cal E}$), the specific angular momentum ($\\lambda$) and the accretion rate (${\\dot m}$) of the flow. We present all possible accretion solutions. We find that a significant region of the parameter space in the ${\\cal E}-\\lambda$ plane allows global accretion shock solutions. The effective area of the parameter space for which the Rankine-Hugoniot shocks are possible is maximum when the flow is dissipation free. It decreases with the increase of cooling effects and finally disappears when the cooling is high enough. We show that shock forms further away when the black hole is rotating compared to the solution around a Schwarzschild black hole with identical flow parameters at a large distance. However, in a normalized sense, the flow parameters for which the shocks form around the rotating black holes are produced shocks closer to the hole. The location of the shock is also dictated by the cooling efficiency in that higher the accretion rate (${\\dot m}$), the closer is the shock location. We believe that some of the high frequency quasi-periodic oscillations may be due to the flows with higher accretion rate around the rotating black holes.
Thermodynamic properties of asymptotically Reissner–Nordström black holes
Hendi, S.H., E-mail: hendi@shirazu.ac.ir
2014-07-15T23:59:59.000Z
Motivated by possible relation between Born–Infeld type nonlinear electrodynamics and an effective low-energy action of open string theory, asymptotically Reissner–Nordström black holes whose electric field is described by a nonlinear electrodynamics (NLED) are studied. We take into account a four dimensional topological static black hole ansatz and solve the field equations, exactly, in terms of the NLED as a matter field. The main goal of this paper is investigation of thermodynamic properties of the obtained black holes. Moreover, we calculate the heat capacity and find that the nonlinearity affects the minimum size of stable black holes. We also use Legendre-invariant metric proposed by Quevedo to obtain scalar curvature divergences. We find that the singularities of the Ricci scalar in Geometrothermodynamics (GTD) method take place at the Davies points. -- Highlights: •We examine the thermodynamical properties of black holes in Einstein gravity with nonlinear electrodynamics. •We investigate thermodynamic stability and discuss about the size of stable black holes. •We obtain analytical solutions of higher dimensional theory.
Mining Energy from a Black Hole by Strings
V. Frolov; D. Fursaev
2001-05-10T23:59:59.000Z
We discuss how cosmic strings can be used to mine energy from black holes. A string attached to the black hole gives rise to an additional channel for the energy release. It is demonstrated that when a string crosses the event horizon, its transverse degrees of freedom are thermally excited and thermal string perturbations propagate along the string to infinity. The internal metric induced on the 2D worldsheet of the static string crossing the horizon describes a 2D black hole. For this reason thermal radiation of string excitations propagating along the string can be interpreted as Hawking radiation of the 2D black hole. It is shown that the rate of energy emission through the string channel is of the same order of magnitude as the bulk radiation of the black hole. Thus, for N strings attached to the black hole the efficiency of string channels is increased by factor N. We discuss restrictions on N which exist because of the finite thickness of strings, the gravitational backreaction and quantum fluctuations. Our conclusion is that the energy emission rate by strings can be increased as compared to the standard emission in the bulk by the factor 10^3 for GUT strings and up to the factor 10^{31} for electroweak strings.
Could there be a hole in type Ia supernovae?
Kasen, Daniel; Nugent, Peter; Thomas, R.C.; Wang, Lifan
2004-04-23T23:59:59.000Z
In the favored progenitor scenario, Type Ia supernovae (SNe Ia) arise from a white dwarf accreting material from a non-degenerate companion star. Soon after the white dwarf explodes, the ejected supernova material engulfs the companion star; two-dimensional hydrodynamical simulations by Marietta et al. (2001) show that, in the interaction, the companion star carves out a conical hole of opening angle 30-40 degrees in the supernova ejecta. In this paper we use multi-dimensional Monte Carlo radiative transfer calculations to explore the observable consequences of an ejecta-hole asymmetry. We calculate the variation of the spectrum, luminosity, and polarization with viewing angle for the aspherical supernova near maximum light. We find that the supernova looks normal from almost all viewing angles except when one looks almost directly down the hole. In the latter case, one sees into the deeper, hotter layers of ejecta. The supernova is relatively brighter and has a peculiar spectrum characterized by more highly ionized species, weaker absorption features, and lower absorption velocities. The spectrum viewed down the hole is comparable to the class of SN 1991T-like supernovae. We consider how the ejecta-hole asymmetry may explain the current spectropolarimetric observations of SNe Ia, and suggest a few observational signatures of the geometry. Finally, we discuss the variety currently seen in observed SNe Ia and how an ejecta-hole asymmetry may fit in as one of several possible sources of diversity.
Nonlinearly charged Lifshitz black holes for any exponent $z>1$
Abigail Alvarez; Eloy Ayón-Beato; Hernán A. González; Mokhtar Hassaïne
2015-01-27T23:59:59.000Z
Charged Lifshitz black holes for the Einstein-Proca-Maxwell system with a negative cosmological constant in arbitrary dimension $D$ are known only if the dynamical critical exponent is fixed as $z=2(D-2)$. In the present work, we show that these configurations can be extended to much more general charged black holes which in addition exist for any value of the dynamical exponent $z>1$ by considering a nonlinear electrodynamics instead of the Maxwell theory. More precisely, we introduce a two-parametric nonlinear electrodynamics defined in the more general, but less known, so-called $(\\mathcal{H},P)$-formalism and obtain a family of charged black hole solutions depending on two parameters. We also remark that the value of the dynamical exponent $z=D-2$ turns out to be critical in the sense that it yields asymptotically Lifshitz black holes with logarithmic decay supported by a particular logarithmic electrodynamics. All these configurations include extremal Lifshitz black holes. Charged topological Lifshitz black holes are also shown to emerge by slightly generalizing the proposed electrodynamics.
Relating Follicly-Challenged Compact Stars to Bald Black Holes
Kent Yagi; Nicolas Yunes
2015-07-08T23:59:59.000Z
Compact stars satisfy certain no-hair relations through which their multipole moments are given by their mass, spin and quadrupole moment. These relations are approximately independent of their equation of state, relating pressure to density. Such relations are similar to the black hole no-hair theorems, but these possess event horizons inside which information that led to their formation can hide. Compact stars do not possess horizons, so whether their no-hair relations are related to the black hole ones is unclear. We investigate how the two relations are related by studying relations among multipole moments for compact stars with anisotropic pressure as a toy model, which allows such stars to be more compact than those with isotropic pressure. We here show numerically that the compact star no-hair relations approach the black hole ones as the compactness approaches that of a black hole. We also prove analytically that the current dipole moment exactly reaches the black hole limit quadratically in compactness as strongly-anisotropic stars approach the black hole limit. We moreover show that compact stars become progressively oblate in this limit, even if prolate at low compactness due to strong anisotropies.
Dipole radiation from a cylindrical hole in the earth.
Warne, Larry Kevin; Johnson, William Arthur; Basilio, Lorena I.
2005-08-01T23:59:59.000Z
This report examines the problem of an antenna radiating from a cylindrical hole in the earth and the subsequent far-zone field produced in the upper air half space. The approach used for this analysis was to first examine propagation characteristics along the hole for surrounding geologic material properties. Three cases of sand with various levels of moisture content were considered as the surrounding material to the hole. For the hole diameters and sand cases examined, the radiation through the earth medium was found to be the dominant contribution to the radiation transmitted through to the upper half-space. In the analysis presented, the radiation from a vertical and a horizontal dipole source within the hole is used to determine a closed-form expression for the radiation in the earth medium which represents a modified element factor for the source and hole combination. As the final step, the well-known results for a dipole below a half space, in conjunction with the use of Snell's law to transform the modified element factor to the upper half space, determine closed-form expressions for the far-zone radiated fields in the air region above the earth.
The mass function of high redshift seed black holes
Giuseppe Lodato; Priyamvada Natarajan
2007-02-13T23:59:59.000Z
In this paper we derive the mass function of seed black holes that result from the central mass concentrated via disc accretion in collapsed haloes at redshift $z\\approx 15$. Using standard arguments including stability, we show that these pre-galactic discs can assemble a significant mass concentration in the inner regions, providing fuel for the formation and initial growth of super-massive black holes. Assuming that these mass concentrations do result in central seed black holes, we determine the mass distribution of these seeds as a function of key halo properties. The seed mass distribution determined here turns out to be asymmetric and skewed to higher masses. Starting with these initial seeds, building up to $10^9$ solar masses by $z = 6$ to power the bright quasars is not a problem in the standard LCDM cosmogony. These seed black holes in gas rich environments are likely to grow into the supermassive black holes at later times via mergers and accretion. Gas accretion onto these seeds at high redshift will produce miniquasars that likely play an important role in the reionization of the Universe. Some of these seed black holes on the other hand could be wandering in galaxy haloes as a consequence of frequent mergers, powering the off-nuclear ultra-luminous X-ray sources detected in nearby galaxies.
Masses of Stellar Black Holes and Testing Theories of Gravitation
K. A. Postnov; A. M. Cherepashchuk
2004-01-22T23:59:59.000Z
We analyze the mass distribution of stellar black holes derived from the light and radial velocity curves of optical stars in close binary systems using dynamical methods. The systematic errors inherent in this approach are discussed. These are associated primarily with uncertainties in models for the contribution from gaseous structures to the optical brightness of the systems under consideration. The mass distribution is nearly flat in the range 4-15M_sun. This is compared with the mass distribution for black holes in massive close binaries, which can be manifest as ultraluminous X-ray sources (L_x > 10^39 erg/s) observed in other galaxies. If the X-ray luminosities of these objects correspond to the Eddington limit, the black-hole mass distribution should be described by a power law, which is incompatible with the flat shape derived dynamically from observations of close binaries in our Galaxy. One possible explanation of this discrepancy is the rapid evaporation of stellar-mass black holes predicted in recent multi-dimensional models of gravity. This hypothesis can be verifed by measuring the stellar black-hole mass spectrum or finding isolated or binary black holes with masses below 3M_sun.
