Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gtl gas-to-liquids gvwr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

1M. Panahi, S. Skogestad ' Controlled Variables Selection for a Natural Gas to Liquids (GTL) process' Controlled Variables Selection for a  

E-Print Network (OSTI)

1M. Panahi, S. Skogestad ' Controlled Variables Selection for a Natural Gas to Liquids (GTL) process' Controlled Variables Selection for a Natural Gas to Liquids (GTL) process Mehdi Panahi Sigurd for a Natural Gas to Liquids (GTL) process' Skogestad plantwide control procedure* I Top Down · Step 1: Identify

Skogestad, Sigurd

2

Engine combustion, performance and emission characteristics of gas to liquid (GTL) fuels and its blends with diesel and bio-diesel  

Science Journals Connector (OSTI)

Abstract Crude oil price hikes, energy security concerns and environmental drivers have turned the focus to alternative fuels. Gas to liquid (GTL) diesel is regarded as a promising alternative diesel fuel, considering the adeptness to use directly as a diesel fuel or in blends with petroleum-derived diesel or bio-diesel. GTL fuel derived from Fischer–Tropsch synthesis is of distinctly different characteristics than fossil diesel fuel due to its paraffinic nature, virtually zero sulfur, low aromatic contents and very high cetane number. GTL fuel is referred to as a “clean fuel” for its inherent ability to reduce engine exhaust emission even with blends of diesel and bio-diesel. This paper illustrates feasibility of GTL fuel in context of comparative fuel properties with conventional diesel and bio-diesels. This review also describes the technical attributes of GTL and its blends with diesel and bio-diesel focusing their impact on engine performance and emission characteristics on the basis of the previous research works. It can introduce an efficacious guideline to devise several blends of alternative fuels, further the development of engine performance and constrain exhaust emission to cope with the relentless efforts to manufacture efficient and environment friendly powertrains.

H. Sajjad; H.H. Masjuki; M. Varman; M.A. Kalam; M.I. Arbab; S. Imtenan; S.M. Ashrafur Rahman

2014-01-01T23:59:59.000Z

3

Catalyst optimization in gas-to-liquid technology : an operations view / Israel Olalekan Jolaolu.  

E-Print Network (OSTI)

??Gas to Liquids (GTL) technology is a general term used for a group of technologies that has the capability to create liquid hydrocarbon fuels from… (more)

Jolaolu, Israel Olalekan

2008-01-01T23:59:59.000Z

4

Options for Gas-to-Liquids Technology in Alaska  

SciTech Connect

The purposes of this work was to assess the effect of applying new technology to the economics of a proposed natural gas-to-liquids (GTL) plant, to evaluate the potential of a slower-paced, staged deployment of GTL technology, and to evaluate the effect of GTL placement of economics. Five scenarios were economically evaluated and compared: a no-major-gas-sales scenario, a gas-pipeline/LNG scenario, a fast-paced GTL development scenario, a slow-paced GTL development scenario, and a scenario which places the GTL plant in lower Alaska, instead of on the North Slope. Evaluations were completed using an after-tax discounted cash flow analysis. Results indicate that the slow-paced GTL scenario is the only one with a rate of return greater than 10 percent. The slow-paced GTL development would allow cost saving on subsequent expansions. These assumed savings, along with the lowering of the transportation tariff, combine to distinquish this option for marketing the North Slope gas from the other scenarios. Critical variables that need further consideration include the GTL plant cost, the GTL product premium, and operating and maintenance costs.

Robertson, Eric Partridge

1999-10-01T23:59:59.000Z

5

Options for gas-to-liquids technology in Alaska  

SciTech Connect

The purpose of this work was to assess the effect of applying new technology to the economics of a proposed natural gas-to-liquids (GTL) plant, to evaluate the potential of a slower-paced, staged deployment of GTL technology, and to evaluate the effect of GTL placement of economics. Five scenarios were economically evaluated and compared: a no-major-gas-sales scenario, a gas-pipeline/LNG scenario, a fast-paced GTL development scenario, a slow-paced GTL development scenario, and a scenario which places the GTL plant in lower Alaska, instead of on the North Slope. Evaluations were completed using an after-tax discounted cash flow analysis. Results indicate that the slow-paced GTL scenario is the only one with a rate of return greater than 10%. The slow-paced GTL development would allow cost saving on subsequent expansions. These assumed savings, along with the lowering of the transportation tariff, combine to distinguish this option for marketing the North Slope gas from the other scenarios. Critical variables that need further consideration include the GTL plant cost, the GTL product premium, and operating and maintenance costs.

Robertson, E.P.

1999-12-01T23:59:59.000Z

6

Selection of Controlled Variables for a Natural Gas to Liquids Process Mehdi Panahi and Sigurd Skogestad*  

E-Print Network (OSTI)

Selection of Controlled Variables for a Natural Gas to Liquids Process Mehdi Panahi and Sigurd variables (CVs) for a natural gas to hydrocarbon liquids (GTL) process based on the idea of self of operation are studied. In mode I, where the natural gas flow rate is given, there are three unconstrained

Skogestad, Sigurd

7

GTL or LNG: which is the best way to monetize “stranded” natural gas?  

Science Journals Connector (OSTI)

A large portion of world’s natural gas reserves are “stranded” resources, the drive to monetize these resources leads to the development of gas-to-liquids (GTL) and liquefied natural gas (LNG) technologies. LNG h...

Lichun Dong; Shun’an Wei; Shiyu Tan; Hongjing Zhang

2008-11-01T23:59:59.000Z

8

Fuel Property, Emission Test, and Operability Results from a Fleet of Class 6 Vehicles Operating on Gas-to-Liquid Fuel and Catalyzed Diesel Particle Filters  

SciTech Connect

A fleet of six 2001 International Class 6 trucks operating in southern California was selected for an operability and emissions study using gas-to-liquid (GTL) fuel and catalyzed diesel particle filters (CDPF). Three vehicles were fueled with CARB specification diesel fuel and no emission control devices (current technology), and three vehicles were fueled with GTL fuel and retrofit with Johnson Matthey's CCRT diesel particulate filter. No engine modifications were made.

Alleman, T. L.; Eudy, L.; Miyasato, M.; Oshinuga, A.; Allison, S.; Corcoran, T.; Chatterjee, S.; Jacobs, T.; Cherrillo, R. A.; Clark, R.; Virrels, I.; Nine, R.; Wayne, S.; Lansing, R.

2005-11-01T23:59:59.000Z

9

Efficiency of Gas-to-Liquids Technology with Different Synthesis Gas Production Methods  

Science Journals Connector (OSTI)

The design and optimization of a gas-to-liquids technology (GTL) is considered, mostly from the view of an optimal choice of a synthesis gas (syngas) production method. ... If the tail gas is not enough, an additional portion of the natural gas is burned. ... The temperature of the flue gases passing from the radiation chamber of the tubular furnace to the convection chamber is taken as equal to 1150 °C, which allows proper calculation of required amount of gas supplied to the burner. ...

Ilya S. Ermolaev; Vadim S. Ermolaev; Vladimir Z. Mordkovich

2014-02-05T23:59:59.000Z

10

STUDY OF TRANSPORTATION OF GTL PRODUCTS FROM ALASKAN NORTH SLOPE (ANS) TO MARKETS  

SciTech Connect

The Alaskan North Slope is one of the largest hydrocarbon reserves in the US where Gas-to-Liquids (GTL) technology can be successfully implemented. The proven and recoverable reserves of conventional natural gas in the developed and undeveloped fields in the Alaskan North Slope (ANS) are estimated to be 38 trillion standard cubic feet (TCF) and estimates of additional undiscovered gas reserves in the Arctic field range from 64 TCF to 142 TCF. Transportation of the natural gas from the remote ANS is the key issue in effective utilization of this valuable and abundance resource. The throughput of oil through the Trans Alaska Pipeline System (TAPS) has been on decline and is expected to continue to decline in future. It is projected that by the year 2015, ANS crude oil production will decline to such a level that there will be a critical need for pumping additional liquid from GTL process to provide an adequate volume for economic operation of TAPS. The pumping of GTL products through TAPS will significantly increase its economic life. Transporting GTL products from the North Slope of Alaska down to the Marine terminal at Valdez is no doubt the great challenge facing the Gas to Liquids options of utilizing the abundant natural gas resource of the North Slope. The primary purpose of this study was to evaluate and assess the economic feasibility of transporting GTL products through the TAPS. Material testing program for GTL and GTL/Crude oil blends was designed and implemented for measurement of physical properties of GTL products. The measurement and evaluation of the properties of these materials were necessary so as to access the feasibility of transporting such materials through TAPS under cold arctic conditions. Results of the tests indicated a trend of increasing yield strength with increasing wax content. GTL samples exhibited high gel strengths at temperatures as high as 20 F, which makes it difficult for cold restart following winter shutdowns. Simplified analytical models were developed to study the flow of GTL and GTL/crude oil blends through TAPS in both commingled and batch flow models. The economics of GTL transportations by either commingled or batching mode were evaluated. The choice of mode of transportation of GTL products through TAPS would depend on the expected purity of the product and a trade-off between loss in product value due to contamination and cost of keeping the product pure at the discharge terminal.

Godwin A. Chukwu, Ph.D., P.E.

2002-09-01T23:59:59.000Z

11

Verification of Shell GTL Fuel as CARB Alternative Diesel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

with existing infrastructure GTL provides a bridge to Biomass to Liquids and Coal to Liquids technologies Life cycle analysis: GTL vs. Refinery system GTL less...

12

GTL Image Gallery  

NLE Websites -- All DOE Office Websites (Extended Search)

Human Genome Project Information • Genomic Science • Microbial Genome Program • sitemap • home Human Genome Project Information • Genomic Science • Microbial Genome Program • sitemap • home Announcing the New Image Gallery Visit the new Image Gallery for an expanded suite of images Biofuels Browse the 2010 "Bioenergy Research Centers: An Overview of the Science" Brochure Gallery. Browse the 2006 "Breaking the Biological Barriers to Cellulosic Ethanol: A Joint Research Agenda" Report Gallery. Browse more biofuels images (includes the June 2006 "Understanding Biomass" Primer Gallery). Systems Biology Browse the August 2005 "Genomics:GTL Roadmap: Systems Biology for Energy and Environment" Gallery. Basic Genomics Browse the Human Chromosome Gallery. Browse more Basic Genomics images. Carbon Cycling

13

Catalyst for converting synthesis gas to liquid motor fuels  

DOE Patents (OSTI)

The addition of an inert metal component, such as gold, silver or copper, to a Fischer-Tropsch catalyst comprising cobalt enables said catalyst to convert synthesis gas to liquid motor fuels at about 240.degree.-370.degree. C. with advantageously reduced selectivity of said cobalt for methane in said conversion. The catalyst composition can advantageously include a support component, such as a molecular sieve, co-catalyst/support component or a combination of such support components.

Coughlin, Peter K. (Yorktown Heights, NY)

1986-01-01T23:59:59.000Z

14

Computational Resources for GTL  

SciTech Connect

This final report summarizes the work conducted under our three year DOE GTL grant ($459,402). The work involved a number of areas, including standardization, the Systems Biology Workbench, Visual Editors, collaboration with other groups and the development of new theory and algorithms. Our work has played a key part in helping to further develop SBML, the de facto standard for System Biology Model exchange and SBGN, the developing standard for visual representation for biochemical models. Our work has also made significant contributions to developing SBW, the systems biology workbench which is now very widely used in the community (roughly 30 downloads per day for the last three years, which equates to about 30,000 downloads in total). We have also used the DOE funding to collaborate extensively with nine different groups around the world. Finally we have developed new methods to reduce model size which are now used by all the major simulation packages, including Matlab. All in all, we consider the last three years to be highly productive and influential in the systems biology community. The project resulted in 16 peer review publications.

Herbert M. Sauro

2007-12-18T23:59:59.000Z

15

Nationwide, Regional, and Statewide Energy Supply Chain Optimization for Natural Gas to Liquid Transportation Fuel (GTL) Systems  

Science Journals Connector (OSTI)

When data on the well-specific production are available, the figures are grouped on the basis of the county of the wells. ... The states that have major natural gas productions are Alabama, Arkansas, California, Colorado, Kansas, Kentucky, Louisiana, Michigan, Mississippi, Montana, New Mexico, Ohio, Oklahoma, Pennsylvania, Texas, Utah, Virginia, West Virginia, and Wyoming. ... State of California Department of Conservation, Division of Oil, Gas & Geothermal Resources ...

Josephine A. Elia; Richard C. Baliban; Christodoulos A. Floudas

2013-09-05T23:59:59.000Z

16

TRANSPORTATION ISSUES IN THE DELIVERY OF GTL PRODUCTS FROM ALASKAN NORTH SLOPE TO MARKET  

SciTech Connect

The Alaskan North Slope (ANS) is one of the largest hydrocarbon reserves in the United States where Gas-to-Liquids (GTL) technology can be successfully implemented. The proven and recoverable reserves of conventional natural gas in the developed and undeveloped fields in the Alaskan North Slope (ANS) are estimated to be 38 trillion standard cubic feet (TCF) and estimates of additional undiscovered gas reserves in the Arctic field range from 64 TCF to 142 TCF. Because the domestic gas market in the continental United States is located thousands of miles from the ANS, transportation of the natural gas from the remote ANS to the market is the key issue in effective utilization of this valuable and abundant resource. The focus of this project is to study the operational challenges involved in transporting the gas in converted liquid (GTL) form through the existing Trans Alaska Pipeline System (TAPS). A three-year, comprehensive research program was undertaken by the Petroleum Development Laboratory, University of Alaska Fairbanks, under cooperative agreement No. DE-FC26-98FT40016 to study the feasibility of transporting GTL products through TAPS. Cold restart of TAPS following an extended winter shutdown and solids deposition in the pipeline were identified as the main transportation issues in moving GTL products through the pipeline. The scope of work in the current project (Cooperative Agreement No. DE-FC26-01NT41248) included preparation of fluid samples for the experiments to be conducted to augment the comprehensive research program.

Godwin Chukwu

2004-01-01T23:59:59.000Z

17

Shell Gas to Liquids in the context of a Future Fuel Strategy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Shell Gas to Liquids in the context of a Future Fuel Strategy - Technical Marketing Aspects Shell Gas to Liquids in the context of a Future Fuel Strategy - Technical Marketing...

18

Rigorous HDD Emissions Capabilities of Shell GTL Fuel | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GTL Fuel 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deercherillo.pdf More Documents & Publications Verification of Shell GTL Fuel...

19

Verification of Shell GTL Fuel as CARB Alternative Diesel | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Verification of Shell GTL Fuel as CARB Alternative Diesel Verification of Shell GTL Fuel as CARB Alternative Diesel Presentation given at the 2007 Diesel Engine-Efficiency &...

20

Selection of Controlled Variables for a Natural Gas to Liquids Process  

Science Journals Connector (OSTI)

Selection of Controlled Variables for a Natural Gas to Liquids Process ... Also, dynamic issues, such as inverse response, may cause problems for control, and it may be necessary to use cascade control. ...

Mehdi Panahi; Sigurd Skogestad

2012-06-20T23:59:59.000Z

Note: This page contains sample records for the topic "gtl gas-to-liquids gvwr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Development of thin palladium membranes supported on large porous 310L tubes for a steam reformer operated with gas-to-liquid fuel  

Science Journals Connector (OSTI)

Abstract Palladium membranes were prepared on large tubes (80 mm diameter and 150 mm length) of porous stainless steel supports (PSS) using a modified electroless plating technique. The morphology of the palladium layer was found to be depending on the container material of the coating apparatus. The use of PMMA resulted in compact palladium layers with smooth surfaces whereas PTFE led to inhomogeneous palladium coating with rough surface. Two different ceramic materials and coating methods were used to prepare an intermediate layer needed to prevent intermetallic diffusion between the palladium and the support at elevated temperatures. Wet powder spraying of TiO2 followed by sintering resulted in a smoother surface than atmospheric plasma spraying of YSZ, thus allowing for a thinner palladium coating. Pd/TiO2/PSS membranes showed about 4 times higher hydrogen permeances than Pd/YSZ/PSS membranes as a consequence of higher palladium thickness and lower porosity of the ceramic intermediate layer. The selectivity against nitrogen was comparable for both membranes. However, the YSZ intermediate layer showed better stability at elevated temperatures. Two membrane tubes were applied in the membrane reformer, which produced hydrogen successfully from a gas-to-liquid (GtL) fuel.

Grazyna Straczewski; Johannes Völler-Blumenroth; Hubert Beyer; Peter Pfeifer; Michael Steffen; Ingmar Felden; Angelika Heinzel; Matthias Wessling; Roland Dittmeyer

2014-01-01T23:59:59.000Z

22

Utilizing the heat content of gas-to-liquids by-product streams for commercial power generation  

E-Print Network (OSTI)

and sulphur. They have no aromatics due to the isomerisation of the highly paraffinic Fischer-Tropsch liquids into GTL fuels and are practically100%iso-paraffinic,thustheyhaveveryhighcetaneratings. The... and sulphur. They have no aromatics due to the isomerisation of the highly paraffinic Fischer-Tropsch liquids into GTL fuels and are practically100%iso-paraffinic,thustheyhaveveryhighcetaneratings. The...

