Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gtp exploration activity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

allosteric gtp activation: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Translocation of proteins across the endoplasmic reticulum membrane is a GTP-dependent process. The signal recognition particle (SRP) and the SRP receptor both contain subunits...

2

EXPLORATION ACTIVITY WORKSHEET MAJOR & CAREER EXPLORATION  

E-Print Network [OSTI]

of activity or process you should explore to bring you closer to your academic goals. NameEXPLORATION ACTIVITY WORKSHEET MAJOR & CAREER EXPLORATION Purpose: The exploration activity is designed for students to "explore" opportunities at UM as they relate to student success, majors, careers

Milchberg, Howard

3

Innovative Exploration Technologies Subprogram Overview  

Broader source: Energy.gov [DOE]

This overview of GTP's Innovative Exploration Technologies subprogram was given at the GTP Program Peer Review on May 18, 2010.

4

GTP Adds Meeting on the National Geothermal Data System Project...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and activities of the NGDS team. The meeting will take place at the Hyatt Regency Crystal City in Arlington, VA, on Monday, May 17, 2010, just preceding the GTP Peer Review...

5

EXPLORATION ACTIVITY WORKSHEET Purpose: The exploration activity is designed for students to "explore" opportunities at UM as they  

E-Print Network [OSTI]

EXPLORATION ACTIVITY WORKSHEET Purpose: The exploration activity is designed for students to "explore" opportunities at UM as they relate to student success, majors, careers of interest and other of their academic development and thus, you and your advisor will determine what type of activity or process you

Hill, Wendell T.

6

Intracellular GTP level determines cell's fate toward differentiation and apoptosis  

SciTech Connect (OSTI)

Since the adequate supply of guanine nucleotides is vital for cellular activities, limitation of their syntheses would certainly result in modulation of cellular fate toward differentiation and apoptosis. The aim of this study was to set a correlation between the intracellular level of GTP and the induction of relevant signaling pathways involved in the cell's fate toward life or death. In that regard, we measured the GTP level among human leukemia K562 cells exposed to mycophenolic acid (MPA) or 3-hydrogenkwadaphnin (3-HK) as two potent inosine monophosphate dehydrogenase inhibitors. Our results supported the maturation of the cells when the intracellular GTP level was reduced by almost 30-40%. Under these conditions, 3-HK and/or MPA caused up-regulation of PKC{alpha} and PI3K/AKT pathways. Furthermore, co-treatment of cells with hypoxanthine plus 3-HK or MPA, which caused a reduction of about 60% in the intracellular GTP levels, led to apoptosis and activation of mitochondrial pathways through inverse regulation of Bcl-2/Bax expression and activation of caspase-3. Moreover, our results demonstrated that attenuation of GTP by almost 60% augmented the intracellular ROS and nuclear localization of p21 and subsequently led to cell death. These results suggest that two different threshold levels of GTP are needed for induction of differentiation and/or ROS-associated apoptosis. - Graphical abstract: Display Omitted

Meshkini, Azadeh; Yazdanparast, Razieh, E-mail: yazdan@ibb.ut.ac; Nouri, Kazem

2011-06-15T23:59:59.000Z

7

Blind Geothermal System Exploration in Active Volcanic Environments...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Blind Geothermal System Exploration in Active Volcanic Environments; Multi-phase Geophysical and Geochemical Surveys in Overt & Subtle Volcanic Systems, Hawaii & Maui Blind...

8

Slim Holes At Maui Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardtonManagement, 2009) |Crump's HotMaui Area (DOE GTP)

9

Active Exploration for Robot Parameter Selection in Episodic Reinforcement Learning  

E-Print Network [OSTI]

Active Exploration for Robot Parameter Selection in Episodic Reinforcement Learning Oliver Kroemer-dimensional. Given the inherent exploration-exploitation dilemma of the problem, we propose treating in continuous multi- dimensional spaces. The approach is based on Gaussian process regression, which can

10

Structure and Mutational Analysis of the Archaeal GTP:AdoCbi-P Guanylyltransferase (CobY) from Methanocaldococcus jannaschii: Insights into GTP Binding and Dimerization  

SciTech Connect (OSTI)

In archaea and bacteria, the late steps in adenosylcobalamin (AdoCbl) biosynthesis are collectively known as the nucleotide loop assembly (NLA) pathway. In the archaeal and bacterial NLA pathways, two different guanylyltransferases catalyze the activation of the corrinoid. Structural and functional studies of the bifunctional bacterial guanylyltransferase that catalyze both ATP-dependent corrinoid phosphorylation and GTP-dependent guanylylation are available, but similar studies of the monofunctional archaeal enzyme that catalyzes only GTP-dependent guanylylation are not. Herein, the three-dimensional crystal structure of the guanylyltransferase (CobY) enzyme from the archaeon Methanocaldococcus jannaschii (MjCobY) in complex with GTP is reported. The model identifies the location of the active site. An extensive mutational analysis was performed, and the functionality of the variant proteins was assessed in vivo and in vitro. Substitutions of residues Gly8, Gly153, or Asn177 resulted in {ge}94% loss of catalytic activity; thus, variant proteins failed to support AdoCbl synthesis in vivo. Results from isothermal titration calorimetry experiments showed that MjCobY{sup G153D} had 10-fold higher affinity for GTP than MjCobY{sup WT} but failed to bind the corrinoid substrate. Results from Western blot analyses suggested that the above-mentioned substitutions render the protein unstable and prone to degradation; possible explanations for the observed instability of the variants are discussed within the framework of the three-dimensional crystal structure of MjCobY{sup G153D} in complex with GTP. The fold of MjCobY is strikingly similar to that of the N-terminal domain of Mycobacterium tuberculosis GlmU (MtbGlmU), a bifunctional acetyltransferase/uridyltransferase that catalyzes the formation of uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc).

Newmister, Sean A.; Otte, Michele M.; Escalante-Semerena, Jorge C.; Rayment, Ivan (UW)

2012-02-08T23:59:59.000Z

11

Update on petroleum exploration activities in the Philippines  

SciTech Connect (OSTI)

The first significant event in Philippine Petroleum exploration dates back to 1896 with the drilling of Toledo-1 in Cebu by Smith & Bell. From the 1950`s to the 1970`s, widespread exploration activities were carried out but it was only eighty years after the first oil drilling in 1896 that oil was finally discovered in commercial quantity in Northwest Palawan. This could be attributed to the fact that serious exploration for petroleum was made with the enactment of Presidential Decree No. 87, better known as the {open_quotes}Oil Exploration and Development Act of 1972{close_quotes}, which takes into effect the current Service Contract System. Amendments to P.D. No. 87 is underway to further improve its incentive package and make it more attractive to explorationists. Petroleum exploration in the Philippines continues to be an energetic industry even if the players are not always rewarded with finds. Frontier areas have become attractive for exploration in view of the continuing research studies resulting to increased database thereat. While Northwest Palawan continues to be the hub of action, frontier areas as well as the more risky deepwater acreages still generate interests, if one wishes to be an active player in a growing energy-hungry economy.

Salcedo, B.H.C.; Bausa, G.J.G.; Ocampo. I.U. [and others

1996-12-31T23:59:59.000Z

12

Update on petroleum exploration activities in the Philippines  

SciTech Connect (OSTI)

The first significant event in Philippine Petroleum exploration dates back to 1896 with the drilling of Toledo-1 in Cebu by Smith Bell. From the 1950's to the 1970's, widespread exploration activities were carried out but it was only eighty years after the first oil drilling in 1896 that oil was finally discovered in commercial quantity in Northwest Palawan. This could be attributed to the fact that serious exploration for petroleum was made with the enactment of Presidential Decree No. 87, better known as the [open quotes]Oil Exploration and Development Act of 1972[close quotes], which takes into effect the current Service Contract System. Amendments to P.D. No. 87 is underway to further improve its incentive package and make it more attractive to explorationists. Petroleum exploration in the Philippines continues to be an energetic industry even if the players are not always rewarded with finds. Frontier areas have become attractive for exploration in view of the continuing research studies resulting to increased database thereat. While Northwest Palawan continues to be the hub of action, frontier areas as well as the more risky deepwater acreages still generate interests, if one wishes to be an active player in a growing energy-hungry economy.

Salcedo, B.H.C.; Bausa, G.J.G.; Ocampo. I.U. (and others)

1996-01-01T23:59:59.000Z

13

TBC-Domain GAPs for Rab GTPases Accelerate GTP Hydrolysis by a Dual-Finger Mechanism  

SciTech Connect (OSTI)

Rab GTPases regulate membrane trafficking by cycling between inactive (GDP-bound) and active (GTP-bound) conformations. The duration of the active state is limited by GTPase-activating proteins (GAPs), which accelerate the slow intrinsic rate of GTP hydrolysis. Proteins containing TBC (Tre-2, Bub2 and Cdc16) domains are broadly conserved in eukaryotic organisms and function as GAPs for Rab GTPases as well as GTPases that control cytokinesis. An exposed arginine residue is a critical determinant of GAP activity in vitro and in vivo. It has been expected that the catalytic mechanism of TBC domains would parallel that of Ras and Rho family GAPs. Here we report crystallographic, mutational and functional analyses of complexes between Rab GTPases and the TBC domain of Gyp1p. In the crystal structure of a TBC-domain-Rab-GTPase-aluminium fluoride complex, which approximates the transition-state intermediate for GTP hydrolysis, the TBC domain supplies two catalytic residues in trans, an arginine finger analogous to Ras/Rho family GAPs and a glutamine finger that substitutes for the glutamine in the DxxGQ motif of the GTPase. The glutamine from the Rab GTPase does not stabilize the transition state as expected but instead interacts with the TBC domain. Strong conservation of both catalytic fingers indicates that most TBC-domain GAPs may accelerate GTP hydrolysis by a similar dual-finger mechanism.

Pan,X.; Eathiraj, S.; Lambright, D.

2006-01-01T23:59:59.000Z

14

GTP ARRA Spreadsheet | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6TheoreticalFuelCell Energy IncFOR EGS HomeInformationGTP

15

Explore This!  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Explore these Topics Explore Science Explore Explore these Topics Activities Videos Cool Links Favorite Q&A invisible utility element Explore This Science is far deeper and wider...

16

Tubulin Polymerization with GTP/GMPCPP/Taxol I. Solutions & Supplies  

E-Print Network [OSTI]

Tubulin Polymerization with GTP/GMPCPP/Taxol I. Solutions & Supplies BRB80 (1X): 80 mM PIPES, 1 m' at 90K at 2¡C. We especially recommend this clarification when polymerization includes GMPCPP and prior to microinjection. III. GTP Polymerization 1. On ice mix unlabeled tubulin and labeled tubulin

Mitchison, Tim

17

International oil and gas exploration and development activities  

SciTech Connect (OSTI)

This report is part of an ongoing series of quarterly publications that monitors discoveries of oil and natural gas in foreign countries and provides an analysis of the reserve additions that result. The report is prepared by the Energy Information Administration (EIA) of the US Department of Energy (DOE) under the Foreign Energy Supply Assessment Program (FESAP). It presents a summary of discoveries and reserve additions that result from recent international exploration and development activities. It is intended for use by petroleum industry analysts, various government agencies, and political leaders in the development, implementation, and evaluation of energy plans, policy, and legislation. 25 refs., 8 figs., 4 tabs.

Not Available

1990-10-29T23:59:59.000Z

18

Intrinsically Motivated Goal Exploration for Active Motor Learning in Robots: A Case Study  

E-Print Network [OSTI]

the exploration process typically set constraints on actions and goals. Social guidance is an important sourceIntrinsically Motivated Goal Exploration for Active Motor Learning in Robots: A Case Study Adrien exploration mechanism which allows a redundant robot to efficiently and actively learn its inverse kinematics

Paris-Sud XI, Université de

19

Blind Geothermal System Exploration in Active Volcanic Environments...  

Broader source: Energy.gov (indexed) [DOE]

lack of surface thermal manifestation * Assessing unconventional targets requires re-tooling the standard geothermal exploration kit and adding in new tools Gravity Aeromagnetics...

20

Thermal Gradient Holes At Alum Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective Jump to:the NatureOpenOpenAlum Area (DOE GTP)

Note: This page contains sample records for the topic "gtp exploration activity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Slim Holes At New River Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardtonManagement, 2009) |Crump's HotMaui Area (DOE GTP)New

22

Explore Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science Explore Science Explore Explore these Topics Activities Videos Cool Links Favorite Q&A invisible utility element Science is thinking in an organized way about things...

23

Status of exploration in the Mediterranean and future activity  

SciTech Connect (OSTI)

During the past ten years hydrocarbon exploration in the Mediterranean region has been carried out with a reasonably enthusiastic effort. The level of offshore drilling cannot compare to the North Sea, where the number of completed wildcats has been about three times the completions registered in the Mediterranean Sea. However, only 20% of the approximate 2.5 million km{sup 2} of the Mediterranean has water depths of less than 200 m. The remaining 80% of the area is covered by deep to mostly very deep water and today is still considered a long-range frontier target for petroleum exploration. Since the major extensions of the prospective shelves are located in Italy, Libya, Tunisia, and Spain, it is logical that most of the offshore exploration has been carried out in these countries. In particular, more than 40% of these exploratory wells have been drilled in Italian waters during the past decade. Even though a couple of significant discoveries have been found, the remaining recoverable reserves have slowly and continuously diminished. Most of the Mediterranean shelf is relatively unexplored, yet future discoveries are projected to be of minor proportions.

Villa, C. (AGIP, Milan (Italy))

1988-08-01T23:59:59.000Z

24

Multispectral Imaging At Alum Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 ClimateSpurr GeothermalCarmelAlum Area (DOE GTP) Jump to:

25

Multispectral Imaging At Fort Bliss Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 ClimateSpurr GeothermalCarmelAlum Area (DOE GTP) JumpOpen

26

Multispectral Imaging At Maui Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 ClimateSpurr GeothermalCarmelAlum Area (DOE GTP)

27

Exploring the network dynamics underlying brain activity during rest Joana Cabral a,b,  

E-Print Network [OSTI]

Exploring the network dynamics underlying brain activity during rest§ Joana Cabral a,b, *, Morten L. Kringelbach b,c , Gustavo Deco a,d a Theoretical and Computational Neuroscience Group, Center of Brain Recerca i Estudis Avanc¸ats (ICREA), Barcelona, Spain Contents 1. Brain activity during rest

Deco, Gustavo

28

Magnetotellurics At Mcgee Mountain Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay(Held & Henderson,Mcgee Mountain Area (DOE GTP)

29

Flow Test At Colrado Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior Area (DOE GTP) JumpColrado Area

30

Flowing Electrical Conductivity At Jemez Pueblo Area (DOE GTP) | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior Area (DOE GTP)FlowAreaEnergy

31

Flow Test At Alum Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vs ActualInformationAlum Area (DOE GTP) Jump

32

Flow Test At Maui Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOE GTP)Open Energy

33

Flow Test At Wister Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal AreaWister Area (DOE GTP) Jump

34

FMI Log At Maui Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It isInformationexplains a4Evendale,OpenFAOSTATOpenMaui Area (DOE GTP)

35

Summary of geothermal exploration activity in the State of Washington from 1978 to 1983. Final report  

SciTech Connect (OSTI)

Project activity is summarized with references to the publications produced. Project findings are reported as they relate to specific geothermal resource target areas. Some major projects of the goethermal exploration program are: thermal and mineral spring chemistry, heat flow drilling, temperature gradient measurements, Cascade Range regional gravity, geohydrology study of the Yakima area, low temperature geothermal resources, geology, geochemistry of Cascade Mountains volcanic rocks, and soil mercury studies. (MHR)

Korosec, M.A.

1984-01-01T23:59:59.000Z

36

E-Print Network 3.0 - activate store-operated calcium Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Synaptic Summary: by Calcium Ions; is Activated by Ras-GTP All PLC Isoforms Perform the Same Reaction... Calcium Ions Play a Role in Muscle...

37

E-Print Network 3.0 - activity calcium signaling Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Calcium Levels... by Calcium Ions; is Activated by Ras-GTP All PLC Isoforms Perform the Same Reaction... Calcium Ions Play a Role in Muscle...

38

Exploration Of Activity Measurements And Equilibrium Checks For Sediment Dating Using Thick-Window Germanium Detectors  

SciTech Connect (OSTI)

Activity measurements on sediment samples for trapped-charge geological dating using gamma-ray spectroscopy are an important verification of the field-site dose rate determination. Furthermore gamma-ray spectroscopy can check if the natural decay series are in secular equilibrium which is a crucial assumption in such dating. Typically the activities of leading members of the Thorium and Uranium decay series are measured, which requires Germanium detectors with thin windows and good energy resolution in order to effectively detect the associated low energy gamma-rays. Such equipment is not always readily available. The potential of conventional Germanium detectors with thick entrance window has been explored towards routine gamma-ray spectroscopy of sediment samples using higher energy gamma-rays. Alternative isotopes, such as Ac-228 and Pb-212 for the Thorium series, and Pa-234m, Ra-226 and Bi-214 for the Uranium series, have been measured in order to determine the mass-specific activity for the respective series and possibly provide a check of secular equilibrium. In addition to measurements of the K-40 activity, with the alternative approach, the activities of both decay series can be accurately determined. The secular equilibrium condition may be tested for the Thorium series. Measurement accuracy for Pa-234m is, however, not sufficient to permit also a reliable check of equilibrium for the Uranium series.

Warner, Jacob A.; Gladkis, Laura G.; Timmers, Heiko [School of Physical, Environmental and Mathematical Sciences, University of New South Wales at the Australian Defence Force Academy, Canberra ACT 2602 (Australia); Fitzsimmons, Kathryn E. [Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103 Leipzig (Germany); Reynolds, Eva M. [Research School of Earth Sciences, Australian National University, Canberra ACT 0200 (Australia)

2011-06-01T23:59:59.000Z

39

Intrinsic Absorption Properties in Active Galaxies Observed with the Far Ultraviolet Spectroscopic Explorer  

E-Print Network [OSTI]

In a continuing survey of active galactic nuclei observed by the Far Ultraviolet Spectroscopic Explorer, we provide a deeper analysis of intrinsic absorption features found in 35 objects. Our survey is for low-redshift and moderate-luminosity objects, mostly Seyfert galaxies. We find a strong correlation between maximum radial velocity and luminosity. We also examine the relationships between equivalent width (EW), full width at half maximum, velocity: and continuum flux. The correlation between velocity and luminosity has been explored previously by Laor & Brandt, but at a significantly higher redshift and heavily weighted by broad absorption line quasars. We also have examined each object with multiple observations for variability in each of the aforementioned quantities, and have characterized the variation of EW with the continuum flux. In our survey, we find that variability of O VI lambda1032, lambda1038 is less common than of the UV doublets of CIV and N V seen at longer wavelengths, because the O VI absorption is usually saturated. Lyman beta absorption variability is more frequent. In a target-by-target examination we find that broad absorption line absorption and narrow absorption line absorbers are related in terms of maximum outflow velocity and luminosity, and both can be exhibited in similar luminosity objects. We also find one object that shows radial velocity change, seven objects that show equivalent width variability, and two objects that show either transverse velocity changes or a change in ionization.

Jay P. Dunn; D. Michael Crenshaw; S. B. Kraemer; M. L. Trippe

2008-07-01T23:59:59.000Z

40

December 11, 2008 11:0 WSPC/INSTRUCTION FILE GTP-PPL SELFISH ROUTING IN THE PRESENCE  

E-Print Network [OSTI]

December 11, 2008 11:0 WSPC/INSTRUCTION FILE GTP-PPL SELFISH ROUTING IN THE PRESENCE OF NETWORK;December 11, 2008 11:0 WSPC/INSTRUCTION FILE GTP-PPL 2 Parallel Processing Letters created by routers which

Mavronicolas, Marios

Note: This page contains sample records for the topic "gtp exploration activity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

The Role of Magnesium for Geometry and Charge in GTP Hydrolysis, Revealed by Quantum Mechanics/Molecular Mechanics Simulations  

E-Print Network [OSTI]

The Role of Magnesium for Geometry and Charge in GTP Hydrolysis, Revealed by Quantum Mechanics, People's Republic of China ABSTRACT The coordination of the magnesium ion in proteins by triphosphates conversion. For example, in Ras the magnesium ion contributes to the catalysis of GTP hydrolysis

Gerwert, Klaus

42

Flow Test At The Needles Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior Area (DOE GTP)FlowArea (DOE GTP)

43

A Survey of Intrinsic Absorption in Active Galaxies using the Far Ultraviolet Spectroscopic Explorer  

E-Print Network [OSTI]

We present a survey of 72 Seyfert galaxies and quasars observed by the it Far Ultraviolet Spectroscopic Explorer (FUSE). We have determined that 72 of 253 available active galactic nuclei (AGN) targets are viable targets for detection of intrinsic absorption lines. We examined these spectra for signs of intrinsic absorption in the O VI doublet (lambda 1031.9, 1037.6) and Lyman beta (lambda 1025.7). The fraction of Seyfert 1 galaxies and low-redshift quasars at z absorption is ~50%, which is slightly lower than Crenshaw et al. (1999) found (60%) based on a smaller sample of Seyfert 1 galaxies observed with the Hubble Space Telescope (HST). With this new fraction we find a global covering factor of the absorbing gas with respect to the central nucleus of ~0.4. Our survey is to date the largest searching for intrinsic UV absorption with high spectral resolution, and is the first step toward a more comprehensive study of intrinsic absorption in low-redshift AGN.

Jay P. Dunn; D. Michael Crenshaw; S. B. Kraemer; J. R. Gabel

2007-06-20T23:59:59.000Z

44

Exploring the structure and chemical activity of 2-D gold islands on graphene moire/Ru(0001)  

E-Print Network [OSTI]

Exploring the structure and chemical activity of 2-D gold islands on graphene moire/Ru(0001) Ye Xu May 2011 DOI: 10.1039/c1fd00030f Au deposited on Ru(0001)-supported extended, continuous graphene. These Au islands conform to the corrugation of the underlying graphene and display commensurate moire

Goodman, Wayne

45

The non-aqueous chemistry of uranium has been an active area of exploration in recent decades1,2  

E-Print Network [OSTI]

-purity depleted uranium produced as a by-product of nuclear isotope enrichment programmes. The early actinideThe non-aqueous chemistry of uranium has been an active area of exploration in recent decades1 for uranium will be created in part by the quest of researchers to understand the properties and potential

Cai, Long

46

Polymerization of proteins actin and tubulin: the role of nucleotides ATP, GTP  

E-Print Network [OSTI]

Polymerization of proteins actin and tubulin: the role of nucleotides ATP, GTP P. Ballone Institut in both requires complexation by a nucleotide (adenosine triphosphate (ATP) and guanosine triphosphate suggest that this arises from the softening on polymerization of vibrational modes localized near ATP

47

Non-equilibrium self-assembly of a filament coupled to ATP/GTP hydrolysis  

E-Print Network [OSTI]

We study the stochastic dynamics of growth and shrinkage of single actin filaments or microtubules taking into account insertion, removal, and ATP/GTP hydrolysis of subunits. The resulting phase diagram contains three different phases: a rapidly growing phase, an intermediate phase and a bound phase. We analyze all these phases, with an emphasis on the bound phase. We also discuss how hydrolysis affects force-velocity curves. The bound phase shows features of dynamic instability, which we characterize in terms of the time needed for the ATP/GTP cap to disappear as well as the time needed for the filament to reach a length of zero, i.e., (to collapse) for the first time. We obtain exact expressions for all these quantities, which we test using Monte Carlo simulations.

Padinhateeri Ranjith; David Lacoste; Kirone Mallick; Jean-Francois Joanny

2008-09-12T23:59:59.000Z

48

Thermochronometry At Fort Bliss Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective JumpInc., 2010) |

49

Rock Density At Alum Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton Abbey Wind Farm It is classified as ASHRAE

50

Slim Holes At Alum Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardtonManagement, 2009) | OpenSixthSkypointDoD

51

Radiometrics At Fort Bliss Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access Permit5-ID-aREC Solar JumpRGSRadiant EnergyRadioFort

52

Reflection Survey At Wister Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access Permit5-ID-aRECRaton,RFPs|Reflection Survey At|

53

Gas Flux Sampling At Maui Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent6894093° Loading69. ItLewickiMaui Area (DOE GTP) Jump

54

Explorations of iron-iron hydrogenase active site models by experiment and theory  

E-Print Network [OSTI]

This dissertation describes computational and experimental studies of synthetic complexes that model the active site of the iron-iron hydrogenase [FeFe]H2ase enzyme. Simple dinuclear iron dithiolate complexes act as functional models of the ironiron...