Galaxies nurtured by mature black holes
Morikawa, Masahiro
2015-01-01T23:59:59.000Z
Supermassive black holes (SMBH) of size $10^{6-10}M_{\\odot}$ are common in the Universe and they define the center of the galaxies. A galaxy and the SMBH are generally thought to have co-evolved. However, the SMBH cannot evolve so fast as commonly observed even at redshift $z>6$. Therefore, we explore a natural hypothesis that the SMBH has been already formed mature at $z\\gtrapprox10$ before stars and galaxies. The SMBH forms energetic jets and outflows which trigger massive star formation in the ambient gas. They eventually construct globular clusters and classical bulge as well as the body of elliptical galaxies. We propose simple models which implement these processes. We point out that the globular clusters and classical bulges have a common origin but are in different phases. The same is true for the elliptical and spiral galaxies. Physics behind these phase division is the runaway star formation process with strong feedback to SMBH. This is similar to the forest-fire model that displays self-organized c...
Black Hole Spectral States and Physical Connections
John A. Tomsick
2005-09-06T23:59:59.000Z
The dramatic changes seen in the X-ray spectral and timing properties of accreting black hole candidates (BHCs) provide important clues about the accretion and jet formation processes that occur in these systems. Dividing the different source behaviors into spectral states provides a framework for studying BHCs. To date, there have been three main classification schemes with Luminosity-based, Component-based, or Transition-based criteria. The canonical, Luminosity-based criteria and physical models that are based on this concept do not provide clear explanations for several phenomena, including hysteresis of spectral states and the presence of jets. I discuss the re-definitions of states, focusing on an application of the Component-based states to more than 400 RXTE observations of the recurrent BHC 4U 1630-47. We compare the X-ray properties for the recent 2002-2004 outburst to those of an earlier (1998) outburst, during which radio jets were observed. The results suggest a connection between hysteresis of states and major jet ejections, and it is possible that both of these are related to the evolution of the inner radius of the optically thick accretion disk.
Black holes in young stellar clusters
Goswami, Sanghamitra; Kiel, Paul; Rasio, Frederic A. [Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States)
2014-02-01T23:59:59.000Z
We present theoretical models for stellar black hole (BH) properties in young, massive star clusters. Using a Monte Carlo code for stellar dynamics, we model realistic star clusters with N ? 5 × 10{sup 5} stars and significant binary fractions (up to 50%) with self-consistent treatments of stellar dynamics and stellar evolution. We compute the formation rates and characteristic properties of single and binary BHs for various representative ages, cluster parameters, and metallicities. Because of dynamical interactions and supernova (SN) kicks, more single BHs end up retained in clusters compared to BHs in binaries. We also find that the ejection of BHs from a cluster is a strong function of initial density. In low-density clusters (where dynamical effects are negligible), it is mainly SN kicks that eject BHs from the cluster, whereas in high-density clusters (initial central density ? {sub c}(0) ? 10{sup 5} M {sub ?} pc{sup –3} in our models) the BH ejection rate is enhanced significantly by dynamics. Dynamical interactions of binary systems in dense clusters also modify the orbital period and eccentricity distributions while increasing the probability of a BH having a more massive companion.
A hole accelerator for InGaN/GaN light-emitting diodes
Zhang, Zi-Hui; Liu, Wei; Tan, Swee Tiam; Ji, Yun; Wang, Liancheng; Zhu, Binbin; Zhang, Yiping; Lu, Shunpeng; Zhang, Xueliang; Hasanov, Namig; Sun, Xiao Wei, E-mail: EXWSUN@ntu.edu.sg, E-mail: VOLKAN@stanfordalumni.org [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Demir, Hilmi Volkan, E-mail: EXWSUN@ntu.edu.sg, E-mail: VOLKAN@stanfordalumni.org [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Department of Electrical and Electronics, Department of Physics, and UNAM-Institute of Material Science and Nanotechnology, Bilkent University, TR-06800 Ankara (Turkey)
2014-10-13T23:59:59.000Z
The quantum efficiency of InGaN/GaN light-emitting diodes (LEDs) has been significantly limited by the insufficient hole injection, and this is caused by the inefficient p-type doping and the low hole mobility. The low hole mobility makes the holes less energetic, which hinders the hole injection into the multiple quantum wells (MQWs) especially when a p-type AlGaN electron blocking layer (EBL) is adopted. In this work, we report a hole accelerator to accelerate the holes so that the holes can obtain adequate kinetic energy, travel across the p-type EBL, and then enter the MQWs more efficiently and smoothly. In addition to the numerical study, the effectiveness of the hole accelerator is experimentally shown through achieving improved optical output power and reduced efficiency droop for the proposed InGaN/GaN LED.
Constraining Black Hole Spin Via X-ray Spectroscopy
Laura W. Brenneman; Christopher S. Reynolds
2006-08-23T23:59:59.000Z
We present an analysis of the observed broad iron line feature and putative warm absorber in the long 2001 XMM-Newton observation of the Seyfert-1.2 galaxy MCG-6-30-15. The new "kerrdisk" model we have designed for simulating line emission from accretion disk systems allows black hole spin to be a free parameter in the fit, enabling the user to formally constrain the angular momentum of a black hole, among other physical parameters of the system. In an important extension of previous work, we derive constraints on the black hole spin in MCG-6-30-15 using a self-consistent model for X-ray reflection from the surface of the accretion disk while simultaneously accounting for absorption by dusty photoionized material along the line of sight (the warm absorber). Even including these complications, the XMM-Newton/EPIC-pn data require extreme relativistic broadening of the X-ray reflection spectrum; assuming no emission from within the radius of marginal stability, we derive a formal constraint on the dimensionless black hole spin parameter of a > 0.987 at 90% confidence. The principal unmodeled effect that can significantly reduce the inferred black hole spin is powerful emission from within the radius of marginal stability. Although significant theoretical developments are required to fully understand this region, we argue that the need for a rapidly spinning black hole is robust to physically plausible levels of emission from within the radius of marginal stability. In particular, we show that a non-rotating black hole is strongly ruled out.
Electromagnetic Signatures of Massive Black Hole Binaries
Tamara Bogdanovic; Britton D. Smith; Michael Eracleous; Steinn Sigurdsson
2006-09-28T23:59:59.000Z
We model the electromagnetic emission signatures of massive black hole binaries (MBHBs) with an associated gas component. The method comprises numerical simulations of relativistic binaries and gas coupled with calculations of the physical properties of the emitting gas. We calculate the accretion powered UV/X-ray and Halpha light curves and the Halpha emission line profiles. The simulations have been carried out with a modified version of the parallel tree SPH code Gadget. The heating, cooling, and radiative processes for the solar metallicity gas have been calculated with the photoionization code Cloudy. We investigate gravitationally bound, sub-parsec binaries which have not yet entered the gravitational radiation phase. The results from the first set of calculations, carried out for a coplanar binary and gas disk, suggest that the outbursts in the X-ray light curve are pronounced during pericentric passages and can serve as a fingerprint for this type of binaries if periodic outbursts are a long lived signature of the binary. The Halpha emission-line profiles also offer strong indications of a binary presence and may be used as a criterion for selection of MBHB candidates for further monitoring from existing archival data. The orbital period and mass ratio of a binary could be determined from the Halpha light curves and profiles of carefully monitored candidates. Although systems with the orbital periods studied here are not within the frequency band of the Laser Interferometer Space Antenna (LISA), their discovery is important for understanding of the merger rates of MBHBs and the evolution of such binaries through the last parsec and towards the detectable gravitational wave window.
Slant hole completion test (1991) sidetrack ``as built`` report
Myal, F.R.
1992-05-01T23:59:59.000Z
During the summer of 1990, a slant hole test well, funded by the US Department of Energy, was drilled to 9,466 ft to evaluate the effectiveness of directional drilling in the tight, naturally fractured gas sands and coals of the Mesaverde Group. The surface location of the SHCT No. 1 is 700 ft south of the DOE Multiwell Experiment (MWX) site in Section 34, T6S, R94W, Garfield County, Colorado, approximately 7.5 miles west of Rifle. Mechanical problems following cementing of a production liner resulted in loss of the completion interval, and operations were suspended. In early 1991, DOE decided to sidetrack the hole to permit production testing of the lost interval. The sidetrack was designed to parallel the original wellbore, but to be drilled 1,000 ft to the east to minimize the chances of encountering formation damage from the original hole. The sidetrack, like the original hole, was to intersect the paludal lenticular sands and coals at 60{degrees} and to penetrate the underlying Cozzette sand horizonally. The sidetrack was spudded May 12, 1991. After re-entering the well in late 1991, early production testing of the Cozzette showed that the 300 ft of in-pay horizontal hole can produce at rate 5 to 10 times higher than vertical wells in the same area. This report contains the geological summary and sidetrack drilling operations summary.
Slant hole completion test (1991) sidetrack as built'' report
Myal, F.R.
1992-05-01T23:59:59.000Z
During the summer of 1990, a slant hole test well, funded by the US Department of Energy, was drilled to 9,466 ft to evaluate the effectiveness of directional drilling in the tight, naturally fractured gas sands and coals of the Mesaverde Group. The surface location of the SHCT No. 1 is 700 ft south of the DOE Multiwell Experiment (MWX) site in Section 34, T6S, R94W, Garfield County, Colorado, approximately 7.5 miles west of Rifle. Mechanical problems following cementing of a production liner resulted in loss of the completion interval, and operations were suspended. In early 1991, DOE decided to sidetrack the hole to permit production testing of the lost interval. The sidetrack was designed to parallel the original wellbore, but to be drilled 1,000 ft to the east to minimize the chances of encountering formation damage from the original hole. The sidetrack, like the original hole, was to intersect the paludal lenticular sands and coals at 60{degrees} and to penetrate the underlying Cozzette sand horizonally. The sidetrack was spudded May 12, 1991. After re-entering the well in late 1991, early production testing of the Cozzette showed that the 300 ft of in-pay horizontal hole can produce at rate 5 to 10 times higher than vertical wells in the same area. This report contains the geological summary and sidetrack drilling operations summary.