Adegoke, Adesola Ayodeji

2006-10-30T23:59:59.000Z

23

CeO2 Promoted Ni/Al2O3 Catalyst in Combined Steam and Carbon Dioxide Reforming of Methane for Gas to Liquid (GTL) Process  

Science Journals Connector (OSTI)

The effect of ceria promotion over Ni/Al2O3...catalysts on the catalytic activity and coke formation was investigated in combined steam and carbon dioxide reforming of methane (CSCRM) to produce synthesis gas (H2

Kee Young Koo; Hyun-Seog Roh; Un Ho Jung; Wang Lai Yoon

2009-06-01T23:59:59.000Z

24

Gas-to-Liquid Process Optimization for Different Recycling Configurations and Economic Evaluation  

Science Journals Connector (OSTI)

(14) Sasol luckily exploited well the mid-1970s crude oil crisis when its two giant coal based FT plants came online in the early 1980s. ... (93, 94) This variation arises from different separation technologies, operating conditions, and economies of scale. ... In the absence of a breakthrough technol., economy of scale will be the only significant mechanism by which GTL can achieve greater economic viability. ...

Wahab Maqbool; Sang Jin Park; Euy Soo Lee

2014-05-05T23:59:59.000Z

25

Rigorous HDD Emissions Capabilities of Shell GTL Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rigorous HDD Emissions Capabilities of Shell GTL Fuel Ralph A. Cherrillo & Mary Ann Dahlstrom Shell Global Solutions (US) Inc. Richard H. Clark Shell Global Solutions (UK) 11 th...

26

Catalyst and process for converting synthesis gas to liquid motor fuels  

DOE Patents (OSTI)

The addition of an inert metal component, such as gold, silver or copper, to a Fischer-Tropsch catalyst comprising cobalt enables said catalyst to convert synthesis gas to liquid motor fuels at about 240.degree.-370.degree. C. with advantageously reduced selectivity of said cobalt for methane in said conversion. The catalyst composition can advantageously include a support component, such as a molecular sieve, co-catalyst/support component or a combination of such support components.

Coughlin, Peter K. (Yorktown Heights, NY)

1987-01-01T23:59:59.000Z

27

Modular Gas-to-Liquid: Converting a Liability into Economic Value  

Science Journals Connector (OSTI)

Modular Gas-to-Liquid: Converting a Liability into Economic Value ... In the 1950s, several plants started again using the FT process, one in Brownsville, TX, with a capacity of 10800 bbl/day based on methane and one in Sasolburg, South Africa, based on coal-derived gas. ... Commercial-scale technologies do not apply to associated gas because the technologies benefit from economies of scale based on high feed rates and sustained gas flow rates. ...

Johannes G. Koortzen; Sabjinder Bains; Lary L. Kocher; Iain K. Baxter; Ross A. Morgan

2013-09-19T23:59:59.000Z

28

Greenhouse Gas Emission Evaluation of the GTL Pathway  

Science Journals Connector (OSTI)

The influence of coproduct credit methods on the GTL GHG emissions results using substitution methodology is estimated to afford the Well-to-Wheels (WTW) greenhouse gas (GHG) intensity of GTL Diesel. ... A common approach in LCA and net energy analysis, known as the “system expansion” method (also known as the “substitution” or “displacement” method) credits saved energy and emissions burdens to coproducts associated with the products displaced in the market. ... Normal Paraffins—World Markets 2000–2010; Colin A. Houston & Associates, Inc. (CAHA): Aiken, SC. ...

Grant S. Forman; Tristan E. Hahn; Scott D. Jensen

2011-09-22T23:59:59.000Z

29

Computer simulation of GTL and various problems in thermodynamics  

E-Print Network (OSTI)

phenomena from activity coefficient models. Finally, it presents simulation results for a new gas-to-liquids process. Saturation Properties for Fluids: By deriving a new identity linking the heat of vaporization for pure components to the EOS, we are able...

Wang, Xiaonian

2005-08-29T23:59:59.000Z

30

AN ASSESSMENT OF ENERGY AND ENVIRONMENTAL ISSUES RELATED TO THE USE OF GAS-TO-LIQUID FUELS IN TRANSPORTATION  

NLE Websites -- All DOE Office Websites (Extended Search)

submitted manuscript has been submitted manuscript has been authored by a contractor of the U.S. Government under contract No. DE- AC05-96OR22464. Accordingly, the U.S. Government retains a non- exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes." ORNL/TM-1999/258 AN ASSESSMENT OF ENERGY AND ENVIRONMENTAL ISSUES RELATED TO THE USE OF GAS-TO-LIQUID FUELS IN TRANSPORTATION David L. Greene Center for Transportation Analysis Oak Ridge National Laboratory November 1999 Prepared by the OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831 managed by LOCKHEED MARTIN ENERGY RESEARCH CORP. for the U. S. DEPARTMENT OF ENERGY under contract DE-AC05-96OR22464 iii TABLE OF CONTENTS LIST OF FIGURES . .

31

Start | Grid View | Browse by Day OR Group/Topical | Author Index | Keyword Index | Personal Scheduler Controlled Variables Selection for a Gas-to-Liquids Process  

E-Print Network (OSTI)

) production of synthesis gas (syngas), (ii) Fischer-Tropsch (FT) reactor and (iii) upgrading units. Various production [1]. In our work, we study in a detail; design, optimization and controlled variables selection for a GTL process based on ATR for synthesis gas production and a FT reactor with Cobalt catalyst

Skogestad, Sigurd

32

Gas to Liquid Technologies  

Science Journals Connector (OSTI)

The liquefaction energy required in a LNG plant typically has been reported as 9–12% of the heat energy in the natural gas, and 9–10% energy shrinkage is ... energy. LNG projects have a very high capital cost, in...

Marianna Asaro; Ronald M. Smith

2013-01-01T23:59:59.000Z

33

Proposed Renewal of the Harvard/MIT DOE GTL Systems Biology Center 2007-2012  

E-Print Network (OSTI)

Proposed Renewal of the Harvard/MIT DOE GTL Systems Biology Center 2007-2012 CONTENTS I1-SysBio renewal proposal is configured to either stand alone with existing collaborations or to potentially act

Church, George M.

34

Emission characteristics of GTL fuel as an alternative to conventional marine gas oil  

Science Journals Connector (OSTI)

The study examine the gaseous, smoke and particulate matter emission characteristics of a turbocharged heavy-duty diesel engine operated on conventional marine gas oil and gas-to-liquid Fischer–Tropsch fuel under modes of propulsion and generator operation. The gas-to-liquid showed average reductions up to 19% in nitrogen oxides, 25% in carbon monoxide, 4% in carbon dioxide and 30% in smoke with slight increase in unburned hydrocarbon emissions. Particulate number concentrations for gas-to-liquid were up to 21% higher, whereas particulates mass showed a 16% decrease at medium and high loads, while increasing by 12–15% under lower load conditions. Very low aromatic content of gas-to-liquid fuel and nearly zero sulfur level are responsible for particulate reduction.

Sergey Ushakov; Nadine G.M. Halvorsen; Harald Valland; Dag H. Williksen; Vilmar Æsøy

2013-01-01T23:59:59.000Z

35

Novel Syngas Production Techniques for GTL-FT Synthesis of Gasoline Using Reverse Flow Catalytic Membrane Reactors  

Science Journals Connector (OSTI)

Novel Syngas Production Techniques for GTL-FT Synthesis of Gasoline Using Reverse Flow Catalytic Membrane Reactors ... Catalytic partial oxidation (CPO, or also CPOX) is different from noncatalytic partial oxidation (POX) in that chemical conversion takes place over a catalyst bed, but it does not use a burner. ...

C. Dillerop; H. van den Berg; A. G. J. van der Ham

2010-11-10T23:59:59.000Z

36

Sustainable use of California biomass resources can help meet state and national bioenergy targets  

E-Print Network (OSTI)

waste in landfills, or biogas from municipal wastewaterheat for industrial uses. Biogas potential from landfills,Bio]gas-to-liquids (GTL) Gas Biogas Biomethane Compressed

Jenkins, Bryan M; Williams, Robert B; Gildart, Martha C; Kaffka, Stephen R.; Hartsough, Bruce; Dempster, Peter G

2009-01-01T23:59:59.000Z

37

Exergy Analysis of a GTL Process Based on Low-Temperature Slurry F-T Reactor Technology with a Cobalt Catalyst  

E-Print Network (OSTI)

Exergy Analysis of a GTL Process Based on Low-Temperature Slurry F-T Reactor Technology of the initial exergy of the gas is used to convert it into liquid fuel. In the present study, we analyze. Next, we use exergy analysis to establish the impact of catalyst selectivity and of thermal losses

Kjelstrup, Signe

38

Genomics:GTL Contractor-Grantee Workshop IV and Metabolic Engineering Working Group Inter-Agency Conference on Metabolic Engineering 2006  

SciTech Connect

Welcome to the 2006 joint meeting of the fourth Genomics:GTL Contractor-Grantee Workshop and the six Metabolic Engineering Working Group Inter-Agency Conference. The vision and scope of the Genomics:GTL program continue to expand and encompass research and technology issues from diverse scientific disciplines, attracting broad interest and support from researchers at universities, DOE national laboratories, and industry. Metabolic engineering's vision is the targeted and purposeful alteration of metabolic pathways to improve the understanding and use of cellular pathways for chemical transformation, energy transduction, and supramolecular assembly. These two programs have much complementarity in both vision and technological approaches, as reflected in this joint workshop. GLT's challenge to the scientific community remains the further development and use of a broad array of innovative technologies and computational tools to systematically leverage the knowledge and capabilities brought to us by DNA sequencing projects. The goal is to seek a broad and predictive understanding of the functioning and control of complex systems--individual microbes, microbial communities, and plants. GTL's prominent position at the interface of the physical, computational, and biological sciences is both a strength and challenge. Microbes remain GTL's principal biological focus. In the complex 'simplicity' of microbes, they find capabilities needed by DOE and the nation for clean and secure energy, cleanup of environmental contamination, and sequestration of atmospheric carbon dioxide that contributes to global warming. An ongoing challenge for the entire GTL community is to demonstrate that the fundamental science conducted in each of your research projects brings us a step closer to biology-based solutions for these important national energy and environmental needs.

Mansfield, Betty Kay [ORNL; Martin, Sheryl A [ORNL

2006-02-01T23:59:59.000Z

39

Communicating Genomics:GTL  

NLE Websites -- All DOE Office Websites (Extended Search)

Annual Annual DOE Joint Genome Institute User Meeting Sponsored By U.S. Department of Energy Office of Science March 29-April 1, 2006 Embassy Suites Hotel and DOE Joint Genome Institute Walnut Creek, California iii Contents Agenda .................................................................................................................. iv Speaker Presentations . .........................................................................................1 Abtracts in order of presentation according to agenda (p. iv) Poster Presentations ..............................................................................................9 Posters alphabetical by first author. *Presenting author. Attendees...............................................................................................................75

40

Communicating Genomics:GTL  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Joint Genome Institute User Meeting Sponsored By U.S. Department of Energy Office of Science March 24-26, 2010 Walnut Creek Marriott Walnut Creek, California iii Contents Speaker Presentations ......................................................................................... 1 Poster Presentations........................................................................................... 11 Attendees............................................................................................................. 67 Author Index ...................................................................................................... 75 iv Posters alphabetical by first author. *Presenting author 1 Speaker Presentations Abstracts alphabetical by speaker

Note: This page contains sample records for the topic "gtl gas-to-liquids gvwr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

AEO2012 Early Release Overview  

U.S. Energy Information Administration (EIA) Indexed Site

BTL), gas-to- liquids (GTL), coal-to-liquids (CTL), kerogen (i.e., oil shale), and refinery gain. After the oil crises of the 1970s and 1980s, much of the debate...

42

U.S. Energy Information Administration (EIA)  

NLE Websites -- All DOE Office Websites (Extended Search)

BTL), gas-to-liquids (GTL), coal-to-liquids (CTL), kerogen (i.e., oil shale), and refinery gain. After the oil crises of the 1970s and 1980s, much of the debate...

43

Press Room - Press Releases - U.S. Energy Information Administration...  

Annual Energy Outlook 2012 (EIA)

plant liquids (NGPL), biofuels, coal-to-liquids (CTL), gas-to-liquids (GTL), kerogen (oil shale), and refinery gain-currently supply a relatively small portion of total world...

44

a l b L b f ^ J M P U P E O M N P F = = | = = ^ p r i l = O M...  

Gasoline and Diesel Fuel Update (EIA)

natural gas plant liquids (NGPL), and refinery gain. The term other liquids refers to oil shale (i.e., kerogen-to-liquids), gas-to-liquids (GTL), coal-to-liquids (CTL), and...

45

Biomass and Natural Gas to Liquid Transportation Fuels  

Energy.gov (U.S. Department of Energy (DOE))

Breakout Session 1: New Developments and Hot Topics Session 1-D: Natural Gas & Biomass to Liquids Josephine Elia, Graduate Student, Princeton University

46

Comparative Analysis of the Production Costs and Life-Cycle GHG Emissions of FT-Liquid Fuels from Coal and  

E-Print Network (OSTI)

Coal and Natural Gas Figure S1 shows a graphical description of the life cycle of coal-to-liquids (CTL) and gas-to-liquids (GTL). Figure S1: Life Cycle of Coal-Based and Natural Gas-Based Fischer-Tropsch LiquidComparative Analysis of the Production Costs and Life- Cycle GHG Emissions of FT-Liquid Fuels from

Jaramillo, Paulina

47

A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

with both conventional and ultra-low sulfur diesel, and FRFG motor fuels. * The UCF LCA develops a set of near-term (2006) and long-term (2015) scenarios to assess impacts...

48

Simulation, integration, and economic analysis of gas-to-liquid processes  

E-Print Network (OSTI)

to enhance stability. At the same time, other methods may be used to improve properties such as lubricity. Chemical conversion is one method involving hydro-isomerisation, in which straight chain hydrocarbons are changed to branched ones for improving cold... to enhance stability. At the same time, other methods may be used to improve properties such as lubricity. Chemical conversion is one method involving hydro-isomerisation, in which straight chain hydrocarbons are changed to branched ones for improving cold...

Bao, Buping

2009-05-15T23:59:59.000Z

49

The conversion of natural gas to liquid fuels using the Sasol Slurry Phase Distillate Process  

SciTech Connect

The natural gas and energy industries have long sought an economically attractive means of converting remote gas reserves into transportable products, such as fuels or petrochemicals. Applicable gas sources include: undeveloped gas fields in locations so remote that pipeline construction is prohibitively expensive and associated gas from oil wells that is either flared, which is becoming environmentally unacceptable in many parts of the world, or reinjected, which is costly. Projects which have been developed to exploit such feeds typically have converted the gas into one of the following: (1) liquefied natural gas (LNG)--the process plants for LNG production are expensive, need to be very large to be economically viable, have costly dedicated shipping requirements, and suffer from a limited market concentrated in few countries; (2) methanol--the market for petrochemical feedstock methanol is limited, for use as a fuel, further downstream processing is needed, for example in a methyl tertiary butyl ether (MTBE) or methanol to gasoline (MTG) unit. Clearly, there is a need for an alternative that produces high quality fuels or value added products that can be transported to far-off markets, while yielding an attractive return on the developers` investment. The Sasol Slurry Phase Distillate Process will fulfill this need.

Silverman, R.W. [Raytheon Engineers and Constructors, Cambridge, MA (United States); Hill, C.R. [Sastech, Johannesburg (South Africa)

1997-12-31T23:59:59.000Z

50

Status and future opportunities for conversion of synthesis gas to liquid energy fuels: Final report  

SciTech Connect

The manufacture of liquid energy fuels from syngas (a mixture of H[sub 2] and CO, usually containing CO[sub 2]) is of growing importance and enormous potential because: (1) Abundant US supplies of coal, gas, and biomass can be used to provide the needed syngas. (2) The liquid fuels produced, oxygenates or hydrocarbons, can help lessen environmental pollution. Indeed, oxygenates are required to a significant extent by the Clean Air Act Amendments (CAAA) of 1990. (3) Such liquid synfuels make possible high engine efficiencies because they have high octane or cetane ratings. (4) There is new, significantly improved technology for converting syngas to liquid fuels and promising opportunities for further improvements. This is the subject of this report. The purpose of this report is to provide an account and evaluative assessment of advances in the technology for producing liquid energy fuels from syngas and to suggest opportunities for future research deemed promising for practical processes. Much of the improved technology for selective synthesis of desired fuels from syngas has resulted from advances in catalytic chemistry. However, novel process engineering has been particularly important recently, utilizing known catalysts in new configurations to create new catalytic processes. This report is an update of the 1988 study Catalysts for Fuels from Syngas: New Directions for Research (Mills 1988), which is included as Appendix A. Technology for manufacture of syngas is not part of this study. The manufacture of liquid synfuels is capital intensive. Thus, in evaluating advances in fuels technology, focus is on the potential for improved economics, particularly on lowering plant investment costs. A second important criteria is the potential for environmental benefits. The discussion is concerned with two types of hydrocarbon fuels and three types of oxygenate fuels that can be synthesized from syngas. Seven alternative reaction pathways are involved.