Tye, Jesse Wayne

2009-05-15T23:59:59.000Z

55

Well Log Techniques At Newberry Caldera Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: SaltTroyer & Associates Jump to:ProjectInformation GTP)

56

2-M Probe At Pilgrim Hot Springs Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEditWisconsin:YBR14 CCRInformation Sladek,DOE GTP)

57

Density Log at Silver Peak Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision has beenFinancialSilver Peak Area (DOE GTP) Jump

58

Development Wells At Silver Peak Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision has Type Term TitleSilver Peak Area (DOE GTP)

59

Pressure Temperature Log At Wister Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowderClimate Action ProjectWister Area (DOE GTP)

60

Flow Test At Black Warrior Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior Area (DOE GTP) Jump to:

Note: This page contains sample records for the topic "gtp exploration activity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Flow Test At Fort Bliss Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior Area (DOE GTP)Flow Test At Fort

62

Flow Test At Gabbs Valley Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior Area (DOE GTP)Flow Test At

63

Flow Test At Glass Buttes Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior Area (DOE GTP)Flow Test AtFlow

64

Flow Test At Hot Pot Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior Area (DOE GTP)Flow Test AtFlowHot

65

Flow Test At Mccoy Geothermal Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior Area (DOE GTP)Flow Test

66

Flow Test At Pilgrim Hot Springs Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior Area (DOE GTP)Flow TestPilgrim

67

Flow Test At Snake River Plain Region (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior Area (DOE GTP)Flow

68

Flow Test At Flint Geothermal Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOE GTP) Jump to:

69

Flow Test At Jemez Pueblo Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOE GTP) Jump to:Jemez

70

Flow Test At Mcgee Mountain Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOE GTP)Open EnergyMcgee

71

Flow Test At New River Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOE GTP)OpenNew River

72

Flow Test At Newberry Caldera Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOE GTP)OpenNew

73

Flow Test At Rye Patch Area (DOE GTP, 2011) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOEEnergyEnergyDOE GTP,

74

Characterizing Natural Gas Hydrates in the Deep Water Gulf of Mexico: Applications for Safe Exploration and Production Activities  

SciTech Connect (OSTI)

In 2000 Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deep water portion of the Gulf of Mexico (GOM). Chevron is an active explorer and operator in the Gulf of Mexico and is aware that natural gas hydrates need to be understood to operate safely in deep water. In August 2000 Chevron worked closely with the National Energy Technology Laboratory (NETL) of the United States Department of Energy (DOE) and held a workshop in Houston, Texas to define issues concerning the characterization of natural gas hydrate deposits. Specifically, the workshop was meant to clearly show where research, the development of new technologies, and new information sources would be of benefit to the DOE and to the oil and gas industry in defining issues and solving gas hydrate problems in deep water.

Bent, Jimmy

2014-05-31T23:59:59.000Z

75

Oil and Gas Exploration  

E-Print Network [OSTI]

Metals Industrial Minerals Oil and Gas Geothermal Exploration Development Mining Processing Nevada, oil and gas, and geothermal activities and accomplishments in Nevada: production statistics, exploration and development including drilling for petroleum and geothermal resources, discoveries of ore

Tingley, Joseph V.

76

Exploration Incentive Tax Credit (Montana)  

Broader source: Energy.gov [DOE]

The Mineral and Coal Exploration Incentive Tax Credit provides tax incentives to entities conducting exploration for minerals and coal. Expenditures related to the following activities are eligible...

77

Exploration for Uranium Ore (Virginia)  

Broader source: Energy.gov [DOE]

This legislation describes permitting procedures and requirements for exploration activities. For the purpose of this legislation, exploration is defined as the drilling of test holes or...

78

Function: GTP:-`type/gradedmonom` -define a type 'gradedmonom' Calling Sequence  

E-Print Network [OSTI]

:with(Clifford):with(GTP): > type(e1 &t e1,gradedmonom),type(Pi*(e1we2 &t e1 &t e2),gradedmonom); Cliplus has been loaded Id &t e1 Id &t e2 Id &t e1we2 e1 &t Id e1 &t e1 e1 &t e2 e1 &t e1we2, , , , , , , ,[:= e2 &t Id e2 &t e1 e2 &t e2 e2 &t e1we2 e1we2 &t Id e1we2 &t e1 e1we2 &t e2, , , , , , , e1we2 &t e1we2] > map

Ablamowicz, Rafal

79

In this study I explore the relationship between modern energy and economically productive activities in rural Kenya. Research is based on surveys  

E-Print Network [OSTI]

#12;ii Abstract In this study I explore the relationship between modern energy and economically productive activities in rural Kenya. Research is based on surveys done in Mpeketoni Village in Summer 2005], Mpeketoni Electricity Project has demonstrated that there exists substantial unmet rural demand

Kammen, Daniel M.

80

Since European explorers first touched the shores of California, their activities, shaped by their needs and values, have  

E-Print Network [OSTI]

of the historical relation- ships between fire and society is greatly enhanced if we review the setting in which European explorers to visit California came by ship. The "discovery" of Alta (upper) California by European, and greatly modified fire as an eco- logical process (Anderson 2005). The removal of the Native Americans

Stephens, Scott L.

Note: This page contains sample records for the topic "gtp exploration activity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction  

E-Print Network [OSTI]

a breakthrough for metal-free, N-containing catalysts and their use in applications such as metal­air batteries activity, indicating their potential as a catalyst for fuel cells and metal air batteries. However-graphene) and demonstrate its use as a metal-free catalyst to study the catalytic active center for the oxygen reduction

82

Diiron proteins represent a diverse class of structures involved in the binding and activation of oxygen. This review explores  

E-Print Network [OSTI]

of the hemerythrins are relatively rigid and are rich in nitrogen-containing ligands, which specifically stabilize is reversible, as required for oxygen transport. The active sites of hemerythrins are distinct from those

Summa, Christopher M.

83

EXPLORING THE LOW-MASS END OF THE M{sub BH}-{sigma}{sub *} RELATION WITH ACTIVE GALAXIES  

SciTech Connect (OSTI)

We present new measurements of stellar velocity dispersions, using spectra obtained with the Keck Echellette Spectrograph and Imager (ESI) and the Magellan Echellette (MagE), for 76 Seyfert 1 galaxies from the recent catalog of Greene and Ho. These objects were selected from the Sloan Digital Sky Survey (SDSS) to have estimated black hole (BH) masses below 2 x 10{sup 6} M{sub sun}. Combining our results with previous ESI observations of similar objects, we obtain an expanded sample of 93 galaxies and examine the relation between BH mass and velocity dispersion (the M{sub BH}-{sigma}{sub *} relation) for active galaxies with low BH masses. The low-mass active galaxies tend to follow the extrapolation of the M{sub BH}-{sigma}{sub *} relation of inactive galaxies. Including results for active galaxies of higher BH mass from the literature, we find a zero point {alpha} = 7.68 {+-} 0.08 and slope of {beta} = 3.32 {+-} 0.22 for the M{sub BH}-{sigma}{sub *} relation (in the form log M{sub BH} = {alpha} + {beta}log ({sigma}{sub *}/200 km s{sup -1})), with intrinsic scatter of 0.46 {+-} 0.03 dex. This result is consistent, within the uncertainties, with the slope of the M{sub BH}-{sigma}{sub *} relation for reverberation-mapped active galaxies with BH masses from 10{sup 6} to 10{sup 9} M{sub sun}. For the subset of our sample having morphological information from Hubble Space Telescope images, we examine the slope of the M{sub BH}-{sigma}{sub *} relation separately for subsamples of barred and unbarred host galaxies, and find no significant evidence for a difference in slope. We do find a mild offset between low-inclination and high-inclination disk galaxies, such that more highly inclined galaxies tend to have larger {sigma}{sub *} at a given value of BH mass, presumably due to the contribution of disk rotation within the spectroscopic aperture. We also find that the velocity dispersion of the ionized gas, measured from narrow emission lines including [N II] {lambda}6583, [S II] {lambda}{lambda}6716, 6731, and the core of [O III] {lambda}5007 (with the blueshifted wing removed), trace the stellar velocity dispersion well for this large sample of low-mass Seyfert 1 galaxies.

Xiao Ting [Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230026 (China); Barth, Aaron J. [Department of Physics and Astronomy, University of California at Irvine, 4129 Frederick Reines Hall, Irvine, CA 92697-4575 (United States); Greene, Jenny E.; Ludwig, Randi R. [University of Texas at Austin, Department of Astronomy, 1 University Station, C1400, Austin, TX 78712-0259 (United States); Ho, Luis C. [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Bentz, Misty C. [Department of Physics and Astronomy, Georgia State University, Astronomy Offices, One Park Place South SE, Suite 700, Atlanta, GA 30303 (United States); Jiang Yanfei, E-mail: xiaoting@mail.ustc.edu.cn, E-mail: barth@uci.edu, E-mail: jgreene@astro.as.utexas.edu, E-mail: lho@obs.carnegiescience.edu, E-mail: bentz@chara.gsu.edu, E-mail: yanfei@astro.princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

2011-09-20T23:59:59.000Z

84

Underground Exploration  

E-Print Network [OSTI]

Underground Exploration and Testing A Report to Congress and the Secretary of Energy Nuclear Waste Technical Review Board October 1993 Yucca Mountain at #12;Nuclear Waste Technical Review Board Dr. John E and Testing #12;Executive Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Introduction

85

CHARACTERIZING NATURAL GAS HYDRATES IN THE DEEP WATER GULF OF MEXICO: APPLICATIONS FOR SAFE EXPLORATION AND PRODUCTION ACTIVITIES  

SciTech Connect (OSTI)

In 2000, Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deepwater portions of the Gulf of Mexico. A Joint Industry Participation (JIP) group was formed in 2001, and a project partially funded by the U.S. Department of Energy (DOE) began in October 2001. The primary objective of this project is to develop technology and data to assist in the characterization of naturally occurring gas hydrates in the deep water Gulf of Mexico (GOM). These naturally occurring gas hydrates can cause problems relating to drilling and production of oil and gas, as well as building and operating pipelines. Other objectives of this project are to better understand how natural gas hydrates can affect seafloor stability, to gather data that can be used to study climate change, and to determine how the results of this project can be used to assess if and how gas hydrates act as a trapping mechanism for shallow oil or gas reservoirs. During the first six months of operation, the primary activities of the JIP were to conduct and plan Workshops, which were as follows: (1) Data Collection Workshop--March 2002 (2) Drilling, Coring and Core Analyses Workshop--May 2002 (3) Modeling, Measurement and Sensors Workshop--May 2002.

Steve Holditch; Emrys Jones

2003-01-01T23:59:59.000Z

86

Explore Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial Thin FilmEquipment SSRL plansExpertsExplore Explore

87

Exploration Geochemistry  

E-Print Network [OSTI]

and environmental constraints. eter Winterburn #12;M D R U Societal demands for mineral resources continue to spur and restrictive policy changes. The discovery of new mineral resources requires increasing risk, increasing costs ­ Global Exploration for Vale. His research interests centre on innovation of cost-effective, robust

Michelson, David G.

88

Resistivity Log At Fort Bliss Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access(CaliforniaProduction

89

Characterization of the Deoxynucleotide Triphosphate Triphosphohydrolase (dNTPase) Activity of the EF1143 Protein from Enterococcus faecalis and Crystal Structure of the Activator-Substrate Complex  

SciTech Connect (OSTI)

The EF1143 protein from Enterococcus faecalis is a distant homolog of deoxynucleotide triphosphate triphosphohydrolases (dNTPases) from Escherichia coli and Thermus thermophilus. These dNTPases are important components in the regulation of the dNTP pool in bacteria. Biochemical assays of the EF1143 dNTPase activity demonstrated nonspecific hydrolysis of all canonical dNTPs in the presence of Mn{sup 2+}. In contrast, with Mg{sup 2+} hydrolysis required the presence of dGTP as an effector, activating the degradation of dATP and dCTP with dGTP also being consumed in the reaction with dATP. The crystal structure of EF1143 and dynamic light scattering measurements in solution revealed a tetrameric oligomer as the most probable biologically active unit. The tetramer contains four dGTP specific allosteric regulatory sites and four active sites. Examination of the active site with the dATP substrate suggests an in-line nucleophilic attack on the {alpha}-phosphate center as a possible mechanism of the hydrolysis and two highly conserved residues, His-129 and Glu-122, as an acid-base catalytic dyad. Structural differences between EF1143 apo and holo forms revealed mobility of the {alpha}3 helix that can regulate the size of the active site binding pocket and could be stabilized in the open conformation upon formation of the tetramer and dGTP effector binding.

Vorontsov, Ivan I.; Minasov, George; Kiryukhina, Olga; Brunzelle, Joseph S.; Shuvalova, Ludmilla; Anderson, Wayne F. (NWU)

2012-06-19T23:59:59.000Z

90

Teleseismic-Seismic Monitoring At Newberry Caldera Area (DOE GTP) | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark Jump to: navigation, searchTecateInformation

91

Thermal And-Or Near Infrared At Silver Peak Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective Jump to:the NatureOpenOpen

92

Thermal Gradient Holes At Crump's Hot Springs Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective Jump to:theEnergy Information

93

Thermal Gradient Holes At Fish Lake Valley Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective Jump to:theEnergy InformationAl., 1974)

94

Thermal Gradient Holes At Flint Geothermal Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective Jump to:theEnergy InformationAl.,

95

Thermal Gradient Holes At Fort Bliss Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective Jump to:theEnergy

96

Thermal Gradient Holes At Hot Pot Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective Jump to:theEnergyEnergy Information AreaPot

97

Thermal Gradient Holes At Mccoy Geothermal Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective Jump to:theEnergyEnergyOpen

98

Thermal Gradient Holes At Mcgee Mountain Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective Jump to:theEnergyEnergyOpenInformation

99

Thermal Gradient Holes At Newberry Caldera Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective JumpInc., 2010) | Open Energy

100

Thermal Gradient Holes At San Emidio Desert Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective JumpInc., 2010) | Open EnergyEnergyEnergy|

Note: This page contains sample records for the topic "gtp exploration activity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Thermal Gradient Holes At Silver Peak Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective JumpInc., 2010) | Open

102

Slim Holes At Black Warrior Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardtonManagement, 2009) | OpenSixthSkypointDoDBlack

103

Slim Holes At Crump's Hot Springs Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardtonManagement, 2009) |Crump's Hot Springs Area (DOE

104

Slim Holes At Flint Geothermal Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardtonManagement, 2009) |Crump's Hot Springs Areaslim

105

Slim Holes At Fort Bliss Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardtonManagement, 2009) |Crump's Hot SpringsFort Bliss

106

Slim Holes At Gabbs Valley Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardtonManagement, 2009) |Crump's Hot SpringsFort

107

Slim Holes At Glass Buttes Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardtonManagement, 2009) |Crump's Hot SpringsFort

108

Slim Holes At Hot Pot Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardtonManagement, 2009) |Crump's Hot SpringsFortwells

109

Slim Holes At Jemez Pueblo Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardtonManagement, 2009) |Crump's Hot

110

Slim Holes At Newberry Caldera Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardtonManagement, 2009) |Crump's HotMaui Area (DOENewberry

111

Slim Holes At Silver Peak Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardtonManagement, 2009) |Crump's HotMaui Areawell

112

Slim Holes At Snake River Plain Region (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardtonManagement, 2009) |Crump's HotMaui AreawellSnake

113

Soil Sampling At Mccoy Geothermal Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardtonManagement,SmartestEnergynot indicated DOE-funding

114

Static Temperature Survey At Glass Buttes Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACA RegionSpringviewName Stateline WindInformation

115

Reflection Survey At Crump's Hot Springs Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access Permit5-ID-aRECRaton,RFPs

116

Reflection Survey At Fish Lake Valley Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access Permit5-ID-aRECRaton,RFPs| Open Energy

117

Reflection Survey At Jemez Pueblo Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access Permit5-ID-aRECRaton,RFPs| OpenJemez Pueblo Area (DOE

118

Reflection Survey At San Emidio Desert Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access Permit5-ID-aRECRaton,RFPs| OpenJemezReflection

119

Reflection Survey At Snake River Plain Region (DOE GTP) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access Permit5-ID-aRECRaton,RFPs|

120

Reflection Survey At Soda Lake Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access Permit5-ID-aRECRaton,RFPs|Reflection Survey At Soda

Note: This page contains sample records for the topic "gtp exploration activity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Reflection Survey At The Needles Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access Permit5-ID-aRECRaton,RFPs|Reflection Survey At

122

Gas Sampling At Glass Buttes Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6TheoreticalFuelCell EnergyGlass Buttes Area Exploration

123

Opsin/all-trans-Retinal Complex Activates Transducin by Different Mechanisms Than Photolyzed Rhodopsin  

E-Print Network [OSTI]

/protein complex (Boucher & Leblanc, 1985; Coo- per, 1979; Schick et al., 1987). The energy is stored mostly with a high quantum yield of 0.67, and two-thirds of the photon energy is taken up by the chro- mophore., 1989; Zhukovsky & Oprian, 1989). The activated receptor catalyzes GTP/GDP exchange on Gt (Hofmann, 1993

Palczewski, Krzysztof

124

Petroleum Exploration Enhancement Program (Newfoundland and Labrador, Canada)  

Broader source: Energy.gov [DOE]

The Provincial Energy Plan, released in September 2007, introduced a policy action to encourage and promote exploration activity in Western Newfoundland known as the Petroleum Exploration...

125

Data Exploration at NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Exploration Data Exploration energy16gunther.jpg Highly interactive data exploration is a key component of scientific analytics, often combining multiple analytics technologies,...

126

Acoustic Logs At The Needles Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskeyEnergy InformationAclara JumpLogs Activity Date

127

Disease Mutations in Rab7 Result in Unregulated Nucleotide Exchange and Inappropriate Activation  

SciTech Connect (OSTI)

Rab GTPases are molecular switches that orchestrate vesicular trafficking, maturation and fusion by cycling between an active, GTP-bound form, and an inactive, GDP-bound form. The activity cycle is coupled to GTP hydrolysis and is tightly controlled by regulatory proteins. Missense mutations of the GTPase Rab7 cause a dominantly inherited axonal degeneration known as Charcot-Marie-Tooth type 2B through an unknown mechanism. We present the 2.8 A crystal structure of GTP-bound L129F mutant Rab7 which reveals normal conformations of the effector binding regions and catalytic site, but an alteration to the nucleotide binding pocket that is predicted to alter GTP binding. Through extensive biochemical analysis, we demonstrate that disease-associated mutations in Rab7 do not lead to an intrinsic GTPase defect, but permit unregulated nucleotide exchange leading to both excessive activation and hydrolysis-independent inactivation. Consistent with augmented activity, mutant Rab7 shows significantly enhanced interaction with a subset of effector proteins. In addition, dynamic imaging demonstrates that mutant Rab7 is abnormally retained on target membranes. However, we show that the increased activation of mutant Rab7 is counterbalanced by unregulated, GTP hydrolysis-independent membrane cycling. Notably, disease mutations are able to rescue the membrane cycling of a GTPase-deficient mutant. Thus, we demonstrate that disease mutations uncouple Rab7 from the spatial and temporal control normally imposed by regulatory proteins and cause disease not by a gain of novel toxic function, but by misregulation of native Rab7 activity.

B McCray; E Skordalakes; J Taylor

2011-12-31T23:59:59.000Z

128

PROOF COPY [GTP-08-1324] 002001GTP [GTP-08-1324]002001GTP  

E-Print Network [OSTI]

.edu S. K. Aggarwal Department of Mechanical and Industrial Engineering, University of Illinois and vapor/gas, when the local pressure drops below the vapor pressure of the fluid. Funda- mentally, the liquid to vapor transition can occur by heating the fluid at a constant pressure, known as boiling

Aggarwal, Suresh K.

129

Hg Anomalies In Soils- A Geochemical Exploration Method For Geothermal...  

Open Energy Info (EERE)

Areas. Geothermics. () . Related Geothermal Exploration Activities Activities (5) Mercury Vapor At Breitenbush Hot Springs Area (Varekamp & Buseck, 1983) Mercury Vapor At...

130

Geophysical Exploration (Montana)  

Broader source: Energy.gov [DOE]

An exploration permit is required for any entity conducting geophysical exploration within the state of Montana. Such entities are also required to follow rules adopted by the Board of Oil and Gas...

131

Digital Solar Explorer Introduction  

E-Print Network [OSTI]

Digital Solar Explorer Introduction Description Content Design Physical Interaction An element of interactivity is added to the Digital Solar Explorer exhibit through the use of a controller. Simple, intuitive the learning process, which is the number one goal of the Digital Solar Explorer exhibit. Essentially, the user

Zanibbi, Richard

132

Roadmap for Venus Exploration Roadmap for Venus Exploration  

E-Print Network [OSTI]

Roadmap for Venus Exploration May 2014 #12;ii Roadmap for Venus Exploration At the VEXAG meeting in November 2013, it was resolved and Investigations for Venus Exploration (GOI), (2) develop a Roadmap for Venus exploration

Rathbun, Julie A.

133

A P-loop Mutation in G[alpha] Subunits Prevents Transition to the Active State: Implications for G-protein Signaling in Fungal Pathogenesis  

SciTech Connect (OSTI)

Heterotrimeric G-proteins are molecular switches integral to a panoply of different physiological responses that many organisms make to environmental cues. The switch from inactive to active G{alpha}{beta}{gamma} heterotrimer relies on nucleotide cycling by the G{alpha} subunit: exchange of GTP for GDP activates G{alpha}, whereas its intrinsic enzymatic activity catalyzes GTP hydrolysis to GDP and inorganic phosphate, thereby reverting G{alpha} to its inactive state. In several genetic studies of filamentous fungi, such as the rice blast fungus Magnaporthe oryzae, a G42R mutation in the phosphate-binding loop of G{alpha} subunits is assumed to be GTPase-deficient and thus constitutively active. Here, we demonstrate that G{alpha}(G42R) mutants are not GTPase deficient, but rather incapable of achieving the activated conformation. Two crystal structure models suggest that Arg-42 prevents a typical switch region conformational change upon G{alpha}{sub i1}(G42R) binding to GDP {center_dot} AlF{sub 4}{sup -} or GTP, but rotameric flexibility at this locus allows for unperturbed GTP hydrolysis. G{alpha}(G42R) mutants do not engage the active state-selective peptide KB-1753 nor RGS domains with high affinity, but instead favor interaction with G{beta}{gamma} and GoLoco motifs in any nucleotide state. The corresponding G{alpha}{sub q}(G48R) mutant is not constitutively active in cells and responds poorly to aluminum tetrafluoride activation. Comparative analyses of M. oryzae strains harboring either G42R or GTPase-deficient Q/L mutations in the G{alpha} subunits MagA or MagB illustrate functional differences in environmental cue processing and intracellular signaling outcomes between these two G{alpha} mutants, thus demonstrating the in vivo functional divergence of G42R and activating G-protein mutants.

Bosch, Dustin E.; Willard, Francis S.; Ramanujam, Ravikrishna; Kimple, Adam J.; Willard, Melinda D.; Naqvi, Naweed I.; Siderovski, David P. (UNC); (Singapore)

2012-10-23T23:59:59.000Z

134

Category:Exploration Activities | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWind Farm JumpBLM)Development5Elkins,

135

Exploring Hydroelectricity (9 activities) | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review:Department of Energy EnvironmentalJulyDepartment|March

136

Form:ExplorationActivity | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlintFluxInput your dataset name below toInput

137

Template:ExplorationActivity | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump to:Taos County,TeesAtlasTabsExperimentalPlace Jump to:This is

138

Exploration Best Practices  

Broader source: Energy.gov [DOE]

The purpose of this project is to provide an overview of currentt geoth thermall explloratiti on bbestt practi tices andd a baseline values for exploration (both non-drilling and drilling) success rates in the U.S.

139

Alum Innovative Exploration  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Reduce the high level of risk during the early stages of geothermal project development by conducting a multi-faceted and innovative exploration and drilling program at Alum. Determine the combination of techniques that are most useful and cost-effective in identifying the geothermal resource through a detailed, post-project evaluation of the exploration and drilling program.

140

Exploration trends of the Sirte Basin  

SciTech Connect (OSTI)

A wave of intense exploration activity in the Sirte Basin began after the discovery of oil in 1958, and an enormous quantity of hydrocarbon was found in less than ten years. The oil discovery rate has been gradually declining since its peak in the 1960`s, and it is now becoming increasingly difficult and more expensive to find a new reserve. This paper is an attempt to discuss briefly the past exploration cycle, to indicate the present position and to predict the future trend of our activities in the Sirte Basin. The past exploration activities in the Sirte Basin were concentrated along the particular geological trends where the possibilities of finding more reserves are now drastically reduced. Therefore, for the future healthy exploration activities, new ideas are needed to bring about some new favourable areas under further investigation. A new cycle of exploration success will emerge if our exploratory efforts are purposely directed towards the stratigraphic, stratrigraphic/structural traps and subtle type traps, along the migrational pathways and deep plays in the potential oil generative areas.

Aburawi, R.M. [Waha Oil Co., Tripoli (Libyan Arab Jamahiriya)

1995-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "gtp exploration activity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Cooperative Exploration under Communication Constraints  

E-Print Network [OSTI]

process has not been fully characterized. Existing exploration algorithms do not realistically modelCooperative Exploration under Communication Constraints by Emily M. Craparo Submitted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . David Darmofal Chairman, Department Committee on Graduate Students #12;2 #12;Cooperative Exploration

How, Jonathan P.

142

Innovative Exploration Technologies Subprogram Overview  

Broader source: Energy.gov (indexed) [DOE]

* Gathering data from the projects - Analyzing what works and what doesn't * Expand resource assessment and NGDS * Exploration best practices study * Baseline exploration...

143

Vehicle Technologies Office: Financial Opportunities - Active...  

Energy Savers [EERE]

Vehicle Technologies Office: Financial Opportunities - Active Solicitations Vehicle Technologies Office: Financial Opportunities - Active Solicitations To explore current financial...