Acceleration of particles by black holes: kinematic explanation
O. B. Zaslavskii
2011-06-21T23:59:59.000Z
A new simple and general explanation of the effect of acceleration of particles by black holes to infinite energies in the centre of mass frame is suggested. It is based on kinematics of particles moving near the horizon. This effect arises when particles of two kinds collide near the horizon. For massive particles, the first kind represents a particle with the generic energy and angular momentum (I call them "usual"). Near the horizon, such a particle has a velocity almost equal to that of light in the frame that corotates with a black hole (the frame is static if a black hole is static). The second kind (called "critical") consists of particles with the velocity vvelocity approaches the speed of light c, the Lorentz factor grows unbound. This explanation applies both to generic rotating black holes and charged ones (even for radial motion of particles). If one of colliding particles is massless (photon), the critical particle is distinguished by the fact that its frequency is finite near the horizon. The existence (or absence) of the effect is determined depending on competition of two factors - gravitational blue shift for a photon propagating towards a black hole and the Doppler effect due to transformation from the locally nonrotating frame to a comoving one. Classification of all possible types of collisions is suggested depending on whether massive or massless particle is critical or usual.
Colliding Axion-Dilaton Plane Waves from Black Holes
Patricia Schwarz
1997-08-01T23:59:59.000Z
The colliding plane wave metric discovered by Ferrari and Iba\\~{n}ez to be locally isometric to the interior of a Schwarzschild black hole is extended to the case of general axion-dilaton black holes. Because the transformation maps either black hole horizon to the focal plane of the colliding waves, this entire class of colliding plane wave spacetimes only suffers from the formation of spacetime singularities in the limits where the inner horizon itself is singular, which occur in the Schwarzschild and dilaton black hole limits. The supersymmetric limit corresponding to the extreme axion-dilaton black hole yields the Bertotti-Robinson metric with the axion and dilaton fields flowing to fixed constant values. The maximal analytic extension of this metric across the Cauchy horizon yields a spacetime in which two sandwich waves in a cylindrical universe collide to produce a semi-infinite chain of Reissner-Nordstrom-like wormholes. The focussing of particle and string geodesics in this spacetime is explored.
Mass and Free Energy of Lovelock Black Holes
David Kastor; Sourya Ray; Jennie Traschen
2011-06-20T23:59:59.000Z
An explicit formula for the ADM mass of an asymptotically AdS black hole in a generic Lovelock gravity theory is presented, identical in form to that in Einstein gravity, but multiplied by a function of the Lovelock coupling constants and the AdS curvature radius. A Gauss' law type formula relates the mass, which is an integral at infinity, to an expression depending instead on the horizon radius. This and other thermodynamic quantities, such as the free energy, are then analyzed in the limits of small and large horizon radius, yielding results that are independent of the detailed choice of Lovelock couplings. In even dimensions, the temperature diverges in both limits, implying the existence of a minimum temperature for black holes. The negative free energy of sufficiently large black holes implies the existence of a Hawking-Page transition. In odd dimensions the temperature still diverges for large black holes, which again have negative free energy. However, the temperature vanishes as the horizon radius tends to zero and sufficiently small black holes have positive specific heat.
Semi-classical approach to quantum black holes
Euro Spallucci; Anais Smailagic
2014-10-07T23:59:59.000Z
In this Chapter we would like to review a "~phenomenological~" approach taking into account the most fundamental feature of string theory or, more in general, of quantum gravity, whatever its origin, which is the existence of a minimal length in the space-time fabric. This length is generally identified with the Planck length, or the string length, but it could be also much longer down to the TeV region. A simple and effective way to keep track of the effects the minimal length in black hole geometries is to solve the Einstein equations with an energy momentum tensor describing non point-like matter. The immediate consequence is the absence of any curvature singularity. Where textbook solutions of the Einstein equations loose any physical meaning because of infinite tidal forces, we find a de Sitter vacuum core of high, but finite, energy density and pressure. An additional improvement regards the final stage of the black hole evaporation leading to a vanishing Hawking temperature even in the neutral, non-rotating, case. In spite of th simplicity of this model we are able to describe the final stage of the black hole evaporation, resulting in a cold remnant with a degenerate, extremal, horizon of radius of the order of the minimal length. In this chapter we shall describe only neutral, spherically symmetric, regular black holes although charged, rotating and higher dimensional black holes can be found in the literature.
The mass function of high redshift seed black holes
Lodato, G; Lodato, Giuseppe; Natarajan, Priyamvada
2007-01-01T23:59:59.000Z
In this paper we derive the mass function of seed black holes that result from the central mass concentrated via disc accretion in collapsed haloes at redshift $z\\approx 15$. Using standard arguments including stability, we show that these pre-galactic discs can assemble a significant mass concentration in the inner regions, providing fuel for the formation and initial growth of super-massive black holes. Assuming that these mass concentrations do result in central seed black holes, we determine the mass distribution of these seeds as a function of key halo properties. The seed mass distribution determined here turns out to be asymmetric and skewed to higher masses. Starting with these initial seeds, building up to $10^9$ solar masses by $z = 6$ to power the bright quasars is not a problem in the standard LCDM cosmogony. These seed black holes in gas rich environments are likely to grow into the supermassive black holes at later times via mergers and accretion. Gas accretion onto these seeds at high redshift ...
LIFETIME AND RADIATIVE EFFICIENCY VS DENSITY IN THE STRAIN-CONFINED ELECTRON-HOLE LIQUID IN Ge
Kelso, Susan M.
2011-01-01T23:59:59.000Z
electron-hole liquid (SCEHL) in Ge. Sample CR50 was T = 1.9CONFINED ELECTRON-HOLE LIQUID IN Ge Susan M. Kelso and JohnCONFINED ELECTRON-HOLE LIQUID IN Ge Susan M. Kelso and John
Thermoelectric DC conductivities and Stokes flows on black hole horizons
Elliot Banks; Aristomenis Donos; Jerome P. Gauntlett
2015-07-15T23:59:59.000Z
We consider a general class of electrically charged black holes of Einstein-Maxwell-scalar theory that are holographically dual to conformal field theories at finite charge density which break translation invariance explicitly. We examine the linearised perturbations about the solutions that are associated with the thermoelectric DC conductivity. We show that there is a decoupled sector at the black hole horizon which must solve generalised Stokes equations for a charged fluid. By solving these equations we can obtain the DC conductivity of the dual field theory. For one-dimensional lattices we solve the fluid equations to obtain closed form expressions for the DC conductivity in terms of the solution at the black hole horizon. We also determine the leading order DC conductivity for lattices that can be expanded as a perturbative series about translationally invariant solutions.
Holographic Superconductors with Ho?ava-Lifshitz Black Holes
Rong-Gen Cai; Hai-Qing Zhang
2009-12-03T23:59:59.000Z
We discuss the phase transition of planar black holes in Ho\\v{r}ava-Lifshitz gravity by introducing a Maxwell field and a complex scalar field. We calculate the condensates of the charged operators in the dual CFTs when the mass square of the complex scalar filed is $m^2=-2/L^2$ and $m^2=0$, respectively. We compute the electrical conductivity of the \\hl superconductor in the probe approximation. In particular, it is found that there exists a spike in the conductivity for the case of the operator with scaling dimension one. These results are quite similar to those in the case of Schwarzschild-AdS black holes, which demonstrates that the holographic superconductivity is a robust phenomenon associated with asymptotic AdS black holes.
Aspects of Accretion Processes On a Rotating Black Hole
Sandip K. Chakrabarti
1996-11-10T23:59:59.000Z
We describe the most general nature of accretion and wind flows around a compact object and emphasize on the properties which are special to black hole accretion. The angular momentum distribution in the most general solution is far from Keplerian, and the non-Keplerian disks can include standing shock waves. We also present fully time dependent numerical simulation results to show that they agree with these analytical solutions. We describe the spectral properties of these accretion disks and show that the soft and hard states of the black hole candidates could be explained by the change of the accretion rate of the disk. We present fits of the observational data to demonstrate the presence of sub-Keplerian flows around black holes.
Holographic fermions in charged Gauss-Bonnet black hole
Jian-Pin Wu
2011-08-01T23:59:59.000Z
We study the properties of the Green's functions of the fermions in charged Gauss-Bonnet black hole. What we want to do is to investigate how the presence of Gauss-Bonnet coupling constant $\\alpha$ affects the dispersion relation, which is a characteristic of Fermi or non-Fermi liquid, as well as what properties such a system has, for instance, the Particle-hole (a)symmetry. One important result of this research is that we find for $q=1$, the behavior of this system is different from that of the Landau Fermi liquid and so the system can be candidates for holographic dual of generalized non-Fermi liquids. More importantly, the behavior of this system increasingly similar to that of the Landau Fermi liquid when $\\alpha$ is approaching its lower bound. Also we find that this system possesses the Particle-hole asymmetry when $q\
Black holes as particle accelerators: a brief review
Tomohiro Harada; Masashi Kimura
2014-11-18T23:59:59.000Z
Rapidly rotating Kerr black holes can accelerate particles to arbitrarily high energy if the angular momentum of the particle is fine-tuned to some critical value. This phenomenon is robust as it is founded on the basic properties of geodesic orbits around a near-extremal Kerr black hole. On the other hand, the maximum energy of the acceleration is subjected to several physical effects. There is convincing evidence that the particle acceleration to arbitrarily high energy is one of the universal properties of general near-extremal black holes. We also discuss gravitational particle acceleration in more general context. This article is intended to provide a pedagogical introduction to and a brief overview of this topic for non-specialists.