Mills, G. (Delaware Univ., Newark, DE (United States). Center for Catalytic Science and Technology)

1993-05-01T23:59:59.000Z

51

Status and future opportunities for conversion of synthesis gas to liquid energy fuels: Final report  

SciTech Connect

The manufacture of liquid energy fuels from syngas (a mixture of H{sub 2} and CO, usually containing CO{sub 2}) is of growing importance and enormous potential because: (1) Abundant US supplies of coal, gas, and biomass can be used to provide the needed syngas. (2) The liquid fuels produced, oxygenates or hydrocarbons, can help lessen environmental pollution. Indeed, oxygenates are required to a significant extent by the Clean Air Act Amendments (CAAA) of 1990. (3) Such liquid synfuels make possible high engine efficiencies because they have high octane or cetane ratings. (4) There is new, significantly improved technology for converting syngas to liquid fuels and promising opportunities for further improvements. This is the subject of this report. The purpose of this report is to provide an account and evaluative assessment of advances in the technology for producing liquid energy fuels from syngas and to suggest opportunities for future research deemed promising for practical processes. Much of the improved technology for selective synthesis of desired fuels from syngas has resulted from advances in catalytic chemistry. However, novel process engineering has been particularly important recently, utilizing known catalysts in new configurations to create new catalytic processes. This report is an update of the 1988 study Catalysts for Fuels from Syngas: New Directions for Research (Mills 1988), which is included as Appendix A. Technology for manufacture of syngas is not part of this study. The manufacture of liquid synfuels is capital intensive. Thus, in evaluating advances in fuels technology, focus is on the potential for improved economics, particularly on lowering plant investment costs. A second important criteria is the potential for environmental benefits. The discussion is concerned with two types of hydrocarbon fuels and three types of oxygenate fuels that can be synthesized from syngas. Seven alternative reaction pathways are involved.

Mills, G. [Delaware Univ., Newark, DE (United States). Center for Catalytic Science and Technology

1993-05-01T23:59:59.000Z

52

Microsoft Word - 201312_Fuels_Industry_Newsletter_December_2013.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

scraps proposed Louisiana GTL complex" scraps proposed Louisiana GTL complex" By Bradley Olson, Hydrocarbon Processing, December 6, 2013 THE HAGUE (Bloomberg) -- Royal Dutch Shell halted plans to build a $20 billion gas-to- liquids plant in Louisiana, citing the potential cost and uncertainty about future crude and natural gas prices. The project would have used natural gas to produce 140,000 bpd of liquid fuels and other products normally made from oil, the company said in a statement. Despite ample United States gas supplies from a boom in shale production, gas-to-liquids isn't "a viable option for Shell in North America," the company said. Shell started the first commercial gas-to-liquids plant in 1993, using a process developed in Germany and used to make fuels during World War II. The company completed the $19 billion

53

Bringing Alaska North Slope Natural Gas to Market (released in AEO2009)  

Reports and Publications (EIA)

At least three alternatives have been proposed over the years for bringing sizable volumes of natural gas from Alaska's remote North Slope to market in the lower 48 states: a pipeline interconnecting with the existing pipeline system in central Alberta, Canada; a gas-to-liquids (GTL) plant on the North Slope; and a large liquefied natural gas (LNG) export facility at Valdez, Alaska. The National Energy Modeling System (NEMS) explicitly models the pipeline and GTL options. The what if LNG option is not modeled in NEMS.

2009-01-01T23:59:59.000Z

54

ClearFuels-Rentech Integrated Biorefinery Final Report  

SciTech Connect

The project Final Report describes the validation of the performance of the integration of two technologies that were proven individually on a pilot scale and were demonstrated as a pilot scale integrated biorefinery. The integrated technologies were a larger scale ClearFuels’ (CF) advanced flexible biomass to syngas thermochemical high efficiency hydrothermal reformer (HEHTR) technology with Rentech’s (RTK) existing synthetic gas to liquids (GTL) technology.

Pearson, Joshua [Project Director

2014-02-26T23:59:59.000Z

55

REFINING AND END USE STUDY OF COAL LIQUIDS  

SciTech Connect

This document summarizes all of the work conducted as part of the Refining and End Use Study of Coal Liquids. There were several distinct objectives set, as the study developed over time: (1) Demonstration of a Refinery Accepting Coal Liquids; (2) Emissions Screening of Indirect Diesel; (3) Biomass Gasification F-T Modeling; and (4) Updated Gas to Liquids (GTL) Baseline Design/Economic Study.

Unknown

2002-01-01T23:59:59.000Z

56

Synthesis Gas Production with an Adjustable H2/CO Ratio through the Coal Gasification Process: Effects of Coal Ranks And Methane Addition  

Science Journals Connector (OSTI)

With the decline of oil reserves and production, the gas-to-liquids (GTL) part of Fischer–Tropsch (F-T) synthesis technology has become increasing important. ... The Department of Energy (DOE) Energy Information Administration (EIA) estimates that over 50% of the coal reserve base in the United States (U.S.) is bituminous coal, about 30% is sub-bituminous, and 9% is lignite. ...

Yan Cao; Zhengyang Gao; Jing Jin; Hongchang Zhou; Marten Cohron; Houying Zhao; Hongying Liu; Weiping Pan

2008-03-25T23:59:59.000Z

57

Microsoft Word - 201310_Fuels_Industry_Newsletter_October_2013_v2.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

selects Louisiana site for $12.5 billion, world-scale GTL facility" selects Louisiana site for $12.5 billion, world-scale GTL facility" By OGJ editors, Oil & Gas Journal, September 24, 2013 Royal Dutch Shell PLC, in a joint press statement with the state of Louisiana, reported the selection of Ascension Parish as a potential location for a $12.5 billion gas-to-liquids (GTL) facility. If built, the plant, to be located near Sorrento, La., would be one of the first commercial- scale plants of its kind in the US. The project also would create 740 direct jobs, according to an incentive agreement with the state. A decision on whether to begin construction of the facility is pending the completion of site evaluation and preliminary engineering studies, which would take several years, Shell said. "Selecting a site is an important step that allows us to conduct more detailed planning, technical

58

Bioconversion of coal-derived synthesis gas to liquid fuels. Annual report, September 29, 1992--September 28, 1993  

SciTech Connect

The overall objective of the project is to develop and optimize a two-stage fermentation process for the conversion of coal derived synthesis gas in an mixture of alcohols. The goals include the development of superior strains with high product tolerance and productivity, optimization of process conditions for high volumetric productivity and product concentrations, integration and optimization of two stage syngas fermentation, evaluation of bioreactor configurations for enhanced mass transfer, evaluation of syngas conversion by a culture of Butyribacterium methyltrophicum and Clostridium acetobutylicum, development of a membrane based pervaporation system for in situ removal of alcohols, and development of a process for reduction of carbon and electron loss. The specific goals for year one (September 1992 - September 1993) were (1) development of a project work plan, (2) development of superior CO-utilizing strains, (3) optimization of process conditions for conversion of synthesis gas to a mixture of acids in a continuously stirred reactor (CSTR), (4) evaluation of different bioreactor configurations for maximization of mass transfer of synthesis gas, (5) development of a membrane based pervaporation system, and (6) reduction of carbon and electron loss via H{sub 2}CO{sub 2} fermentation. Experimentation and progress toward these goals are described in this report.

Jain, M.K.; Worden, R.M.; Grethlein, H.E.

1993-10-21T23:59:59.000Z

59

Bioconversion of coal-derived synthesis gas to liquid fuels. Final report, September 29, 1992--December 27, 1994  

SciTech Connect

The proposed research project consists of an integrated, two-stage fermentation and a highly energy-efficient product separation scheme. In the first fermentation, Butyribacterium methylotrophicum converts carbon monoxide (CO) into butyric acid and acetic acids which are then converted into butanol, ethanol, and a small amount of acetone in the second stage fermentation by Clostridium acetobutylicum. An advanced separation system process, based on pervaporation, removes the alcohols from the fermentation broth as they are formed, along with some of the hydrogen sulfide (H{sub 2}S), to minimize possible inhibition of the fermentations. This bioconversion process offers a critical advantage over conventional, catalytic processes for synthesis gas conversion: the microorganisms are several orders of magnitude more sulfur tolerant than metallic catalysts. The catalysts require sulfur removal to the parts per million level, while the microorganisms are unaffected by H{sub 2}S and carbonyl sulfide (COS) at one part per hundred--roughly the composition of sulfur in raw synthesis gas. During the two-year course of this project, the following major objectives have been accomplished: demonstrated long-term cell recycle of continuous fermentation of synthesis gas; demonstrated cell immobilization of Butyribacterium methylotrophicum; identified trickle-bed reactor as a viable alternative fermentation method; modulated metabolic pathways to increase C4 formation during synthesis gas fermentation; recovered carbon and electrons from H{sub 2} and CO{sub 2} with pathway modulation for increased C4 production; developed bacterial strains with improved selectivity for butyrate fermentation; demonstrated two-stage CO to alcohol fermentation; and concentrated alcohol from solventogenic fermentation by pervaporation.

Jain, M.K.; Worden, R.M.; Grethlein, H.E.

1995-01-15T23:59:59.000Z

60

Efficient Utilization of Greenhouse Gas in a Gas-to-Liquids Process Combined with Carbon Dioxide Reforming of Methane  

Science Journals Connector (OSTI)

And it is found that the operation of the process can be successfully done without any CO2 absorber and separation units, and GHG emission is significantly reduced by recycling some portion of the unreacted syngas mixture and CO2 generated from combustion at the reformer burner. ... The basic idea is to thermally couple a gasifier, fed with coal and steam, and a combustor where coal is burnt with air, thus overcoming the need of expensive pure oxygen as a feedstock. ...

Kyoung-Su Ha; Jong Wook Bae; Kwang-Jae Woo; Ki-Won Jun

2010-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "gtl gas-to-liquids gvwr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels with Conventional Fuels in the Transportation Sector  

Energy.gov (U.S. Department of Energy (DOE))

2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: ConocoPhillips and Nexant Corporatin

62

Effect of Gas-to-Liquid Diesel Fuels on Combustion Characteristics, Engine Emissions, and Exhaust Gas Fuel Reforming. Comparative Study  

Science Journals Connector (OSTI)

School of Engineering, Mechanical and Manufacturing Engineering, University of Birmingham, Birmingham B15 2TT, U.K., Shell Global Solutions, Cheshire Innovation Park, Chester CH1 3SH, U.K., Mechanical Engineering, School of Engineering and Design, Brunel University, West London, Uxbridge UB8 3PH, U.K., and Johnson Matthey Technology Centre, Blount's Court, Sonning Common, Reading RG4 9NH, U.K. ... Clearly, the general trend is toward higher efficiency engines and improved fuel economy, something that puts current technology spark ignition (SI) engines in a relatively weak position compared to compression ignition (CI) engines. ... As the diesel engine used in this study was equipped with a pump-line-nozzle-type fuel injection system, all the observed effects may not apply to common rail or unit injection equipped engines. ...

A. Abu-Jrai; A. Tsolakis; K. Theinnoi; R. Cracknell; A. Megaritis; M. L. Wyszynski; S. E. Golunski

2006-10-18T23:59:59.000Z

63

Water and Energy Issues in Gas-to-Liquid Processes: Assessment and Integration of Different Gas-Reforming Alternatives  

Science Journals Connector (OSTI)

Energy and water management effects are analyzed for the development of syngas processes under the integration of three gas reforming alternatives ... Gandrick et al.(9) considered the recycling of the light gas from FT synthesis and refining areas to fire gas turbines to produce electricity and the reuse of the gas turbines to produce superheated steam. ... We address in this paper several aspects related to such issues: (a) A comparative analysis is developed for assesing the impact of the use of different reforming technologies on energy and water usage. ...

Diana Yered Martínez; Arturo Jiménez-Gutiérrez; Patrick Linke; Kerron J. Gabriel; Mohamed M. B. Noureldin; Mahmoud M. El-Halwagi

2013-10-24T23:59:59.000Z

64

Monetizing stranded gas : economic valuation of GTL and LNG projects.  

E-Print Network (OSTI)

??Globally, there are significant quantities of natural gas reserves that lie economically or physically stranded from markets. Options to monetize such reserves include Gas to… (more)

Black, Brodie Gene, 1986-

2010-01-01T23:59:59.000Z

65

Assessment of Environmental Impacts of Shell GTL Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

clear lifecycle benefits for NOx and SO 2 emissions 4 Sustainability Specific issue of GHG emissions comparison more complex: Carbon efficiency of SMDS process currently lower...

66

Effect of GTL Diesel Fuels on Emissions and Engine Performance  

Energy.gov (U.S. Department of Energy (DOE))

2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: DaimlerChrysler Research and Technology

67

Fuel and Vehicle Technology Choices for Passenger Vehicles in Achieving Stringent CO2 Targets: Connections between Transportation and Other Energy Sectors  

Science Journals Connector (OSTI)

Five fuel options (petroleum, natural gas, synthetic fuels (coal to liquid, CTL; gas to liquid, GTL; biomass to liquid, BTL), electricity, and hydrogen) and five vehicle technologies (ICEV, HEV, BEV, PHEV, and FCV) were considered. ... Petro ICEV, Synth ICEV, NG ICEV, H2 ICEV = internal combustion engine vehicle fueled either by petroleum, synthetic fuel (CTL, GTL, or BTL), natural gas, or gaseous hydrogen; HEV = hybrid electric vehicle; BEV = battery electric vehicle, PHEV = plug-in hybrid electric vehicle; Petro FCV, Synth FCV, H2 FCV = fuel-cell vehicle fueled either by petroleum, synthetic fuel, or gaseous hydrogen. ... In their CO2 reduction scenario (reduction from 1990 of 50% by 2050 and 75% by 2100), the car sector is dominated by gasoline/diesel (first in ICEVs, then HEVs and to a small extent also PHEVs) with hydrogen-fueled FCVs becoming dominant by 2100. ...

M. Grahn; C. Azar; M. I. Williander; J. E. Anderson; S. A. Mueller; T. J. Wallington

2009-03-26T23:59:59.000Z

68

NOVEL REACTOR FOR THE PRODUCTION OF SYNTHESIS GAS  

SciTech Connect

Praxair investigated an advanced technology for producing synthesis gas from natural gas and oxygen This production process combined the use of a short-reaction time catalyst with Praxair's gas mixing technology to provide a novel reactor system. The program achieved all of the milestones contained in the development plan for Phase I. We were able to develop a reactor configuration that was able to operate at high pressures (up to 19atm). This new reactor technology was used as the basis for a new process for the conversion of natural gas to liquid products (Gas to Liquids or GTL). Economic analysis indicated that the new process could provide a 8-10% cost advantage over conventional technology. The economic prediction although favorable was not encouraging enough for a high risk program like this. Praxair decided to terminate development.

Vasilis Papavassiliou; Leo Bonnell; Dion Vlachos

2004-12-01T23:59:59.000Z

69

Efficient Utilization of Greenhouse Gases in a Gas-to-Liquids Process Combined with CO2/Steam-Mixed Reforming and Fe-Based Fischer–Tropsch Synthesis  

Science Journals Connector (OSTI)

In the reforming unit, CO2 reforming and steam reforming of methane are combined together to produce syngas in flexible composition. ... In the burner-type reformer, NG is used as a heating fuel, in order to reduce the consumption of NG, the vent gas can be applied to the burner to replace some part of NG as fuel. ...

Chundong Zhang; Ki-Won Jun; Kyoung-Su Ha; Yun-Jo Lee; Seok Chang Kang

2014-06-16T23:59:59.000Z

70

Comparative analysis of the production costs and life-cycle GHG emissions of FT liquid fuels from coal and natural gas  

SciTech Connect

Liquid transportation fuels derived from coal and natural gas could help the United States reduce its dependence on petroleum. The fuels could be produced domestically or imported from fossil fuel-rich countries. The goal of this paper is to determine the life-cycle GHG emissions of coal- and natural gas-based Fischer-Tropsch (FT) liquids, as well as to compare production costs. The results show that the use of coal- or natural gas-based FT liquids will likely lead to significant increases in greenhouse gas (GHG) emissions compared to petroleum-based fuels. In a best-case scenario, coal- or natural gas-based FT-liquids have emissions only comparable to petroleum-based fuels. In addition, the economic advantages of gas-to-liquid (GTL) fuels are not obvious: there is a narrow range of petroleum and natural gas prices at which GTL fuels would be competitive with petroleum-based fuels. CTL fuels are generally cheaper than petroleum-based fuels. However, recent reports suggest there is uncertainty about the availability of economically viable coal resources in the United States. If the U.S. has a goal of increasing its energy security, and at the same time significantly reducing its GHG emissions, neither CTL nor GTL consumption seem a reasonable path to follow. 28 refs., 2 figs., 4 tabs.

Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews [Carnegie Mellon University, Pittsburgh, PA (USA). Civil and Environmental Engineering Department

2008-10-15T23:59:59.000Z

71

(Presentation in English) AtGTL1 regulates transpiration and water-use efficiency by controlling  

E-Print Network (OSTI)

stomatal number through transcriptional repression of SDD1 Paul M. Hasegawa Department of Horticulture plants had lower light-period but not dark-period transpiration rates, without a concomitant reduction

Ejiri, Shinji

72

Microsoft Word - DOE Final Report 2013 - GTL ER64516-1031199...  

Office of Scientific and Technical Information (OSTI)

recent horizontal transfer compared to a recent bacteria-wide survey of HGT (Smillie & Smith et al, 2011). Despite the established propensity for recent horizontal transfers to...