144

Exploring Civil and Environmental  

E-Print Network [OSTI]

Engineers % of Total Architectural, Engineering, and Related Services 135,000 53 Federal, State, and Local1 CEE 100 Exploring Civil and Environmental Engineering #12;CEE 100 Schedule--Winter 2010 https Geotechnical Engineering January 27 Steve Muench Construction Engineering February 3 Greg Miller Structural

145

Exploring Mars' Climate History  

E-Print Network [OSTI]

Exploring Mars' Climate History #12;2 Mars Reconnaissance Orbiter ESA Mars Express (NASA: MARSIS by studying the solar wind and other interactions with the Sun. #12;The solar wind is a high-speed stream of electrons and protons released from the Sun. #12;High-energy photons (light) stream constantly from the Sun

146

Exploring Functional Mellin Transforms  

E-Print Network [OSTI]

We define functional Mellin transforms within a scheme for functional integration proposed in [1]. Functional Mellin transforms can be used to define functional traces, logarithms, and determinants. The associated functional integrals are useful tools for probing function spaces in general and $C^\\ast$-algebras in particular. Several interesting aspects are explored.

J. LaChapelle

2015-01-08T23:59:59.000Z

147

Exploring new energy alternatives.  

SciTech Connect (OSTI)

What is most likely to satisfy our energy needs in the future - wind farms and photovoltaic arrays, or something yet to be invented? Options for the world's energy future may include surprises, thanks to innovative research under way around the world. The article focuses on the energy sources alternatives in the U.S. It explores innovations for energy sources such as wind farms, solar thermal concentrators, solar cells, and geothermal energy production. It states that the attainment of energy efficiency through conversation or improved technology allows to extract more applied energy. It points out that techniques are being explored to expand the possible fuel materials to includes other types of uranium and thorium. Furthermore, it discusses the capability of nanotechnology in offering a tool which could help create designs that convert energy more efficiently.

LePoire, D.J. (Environmental Science Division)

2011-09-01T23:59:59.000Z

148

EXPLORATION Actual Estimate  

E-Print Network [OSTI]

FY 2015 FY 2016 FY 2017 FY 2013 President's Budget Request 3,821.2 3,712.8 3,932.8 4,076.5 4,076.5 4 Estimate Budget Authority (in $ millions) FY 2011 FY 2012 FY 2013 FY 2014 FY 2015 FY 2016 FY 2017 FY 2013EXPLORATION EXP-1 Actual Estimate Budget Authority (in $ millions) FY 2011 FY 2012 FY 2013 FY 2014

149

Exploring colourful holographic superconductors  

E-Print Network [OSTI]

We explore a class of holographic superconductors built using non-abelian condensates on probe branes in conformal and non-conformal backgrounds. These are shown to exhibit behaviour of the specific heat which resembles that of heavy fermion compounds in the superconducting phase. Instead of showing BCS-like exponential behaviour, the specific heat is polynomial in the temperature. It exhibits a jump at the critical temperature, in agreement with real-world superconductors. We also analyse the behaviour of the energy gap and the AC and DC conductivities, and find that the systems can be either semi-conducting or metallic just above the critical temperature.

Kasper Peeters; Jonathan Powell; Marija Zamaklar

2009-07-09T23:59:59.000Z

150

Switzerland exploration may resume  

SciTech Connect (OSTI)

Since 1912, 35 wells have been drilled for oil and gas, 19 of them in the last 38 years. Eighty percent of these 19 wells had oil and/or gas shows, but only one was placed on production. The only gas discovery, Entlebuch-1, produced about 2.6 bcf of a high quality gas in 10 years. It was abandoned in 1994. This paper discusses why exploration waned. A second look at the data suggests Switzerland has a high potential for gas production.

Lahusen, P.H. [SEAG, Geneva (Switzerland)

1997-06-23T23:59:59.000Z

151

Revisiting the Tradespace Exploration Paradigm: Structuring the Exploration Process  

E-Print Network [OSTI]

Revisiting the Tradespace Exploration Paradigm: Structuring the Exploration Process Adam M. Ross in Tradespace Exploration · Question-guided TSE· Question-guided TSE · Discussion · Conclusion seari.mit.edu © 2010 Massachusetts Institute of Technology 2 #12;Introduction · Early design process is high leverage

de Weck, Olivier L.

152

INTERNATIONAL SPACE EXPLORATION COORDINATION GROUP  

E-Print Network [OSTI]

space exploration infrastructure standards facilitating interoperability through an international with relevant existing international working groups/ organisations. · Preparation and Organization of a WS1 INTERNATIONAL SPACE EXPLORATION COORDINATION GROUP WORKPLAN Update following 3rd ISECG Meeting

153

Global Talent Program Explore High technology in Japan  

E-Print Network [OSTI]

, . 2011 GTP #12;: 11 #12;12 2011 Global Talent Program Fujitsu, Sony, Hitachi, SoftBank, Nikko , , , . " " , , . , . Nikko Cordial Securities Inc. . , . #12;: 21 08 Sony Corporation SONY IT , , , . SONY 3D , , , SONY . SONY NGP(Next Generation Portable; PSP2) Portable Network

Sung, Wokyung

154

Relevance of Massively Distributed Explorations  

E-Print Network [OSTI]

that this exploration process gives a partial and biased view of the real topology, which leads to the idea links) and may be biased by the exploration process (some properties of the obtained map may be induced induced by the exploration process. In order to improve these maps, several re- searchers and groups now

Paris-Sud XI, Université de

155

Relevance of Massively Distributed Explorations  

E-Print Network [OSTI]

that this exploration process gives a partial and biased view of the real topology, which leads to the idea links) and may be biased by the exploration process (some properties of the obtained map may be induced induced by the exploration process. In order to improve these maps, several re- searchers and groups no

Paris-Sud XI, Université de

156

Polar Explorer References Raold Amundsen  

E-Print Network [OSTI]

-15, 2003, 1 h 19 min. * National Geographic May 2009, concerning claims of Arctic Ocean oil and gasPolar Explorer References Raold Amundsen My Life as an Explorer, Raold Amundsen The Red Tent.L. Berens [This book includes other historic polar explorers] * National Geographic Jan. 2009 (2 articles

Fabrikant, Sara Irina

157

The Extreme Physics Explorer  

E-Print Network [OSTI]

Some tests of fundamental physics - the equation of state at supra-nuclear densities, the metric in strong gravity, the effect of magnetic fields above the quantum critical value - can only be measured using compact astrophysical objects: neutron stars and black holes. The Extreme Physics Explorer is a modest sized (~500 kg) mission that would carry a high resolution (R ~300) X-ray spectrometer and a sensitive X-ray polarimeter, both with high time resolution (~5 ?s) capability, at the focus of a large area (~5 sq.m), low resolution (HPD~1 arcmin) X-ray mirror. This instrumentation would enable new classes of tests of fundamental physics using neutron stars and black holes as cosmic laboratories.

Martin Elvis

2006-08-25T23:59:59.000Z

158

The growth of retail REITs : an exploration of current practices and implications  

E-Print Network [OSTI]

This study is an exploration of the current growth activity of retail real estate investment trusts (REITs). The specific questions to be explored are: How are retail REITs currently growing, how is this growth being ...

Toth, A. Eric (Anthony Eric), 1971-

2003-01-01T23:59:59.000Z

159

Radioisotopes: Energy for Space Exploration  

ScienceCinema (OSTI)

Through a strong partnership between the Energy Department's office of Nuclear Energy and NASA, Radioisotope Power Systems have been providing the energy for deep space exploration.

Carpenter, Bob; Green, James; Bechtel, Ryan

2013-05-29T23:59:59.000Z

160

Exploring Dark Energy with SNAP  

E-Print Network [OSTI]

weak lensing survey. The planned dark energy program forthe Joint Dark Energy Mission (JDEM) will produce a treasureLBNL- 58276 Exploring Dark Energy with SNAP G. Aldering

Aldering, G.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gtp exploration activity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

National Aeronautics and Space Administration Human Exploration & Operations  

E-Print Network [OSTI]

)/Ground Operations. · Continue strong momentum on Commercial activities. · Conduct remaining launches in LaunchNational Aeronautics and Space Administration Human Exploration & Operations Reorganization Status capabilities to conduct NASA's aeronautics and space activities. 6. Share NASA with the public, educators

Waliser, Duane E.

162

Revisiting the Tradespace Exploration Paradigm: Structuring the Exploration Process  

E-Print Network [OSTI]

A number of case applications of tradespace exploration have further extended the types of analyses and knowledge insights that can be gained about tradeoffs between design choices and perceived utility and cost of ...

Ross, Adam Michael

163

Digging into exploration processes within established firms: Insights from two entities dedicated to enhancing radical innovation to support existing  

E-Print Network [OSTI]

1 Digging into exploration processes within established firms: Insights from two entities dedicated to understand the specificities of exploration processes. In this paper we propose to dig into the exploration.midler@polytechnique.edu ABSTRACT Since the seminal work of J. March (1991), balancing exploration and exploitation activities

Paris-Sud XI, Université de

164

Silver Peak Innovative Exploration Project  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Reduce the high level of risk during the early stages of geothermal project development by conducting a multi-faceted and innovative exploration and drilling program at Silver Peak. Determine the combination of techniques that are most useful and cost-effective in identifying the geothermal resource through a detailed, post-project evaluation of the exploration and drilling program.

165

activated receptor signaling: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Translocation of proteins across the endoplasmic reticulum membrane is a GTP-dependent process. The signal recognition particle (SRP) and the SRP receptor both contain subunits...

166

Utah coalbed gas exploration poised for growth  

SciTech Connect (OSTI)

Coalbed methane production in eastern Utah is growing despite a relaxed pace of exploratory drilling. Leasing has been active the past 2 years, but a delay in issuance of a federal environmental impact statement could retard drilling. Only 19 new wells began producing coalbed gas during 1995, but gas production increased from existing wells as dewatering progressed. The US Bureau of Land Management will allow limited exploration but no field development on federal lands until the EIS is completed, possibly as early as this month. The paper discusses production of coalbed methane in Utah.

Petzet, G.A.

1996-08-05T23:59:59.000Z

167

Exploration geochemistry: The Los Alamos experience  

SciTech Connect (OSTI)

Los Alamos National Laboratory became actively involved in geochemical exploration in 1975 by conducting a reconnaissance-scale exploration program for uranium as part of the National Uranium Resource Evaluation program. Initially, only uranium and thorium were analyzed. By 1979 Los Alamos was analyzing a multielement suite. The data were presented in histograms and as black and white concentration plots for uranium and thorium only. Data for the remaining elements were presented as hard copy data listings in an appendix to the report. In 1983 Los Alamos began using exploration geochemistry for the purpose of finding economic mineral deposits to help stimulate the economies of underdeveloped countries. Stream-sediment samples were collected on the Caribbean island of St. Lucia and a geochemical atlas of that island was produced. The data were statistically smoothed and presented as computer-generated color plots of each element of the multielement suite. Studies for the US Bureau of Land Management in 1984 consisted of development of techniques for the integration of several large data sets, which could then be used for computer-assisted mineral resource assessments. A supervised classification technique was developed which compares the attributes of grid cells containing mines or mineral occurrences with attributes of unclassified cells not known to contain mines or occurrences. Color maps indicate how closely unclassified cells match in attributes the cells with mines or occurrences. 20 refs., 1 fig., 1 tab.

Maassen, L.W.; Bolivar, S.L.

1989-01-01T23:59:59.000Z

168

Oil and Gas Exploration (Connecticut)  

Broader source: Energy.gov [DOE]

These regulations apply to activities conducted for the purpose of obtaining geological, geophysical, or geochemical information about oil or gas including seismic activities but excluding...

169

Innovative Exploration Techniques for Geothermal Assessment at...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico Innovative Exploration...

170

Transitioning the Transportation Sector: Exploring the Intersection...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles Transitioning the Transportation Sector: Exploring the Intersection...

171

Geothermal Exploration Best Practices Webinar Presentation Now...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Exploration Best Practices Webinar Presentation Now Available Geothermal Exploration Best Practices Webinar Presentation Now Available April 12, 2012 - 3:08pm Addthis Presentation...

172

Evolutionary Robotics: Exploring New Horizons  

E-Print Network [OSTI]

Chapter 1 Evolutionary Robotics: Exploring New Horizons St´ephane Doncieux, Jean-Baptiste Mouret, Nicolas Bredeche, and Vincent Padois Abstract. This paper considers the field of Evolutionary Robotics (ER of research is discussed, as well as the potential use of ER in a robot design process. Four main aspects

Paris-Sud XI, Université de

173

Edinburgh Research Explorer Money Cycles  

E-Print Network [OSTI]

Edinburgh Research Explorer Money Cycles Citation for published version: Clausen, A & Strub, C 2014 'Money Cycles' Edinburgh School of Economics Discussion Paper Series. Link: Link to publication record date: 11. Dec. 2014 #12;Edinburgh School of Economics Discussion Paper Series Number 249 Money Cycles

Millar, Andrew J.

174

7 Efficient Exploration 7.1 Overview  

E-Print Network [OSTI]

Methods: Here a more global view of the process is taken, and the schemes are directly designed to explore7 Efficient Exploration 7.1 Overview Efficient exploration of the action and state space is a crucial factor in the convergence rate of a learning scheme. An early survey of early exploration methods

Shimkin, Nahum

175

Genability Explorer | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeauga County, Ohio: Energy Resources Jump to:Genability Explorer

176

Small Body Exploration Technologies as Precursors for Interstellar Robotics  

SciTech Connect (OSTI)

The scientific activities undertaken to explore our Solar System will be the same as required someday at other stars. The systematic exploration of primitive small bodies throughout our Solar System requires new technologies for autonomous robotic spacecraft. These diverse celestial bodies contain clues to the early stages of the Solar System's evolution as well as information about the origin and transport of water-rich and organic material, the essential building blocks for life. They will be among the first objects studied at distant star systems. The technologies developed to address small body and outer planet exploration will form much of the technical basis for designing interstellar robotic explorers. The Small Bodies Assessment Group, which reports to NASA, initiated a Technology Forum in 2011 that brought together scientists and technologists to discuss the needs and opportunities for small body robotic exploration in the Solar System. Presentations and discussions occurred in the areas of mission and spacecraft design, electric power, propulsion, avionics, communications, autonomous navigation, remote sensing and surface instruments, sampling, intelligent event recognition, and command and sequencing software. In this paper, the major technology themes from the Technology Forum are reviewed, and suggestions are made for developments that will have the largest impact on realizing autonomous robotic vehicles capable of exploring other star systems.

Noble, Robert; /SLAC; Sykes, Mark V.; /PSI, Tucson

2012-02-15T23:59:59.000Z

177

Exploration of Switching Activity Behavior of Addition Algorithms  

E-Print Network [OSTI]

In the recent years, the energy efficient design have gained more attention and for highly utilized functional units, es- pecially for the adders, energy efficient design becomes the first concern. The energy

California at Davis, University of

178

Exploration Guides For Active High-Temperature Geothermal Systems...  

Open Energy Info (EERE)

and hydrothermal events and duration of the hydrothermal event, iii) distance between the cooling magma body and the geothermal field (or ore deposit), iv) hydrothermal fluids and...

179

Exploring Korean Americans Interracial Contact Experiences During Recreational Sport Activities  

E-Print Network [OSTI]

This thesis follows the style of Journal of Leisure Research. 2 of friendship, as an essential condition for successful intergroup contact (Pettigrew, 1997; Pettigrew & Tropp, 2006). Since the contact hypothesis was first introduced, intergroup contact... conditions for successful intergroup contact. Their meta-analysis of 713 independent samples from 515 intergroup contact studies revealed four important findings First, 17 intergroup contact typically reduces intergroup prejudice. Second, the positive...

Lee, Kang Jae

2010-07-14T23:59:59.000Z

180

Current Geothermal Projects-Exploration Activity | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)Crowley County,Curran, Illinois: Energy Resources

Note: This page contains sample records for the topic "gtp exploration activity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Blind Geothermal System Exploration in Active Volcanic Environments...  

Open Energy Info (EERE)

and Geochemical Surveys in Overt and Subtle Volcanic Systems, Hawaii and Maui Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title...

182

Blind Geothermal System Exploration in Active Volcanic Environments;  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey:form ViewBlack DiamondBlaineMulti-phase Geophysical and

183

Exploring Wind Energy (12 activities) | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof EnergyHouse11for EnhancedEnergyEnergy

184

Exploring Wind Energy (12 activities) | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review:Department of Energy EnvironmentalJulyDepartment|MarchPhotovoltaics (9Wind

185

Geothermal CSC Exploration Activities Template | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6TheoreticalFuelCellGeminiEnergyPowerTables Template Home

186

Blind Geothermal System Exploration in Active Volcanic Environments;  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1, 2011 (BETO)andDepartment ofPage 1Multi-phase

187

Sandia National Laboratories: Explore Sandia  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducation Programs:CRFProvideAids EnergyUFDSunShot OnEnergyEventsExplore

188

Synchrotrons Explore Water's Molecular Mysteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAbout »LabSustainability AmesSynchrotrons Explore Water's

189

Synchrotrons Explore Water's Molecular Mysteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAbout »LabSustainability AmesSynchrotrons Explore

190

Design exploration: engaging a larger user population  

E-Print Network [OSTI]

. One challenge to such an approach is how software designers make use of the potentially overwhelming combination of text, graphics, and other content. The Design Exploration process provides users and other stakeholders the Design Exploration Builder...

Moore, John Michael

2009-06-02T23:59:59.000Z

191

Integrated Chemical Geothermometry System for Geothermal Exploration  

Broader source: Energy.gov (indexed) [DOE]

interpretations) * Reduce exploration and development costs Innovation * Numerical optimization of multicomponent chemical geothermometry at multiple locations * Integration with...

192

NASA EG-2000-03-002-GSFC Exploring the Aurora and the Ionosphere 1 Educational Product  

E-Print Network [OSTI]

NASA EG-2000-03-002-GSFC Exploring the Aurora and the Ionosphere 1 Educational Product Educators#DQG#Aurora and the Ionosphere An Educator Guide with Activities in Space Science #12;NASA EG-2000-03-002-GSFC Exploring the Aurora and the Ionosphere 2 Solar Storms and You! is available in electronic for

193

Exploring Video Streaming in Public Settings: Shared Geocaching Over Distance Using Mobile Video Chat  

E-Print Network [OSTI]

Exploring Video Streaming in Public Settings: Shared Geocaching Over Distance Using Mobile Video Mountain View, CA, USA tkjudge@google.com ABSTRACT Our research explores the use of mobile video chat are doing the same activity together at the same time. We prototyped a wearable video chat experience

Cortes, Corinna

194

Object Exploration By Purposive, Dynamic Viewpoint Adjustment  

E-Print Network [OSTI]

. Unlike previous approaches where exploration is cast as a discrete process (i.e., asking where to look on the object surface that are occluded when the exploration process is initiated. Our goal is to designObject Exploration By Purposive, Dynamic Viewpoint Adjustment Kiriakos N. Kutulakos Charles R. Dyer

Dyer, Charles R.

195

Power options for lunar exploration  

SciTech Connect (OSTI)

This paper presents an overview of the types of power systems available for providing power on the moon. Lunar missions of exploration, in situ resource utilization, and colonization will be constrained by availability of adequate power. The length of the lunar night places severe limitations on solar power system designs, because a large portion of the system mass is devoted to energy storage. The selection of the ideal power source hardware will require compatibility with not only the lunar base power requirements and environment, but also with the conversion, storage, and transmission equipment. In addition, further analysis to determine the optimum operating parameters for a given power system should be conducted so that critical technologies can be identified in the early stages of base development. This paper describes the various concepts proposed for providing power on the lunar surface and compare their ranges of applicability. The importance of a systems approach to the integration of these components will also be discussed.

Bamberger, J.A.; Gaustad, K.L.

1992-01-01T23:59:59.000Z

196

Stochastic resonance for exploration geophysics  

E-Print Network [OSTI]

Stochastic resonance (SR) is a phenomenon in which signal to noise (SN) ratio gets improved by noise addition rather than removal as envisaged classically. SR was first claimed in climatology a few decades ago and then in other disciplines as well. The same as it is observed in natural systems, SR is used also for allowable SN enhancements at will. Here I report a proof of principle that SR can be useful in exploration geophysics. For this I perform high frequency GaussVanicek variance spectral analyses (GVSA) of model traces characterized by varying levels of complexity, completeness and pollution. This demonstration justifies all further research on SR in applied geophysics, as energy demands and depletion of reachable supplies potentially make SR vital in a near future.

Omerbashich, Mensur

2008-01-01T23:59:59.000Z

197

Development of a mechanical counter pressure Bio-Suit System for planetary exploration  

E-Print Network [OSTI]

Extra-vehicular activity (EVA) is critical for human spaceflight and particularly for human planetary exploration. The MIT Man Vehicle Laboratory is developing a Bio-Suit EVA System, based on mechanical counterpressure ...

Sim, Zhe Liang

2006-01-01T23:59:59.000Z

198

gtp_flow_power_estimator.xlsx  

Broader source: Energy.gov [DOE]

This simple spreadsheet model estimates either the flow rate required to produce a specified level of power output, or the power output that can be produced from a specified flow rate.

199

SURFACE GEOPHYSICAL EXPLORATION - COMPENDIUM DOCUMENT  

SciTech Connect (OSTI)

This report documents the evolution of the surface geophysical exploration (SGE) program and highlights some of the most recent successes in imaging conductive targets related to past leaks within and around Hanford's tank farms. While it is noted that the SGE program consists of multiple geophysical techniques designed to (1) locate near surface infrastructure that may interfere with (2) subsurface plume mapping, the report will focus primarily on electrical resistivity acquisition and processing for plume mapping. Due to the interferences from the near surface piping network, tanks, fences, wells, etc., the results of the three-dimensional (3D) reconstruction of electrical resistivity was more representative of metal than the high ionic strength plumes. Since the first deployment, the focus of the SGE program has been to acquire and model the best electrical resistivity data that minimizes the influence of buried metal objects. Toward that goal, two significant advances have occurred: (1) using the infrastructure directly in the acquisition campaign and (2) placement of electrodes beneath the infrastructure. The direct use of infrastructure was successfully demonstrated at T farm by using wells as long electrodes (Rucker et al., 2010, 'Electrical-Resistivity Characterization of an Industrial Site Using Long Electrodes'). While the method was capable of finding targets related to past releases, a loss of vertical resolution was the trade-off. The burying of electrodes below the infrastructure helped to increase the vertical resolution, as long as a sufficient number of electrodes are available for the acquisition campaign.

RUCKER DF; MYERS DA

2011-10-04T23:59:59.000Z

200

Enterprise, Shell scheduled to explore Romanian acreage  

SciTech Connect (OSTI)

This paper reports that the pace of exploration is packing up in Romania's offshore and onshore sectors. Enterprise Oil Exploration Ltd., London, signed an exploration and production sharing agreement with state owned Rompetrol SA for two Black Sea blocks, Nos. XIII and XV, covering 3,000 sq km and 4,000 sq km, respectively. Shell Romania Exploration BV agreed with Rompetrol on an exploration and production sharing agreement for onshore Block 10. This covers 6,150 sq km in northern Transylvania. Shell's target will be deep formations underlying producing gas zones. Enterprise has a 65% share as operator of Blocks XIII and XV, while partner CanadianOxy (Romania) Ltd. holds the remaining 35%. Exploration and development costs will be borne by the license partners, while Rompetrol will take a share of any production.

Not Available

1992-08-17T23:59:59.000Z

Note: This page contains sample records for the topic "gtp exploration activity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Development of Exploration Methods for Engineered Geothermal...  

Open Energy Info (EERE)

non-invasive techniques. This proposed exploration methodology is expected to increase spatial resolution and reduce the non-uniqueness that is inherent in geological data,...

202

Draft Innovative Exploration Technologies Needs Assessment |...  

Energy Savers [EERE]

Program June 6 - 10, 2011 The Dixie Valley Geothermal Plant in Nevada produces 60 MW of electricity. A Roadmap for Strategic Development of Geothermal Exploration Technologies...

203

Innovative Exploration Techniques for Geothermal Assessment at...  

Open Energy Info (EERE)

determine the fracture surface area, heat content and heat transfer, flow rates, and chemistry of the geothermal fluids encountered by the exploration wells. - Write final report...

204

Integrated Geoscience Investigation and Geothermal Exploration...  

Open Energy Info (EERE)

Geoscience Investigation and Geothermal Exploration at Chena Hot Springs, Alaska Abstract This document represents the final report for Phase I of the Chena Hot Springs...

205

Final Scientific - Technical Report, Geothermal Resource Exploration...  

Open Energy Info (EERE)

Geothermal Resource Exploration Program, Truckhaven Area, Imperial County, California Abstract With financial support from the U.S. Department of Energy (DOE), Layman Energy...

206

Draft Needs Assessment for Innovative Exploration Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

efforts to spur the U.S. geothermal industry to seek green field resources by lowering exploration risks and costs through research, development and demonstration. The...

207

ITP Mining: Exploration and Mining Technology Roadmap  

Broader source: Energy.gov (indexed) [DOE]

disturbance. Low-Cost and Efficient Production- Use advanced technologies to improve process efficiencies from exploration to final product. Advanced Products- Maintain and...

208

Geographic Information Systems- Tools For Geotherm Exploration...  

Open Energy Info (EERE)

Systems- Tools For Geotherm Exploration, Tracers Data Analysis, And Enhanced Data Distribution, Visualization, And Management Jump to: navigation, search OpenEI Reference...