Black hole energy extraction via stationary scalar clouds
Jordan Wilson-Gerow; Adam Ritz
2015-09-22T23:59:59.000Z
We study scalar field configurations around Kerr black holes with a time-independent energy-momentum tensor. These stationary `scalar clouds', confined near the black hole (BH) by their own mass or a mirror at fixed radius, exist at the threshold for energy extraction via superradiance. Motivated by the electromagnetic Blandford-Znajek (BZ) mechanism, we explore whether scalar clouds could serve as a proxy for the force-free magnetosphere in the BZ process. We find that a stationary energy-extracting scalar cloud solution exists when the reflecting mirror is replaced by a semi-permeable surface which allows the cloud to radiate some energy to infinity while maintaining self-sustained superradiance. The radial energy flux displays the same behaviour for rapidly rotating holes as magnetohydrodynamic simulations predict for the BZ mechanism.
Thermodynamic geometry of charged rotating BTZ black holes
Akbar, M. [Center for Advanced Mathematics and Physics, National University of Sciences and Technology, H-12, Islamabad (Pakistan); Quevedo, H. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, AP 70543, Mexico, DF 04510 (Mexico); ICRANet, Dipartimento di Fisica, Universita di Roma La Sapienza, I-00185 Roma (Italy); Saifullah, K. [Department of Mathematics, Quaid-i-Azam University, Islamabad (Pakistan); Sanchez, A. [Departamento de Posgrado, CIIDET, AP 752, Queretaro, QRO 76000 (Mexico); Taj, S. [Center for Advanced Mathematics and Physics, National University of Sciences and Technology, H-12, Islamabad (Pakistan); ICRANet, Dipartimento di Fisica, Universita di Roma La Sapienza, I-00185 Roma (Italy)
2011-04-15T23:59:59.000Z
We study the thermodynamics and the thermodynamic geometries of charged rotating Banados-Teitelboim-Zanelli black holes in (2+1)-gravity. We investigate the thermodynamics of these systems within the context of the Weinhold and Ruppeiner thermodynamic geometries and the recently developed formalism of geometrothermodynamics. Considering the behavior of the heat capacity and the Hawking temperature, we show that Weinhold and Ruppeiner geometries cannot describe completely the thermodynamics of these black holes and of their limiting case of vanishing electric charge. In contrast, the Legendre invariance imposed on the metric in geometrothermodynamics allows one to describe the charged rotating Banados-Teitelboim-Zanelli black holes and their limiting cases in a consistent and invariant manner.
Noncommutative effects in the black hole evaporation in two dimensions
Garcia-Compean, Hugo [Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Monterrey Cerro de las Mitras 2565, Colonia Obispado, Monterrey Nuevo Leon 64060 (Mexico); Departamento de Fisica Centro de Investigacion y de Estudios Avanzados del IPN P.O. Box 14-740, 07000 Mexico Distrito Federal (Mexico); Soto-Campos, Carlos [Departamento de Fisica Centro de Investigacion y de Estudios Avanzados del IPN P.O. Box 14-740, 07000 Mexico Distrito Federal (Mexico); Unidad Profesional Interdisciplinaria en Ingenieria y Tecnologias Avanzadas del IPN Avenida IPN 2580 Colonia Laguna Ticoman 07340 Mexico Distrito Federal (Mexico)
2006-11-15T23:59:59.000Z
We discuss some possible implications of a two-dimensional toy model for black hole evaporation in noncommutative field theory. While the noncommutativity we consider does not affect gravity, it can play an important role in the dynamics of massless and Hermitian scalar fields in the event horizon of a Schwarzschild black hole. We find that noncommutativity will affect the flux of outgoing particles and the nature of its UV/IR divergences. Moreover, we show that the noncommutative interaction does not affect Leahy's and Unruh's interpretation of thermal ingoing and outgoing fluxes in the black hole evaporation process. Thus, the noncommutative interaction still destroys the thermal nature of fluxes. In the process, some nonlocal implications of the noncommutativity are discussed.
Cloud of strings for radiating black holes in Lovelock gravity
Sushant G. Ghosh; Sunil D. Maharaj
2014-09-28T23:59:59.000Z
We present exact spherically symmetric null dust solutions in the third order Lovelock gravity with a string cloud background in arbitrary $N$ dimensions,. This represents radiating black holes and generalizes the well known Vaidya solution to Lovelock gravity with a string cloud in the background. We also discuss the energy conditions and horizon structures, and explicitly bring out the effect of the string clouds on the horizon structure of black hole solutions for the higher dimensional general relativity and Einstein-Gauss-Bonnet theories. It turns out that the presence of the coupling constant of the Gauss-Bonnet terms and/or background string clouds completely changes the structure of the horizon and this may lead to a naked singularity. We recover known spherically symmetric radiating models as well as static black holes in the appropriate limits.
Black hole feedback in the luminous quasar PDS 456
Nardini, E; Gofford, J; Harrison, F A; Risaliti, G; Braito, V; Costa, M T; Matzeu, G A; Walton, D J; Behar, E; Boggs, S E; Christensen, F E; Craig, W W; Hailey, C J; Matt, G; Miller, J M; O'Brien, P T; Stern, D; Turner, T J; Ward, M J
2015-01-01T23:59:59.000Z
The evolution of galaxies is connected to the growth of supermassive black holes in their centers. During the quasar phase, a huge luminosity is released as matter falls onto the black hole, and radiation-driven winds can transfer most of this energy back to the host galaxy. Over five different epochs, we detected the signatures of a nearly spherical stream of highly ionized gas in the broadband X-ray spectra of the luminous quasar PDS 456. This persistent wind is expelled at relativistic speeds from the inner accretion disk, and its wide aperture suggests an effective coupling with the ambient gas. The outflow's kinetic power larger than 10^46 ergs per second is enough to provide the feedback required by models of black hole and host galaxy co-evolution.
Magnetic and Electric Black Holes in Arbitrary Dimension
Adil Belhaj; Pablo Diaz; Antonio segui
2009-06-02T23:59:59.000Z
In this work, we compare two different objects: electric black holes and magnetic black holes in arbitrary dimension. The comparison is made in terms of the corresponding moduli space and their extremal geometries. We treat parallelly the magnetic and the electric cases. Specifically, we discuss the gravitational solution of these spherically symmetric objects in the presence of a positive cosmological constant. Then, we find the bounded region of the moduli space allowing the existence of black holes. After identifying it in both the electric and the magnetic case, we calculate the geometry that comes out between the horizons at the coalescence points. Although the electric and magnetic cases are both very different (only dual in four dimensions), gravity solutions seem to clear up most of the differences and lead to very similar geometries.
Information Preservation and Weather Forecasting for Black Holes
S. W. Hawking
2014-01-22T23:59:59.000Z
It has been suggested [1] that the resolution of the information paradox for evaporating black holes is that the holes are surrounded by firewalls, bolts of outgoing radiation that would destroy any infalling observer. Such firewalls would break the CPT invariance of quantum gravity and seem to be ruled out on other grounds. A different resolution of the paradox is proposed, namely that gravitational collapse produces apparent horizons but no event horizons behind which information is lost. This proposal is supported by ADS-CFT and is the only resolution of the paradox compatible with CPT. The collapse to form a black hole will in general be chaotic and the dual CFT on the boundary of ADS will be turbulent. Thus, like weather forecasting on Earth, information will effectively be lost, although there would be no loss of unitarity.
Distorted black holes from a vacuum 5-d spherical solution
Capistrano, Abraão J S; Ulhoa, Sergio C; Amorim, Ronni G G
2015-01-01T23:59:59.000Z
We study the deformation caused by the influence of extrinsic curvature on a vacuum spherically symmetric metric embedded in a 5-d bulk. In this sense, we investigate the produced stationary black-holes and derive general properties such as its mass and horizons. As an application, a test moving particle near such black-holes is also shown as well the distortion caused by extrinsic curvature on its movement. Accordingly, using asymptotically conformal flat condition on the extrinsic curvature and an analytical expansion of a set of \\emph{n}-scalar fields, we show that the resulting black holes must be large and constrained in the range $-1/2 \\leq n \\leq 1.8$ that are locally thermodynamically stable, but not globally preferred.
The Quantum Black Hole Specific Heat is Positive
Andrzej Z. Gorski; Pawel O. Mazur
1997-05-16T23:59:59.000Z
We suggest in this Letter that the Bekenstein-Hawking black hole entropy accounts for the degrees of freedom which are excited at low temperatures only and hence it leads to the negative specific heat. Taking into account the physical degrees of freedom which are excited at high temperatures, the existence of which we postulate, we compute the total specific heat of the quantum black hole that appears to be positive. This is done in analogy to the Planck's treatment of the black body radiation problem. Other thermodynamic functions are computed as well. Our results and the success of the thermodynamic description of the quantum black hole suggest an underlying atomic (discrete) structure of gravitation. The basic properties of these gravitational atoms are found.
Exploring Higher Dimensional Black Holes at the Large Hadron Collider
C. M. Harris; M. J. Palmer; M. A. Parker; P. Richardson; A. Sabetfakhri; B. R. Webber
2004-11-01T23:59:59.000Z
In some extra dimension theories with a TeV fundamental Planck scale, black holes could be produced in future collider experiments. Although cross sections can be large, measuring the model parameters is difficult due to the many theoretical uncertainties. Here we discuss those uncertainties and then we study the experimental characteristics of black hole production and decay at a typical detector using the ATLAS detector as a guide. We present a new technique for measuring the temperature of black holes that applies to many models. We apply this technique to a test case with four extra dimensions and, using an estimate of the parton-level production cross section error of 20%, determine the Planck mass to 15% and the number of extra dimensions to +-0.75.
Thermodynamics of topological nonlinear charged Lifshitz black holes
Zangeneh, M Kord; Dehghani, M H
2015-01-01T23:59:59.000Z
In this paper, we construct a new class of analytic topological Lifshitz black holes with constant curvature horizon in the presence of power-law Maxwell field in four and higher dimensions. We find that in order to obtain these exact Lifshitz solutions, we need a dilaton and at least three electromagnetic fields. Interestingly enough, we find that the reality of the charge of the electromagnetic field which is needed for having solutions with curved horizon rules out black holes with hyperbolic horizon. Next, we study the thermodynamics of these nonlinear charged Lifshitz black holes with spherical and flat horizons by calculating all the conserved and thermodynamic quantities of the solutions. Furthermore, we obtain a generalized Smarr formula and show that the first law of thermodynamics is satisfied. Finally, we perform a stability analysis in both canonical and grand-canonical ensembles. We find that the solutions are thermally stable in a proper ranges of the metric parameters.