73

New Funding Opportunities and Webinars from ARPA-E | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Funding Opportunities and Webinars from ARPA-E New Funding Opportunities and Webinars from ARPA-E New Funding Opportunities and Webinars from ARPA-E March 26, 2013 - 4:05pm Addthis ARPA-E has announced two new funding opportunities: REMOTE (Reducing Emissions Using Methanotrophic Organisms for Transportation Energy) will develop transformational biological technologies to convert gas to liquids (GTL) for transportation fuels. METALS (Modern Electro/Thermochemical Advancements for Light-Metal Systems) will develop innovative technologies for cost-effective processing and recycling of Aluminum, Magnesium and Titanium. METALS will also develop technologies for rapid and efficient light metal sorting to enable domestic recycling. Concept Papers for both new funding opportunities are due by 5 p.m. EST on

74

Definition: Diesel fuel | Open Energy Information  

Open Energy Info (EERE)

Diesel fuel Diesel fuel Jump to: navigation, search Dictionary.png Diesel fuel A liquid fuel produced from petroleum; used in diesel engines.[1] View on Wikipedia Wikipedia Definition Diesel oil and Gazole (fuel) redirect here. Sometimes "diesel oil" is used to mean lubricating oil for diesel engines. Diesel fuel in general is any liquid fuel used in diesel engines. The most common is a specific fractional distillate of petroleum fuel oil, but alternatives that are not derived from petroleum, such as biodiesel, biomass to liquid (BTL) or gas to liquid (GTL) diesel, are increasingly being developed and adopted. To distinguish these types, petroleum-derived diesel is increasingly called petrodiesel. Ultra-low-sulfur diesel (ULSD) is a standard for defining diesel fuel with substantially lowered sulfur contents. As of 2007, almost

75

New Funding Opportunities and Webinars from ARPA-E | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Funding Opportunities and Webinars from ARPA-E New Funding Opportunities and Webinars from ARPA-E New Funding Opportunities and Webinars from ARPA-E March 26, 2013 - 4:05pm Addthis ARPA-E has announced two new funding opportunities: REMOTE (Reducing Emissions Using Methanotrophic Organisms for Transportation Energy) will develop transformational biological technologies to convert gas to liquids (GTL) for transportation fuels. METALS (Modern Electro/Thermochemical Advancements for Light-Metal Systems) will develop innovative technologies for cost-effective processing and recycling of Aluminum, Magnesium and Titanium. METALS will also develop technologies for rapid and efficient light metal sorting to enable domestic recycling. Concept Papers for both new funding opportunities are due by 5 p.m. EST on

76

Argonne Transportation Technology R&D Center - Alternative Fuels -  

NLE Websites -- All DOE Office Websites (Extended Search)

Fischer-Tropsch Fuels Fischer-Tropsch Fuels SunDiesel fuel This Sun Diesel BTL fuel, made from wood chips, results in lower particulate matter and nitrogen oxide emissions. Fischer-Tropsch (F-T) fuels are synthetic diesel fuels produced by converting gaseous hydrocarbons, such as natural gas and gasified coal or biomass, into liquid fuel. These fuels are commonly categorized into the following groups: Biomass to liquids (BTL) Gas to liquids (GTL) Coal to liquids (CTL) Argonne engineers are investigating the performance and emissions data of F-T fuels for both older and newer vehicles. The goal is to provide this data to the U.S. Department of Energy, the auto industry and energy suppliers. Part of the lab's strategy also includes publishing the data to solicit ideas and input from the fuels and combustion community.

77

Economics of Alaska North Slope gas utilization options  

SciTech Connect

The recoverable natural gas available for sale in the developed and known undeveloped fields on the Alaskan North Slope (ANS) total about 26 trillion cubic feet (TCF), including 22 TCF in the Prudhoe Bay Unit (PBU) and 3 TCF in the undeveloped Point Thomson Unit (PTU). No significant commercial use has been made of this large natural gas resource because there are no facilities in place to transport this gas to current markets. To date the economics have not been favorable to support development of a gas transportation system. However, with the declining trend in ANS oil production, interest in development of this huge gas resource is rising, making it important for the U.S. Department of Energy, industry, and the State of Alaska to evaluate and assess the options for development of this vast gas resource. The purpose of this study was to assess whether gas-to-liquids (GTL) conversion technology would be an economic alternative for the development and sale of the large, remote, and currently unmarketable ANS natural gas resource, and to compare the long term economic impact of a GTL conversion option to that of the more frequently discussed natural gas pipeline/liquefied natural gas (LNG) option. The major components of the study are: an assessment of the ANS oil and gas resources; an analysis of conversion and transportation options; a review of natural gas, LNG, and selected oil product markets; and an economic analysis of the LNG and GTL gas sales options based on publicly available input needed for assumptions of the economic variables. Uncertainties in assumptions are evaluated by determining the sensitivity of project economics to changes in baseline economic variables.

Thomas, C.P.; Doughty, T.C.; Hackworth, J.H.; North, W.B.; Robertson, E.P.

1996-08-01T23:59:59.000Z

78

A NMR-Based Carbon-Type Analysis of Diesel Fuel Blends From Various Sources  

SciTech Connect

In collaboration with participants of the Coordinating Research Council (CRC) Advanced Vehicle/Fuels/Lubricants (AVFL) Committee, and project AVFL-19, the characteristics of fuels from advanced and renewable sources were compared to commercial diesel fuels. The main objective of this study was to highlight similarities and differences among the fuel types, i.e. ULSD, renewables, and alternative fuels, and among fuels within the different fuel types. This report summarizes the carbon-type analysis from 1H and 13C{1H} nuclear magnetic resonance spectroscopy (NMR) of 14 diesel fuel samples. The diesel fuel samples come from diverse sources and include four commercial ultra-low sulfur diesel fuels (ULSD), one gas-to-liquid diesel fuel (GTL), six renewable diesel fuels (RD), two shale oil-derived diesel fuels, and one oil sands-derived diesel fuel. Overall, the fuels examined fall into two groups. The two shale oil-derived samples and the oil-sand-derived sample closely resemble the four commercial ultra-low sulfur diesels, with SO1 and SO2 most closely matched with ULSD1, ULSD2, and ULSD4, and OS1 most closely matched with ULSD3. As might be expected, the renewable diesel fuels, with the exception of RD3, do not resemble the ULSD fuels because of their very low aromatic content, but more closely resemble the gas-to-liquid sample (GTL) in this respect. RD3 is significantly different from the other renewable diesel fuels in that the aromatic content more closely resembles the ULSD fuels. Fused-ring aromatics are readily observable in the ULSD, SO, and OS samples, as well as RD3, and are noticeably absent in the remaining RD and GTL fuels. Finally, ULSD3 differs from the other ULSD fuels by having a significantly lower aromatic carbon content and higher cycloparaffinic carbon content. In addition to providing important comparative compositional information regarding the various diesel fuels, this report also provides important information about the capabilities of NMR spectroscopy for the detailed characterization and comparison of fuels and fuel blends.

Bays, J. Timothy; King, David L.

2013-05-10T23:59:59.000Z

79

Premixed ignition behavior of alternative diesel fuel-relevant compounds in a motored engine experiment  

SciTech Connect

A motored engine study using premixed charges of fuel and air at a wide range of diesel-relevant equivalence ratios was performed to investigate autoignition differences among surrogates for conventional diesel fuel, gas-to-liquid (GTL) diesel fuel, and biodiesel, as well as n-heptane. Experiments were performed by delivering a premixed charge of vaporized fuel and air and increasing the compression ratio in a stepwise manner to increase the extent of reaction while monitoring the exhaust composition via Fourier transform infrared (FTIR) spectrometry and collecting condensable exhaust gas for subsequent gas chromatography/mass spectrometry (GC/MS) analysis. Each fuel demonstrated a two-stage ignition process, with a low-temperature heat release (LTHR) event followed by the main combustion, or high-temperature heat release (HTHR). Among the three diesel-relevant fuels, the magnitude of LTHR was highest for GTL diesel, followed by methyl decanoate, and conventional diesel fuel last. FTIR analysis of the exhaust for n-heptane, the conventional diesel surrogate, and the GTL diesel surrogate revealed that LTHR produces high concentrations of aldehydes and CO while producing only negligible amounts of CO{sub 2}. Methyl decanoate differed from the other two-stage ignition fuels only in that there were significant amounts of CO{sub 2} produced during LTHR; this was the result of decarboxylation of the ester group, not the result of oxidation. GC/MS analysis of LTHR exhaust condensate for n-heptane revealed high concentrations of 2,5-heptanedione, a di-ketone that can be closely tied to species in existing autoignition models for n-heptane. GC/MS analysis of the LTHR condensate for conventional diesel fuel and GTL diesel fuel revealed a series of high molecular weight aldehydes and ketones, which were expected, as well as a series of organic acids, which are not commonly reported as products of combustion. The GC/MS analysis of the methyl decanoate exhaust condensate revealed that the aliphatic chain acts similarly to n-paraffins during LTHR, while the ester group remains intact. Thus, although the FTIR data revealed that decarboxylation occurs at significant levels for methyl decanoate, it was concluded that this occurs after the aliphatic chain has been largely consumed by other LTHR reactions. (author)

Szybist, James P.; Boehman, Andre L.; Haworth, Daniel C. [Pennsylvania State University, Fuel Science Program, 405 Academic Activities Building, University Park, PA 16802 (United States); Koga, Hibiki [Honda R and D Company, Ltd., Asaka-shi, Saitama 351-0024 (Japan)

2007-04-15T23:59:59.000Z

80

FedEx Gasoline Hybrid Electric Delivery Truck Evaluation: 6-Month...  

NLE Websites -- All DOE Office Websites (Extended Search)

ignition CO Carbon monoxide DOE U.S. Department of Energy DPF Diesel particulate filter gHEV Gasoline hybrid electric vehicle GVWR Gross vehicle weight rating HP...

Note: This page contains sample records for the topic "gtl gas-to-liquids gvwr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

EIA - AEO2010 - World oil prices and production trends in AEO2010  

Gasoline and Diesel Fuel Update (EIA)

World oil prices and production trends in AEO2010 World oil prices and production trends in AEO2010 Annual Energy Outlook 2010 with Projections to 2035 World oil prices and production trends in AEO2010 In AEO2010, the price of light, low-sulfur (or “sweet”) crude oil delivered at Cushing, Oklahoma, is tracked to represent movements in world oil prices. EIA makes projections of future supply and demand for “total liquids,” which includes conventional petroleum liquids—such as conventional crude oil, natural gas plant liquids, and refinery gain—in addition to unconventional liquids, which include biofuels, bitumen, coal-to-liquids (CTL), gas-to-liquids (GTL), extra-heavy oils, and shale oil. World oil prices can be influenced by a multitude of factors. Some tend to be short term, such as movements in exchange rates, financial markets, and weather, and some are longer term, such as expectations concerning future demand and production decisions by the Organization of the Petroleum Exporting Countries (OPEC). In 2009, the interaction of market factors led prompt month contracts (contracts for the nearest traded month) for crude oil to rise relatively steadily from a January average of $41.68 per barrel to a December average of $74.47 per barrel [38].

82

Cost reduction ideas for LNG terminals  

SciTech Connect

LNG projects are highly capital intensive and this has long been regarded as being inevitable. However, recent developments are forcing the LNG industry to aggressively seek cost reductions. For example, the gas-to-liquids (GTL) process is increasingly seen as a potential rival technology and is often being touted as an economically superior alternative fuel source. Another strong driving force behind needed cost reductions is the low crude oil price which seems to have settled in the $10--13/bb. range. LNG is well positioned as the fuel of choice for environmentally friendly new power projects. As a result of the projected demand for power especially in the Pacific Rim countries several LNG terminal projects are under consideration. Such projects will require a new generation of LNG terminal designs emphasizing low cost, small scale and safe and fully integrated designs from LNG supply to power generation. The integration of the LNG terminal with the combined cycle gas turbine (CCGT) power plant offers substantial cost savings opportunities for both plants. Various cost reduction strategies and their impact on the terminal design are discussed including cost reduction due to integration.

Habibullah, A.; Weldin, F.

1999-07-01T23:59:59.000Z

83

Alternative Liquid Fuels Simulation Model (AltSim).  

SciTech Connect

The Alternative Liquid Fuels Simulation Model (AltSim) is a high-level dynamic simulation model which calculates and compares the production costs, carbon dioxide emissions, and energy balances of several alternative liquid transportation fuels. These fuels include: corn ethanol, cellulosic ethanol, biodiesel, and diesels derived from natural gas (gas to liquid, or GTL) and coal (coal to liquid, or CTL). AltSim allows for comprehensive sensitivity analyses on capital costs, operation and maintenance costs, renewable and fossil fuel feedstock costs, feedstock conversion efficiency, financial assumptions, tax credits, CO{sub 2} taxes, and plant capacity factor. This paper summarizes the preliminary results from the model. For the base cases, CTL and cellulosic ethanol are the least cost fuel options, at $1.60 and $1.71 per gallon, respectively. Base case assumptions do not include tax or other credits. This compares to a $2.35/gallon production cost of gasoline at September, 2007 crude oil prices ($80.57/barrel). On an energy content basis, the CTL is the low cost alternative, at $12.90/MMBtu, compared to $22.47/MMBtu for cellulosic ethanol. In terms of carbon dioxide emissions, a typical vehicle fueled with cellulosic ethanol will release 0.48 tons CO{sub 2} per year, compared to 13.23 tons per year for coal to liquid.

Baker, Arnold Barry; Williams, Ryan (Hobart and William Smith Colleges, Geneva, NY); Drennen, Thomas E.; Klotz, Richard (Hobart and William Smith Colleges, Geneva, NY)

2007-10-01T23:59:59.000Z

84

Operability and Emissions from a Medium-Duty Fleet Operating...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Operability and Emissions from a Medium-Duty Fleet Operating with GTL Fuel and Catalyzed DPFs Operability and Emissions from a Medium-Duty Fleet Operating with GTL Fuel and...

85

Fact #707: December 26, 2011 Illustration of Truck Classes  

Energy.gov (U.S. Department of Energy (DOE))

There are eight truck classes, categorized by the gross vehicle weight rating (GVWR) that the vehicle is assigned when it is manufactured. These categories are used by the trucking industry and...

86

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

derived from grain starch, oil seed, animal fat, or other biomass, or produced from a biogas source. GVWR Credit Less than 10,000 pounds (lbs.) Up to 2,400 10,000 to 26,000 lbs....

87

Assessment of Out-of-State Heavy-Duty Truck Activity Trends In California  

E-Print Network (OSTI)

Highway Patrol ( CHP), 2006. Personal Communication. “OtayCA: Caltrans: CARB: CDFA: CEC: CHP: CVIS: g/bhp: g/mi: GVWR:California Highway Patrol (CHP) enforcement facilities and

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

88

Air Quality: Toxics and Transportation  

E-Print Network (OSTI)

://www.epa.gov/ttn/amtic #12;Emissions Inventory · MOBILE6 Vehicle Classifications · 1 LDGV Light-Duty Gasoline Vehicles (Passenger Cars) · 2 LDGT1 Light-Duty Gasoline Trucks 1 (0-6,000 lbs. GVWR, 0-3,750 lbs. LVW) · 3 LDGT2 Light-Duty Gasoline Trucks 2 (0-6,000 lbs. GVWR, 3,751-5,750 lbs. LVW) · 4 LDGT3 Light-Duty Gasoline Trucks 3 (6

Bertini, Robert L.

89

FD-BPM for Optical Waveguide Structures with Second Order Accuracy An improved FD-BPM was developed which is based on the generalized transmission line(GTL) equa-  

E-Print Network (OSTI)

FD-BPM for Optical Waveguide Structures with Second Order Accuracy R. Pregla An improved FD-BPMRHH) for discretized transverse fields E and H. This BPM is a wide angle algorithm and also full vectorial a second term on the right sides (for details see [3]). Usually, BPM algorithms are based on the wave

Jahns, Jürgen

90

Transportation and its Infrastructure  

E-Print Network (OSTI)

2007). Natural Gas (CNG / LNG / GTL) Natural gas, which iscompressed (CNG) or liquefied (LNG) form Chapter 5 Transportthe hydrogen section. CNG and LNG combustion characteristics

2007-01-01T23:59:59.000Z

91

Advanced Manufacturing Office Update, September 2014 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the technology in smaller-scale GTL plants to convert a combination of natural gas and biogas landfill gas to fuels and chemicals. Microchannel reactor technology has the...

92

E-Print Network 3.0 - advanced automotive diesel Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

by Mass Spectrometry Modelling... diesels from methane (GTL) and from biomass, ethanol, biogas, natural gas, hydrogen Activities Source: Birmingham, University of - School of...

93

Automotive Fuels ? The Challenge for Sustainable Mobility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GTL Fuel launched in: Austria, Germany, Greece, Italy, Netherlands, Switzerland and Thailand Premium Fuels V-Power fuels: Best performance in Latest engine technology * In 60...

94

Identification of Small RNAs in Desulfovibrio vulgaris Hildenborough  

E-Print Network (OSTI)

by the U. S. Department of Energy, Office of Science,Office of Biological and Environmental Research, Genomics:GTL Foundational Science

Burns, Andrew

2010-01-01T23:59:59.000Z

95

Functional Ecological Gene Networks to Reveal the Changes Among Microbial Interactions Under Elevated Carbon Dioxide Conditions  

E-Print Network (OSTI)

by the U. S. Department of Energy, Office of Science,Office of Biological and Environmental Research, Genomics:GTL Foundational Science

Deng, Ye

2010-01-01T23:59:59.000Z

96

Two Component Signal Transduction in Desulfovibrio Species  

E-Print Network (OSTI)

by the U. S. Department of Energy, Office of Science,Office of Biological and Environmental Research, Genomics:GTL Foundational Science

Luning, Eric

2010-01-01T23:59:59.000Z

97

"The submitted manuscript has been authored by a contractor of the U.S.  