209

Aluminum: Principled Scenario Exploration through Minimality  

E-Print Network [OSTI]

Aluminum: Principled Scenario Exploration through Minimality Tim Nelson1, Salman Saghafi1, Daniel J. We present Aluminum, a modification of Alloy that presents only minimal scenarios: those that contain no more than is necessary. Aluminum lets users explore the scenario space by adding to scenarios

Dougherty, Daniel J.

210

Aluminum: Principled Scenario Exploration through Minimality  

E-Print Network [OSTI]

Aluminum: Principled Scenario Exploration through Minimality Tim Nelson1, Salman Saghafi1, Daniel J Aluminum, a modification of Alloy that presents only minimal scenarios: those that contain no more than is necessary. Aluminum lets users explore the scenario space by adding to scenarios and backtracking. It also

Krishnamurthi, Shriram

211

Automated Architectural Exploration for Signal Processing Algorithms  

E-Print Network [OSTI]

Automated Architectural Exploration for Signal Processing Algorithms Ramsey Hourani, Ravi Jenkal, W processing algorithms. The goal of our framework is to improve hardware architectural exploration by guiding Property (IP) cores for system level signal processing algorithms. We present our view of a framework

Davis, Rhett

212

Edinburgh Research Explorer Probabilistic Programming Process Algebra  

E-Print Network [OSTI]

Edinburgh Research Explorer Probabilistic Programming Process Algebra Citation for published version: Georgoulas, A, Hillston, J, Milios, D & Sanguinetti, G 2014, 'Probabilistic Programming Process.1007/978-3-319-10696-0_21 Link: Link to publication record in Edinburgh Research Explorer Document Version: Preprint (usually

Millar, Andrew J.

213

Nuclear Engineering Division Think, explore, discover, innovate  

E-Print Network [OSTI]

Nuclear Engineering Division Think, explore, discover, innovate Never miss important updates managed by UChicago Argonne, LLC 1 Nuclear Engineering Division: Awards Listing (1980 ­ present) Web: http Division of Educational Programs J.C. Braun L.W. Deitrich #12;Nuclear Engineering Division Think, explore

Kemner, Ken

214

ADULT ATTACHMENT AND EXPLORATION: THE EFFECT OF ATTACHMENT STYLE ON THE EXPERIENCE OF EXPLORATION  

E-Print Network [OSTI]

According to attachment theory a key moderator in the enjoyment of exploration is the strength of a person's secure base. To study exploration we placed participants in a situation in which they confronted a novel stimulus. We also gathered self...

Martin, Archibald M.

2010-07-14T23:59:59.000Z

215

Exploring the Raft River geothermal area, Idaho, with the dc...  

Open Energy Info (EERE)

SURVEYS; IDAHO; GEOTHERMAL EXPLORATION; RAFT RIVER VALLEY; ELECTRIC CONDUCTIVITY; GEOTHERMAL WELLS; KGRA; TEMPERATURE MEASUREMENT; ELECTRICAL PROPERTIES; EXPLORATION; GEOPHYSICAL...

216

ULYSSES BEGINS EXPLORATION OF THE SUN'S NORTHERN POLE The Ulysses spacecraft has begun to explore the  

E-Print Network [OSTI]

ULYSSES BEGINS EXPLORATION OF THE SUN'S NORTHERN POLE The Ulysses spacecraft has begun to explore the northern pole of the Sun, initiating the second phase of its primary mission to study regions above and below the Sun never before explored by spacecraft. Ulysses, a joint NASA-European Space Agency mission

Christian, Eric

217

Africa: Unrest and restrictive terms limit abundant potential. [Oil and gas exploration and development in Africa  

SciTech Connect (OSTI)

This paper summarizes the drilling and exploration activity of the oil and gas industries of Egypt, Libya, Tunisia, Algeria, Morocco, Nigeria, Cameroon, Gabon, the Congo, Angola, and South Africa. Information is provided on current and predicted trends in well drilling activities (both onshore and offshore), numbers of new wells, footage information, production statistics and what fields accounted for this production, and planned new exploration activities. The paper also describes the current status of government policies and political problems affecting the oil and gas industry.

Not Available

1993-08-01T23:59:59.000Z

218

Geothermal Exploration Case Studies on OpenEI (Presentation)  

SciTech Connect (OSTI)

The U.S. Geological Survey (USGS) resource assessment (Williams et al., 2008) outlined a mean 30 GWe of undiscovered hydrothermal resource in the western United States. One goal of the U.S. Department of Energy's (DOE) Geothermal Technology Office (GTO) is to accelerate the development of this undiscovered resource. DOE has focused efforts on helping industry identify hidden geothermal resources to increase geothermal capacity in the near term. Increased exploration activity will produce more prospects, more discoveries, and more readily developable resources. Detailed exploration case studies akin to those found in oil and gas (e.g. Beaumont and Foster, 1990-1992) will give developers central location for information gives models for identifying new geothermal areas, and guide efficient exploration and development of these areas. To support this effort, the National Renewable Energy Laboratory (NREL) has been working with GTO to develop a template for geothermal case studies on the Geothermal Gateway on OpenEI. In 2012, the template was developed and tested with two case studies: Raft River Geothermal Area (http://en.openei.org/wiki/Raft_River_Geothermal_Area) and Coso Geothermal Area (http://en.openei.org/wiki/Coso_Geothermal_Area). In 2013, ten additional case studies were completed, and Semantic MediaWiki features were developed to allow for more data and the direct citations of these data. These case studies are now in the process of external peer review. In 2014, NREL is working with universities and industry partners to populate additional case studies on OpenEI. The goal is to provide a large enough data set to start conducting analyses of exploration programs to identify correlations between successful exploration plans for areas with similar geologic occurrence models.

Young, K.; Bennett, M.; Atkins, D.

2014-03-01T23:59:59.000Z

219

Coalbed methane exploration in the Lorraine Basin, France  

SciTech Connect (OSTI)

DuPont Conoco Hydrocarbures has been involved in a Coalbed Methane (CBM) project in France since 1991. Coalbed methane exploration differs noticeably in several aspects from conventional oil and gas exploration. This paper is divided in three parts and discusses some geological, reservoir and drilling considerations relevant to the exploration and appraisal of a coalbed methane prospect. The first part presents geological issues such as data collection and evaluation of its associated value, building expertise to create a geological and geophysical model integrating the work of a multidisciplinary team, and assessing uncertainties of the data interpretation. A short review of the basin activity, geological and tectonic setting, and environment aspects is presented in order to illustrate some CBM exploration issues. The second part describes a comprehensive coalbed methane reservoir data acquisition program incorporating coal sample optical and chemical analyses, gas sample chromatography, canister desorption, fracture density of coal cores, and measurement of in-situ coal permeability and bounding-strata stress. Field practical concerns are then discussed such as on-site and off-site canister desorption, gas sample collection, rapid estimation of gas content, ash content, total bed moisture, and finally well testing alternatives for permeability and rock stress determination. The third part reviews drilling issues such as drilling and coring options for core hole size and casing size, rig site equipment requirements for continuous coring operations, including mud treatment equipment, core handling material and core work stations, alliance of national and foreign drilling contractors to optimize equipment and experience, and finally overview of coring procedures to identify best practices for pending operations. The paper is derived from Conoco`s experience in CBM exploration in the Lorraine Basin, North East of France.

Michaud, B. [DuPont Conoco Hydrocarbures, Paris (France); Briens, F.; Girdler, D.

1995-08-01T23:59:59.000Z

220

HOW GREEN IS JUDAISM? EXPLORING JEWISH ENVIRONMENTAL  

E-Print Network [OSTI]

HOW GREEN IS JUDAISM? EXPLORING JEWISH ENVIRONMENTAL ETHICS David Vogel Haas School of Business "green" and "non-green' elements. It is both inappropriate to over-emphasize the former, as have some and social values. The tea

Kammen, Daniel M.

Note: This page contains sample records for the topic "gtp exploration activity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Posters | Posters --721 Exploring lighting cultures  

E-Print Network [OSTI]

Posters | Posters -- 721 Exploring lighting cultures Beyond light and emotions Vincent LAGANIER 1 , Jasmine van der POL 2 1. Lighting Applications Services (LiAS), Philips Lighting, France vincent.laganier@philips.com 2

Boyer, Edmond

222

Cognitive Medium Access: Exploration, Exploitation and Competition  

E-Print Network [OSTI]

1 Cognitive Medium Access: Exploration, Exploitation and Competition Lifeng Lai, Hesham El Gamal, Hai Jiang and H. Vincent Poor Abstract-- This paper establishes the equivalence between cognitive cognitive user wishes to opportunistically exploit the availability of empty fre- quency bands

El-Gamal, Hesham

223

Wind Power Integration: Exploring Impacts and Alternatives  

E-Print Network [OSTI]

Wind Power Integration: Exploring Impacts and Alternatives Assist. Prof. C sustainable sources of energy. The idea of harnessing wind energy has been there have been no less than fifteen in-depth wind integration studies

Walter, M.Todd

224

Edinburgh Research Explorer The Managed Prosumer  

E-Print Network [OSTI]

Edinburgh Research Explorer The Managed Prosumer Citation for published version: Johnson, M, Mozaffar, H, Campagnolo, GM, Hyysalo, S, Pollock, N & Williams, R 2014, 'The Managed Prosumer: Evolving. M., Hyysalo, S., Pollock, N., & Williams, R. (2014). The Managed Prosumer: Evolving Knowledge

Millar, Andrew J.

225

Edinburgh Research Explorer Flights of Fancy  

E-Print Network [OSTI]

of this data were explored through processes of 3D printing and 2D pattern making and digital video Messenger (2012) installation at Tatton Park Biennial, 2012 The production of miniature 3D prints

Millar, Andrew J.

226

The Mission of the Mars Exploration Rovers  

ScienceCinema (OSTI)

The Mars Exploration Rover mission was expected to last 3 months, but has continued for more than 4 years. The major science results from both rovers will be summarized.

John Grant

2010-01-08T23:59:59.000Z

227

Design exploration through bidirectional modeling of constraints  

E-Print Network [OSTI]

Today digital models for design exploration are not used to their full potential. The research efforts in the past decades have placed geometric design representations firmly at the center of digital design environments. ...

Kilian, Axel, 1971-

2006-01-01T23:59:59.000Z

228

Adventures in supercomputing: Scientific exploration in an era of change  

SciTech Connect (OSTI)

Students deserve the opportunity to explore the world of science surrounding them. Therefore it is important that scientific exploration and investigation be a part of each student`s educational career. The Department of Energy`s Adventures in Superconducting (AiS) takes students beyond mere scientific literacy to a rich embodiment of scientific exploration. AiS provides today`s science and math students with a greater opportunity to investigate science problems, propose solutions, explore different methods of solving the problem, organize their work into a technical paper, and present their results. Students learn at different rates in different ways. Science classes with students having varying learning styles and levels of achievement have always been a challenge for teachers. The AiS {open_quotes}hands-on, minds-on{close_quotes} project-based method of teaching science meets the challenge of this diversity heads on! AiS uses the development of student chosen projects as the means of achieving a lifelong enthusiasm for scientific proficiency. One goal of AiS is to emulate the research that takes place in the everyday environment of scientists. Students work in teams and often collaborate with students nationwide. With the help of mentors from the academic and scientific community, students pose a problem in science, investigate possible solutions, design a mathematical and computational model for the problem, exercise the model to achieve results, and evaluate the implications of the results. The students then have the opportunity to present the project to their peers, teachers, and scientists. Using this inquiry-based technique, students learn more than science skills, they learn to reason and think -- going well beyond the National Science Education Standard. The teacher becomes a resource person actively working together with the students in their quest for scientific knowledge.

Gentry, E. [Univ. of Alabama, Huntsville, AL (United States); Helland, B. [Krell Institute, Ames, IA (United States); Summers, B. [Oak Ridge National Lab., TN (United States)

1997-11-01T23:59:59.000Z

229

Cerro Prieto geothermal field: exploration during exploitation  

SciTech Connect (OSTI)

Geological investigations at Momotombo included photogeology, field mapping, binocular microscope examination of cuttings, and drillhole correlations. Among the geophysical techniques used to investigate the field sub-structure were: Schlumberger and electromagnetic soundings, dipole mapping and audio-magnetotelluric surveys, gravity and magnetic measurements, frequency domain soundings, self-potential surveys, and subsurface temperature determinations. The geochemical program analyzed the thermal fluids of the surface and in the wells. The description and results of exploration methods used during the investigative stages of the Momotombo Geothermal Field are presented. A conceptual model of the geothermal field was drawn from the information available at each exploration phase. The exploration methods have been evaluated with respect to their contributions to the understanding of the field and their utilization in planning further development.

Not Available

1982-07-01T23:59:59.000Z

230

MATHEMATICS AND COMPUTER SCIENCE: EXPLORING A SYMBIOTIC RELATIONSHIP  

E-Print Network [OSTI]

MATHEMATICS AND COMPUTER SCIENCE: EXPLORING A SYMBIOTIC RELATIONSHIP Authors: Ralph Bravaco Shai, Fractals, Chaos, Number Theory and Cryptography, Problem Solving, Other #12;Mathematics and Computer Science: Exploring a Symbiotic Relationship 1 MATHEMATICS AND COMPUTER SCIENCE: EXPLORING A SYMBIOTIC

Simonson, Shai

231

Property:ExplorationBasis | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to: navigation, searchEstimatedTimeMedian JumpExplorationBasis Jump

232

Property:ExplorationNotes | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to: navigation, searchEstimatedTimeMedianExplorationNotes Jump to:

233

Property:ExplorationOutcome | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to: navigation, searchEstimatedTimeMedianExplorationNotes Jump

234

SciTech Connect: Explore by Subject  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for USMaterialstheterahertzonExplore by Subject Explore by

235

Dental optical coherence domain reflectometry explorer  

DOE Patents [OSTI]

A hand-held, fiber optic based dental device with optical coherence domain reflectometry (OCDR) sensing capabilities provides a profile of optical scattering as a function of depth in the tissue at the point where the tip of the dental explorer touches the tissue. This system provides information on the internal structure of the dental tissue, which is then used to detect caries and periodontal disease. A series of profiles of optical scattering or tissue microstructure are generated by moving the explorer across the tooth or other tissue. The profiles are combined to form a cross-sectional, or optical coherence tomography (OCT), image.

Everett, Matthew J. (Livermore, CA); Colston, Jr., Billy W. (Livermore, CA); Sathyam, Ujwal S. (Livermore, CA); Da Silva, Luiz B. (Pleasanton, CA)

2001-01-01T23:59:59.000Z

236

Growing Up in Scotland: Food and Activity - Summary Report  

E-Print Network [OSTI]

This report uses data from the Growing Up in Scotland study to explore issues related to, food and activity in Scotland specifically in relation to young children....

Government, Scottish

2009-03-18T23:59:59.000Z

237

Exploring the Deep... Exploring the Ocean Environment Unit 1The Ocean Basins  

E-Print Network [OSTI]

GEO/OC 103 Exploring the Deep... Lab 2 #12;Exploring the Ocean Environment Unit 1­The Ocean Basins Ocean origins 19 How did the oceans form? Scientists believe that the oceans developed early ). This early atmosphere reflected much of the solar radiation striking Earth, allowing the surface to cool

Wright, Dawn Jeannine

238

Exploring Hydrogen Generation from Biomass-Derived Sugar and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Exploring Hydrogen Generation from Biomass-Derived Sugar and Sugar Alcohols to Reduce Costs Exploring Hydrogen Generation from Biomass-Derived Sugar and Sugar Alcohols to Reduce...

239

Building America Expert Meeting: Exploring the Disconnect Between...  

Energy Savers [EERE]

Exploring the Disconnect Between Rated and Field Performance of Water Heating Systems Building America Expert Meeting: Exploring the Disconnect Between Rated and Field Performance...

240

DOE Leverages Fossil Energy Expertise to Develop And Explore...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE Leverages Fossil Energy Expertise to Develop And Explore Geothermal Energy Resources DOE Leverages Fossil Energy Expertise to Develop And Explore Geothermal Energy Resources...

Note: This page contains sample records for the topic "gtp exploration activity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

2014 call for the NERSC Initiative for Scientific Exploration...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the NERSC Initiative for Scientific Exploration (NISE) program 2014 Call for NERSC Initiative for Scientific Exploration (NISE) Program Due December 8 November 18, 2013 by...

242

Idaho Geological Survey and University of Idaho Explore for Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Idaho Geological Survey and University of Idaho Explore for Geothermal Energy Idaho Geological Survey and University of Idaho Explore for Geothermal Energy January 11, 2013 -...

243

Energy Department Launches Web Tool to Explore Pathways to Clean...  

Broader source: Energy.gov (indexed) [DOE]

Energy Department Launches Web Tool to Explore Pathways to Clean Energy Economy Energy Department Launches Web Tool to Explore Pathways to Clean Energy Economy January 15, 2013 -...

244

Atomic Energy Commission Explores Peaceful Uses of Nuclear Explosions...  

National Nuclear Security Administration (NNSA)

Our Jobs Working at NNSA Blog Home About Us Our History NNSA Timeline Atomic Energy Commission Explores Peaceful Uses of ... Atomic Energy Commission Explores Peaceful...

245

Low Cost Exploration, Testing, And Development Of The Chena Geothermal...  

Open Energy Info (EERE)

Paper: Low Cost Exploration, Testing, And Development Of The Chena Geothermal Resource Abstract The Chena Hot Springs geothermal field was intensively explored, tested, and...

246

Exploring the interaction between lithium ion and defective graphene...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Exploring the interaction between lithium ion and defective graphene surface using dispersion corrected DFT studies. Exploring the interaction between lithium ion and defective...

247

Business Exploration Series SkillSoft's latest content innovation, the Business Exploration Series, was designed to be visually rich and  

E-Print Network [OSTI]

Business Exploration Series SkillSoft's latest content innovation, the Business Exploration Series to our Business Skills Courseware Library. The Business Exploration Series provides learners two different learning assets: Business Impact Series Challenge Series Analyze frequently encountered

Maryland, Baltimore County, University of

248

Indiana Energy Conference "Exploring Emerging Energy Issues"  

E-Print Network [OSTI]

Indiana Energy Conference "Exploring Emerging Energy Issues" Wednesday, October 3, 2012 University. Speakers/Panelists: Bernie Paul, Energy Consultant John Kinsman, Edison Electric Institute Are They Moving the U.S. Beyond Coal? Are regulations from the EPA moving too quickly and leading us away from coal

Ginzel, Matthew

249

EXPLORING PROTEIN FOLDING TRAJECTORIES USING GEOMETRIC SPANNERS  

E-Print Network [OSTI]

EXPLORING PROTEIN FOLDING TRAJECTORIES USING GEOMETRIC SPANNERS D. RUSSEL and L. GUIBAS Computer of secondary and tertiary structures as the protein folds. 1 Introduction There has been extensive work understanding of protein folding by studying their ensemble behaviors. Most currently used methods

Guibas, Leonidas J.

250

Orion Flight Test Exploration Flight Test-1  

E-Print Network [OSTI]

Orion Flight Test Exploration Flight Test-1 PRESS KIT/December 2014 www.nasa.gov NP-2014-11-020-JSC National Aeronautics and Space Administration #12;#12;Orion Flight Test December 2014 Contents Section Page ........................................................................................... 28 i #12;Orion Flight Test ii December 2014 #12;Orion Flight Test December 2014 Flight Overview

Waliser, Duane E.

251

Edinburgh Research Explorer Agile Business Model Innovation  

E-Print Network [OSTI]

Edinburgh Research Explorer Agile Business Model Innovation Citation for published version: Bock, A & Gerard, G 2014, 'Agile Business Model Innovation' The European Business Review, vol May - June 2014. Link Publisher Rights Statement: © Bock, A., & Gerard, G. (2014). Agile Business Model Innovation. The European

Millar, Andrew J.

252

Exploration and project management Sylvain Lenfle  

E-Print Network [OSTI]

to manage innovation. We argue that, in line with the work on project classification, a distinction should1 Exploration and project management Sylvain Lenfle University of Cergy-Pontoise Management of Project Management, Vol. 6, n°5, p. 469-478, July. Abstract Project management in academic studies tends

Paris-Sud XI, Université de

253

Exploring Low Emission Lubricants for Diesel Engines  

SciTech Connect (OSTI)

A workshop to explore the technological issues involved with the removal of sulfur from lubricants and the development of low emission diesel engine oils was held in Scottsdale, Arizona, January 30 through February 1, 2000. It presented an overview of the current technology by means of panel discussions and technical presentations from industry, government, and academia.

Perez, J. M.

2000-07-06T23:59:59.000Z

254

Global Food Security Programme Exploring public views  

E-Print Network [OSTI]

Global Food Security Programme ­ Exploring public views #12;©TNS June 2012 -1- Executive Summary significant public policy issues of this century. This scoping study for the Global Food Security programme. The project involved a total of 44 people in a two stage workshop process in London, Edinburgh and Aberystwyth

255

EXPLORING EARTH'S MYSTERIES ...PROTECTING ITS FUTURE  

E-Print Network [OSTI]

2002 BNL Groundwater Status Report TABLE OF CONTENTS EXECUTIVE SUMMARY 1.0 INTRODUCTION AND OBJECTIVES ............................................................................................3-1 3.0.1 Model Assessment of BNL Groundwater Pump and Treat System Performance#12;EXPLORING EARTH'S MYSTERIES ...PROTECTING ITS FUTURE 2002 BNL GROUNDWATER STATUS REPORT July 29

256

National Aeronautics and Space Administration Advanced Exploration Systems  

E-Print Network [OSTI]

and transform skills. Infuse new technologies developed by STMD into exploration missions. Support robotic

Waliser, Duane E.

257

As of October 17, 2012 Solar System Exploration @50  

E-Print Network [OSTI]

:45 ­ 11:45 am Panel #1: Politics and Policy in the Conduct of Solar System Exploration Panel Chair: Marcia, and Solar System Exploration Panel Chair: Heidi Hammel (Association of Universities for Research And Mars: The Soviet Planetary Exploration Enterprise 9:30 ­ 11:30 am Panel 4: Exploring the Outer Solar

258

Towards Large-Scale Multimedia Exploration Christian Beecks  

E-Print Network [OSTI]

, and frequently support the exploration process by means of attractive interactive graphical user interfaces exploration systems fol- low the same general structure of an exploration process [5], which is illustrated in Figure 2. The exploration process is initialized by mapping a meaningful subset of d

Skopal, Tomas

259

National Aeronautics and Space Administration Advanced Exploration Systems  

E-Print Network [OSTI]

National Aeronautics and Space Administration Advanced Exploration Systems NASA Advisory Council · Exploration Committee December 10, 2013 Jason Crusan, Director, Advanced Exploration Systems Human Exploration and Operations Mission Directorate · NASA Headquarters #12;2 Topics · HEOMD Investment Prioritization Process

Waliser, Duane E.

260

Visual analysis to support exploration of recorded UAV Christophe Hurter1  

E-Print Network [OSTI]

Visual analysis to support exploration of recorded UAV data Christophe Hurter1 , Christian Colongo2 and improvements of UAV features are an awkward and difficult challenge. This activity requires precise tools and evaluation methods to analyze the UAV parameters. Therefore large quantity of data must be monitored

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "gtp exploration activity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Energy (Oil and Gas) Exploration (and Development) on the U.S.  

E-Print Network [OSTI]

. Research and incentives for new technology Monitoring and evaluating changes. #12;In the near term in 2009. MMS anticipates a new exploration plan for drilling in 2010. #12;Chukchi Sea Activity Seismic, current cold weather technology is probably well-adapted to warming conditions. Onshore operations

Kuligowski, Bob

262

Oil exploration and development in the North Dakota Williston basin: 1986-1987 update  

SciTech Connect (OSTI)

A review of North Dakota's history of oil and gas discoveries and production includes an analysis of the several exploration cycles the Williston basin has undergone and the development of significant reservoirs there, emphasizing activity in 1986 and 1987. The writers analyze current conditions and offer their best prognosis of future possibilities.

Fischer, D.W.; Bluemle, J.P.