Thermodynamics of de Sitter Black Holes: Thermal Cosmological Constant
Yuichi Sekiwa
2006-04-10T23:59:59.000Z
We study the thermodynamic properties associated with the black hole event horizon and the cosmological horizon for black hole solutions in asymptotically de Sitter spacetimes. We examine thermodynamics of these horizons on the basis of the conserved charges according to Teitelboim's method. In particular, we have succeeded in deriving the generalized Smarr formula among thermodynamical quantities in a simple and natural way. We then show that cosmological constant must decrease when one takes into account the quantum effect. These observations have been obtained if and only if cosmological constant plays the role of a thermodynamical state variable. We also touch upon the relation between inflation of our universe and a phase transition of black holes.
Microhole Coiled Tubing Bottom Hole Assemblies
Don Macune
2008-06-30T23:59:59.000Z
The original objective of the project, to deliver an integrated 3 1/8-inch diameter Measurement While Drilling (MWD) and Logging While Drilling (LWD) system for drilling small boreholes using coiled tubing drilling, has been achieved. Two prototype systems have been assembled and tested in the lab. One of the systems has been successfully tested downhole in a conventional rotary drilling environment. Development of the 3 1/8-inch system has also lead to development and commercialization of a slightly larger 3.5-inch diameter system. We are presently filling customer orders for the 3.5-inch system while continuing with commercialization of the 3 1/8-inch system. The equipment developed by this project will be offered for sale to multiple service providers around the world, enabling the more rapid expansion of both coiled tubing drilling and conventional small diameter drilling. The project was based on the reuse of existing technology whenever possible in order to minimize development costs, time, and risks. The project was begun initially by Ultima Labs, at the time a small company ({approx}12 employees) which had successfully developed a number of products for larger oil well service companies. In September, 2006, approximately 20 months after inception of the project, Ultima Labs was acquired by Sondex plc, a worldwide manufacturer of downhole instrumentation for cased hole and drilling applications. The acquisition provided access to proven technology for mud pulse telemetry, downhole directional and natural gamma ray measurements, and surface data acquisition and processing, as well as a global sales and support network. The acquisition accelerated commercialization through existing Sondex customers. Customer demand resulted in changes to the product specification to support hotter (150 C) and deeper drilling (20,000 psi pressure) than originally proposed. The Sondex acquisition resulted in some project delays as the resistivity collar was interfaced to a different MWD system and also as the mechanical design was revised for the new pressure requirements. However, the Sondex acquisition has resulted in a more robust system, secure funding for completion of the project, and more rapid commercialization.
Hole-boring through clouds for laser power beaming
Lipinski, R.J. [Sandia National Labs., Albuquerque, NM (United States); Walter, R.F. [W.J. Schafer Associates, Inc., Albuquerque, NM (United States)
1994-12-31T23:59:59.000Z
Power beaming to satellites with a ground-based laser can be limited by clouds. Hole-boring through the clouds with a laser has been proposed as a way to overcome this obstacle. This paper reviews the past work on laser hole-boring and concludes that hole-boring for direct beaming to satellites is likely to require 10--100 MW. However, it may be possible to use an airborne relay mirror at 10--25 km altitude for some applications in order to extend the range of the laser (e.g., for beaming to satellites near the horizon). In these cases, use of the relay mirror also would allow a narrow beam between the laser and the relay, as well as the possibility of reducing the crosswind if the plane matched speed with the cloud temporarily. Under these conditions, the power requirement to bore a hole through most cirrus and cirrostratus clouds might be only 500-kW if the hole is less than 1 m in diameter and if the crosswind speed is less than 10 m/s. Overcoming cirrus and cirrostratus clouds would reduce the downtime due to weather by a factor of 2. However, 500 kW is a large laser, and it may be more effective instead to establish a second power beaming site in a separate weather zone. An assessment of optimum wavelengths for hole boring also was made, and the best options were found to be 3.0--3.4 {mu}m and above 10 {mu}m.
Thermodynamics of Black Hole Horizons and Kerr/CFT Correspondence
Bin Chen; Shen-xiu Liu; Jia-ju Zhang
2012-11-02T23:59:59.000Z
In this paper we investigate the thermodynamics of the inner horizon and its implication on the holographic description of the black hole. We focus on the black holes with two physical horizons. Under reasonable assumption, we prove that the first law of thermodynamics of the outer horizon always indicates that of the inner horizon. As a result, the fact that the area product being mass-independent is equivalent to the relation $T_+S_+=T_-S_-$, with $T_\\pm$ and $S_\\pm$ being the Hawking temperatures and the entropies of the outer and inner horizon respectively. We find that the mass-independence of area product breaks down in general Myers-Perry black holes with spacetime dimension $d\\geq6$ and Kerr-AdS black holes with $d\\geq4$. Moreover we discuss the implication of the first laws of the outer and inner horizons on the thermodynamics of the right- and left-moving sectors of dual CFT in Kerr/CFT correspondence. We show that once the relation $T_+S_+=T_-S_-$ is satisfied, the central charges of two sectors must be same. Furthermore from the thermodynamics relations, we read the dimensionless temperatures of microscopic CFT, which are in exact agreement with the ones obtained from hidden conformal symmetry in the low frequency scattering off the black holes, and then determine the central charges. This method works well in well-known cases in Kerr/CFT correspondence, and reproduce successfully the holographic pictures for 4D Kerr-Newman and 5D Kerr black holes. We go on to predict the central charges and temperatures of a possible holographic CFT description dual to 5D doubly rotating black ring.
Experimental Test of Hole-Coupled FEL Resonator Designs Using a CW-HeNe Laser
Leemans, W.P.
2011-01-01T23:59:59.000Z
Proc. 14 th International FEL Conference, Kobe, Japan, 23-24Test of Hole-Coupled FEL Resonator Designs Using a CW-HeNeuse of hole-coupling for FEL's are: I) reasonable coupling
Three-Dimensional Simulation of a Hole-Coupled FEL Oscillator
Krishnagopal, S.
2008-01-01T23:59:59.000Z
resonator in the presence of FEL gain, M.Xie and K. -J.Kim,Simulation of a Hole-Coupled FEL Oscillator S. KrishnagopalSimulation of a Hole-Coupled FEL Oscillator S. Krishnagopal,
Supersymmetric Yang Mills Fields and Black Holes ; In Ten Dimensional Unified Field Theory
Ajay Patwardhan
2007-05-17T23:59:59.000Z
The Ten dimensional Unified field theory has a 4 dimensional Riemannian spacetime and six dimensional Calabi Yau space structure. The supersymmetric Yang Mills fields and black holes are solutions in these theories. The formation of primordial black holes in early universe, the collapse to singularity of stellar black holes, the Hawking evaporation of microscopic black holes in LHC are topics of observational and theoretical interest. The observation of gamma ray bursts and creation of spectrum of particles and radiation of dark and normal matter occur due to primordial and microscopic black holes. The approach to singularity in black hole interior solutions, require the Bogoliubov transforms of SUSY YM fields in black hole geometries; both during formation and in evaporation. The Hawking effect of radiating black holes is applicable for all the fields. Invariants can be defined to give the conditions for these processes.
Interaction of Supermassive Black Holes with their Stellar and Dark Matter Environments
David Merritt
2004-10-04T23:59:59.000Z
A review of recent theoretical work on the interactions of supermassive single and binary black holes with their nuclear environments, highlighting ways in which the observed structure of nuclei can be used to constrain the formation history of black holes.
Anomalies, Chern-Simons Terms and Black Hole Entropy
Tatsuo Azeyanagi; R. Loganayagam; Gim Seng Ng
2015-05-11T23:59:59.000Z
Recent derivations of Cardy-like formulae in higher dimensional field theories have opened up a way of computing, via AdS/CFT, universal contributions to black hole entropy from gravitational Chern-Simons terms. Based on the manifestly covariant formulation of the differential Noether charge for Chern-Simons terms proposed in arXiv:1407.6364, we compute the entropy and asymptotic charges for the rotating charged AdS black holes in higher dimensions at leading order of the fluid/gravity derivative expansion in the Einstein-Maxwell-Chern-Simons system. This gives a result that exactly matches the field theory predictions from Cardy-like formulae.
Electromagnetic quasinormal modes of D-dimensional black holes II
A. López-Ortega
2007-06-20T23:59:59.000Z
By using the sixth order WKB approximation we calculate for an electromagnetic field propagating in D-dimensional Schwarzschild and Schwarzschild de Sitter black holes its quasinormal frequencies for the fundamental mode and first overtones. We study the dependence of these QN frequencies on the value of the cosmological constant and the spacetime dimension. We also compare with the known results for the gravitational perturbations propagating in the same background. Moreover we exactly compute the QN frequencies of the electromagnetic field propagating in D-dimensional massless topological black hole and for charged D-dimensional Nariai spacetime we exactly calculate the QN frequencies of the coupled electromagnetic and gravitational perturbations.
Relativistic Viscous Fluid Description of Microscopic Black Hole Wind
J. I. Kapusta
2001-05-25T23:59:59.000Z
Microscopic black holes explode with their temperature varying inversely as their mass. Such explosions would lead to the highest temperatures in the present universe, all the way to the Planck energy. Whether or not a quasi-stationary shell of matter undergoing radial hydrodynamic expansion surrounds such black holes is been controversial. In this paper relativistic viscous fluid equations are applied to the problem. It is shown that a self-consistent picture emerges of a fluid just marginally kept in local thermal equilibrium; viscosity is a crucial element of the dynamics.