E-Print Network (OSTI)

OF FIGURES Figure 1. Gasoline Blending Components v. Alternative Fuels as Sources of Non BENEFITS OF NEAT AND BLENDED GTL FUELS . . . . . . . . . . . . . . . . 19 6. GREENHOUSE GAS EMISSIONS

98

Application of Synthetic Diesel Fuels | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Potential of GTL Diesel to Meet Future Exhaust Emission Limits Performance Characteristics of Coal-to-Liquids (CTL) Diesel in a 50-State Emissions Compliant Passenger Car...

99

Energy Department Announces $66 Million for Transformational...  

Office of Environmental Management (EM)

(REMOTE), provides 34 million to find advanced biocatalyst technologies that can convert natural gas to liquid fuel for transportation. Deputy Director Martin made the project...

100

ARPA-E Announces $40 Million for Research Projects to Develop...  

Energy Savers (EERE)

second program will develop biological technologies that will improve the conversion of natural gas to liquids for transportation fuels, designed to reduce vehicle emissions...

Note: This page contains sample records for the topic "gtl gas-to-liquids gvwr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

U.S. Energy Information Administration | Annual Energy Outlook...  

Gasoline and Diesel Fuel Update (EIA)

natural-gas-to-liquids process. 13 Includes liquids produced from kerogen (oil shale, not to be confused with tight oil (shale oil). Note: Ethanol is represented in...

102

U.S. Energy Information Administration | Annual Energy Outlook...  

Gasoline and Diesel Fuel Update (EIA)

natural-gas-to-liquids process. 13 Includes liquids produced from kerogen (oil shale, not to be confused with tight oil (shale oil)). - - Not applicable. Note: Ethanol...

103

Performance Characteristics of Coal-to-Liquids (CTL) Diesel in a 50-State Emissions Compliant Passenger Car  

Energy.gov (U.S. Department of Energy (DOE))

Comparisons between CTL, GTL, no. 2, and European diesel include fuel economy, regulated and unregulated emissions in a 50 State compliant passenger car with DOC, NOx adsorber and particulate trap

104

Microbial Genomics—Challenges and Opportunities: The 9th International Conference on Microbial Genomes  

Science Journals Connector (OSTI)

...functional genomics, the DOE Office of Science has launched various microbial...Computing Research within the DOE Office of Science are implementing the GTL program...We especially thank the DOE Office of Science Biological and Environmental...

Jizhong Zhou; Jeffrey H. Miller

2002-08-01T23:59:59.000Z

105

Expanding Buildings-to-Grid (B2G) Objectives in India  

E-Print Network (OSTI)

17 4.2. Demand-Side Management (DSM)GTL Ltd. 4.2. Demand-Side Management (DSM) Initiatives Theand integrated demand-side management. The National Action

Ghatikar, Girish

2014-01-01T23:59:59.000Z

106

GeoChip-Based Analysis of the Functional Gene Diversity and Metabolic Potential of Microbial Communities in Acid Mine Drainage  

Science Journals Connector (OSTI)

...China (no. 50321402 and 50774102), the Graduate Education Innovative Program of Central South University (no. 1343-77341...Department of Energy, Office of Science, under the Environmental Remediation Science Program (DOE-ER64125), and the Genomics: GTL...

Jianping Xie; Zhili He; Xinxing Liu; Xueduan Liu; Joy D. Van Nostrand; Ye Deng; Liyou Wu; Jizhong Zhou; Guanzhou Qiu

2010-11-19T23:59:59.000Z

107

Impact of Real Field Diesel Quality Variability on Engine Emissions...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Diesel (GTL, NexBTL...) Artic Fuel Jet Fuel Synthetic Kero Europe Premium Diesels Africa Far East US Low Cetane SME RME US LC Mercosur US LC+20%SME Mercosur+40%SME...

108

Yosemite Waters Vehicle Evaluation Report: Final Results  

SciTech Connect

Document details the evaluation of Fischer-Tropsch diesel, a gas-to-liquid fuel, in medium-duty delivery vehicles at Yosemite Waters. The study was conducted by NREL at the company's Fullerton, California, bottling headquarters.

Eudy, L.; Barnitt, R.; Alleman, T. L.

2005-08-01T23:59:59.000Z

109

Report on the Imaging Workshop for the Genomes to Life Program, April 16-18, 2002  

SciTech Connect

This report is a result of the Imaging Workshop for the Genomes to Life (GTL) program held April 16-19, 2002, in Charlotte, North Carolina. The meeting was sponsored by the Office of Biological and Environmental Research and the Office of Advanced Scientific Computing Research of the U.S. Department of Energy's (DOE) Office of Science. The purpose of the workshop was to project a broad vision for future needs and determine the value of imaging to GTL program research. The workshop included four technical sessions with plenary lectures on biology and technology perspectives and technical presentations on needs and approaches as they related to the following areas of the GTL program: (1) Molecular machines (protein complexes); (2) Intracellular and cellular structure, function, and processes; (3) Multicellular: Monoclonal and heterogeneous multicellular systems, cell-cell signaling, and model systems; and (4) Cells in situ and in vivo: Bacteria in the natural environment, microenvironment, and in vivo systems.

Colson, STEVEN

2003-08-04T23:59:59.000Z

110

Virtual Library on Genetics from Oak Ridge National Laboratory  

DOE Data Explorer (OSTI)

The World Wide Web (WWW) Virtual Library is a collaborative effort to provide topic indices that break down into many subtopics guiding users to vast resources of information around the world. ORNL hosts the Virtual Library on Genetics as part of the WWWVL's Biosciences topic area. The VL on Genetics is also a collection of links to information resources that supported the DOE Human Genome Project. That project has now evolved into Genomics: GTL. GTL is DOE's next step in genomics--builds on data and resources from the Human Genome Project, the Microbial Genome Program, and systems biology. GTL will accelerate understanding of dynamic living systems for solutions to DOE mission challenges in energy and the environment. The section of the Virtual Library on Genetics that is titled Organisms guides users to genetic information resources and gene sequences for animals, insects, microbes, and plant life.

111

Mobility with Hydrogen Fuel Cells Becomes Reality! 2Daimler AG / 09.02.2012  

E-Print Network (OSTI)

Bio-Mass Natural Gas Crude Oil Conventional fuels sulphur-free, free of aromatic compounds fuels system & stack Electric engine H2 tank system Infrastructure Hydrogen costs Reliable refueling technology Synthetic fuels (GTL) sulphur-free, free of aromatic compounds Natural Gas (CNG) 1. Gen. Bio-Fuels (Ethanol

California at Davis, University of

112

Department of Aeronautics and Astronautics School of Engineering  

E-Print Network (OSTI)

control, (3) heat transfer in turbine blading, (4) gas turbine engine noise reduction and aero-acoustics noise below the background noise level in a well populated area. The Gas Turbine Laboratory maintains is conducted at the Gas Turbine Laboratory (GTL) which has had a worldwide reputation for research and teaching

de Weck, Olivier L.

113

Energy Department awards $92 million http://www.eurekalert.org/pub_releases/2005-10/ddoe-eda100305.php 1 of 2 10/7/2005 1:19 PM  

E-Print Network (OSTI)

and one private company. The grants are part of the Office of Science's Genomics: GTL research program in genomics research over the past 20 years now help allow scientists rapidly decode and interpret the complete DNA sequence of any organism. Because genomics reveals the blueprint for life, it is the starting

Lovley, Derek

114

Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy  

E-Print Network (OSTI)

marine and aviation Ethanol, GTL, CNG, LNG, biofuels, hydrogen fuelfuels, as well as estimating energy demand in air, rail, heavy truck, marine, andMarine and rail emissions are driven by an increase in ton miles traveled in each mode while fuel

Sperling, Daniel; Cannon, James S.

2010-01-01T23:59:59.000Z

115

Systems and methods for reactive distillation with recirculation of light components  

SciTech Connect

Systems and methods for producing gas-to-liquids products using reactive distillation are provided. The method for producing gas-to-liquids products can include reacting a feedstock in a column having a distillation zone and a reaction zone to provide a bottoms stream and an overhead stream. A first portion of the overhead stream can be recycled to the column at the top of the reaction zone and second portion of the overhead stream can be recycled to the column at the bottom of the reaction zone.

Stickney, Michael J. (Nassau Bay, TX); Jones, Jr., Edward M. (Friendswood, TX)

2011-07-26T23:59:59.000Z

116

PERFORMANCE STATISTICS WEIGHTS  

NLE Websites -- All DOE Office Websites (Extended Search)

90 lbs 90 lbs Delivered Curb Weight: 2936 lbs Distribution F/R: 59/41 % GVWR: 3795 lbs GAWR F/R: 2335/2250 lbs Payload: 905 lbs Performance Goal: 400 lbs DIMENSIONS Wheelbase: 106 inches Track F/R: 59/58 inches Length: 175 inches Width: 67 inches Height: 57.8 inches Ground Clearance: 4.3 inches Performance Goal: 5.0 inches TIRES Tire Mfg: Goodyear Tire Model: Integrity Tire Size: P185/65R15 Tire Pressure F/R: 35/33 psi

117

PERFORMANCE STATISTICS WEIGHTS  

NLE Websites -- All DOE Office Websites (Extended Search)

40 lbs 40 lbs Delivered Curb Weight: 3556 lbs Distribution F/R: 58/42 % GVWR: 4665 lbs GAWR F/R: Unavailable Payload: 1109 lbs Performance Goal: 400 lbs DIMENSIONS Wheelbase: 109.3 in Track F/R: 62.0/61.6 in Length: 189.2 in Width: 71.7 in Height: 57.9 in Ground Clearance: 5.9 in Performance Goal: 5.0 in TIRES Tire Mfg: Michellin Tire Model: Energy MXV458 Tire Size: P215/60R16 Tire Pressure F/R: 32/32

118

PERFORMANCE STATISTICS WEIGHTS  

NLE Websites -- All DOE Office Websites (Extended Search)

5650 lbs 5650 lbs Delivered Curb Weight: 5579 lbs Distribution F/R: 51.8/48.2 GVWR: 7100 lbs GAWR F/R: 3200/4100 lbs Payload: 1521 lbs Performance Goal: 400 lbs DIMENSIONS Wheelbase: 116.0 in Track F/R: 68.2/67.0 in Length: 202.0 in Width: 79.0 in Height: 74.6 in Ground Clearance: 9.5 in Performance Goal: 5.0 in TIRES Tire Mfg: Bridgestone Tire Model: Dueler H/R Tire Size: P265/65R18 Tire Pressure F/R: 32 psi

119

PERFORMANCE STATISTICS WEIGHTS  

NLE Websites -- All DOE Office Websites (Extended Search)

27 lbs 27 lbs Delivered Curb Weight: 3618 lbs Distribution F/R: 58/42 % GVWR: 4680 lbs GAWR F/R: 2440/2440 lbs Payload: 1062 lbs Performance Goal: 400 lbs DIMENSIONS Wheelbase: 103.2 inches Track F/R: 61.1/60.2 inches Length: 174.5 inches Width: 71.4 inches Height: 69.5 inches Ground Clearance: 7.8 inches Performance Goal: 5.0 inches TIRES Tire Mfg: Continental Tire Model: EcoPlus Tire Size: P235/70R16

120

Insight REV dbk.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

67 lbs 67 lbs Delivered Curb Weight: 1959 lbs Distribution F/R: 61/39 % GVWR: 2380 lbs GAWR F/R: 1355/1035 lbs Payload: 411 lbs Performance Goal: 400 lbs DIMENSIONS Wheelbase: 94.5 inches Track F/R: 56.5/52.2 inches Length: 155.1 inches Width: 66.7 inches Height: 51.5 inches Ground Clearance: 4.6 inches Performance Goal: 5.0 inches TIRES Tire Mfg: Bridgestone Tire Model: Potenza Tire Size: 165/65R14

Note: This page contains sample records for the topic "gtl gas-to-liquids gvwr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

PERFORMANCE STATISTICS WEIGHTS  

NLE Websites -- All DOE Office Websites (Extended Search)

3474 lbs 3474 lbs Delivered Curb Weight: 3435 lbs GVWR: 4718 lbs GAWR F/R: 2491/2436 lbs Distribution F/R: % Payload: 1283 lbs Performance Goal: 400 lbs DIMENSIONS Wheelbase: 106.6 in Track F/R: 61.0/61.0 in Length: 181.3 in Width: 71.6 in Height: 65.3 in Ground Clearance: 7.0 in Performance Goal: 5.0 in TIRES Tire Mfg: General Tire Model: Ameri GS60 Tire Size: P215/70R16 Tire Pressure F/R: 35/35 psi

122

Quantum mechanicalrapid prototyping applied to methane activation Richard P. Muller, Dean M. Philipp, and William A. Goddard III  

E-Print Network (OSTI)

example. The conversion of natural gas to liquid products such as alcohols is of great economic importance of industrially important catalytic processes. This, combined with the continued dramatic decreases in the costs. The technologies currently practised in industry first involve conversion of CH4 to syngas (carbon monoxide plus

Goddard III, William A.

123

Techno-Economic Assessment and Environmental Impact of Shale Gas Alternatives to Methanol  

Science Journals Connector (OSTI)

Techno-Economic Assessment and Environmental Impact of Shale Gas Alternatives to Methanol ... Recent discoveries of shale gas reserves have promoted a renewed interest in gas-to-liquid technologies for the production of fuels and chemicals. ... In this work, an economic and environmental analysis for the production of methanol from shale gas is presented. ...

Laura M. Julián-Durán; Andrea P. Ortiz-Espinoza; Mahmoud M. El-Halwagi; Arturo Jiménez-Gutiérrez

2014-09-03T23:59:59.000Z

124

Nano-scale Sensor Networks for Chemical Eisa Zarepour1  

E-Print Network (OSTI)

Nano-scale Sensor Networks for Chemical Catalysis Eisa Zarepour1 Mahbub Hassan1 Chun Tung Chou1- searchers are now investigating the viability of nano-scale sensor networks (NSNs), which are formed natural gas to liquid fuel. Given that reliable wireless communi- cation at nano-scale is at very early

New South Wales, University of

125

Boosted Fast Flux Loop Final Report  

SciTech Connect

The Boosted Fast Flux Loop (BFFL) project was initiated to determine basic feasibility of designing, constructing, and installing in a host irradiation facility, an experimental vehicle that can replicate with reasonable fidelity the fast-flux test environment needed for fuels and materials irradiation testing for advanced reactor concepts. Originally called the Gas Test Loop (GTL) project, the activity included (1) determination of requirements that must be met for the GTL to be responsive to potential users, (2) a survey of nuclear facilities that may successfully host the GTL, (3) conceptualizing designs for hardware that can support the needed environments for neutron flux intensity and energy spectrum, atmosphere, flow, etc. needed by the experimenters, and (4) examining other aspects of such a system, such as waste generation and disposal, environmental concerns, needs for additional infrastructure, and requirements for interfacing with the host facility. A revised project plan included requesting an interim decision, termed CD-1A, that had objectives of' establishing the site for the project at the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL), deferring the CD 1 application, and authorizing a research program that would resolve the most pressing technical questions regarding GTL feasibility, including issues relating to the use of booster fuel in the ATR. Major research tasks were (1) hydraulic testing to establish flow conditions through the booster fuel, (2) mini-plate irradiation tests and post-irradiation examination to alleviate concerns over corrosion at the high heat fluxes planned, (3) development and demonstration of booster fuel fabrication techniques, and (4) a review of the impact of the GTL on the ATR safety basis. A revised cooling concept for the apparatus was conceptualized, which resulted in renaming the project to the BFFL. Before the subsequent CD-1 approval request could be made, a decision was made in April 2006 that further funding for the project would be suspended. Remaining funds have been used to prepare and irradiate mini-plates of the proposed booster fuel. The current baseline design is for a set of three test positions inside an in-pile tube with a thermal neutron absorber and heat sink made of aluminum mixed with hafnium. Operating the ATR at power levels needed to achieve the required fast flux will result in an estimated increase in ATR fuel consumption between 15 and 20% above present rates and a reduction in the time between fuel replacements. Preliminary safety analyses conducted have indicted safe operation of the ATR with the GTL under normal, abnormal, and postulated accident conditions. More comprehensive analyses are needed.

Boosted Fast Flux Loop Project Staff

2009-09-01T23:59:59.000Z

126

A polarographic study of the nitro group in p-nitroacetophenone  

E-Print Network (OSTI)

'f'usion currents Determznation of' the relationship between the diffusion current, concentration, and mercury head. Recordir g of the polarograms. Chaptez III. ZXPERI. 'IZNTAL RESUI TS. Calibrated polarographic sensitivitzes. . . . . . . . . Polarographic... cell resistances 2/gtl/6 Values of the half-wave potentials and the diffusion currents. . . . . . . . . . . . . . . . Values of F~, and Id as a function of concenfration. . . Value of r~ and Id as a functzon of mercury head. Typical polarograms...