1988-07-01T23:59:59.000Z

263

Modeling Dynamics and Exploring Control of a Single-Wheeled Dynamically Stable Mobile  

E-Print Network [OSTI]

Modeling Dynamics and Exploring Control of a Single-Wheeled Dynamically Stable Mobile Robot. It actively balances and moves on a single wheel using closed loop feedback, making it dynamically stable it a good candidate for operating in human environments. Balancing on a ball allows Ballbot to be omni

264

Research Summary Leisure landscapes: exploring the role of forestry in tourism  

E-Print Network [OSTI]

Research Summary Leisure landscapes: exploring the role of forestry in tourism Using woodlands for tourism includes a wide range of leisure activities, such as mountain biking, walking and nature watching markets for cultural, adventure and wildlife leisure breaks, tourism provides an opportunity to diversity

265

1. Mineral Exploration Regulation in British Columbia Health, Safety and Reclamation Code  

E-Print Network [OSTI]

of guidelines to best practices for an exploration program in British Columbia. For more comprehensive for Mines in British Columbia. All worksites where mechanical disturbance occurs (e.g. trenching, drilling activities including exploratory drilling, excavation, processing, concentrating, waste disposal and site

Bolch, Tobias

266

2 Delivery of Learning Design: the Explor@ System's Case Delivery of Learning Design: the Explor@  

E-Print Network [OSTI]

: the Explor@ System's Case Primary author(s): Gilbert Paquette and Olga Marino, Other author(s): Ileana de la, for design- ing and developing learning systems as well as two software tools, MOT and ADISA, developed

Paris-Sud XI, Université de

267

Property:ExplorationHistory | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to: navigation, searchEstimatedTimeMedian

268

Rock types, pore types, and hydrocarbon exploration  

SciTech Connect (OSTI)

A proposed exploration-oriented method of classifying porosity in sedimentary rocks is based on microscopic examination cores or cuttings. Factors include geometry, size, abundance, and connectivity of the pores. The porosity classification is predictive of key petrophysical characteristics: porosity-permeability relationships, capillary pressures, and (less certainly) relative permeabilities. For instance, intercrystalline macroporosity typically is associated with high permeability for a given porosity, low capillarity, and favorable relative permeabilities. This is found to be true whether this porosity type occurs in a sucrosic dolomite or in a sandstone with pervasive quartz overgrowths. This predictive method was applied in three Rocky Mountain oil plays. Subtle pore throat traps could be recognized in the J sandstone (Cretaceous) in the Denver basin of Colorado by means of porosity permeability plotting. Variations in hydrocarbon productivity from a Teapot Formation (Cretaceous) field in the Powder River basin of Wyoming were related to porosity types and microfacies; the relationships were applied to exploration. Rock and porosity typing in the Red River Formation (Ordovician) reconciled apparent inconsistencies between drill-stem test, log, and mud-log data from a Williston basin wildcat. The well was reevaluated and completed successfully, resulting in a new field discovery. In each of these three examples, petrophysics was fundamental for proper evaluation of wildcat wells and exploration plays.

Coalson, E.B.; Hartmann, D.J.; Thomas, J.B.

1985-05-01T23:59:59.000Z

269

Middle School "Exploration" Engineering Challenge Camp  

E-Print Network [OSTI]

Daytime Counselors 9:15 a.m. Cupcake Mining Daytime Counselors 10:30 a.m. Fracking/Drilling Activity

Mohaghegh, Shahab

270

Dictionary of petroleum exploration, drilling, and production  

SciTech Connect (OSTI)

This book contains more than 20,000 definitions of oil exploration, drilling, and production terms, making this dictionary mandatory for both the experienced industry professional and the nontechnical person. Completing this comprehensive reference are more than 500 detailed illustrations. Appendices include a rotary rig diagram, a cable tool drilling rig, a beam pumping unit, giant oil fields of the world, giant oil, and gas fields of the United States and Canada, a geological time chart, geological map symbols, conversion factors, the Greek alphabet atomic weights and numbers, charts of the geological features of the United States and Canada, plus much, much more.

Hyne, N.J.

1991-01-01T23:59:59.000Z

271

Template:ExplorationTechnique | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark Jump to: navigation,Telluric SurveyCite Jump

272

Exploring the Nature of Matter | Jefferson Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy and Assistance100JeffersonMarkExploratory DevelopmentExploring

273

Explore Geothermal Careers | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit|Department of Energy56Executive SummitEnergyGeothermal Careers Explore

274

Geothermal/Exploration | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to: navigation, searchTo encourage the developmentRiverExploration

275

Geologic Analysis of Priority Basins for Exploration and Drilling  

SciTech Connect (OSTI)

There has been a substantial decline in both exploratory drilling and seismic field crew activity in the United States over the last 10 years, due primarily to the declining price of oil. To reverse this trend and to preserve the entrepreneurial independent operator, the U.S. DOE is attempting to encourage hydrocarbon exploration activities in some of the under exploited regions of the United States. This goal is being accomplished by conducting broad regional reviews of potentially prospective areas within the lower 48 states. Data are being collected on selected areas, and studies are being done on a regional scale generally unavailable to the smaller independent. The results of this work will be made available to the public to encourage the undertaking of operations in areas which have been overlooked until this project. Fifteen criteria have been developed for the selection of study areas. Eight regions have been identified where regional geologic analysis will be performed. This report discusses preliminary findings concerning the geology, early tectonic history, structure and potential unconventional source rocks for the Black Mesa basin and South Central states region, the two highest priority study areas.

Carroll, H.B.; Reeves, T.K.

1999-04-27T23:59:59.000Z

276

Conceptual Steps towards Exploring the Fundamental Nature of our Sun  

E-Print Network [OSTI]

One of the basic questions of solar research is the nature of the Sun. We show here how the plasma nature of the Sun leads to the self-generation of solar activity. The release of magnetic, rotational, gravitational, nuclear energies and that of the gravity mode oscillations deviate from uniformity and spherical symmetry. Through instabilities they lead to the emergence of sporadic and localized regions like flux tubes, electric filaments, magnetic elements and high temperature regions. A systematic approach exploring the solar collective degrees of freedom, extending to ordering phenomena of the magnetic features related to Higgs fields, is presented. Handling solar activity as transformations of energies from one form to another one presents a picture on the network of the energy levels of the Sun, showing that the Sun is neither a mere "ball of gas" nor a "quiescent steady-state fusion-reactor machine", but a complex self-organizing system. Since complex self-organizing systems are similar to living systems (and, by some opinion, identical with them), we also consider what arguments indicate the living nature of the Sun. Thermodynamic characteristics of the inequilibrium Sun are found important in this respect and numerical estimations of free energy rate densities and specific exergies are derived. KEY WORDS solar physics, degrees of freedom, self-organizing complex systems, non-equilibrium thermodynamics, astrobiology CLASSIFICATION PACS: 01.70.+w, 96.60.Rd

A. Grandpierre

2004-07-19T23:59:59.000Z

277

Design Space Exploration of Parameterized Systems using Design of Experiments  

E-Print Network [OSTI]

13 2.1 Design space exploration for system specific tuningShin Figure 5: Noxim NoC design space with over 60,00030: Percent of the design space that needs to be explored in

Sheldon, David

2011-01-01T23:59:59.000Z

278

MAGNETOTELLURICS -APPLICATION TO RESOURCE EXPLORATION, STUDIES OF CRUST/LITHOSPHERE,  

E-Print Network [OSTI]

OF TECHNIQUES OF DATA ACQUISITION AND INTERPRETATION NATIONAL GEOPHYSICAL RESEARCH INSTITUTE (COUNCILMAGNETOTELLURICS - APPLICATION TO RESOURCE EXPLORATION, STUDIES OF CRUST/LITHOSPHERE, IMPROVEMENT: NGRI-2009-EXP- MAGNETOTELLURICS ­ APPLICATION TO RESOURCE EXPLORATION, STUDIES OF CRUST / LITHOSPHERE

Harinarayana, T.

279

A trade space model for robotic lunar exploration  

E-Print Network [OSTI]

The last decade has seen a resurgence of interest in the moon as a target for planetary exploration. In light of the growing interest in the robotic exploration of the moon, this thesis presents a quantitative methodology ...

Bailey, Zachary James

2010-01-01T23:59:59.000Z

280

June 26 Webinar to Explore Renewable Energy Project Leasing on...  

Broader source: Energy.gov (indexed) [DOE]

June 26 Webinar to Explore Renewable Energy Project Leasing on Tribal Lands June 26 Webinar to Explore Renewable Energy Project Leasing on Tribal Lands June 19, 2013 - 7:28pm...

Note: This page contains sample records for the topic "gtp exploration activity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Strategies for affordable human Moon and Mars exploration  

E-Print Network [OSTI]

The U.S. Vision for Space Exploration calls for NASA to undertake human exploration of the Moon and Mars. This endeavor must be performed in an affordable manner in order to be successful. This thesis outlines a series of ...

Wooster, Paul Douglas

2007-01-01T23:59:59.000Z

282

Exploration for heavy crude oil and natural bitumen  

SciTech Connect (OSTI)

This book discusses heavy oil and tar sand reserves which are enormous. Focus in on regional resources worldwide; characterization, maturation, and degradation; geological environments and migration; exploration methods; exploration histories; and recovery.

Meyer, R.F. (U.S. Geological Survey (US))

1987-01-01T23:59:59.000Z

283

Energy Department and South Dakota Tribal Leaders Explore Ways...  

Energy Savers [EERE]

and South Dakota Tribal Leaders Explore Ways to Lower Energy Costs Energy Department and South Dakota Tribal Leaders Explore Ways to Lower Energy Costs June 10, 2014 - 3:08pm...

284

An Integrated Traverse Planner and Analysis Tool for Planetary Exploration  

E-Print Network [OSTI]

Future planetary explorations will require surface traverses of unprecedented frequency, length, and duration. As a result, there is need for exploration support tools to maximize productivity, scientific return, and safety. ...

Johnson, Aaron William

285

Design of spacecraft for exploration of the Moon and Mars  

E-Print Network [OSTI]

In this thesis, I develop the conceptual design of the spacecraft required for human-Lunar and human-Mars exploration. The requirements for these vehicles are derived in the context of the NASA Concept Exploration & ...

Epps, Brenden P

2006-01-01T23:59:59.000Z

286

Thermo2Pro: Knowledge dissemination for deep geothermal exploration  

E-Print Network [OSTI]

1/12 Thermo2Pro: Knowledge dissemination for deep geothermal exploration Philippe Calcagno1 territoires, Voreppe, France # now at Kitware, Villeurbanne, France p.calcagno@brgm.fr Keywords: Deep geothermal exploration, information system, Web tool, sedimentary basin, dissemination. Abstract

Paris-Sud XI, Université de

287

Flow through shares for Natural Gas exploration (Quebec, Canada)  

Broader source: Energy.gov [DOE]

A flow-through share is a security issued by an exploration company that waives its exploration deduction in favor of the investor. The Qubec Taxation Act enables a private individual to benefit...

288

Wind Tunnel and Flight Testing of Active Flow Control on a UAV  

E-Print Network [OSTI]

Active flow control has been extensively explored in wind tunnel studies but successful in-flight implementation of an active flow control technology still remains a challenge. This thesis presents implementation of active flow control technology...

Babbar, Yogesh

2011-08-08T23:59:59.000Z

289

ASU School of Earth and Space Exploration September 10, 2014  

E-Print Network [OSTI]

ASU School of Earth and Space Exploration September 10, 2014 Imaging the Birthplaces of Stars and Planets with Terahertz Focal Plane Arrays Christopher Groppi Assistant Professor ASU School of Earth and Space Exploration #12;ASU School of Earth and Space Exploration September 10, 2014 SESE Terahertz Group

Rhoads, James

290

How to explore new business models for technological innovations  

E-Print Network [OSTI]

How to explore new business models for technological innovations Valérie Chanal Grenoble University also involved business model innovation. Exploration of new business models is however particularly to target. This article proposes a scenario-based method for exploring business models for technological

Paris-Sud XI, Université de

291

Frontier-Based Exploration Using Multiple Robots Brian Yamauchi  

E-Print Network [OSTI]

Frontier-Based Exploration Using Multiple Robots Brian Yamauchi Navy Center for Applied Research. ABSTRACT Frontier-based exploration directs mobile robots to regions on the boundary between unexplored spaceand spacethat is known to be open. Previously, we havedemonstrated that frontier-based exploration can

Baltes, Jacky

292

Virtual Reviewers for Collaborative Exploration of Movie Reviews  

E-Print Network [OSTI]

items well. Collaborative information exploration virtualizes this process by using rating data. We haveVirtual Reviewers for Collaborative Exploration of Movie Reviews Junichi Tatemura Institute tatemura@iis.u-tokyo.ac.jp ABSTRACT We propose a collaborative exploration system that helps users

293

A Business Process Explorer: Recovering Business Processes from Business Applications  

E-Print Network [OSTI]

1 A Business Process Explorer: Recovering Business Processes from Business Applications Jin Guo and software developers. We present a business process explorer tool which automatically recovers business of business applications, we developed a business process explorer tool which recovers as-implemented business

Zou, Ying

294

CLUSTERED MULTIDIMENSIONAL SCALING FOR EXPLORATION IN INFORMATION RETRIEVAL  

E-Print Network [OSTI]

and even hardly improve the exploration process of datasets assumed to be composed of multiple distinctCLUSTERED MULTIDIMENSIONAL SCALING FOR EXPLORATION IN INFORMATION RETRIEVAL Eniko Sz´ekely, ´Eric: clustering, nearest neighbour, multidimensional scaling, exploration. Abstract: The data that needs

Genève, Université de

295

HIGHER-ORDER MODELING AND AUTOMATED DESIGN-SPACE EXPLORATION  

E-Print Network [OSTI]

the second requires the exis- tence of an automated process for design space exploration. There are many waysHIGHER-ORDER MODELING AND AUTOMATED DESIGN-SPACE EXPLORATION J¨orn W. Janneck EECS Department exploration, exploratory simula- tion, performance evaluation, higher-order models ABSTRACT An important part

Esser, Robert

296

Optimal Grid Exploration by Asynchronous Oblivious Robots Stephane Devismes  

E-Print Network [OSTI]

process implies that the robots somehow have to remember which part of the graph has been explored of the other robots remain the only way to distinguish different stages of the exploration process. The mainOptimal Grid Exploration by Asynchronous Oblivious Robots St´ephane Devismes Anissa Lamani Franck

297

Asynchronous Exclusive Perpetual Grid Exploration without Sense of Direction  

E-Print Network [OSTI]

" to help robots in their exploration process. Observe that due to the mutual exclusion constraintsAsynchronous Exclusive Perpetual Grid Exploration without Sense of Direction Fran¸cois Bonnet1 the exclusive perpetual exploration of grid shaped networks using anonymous, oblivious and fully asynchronous

Paris-Sud XI, Université de

298

ccsd00001253 The exploration process of inhomogeneous continuum  

E-Print Network [OSTI]

ccsd­00001253 (version 1) : 8 Mar 2004 The exploration process of inhomogeneous continuum random) that arise as weak limits of birthday trees. We give a description of the exploration process, a function de words: Continuum random tree, exchangeable increments, exploration process, L#19;evy process, weak

299

Increasing pipelined IP core utilization in Process Networks using Exploration  

E-Print Network [OSTI]

Increasing pipelined IP core utilization in Process Networks using Exploration Claudiu Zissulescu pipelined. In this paper, we present an exploration methodology that uses feedback provided by the Laura tool to increase the uti- lization of IP cores embedded in our PN network. Using this exploration, we

Kienhuis, Bart

300

Using Provenance to Streamline Data Exploration through Visualization  

E-Print Network [OSTI]

of the visualization process can be used to streamline the data exploration process and reduce the time to insight process. #12;Using Provenance to Streamline Data Exploration through Visualization Steven P. Callahan be used to streamline the data exploration process and reduce the time to in- sight. This model enables

Utah, University of

Note: This page contains sample records for the topic "gtp exploration activity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Image Based Exploration for Indoor Environments using Local Features  

E-Print Network [OSTI]

. INTRODUCTION Mobile robot exploration is a vital cog in the automa- tion of the mapping process. In recentImage Based Exploration for Indoor Environments using Local Features (Extended Abstract) Aravindhan K Krishnan Madhava Krishna Supreeth Achar ABSTRACT This paper presents an approach to explore

Treuille, Adrien

302

Exploring Small-Scale Meat Processing Expansions in Iowa  

E-Print Network [OSTI]

Exploring Small-Scale Meat Processing Expansions in Iowa A Technical Report Submitted@iastate.edu #12;2Exploring Small-Scale Meat Processing Expansions in Iowa April 2011 Overview of Findings Iowa;3Exploring Small-Scale Meat Processing Expansions in Iowa April 2011 Introduction Iowa is a national leader

Debinski, Diane M.

303

Hierarchical Distributed Task Allocation for Multi-Robot Exploration  

E-Print Network [OSTI]

the exploration process via a market-based mechanism. That is, each robot decides for itself whether it is moreHierarchical Distributed Task Allocation for Multi-Robot Exploration John Hawley and Zack Butler Abstract In order to more effectively explore a large unknown area, multiple robots may be employed to work

Butler, Zack

304

Experimental Evaluation of Some Exploration Strategies for Mobile Robots  

E-Print Network [OSTI]

mobile robots. An efficient map building process is based on a good exploration strategy that determines to incrementally map it. More precisely, the process of exploring an unknown environment using a mobile robot the paper. II. A REVIEW OF EXPLORATION STRATEGIES Mapping is an incremental process. Since the ranges

Amigoni, Francesco

305

Using Visualization Process Graphs to Improve Visualization Exploration  

E-Print Network [OSTI]

Using Visualization Process Graphs to Improve Visualization Exploration T. J. Jankun-Kelly1 University, MS 39762, USA. Email: tjk@acm.org Abstract. Visualization exploration is an iterative process, redundant exploration was quickly identified and eliminated. 1 Introduction During the visualization process

Jankun-Kelly, T. J.

306

LAWST 7 Styles of Exploration (c) Cem Kaner All rights reserved 1 Styles of Exploration  

E-Print Network [OSTI]

they fail · Knowledge of the use of applications of this type · Deep knowledge of the software under test experience with software development projects and their typical problems · Requirements analysis or problem Testing: Exploring the Controversy of Unstructured Testing. STAR'98 WEST So, how do you do it

307

Exploring patterns in European singles charts  

E-Print Network [OSTI]

European singles charts are important part of the music industry responsible for creating popularity of songs. After modeling and exploring dynamics of global album sales in previous papers, we investigate patterns of hit singles popularity according to all data (1966-2015) from weekly charts (polls) in 12 Western European countries. The dynamics of building popularity in various national charts is more than the economy because it depends on spread of information. In our research we have shown how countries may be affected by their neighbourhood and influenced by technological era. We have also computed correlations with geographical and cultural distances between countries in analog, digital and Internet era. We have shown that time delay between the single premiere and the peak of popularity has become shorter under the influence of technology and the popularity of songs depends on geographical distances in analog (1966-1987) and Internet (2004-2015) era. On the other hand, cultural distances between nation...

Buda, Andrzej

2015-01-01T23:59:59.000Z

308

Exploring the magnetic topologies of cool stars  

E-Print Network [OSTI]

Magnetic fields of cool stars can be directly investigated through the study of the Zeeman effect on photospheric spectral lines using several approaches. With spectroscopic measurement in unpolarised light, the total magnetic flux averaged over the stellar disc can be derived but very little information on the field geometry is available. Spectropolarimetry provides a complementary information on the large-scale component of the magnetic topology. With Zeeman-Doppler Imaging (ZDI), this information can be retrieved to produce a map of the vector magnetic field at the surface of the star, and in particular to assess the relative importance of the poloidal and toroidal components as well as the degree of axisymmetry of the field distribution. The development of high-performance spectropolarimeters associated with multi-lines techniques and ZDI allows us to explore magnetic topologies throughout the Hertzsprung-Russel diagram, on stars spanning a wide range of mass, age and rotation period. These observations b...

Morin, J; Petit, P; Albert, L; Auriere, M; Cabanac, R; Catala, C; Delfosse, X; Dintrans, B; Fares, R; Forveille, T; Gastine, T; Jardine, M; Konstantinova-Antova, R; Lanoux, J; Lignieres, F; Morgenthaler, A; Paletou, F; Velez, J C Ramirez; Solanki, S K; Theado, S; Van Grootel, V

2010-01-01T23:59:59.000Z

309

Hard x-ray imaging from explorer  

SciTech Connect (OSTI)

Coded aperture X-ray detectors were applied to obtain large increases in sensitivity as well as angular resolution. A hard X-ray coded aperture detector concept is described which enables very high sensitivity studies persistent hard X-ray sources and gamma ray bursts. Coded aperture imaging is employed so that approx. 2 min source locations can be derived within a 3 deg field of view. Gamma bursts were located initially to within approx. 2 deg and X-ray/hard X-ray spectra and timing, as well as precise locations, derived for possible burst afterglow emission. It is suggested that hard X-ray imaging should be conducted from an Explorer mission where long exposure times are possible.

Grindlay, J.E.; Murray, S.S.

1981-11-01T23:59:59.000Z

310

Exploring the mechanisms of protein folding  

E-Print Network [OSTI]

Neither of the two prevalent theories, namely thermodynamic stability and kinetic stability, provides a comprehensive understanding of protein folding. The thermodynamic theory is misleading because it assumes that free energy is the exclusive dominant mechanism of protein folding, and attributes the structural transition from one characteristic state to another to energy barriers. Conversely, the concept of kinetic stability overemphasizes dominant mechanisms that are related to kinetic factors. This article explores the stability condition of protein structures from the viewpoint of meso-science, paying attention to the compromise in the competition between minimum free energy and other dominant mechanisms. Based on our study of complex systems, we propose that protein folding is a meso-scale, dissipative, nonlinear and non-equilibrium process that is dominated by the compromise between free energy and other dominant mechanisms such as environmental factors. Consequently, a protein shows dynamic structures,...

Xu, Ji; Ren, Ying; Li, Jinghai

2013-01-01T23:59:59.000Z

311

The Pelagian Block (central Mediterranean): Exploration and new opportunities  

SciTech Connect (OSTI)

The Pelagian Block, extending from eastern Tunisia to offshore western Libya and northward to Malta and Sicily, is a complex foreland area structurally active since the Carboniferous, that separates western North Africa from southern Italy. The north (Sicily) and central parts of the Pelagian Block contain Triassic-Lower Jurassic peritidal carbonates with rare evaporites; Middle Jurassic-Eocene pelagic carbonates, and paralic to marine clastics of Oligocene to Pleistocene age, with Messinian evaporites. The Middle Jurassic/Eocene platform to pelagic carbonates of Sicily are gradually replaced southward by basin margin, marine to paralic carbonates and clastics. In eastern Tunisia, these rocks overlie Triassic-Lower Jurasic evaporites. Principal petroleum resources occur offshore SE Sicily, offshore Tunisia and in adjacent Libyan waters. The largest oil fields are Bouri (800 MMB recoverable reserves) and Ashtart (recoverable reserves of 250 MMB). The largest gas field is Miskar (recoverable reserves of 800 BCF). Smaller accumulations are distributed throughout the region. New oil discoveries, ranging in size from 8 MMB to 50 MMB, have recently been made onshore and in the shallow offshore. Proven and potential source beds for hydrocarbons occur in various paleotectonic settings: anoxic lagoons formed in the early continental rifting stages (Triassic/Liassic organic rich units of SE Sicily); subcontinental/paralic coals and shales (Lower Cretaceous of Tunisia); and deeper water anoxic basins (late Mesozoic and Tertiary organic sequences). Additional exploration opportunities are expected in undrilled or sparsely drilled acreage, with traditional plays similar to those tested in the past; or in new plays directed to the exploration of new reservoir objectives.

Zappaterra, E. [Chevron Co., London (United Kingdom)

1995-08-01T23:59:59.000Z

312

VolumeExplorer: Roaming Large Volumes to Couple Visualization and Data Processing for Oil and Gas Exploration  

E-Print Network [OSTI]

VolumeExplorer: Roaming Large Volumes to Couple Visualization and Data Processing for Oil and Gas dedicated to oil and gas exploration. Our system combines probe- based volume rendering with data processing Seismic interpretation is an important task in the oil and gas exploration-production (EP) workflow [9, 26

Paris-Sud XI, Université de

313

New River Geothermal Exploration (Ram Power Inc.)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The New River Geothermal Exploration (DOE Award No. EE0002843) is located approximately 25km south of the Salton Sea, near town of Brawley in Imperial County and approximately 150km east of San Diego, California. A total of 182 MT Logger sites were completed covering the two separate Mesquite and New River grids. The data was collected over a frequency range of 320Hz to 0.001Hz with variable site spacing. A number of different inversion algorithms in 1D, 2D and 3D were used to produce resistivity-depth profiles and maps of subsurface resistivity variations over the survey area. For 2D inversions, a total of eighteen lines were constructed in east-west and north-south orientations crossing the entire survey area. For MT 3D inversion, the New River property was divided in two sub-grids, Mesquite and New River areas. The report comprises of two parts. For the first part, inversions and geophysical interpretation results are presented with some recommendations of the potential targets for future follow up on the property. The second part of the report describes logistics of the survey, survey parameters, methodology and the survey results (data) in digital documents. The report reviews a Spartan MT survey carried out by Quantec Geoscience Limited over the New River Project in California, USA on behalf of Ram Power Inc. Data was acquired over a period of 29 days from 2010/06/26 to 2010/07/24.

Miller, Clay

314

Perception vs. reality in deepwater exploration  

SciTech Connect (OSTI)

The common perception in exploration is that deepwater sands are predominantly a product of turbidity currents, and that submarine-fan models with channel/levee and lobe elements are the norm. The reality, however, is that in many cases, deepwater sands are deposits of sandy debris flows and bottom currents, not turbidity currents. Submarine-fan models with channels and lobes are designed for turbidite-dominated deepwater systems, and therefore, fan models are obsolete for debris-flow deposits. The subject is described here in a discussion that covers: Deepwater processes. How sediments move downslope from the shelf, definitions, and misunderstood effects of high-density turbidity and bottom currents; Submarine fan models, and sequence stratigraphic implications. Limitations of widely used models, and seismic geometries and log motifs. Better calibrations are needed. In the conclusion, the author states a critical need for developing additional models for debris flows, and that research should also focus on developing reliable methods for using seismic geometry and wireline-log motifs to recognize depositional facies. A comprehensive bibliography of published literature on the subject is liberally referenced. In this paper, the term deep water refers to bathyal water depths, i.e., area seaward of the shelf edge, that existed at the time of deposition of reservoir sands; it does not necessarily refer to present-day water depths in offshore examples.