Energy of Kerr-Newman Black-Holes and Gravitomagnetism
Marcelo Samuel Berman
2004-08-11T23:59:59.000Z
New formulae are obtained for the energy of K.N. b.h.'s that point out a gravitomagnetic energy effect. The results are valid for slowly or rapidly rotating black-holes. The expression of the energy density of Kerr-Newman back-holes in the slow rotation case, is obtained afterwards, and shown to be essentially positive. Subsequently,we show how to attain a "repulsive" gravitation (antigravitation) state identified with negative energy distribution contents in a limited region of space, without violating the Positive Energy Theorem.
Repairs for damaged bolt holes in continuous fiber reinforced plastics
Copps, Kevin Daniel
1992-01-01T23:59:59.000Z
repair method for damaged bolt holes in such composites. Bolt holes in three types of graphite-epoxy were purposely damaged and then repaired. Each was tested to characterize its static and fatigue behavior. The tests used a special fixture to simulate... composite joints . Bearing-bypass ratio can change the failure mode of bolted composite joints 7 Drilling defects in graphite-epoxy coupons 12 26 The exit side of a IM7/8551-7A 18 ply tape coupon showing the damage due to drilling 27 9 Resin filled...
Low energy 2+1 string gravity; black hole solutions
A. A. Garcia Diaz; G. Gutierrez Cano
2014-12-17T23:59:59.000Z
In this report a detailed derivation of the dynamical equations for an n dimensional heterotic string theory of the Horowitz type is carried out in the string frame and in the Einstein frame too. In particular, the dynamical equations of the three dimensional string theory are explicitly given. The relation of the Horowitz Welch and Horne Horowitz string black hole solution is exhibited. The Chan Mann charged dilaton solution is derived and the subclass of string solutions field is explicitly identified. The stationary generalization, via SL(2;R) transformations, of the static (2+1) Horne Horowitz string black hole solution is given.
Quantum-corrected finite entropy of noncommutative acoustic black holes
M. A. Anacleto; F. A. Brito; G. C. Luna; E. Passos; J. Spinelly
2015-01-31T23:59:59.000Z
In this paper we consider the generalized uncertainty principle in the tunneling formalism via Hamilton-Jacobi method to determine the quantum-corrected Hawking temperature and entropy for 2+1-dimensional noncommutative acoustic black holes. In our results we obtain an area entropy, a correction logarithmic in leading order, a correction term in subleading order proportional to the radiation temperature associated with the noncommutative acoustic black holes and an extra term that depends on a conserved charge. Thus, as in the gravitational case, there is no need to introduce the ultraviolet cut-off and divergences are eliminated.
Quantum-corrected finite entropy of noncommutative acoustic black holes
Anacleto, M A; Luna, G C; Passos, E; Spinelly, J
2015-01-01T23:59:59.000Z
In this paper we consider the generalized uncertainty principle in the tunneling formalism via Hamilton-Jacobi method to determine the quantum-corrected Hawking temperature and entropy for 2+1-dimensional noncommutative acoustic black holes. In our results we obtain an area entropy, a correction logarithmic in leading order, a correction term in subleading order proportional to the radiation temperature associated with the noncommutative acoustic black holes and an extra term that depends on a conserved charge. Thus, as in the gravitational case, there is no need to introduce the ultraviolet cut-off and divergences are eliminated.
A photometric method to determine supermassive black hole masses
A. W. Graham; P. Erwin; N. Caon; I. Trujillo
2002-06-14T23:59:59.000Z
We report the discovery of a strong correlation between the shape of a bulge's light-profile and the mass of its central supermassive black hole (M_{bh}). We find that log(M_{bh}/M_{sun}) = 2.91(+/-0.38)log(n) + 6.37(+/-0.21), where `n' is the Sersic r^{1/n} shape index of the bulge. This correlation is marginally stronger than the relationship between the logarithm of the stellar velocity dispersion and log(M_{bh}) and has comparable scatter. It therefore offers a cheap (in terms of telescope time) alternative to estimating the masses of supermassive black holes.
Greybody factors for Myers-Perry black holes
Boonserm, Petarpa; Ngampitipan, Tritos; Visser, Matt
2014-01-01T23:59:59.000Z
The Myers-Perry black holes are higher-dimensional generalizations of the usual (3+1)-dimensional rotating Kerr black hole. They are of considerable interest in Kaluza-Klein models, specifically within the context of brane-world versions thereof. In the present article we shall consider the greybody factors associated with scalar field excitations of the Myers-Perry spacetimes, and develop some rigorous bounds on these greybody factors. These bounds are of relevance for characterizing both the higher-dimensional Hawking radiation, and the super-radiance, that is expected for these spacetimes.
Energy distribution in the dyadosphere of a charged black hole
S. S. Xulu
2003-04-22T23:59:59.000Z
The event horizon of a charged black hole is, according to Ruffini\\cite{Ruffini} and Preparata \\emph{et al.}\\cite{PreparataEtAl}, surrounded by a special region called the \\emph{dyadosphere} where the electromagnetic field exceeds the Euler-Heisenberg critical value for electron-positron pair production. We obtain the energy distribution in the dyadosphere region for a Reissner-Nordstr\\"{o}m black hole. We find that the energy-momentum prescriptions of Einstein, Landau-Lifshitz, Papapetrou, and Weinberg give the same and acceptable energy distribution.
Supermassive Black Holes and the Evolution of Galaxies
D. Richstone; E. A. Ajhar; R. Bender; G. Bower; A. Dressler; S. M. Faber; A. V. Filippenko; K. Gebhardt; R. Green; L. C. Ho; J. Kormendy; T. Lauer; J. Magorrian; S. Tremaine
1998-10-23T23:59:59.000Z
Black holes, an extreme consequence of the mathematics of General Relativity, have long been suspected of being the prime movers of quasars, which emit more energy than any other objects in the Universe. Recent evidence indicates that supermassive black holes, which are probably quasar remnants, reside at the centers of most galaxies. As our knowledge of the demographics of these relics of a violent earlier Universe improve, we see tantalizing clues that they participated intimately in the formation of galaxies and have strongly influenced their present-day structure.
Black Holes in 2+1 Teleparallel Theories of Gravity
A. A. Sousa; J. W. Maluf
2003-01-21T23:59:59.000Z
We apply the Hamiltonian formulation of teleparallel theories of gravity in 2+1 dimensions to a circularly symmetric geometry. We find a family of one-parameter black hole solutions. The BTZ solution fixes the unique free parameter of the theory. The resulting field equations coincide with the teleparallel equivalent of Einstein's three-dimensional equations. We calculate the gravitational energy of the black holes by means of the simple expression that arises in the Hamiltonian formulation and conclude that the resulting value is identical to that calculated by means of the Brown-York method.
On Brane Inflation Potentials and Black Hole Attractors
Adil Belhaj; Pablo Diaz; Mohamed Naciri; Antonio Segui
2007-11-16T23:59:59.000Z
We propose a new potential in brane inflation theory, which is given by the arctangent of the square of the scalar field. Then we perform an explicit computation for inflationary quantities. This potential has many nice features. In the small field approximation, it reproduces the chaotic and MSSM potentials. It allows one, in the large field approximation, to implement the attractor mechanism for bulk black holes where the geometry on the brane is de Sitter. In particular, we show, up to some assumptions, that the Friedman equation can be reinterpreted as a Schwarzschild black hole attractor equation for its mass parameter.
Fate of Yang-Mills black hole in early Universe
Nakonieczny, Lukasz; Rogatko, Marek [Institute of Physics Maria Curie-Sklodowska University 20-031 Lublin, pl. Marii Curie-Sklodowskiej 1 (Poland)
2013-02-21T23:59:59.000Z
According to the Big Bang Theory as we go back in time the Universe becomes progressively hotter and denser. This leads us to believe that the early Universe was filled with hot plasma of elementary particles. Among many questions concerning this phase of history of the Universe there are questions of existence and fate of magnetic monopoles and primordial black holes. Static solution of Einstein-Yang-Mills system may be used as a toy model for such a black hole. Using methods of field theory we will show that its existence and regularity depend crucially on the presence of fermions around it.
Do Supermassive Black Holes Exist at the Center of Galaxies?
J. W. Moffat
1998-03-22T23:59:59.000Z
Models of superdense star clusters at the center of galaxies are investigated to see whether such objects can be stable and long-lived based on evaporation and collision time-scales and stability criteria. We find that physically reasonable models of massive clusters of stellar remnants can exist with masses $\\geq 10^6 M_{\\odot}$, which could simulate black holes at the center of galaxies with large $M/L$ ratios and gas motions of order $\\geq 10^3$ km $s^{-1}$. It follows that the evidence is not conclusive for massive dark objects at the center of galaxies being black holes.
Thermodynamics of Schrödinger black holes with hyperscaling violation
J. Sadeghi; B. Pourhassan; F. Pourasadollah
2012-11-06T23:59:59.000Z
In this work, we follow Kim and Yamada (JHEP1107 (2011) 120) and utilize AdS in light-cone frame to derive thermodynamic and transport properties of two kinds of Schr\\"{o}dinger black holes with hyperscaling violation. In that case, we show entropy and temperature are depend on $\\theta$. In $\\theta=0$ we see our results are agree with the work of Kim and Yamada. We also construct R-charged black hole with hyperscaling violation and obtain thermodynamics and transport properties.
Improvement of tap holes at Wakayama No. 5 blast furnace
Yamashita, M.; Kashiwada, M.; Shibuta, H. [Sumitomo Metal Industries, Ltd., Wakayama (Japan). Wakayama Steel Works
1995-12-01T23:59:59.000Z
The service life of blast furnaces, as the result of various improvement measures, has been extended from the conventional 5 to 7 years to 15 to 20 years. Wakayama No. 5 blast furnace adopted SiC bricks. Though SiC brick excelled in strength and durability, it has raised problems such as tap hole inside temperature lowering attributable to its high thermal conductivity, insufficient mud burning and gas blow-out. Nevertheless, various countermeasures described within have been taken against such problems, and as the result it has now become possible to maintain tap holes in stable conditions.