Stout, Roy Franklin

2012-06-07T23:59:59.000Z

127

MAGGIE Final Report  

SciTech Connect

The mass spectrometry component of the MAGGIE effort included the generation of novel GTL technologies and comprehensive characterization to elucidate functional relationships and pathways. Toward this goal Component 4 has generated unique surface-based mass spectrometry and bioinformatic technologies as well as helped identified new biological interactions. The informatics and analytical technology platforms that we developed as well as the biochemistry that it has been developed for, are presented in detail in the attached document.

Siuzdak, Gary

2012-11-05T23:59:59.000Z

128

The synthesis and characterization of new iron coordination complexes utilizing an asymmetric coordinating chelate ligand  

SciTech Connect

The authors are investigating the structure/activity relationships of the bacterial enzyme, methane monooxygenase, which catalyzes the specific oxidation of methane to methanol. They then utilize this information to design and synthesize inorganic coordination complexes that mimic the function of the native enzyme but are more robust and have higher catalytic site density. They envision these catalysts to be useful in process catalytic reactors in the conversion of methane in natural gas to liquid methanol.

Baldwin, D.; Watkins, B.E.; Satcher, J.H.

1993-12-31T23:59:59.000Z

129

The synthesis and characterization of new iron coordination complexes utilizing an asymmetric coordinating chelate ligand  

SciTech Connect

We are investigating the structure/activity relationships of the bacterial enzyme methane monooxygenase, which catalyzes the specific oxidation of methane to methanol. We then utilize this information to design and synthesize inorganic coordination complexes that mimic the function of the native enzyme but are more robust and have higher catalytic site density. We envision these catalysts to be useful in process catalytic reactors in the conversion of methane in natural gas to liquid ethanol.

Watkins, B.E.; Satcher, J.H.

1995-03-01T23:59:59.000Z

130

U.S. Energy Information Administration (EIA)  

Annual Energy Outlook 2012 (EIA)

OPEC NGPL 3.27 3.97 4.25 4.51 4.89 5.43 1.7 Biofuelsa 0.00 0.00 0.00 0.00 0.00 0.00 -- Coal-to-liquids 0.00 0.00 0.00 0.00 0.00 0.00 -- Gas-to-liquids 0.01 0.27 0.30 0.35 0.40...

131

2009 BMW MINI EVAmerica fact sheet.pdf  

NLE Websites -- All DOE Office Websites (Extended Search)

3230 lb 3230 lb Delivered Curb Weight: 3306 lb Distribution F/R: 51/49 % GVWR: 3660 lb Payload 2 : 354 lb Performance Goal: 400 lb DIMENSIONS Wheelbase: 97.1 inches Track F/R: 57.4/57.8 inches Length: 145.6 inches Width: 66.3 inches Height: 55.4 inches Ground Clearance: 6.0 inches Performance Goal: 5.0 inches CHARGER Level 1: Location: On-board Type: Conductive Input Voltages: 120VAC Level 2: Location: Off-board Type: Conductive Input Voltages: 240 VAC © 2009 Electric Transportation Applications All Rights Reserved BASE VEHICLE: 2009 BMW MINI E Seatbelt Positions: Two Standard Features: Front Wheel Drive Front Disc and Rear Disc Brakes Regenerative Braking With Coast Down Three-Point Safety Belts Speedometer Odometer State-Of-Charge Meter BATTERY Type: Lithium Ion Number of Modules: 48

132

VEHICLE SPECIFICATIONS Vehicle Features Base Vehicle: 2010 Honda  

NLE Websites -- All DOE Office Websites (Extended Search)

Honda Honda Civic Hybrid VIN: JHMFA3F24AS005577 Seatbelt Positions: 5 Standard Features: Air Conditioning Power Locks Power Steering Power Brakes Power Windows Cruise Control Front Disc Brakes Rear Disc Brakes Front Wheel Drive Regenerative Braking Anti-Lock Brakes Traction Control Air Bags AM/FM Stereo with CD State of Charge Meter 1 Weights Design Curb Weight: 2877 lb Delivered Curb Weight: 2982 lb Distribution F/R (%): 57/43 GVWR: 3792 lb GAWR F/R: 1973/1841 lb Payload 2 : 810 lb Performance Goal: 400 lb Dimensions Wheelbase: 106.3 in Track F/R: 59.1/60.2 in Length: 177.3 in Width: 69.0 in Height: 56.3 in Ground Clearance: 6.0 in Performance Goal: 5.0 in Tires Manufacturer: Bridgestone

133

VEHICLE SPECIFICATIONS Vehicle Features Base Vehicle: 2010 Smart  

NLE Websites -- All DOE Office Websites (Extended Search)

Smart Smart Fortwo MHD VIN: WME4513341K406476 Seatbelt Positions: 2 Standard Features: Air Conditioning Power Locks Power Steering Power Brakes Power Windows Cruise Control Front Disc Brakes Rear Drum Brakes Rear Wheel Drive Anti-Lock Brakes Traction Control Air Bags AM/FM Stereo with CD player Weights Design Curb Weight:1,818 lb Delivered Curb Weight: 1.742 lb Distribution F/R (%):44/56 GVWR: 2,244 lb GAWR F/R: 968/1,452 lb Payload 1 : 426 lb Performance Goal: 400 lb Dimensions Wheelbase: 73.5 in Track F/R: 50.5/54.5 in Length: 106.1 in Width: 61.4 in Height: 60.7 in Ground Clearance: 6.25 in Performance Goal: 5.0 in Tires Manufacturer: Continental Model: ContiproContact Size: Front -P155/60/R15

134

Microsoft Word - solcar95.html  

NLE Websites -- All DOE Office Websites (Extended Search)

FORCE FORCE VEHICLE SPECIFICATIONS CONVERTED VEHICLE Base Vehicle: 1995 Geo Metro VIN:2C1MR529XS6783464 Seatbelt Positions: Three Standard Features: Power Brakes Front Disk Brakes Front Wheel Drive Dual Air Bags AM/FM Stereo Radio w/Cassette Electric Heater Options as Tested: None BATTERY Manufacturer: GM Ovonic Type: 13.2EV85 Nickel Metal Hydride Number of Modules: 14 Weight of Module: 18 kg Weight of Pack(s): 254 kg Pack Locations: Undertrunk/Underhood Nominal Module Voltage: 13.2 V Nominal System Voltage: 185 V Nominal Capacity (1C): 85 Ah WEIGHTS Design Curb Weight: 2246 lbs Delivered Curb Weight: 2304 lbs Distribution F/R: 50/50 % GVWR: 2755 lbs GAWR F/R: 1432/1366 lbs Payload: 451 lbs Performance Goal: 664 lbs DIMENSIONS Wheelbase: 93.5 inches

135

Vehicle Specifications Battery Type: Li-Ion  

NLE Websites -- All DOE Office Websites (Extended Search)

Under hood above powertrain Under hood above powertrain Nominal System Voltage: 333 V Rated Capacity (C/3): 40 Ah Cooling Method: Glycol / Water mix Powertrain Motor Type: DC Brushless Number of Motors: One Motor Cooling Type: Glycol / Water mix Drive Wheels: Rear Wheel Drive Transmission: None (gear ratio only in rear axle) Charger Location: Underhood Charger Port: Driver's side, front quarter panel Type: Conductive (J1772 connector) Input Voltage(s): 120 or 240 VAC Chassis Aluminum Body on Steel Frame Rear Suspension: Solid Axle with Leaf Springs Front Suspension: Dual A-arm with Coil Springs Weights Design Curb Weight: 3250 lbs Delivered Curb Weight: 3310 lbs 7 Distribution F/R: 55.2/44.8% GVWR: 4450 lbs Max Payload: 940 lbs + 200 lbs driver 1 Performance Goal Payload: 1000 lbs + 200 lbs driver

136

VEHICLE SPECIFICATIONS Vehicle Features  

NLE Websites -- All DOE Office Websites (Extended Search)

Mazda 3 Mazda 3 VIN: JMZBLA4G601111865 Seatbelt Positions: 5 Standard Features: Air Conditioning Power Locks Power Steering Power Brakes Power Windows Cruise Control Front Disc Brakes Rear Disc Brakes Front Wheel Drive Anti-Lock Brakes Traction Control Air Bags AM/FM Stereo with CD Weights Design Curb Weight: 2,954 lb Delivered Curb Weight: 2,850 lb Distribution F/R (%): 63/37 GVWR: 4,050 lb GAWR F/R: 2,057/1,896 lb Payload 1 : 1,096 lb Performance Goal: 400 lb Dimensions Wheelbase: 103.9 in Track F/R: 60.4/59.8 in Length: 175.6 in Width: 69.1 in Height: 57.9 in Ground Clearance: 6.1 in Performance Goal: 5.0 in Tires Manufacturer: Yokohama Model: YK520 Size: P205/55R17 Pressure F/R: 35/33 psi

137

Alternative Fuels Data Center: Natural Gas Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Tax to Natural Gas Tax to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Tax on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Tax on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Tax on Google Bookmark Alternative Fuels Data Center: Natural Gas Tax on Delicious Rank Alternative Fuels Data Center: Natural Gas Tax on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas Tax Operators of motor vehicles capable of using compressed or liquefied natural gas must pay an annual flat rate privilege tax if the vehicle has a gross vehicle weight rating (GVWR) of 10,000 pounds (lbs.) or less. Natural

138

Methylal and Methylal-Diesel Blended Fuels from Use In Compression-Ignition Engines  

SciTech Connect

Gas-to-liquids catalytic conversion technologies show promise for liberating stranded natural gas reserves and for achieving energy diversity worldwide. Some gas-to-liquids products are used as transportation fuels and as blendstocks for upgrading crude derived fuels. Methylal (CH{sub 3}-O-CH{sub 2}-O-CH{sub 3}) also known as dimethoxymethane or DMM, is a gas-to-liquid chemical that has been evaluated for use as a diesel fuel component. Methylal contains 42% oxygen by weight and is soluble in diesel fuel. The physical and chemical properties of neat methylal and for blends of methylal in conventional diesel fuel are presented. Methylal was found to be more volatile than diesel fuel, and special precautions for distribution and fuel tank storage are discussed. Steady state engine tests were also performed using an unmodified Cummins 85.9 turbocharged diesel engine to examine the effect of methylal blend concentration on performance and emissions. Substantial reductions of particulate matter emissions h ave been demonstrated 3r IO to 30% blends of methylal in diesel fuel. This research indicates that methylal may be an effective blendstock for diesel fuel provided design changes are made to vehicle fuel handling systems.

Keith D. Vertin; James M. Ohi; David W. Naegeli; Kenneth H. Childress; Gary P. Hagen; Chris I. McCarthy; Adelbert S. Cheng; Robert W. Dibble

1999-05-05T23:59:59.000Z

139

Discovery of N-(4-(2-Amino-3-chloropyridin-4-yloxy)-3-fluorophenyl)-4-ethoxy-1-(4-fluorophenyl)-2-oxo-1,2-dihydropyridine-3-carboxamide (BMS-777607), a Selective and Orally Efficacious Inhibitor of the Met Kinase Superfamily  

SciTech Connect

Substituted N-(4-(2-aminopyridin-4-yloxy)-3-fluoro-phenyl)-1-(4-fluorophenyl)-2-oxo-1,2-dihydropyridine-3-carboxamides were identified as potent and selective Met kinase inhibitors. Substitution of the pyridine 3-position gave improved enzyme potency, while substitution of the pyridone 4-position led to improved aqueous solubility and kinase selectivity. Analogue 10 demonstrated complete tumor stasis in a Met-dependent GTL-16 human gastric carcinoma xenograft model following oral administration. Because of its excellent in vivo efficacy and favorable pharmacokinetic and preclinical safety profiles, 10 has been advanced into phase I clinical trials.

Schroeder, Gretchen M.; An, Yongmi; Cai, Zhen-Wei; Chen, Xiao-Tao; Clark, Cheryl; Cornelius, Lyndon A.M.; Dai, Jun; Gullo-Brown, Johnni; Gupta, Ashok; Henley, Benjamin; Hunt, John T.; Jeyaseelan, Robert; Kamath, Amrita; Kim, Kyoung; Lippy, Jonathan; Lombardo, Louis J.; Manne, Veeraswamy; Oppenheimer, Simone; Sack, John S.; Schmidt, Robert J.; Shen, Guoxiang; Stefanski, Kevin; Tokarski, John S.; Trainor, George L.; Wautlet, Barri S.; Wei, Donna; Williams, David K.; Zhang, Yingru; Zhang, Yueping; Fargnoli, Joseph; Borzilleri, Robert M.; (BMS)

2009-12-01T23:59:59.000Z

140

Emissions Characteristics of a Turbine Engine and Research Combustor Burning a Fischer?Tropsch Jet Fuel  

Science Journals Connector (OSTI)

GTL and CTL technologies were discovered in Germany in the mid-1910s and further developed in 1923 by German scientists Drs. ... The Department of Energy (DOE) National Energy Technology Laboratory and the Fuels Branch of the Air Force Research Laboratory (AFRL/PRTG) established a collaborative research and development program in 2000 to study and demonstrate clean aviation fuels as part of the DOE Ultra Clean Transportation Fuels Initiative. ... 21 Gaseous emissions were quantified using an MKS MultiGas 2030 Fourier-transform infrared based gas analyzer and a flame ionization detector based total hydrocarbon analyzer. ...

Edwin Corporan; Matthew J. DeWitt; Vincent Belovich; Robert Pawlik; Amy C. Lynch; James R. Gord; Terrence R. Meyer

2007-07-17T23:59:59.000Z

Note: This page contains sample records for the topic "gtl gas-to-liquids gvwr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Electrical conductivity of shock compressed xenon  

Science Journals Connector (OSTI)

The results on measurements of electrical conductivity of shock compressed gaseous and liquid xenon are discussed. Thermodynamical parameters of xenon are calculated in frames of plasma chemical model. To estimate electrical conductivity modified Ziman theory is used. A reasonable agreement between experimental and theoretical data on equation of state and transport properties is shown in a wide range of parameters from gas to liquid densities pressures 10–140 GPa and temperatures >5000 K. New experimental data on measurements of equation of state and conductivity of xenon under multiple shock compression are presented.

Victor B. Mintsev; Vladimir Ya. Ternovoi; Victor K. Gryaznov; Alexei A. Pyalling; Vladimir E. Fortov; Igor L. Iosilevskii

2000-01-01T23:59:59.000Z

142

Toward Novel Hybrid Biomass, Coal, and Natural Gas Processes for Satisfying Current Transportation Fuel Demands, 1: Process Alternatives, Gasification Modeling, Process Simulation, and Economic Analysis  

Science Journals Connector (OSTI)

Toward Novel Hybrid Biomass, Coal, and Natural Gas Processes for Satisfying Current Transportation Fuel Demands, 1: Process Alternatives, Gasification Modeling, Process Simulation, and Economic Analysis ... This paper, which is the first part of a series of papers, introduces a hybrid coal, biomass, and natural gas to liquids (CBGTL) process that can produce transportation fuels in ratios consistent with current U.S. transportation fuel demands. ... Steady-state process simulation results based on Aspen Plus are presented for the seven process alternatives with a detailed economic analysis performed using the Aspen Process Economic Analyzer and unit cost functions obtained from literature. ...

Richard C. Baliban; Josephine A. Elia; Christodoulos A. Floudas

2010-07-19T23:59:59.000Z

143

Plasma Processing Of Hydrocarbon  

SciTech Connect

The Idaho National Laboratory (INL) developed several patented plasma technologies for hydrocarbon processing. The INL patents include nonthermal and thermal plasma technologies for direct natural gas to liquid conversion, upgrading low value heavy oil to synthetic light crude, and to convert refinery bottom heavy streams directly to transportation fuel products. Proof of concepts has been demonstrated with bench scale plasma processes and systems to convert heavy and light hydrocarbons to higher market value products. This paper provides an overview of three selected INL patented plasma technologies for hydrocarbon conversion or upgrade.

Grandy, Jon D; Peter C. Kong; Brent A. Detering; Larry D. Zuck

2007-05-01T23:59:59.000Z

144

PERFORMANCE STATISTICS WEIghTS  

NLE Websites -- All DOE Office Websites (Extended Search)

2650 lbs 2650 lbs Delivered Curb Weight 9 : 2615 lbs Distribution F/R 9 (%): 58.6/41.4 GVWR: 3164 lbs GAWR F/R: 1797/1378lbs Payload 5 : 564 lbs Performance Goal: 400 lbs DIMENSIONS Wheelbase: 95.9 in Track F/R: 59.6/59.1 in Length: 160.6 in Width: 68.5 in Height: 54.9 in Ground Clearance: 5.3 in Performance Goal: 5.0 in TIRES Tire Mfg: Dunlop Tire Model: SP Sport 1000m Tire Size: 195 / 55 R16 86V Tire Pressure F/R: 30/30 psi Spare Installed: Yes ENgINE Model: 1.5 L I4 Output 8 : 122 hp @ 6000 rpm Configuration: Inline Four-cylinder Displacement: 1.5 L Fuel Tank Capacity: 10.6 gal Fuel Type: Unleaded Gasoline © 2010 Electric Transportation Applications All Rights Reserved VEhICLE FEATuRES Base Vehicle: 2011 Honda CRZ EX Hybrid VIN: JHMZF1C64BS002982

145

U.S. Energy Information Administration (EIA) - Pub  

Gasoline and Diesel Fuel Update (EIA)

Legislation AEO 2011 Legislation and regulations Legislation AEO 2011 Legislation and regulations 2012 Introduction 1. Greenhouse gas emissions and fuel consumption standards for heavy-duty vehicles, model years 2014 through 2018 On September 15, 2011, the EPA and NHTSA jointly announced a final rule, called the HD National Program [9], which for the first time established GHG emissions and fuel consumption standards for on-road heavy-duty trucks with a gross vehicle weight rating (GVWR) above 8,500 pounds (Classes 2b through 8) [10] and their engines. The AEO2012 Reference case incorporates the new standards for heavy-duty vehicles (HDVs). 2. Cross-State Air Pollution Rule The CSAPR was created to regulate emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx) from power plants greater than 25 megawatts that generate electric power from fossil fuels. CSAPR is intended to assist States in achieving their National Ambient Air Quality Standards for fine particulate matter and ground-level ozone. Limits on annual emissions of SO2 and NOx are designed to address fine particulate matter. The seasonal NOx limits address ground-level ozone. Twenty-three States are subject to the annual limits, and 25 States are subject to the seasonal limits [12].