Shanmugam, G. [Mobil Exploration and Producing Technical Center, Dallas, TX (United States)

1996-09-01T23:59:59.000Z

315

Alum Innovative Exploration Project (Ram Power Inc.)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Data generated from the Alum Innovative Exploration Project, one of several promising geothermal properties located in the middle to upper Miocene (~11-5 Ma, or million years BP) Silver Peak-Lone Mountain metamorphic core complex (SPCC) of the Walker Lane structural belt in Esmeralda County, west-central Nevada. The geothermal system at Alum is wholly concealed; its upper reaches discovered in the late 1970s during a regional thermal-gradient drilling campaign. The prospect boasts several shallow thermal-gradient (TG) boreholes with TG >75oC/km (and as high as 440oC/km) over 200-m intervals in the depth range 0-600 m. Possibly boiling water encountered at 239 m depth in one of these boreholes returned chemical- geothermometry values in the range 150-230oC. GeothermEx (2008) has estimated the electrical- generation capacity of the current Alum leasehold at 33 megawatts for 20 years; and the corresponding value for the broader thermal anomaly extending beyond the property at 73 megawatts for the same duration.

Miller, Clay

316

From Question Answering to Visual Exploration  

SciTech Connect (OSTI)

Research in Question Answering has focused on the quality of information retrieval or extraction using the metrics of precision and recall to judge success; these metrics drive toward finding the specific best answer(s) and are best supportive of a lookup type of search. These do not address the opportunity that users? natural language questions present for exploratory interactions. In this paper, we present an integrated Question Answering environment that combines a visual analytics tool for unstructured text and a state-of-the-art query expansion tool designed to compliment the cognitive processes associated with an information analysts work flow. Analysts are seldom looking for factoid answers to simple questions; their information needs are much more complex in that they may be interested in patterns of answers over time, conflicting information, and even related non-answer data may be critical to learning about a problem or reaching prudent conclusions. In our visual analytics tool, questions result in a comprehensive answer space that allows users to explore the variety within the answers and spot related information in the rest of the data. The exploratory nature of the dialog between the user and this system requires tailored evaluation methods that better address the evolving user goals and counter cognitive biases inherent to exploratory search tasks.

McColgin, Dave W.; Gregory, Michelle L.; Hetzler, Elizabeth G.; Turner, Alan E.

2006-08-11T23:59:59.000Z

317

New River Geothermal Exploration (Ram Power Inc.)  

SciTech Connect (OSTI)

The New River Geothermal Exploration (DOE Award No. EE0002843) is located approximately 25km south of the Salton Sea, near town of Brawley in Imperial County and approximately 150km east of San Diego, California. A total of 182 MT Logger sites were completed covering the two separate Mesquite and New River grids. The data was collected over a frequency range of 320Hz to 0.001Hz with variable site spacing. A number of different inversion algorithms in 1D, 2D and 3D were used to produce resistivity-depth profiles and maps of subsurface resistivity variations over the survey area. For 2D inversions, a total of eighteen lines were constructed in east-west and north-south orientations crossing the entire survey area. For MT 3D inversion, the New River property was divided in two sub-grids, Mesquite and New River areas. The report comprises of two parts. For the first part, inversions and geophysical interpretation results are presented with some recommendations of the potential targets for future follow up on the property. The second part of the report describes logistics of the survey, survey parameters, methodology and the survey results (data) in digital documents. The report reviews a Spartan MT survey carried out by Quantec Geoscience Limited over the New River Project in California, USA on behalf of Ram Power Inc. Data was acquired over a period of 29 days from 2010/06/26 to 2010/07/24.

Miller, Clay

2013-11-15T23:59:59.000Z

318

Analysis of the permitting processes associated with exploration of Federal OCS leases. Final report. Volume II. Appendices  

SciTech Connect (OSTI)

Under contract to the Office of Leasing Policy Development (LPDO), Jack Faucett Associates is currently undertaking the description and analysis of the Outer Continental Shelf (OCS) regulatory process to determine the nature of time delays that affect OCS production of oil and gas. This report represents the results of the first phase of research under this contract, the description and analysis of regulatory activity associated with exploration activities on the Federal OCS. Volume 1 contains the following three sections: (1) study results; (2) Federal regulatory activities during exploration of Federal OCS leases which involved the US Geological Survey, Environmental Protection Agency, US Coast Guard, Corps of Engineers, and National Ocean and Atmospheric Administration; and (3) state regulatory activities during exploration of Federal OCS leases of Alaska, California, Louisiana, Massachusetts, New Jersey, North Carolina and Texas. Volume II contains appendices of US Geological Survey, Environmental Protection Agency, Coast Guard, Corps of Engineers, the Coastal Zone Management Act, and Alaska. The major causes of delay in the regulatory process governing exploration was summarized in four broad categories: (1) the long and tedious process associated with the Environmental Protection Agency's implementation of the National Pollutant Discharge Elimination System Permit; (2) thelack of mandated time periods for the completion of individual activities in the permitting process; (3) the lack of overall coordination of OCS exploratory regulation; and (4) the inexperience of states, the Federal government and industry relating to the appropriate level of regulation for first-time lease sale areas.

Not Available

1980-11-01T23:59:59.000Z

319

Sandia National Laboratories: simulation design exploration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-active perovskiteremovingsensors

320

Development of Metric for Measuring the Impact of RD&D Funding on GTO's Geothermal Exploration Goals (Presentation)  

SciTech Connect (OSTI)

The Department of Energy's Geothermal Technologies Office (GTO) provides RD&D funding for geothermal exploration technologies with the goal of lowering the risks and costs of geothermal development and exploration. In 2012, NREL was tasked with developing a metric to measure the impacts of this RD&D funding on the cost and time required for exploration activities. The development of this metric included collecting cost and time data for exploration techniques, creating a baseline suite of exploration techniques to which future exploration and cost and time improvements could be compared, and developing an online tool for graphically showing potential project impacts (all available at http://en.openei.org/wiki/Gateway:Geothermal). The conference paper describes the methodology used to define the baseline exploration suite of techniques (baseline), as well as the approach that was used to create the cost and time data set that populates the baseline. The resulting product, an online tool for measuring impact, and the aggregated cost and time data are available on the Open EI website for public access (http://en.openei.org).

Jenne, S.; Young, K. R.; Thorsteinsson, H.

2013-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "gtp exploration activity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Alaska Oil and Gas Exploration, Development, and Permitting Project  

SciTech Connect (OSTI)

This is the final technical report for Project 15446, covering the grant period of October 2002 through March 2006. This project connects three parts of the oil exploration, development, and permitting process to form the foundation for an advanced information technology infrastructure to better support resource development and resource conservation. Alaska has nearly one-quarter of the nation's supply of crude oil, at least five billion barrels of proven reserves. The American Association of Petroleum Geologists report that the 1995 National Assessment identified the North Slope as having 7.4 billion barrels of technically recoverable oil and over 63 trillion cubic feet of natural gas. From these reserves, Alaska produces roughly one-fifth of the nation's daily crude oil production, or approximately one million barrels per day from over 1,800 active wells. The broad goal of this grant is to increase domestic production from Alaska's known producing fields through the implementation of preferred upstream management practices. (PUMP). Internet publication of extensive and detailed geotechnical data is the first task, improving the permitting process is the second task, and building an advanced geographical information system to offer continuing support and public access of the first two goals is the third task. Excellent progress has been made on all three tasks; the technical objectives as defined by the approved grant sub-tasks have been met. The end date for the grant was March 31, 2006.

Richard McMahon; Robert Crandall

2006-03-31T23:59:59.000Z

322

E-Print Network 3.0 - activity indicator model Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

on the GUI. The pur- pose of this work is to explore how... observation streams from sensors, activities can be ... Source: Modayil, Joseph - Department of Computing Science,...

323

Pattern of Islamist Activism in Egypt: Structural Correlations and Relative Deprivation.  

E-Print Network [OSTI]

??This project explores the structural contributors to the rise of Islamist activism in Egypt in the 1970s by working out of the theoretical framework of (more)

Brown, Cody M.

2006-01-01T23:59:59.000Z

324

E-Print Network 3.0 - activated carbon storage Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

capacity with active carbon nanostructure... are the premier laboratory in carbon aerogels and have explored their use for hydrogen storage and gas separation... . Preliminary...

325

Solar discrepancies : Mars exploration and the curious problem of inter-planetary time  

E-Print Network [OSTI]

Monterey, California. Solar Discrepancies: Mars explorationCALIFORNIA, SAN DIEGO Solar discrepancies: Mars explorationOF THE DISSERTATION Solar discrepancies: Mars exploration

Mirmalek, Zara Lenora

2008-01-01T23:59:59.000Z

326

Lithium In Tufas Of The Great Basin- Exploration Implications...  

Open Energy Info (EERE)

Tufas Of The Great Basin- Exploration Implications For Geothermal Energy And Lithium Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

327

Neutron Imaging Explored as Complementary Technique for Improving...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Neutron Imaging Explored as Complementary Technique for Improving Cancer Detection August 05, 2013 Researcher Maria Cekanova analyzes the neutron radiographs of a canine breast...

328

Quaternary Borate Deposits As A Geothermal Exploration Tool In...  

Open Energy Info (EERE)

Borate Deposits As A Geothermal Exploration Tool In The Great Basin Abstract A close spatial relationship exists between Quaternary borate deposits and moderate to high...

329

Application of a New Structural Model and Exploration Technologies...  

Open Energy Info (EERE)

Technologies to Define a Blind Geothermal System: A Viable Alternative to Grid-Drilling for Geothermal Exploration: McCoy, Churchill County, NV Geothermal Project Jump to:...

330

United States Department Of The Navy Geothermal Exploration Leading...  

Open Energy Info (EERE)

Navy Geothermal Exploration Leading To Shallow And Intermediate-Deep Drilling At Hawthorne Ammunition Depot, Hawthorne, Nv Jump to: navigation, search OpenEI Reference LibraryAdd...

331

Historical Exploration And Drilling Data From Geothermal Prospects...  

Open Energy Info (EERE)

Historical Exploration And Drilling Data From Geothermal Prospects And Power Generation Projects In The Western United States Jump to: navigation, search OpenEI Reference...

332

Fall Lectures Feature Life of Einstein; Exploring Our World With...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fall Lectures Feature Life of Einstein; Exploring Our World With Particle Accelerators NEWPORT NEWS, Va., Sept. 22, 2010 - Jefferson Lab's first 2010 Fall Science Series lecture,...

333

Jefferson Lab Fall Lecture: Exploring Our World With Particle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fall Lecture: Exploring Our World With Particle Accelerators NEWPORT NEWS, Va., Nov. 9, 2010 - Jefferson Lab's 2010 Fall Science Lecture Series concludes on Tuesday, Nov. 23, with...

334

Integrated Geophysical Exploration of a Known Geothermal Resource...  

Open Energy Info (EERE)

Neal Hot Springs Jump to: navigation, search OpenEI Reference LibraryAdd to library Book Section: Integrated Geophysical Exploration of a Known Geothermal Resource: Neal Hot...

335

A Regional Strategy For Geothermal Exploration With Emphasis...  

Open Energy Info (EERE)

Strategy For Geothermal Exploration With Emphasis On Gravity And Magnetotellurics Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Regional...

336

architecture exploring tumor: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2007-01-01 23 Generative exploration of architectural envelope responding to solar passive qualities Physics Websites Summary: evolutionary design, integrated to early stage...

337

Assessment of New Approaches in Geothermal Exploration Decision...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Assessment of New Approaches in Geothermal Exploration Decision Making Preprint Sertac Akar and Katherine R. Young National Renewable Energy Laboratory Presented at the Fourtieth...

338

U-262: Microsoft Internet Explorer Flaw Lets Remote Users Execute...  

Broader source: Energy.gov (indexed) [DOE]

reported in Microsoft Internet Explorer. reference LINKS: Bugtraq ID: 55562 Security Database KB2757760 Microsoft Security Advisory (2757760) SecurityTracker Alert ID: 1027538...

339

Exploration Best Practices and the OpenEI Knowledge Exchange...  

Energy Savers [EERE]

Exchange Webinar Exploration Best Practices and the OpenEI Knowledge Exchange Webinar slide presentation by Katherine Young, Timothy Reber and Kermit Witherbee on April 11, 2012....

340

Geothermal Exploration In Pilgrim, Alaska- First Results From...  

Open Energy Info (EERE)

Pilgrim, Alaska- First Results From Remote Sensing Studies Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Poster: Geothermal Exploration In Pilgrim, Alaska- First...

Note: This page contains sample records for the topic "gtp exploration activity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

NMSLO Application for Permit to Conduct Geophysical Exploration...  

Open Energy Info (EERE)

Reference LibraryAdd to library Legal Document- OtherOther: NMSLO Application for Permit to Conduct Geophysical Exploration on Unleased State LandsLegal Published NA Year...

342

Reconnaissance geothermal exploration at Raft River, Idaho from...  

Open Energy Info (EERE)

exploration at Raft River, Idaho from thermal infrared scanning Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Reconnaissance geothermal...

343

A Structural Model Guide For Geothermal Exploration In Ancestral...  

Open Energy Info (EERE)

navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Structural Model Guide For Geothermal Exploration In Ancestral Mount Bao, Leyte, Philippines Abstract...

344

Energy Department Explores Deep Direct Use | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Department Explores Deep Direct Use Cascaded uses of geothermal energy include district heating and industrial uses as well as agricultural applications like greenhouses and...

345

Low Cost Exploration, Testing, and Development of the Chena Geothermal...  

Open Energy Info (EERE)

Article: Low Cost Exploration, Testing, and Development of the Chena Geothermal Resource Abstract The Chena Hot Springs geothermal field was intensivelyexplored, tested, and...

346

NREL: News - NREL Assembles Industry Group to Explore Solar Lending...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

914 NREL Assembles Industry Group to Explore Solar Lending Potential May 7, 2014 Increasingly, banks, credit unions, and other lenders are beginning to offer loan products to...

347

Exploring chaos to model the design process  

E-Print Network [OSTI]

to a. chaotic svstem mav drive it to neu attractors. Any neiv information introduced to the design proi. ess mav lead to different solutions. CHAPTER II THE FUNDAMENTAL PROCESSES OF DESIGN As ivas stated in the introduction, the first objective... of this researcll v" as i i identify some of the funclamental activities of the design process. In order to acconiphsh tins task. the follniving approach v;as taken. i. 'The hterature ivas surveyed for descriptive models of the design process. klorlcls tliat...

Sharkawy, Ahmed

1990-01-01T23:59:59.000Z

348

Geothermal Exploration Policy Mechanisms | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel Cell VehicleEnergy (5 Activities) Geothermal

349

EXPLORING THE MORPHOLOGY OF RAVE STELLAR SPECTRA  

SciTech Connect (OSTI)

The RAdial Velocity Experiment (RAVE) is a medium-resolution (R {approx} 7500) spectroscopic survey of the Milky Way that has already obtained over half a million stellar spectra. They present a randomly selected magnitude-limited sample, so it is important to use a reliable and automated classification scheme that identifies normal single stars and discovers different types of peculiar stars. To this end, we present a morphological classification of {approx}350, 000 RAVE survey stellar spectra using locally linear embedding, a dimensionality reduction method that enables representing the complex spectral morphology in a low-dimensional projected space while still preserving the properties of the local neighborhoods of spectra. We find that the majority of all spectra in the database ({approx} 90%-95%) belong to normal single stars, but there is also a significant population of several types of peculiars. Among them, the most populated groups are those of various types of spectroscopic binary and chromospherically active stars. Both of them include several thousands of spectra. Particularly the latter group offers significant further investigation opportunities since activity of stars is a known proxy of stellar ages. Applying the same classification procedure to the sample of normal single stars alone shows that the shape of the projected manifold in two-dimensional space correlates with stellar temperature, surface gravity, and metallicity.

Matijevic, G.; Zwitter, T. [Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana (Slovenia); Bienayme, O.; Siebert, A. [Observatoire de Strasbourg, Universite de Strasbourg, CNRS, 11 rue de l'universite, 67000 Strasbourg (France); Bland-Hawthorn, J. [Sydney Institute for Astronomy, University of Sydney, NSW 2006 (Australia); Boeche, C.; Grebel, E. K. [Astronomisches Rechen-Institut, Zentrum fuer Astronomie der Universitaet Heidelberg, Moenchhofstr. 12-14, 69120 Heidelberg (Germany); Freeman, K. C. [Research School of Astronomy and Astrophysics, Australia National University, Weston Creek, Canberra, ACT 2611 (Australia); Gibson, B. K. [Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 3TE (United Kingdom); Gilmore, G. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Helmi, A. [Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700 AV Groningen (Netherlands); Munari, U. [INAF Osservatorio Astronomico di Padova, 36012 Asiago (Italy); Navarro, J. [Department of Physics and Astronomy, University of Victoria, Victora, BC V8P 5C2 (Canada); Parker, Q. A.; Reid, W. [Department of Physics and Astronomy, Macquarie University, NSW 2109 (Australia); Seabroke, G. [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking RH5 6NT (United Kingdom); Siviero, A. [Department of Astronomy, Padova University, Vicolo dell'Osservatorio 2, 35122 Padova (Italy); Steinmetz, M.; Williams, M. [Leibniz-Institut fuer Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam (Germany); Watson, F. G., E-mail: gal.matijevic@fmf.uni-lj.si [Australian Astronomical Observatory, P.O. Box 296, Epping, NSW 2121 (Australia); and others

2012-06-01T23:59:59.000Z

350

Center for BrainHealtH Scientific exploration at  

E-Print Network [OSTI]

Center for BrainHealtH #12;#12;Scientific exploration at BrainHealth is leading edge, innovative and transformative. leading tHe way in tHiS century'S greateSt ScientiFic cauSe The Center for Brain significant cause of the century: To understand, protect and heal the brain. Scientific exploration at Brain

O'Toole, Alice J.

351

EUROGRAPHICS 2007 Cultural Heritage Papers An Interactive Exploration of the  

E-Print Network [OSTI]

reconstruction and access supplemental historical background material on demand. With the multimedia installation we present a new experience which empowers visitors of the museum to explore an historical site exploration techniques, however, come at the price of complex interac- tion paradigms and costly equipment

Blanz, Volker

352

Roadmap for Venus Exploration (Version 4, 1/29/14)  

E-Print Network [OSTI]

1 Roadmap for Venus Exploration (Version 4, 1/29/14) Introduction Venus is so similar solar systems. This Roadmap lays out a framework for the future exploration of Venus, encompassing expressed in this Roadmap should be recognized by NASA review panels as being consistent with VEXAG

Rathbun, Julie A.

353

Original article Exploration of a plant architecture database  

E-Print Network [OSTI]

Original article Exploration of a plant architecture database with the AMAPmod software illustrated plantes, Cirad, BP5035, 34032 Montpellier cedex 1, France bLaboratoire d'arboriculture fruitière, Inra, 2) Abstract - This paper describes the constitution and the statistical exploration of a plant architecture

Boyer, Edmond

354

Exploration for heavy crude oil and natural bitumen  

SciTech Connect (OSTI)

Heavy oil and tar sand reserves are enormous, and this 700-page volume breaks the topic down into six emphasis areas of: regional resources worldwide; characterization, maturation, and degradation; geological environments and migration; exploration methods; exploration histories; and recovery. An appendix presents a guidebook to Santa Maria, Cuyama, Taft-McKettrick, and Edna oil districts, Coast Ranges, California.

Not Available

1989-01-01T23:59:59.000Z

355

Static electricity measurements for lightning warnings -an exploration  

E-Print Network [OSTI]

Static electricity measurements for lightning warnings - an exploration H. Bloemink De Bilt, 2013 | Internal report; IR 2013-01 #12;#12;Static electricity measurements for lightning warnings - an exploration Version 1.0 Date January 2013 Status Final #12;#12;Static electricity measurements for lightning warnings

Haak, Hein

356

EMBEDDED SW DESIGN SPACE EXPLORATION AND AUTOMATION USING  

E-Print Network [OSTI]

EMBEDDED SW DESIGN SPACE EXPLORATION AND AUTOMATION USING UML-BASED TOOLS FLÁVIO R. WAGNER, carro}@inf.ufrgs.br Abstract: This tutorial discusses design space exploration and software automation based on an UML front-end. First, we review software automation tools targeted at the embedded systems

Wagner, Flávio Rech

357

EXPLORING ABORIGINAL FORESTRY AND ECOSYSTEM-BASED MANAGEMENT  

E-Print Network [OSTI]

EXPLORING ABORIGINAL FORESTRY AND ECOSYSTEM-BASED MANAGEMENT: A CASE STUDY OF COWICHAN TRIBES of Resource Management Title of Research Project: Exploring Aboriginal Forestry and Ecosystem-based Management aboriginal forestry will be required. First Nations share a common desire for control over their forest

358

Robot Exploration with Fast Frontier Detection: Theory and Experiments  

E-Print Network [OSTI]

Robot Exploration with Fast Frontier Detection: Theory and Experiments Matan Keidar MAVERICK Group, Department of Computer Science, Bar-Ilan University galk@cs.biu.ac.il ABSTRACT Frontier-based exploration is the most common approach to explo- ration, a fundamental problem in robotics. In frontier-based ex

Kaminka, Gal A.

359

Edinburgh Research Explorer Processivity and Coupling in Messenger RNA Transcription  

E-Print Network [OSTI]

Edinburgh Research Explorer Processivity and Coupling in Messenger RNA Transcription Citation and processing that is not captured in the model. Methodology: In this paper, we explore the impact on the m, 'Processivity and Coupling in Messenger RNA Transcription' PLoS One, vol 5, no. 1, e8845, pp. 1-12., 10

Millar, Andrew J.

360

Walk-in Intake Form First Year Advising & Exploration  

E-Print Network [OSTI]

Walk-in Intake Form First Year Advising & Exploration Student Development and Enrollment Services (Rev. 12/04/2012) Name: Current Major(s): PID: Current Minor(s): First Year Advising and Exploration process Course Withdrawal Other: 4. List any classes of concern and the reason(s) of your concern below: 5

Wu, Shin-Tson

Note: This page contains sample records for the topic "gtp exploration activity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

A Tool for Materials Exploration Dieter W. Heermann  

E-Print Network [OSTI]

into · preprocessing · simulation (production runs) · postprocessing Pre-processing prepA Tool for Materials Exploration Dieter W. Heermann Andreas Linke Christian Münkel Institut für) as well as visualisation techniques to explore materials. In this paper we describe the basic design

Heermann, Dieter W.

362

Methane Activation with Rhenium Catalysts. 1. Bidentate Oxygenated Ligands  

E-Print Network [OSTI]

Methane Activation with Rhenium Catalysts. 1. Bidentate Oxygenated Ligands Jason M. Gonzales, Jonas, California 90089 ReceiVed July 31, 2006 Trends in methane activation have been explored for rhenium complexes proceeds with methane activation through a barrier of less than 35 kcal mol-1 . Study

Goddard III, William A.

363

actively vetoed clover: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 The LVD Core Facility: a study of LVD as muon veto and active shielding for dark matter experiments CERN Preprints Summary: In this study we explore the possibility of using...

364

Mechanical counter-pressure space suit design using active materials  

E-Print Network [OSTI]

Mechanical counter-pressure (MCP) space suits have the potential to greatly improve the mobility of astronauts as they conduct planetary exploration activities; however, the underlying technologies required to provide ...

Holschuh, Bradley Thomas

2014-01-01T23:59:59.000Z

365

Growing Up in Scotland: Year 3 - Food and Activity  

E-Print Network [OSTI]

This report uses data from the Growing Up in Scotland study to explore the prevalence of, and many issues related to, food and activity in Scotland specifically in relation to young children....

Marryat, Louise; Valeria, Skafida; Webster, Catriona

2009-01-21T23:59:59.000Z

366

Function: GTP:-`&t` -graded tensor product Calling Sequence  

E-Print Network [OSTI]

the oak property of first order theories, which is a syntactical condition that we2 show to be sufficient

Ablamowicz, Rafal

367

GTP energy production from low-temperature resources, coproduced fluids,  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject: Guidance for natural gas asWind Supply Opportunityand

368

GTP to Present at Upcoming Geothermal Forum | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject: Guidance for natural gas asWind Supply Opportunityandto

369

Magnetotellurics At Alum Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay(Held & Henderson, 2012) | Open

370

Magnetotellurics At Mccoy Geothermal Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay(Held & Henderson,

371

Magnetotellurics At Silver Peak Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay(Held & Henderson,Mcgee MountainOpen Energy

372

Core Analysis At Alum Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003) |Cordova Electric Coop, Inc Jump to: navigation,

373

Core Analysis At Colrado Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003) |Cordova Electric Coop, Inc Jump to: navigation,2009)

374

Cuttings Analysis At Wister Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003)CrowleyEnergy Information MountainWister Area

375

Development Wells At Alum Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, New York: EnergyEnergyguaGetOpen EnergyAlum Area

376

Development Wells At Maui Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, New York: EnergyEnergyguaGetOpenMaui Area (DOE

377

Development Wells At Wister Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, New York: EnergyEnergyguaGetOpenMauiArea (DOE

378

GTP energy production from low-temperature resources, coproduced...  