Rotating charged hairy black hole in (2+1) dimensions and particle acceleration
J. Sadeghi; B. Pourhassan; H. Farahani
2013-10-26T23:59:59.000Z
In this paper we construct rotating charged hairy black hole in (2+1) dimensions for infinitesimal black hole charge and rotation parameters. Then we consider this black hole as particle accelerator and calculate the center-of-mass energy of two colliding test particles near the rotating charged hairy black hole in (2+1) dimensions. As we expected, the center-of-mass energy has infinite value.
Enhanced Hole Mobility in High Ge Content Asymmetrically Strained-SiGe p-MOSFETs
Chléirigh, C. Ni
The hole mobility characteristics of ?110? /(100)-oriented asymmetrically strained-SiGe p-MOSFETs are studied.
MEMS Materials and Temperature Sensors for Down Hole Geothermal System Monitoring
Wodin-Schwartz, Sarah
2013-01-01T23:59:59.000Z
Geothermal EnergyThe future of geothermal energy: Impact of enhanceddown-hole monitoring of geothermal energy systems. ASME 2011
Energy Distribution of a Schwarzschild Black Hole in a Magnetic Universe
Irina Radinschi
2000-10-25T23:59:59.000Z
We obtain the energy distribution of a Schwarzschild black hole in a magnetic universe in the Tolman prescription.
Evaluation of hole quality and bit life in graphite epoxy composites using video scanning
Lednicky, Thomas Edward
1985-01-01T23:59:59.000Z
. Hough J (Chairman of Commit ee) D . R. M. Alexander (Member) ( e&/ Dr, J. Bo sford (Memb r) W. . Turner (Head o Department) December 1985 ABSTRACT EVALUATION OF HOLE QUALITY AND BIT LIFE IN GRAPHITE EPOXY COMPOSITES USING VIDEO SCANNING... extensively in graphite epoxy composite material. This evaluation was accomplished by measuring the hole quality and also the wear land development. Two methods were used to determine the hole quality on a computer vision system: the hole size...
Harley, Gabriel; Smith, David D; Dennis, Tim; Waldhauer, Ann; Kim, Taeseok; Cousins, Peter John
2013-11-19T23:59:59.000Z
Contact holes of solar cells are formed by laser ablation to accomodate various solar cell designs. Use of a laser to form the contact holes is facilitated by replacing films formed on the diffusion regions with a film that has substantially uniform thickness. Contact holes may be formed to deep diffusion regions to increase the laser ablation process margins. The laser configuration may be tailored to form contact holes through dielectric films of varying thickness.
4d neutral dilatonic black holes and (4+p) dimensional nondilatonic black p-branes
J. R. Morris
2000-01-11T23:59:59.000Z
It is shown that, in contrast to the case of extreme 4d dilatonic black holes, 4d neutral dilatonic black holes with horizon singularities can not be interpreted as nonsingular nondilatonic black p-branes in (4+p) dimensions, regardless of the number of extra dimensions p. That is, extra dimensions do not remove naked singularities of 4d neutral dilatonic black holes.
Entropy bound of a charged object and electrostatic self-energy in black holes
B. Linet
1999-11-30T23:59:59.000Z
Without pretending to any rigour, we find a general expression of the electrostatic self-energy in static black holes with spherical symmetry. We determine the entropy bound of a charged object by assuming the existence of thermodynamics for these black holes. By combining these two results, we show that the entropy bound does not depend on the considered black hole.
Holography, Gauge-gravity Connection and Black Hole Entropy Parthasarathi Majumdar,
;Created with pptalk Slide 2 Black holes : Extreme gravitation at work what lies beyond the `hori- zon' observationally unknown Inaccessibility apprehensions Turn to theory Black Holes from Newton's law ? Dark stars faster than c ? #12;Created with pptalk Slide 2 Black holes : Extreme gravitation at work what lies
The static and dynamic characteristics of divergent tapered-bore hole-pattern gas seals
Carter, Jeremy John
2001-01-01T23:59:59.000Z
Experimental data is presented for three hole-pattern annular gas seals with differing diverging tapers machined in them. The holes are approximately 3.12 mm (.123 in) deep on average with a hole area to surface area ratio of 43%. The L/d ratio...
Iliffe, Thomas M.
Ostracoda of Moss Town Blue Hole, Great Exuma Island, Great Bahama Bank (Crustacea: Ostracoda Halocypridina, and one Cladocopina) are reported from 30 to 60 m depths in Moss Town Blue Hole, an ocean blue. The collection from Moss Town Blue Hole contained no new species, but five species had not been reported
The static and dynamic characteristics of divergent tapered-bore hole-pattern gas seals
Carter, Jeremy John
2001-01-01T23:59:59.000Z
Experimental data is presented for three hole-pattern annular gas seals with differing diverging tapers machined in them. The holes are approximately 3.12 mm (.123 in) deep on average with a hole area to surface area ratio of 43%. The L/d ratio...
Small diameter horizontal hole drilling - state of technology
NONE
1984-11-01T23:59:59.000Z
The purpose of this study is to determine the existing state of the art for small diameter, horizontal pilot hole drilling. The data were collected by contacting worldwide owners of raise or slant hole drill equipment, manufacturers of drills and bits, and manufacturers of survey tools. The study was limited to existing equipment and completed trials. Most attempts at directional pilot hole drilling, and most survey tools are designed for near vertical, downward drilling. Several types of controllable bits are available which depend upon in-hole motors and bent or wedged assemblies to bias the direction of drilling. Accurate horizontal drilling can be achieved in this way by alternately drilling and surveying at frequent intervals. This procedure is impractical, however, from both a production and a cost standpoint. A few attempts at directional drilling have been made using ordinary drilling tools, a rotary drill string and a tricone bit. Good equipment and a well trained drill crew appeared to be the most significant factor in practical, accurate drilling, whether horizontal or vertical. Because of the cost, no one uses steerable bit drilling except for correction, and then only for short portions of an overall drill program. No satisfactory continuous readout surveying tool, coupled with a remotely controlled bit capable of direction correction, exists. An industry need exists for a high speed, directional drill bit, coupled with a continuously monitored survey tool. 2 tables.
THE FIRST ACCURATE PARALLAX DISTANCE TO A BLACK HOLE
Miller-Jones, J. C. A.
Using astrometric VLBI observations, we have determined the parallax of the black hole X-ray binary V404 Cyg to be 0.418 [plus or minus sign] 0.024 mas, corresponding to a distance of 2.39 [plus or minus sign] 0.14 kpc, ...
Horizon of quantum black holes in various dimensions
Casadio, Roberto; Giugno, Andrea; Mureika, Jonas
2015-01-01T23:59:59.000Z
We adapt the horizon wave-function formalism to describe massive static spherically symmetric sources in a general $(1+D)$-dimensional space-time, for $D>3$ and including the $D=1$ case. We find that the probability $P_{\\rm BH} $ that such objects are (quantum) black holes behaves similarly to the probability in the $(3+1)$ framework for $D> 3$. In fact, for $D\\ge 3$, the probability increases towards unity as the mass grows above the relevant $D$-dimensional Planck scale $m_D$, the faster the larger $D$. In contrast, for $D=1$, we find the probability is comparably larger for smaller masses, but $P_{\\rm BH} < 0.5$, suggesting that such lower dimensional black holes are purely quantum and not classical objects. This result is consistent with recent observations that sub-Planckian black holes are governed by an effective two-dimensional gravitation theory. Lastly, we derive Generalised Uncertainty Principle relations for the black holes under consideration, and for all cases find a minimum length scale $L_D...
A Unitary Model of The Black Hole Evaporation
Yu-Lei Feng; Yi-Xin Chen
2014-12-16T23:59:59.000Z
A unitary effective field model of the black hole evaporation is proposed to satisfy almost the four postulates of the black hole complementarity (BHC). In this model, we enlarge a black hole-scalar field system by adding an extra radiation detector that couples with the scalar field. After performing a partial trace over the scalar field space, we obtain an effective entanglement between the black hole and the detector (or radiation in it). As the whole system evolves, the S-matrix formula can be constructed formally step by step. Without local quantum measurements, the paradoxes of the information loss and AMPS's firewall can be resolved. However, the information can be lost due to quantum decoherence, as long as some local measurement has been performed on the detector to acquire the information of the radiation in it. But unlike Hawking's completely thermal spectrum, some residual correlations can be found in the radiations. All these considerations can be simplified in a qubit model that provides a \\emph{modified quantum teleportation} to transfer the information via an EPR pairs.
Relative importance of radical families The "Ozone Hole"
Toohey, Darin W.
· Relative importance of radical families · The "Ozone Hole" · Introduction to heterogeneous chemistry Tuesday, March 8, 2011 #12;Review of important points so far Stratospheric ozone is only produced with these parameters Sir Sydney Chapman nearly got it right. He could account for the formation of the ozone layer
Black hole mergers: do gas discs lead to spin alignment?
Giuseppe Lodato; Davide Gerosa
2012-11-01T23:59:59.000Z
In this Letter we revisit arguments suggesting that the Bardeen-Petterson effect can coalign the spins of a central supermassive black hole binary accreting from a circumbinary (or circumnuclear) gas disc. We improve on previous estimates by adding the dependence on system parameters, and noting that the nonlinear nature of warp propagation in a thin viscous disc affects alignment. This reduces the disc's ability to communicate the warp, and can severely reduce the effectiveness of disc-assisted spin alignment. We test our predictions with a Monte Carlo realization of random misalignments and accretion rates and we find that the outcome depends strongly on the spin magnitude. We estimate a generous upper limit to the probability of alignment by making assumptions which favour it throughout. Even with these assumptions, about 40% of black holes with $a \\gtrsim 0.5$ do not have time to align with the disc. If the residual misalignment is not small and it is maintained down to the final coalescence phase this can give a powerful recoil velocity to the merged hole. Highly spinning black holes are thus more likely of being subject to strong recoils, the occurrence of which is currently debated.