146

PERFORMANCE STATISTICS WEIghTS  

NLE Websites -- All DOE Office Websites (Extended Search)

245 lbs 245 lbs Delivered Curb Weight: 4118 lbs GVWR: 5675 lbs GAWR F/R: 2865/3130 lbs Distribution F/R: 59/41 % Payload: 1557 lbs Performance Goal: 400 lbs DIMENSIONS Wheelbase: 106.7 in Track F/R: 61.9/61.1 in Length: 185.3 in Width: 71.5 in Height: 68.6 in Ground Clearance: 5.9 in Performance Goal: 5.0 in TIRES Tire Mfg: Goodyear Tire Model: Integrity Tire Size: P225/65R17 Tire Pressure F/R: 32/32 Spare Installed: Yes ENgINE Model: 3MZ-FE Output: 208 hp @ 5600 rpm Configuration: V6 Displacement: 3.3 L Fuel Tank Capacity: 17.2 gal Fuel Type: Unleaded Gasoline © 2010 Electric Transportation Applications All Rights Reserved VEhICLE FEATuRES Base Vehicle: 2006 Highlander VIN: JTEDW21A860005681 Seatbelt Positions: Seven Standard Features: Air Conditioning

147

untitled  

NLE Websites -- All DOE Office Websites (Extended Search)

2723 lbs 2723 lbs Delivered Curb Weight: 2756 lbs Distribution F/R (%): 58/42 GVWR: 3630 lbs GAWR F/R: 1881/1782lbs Payload 5 : 907 lbs Performance Goal: 400 lbs DIMENSIONS Wheelbase: 100.4 in Track F/R: 58.7/58.1 in Length: 172.3 in Width: 66.7 in Height: 56.2 in Ground Clearance: 5.5 in Performance Goal: 5.0 in TIRES Tire Mfg: Dunlop Tire Model: SP31 A/S Tire Size: 175 / 65 R15 84S Tire Pressure F/R: 33/33 psi Spare Installed: Yes ENGINE Model: 1.3 L LDA series I4 Output: 98 hp @ 5800 rpm Configuration: Inline Four-cylinder Displacement: 1.3 L Fuel Tank Capacity: 10.6 gal Fuel Type: Unleaded Gasoline © 2009 Electric Transportation Applications All Rights Reserved VEHICLE FEATURES Base Vehicle: 2010 Honda Insight Hybrid VIN: JHMZE2H78AS010141 Seatbelt Positions: Five Standard Features:

148

untitled  

NLE Websites -- All DOE Office Websites (Extended Search)

720 lbs 720 lbs Delivered Curb Weight: 3698 lbs Distribution F/R (%): 60.4/39.6 GVWR: 4701 lbs GAWR F/R: 2492/2209 lbs Payload 5 : 850 lbs Performance Goal: 400 lbs DIMENSIONS Wheelbase: 107.4 in Track F/R: 61.7/61.3 in Length: 190.6 in Width: 72.2 in Height: 56.9 in Ground Clearance: 7 in Performance Goal: 5.0 in TIRES Tire Mfg: Michelin Tire Model: Energy MXV4 SS Tire Size: P225/50VR17 Tire Pressure F/R: 33/33 psi Spare Installed: Yes ENGINE Model: 2.5L Atkinson Cycle Output: 156 hp @ 6000 rpm Configuration: Inline Four-cylinder Displacement: 2.5 L Fuel Tank Capacity: 17.5 gal Fuel Type: Unleaded Gasoline © 2009 Electric Transportation Applications All Rights Reserved VEHICLE FEATURES Base Vehicle: 2010 Ford Fusion Hybrid VIN: 3FADP0L34AR144757 Seatbelt Positions: Five

149

PERFORMANCE STATISTICS WEIghTS  

NLE Websites -- All DOE Office Websites (Extended Search)

365 lbs 365 lbs Delivered Curb Weight: 4510 lbs Distribution F/R: 57/43 % GVWR: 5520 lbs GAWR F/R: 2865/2865 lbs Payload: 1010 lbs Performance Goal: 400 lbs DIMENSIONS Wheelbase: 107.0 inches Track F/R: 62/61.2 inches Length: 187.2 inches Width: 72.6 inches Height: 66.4 inches Ground Clearance: 7.1 inches Performance Goal: 5.0 inches TIRES Tire Mfg: Goodyear Tire Model: Eagle RS-A Tire Size: P215/55R18 Tire Pressure F/R: 30/30 psi Spare Installed: Yes ENgINE Model: 3MZ-FE Output: 208 hp @ 5600 rpm Configuration: DOHC V6 Displacement: 3.3 L Fuel Tank Capacity: 17.2 Gallons Fuel Type: Unleaded Gasoline © 2010 Electric Transportation Applications All Rights Reserved VEhICLE FEATuRES Base Vehicle: 2006 Lexus RX 400h VIN: JTJHW31U160002575 Seatbelt Positions: Five

150

SStolyarASM2008.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

for Microbial Stress and Survival (VIMSS) supported by the U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Genomics:GTL Program through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U. S. Department of Energy. ACKNOWLEDGEMENT 2 2291 2292 2293 2290 2289 DVU2286 2287 Tn 0430 0429 0432 0431 Kan R 0433 Figure 1. RESULTS Growth of D. vulgaris echA mutant in syntrophic association with M. maripaludis without sulfate. Figure 4. Figure 5. * Although growth rates of both mutants on sulfate with pyruvate or lactate were comparable to the wild type, hydrogen evolution was much greater for the echA mutant during growth in batch culture with lactate and sulfate (Figure 2A, B and D).

151

ASM2008-Bender.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

and Survival (VIMSS) supported by the U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Genomics:GTL Program through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U. S. Department of Energy. ACKNOWLEDGEMENT 2 CONCLUSIONS SUMMARY RESULTS ABSTRACT MATERIALS AND METHODS Cloning and Sequencing of Small RNAs 1: cDNA 2: No template 3: No reverse transcriptrase 4: 100 bp ladder 1-3: library clones 4: plasmid only 5: 100 bp ladder 6-8: library clones cDNA for library PCR verification of sRNA clone inserts 9: plasmid only 10: neg. control 11: primer positive control 12: 100 bp ladder 1 2 3 4 1 2 3 4 5 6 7 8 9 10 11 12 DVU0678 message: 34 AA hypothetical protein

152

ShutkinESPP2_PM_PhilCHI0608.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientific Research Project Management Scientific Research Project Management Amy Shutkin, CPM ashutkin@lbl.gov Ernest Orlando Lawrence Berkeley National Laboratory Physical Biosciences Division http://vimss.lbl.gov ACKNOWLEDGEMENT ESPP2 is part of the Virtual Institute for Microbial Stress and Survival supported by the U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Genomics Program:GTL through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U. S. Department of Energy. 2 Managing Projects and Resources for Effective Project Management June 5-6, 2008 | Philadelphia, PA 2 Scientific Research Project Management * VIMSS is Switzerland * Team Science Approach * Communications * Milestones & Budgets * Dashboards http://vimss.lbl.gov

153

Categorical Exclusion Determination Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

26) Gayle Technologies, Inc. (GTI) - 26) Gayle Technologies, Inc. (GTI) - State-of-Health by Ultrasonic Battery Monitoring with In-Service Testing Program or Field Office: Advanced Research Projects Agency - Energy LocationCs) CCity/County/State): Nashville, TN; Oklahoma City, OK; Knoxville, TN Proposed Action Description: Funding will support efforts to develop an ultrasonic monitoring system for in-service battery health monitoring. Proposed work will consist of: (1) development and fabrication of the ultrasonic monitoring system and a battery test bed at GTl's facility in Nashville, TN; (2) performing failure mode analysis of battery cells at Oak Ridge National Laboratory's facility in Oak Ridge, TN; and (3) testing the ultrasonic monitoring system using battery cells, modules, and packs at ATC New Technologies' facility in Oklahoma City, OK.

154

BNL | Paul I. Freimuth  

NLE Websites -- All DOE Office Websites (Extended Search)

Paul I. Freimuth Paul I. Freimuth Research Interests One aspect of our research program aims to understand the folding behavior of proteins during overexpression, when molecular chaperone activity may be limiting. Protein overexpression technology has greatly facilitated structural and functional analyses of individual proteins, and it will also be a key technology for large scale characterization of proteomes as planned in the DOE's GTL program, for example. Molecular chaperones promote folding by lowering the free energy barrier to the unfolding of intermediate states. Deficits in chaperone activity therefore can lead to the kinetic trapping of folding intermediates, which eventually may aggregate. Our recent studies suggest that intramolecular electrostatic attractive and repulsive forces may be important factors in determining the

155

BEFORE THE U.S. DEPARTMENT OF ENERGY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hisense USA Corp. Hisense USA Corp. 1 Case Number: 20 10-CE- 12 1 1 (Refrigerators, refrigerator-freezers, and ) freezers) ) ) 1 NOTICE OF PROPOSED CIVIL PENALTY Date issued: September 8,2010 Number of alleged violations: 17 Maximum possible assessment: $986,660 Proposed civil penalty: $124,100 The Office of the General Counsel of the U.S. Department of Energy (DOE) alleges that Hisense USA Corp. (Hisense) violated certain provisions of the Energy Policy and Conservation Act, 42 U.S.C. 5 6201 et seq., 10 C.F.R. Part 430, or both. ~ ~ e c i f i c a l ' l ~ , DOE alleges: 1. Hisense manufactures andlor privately labels a variety of residential refrigerators, refrigerator-freezers, and freezers, including models: GTL12HBXRBS, GTR1 OHAXRWW, GTRl2HBXR*, RD-11 DR1 HA, RD-16WRlHA, RS-

156

Poster  

NLE Websites -- All DOE Office Websites (Extended Search)

(d) Contaminant degradation genes (d) Contaminant degradation genes (c) Carbon fixation genes SUMMARY ABSTRACT RESULTS BACKGROUND ESPP2 (MDCASE) is part of the Virtual Institute for Microbial Stress and Survival (VIMSS) supported by the U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Genomics:GTL Program through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U. S. Department of Energy. ACKNOWLEDGEMENT Functional Gene Array-Based Analysis of Microbial Community Structure in a Gradient of Nitrate and Heavy Metal Contaminated Groundwaters P. J. Waldron 1,2 , L. Y. Wu 1,2 , J. D. Van Nostrand 1,2 , D. B. Watson 2,3 , Z. He 1,2 , C. W. Schadt 2,3 , T. C. Hazen 2,4 , P. M. Jardine 2,3 , J. Zhou 1,2 1 University of Oklahoma, Norman, OK;

157

 

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small-Scale Biorefineries Project Overview Small-Scale Biorefineries Project Overview July, 14 2008 Final Two Selections for up to $40 million - Announced July 14, 2008 for up to $40 million Applicant Total Cost DOE Share Cost Share Annual Production capacity Project Location Feedstock Technology Verenium $91,347,330 TBD* TBD* 1,500,000 Jennings, LA bagasse, energy crops, ag waste, & wood residues Biochemical Flambeau LLC $84,000,000 $30,000,000 64.4% 6,000,000 Park Falls, WI Forest residues GTL (FT) *Based on negotiations. Round two selections - Announced April 18, 2008 for up to $114 million ICM $86,030,900 $30,000,000 65% 1,500,000 St. Joseph, MO Switchgrass, Forage sorghum, stover Biochemical Lignol Innovations $88,015,481 $30,000,000 66% 2,500,000 Commerce City, CO Woody Biomass -

158

Gas Test Loop Facilities Alternatives Assessment Report Rev 1  

SciTech Connect

An important task in the Gas Test Loop (GTL) conceptual design was to determine the best facility to serve as host for this apparatus, which will allow fast-flux neutron testing in an existing nuclear facility. A survey was undertaken of domestic and foreign nuclear reactors and accelerator facilities to arrive at that determination. Two major research reactors in the U.S. were considered in detail, the Advanced Test Reactor (ATR) and the High Flux Isotope Reactor (HFIR), each with sufficient power to attain the required neutron fluxes. HFIR routinely operates near its design power limit of 100 MW. ATR has traditionally operated at less than half its design power limit of 250 MW. Both of these reactors should be available for at least the next 30 years. The other major U.S. research reactor, the Missouri University Research Reactor, does not have sufficient power to reach the required neutron flux nor do the smaller research reactors. Of the foreign reactors investigated, BOR-60 is perhaps the most attractive. Monju and BN 600 are power reactors for their respective electrical grids. Although the Joyo reactor is vigorously campaigning for customers, local laws regarding transport of radioactive material mean it would be very difficult to retrieve test articles from either Japanese reactor for post irradiation examination. PHENIX is scheduled to close in 2008 and is fully booked until then. FBTR is limited to domestic (Indian) users only. Data quality is often suspect in Russia. The only accelerator seriously considered was the Fuel and Material Test Station (FMTS) currently proposed for operation at Los Alamos National Laboratory. The neutron spectrum in FMTS is similar to that found in a fast reactor, but it has a pronounced high-energy tail that is atypical of fast fission reactor spectra. First irradiation in the FMTS is being contemplated for 2008. Detailed review of these facilities resulted in the recommendation that the ATR would be the best host for the GTL.

William J. Skerjanc; William F. Skerjanc

2005-07-01T23:59:59.000Z

159

Microsoft PowerPoint - Proceedings Cover Sheets  

NLE Websites -- All DOE Office Websites (Extended Search)

RECOVERY OF LIQUID CO2 AND PARTICULATES FROM BIOMASS-FIRED RECOVERY OF LIQUID CO2 AND PARTICULATES FROM BIOMASS-FIRED POWER PLANTS USING PRESSURIZED COMBUSTION Alex G. Fassbender, P.E. Robert S. Henry ThermoEnergy Power Systems, LLC. www.thermoenergy.com Thomas E. Carnahan, Ph.D. University of Nevada, Reno www.unr.edu SUMMARY The novel i pressurized oxy-fuel or air-blown approach known as the ThermoEnergy Integrated Power System (TIPS) is a carbon-capture capable concept designed to produce electricity and steam from high-moisture fuels with near zero air emission of priority and toxic pollutants. The increased system pressure enables use of gas-to-liquid steam-hydroscrubbing to collect and remove pollutants and recover latent heat from water entrained or produced in the combustion process. The pressurized oxy-fuel approach also enables CO

160

Air Liquide Group | Open Energy Information  

Open Energy Info (EERE)

Group Group Jump to: navigation, search Name Air Liquide Group Place Paris, France Zip 75321 Sector Hydro, Hydrogen Product Paris-based manufacturer of industrial and medical gases. The company is working on hydrogen production and gas-to-liquid technology. Coordinates 48.85693°, 2.3412° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.85693,"lon":2.3412,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "gtl gas-to-liquids gvwr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

International Energy Outlook 2000 - Contacts  

Gasoline and Diesel Fuel Update (EIA)

The International Energy Outlook is prepared by the Energy Information Administration (EIA). General questions concerning the contents of the report should be referred to Mary J. Hutzler (202/586-2222), Director, Office of Integrated Analysis and Forecasting. Specific questions about the report should be referred to Linda E. Doman (202/586-1041) or the following analysts: Report Contact World Energy Consumption Linda E. Doman - 202/586-1041 linda.doman@eia.doe.gov World Oil Markets G. Daniel Butler - 202/586-9503 gbutler@eia.doe.gov Bruce Bawks - 202/586-6579 bruce.bawks@eia.doe.gov Natural Gas Phyllis Martin - 202/586-9592 phyllis.martin@eia.doe.gov Gas-to-Liquids Technology William Trapmann - 202/586-6408 william.trapmann@eia.doe.gov Coal Michael Mellish - 202/586-2136

162

Microsoft Word - 201301_Fuels_News_Search.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

"Sasol advances gas-to-liquids plan in Louisiana" By Staff and Wire Reporters, TRIBLIVE/Business, December 4, 2012 South African chemical and energy company Sasol Ltd. said it could spend up to $21 billion to build a complex in Louisiana to turn natural gas into chemicals, diesel and other fuels. Part of that could be a $5 billion to $7 billion chemical plant, similar to the type of plant a Shell subsidiary has discussed building in Western Pennsylvania. The market for these plants, known as ethane crackers, is becoming increasingly crowded because of the supply of cheap natural gas from shale. Some experts have estimated that only half of the 10 potential projects may make it, with major competition for supplies, customers and even construction support. About half have committed

163

Investigation of Effects of Coal and Biomass Contaminants on the Performance of Water-Gas-Shift and Fischer-Tropsch Catalysts  