Office of Environmental Management (EM)

Word - fDE-FOA-0000109.rtf Microsoft Word - FOA cover sheet.doc DISCLAIMER: Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems...

379

Multispectral Imaging At Glass Buttes Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun Jump to:MoeInformation MulkCalvin,

380

Multispectral Imaging At Silver Peak Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun Jump to:MoeInformation

Note: This page contains sample records for the topic "gtp exploration activity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Cuttings Analysis At Alum Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind Jump to:Roadmap Meeting

382

Cuttings Analysis At Colrado Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind Jump to:Roadmap MeetingInformation

383

Cuttings Analysis At Flint Geothermal Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind Jump to:Roadmap2003) Jump

384

Cuttings Analysis At Maui Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind Jump to:Roadmap2003)Information2003)

385

Cuttings Analysis At Mccoy Geothermal Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind Jump

386

Magnetotellurics At Jemez Pueblo Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point,ECO Auger11.Spain: EnergyMagnetJemez Pueblo Area

387

Magnetotellurics At New River Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point,ECO Auger11.Spain: EnergyMagnetJemez Pueblo1988)New

388

Magnetotellurics At Newberry Caldera Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point,ECO Auger11.Spain: EnergyMagnetJemez

389

Aeromagnetic Survey At Glass Buttes Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskeyEnergyAd-VentaAddisonInformation

390

Aeromagnetic Survey At Maui Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy Information Lightning Dock Area (Cunniff & Bowers, 2005)

391

Gas Sampling At Colrado Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent6894093° Loading69. ItLewickiMauiSL Jump to:Colrado Area

392

Gas Sampling At Colrado Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent6894093° Loading69. ItLewickiMauiSL Jump to:Colrado Area

393

Gas Sampling At Maui Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent6894093° Loading69. ItLewickiMauiSL Jump

394

Gas Sampling At Wister Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent6894093° Loading69. ItLewickiMauiSL JumpRye PatchWister

395

Gas Sampling At Wister Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent6894093° Loading69. ItLewickiMauiSL JumpRye

396

Geothermometry At Fort Bliss Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeaugaInformation Mexico - A SurveyInformationEnergyFishFort

397

Geothermometry At New River Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeaugaInformation Mexico - AInformation| Open EnergyNew

398

Geothermometry At The Needles Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeaugaInformation Mexico -Information Shevenell, Et Al.,The

399

FMI Log At Wister Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSan Leandro,LawFEMA -Single-Well and Cross-Well

400

Pressure Temperature Log At Colrado Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowderClimate Action Project JumpCoop Jump

Note: This page contains sample records for the topic "gtp exploration activity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Geothermometry At Alum Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to: navigation, searchTo encourage the<Geothermal/PowerUse)DOE

402

Geothermometry At Silver Peak Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to: navigation, searchToInformation Edmiston & Benoit,

403

Ground Magnetics At Alum Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:Net Jump to: navigation,2004)EnergyGroundAt Alum

404

Observation Wells At Mccoy Geothermal Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico:CommunityNorthwest BasinOahu, Hawaii:EnergyOpen

405

Static Temperature Survey At Wister Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd JumpGTZHolland,0162112°,St.StanlyEnergyInformation Wister Area (DOE

406

Thermochronometry At Fish Lake Valley Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump JumpAl., 1978) | Open EnergyHot Springs

407

Hydroprobe At Gabbs Valley Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia: Energy ResourcesPark,isHydroHydrogenHydrophen

408

Field Mapping At Colrado Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37.California: EnergyFeilden Clegg BradleyFerrotec

409

Hydroprobe At Mcgee Mountain Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyName HousingIII WindHybridsCarCalifornia, 1985

410

The Mississippian Leadville Limestone Exploration Play, Utah and Colorado-Exploration Techniques and Studies for Independents  

SciTech Connect (OSTI)

The Mississippian (late Kinderhookian to early Meramecian) Leadville Limestone is a shallow, open-marine, carbonate-shelf deposit. The Leadville has produced over 53 million barrels (8.4 million m{sup 3}) of oil/condensate from seven fields in the Paradox fold and fault belt of the Paradox Basin, Utah and Colorado. The environmentally sensitive, 7500-square-mile (19,400 km{sup 2}) area that makes up the fold and fault belt is relatively unexplored. Only independent producers operate and continue to hunt for Leadville oil targets in the region. The overall goal of this study is to assist these independents by (1) developing and demonstrating techniques and exploration methods never tried on the Leadville Limestone, (2) targeting areas for exploration, (3) increasing deliverability from new and old Leadville fields through detailed reservoir characterization, (4) reducing exploration costs and risk especially in environmentally sensitive areas, and (5) adding new oil discoveries and reserves. The final results will hopefully reduce exploration costs and risks, especially in environmentally sensitive areas, and add new oil discoveries and reserves. The study consists of three sections: (1) description of lithofacies and diagenetic history of the Leadville at Lisbon field, San Juan County, Utah, (2) methodology and results of a surface geochemical survey conducted over the Lisbon and Lightning Draw Southeast fields (and areas in between) and identification of oil-prone areas using epifluorescence in well cuttings from regional wells, and (3) determination of regional lithofacies, description of modern and outcrop depositional analogs, and estimation of potential oil migration directions (evaluating the middle Paleozoic hydrodynamic pressure regime and water chemistry). Leadville lithofacies at Libon field include open marine (crinoidal banks or shoals and Waulsortian-type buildups), oolitic and peloid shoals, and middle shelf. Rock units with open-marine and restricted-marine facies constitute a significant reservoir potential, having both effective porosity and permeability when dissolution of skeletal grains, followed by dolomitization, has occurred. Two major types of diagenetic dolomite are observed in the Leadville Limestone at Lisbon field: (1) tight 'early' dolomite consisting of very fine grained (<5 {micro}m), interlocking crystals that faithfully preserve depositional fabrics; and (2) porous, coarser (>100-250 {micro}m), rhombic and saddle crystals that discordantly replace limestone and earlier very fine grained dolomite. Predating or concomitant with late dolomite formation are pervasive leaching episodes that produced vugs and extensive microporosity. Most reservoir rocks within Lisbon field appear to be associated with the second, late type of dolomitization and associated leaching events. Other diagenetic products include pyrobitumen, syntaxial cement, sulfide minerals, anhydrite cement and replacement, and late macrocalcite. Fracturing (solution enlarged) and brecciation (autobrecciation) caused by hydrofracturing are widespread within Lisbon field. Sediment-filled cavities, related to karstification of the exposed Leadville, are present in the upper third of the formation. Pyrobitumen and sulfide minerals appear to coat most crystal faces of the rhombic and saddle dolomites. The fluid inclusion and mineral relationships suggest the following sequence of events: (1) dolomite precipitation, (2) anhydrite deposition, (3) anhydrite dissolution and quartz precipitation, (4) dolomite dissolution and late calcite precipitation, (5) trapping of a mobile oil phase, and (6) formation of bitumen. Fluid inclusions in calcite and dolomite display variable liquid to vapor ratios suggesting reequilibration at elevated temperatures (50 C). Fluid salinities exceed 10 weight percent NaCl equivalent. Low ice melting temperatures of quartz- and calcite-hosted inclusions suggest chemically complex Ca-Mg-bearing brines associated with evaporite deposits were responsible for mineral deposition. The overall conclusion from th

Thomas Chidsey

2008-09-30T23:59:59.000Z

411

Federal offshore statistics: 1992. Leasing, exploration, production, and revenues as of December 31, 1992  

SciTech Connect (OSTI)

The Outer Continental Shelf Lands Act, enacted in 1953 and amended several times, charges the Secretary of the Interior with the responsibility for administering and managing mineral exploration and development of the outer continental shelf, as well as for conserving its natural resources. This report documents the following: Federal offshore lands; offshore leasing activity and status; offshore development activity; offshore production of crude oil and natural gas; Federal offshore oil and natural gas sales volume and royalties; revenue from Federal offshore leases; disbursement of Federal offshore revenue; reserves and resource estimates of offshore oil and natural gas; oil pollution in US and international waters; and international activities and marine minerals. 11 figs., 83 tabs.

Francois, D.K.

1993-12-31T23:59:59.000Z

412

Insights into the Molecular Activation Mechanism of the RhoA-specific Guanine Nucleotide Exchange Factor, PDZRhoGEF  

SciTech Connect (OSTI)

PDZRhoGEF (PRG) belongs to a small family of RhoA-specific nucleotide exchange factors that mediates signaling through select G-protein-coupled receptors via G{alpha}{sub 12/13} and activates RhoA by catalyzing the exchange of GDP to GTP. PRG is a multidomain protein composed of PDZ, regulators of G-protein signaling-like (RGSL), Dbl-homology (DH), and pleckstrin-homology (PH) domains. It is autoinhibited in cytosol and is believed to undergo a conformational rearrangement and translocation to the membrane for full activation, although the molecular details of the regulation mechanism are not clear. It has been shown recently that the main autoregulatory elements of PDZRhoGEF, the autoinhibitory 'activation box' and the 'GEF switch,' which is required for full activation, are located directly upstream of the catalytic DH domain and its RhoA binding surface, emphasizing the functional role of the RGSL-DH linker. Here, using a combination of biophysical and biochemical methods, we show that the mechanism of PRG regulation is yet more complex and may involve an additional autoinhibitory element in the form of a molten globule region within the linker between RGSL and DH domains. We propose a novel, two-tier model of autoinhibition where the activation box and the molten globule region act synergistically to impair the ability of RhoA to bind to the catalytic DH-PH tandem. The molten globule region and the activation box become less ordered in the PRG-RhoA complex and dissociate from the RhoA-binding site, which may constitute a critical step leading to PRG activation.

Bielnicki, Jakub A.; Shkumatov, Alexander V.; Derewenda, Urszula; Somlyo, Avril V.; Svergun, Dmitri I.; Derewenda, Zygmunt S. (EMBL); (UV)

2012-10-09T23:59:59.000Z

413

ADVANCED RADIOISOTOPE HEAT SOURCE AND PROPULSION SYSTEMS FOR PLANETARY EXPLORATION  

SciTech Connect (OSTI)

The exploration of planetary surfaces and atmospheres may be enhanced by increasing the range and mobility of a science platform. Fundamentally, power production and availability of resources are limiting factors that must be considered for all science and exploration missions. A novel power and propulsion system is considered and discussed with reference to a long-range Mars surface exploration mission with in-situ resource utilization. Significance to applications such as sample return missions is also considered. Key material selections for radioisotope encapsulation techniques are presented.

R. C. O'Brien; S. D. Howe; J. E. Werner

2010-09-01T23:59:59.000Z

414

Exploration of the influence of emotionally primed environments on creativity and related patterns of brain activity  

E-Print Network [OSTI]

Creativity is needed in almost everything we do. In the process of product design, it is very important to concept generation in early phases. Two behavioral studies were conducted to investigate whether environments with ...

Yue, Shuai, S.M. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

415

Exploration Guides For Active High-Temperature Geothermal Systems As Modern  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It isInformationexplains a4Evendale, -EnergySonar Imaging,

416

Edinburgh Research Explorer Pulmonary diesel particulate increases susceptibility to  

E-Print Network [OSTI]

Edinburgh Research Explorer Pulmonary diesel particulate increases susceptibility to myocardial, MR & Gray, GA 2014, 'Pulmonary diesel particulate increases susceptibility to myocardial ischemia. Pulmonary diesel particulate increases susceptibility to myocardial ischemia/reperfusion injury via

Millar, Andrew J.

417

Analysis Of Application Of Electronics In Exploration And Exploitation...  

Open Energy Info (EERE)

Of Electronics In Exploration And Exploitation Of Geothermal-Energy Sources In India Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Analysis Of...

418

Two-Meter Temperature Surveys for Geothermal Exploration Project...  

Open Energy Info (EERE)

Two-Meter Temperature Surveys for Geothermal Exploration Project at NAS Fallon Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Two-Meter...

419

Lunar lander propellant production for a multiple site exploration mission  

E-Print Network [OSTI]

A model has been developed to analyze the benefit of utilizing a processing plant architecture so that a lunar oxygen production demonstration mission can also provide a significant exploration and scientific return. This ...

Neubert, Joshua, 1981-

2004-01-01T23:59:59.000Z

420

Space Nuclear Program INL's role in energizing exploration  

ScienceCinema (OSTI)

Idaho National Laboratory is helping make space exploration possible with the development of radioisotope power systems, which can work in areas too harsh and too isolated in space where the suns rays cannot be used for energy.

Idaho National Laboratory

2010-01-08T23:59:59.000Z

Note: This page contains sample records for the topic "gtp exploration activity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Design space exploration and optimization using modern ship design tools  

E-Print Network [OSTI]

Modern Naval Architects use a variety of computer design tools to explore feasible options for clean sheet ship designs. Under the Naval Sea Systems Command (NAVSEA), the Naval Surface Warfare Center, Carderock Division ...

Jones, Adam T. (Adam Thomas)

2014-01-01T23:59:59.000Z

422

Deployment algorithms for multi-agent exploration and patrolling  

E-Print Network [OSTI]

Exploration and patrolling are central themes in distributed robotics. These deployment scenarios have deep fundamental importance in robotics, beyond the most obvious direct applications, as they can be used to model a ...

Volkov, Mikhail, S.M. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

423

GEOELECTROMAGNETIC EXPLORATION FOR NATURAL RESOURCES: MODELS, CASE STUDIES AND CHALLENGES  

E-Print Network [OSTI]

, model development is restricted to groundwater, geothermal and hydrocarbon resources, metallic oreGEOELECTROMAGNETIC EXPLORATION FOR NATURAL RESOURCES: MODELS, CASE STUDIES AND CHALLENGES MAXWELL A called geoelectromagnetic) methods as applied in the search for natural resources. First, the paper

Meju, Max

424

Exploring the material properties of small scale folded structures  

E-Print Network [OSTI]

make robotics more readily available to the average person. Although designs for a number of successful printable robots have already been produced, there has been little formal exploration into the materials properties ...

Uberti, Megan E

2013-01-01T23:59:59.000Z

425

From Exploration to Planning Cornelius Weber and Jochen Triesch  

E-Print Network [OSTI]

From Exploration to Planning Cornelius Weber and Jochen Triesch Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe University, Ruth-Moufang-Stra?e 1, Frankfurt am Main, Germany {c.weber

Weber, Cornelius

426

A Trade Space Model for Robotic Lunar Exploration  

E-Print Network [OSTI]

SSL # 11-10 #12;#12;A Trade Space Model for Robotic Lunar Exploration Zachary James Bailey, David W. Miller June 2010 SSL # 11-10 This work is based with minor corrections on the text of the thesis

427

Hyperspectral mineral mapping in support of geothermal exploration...  

Open Energy Info (EERE)

mineral mapping in support of geothermal exploration- Examples from Long Valley Caldera, CA and Dixie Valley, NV, USA Jump to: navigation, search OpenEI Reference LibraryAdd to...

428

Tradespace model for planetary surface exploration hopping vehicles  

E-Print Network [OSTI]

Robotic planetary surface exploration, which has greatly benefited humankind's scientific knowledge of the solar system, has to date been conducted by sedentary landers or by slow, terrain-limited rovers. However, there ...

Cunio, Phillip M

2012-01-01T23:59:59.000Z

429

An Integrated Study Method For Exploration Of Gas Hydrate Reservoirs...  

Open Energy Info (EERE)

approach for exploration of gas hydrate reservoirs in marine areas. Authors C. Y. Sun, B. H. Niu, P. F. Wen, Y. Y. Huang, H. Y. Wang, X. W. Huang and J. Li Published Journal...

430

Walter Baker Chocolate Factory : an adaptive reuse exploration  

E-Print Network [OSTI]

This thesis explores the processes of building evolution and the methods in which old buildings are recycled for continued use. Reuse is the process in which a building's life is extended through a preservation or alteration ...

Castro, Fernando D

1981-01-01T23:59:59.000Z

431

Children's School November 2014 Director's Corner: Exploring Nature  

E-Print Network [OSTI]

Park, we have broadened our recycling and composting programs, and we have added more natural elements hunt for trees and the Kindergarten's search for living and non-living things). Those explorations led

432

Exploring the Last Electromagnetic Frontier with the Long Wavelength Array  

E-Print Network [OSTI]

LWA Science with the Long Wavelength Demonstrator Array Radio transients offer a new frontier for next-generationExploring the Last Electromagnetic Frontier with the Long Wavelength Array The University of New. All solar system giant planets generate

Ellingson, Steven W.

433

T-593: Microsoft Internet Explorer unspecified code execution  

Broader source: Energy.gov [DOE]

Unspecified vulnerability in Microsoft Internet Explorer 8 on Windows 7 allows remote attackers to bypass Protected Mode and create arbitrary files by leveraging access to a Low integrity process.

434

Scientific Visualization Applications in Oil & Gas Exploration and Production  

E-Print Network [OSTI]

Scientific Visualization Applications in Oil & Gas Exploration and Production SIBGRAPI 2009 #12 Property cross plots #12;Oil and gas production analysis and optimization SIBGRAPI 2009 Structural maps with property distributions Well schematics Production network Gas injection optimization Reservoir slices #12

Lewiner, Thomas (Thomas Lewiner)

435

Geothermal Exploration Using Aviris Remote Sensing Data Over...  

Open Energy Info (EERE)

Aviris Remote Sensing Data Over Fish Lake Valley, Nv Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Exploration Using Aviris Remote...

436

Geothermal Resources Exploration And Assessment Around The Cove...  

Open Energy Info (EERE)

Exploration And Assessment Around The Cove Fort-Sulphurdale Geothermal Field In Utah By Multiple Geophysical Imaging Jump to: navigation, search OpenEI Reference LibraryAdd to...

437

Transportation & Work: Exploring Car Usage and Employment Outcomes  

E-Print Network [OSTI]

Transportation & Work: Exploring Car Usage and Employment Outcomes in the LSAL Data Field Area...................................................................................................10 5. DESCRIPTIVE STATISTICS of 1996, or "welfare reform," attention turned to the role of transportation in job search and employment

Bertini, Robert L.

438

Two urban corners : a design exploration for the Holloway block  

E-Print Network [OSTI]

This thesis explores built possibilities for two public street corners at the Holloway Block in Burlington, Vermont The site is at the historic commercial center of the town, and consisted until recently of abandoned ...

Cabot, Thomas Dudley

1982-01-01T23:59:59.000Z

439

Collaborative Systems Thinking Research: Exploring systems thinking within teams  

E-Print Network [OSTI]

Collaborative Systems Thinking Research: Exploring systems thinking within teams Caroline T. Lamb research that seeks to develop an empirical basis for collaborative systems thinking, defined as "an of thinking styles, design processes, tools, and communication media to consider system attributes

de Weck, Olivier L.

440

Kampala's shitscape: exploring urbanity and sanitation in Uganda  

E-Print Network [OSTI]

In this thesis, I explore the collective excrement apparatus of Kampala, or the shitscape. I consider the diverse ways that the citys inhabitants utilise different materials to manage their daily defecation, from flush ...

Terreni Brown, Stephanie Elizabeth; Brown, Stephanie

2014-11-27T23:59:59.000Z

Note: This page contains sample records for the topic "gtp exploration activity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Property:ExplorationSubGroup | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to: navigation,ExplorationPermitAgency-Drilling Property

442

Property:ExplorationTimePerMetric | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to: navigation,ExplorationPermitAgency-Drilling

443

North African geology: exploration matrix for potential major hydrocarbon discoveries  

SciTech Connect (OSTI)

Based on results and models presented previously, it is possible to consider an exploration matrix that examines the 5 basic exploration parameters: source, reservoir, timing, structure, and seal. This matrix indicates that even those basins that have had marginal exploration successes, including the Paleozoic megabasin and downfaulted Triassic grabens of Morocco, the Cyrenaican platform of Libya, and the Tunisia-Sicily shelf, have untested plays. The exploration matrix also suggests these high-risk areas could change significantly, if one of the 5 basic matrix parameters is upgraded or if adjustments in political or financial risk are made. The Sirte basin and the Gulf of Suez, 2 of the more intensely explored areas, also present attractive matrix prospects, particularly with deeper Nubian beds or with the very shallow Tertiary sections. The Ghadames basin of Libya and Tunisia shows some potential, but its evaluation responds strongly to stratigraphic and external nongeologic matrix variations based on degree of risk exposure to be assumed. Of greatest risk in the matrix are the very deep Moroccan Paleozoic clastic plays and the Jurassic of Sinai. However, recent discoveries may upgrade these untested frontier areas. Based on the matrix generated by the data presented at a North African Petroleum Geology symposium, significant hydrocarbon accumulations are yet to be found. The remaining questions are: where in the matrix does each individual company wish to place its exploration capital and how much should be the risk exposure.

Kanes, W.H.; O'Connor, T.E.

1985-02-01T23:59:59.000Z

444

RISK REDUCTION WITH A FUZZY EXPERT EXPLORATION TOOL  

SciTech Connect (OSTI)

Incomplete or sparse data such as geologic or formation characteristics introduce a high level of risk for oil exploration and development projects. ''Expert'' systems developed and used in several disciplines and industries have demonstrated beneficial results when working with sparse data. State-of-the-art expert exploration tools, relying on a database, and computer maps generated by neural networks and user inputs, have been developed through the use of ''fuzzy'' logic, a mathematical treatment of imprecise or non-explicit parameters and values. Oil prospecting risk has been reduced with the use of these properly verified and validated ''Fuzzy Expert Exploration (FEE) Tools.'' Through the course of this project, FEE Tools and supporting software were developed for two producing formations in southeast New Mexico. Tools of this type can be beneficial in many regions of the U.S. by enabling risk reduction in oil and gas prospecting as well as decreased prospecting and development costs. In today's oil industry environment, many smaller exploration companies lack the resources of a pool of expert exploration personnel. Downsizing, volatile oil prices, and scarcity of domestic exploration funds have also affected larger companies, and will, with time, affect the end users of oil industry products in the U.S. as reserves are depleted. The FEE Tools benefit a diverse group in the U.S., allowing a more efficient use of scarce funds, and potentially reducing dependence on foreign oil and providing lower product prices for consumers.

Robert S. Balch; Ron Broadhead

2005-03-01T23:59:59.000Z

445

Catalyst activator  

DOE Patents [OSTI]

A catalyst activator particularly adapted for use in the activation of metal complexes of metals of Group 3-10 for polymerization of ethylenically unsaturated polymerizable monomers, especially olefins, comprising two Group 13 metal or metalloid atoms and a ligand structure including at least one bridging group connecting ligands on the two Group 13 metal or metalloid atoms.

McAdon, Mark H. (Midland, MI); Nickias, Peter N. (Midland, MI); Marks, Tobin J. (Evanston, IL); Schwartz, David J. (Lake Jackson, TX)

2001-01-01T23:59:59.000Z

446

20 Years of Four HCI Conferences: A Visual Exploration 1 Running head: 20 YEARS OF FOUR HCI CONFERENCES: A VISUAL EXPLORATION  

E-Print Network [OSTI]

with the exploration process that produced them. Some expected patterns emerged, such as that -- like most social20 Years of Four HCI Conferences: A Visual Exploration 1 Running head: 20 YEARS OF FOUR HCI CONFERENCES: A VISUAL EXPLORATION 20 Years of Four HCI Conferences: A Visual Exploration Nathalie Henry INRIA

Paris-Sud XI, Université de

447

Exploration of the Upper Hot Creek Ranch Geothermal Resource, Nye County, Nevada  

SciTech Connect (OSTI)

The Upper Hot Creek Ranch (UHCR) geothermal system had seen no significant exploration activity prior to initiation of this GRED III project. Geochemical geothermometers calculated from previously available but questionable quality analyses of the UHCR hot spring waters indicated possible subsurface temperatures of +320 oF. A complex Quaternary and Holocene faulting pattern associated with a six mile step over of the Hot Creek Range near the UHCR also indicated that this area was worthy of some exploration activity. Permitting activities began in Dec. 2004 for the temperature-gradient holes but took much longer than expected with all drilling permits finally being received in early August 2005. The drilling and geochemical sampling occurred in August 2005. Ten temperature gradient holes up to 500 deep were initially planned but higher than anticipated drilling and permitting costs within a fixed budget reduced the number of holes to five. Four of the five holes drilled to depths of 300 to 400 encountered temperatures close to the expected regional thermal background conditions. These four holes failed to find any evidence of a large thermal anomaly surrounding the UHCR hot springs. The fifth hole, located within a narrow part of Hot Creek Canyon, encountered a maximum temperature of 81 oF at a depth of 105 but had cooler temperatures at greater depth. Temperature data from this hole can not be extrapolated to greater depths. Any thermal anomaly associated with the UHCR geothermal system is apparently confined to the immediate vicinity of Hot Creek Canyon where challenges such as topography, a wilderness study area, and wetlands issues will make further exploration time consuming and costly. Ten water samples were collected for chemical analysis and interpretation. Analyses of three samples of the UHCR thermal give predicted subsurface temperatures ranging from 317 to 334 oF from the Na-K-Ca, silica (quartz), and Na-Li geothermometers. The fact that all three thermometers closely agree gives the predictions added credibility. Unfortunately, the final result of this exploration is that a moderate temperature geothermal resource has been clearly identified but it appears to be restricted to a relatively small area that would be difficult to develop.