Sensitivity of HAWC to Primordial Black Hole Bursts
Ukwatta, T N; MacGibbon, D Stump J H; Marinelli, S S; Yapici, T; Tollefson, K
2015-01-01T23:59:59.000Z
Primordial Black Holes (PBHs) are black holes that may have been created in the early Universe and could be as large as supermassive black holes or as small as the Planck scale. It is believed that a black hole has a temperature inversely proportional to its mass and will thermally emit all species of fundamental particles. PBHs with initial masses of 5.0 x 10^14 g should be expiring today with bursts of high-energy gamma radiation in the GeV/TeV energy range. The High Altitude Water Cherenkov (HAWC) observatory is sensitive to the high end of the PBH gamma-ray burst spectrum. Due to its large field of view, duty cycle above 90% and sensitivity up to 100 TeV, the HAWC observatory is well suited to perform a search for PBH bursts. We report that if the PBH explodes within 0.25 light years from Earth and within 26 degrees of zenith, HAWC will have a 95% probability of detecting the PBH burst at the 5 sigma level. Conversely, a null detection from a 2 year or longer HAWC search will set PBH upper limits which ar...
Black hole free energy during charged collapse: a numerical study
Hugues Beauchesne; Ariel Edery
2012-05-19T23:59:59.000Z
We perform a numerical investigation of the thermodynamics during the collapse of a charged (complex) scalar field to a Reissner-Nordstr\\"om (RN) black hole in isotropic coordinates. Numerical work on gravitational collapse in isotropic coordinates has recently shown that the negative of the total Lagrangian approaches the Helmholtz free energy F= E-TS of a Schwarzschild black hole at late times of the collapse (where E is the black hole mass, T the temperature and S the entropy). The relevant thermodynamic potential for the RN black hole is the Gibbs free energy G=E-TS-$\\Phi_H$ Q where Q is the charge and $\\Phi_H$ the electrostatic potential at the outer horizon. In charged collapse, there is a large outgoing matter wave which prevents the exterior from settling quickly to a static state. However, the interior region is not affected significantly by the wave. We find numerically that the interior contribution to the Gibbs free energy is entirely gravitational and accumulates in a thin shell just inside the horizon. The entropy is gravitational in origin and one observes dynamically that it resides on the horizon. We also compare the numerical value of the interior Lagrangian to the expected analytical value of the interior Gibbs free energy for different initial states and we find that they agree to within 10-13%. The two values are approaching each other so that their difference decreases with more evolution time.
Neutron Hole States of Mo-93,95
Bindal, P. K.; Youngblood, David H.; Kozub, R. L.
1977-01-01T23:59:59.000Z
- topes but less than half is observed for '"Mo. The hole strength distributions for l =1 and 4 are displayed in Fig. 10 for all the Mo isotopes. It is apparent from this figure that the states corres- ponding to lgg/2 2Py/2 and 2P, /, orbitals, which...
Small, dark, and heavy: But is it a black hole?
Visser, Matt; Liberati, Stefano; Sonego, Sebastiano
2009-01-01T23:59:59.000Z
Astronomers have certainly observed things that are small, dark, and heavy. But are these objects really black holes in the sense of general relativity? The consensus opinion is simply "yes", and there is very little "wriggle room". We discuss one of the specific alternatives.
Bulk emission of scalars by a rotating black hole
M. Casals; S. R. Dolan; P. Kanti; E. Winstanley
2008-07-17T23:59:59.000Z
We study in detail the scalar-field Hawking radiation emitted into the bulk by a higher-dimensional, rotating black hole. We numerically compute the angular eigenvalues, and solve the radial equation of motion in order to find transmission factors. The latter are found to be enhanced by the angular momentum of the black hole, and to exhibit the well-known effect of superradiance. The corresponding power spectra for scalar fields show an enhancement with the number of dimensions, as in the non-rotating case. We compute the total mass loss rate of the black hole for a variety of black-hole angular momenta and bulk dimensions, and find that, in all cases, the bulk emission remains significantly smaller than the brane emission. The angular-momentum loss rate is also computed and found to have a smaller value in the bulk than on the brane. We present accurate bulk-to-brane emission ratios for a range of scenarios.
Entropy Product Formula for spinning BTZ Black Hole
Pradhan, Parthapratim
2015-01-01T23:59:59.000Z
We investigate the thermodynamic properties of inner and outer horizons in the background of spinning BTZ(Ba\\~{n}ados,Teitelboim and Zanelli) black hole. We compute the \\emph{horizon radii product, the entropy product, the surface temperature product, the Komar energy product and the specific heat product} for both the horizons. We observe that the entropy product is \\emph{universal}(mass-independent), whereas the surface temperature product, Komar energy product and specific heat product are \\emph{not universal} because they all depends on mass parameter. We also show that the \\emph{First law} of black hole thermodynamics and \\emph {Smarr-Gibbs-Duhem } relations hold for inner horizon as well as outer horizon. The Christodoulou-Ruffini mass formula is derived for both the horizons. We further study the \\emph{stability} of such black hole by computing the specific heat for both the horizons. It has been observed that under certain condition the black hole possesses \\emph{second order phase transition}.
Entropy Product Formula for spinning BTZ Black Hole
Parthapratim Pradhan
2015-09-02T23:59:59.000Z
We investigate the thermodynamic properties of inner and outer horizons in the background of spinning BTZ(Ba\\~{n}ados,Teitelboim and Zanelli) black hole. We compute the \\emph{horizon radii product, the entropy product, the surface temperature product, the Komar energy product and the specific heat product} for both the horizons. We observe that the entropy product is \\emph{universal}(mass-independent), whereas the surface temperature product, Komar energy product and specific heat product are \\emph{not universal} because they all depends on mass parameter. We also show that the \\emph{First law} of black hole thermodynamics and \\emph {Smarr-Gibbs-Duhem } relations hold for inner horizon as well as outer horizon. The Christodoulou-Ruffini mass formula is derived for both the horizons. We further study the \\emph{stability} of such black hole by computing the specific heat for both the horizons. It has been observed that under certain condition the black hole possesses \\emph{second order phase transition}.
Steady and unsteady calibration of multi-hole probes
Johansen, Espen S
1998-01-01T23:59:59.000Z
properties like the density and viscosity. The algorithm utilizes a local least-squares modeling technique and has been tested on 4 novel miniature 7-hole probes that have been calibrated at NASA Langley Flow Modeling and Control Branch for the entire...
Reissner-Nordstrom black hole in dark energy background
Ngangbam Ishwarchandra; Ng. Ibohal; K. Yugindro Singh
2014-11-29T23:59:59.000Z
In this paper we propose a stationary solution of Einstein's field equations describing Reissner-Nordstrom black hole in dark energy background. It is to be regarded as the Reissner-Nordstrom black hole is embedded into the dark energy solution producing Reissner-Nordstrom-dark energy black hole. We find that the space-time geometry of Reissner-Nordstrom-dark energy solution is Petrov type $D$ in the classification of space-times. It is also shown that the embedded space-time possesses an energy-momentum tensor of the electromagnetic field interacting with the dark energy having negative pressure. We find the energy-momentum tensor for dark energy violates the the strong energy condition due to the negative pressure, whereas that of the electromagnetic field obeys the strong energy condition. It is shown that the time-like vector field for an observer in the Reissner-Nordstrom-dark energy space is expanding, accelerating, shearing and non-rotating. We investigate the surface gravity of the horizons for the embedded dark energy black hole. The characteristic properties of relativistic dark energy based on the de Sitter solution is discussed in an appendix.
Magnetotellurics At Alum Area (DOE GTP) | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a gHigh Plains Wind Farm JumpKahului,Coos BayTHE COSO GETHERMAL FIELD,MadanMagnetotellurics
Magnetotellurics At Mccoy Geothermal Area (DOE GTP) | Open Energy
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a gHigh Plains Wind Farm JumpKahului,Coos BayTHE COSO GETHERMALOpenInformation Magnetotellurics At
Magnetotellurics At Mcgee Mountain Area (DOE GTP) | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a gHigh Plains Wind Farm JumpKahului,Coos BayTHE COSO GETHERMALOpenInformation Magnetotellurics
Magnetotellurics At Silver Peak Area (DOE GTP) | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a gHigh Plains Wind Farm JumpKahului,Coos BayTHE COSOInformation Magnetotellurics At
Geothermometry At Alum Area (DOE GTP) | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a g eWorksVillagesourceEuromoneyForest CityGeothermal
Geothermometry At Silver Peak Area (DOE GTP) | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a g eWorksVillagesourceEuromoneyForest CityGeothermalGeothermometry AtGeothermometry At Silver Peak
Ground Magnetics At Alum Area (DOE GTP) | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a g eWorksVillagesourceEuromoneyForestGlenrock WindGreenrock CapitalEnergyOpenAl.,Ground
Hydroprobe At Mcgee Mountain Area (DOE GTP) | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a gHigh Plains Wind Farm Jump to: navigation, search NameHydro GreenCalifornia, 1985 | OpenOpen
Thermochronometry At Fish Lake Valley Area (DOE GTP) | Open Energy
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onsource History View New PagessourceRavenandEconomies |Information Texas'sTheEnergyAl., 1993)Thermo Solar
FMI Log At Maui Area (DOE GTP) | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP aCentrothermDepew, New York:Essex County, New York:Inyo Co. ,
Field Mapping At Colrado Area (DOE GTP) | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP aCentrothermDepew, New York:Essex County, NewPage Edit with form HistoryFibrowattField Mapping At
Flow Test At Colrado Area (DOE GTP) | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP aCentrothermDepew, New York:Essex County,sourcesource History View New Pages RecentFlow Test At
Flowing Electrical Conductivity At Jemez Pueblo Area (DOE GTP) | Open
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP aCentrothermDepew, New York:Essex County,sourcesource History View New Pages RecentFlowFlowAl.,Energy
Static Temperature Survey At Wister Area (DOE GTP) | Open Energy
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onsource History View New PagessourceRavenand SomeSouthEnergy Information Static Temperature