Dick Benoit; David Blackwell

2006-01-01T23:59:59.000Z

448

RISK REDUCTION WITH A FUZZY EXPERT EXPLORATION TOOL  

SciTech Connect (OSTI)

Incomplete or sparse information on types of data such as geologic or formation characteristics introduces a high level of risk for oil exploration and development projects. ''Expert'' systems developed and used in several disciplines and industries have demonstrated beneficial results. A state-of-the-art exploration ''expert'' tool, relying on a computerized database and computer maps generated by neural networks, is being developed through the use of ''fuzzy'' logic, a relatively new mathematical treatment of imprecise or non-explicit parameters and values. Oil prospecting risk can be reduced with the use of a properly developed and validated ''Fuzzy Expert Exploration (FEE) Tool.'' This FEE Tool can be beneficial in many regions of the U.S. by enabling risk reduction in oil and gas prospecting as well as decreased prospecting and development costs. In the 1998-1999 oil industry environment, many smaller exploration companies lacked the resources of a pool of expert exploration personnel. Downsizing, low oil prices, and scarcity of exploration funds have also affected larger companies, and will, with time, affect the end users of oil industry products in the U.S. as reserves are depleted. The FEE Tool will benefit a diverse group in the U.S., leading to a more efficient use of scarce funds, and possibly decreasing dependence on foreign oil and lower product prices for consumers. This fifth annual (and tenth of 12 semi-annual reports) contains a summary of progress to date, problems encountered, plans for the next year, and an assessment of the prospects for future progress. The emphasis during the March 2003 through March 2004 period was directed toward completion of the Brushy Canyon FEE Tool and to Silurian-Devonian geology, and development of rules for the Devonian fuzzy system, and on-line software.

Robert Balch

2004-04-08T23:59:59.000Z

449

RISK REDUCTION WITH A FUZZY EXPERT EXPLORATION TOOL  

SciTech Connect (OSTI)

Incomplete or sparse information on types of data such as geologic or formation characteristics introduces a high level of risk for oil exploration and development projects. ''Expert'' systems developed and used in several disciplines and industries have demonstrated beneficial results. A state-of-the-art exploration ''expert'' tool, relying on a computerized database and computer maps generated by neural networks, is being developed through the use of ''fuzzy'' logic, a relatively new mathematical treatment of imprecise or non-explicit parameters and values. Oil prospecting risk can be reduced with the use of a properly developed and validated ''Fuzzy Expert Exploration (FEE) Tool.'' This FEE Tool can be beneficial in many regions of the U.S. by enabling risk reduction in oil and gas prospecting as well as decreased prospecting and development costs. In the 1998-1999 oil industry environment, many smaller exploration companies lacked the resources of a pool of expert exploration personnel. Downsizing, low oil prices, and scarcity of exploration funds have also affected larger companies, and will, with time, affect the end users of oil industry products in the U.S. as reserves are depleted. The FEE Tool will benefit a diverse group in the U.S., leading to a more efficient use of scarce funds, and possibly decreasing dependence on foreign oil and lower product prices for consumers. This ninth of ten semi-annual reports contains a summary of progress to date, problems encountered, plans for the next year, and an assessment of the prospects for future progress. The emphasis during the March 2003 through September 2003 period was directed toward Silurian-Devonian geology, development of rules for the fuzzy system, and on-line software.

Robert Balch

2003-10-15T23:59:59.000Z

450

RISK REDUCTION WITH A FUZZY EXPERT EXPLORATION TOOL  

SciTech Connect (OSTI)

Incomplete or sparse information on types of data such as geologic or formation characteristics introduces a high level of risk for oil exploration and development projects. ''Expert'' systems developed and used in several disciplines and industries have demonstrated beneficial results. A state-of-the-art exploration ''expert'' tool, relying on a computerized database and computer maps generated by neural networks, is being developed through the use of ''fuzzy'' logic, a relatively new mathematical treatment of imprecise or non-explicit parameters and values. Oil prospecting risk can be reduced with the use of a properly developed and validated ''Fuzzy Expert Exploration (FEE) Tool.'' This FEE Tool can be beneficial in many regions of the U.S. by enabling risk reduction in oil and gas prospecting as well as decreased prospecting and development costs. In the 1998-1999 oil industry environment, many smaller exploration companies lacked the resources of a pool of expert exploration personnel. Downsizing, low oil prices, and scarcity of exploration funds have also affected larger companies, and will, with time, affect the end users of oil industry products in the U.S. as reserves are depleted. The pool of experts is much reduced today. The FEE Tool will benefit a diverse group in the U.S., leading to a more efficient use of scarce funds, and possibly decreasing dependence on foreign oil and lower product prices for consumers. This fourth of five annual reports contains a summary of progress to date, problems encountered, plans for the next year, and an assessment of the prospects for future progress. The emphasis during the April 2002 through March 2003 period was directed toward Silurian-Devonian geology, development of rules for the fuzzy system, and on-line software.

Robert Balch

2003-04-15T23:59:59.000Z

451

Risk Reduction with a Fuzzy Expert Exploration Tool  

SciTech Connect (OSTI)

A state-of-the-art exploration ''expert'' tool, relying on a computerized database and computer maps generated by neural networks, was developed through the use of ''fuzzy'' logic, a relatively new mathematical treatment of imprecise or non-explicit parameters and values. Oil prospecting risk can be reduced with the use of a properly developed and validated ''Fuzzy Expert Exploration (FEE) Tool.'' This FEE Tool can be beneficial in many regions of the U.S. by enabling risk reduction in oil and gas prospecting as well as decreased prospecting and development costs.

Weiss, William W.; Broadhead, Ron; Mundorf, William R.

2003-03-06T23:59:59.000Z

452

Directional drilling techniques for exploration in-advance of mining  

SciTech Connect (OSTI)

In-seam directionally drilled horizontal boreholes have provided effective solutions in underground coal mines for methane and water drainage and inherently provide an excellent tool for coalbed exploration. Directionally drilled methane drainage boreholes have identified rapid changes in coalbed elevation, coalbed thickness and faults. Specific directional drilling and coring procedures for exploration in-advance of mining are reviewed in this paper, and also other directional drilling applications including in-mine horizontal gob ventilation boreholes, identification of abandoned workings, and water drainage boreholes.

Kravits, S.J.; Schwoebel, J.J. (REI Underground Exploration Inc., Salt Lake City, UT (United States))

1994-01-01T23:59:59.000Z

453

Property:EnvReviewNonInvasiveExploration | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to: navigation, search Property Name EnvReviewNonInvasiveExploration

454

Property:ExplorationCostPerMetric | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to: navigation, searchEstimatedTimeMedian JumpExplorationBasis

455

Property:ExplorationParentTechnique | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to: navigation, searchEstimatedTimeMedianExplorationNotes

456

Property:ExplorationPermit-Drilling | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to: navigation, searchEstimatedTimeMedianExplorationNotesDrilling

457

Property:ExplorationPermitAgency-Drilling | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to: navigation,ExplorationPermitAgency-Drilling Property Type Page

458

Property:ExplorationPermitAgency-PreDrilling | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to: navigation,ExplorationPermitAgency-Drilling Property Type

459

Black Warrior: Sub-soil gas and fluid inclusion exploration and...  

Broader source: Energy.gov (indexed) [DOE]

Black Warrior: Sub-soil gas and fluid inclusion exploration and slim well drilling John Casteel Nevada Geothermal Power Co. Validation of Innovative Exploration Technologies May...

460

Help-seeking in the event of psychological distress: a qualitative exploration.  

E-Print Network [OSTI]

??Aim This thesis explores the seeking of help from a General Practitioner in the event of psychological distress. The study explores help-seeking, lay understanding around (more)

Brown, Susan

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gtp exploration activity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

E-Print Network 3.0 - astronaut-rover exploration strategies...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Mobile Robots Francesco Amigoni Abstract... mobile robots. An efficient map building process is based on a good exploration strategy that determines... it. Several exploration...

462

Annual Tour Ready to Explore New Mexico's Lower Pecos River  

E-Print Network [OSTI]

Annual Tour Ready to Explore New Mexico's Lower Pecos River By Steve Ress The itinerary is set and the seats have been filled for an early June bus tour to New Mexico's lower Pecos River basin compacts on Nebraska's Republican River and New Mexico's Pecos River to see what can be learned from

Nebraska-Lincoln, University of

463

NanoKids Project 21st Century Explorers  

E-Print Network [OSTI]

years. This funding will support the work of America's most creative minds as they explore promising areas such as nanotechnology, supercomputing, and alternative energy sources." #12;The Problem Most and Stage 1991 #12;Why the Big Push? #12;Why the Big Push? #12;3. The Bureau of Labor Statistics projects

464

MEMORY DESIGN AND EXPLORATION FOR LOW POWER, EMBEDDED SYSTEMS  

E-Print Network [OSTI]

by (i) applying memory optimizing transformations such as loop transformations, (ii) storing frequently transformations. In this paper, we describe a procedure for memory design and exploration for low power embedded optimizing transformations such as loop transformations. While there exists a large number of loop

Kambhampati, Subbarao

465

Power system requirements and selection for the space exploration initiative  

SciTech Connect (OSTI)

The Space Exploration Initiative (SEI) seeks to reestablish a US program of manned and unmanned space exploration. The President has called for a program which includes a space station element, a manned habitation of the moon, and a human exploration of Mars. The NASA Synthesis Group has developed four significantly different architectures for the SEI program. One key element of a space exploration effort is the power required to support the missions. The Power Speciality Team of the Synthesis Group was tasked with assessing and evaluating the power requirements and candidate power technologies for such missions. Inputs to the effort came from existing NASA studies as well as other governments agency inputs such as those from DOD and DOE. In addition, there were industry and university briefings and results of solicitations from the AIAA and the general public as part of the NASA outreach effort. Because of the variety of power needs in the SEI program, there will be a need for multiple power system technologies including solar, nuclear and electrochemical. Due to the high rocket masses required to propel payloads to the moon and beyond to Mars, there is great emphasis placed on the need for high power density and high energy density systems. Power system technology development work is needed results will determine the ultimate technology selections. 23 refs., 10 figs.

Biringer, K.L. (Sandia National Labs., Albuquerque, NM (United States)); Bartine, D.E. (Oak Ridge National Lab., TN (United States)); Buden, D. (Idaho National Engineering Lab., Idaho Falls, ID (United States)); Foreman, J. (Naval Research Lab., Washington, DC (United States)); Harrison, S. (Strategic Defense Initiative Organization, Washington, DC (United States))

1991-01-01T23:59:59.000Z

466

Exploring Reliability for Automatic Identity Verification with Statistical Shape Models  

E-Print Network [OSTI]

Exploring Reliability for Automatic Identity Verification with Statistical Shape Models Federico M reliability measure of the result. In fact, the segmentation process is One ofthe drawbacks ofstatistical to a wrong result [4]. generic reliability measure for statistical shape models. It This problem

Frangi, Alejandro

467

EXPLORING PERSONAL MEDIA: A SPATIAL INTERFACE SUPPORTING USER-DEFINED  

E-Print Network [OSTI]

categorizations to personal media data using the fling-and-flock metaphor. This allows personal media of personal media data, rigid organizing metaphors, and difficulty in rapid data access. Users understandEXPLORING PERSONAL MEDIA: A SPATIAL INTERFACE SUPPORTING USER-DEFINED SEMANTIC REGIONS Hyunmo Kang

Golbeck, Jennifer

468

Personal Media Exploration with Semantic Regions Hyunmo Kang  

E-Print Network [OSTI]

@cs.umd.edu ABSTRACT Computer users deal with large amount of personal media data and they often face problems mental models toward the personal media data. A prototype personal media exploring application, Media of personal media data such as images, audio clips, videos, web pages, emails, and various document files

Golbeck, Jennifer

469

Page 1Exploring Materials, Fall 2013 continued on page 14  

E-Print Network [OSTI]

treating, materials testing, and corro- sion. His projects include the use of 3D printed sand molds cellular structure produced using a 3D printed sand mold #12;Page 2 Exploring Materials, Fall 2013 it is working with researchers in Mechanical Engineering, Engineering Science and Mechanics, Sustainable

Buehrer, R. Michael

470

Memory efficient RNA energy landscape exploration -Supplementary Material -  

E-Print Network [OSTI]

Memory efficient RNA energy landscape exploration - Supplementary Material - Martin Mann 1 , Marcel on two different transition models. While the pure barrier tree dynamics (lower plot) resembles correspond to energy sorted ranks. Simulations were started from the unstructured open chain macro-state (oc

Brendel, Volker

471

Snake River Geothermal Project- Innovative Approaches to Geothermal Exploration  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. Project objective: To Implement and Test Geological and Geophysical Techniques for Geothermal Exploration. Project seeks to lower the cost of geothermal energy development by identifying which surface and borehole techniques are most efficient at identifying hidden resources.

472

Mars Exploration Rover Mobility and Robotic Arm Operational Performance  

E-Print Network [OSTI]

Mars Exploration Rover Mobility and Robotic Arm Operational Performance Edward Tunstel, Mark collaborative arrangement and the performance enabled by mobility and robotic arm software functionality during the first 90 days of the mission. Mobile traverse distance, accuracy, and rate as well as robotic arm

473

REVIEW ARTICLE Heavy Metal Pollutants and Chemical Ecology: Exploring  

E-Print Network [OSTI]

REVIEW ARTICLE Heavy Metal Pollutants and Chemical Ecology: Exploring New Frontiers Robert S. Boyd to be learned about how heavy metal pollution impacts organisms, and that exciting new research frontiers as pollutants (Han et al. 2002), including Cd, Cu, Cr, Hg, Pb, Ni, and Zn. Much research on heavy metal

Boyd, Robert S.

474

Acta Physicae Superficierum Vol VII 2004 EXPLORING ARTIFICIAL MAGNETISM  

E-Print Network [OSTI]

Acta Physicae Superficierum · Vol VII · 2004 EXPLORING ARTIFICIAL MAGNETISM FROM THIN FILMS of artificially structured, new magnetic materials play a fundamental role in modern science and technology. From thin films to patterned magnetic nano-structures, these magnetic materials and systems can be utilized

Rau, Carl

475

Nanomanipulation Experiments Exploring Frictional and Mechanical Properties of Carbon Nanotubes  

E-Print Network [OSTI]

Nanomanipulation Experiments Exploring Frictional and Mechanical Properties of Carbon Nanotubes M that places the human operator directly into the feedback loop that controls surface manipulations. Using. The mechanical properties of carbon nanotubes have been demonstrated to be extraordinary. They have an elastic

Falvo, Michael

476

A Gameroom of Our Own: Exploring The Domestic Gaming Environment  

E-Print Network [OSTI]

A Gameroom of Our Own: Exploring The Domestic Gaming Environment A. VOIDA Donald Bren School ________________________________________________________________________ Digital gaming plays out within different environments--from arcades to virtual worlds to the family living room. Each of these gaming environments offer different constraints and affordances for gaming

Greenberg, Saul

477

Theory of Mind and Moral Cognition: Exploring the Connections1  

E-Print Network [OSTI]

Theory of Mind and Moral Cognition: Exploring the Connections1 Joshua Knobe (Forthcoming in Trends in Cognitive Sciences) It is widely recognized that people sometimes use theory-of-mind judgments in moral. It appears that moral judgments can sometimes be used in theory-of-mind cognition. Thus, there appear

Knobe, Joshua

478

Planetary sciences and exploration: An Indian perspective J N GOSWAMI  

E-Print Network [OSTI]

panels along with solar system objects of interest for exploration (bottom panel). From left to right solar flare records in meteorites and constancy of solar and galactic cosmic ray fluxes over long the nature of long-term solar wind, solar energetic particle and galactic cosmic ray fluxes as well

Joshi, Yogesh Moreshwar

479

Exploring Synchronization in Complex Oscillator Networks Florian Dorfler Francesco Bullo  

E-Print Network [OSTI]

Exploring Synchronization in Complex Oscillator Networks Florian D¨orfler Francesco Bullo Abstract work supported by NSF grants IIS- 0904501 and CPS-1135819. Florian D¨orfler and Francesco Bullo: {dorfler,bullo}@engineering.ucsb.edu a phase angle i S1 and has a preferred natural rotation frequency i

Bullo, Francesco

480

NASA Exploration and Innovation Lead to New Discoveries Five heavyweight  

E-Print Network [OSTI]

NASA Exploration and Innovation Lead to New Discoveries Five heavyweight lifting-body designs 1960 1961 1962 19641963 1965 1966 1967 1968 19691959 Lifting Bodies 1962-1975 Gemini 1962 disposal. Weather Satellites 1960-Present NASA launched the first Television Infrared

Waliser, Duane E.

Note: This page contains sample records for the topic "gtp exploration activity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Exploring the Design Space of LUT-based Transparent Accelerators  

E-Print Network [OSTI]

Exploring the Design Space of LUT-based Transparent Accelerators Sami Yehia1 , Nathan Clark2.flautner}@arm.com {ntclark, mahlke}@umich.edu ABSTRACT Instruction set customization accelerates the performance of appli resources. With instruction set customization, specialized accelerators are added to a conventional

Mahlke, Scott A.

482

Exploring Geospatial Music Listening Patterns in Microblog Data  

E-Print Network [OSTI]

Exploring Geospatial Music Listening Patterns in Microblog Data David Hauger and Markus Schedl that integrates these diverse pieces of information mined from music-related tweets. Including geospatial" as seen by the "Twittersphere". Keywords: microblogs, geospatial music taste, music listening patterns 1

Widmer, Gerhard

483

Exploring Humanoid Robots Locomotion Capabilities in Virtual Disaster Response Scenarios  

E-Print Network [OSTI]

since the Fukushima Daiichi nuclear power plant accident that followed the 2011 Great East JapanExploring Humanoid Robots Locomotion Capabilities in Virtual Disaster Response Scenarios Karim-like motor skills to be achieved. We use virtual scenes under the fully- 3D-modeled-environment assumption

Paris-Sud XI, Université de

484

Roadmap for Venus Exploration (rev. 3, Dec 5, 2013)  

E-Print Network [OSTI]

1 Roadmap for Venus Exploration (rev. 3, Dec 5, 2013) Introduction Venus is so similar, and the likelihood of habitable planets in other solar systems. This Roadmap lays out a framework for the future proposals. Proposals that address the measurement goals expressed in this Roadmap should be recognized

Rathbun, Julie A.

485

Summer Fellow Explores EMs Cold War Cleanup  

Broader source: Energy.gov [DOE]

Jared Woods graduates from the Maine Maritime Academy (MMA) next month with the experience of an adventurous summer as a fellow in the DOE Scholars Program, an opportunity to explore the agencys careers and learn about its mission and operations.

486

Civil Engineering Explore the environmental impact of dams.  

E-Print Network [OSTI]

Dams Civil Engineering Objective · Explore the environmental impact of dams. · Discuss the need for dams, and how environmental engineers mitigate some impacts. Standards and Objectives · Earth Systems humans' standard of living and environmental impacts. · The basic concept of constructing a dam

Provancher, William

487

Robotic Exploration: Video Survey of the USS Macon Crash Site  

E-Print Network [OSTI]

Robotic Exploration: Video Survey of the USS Macon Crash Site Stanford Aerospace Robotics Lab Prof of MBARI Photo courtesy of Naval Archives #12;2006 Goal: Video Survey Image courtesy of MBARI #12;Issue;User Interface #12;Control System Implementation PC ROV Control ROV + + Pilot joystick commands Video

Prinz, Friedrich B.

488

Sailing the Corpus Sea: Visual Exploration of News Stories  

E-Print Network [OSTI]

Sailing the Corpus Sea: Visual Exploration of News Stories Ilija Subasi´c1, Bettina Berendt1.lastname@cs.kuleuven.be, and 2daniel.trumper@gmail.com Abstract--Rich information spaces like blogs or news are full of "stories, it is difficult to reconstruct a story already in the past. In this paper, we present the STORIES methods and tool

Hammerton, James

489

Exploring Energy-Efficient Reconfigurable Architectures for DSP Algorithms  

E-Print Network [OSTI]

1 Exploring Energy-Efficient Reconfigurable Architectures for DSP Algorithms Paul M. Heysters, Jaap, the power radius theory about low-power design is intro- duced. Keywords-- Energy efficiency; FPFA; power ra and computation. The way out is energy efficiency: doing more work with the same amount of energy. Traditionally

Havinga, Paul J.M.

490

Validation of Innovative Exploration Technologies for Newberry Volcano  

Broader source: Energy.gov [DOE]

DOE Geothermal Technologies Peer Review - 2010. Project summary: To effectively combine numerous exploration technologies to gather important data. Once information is combined into 3-D models, a target drilling location will be determined. Deep well capable of finding commercial quantities of geothermal resource will be drilled to validate methodology.

491

Modularisation at UCD: an exploration of governance in higher education  

E-Print Network [OSTI]

and global influences situated outside of the nation-state. To explore the influence of macro factors on this policy process, UCD provides an outward-focused case study into this policy process at a micro level. Insight into this process is evidenced...

Ryan, Orna

2010-07-02T23:59:59.000Z

492

MMU Cider 1 AN EXPLORATION INTO THE FEASIBILITY OF  

E-Print Network [OSTI]

.1 Objectives 4 1.2 Methodology 4 2.0 Internal Production 4 2.1 Process 4 2.3 Pressing 4 2.4 Fermentation 4 2MMU Cider 1 AN EXPLORATION INTO THE FEASIBILITY OF UTILISING APPLES AT MMU CHESHIRE Kristian Howles production and outsourcing production. By specifying both of these meth- ods, we will then be able to justify

493

mineral grains pore spaces Subsurface Geology and Resource Exploration  

E-Print Network [OSTI]

deals with the exploration for oil, which is important to Louisiana, the Gulf of Mexico area oil (petroleum) and natural gas, that are refined for use as fuels. When sediments are deposited in the sediments can be transformed into oil and gas through chemical reactions. The migration and accumulation

Li, X. Rong

494

Radioisotope-based Nuclear Power Strategy for Exploration Systems Development  

SciTech Connect (OSTI)

Nuclear power will play an important role in future exploration efforts. Its benefits pertain to practically all the different timeframes associated with the Exploration Vision, from robotic investigation of potential lunar landing sites to long-duration crewed missions on the lunar surface. However, the implementation of nuclear technology must follow a logical progression in capability that meets but does not overwhelm the power requirements for the missions in each exploration timeframe. It is likely that the surface power infrastructure, particularly for early missions, will be distributed in nature. Thus, nuclear sources will have to operate in concert with other types of power and energy storage systems, and must mesh well with the power architectures envisioned for each mission phase. Most importantly, they must demonstrate a clear advantage over other non-nuclear options (e.g., solar power, fuel cells) for their particular function. This paper describes a strategy that does this in the form of three sequential system developments. It begins with use of radioisotope generators currently under development, and applies the power conversion technology developed for these units to the design of a simple, robust reactor power system. The products from these development efforts would eventually serve as the foundation for application of nuclear power systems for exploration of Mars and beyond.

Schmidt, George R.; Houts, Michael G. [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States)

2006-01-20T23:59:59.000Z

495

Exploring the Relationship between Neutral and Selective Mutations in Cancer  

E-Print Network [OSTI]

Exploring the Relationship between Neutral and Selective Mutations in Cancer C. C. Maley 1;2 and S. Forrest 2;3 (cmaley@alum.mit.edu and forrest@cs.unm.edu) 1 Fred Hutchinson Cancer Research Center 1100 of normal cells into cancerous cells is an evolu- tionary process. Populations of precancerous cells

Forrest, Stephanie

496

Early Events in Protein Folding Explored by Rapid Mixing Methods  

E-Print Network [OSTI]

15 Early Events in Protein Folding Explored by Rapid Mixing Methods Heinrich Roder, Kosuke Maki for Understanding Protein Folding As with any complex reaction, time-resolved data are essential for elucidating the mechanism of protein folding. Even in cases where the whole process of folding occurs in a single step

Roder, Heinrich

497

Exploring Mercury: Scientific Results from the MESSENGER Mission  

E-Print Network [OSTI]

#12;Exploring Mercury: Scientific Results from the MESSENGER Mission Larry R. Nittler Carnegie-Cahill · MESSENGER Science Team, Engineers, Mission Operations (APL) #12;Mars Mercury · Naked-eye planet, but very difficult to observe due to proximity to Sun May 12, 2011, from NZ (M. White, Flickr) Mercury Venus Jupiter

Rhoads, James

498

Exploring Sustainable Design with Reusable Paper Julie Wagner  

E-Print Network [OSTI]

Exploring Sustainable Design with Reusable Paper Julie Wagner In|situ|, INRIA Building 490, Univ for sustainable design with paper: how people really print and how we can take advantage of novel, reusable paper effectively support sustainable design. Author Keywords Sustainability, reusable paper, sustainable design

499

A Novel Visualization System for Expressive Facial Motion Data Exploration  

E-Print Network [OSTI]

systems and human computer inter- action applications. The dynamics and high dimensionality of fa- cial is mapped to 3D spaces. We further rendered it as colored 3D trajectories and color represents different emotion. We design an intuitive interface to allow users effectively explore and analyze high dimensional

Deng, Zhigang

500

Exploring Transition Textures for Pseudo-natural Maps  

E-Print Network [OSTI]

221 Exploring Transition Textures for Pseudo-natural Maps Helen JENNY, Bernhard JENNY, and Juliane CRON Abstract Pseudo-natural maps show land cover information in a compelling style that combines on maps would be helpful. This article focuses on a single aspect of pseudo-natural map creation, namely

Jenny, Bernhard