NLE Websites -- All DOE Office Websites (Extended Search)

Effects of Coal Effects of Coal and Biomass Contaminants on the Performance of Water-Gas-Shift and Fischer-Tropsch Catalysts Background Coal-Biomass-to-Liquids (CBTL) processes gasify coal, biomass, and mixtures of coal/ biomass to produce synthesis gas (syngas) that can be converted to liquid hydrocarbon fuels. Positive benefits of these processes include the use of feedstocks from domestic sources and lower greenhouse gas production than can be achieved from using conventional petroleum-based fuels. However, syngas generated by coal and biomass co-gasification contains a myriad of trace contaminants that may poison the water- gas-shift (WGS) and Fischer-Tropsch (FT) catalysts used in the gas-to-liquid processes. While the effect of coal contaminants on FT processes is well studied, more research

164

PNNL: Biological Sciences: Fundamental and Computational Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

We perform Biological Systems Science research using prediction and We perform Biological Systems Science research using prediction and experimentation to understand the design of biological systems, translating the genome to functional capabilities for applications to energy, environment, and health. Microbial community research at PNNL is focusing on environment and energy processes, and rational design and development of new bioprocesses, while our health-related research is centering on how multicellular systems, tissues and organisms respond to disease and exposure to the environment. Dayle Smith PNNL and Collaborators Receive ARPA-E Award for Gas-to-Liquid Fuel Biocatalysis Congratulations to Pacific Northwest National Laboratory computational scientist Dr. Dayle Smith, who is part of a team that recently received a

165

RFC Sand Creek Development LLC | Open Energy Information  

Open Energy Info (EERE)

RFC Sand Creek Development LLC RFC Sand Creek Development LLC Jump to: navigation, search Name RFC Sand Creek Development LLC Place Aurora, Colorado Zip 80014 Product Subsidiary of Republic Financial Corporation set up to invest in Sand Creek Energy LLC, a planned gas to liquid facility. Coordinates 39.325162°, -79.54975° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.325162,"lon":-79.54975,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

166

Oxygenated fuels for clean heavy-duty diesel engines  

Science Journals Connector (OSTI)

For diesel engines, changing the fuel composition is an alternative route towards achieving lower emission levels. The potential of oxygenated fuels to significantly reduce particulate matter emissions has already been demonstrated earlier. In this study, this research has been extrapolated towards lower emission levels. Exhaust gas recirculation (EGR) was applied to a modern EURO-3-type HD diesel engine. Tests were done at different engine working points, with EGR-levels and start of fuel delivery timings set to give NOx emissions between 3.5 and 2.0 g/kWh with regular diesel fuel. Fourteen blends of a low-sulphur diesel fuel respectively of a gas-to-liquid synthetic diesel fuel with different oxygenates were tested. The corresponding fuel matrix covers a range of fuel oxygen mass fractions up to 15%. Results are presented and the impact of fuel oxygen mass fraction and Cetane Number are analysed and compared with results from previous research.

P.J.M. Frijters; R.S.G. Baert

2006-01-01T23:59:59.000Z

167

Stora Enso, North America  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stora Enso North America Stora Enso North America Corporate Headquarters: Wisconsin Rapids, WI Global Headquarters: Helsinki, Finland Proposed Facility Location: Wisconsin Rapids, WI Description: The project will construct and operate a thermal gasification and gas-to-liquids plant at Wisconsin Rapids Mill and produce liquid biofuels that will ultimately be converted into renewable diesel. CEO or Equivalent: Mark A. Suwyn, Chairman and CEO Participants: TRI; Syntroleum; DOE's Oak Ridge National Laboratory; and the Alabama Center for Paper and Bioresource Engineering at Auburn University Production: * 370 barrels per day (approximately under 5,500,000 gallons per year) of Fischer-Tropsch liquids Technology and Feedstocks: * 497 bone dry tons per day of woody biomass comprised of mill residues and

168

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

9 9 U.S. Energy Information Administration | International Energy Outlook 2013 Projections of liquid fuels and other petroleum production in five cases Table G3.World nonpetroleum liquids production by region and country, Reference case, 2010-2040 (million barrels per day) Region/country History (estimates) Projections Average annual percent change, 2010-2040 2010 2011 2015 2020 2025 2030 2035 2040 OPEC a 0.0 0.1 0.2 0.2 0.3 0.3 0.3 0.3 12.5 Biofuels b 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Coal-to-liquids 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Gas-to-liquids 0.0 0.1 0.2 0.2 0.3 0.3 0.3 0.3 12.5 Non-OPEC 1.6 1.6 1.9 2.3 2.8 3.3 3.8 4.3 3.5 OECD 0.8 0.9 1.0 1.2 1.2 1.3 1.4 1.7 2.4 Biofuels b 0.8 0.9 1.0 1.1 1.1 1.1 1.2 1.4 1.8 Coal-to-liquids 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 15.0 Gas-to-liquids

169

Council on East Asian Libraries Statistics 1999-2000 For North American Institutions  

E-Print Network (OSTI)

1246 N 173 38 2094 5 507 567 m o a 8 2 6425 5 tt t- c 0o T r 0o 5 .5 C v o ui CH N 0 2 081 681 gtl 2000 0CM 1587 KT 448 5 0243 6243 6.243 r0 3599 cnOT cn t 12375 i i r 147 14.7 zw i w am p 1733 O T rT w co yco CTT- CO2036 PN D sot so o 00 086 626 3494... 02 n LL0 30 0 oiUJ m o m K O R eo r EH 0 N AkL L 98 0o 493 28 24 22 24 421 9 L gt0 78 1 governm ents D N U M BER m5 cjune39 Z JPN Z0-3 ill zia U IA 1477 69 33 123 081 w olm 1676 57 858 32 32 4-0 TO TA L 0 CO N japanese Z 3 i fe i 393 g 0 co m cw m hl...

Doll, Vickie; Simpson, Fung-yin Kuo

2001-02-01T23:59:59.000Z

170

Proceedings of the fuels technology contractors review meeting  

SciTech Connect

The Fuels Technology Contractors Review Meeting was held November 16-18, 1993, at the Morgantown Energy Technology Center (METC) in Morgantown, West Virginia. This meeting was sponsored and hosted by METC, the Office of Fossil Energy, U.S. Department of Energy (DOE). METC periodically provides an opportunity to bring together all of the R&D participants in a DOE-sponsored contractors review meeting to present key results of their research and to provide technology transfer to the active research community and to the interested public. This meeting was previously called the Natural Gas Technology Contractors Review Meeting. This year it was expanded to include DOE-sponsored research on oil shale and tar sands and so was retitled the Fuels Technology Contractors Review Meeting. Current research activities include efforts in both natural gas and liquid fuels. The natural gas portion of the meeting included discussions of results summarizing work being conducted in fracture systems, both natural and induced; drilling, completion, and stimulation research; resource characterization; delivery and storage; gas to liquids research; and environmental issues. The meeting also included project and technology summaries on research in oil shale, tar sands, and mild coal gasification, and summaries of work in natural-gas fuel cells and natural-gas turbines. The format included oral and poster session presentations. Individual papers have been processed separately for inclusion in the Energy Science and Technology database.

Malone, R.D. [ed.

1993-11-01T23:59:59.000Z

171

On-Road Use of Fischer-Tropsch Diesel Blends  

SciTech Connect

Alternative compression ignition engine fuels are of interest both to reduce emissions and to reduce U.S. petroleum fuel demand. A Malaysian Fischer-Tropsch gas-to-liquid fuel was compared with California No.2 diesel by characterizing emissions from over the road Class 8 tractors with Caterpillar 3176 engines, using a chassis dynamometer and full scale dilution tunnel. The 5-Mile route was employed as the test schedule, with a test weight of 42,000 lb. Levels of oxides of nitrogen (NO{sub x}) were reduced by an average of 12% and particulate matter (PM) by 25% for the Fischer-Tropsch fuel over the California diesel fuel. Another distillate fuel produced catalytically from Fischer-Tropsch products originally derived from natural gas by Mossgas was also compared with 49-state No.2 diesel by characterizing emissions from Detroit Diesel 6V-92 powered transit buses, three of them equipped with catalytic converters and rebuilt engines, and three without. The CBD cycle was employed as the test schedule, with a test weight of 33,050 lb. For those buses with catalytic converters and rebuilt engines, NO x was reduced by 8% and PM was reduced by 31% on average, while for those buses without, NO x was reduced by 5% and PM was reduced by 20% on average. It is concluded that advanced compression ignition fuels from non-petroleum sources can offer environmental advantages in typical line haul and city transit applications.

Nigel Clark; Mridul Gautam; Donald Lyons; Chris Atkinson; Wenwei Xie; Paul Norton; Keith Vertin; Stephen Goguen; James Eberhardt

1999-04-26T23:59:59.000Z

172

Ab initio calculation of the electronic absorption spectrum of liquid water  

SciTech Connect

The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.

Martiniano, Hugo F. M. C.; Galamba, Nuno [Grupo de Física Matemática da Universidade de Lisboa, Av. Professor Gama Pinto 2, 1649-003 Lisboa (Portugal)] [Grupo de Física Matemática da Universidade de Lisboa, Av. Professor Gama Pinto 2, 1649-003 Lisboa (Portugal); Cabral, Benedito J. Costa, E-mail: ben@cii.fc.ul.pt [Grupo de Física Matemática da Universidade de Lisboa, Av. Professor Gama Pinto 2, 1649-003 Lisboa (Portugal) [Grupo de Física Matemática da Universidade de Lisboa, Av. Professor Gama Pinto 2, 1649-003 Lisboa (Portugal); Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa (Portugal); Instituto de Física da Universidade de São Paulo, CP 66318, 05314-970 São Paulo, SP (Brazil)

2014-04-28T23:59:59.000Z

173

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect

Conversion of natural gas to liquid fuels and chemicals is a major goal for the Nation as it enters the 21st Century. Technically robust and economically viable processes are needed to capture the value of the vast reserves of natural gas on Alaska's North Slope, and wean the Nation from dependence on foreign petroleum sources. Technologies that are emerging to fulfill this need are all based syngas as an intermediate. Syngas (a mixture of hydrogen and carbon monoxide) is a fundamental building block from which chemicals and fuels can be derived. Lower cost syngas translates directly into more cost-competitive fuels and chemicals. The currently practiced commercial technology for making syngas is either steam methane reforming (SMR) or a two-step process involving cryogenic oxygen separation followed by natural gas partial oxidation (POX). These high-energy, capital-intensive processes do not always produce syngas at a cost that makes its derivatives competitive with current petroleum-based fuels and chemicals.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2002-01-01T23:59:59.000Z

174

ULTRA-CLEAN FISCHER-TROPSCH FUELS PRODUCTION AND DEMONSTRATION PROJECT  

SciTech Connect

The Syntroleum plant is mechanically complete and currently undergoing start-up. The fuel production and demonstration plan is near completion. The study on the impact of small footprint plant (SFP) fuel on engine performance is about half-completed. Cold start testing has been completed. Preparations have been completed for testing the fuel in diesel electric generators in Alaska. Preparations are in progress for testing the fuel in bus fleets at Denali National Park and the Washington Metropolitan Transit Authority. The experiments and analyses conducted during this project show that Fischer-Tropsch (FT) gas-to-liquid diesel fuel can easily be used in a diesel engine with little to no modifications. Additionally, based on the results and discussion presented, further improvements in performance and emissions can be realized by configuring the engine to take advantage of FT diesel fuel's properties. The FT fuel also shows excellent cold start properties and enabled the engine tested to start at more the ten degrees than traditional fuels would allow. This plant produced through this project will produce large amounts of FT fuel. This will allow the fuel to be tested extensively, in current, prototype, and advanced diesel engines. The fuel may also contribute to the nation's energy security. The military has expressed interest in testing the fuel in aircraft and ground vehicles.

Steve Bergin

2003-10-17T23:59:59.000Z

175

Assessment of Gasification-Based Biorefining at Kraft Pulp and Paper Mills in the United States, Part A: Background and Assumptions  

SciTech Connect

Commercialization of black liquor and biomass gasification technologies is anticipated in the 2010-2015 time frame, and synthesis gas from gasifiers can be converted into liquid fuels using catalytic synthesis technologies that are already commercially established in the gas-to-liquids or coal-to-liquids industries. This set of two papers describes key results from a major assessment of the prospective energy, environmental, and financial performance of commercial gasification-based biorefineries integrated with kraft pulp and paper mills [1]. Seven detailed biorefinery designs were developed for a reference mill in the southeastern United States, together with the associated mass/energy balances, air emissions estimates, and capital investment requirements. The biorefineries provide chemical recovery services and co-produce process steam for the mill, some electricity, and one of three liquid fuels: a Fischer-Tropsch synthetic crude oil (which could be refined to vehicle fuels at an existing petroleum refinery), dimethyl ether (a diesel engine fuel or propane substitute), or an ethanol-rich mixed-alcohol product. This paper describes the key assumptions that underlie the biorefinery designs. Part B will present analytical results.

Larson, E. D.; Consonni, S.; Katofsky, R. E.; Iisa, K.; Frederick, W. J., Jr.

2008-11-01T23:59:59.000Z

176

ANL technical support program for DOE environmental restoration and waste management. Annual report, October 1993--September 1994  

SciTech Connect

A program was established for DOE Environmental Restoration and Waste Management (EM) to evaluate factors that are anticipated to affect waste glass reaction during repository disposal, especially in an unsaturated environment typical of what may be expected for the proposed Yucca Mountain repository site. This report covers progress in FY 1994 on the following tasks: (1) Critical Reviews of important parameters that affect the reactivity of glass in an unsaturated environment are being prepared. (2) A series of tests is ongoing to evaluate the reactivity of fully radioactive glasses in a high-level waste repository environment and compare it to the reactivity of synthetic, nonradioactive glasses of similar composition. (3) The effect of radiation upon the durability of waste glasses at a high SA/V ratio and a high gas-to-liquid volume ratio has been assessed. (4) A series of tests is being performed to compare the extent of reaction of nuclear waste glasses at various SA/V ratios. Such differences in the SA/V ratio may significantly affect glass durability. At long-term periods and high SA/V ratios, acceleration in glass reaction has been observed. (5) Tests were initiated on West Valley Reference 6 (WV6) glass and on the Environmental Assessment (EA) glass. (6) Tests with the actinide-doped West Valley glass ATM-10 have been in progress for over seven years as a part of work for the Yucca Mountain Site Characterization Project (YMP). (7) Analytical electron microscopy (AEM) is being used to assess the glass/water reaction pathway by identifying intermediate phases that appear on the reacting glass. Also, colloids from the leach solutions are being studied using AEM.

Bates, J.K.; Brown, N.R.; Buck, E.C. [and others

1995-06-01T23:59:59.000Z

177

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect

Conversion of natural gas to liquid fuels and chemicals is a major goal for the Nation as it enters the 21st Century. Technically robust and economically viable processes are needed to capture the value of the vast reserves of natural gas on Alaska's North Slope, and wean the Nation from dependence on foreign petroleum sources. Technologies that are emerging to fulfill this need are all based syngas as an intermediate. Syngas (a mixture of hydrogen and carbon monoxide) is a fundamental building block from which chemicals and fuels can be derived. Lower cost syngas translates directly into more cost-competitive fuels and chemicals. The currently practiced commercial technology for making syngas is either steam methane reforming (SMR) or a two-step process involving cryogenic oxygen separation followed by natural gas partial oxidation (POX). These high-energy, capital-intensive processes do not always produce syngas at a cost that makes its derivatives competitive with current petroleum-based fuels and chemicals. This project has the following 6 main tasks: Task 1--Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. Task 2--Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. Task 3--Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. Task 4--Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. Task 5--Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. Task 6--Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2001-12-01T23:59:59.000Z

178

Slurry fired heater cold-flow modelling  

SciTech Connect

This report summarizes the experimental and theoretical work leading to the scale-up of the SRC-I Demonstration Plant slurry fired heater. The scale-up involved a theoretical model using empirical relations in the derivation, and employed variables such as flow conditions, liquid viscosity, and slug frequency. Such variables have been shown to affect the heat transfer characteristics ofthe system. The model assumes that, if all other variables remain constant, the heat transfer coefficient can be scaled up proportional to D/sup -2/3/ (D = inside diameter of the fired heater tube). All flow conditions, liquid viscosities, and pipe inclinations relevant to the demonstration plant have indicated a slug flow regime in the slurry fired heater. The annular and stratified flow regimes should be avoided to minimize the potential for excessive pipe erosion and to decrease temperature gradients along the pipe cross section leading to coking and thermal stresses, respectively. Cold-flow studies in 3- and 6.75-in.-inside-diameter (ID) pipes were conducted to determine the effect of scale-up on flow regime, slug frequency, and slug dimensions. The developed model assumes that conduction heat transfer occurs through the liquid film surrounding the gas slug and laminar convective heat transfer to the liquid slug. A weighted average of these two heat transfer mechanisms gives a value for the average pipe heat transfer coefficient. The cold-flow work showed a decrease in the observed slug frequency between the 3- and 6.75-ID pipes. Data on the ratio of gas to liquid slug length in the 6.75-in. pipe are not yet complete, but are expected to yield generally lower values than those obtained in the 3-in. pipe; this will probably affect the scale-up to demonstration plant conditions. 5 references, 15 figures, 7 tables.

Moujaes, S.F.

1983-07-01T23:59:59.000Z

179

Energy technology assessments for energy security -- Working Group report  

SciTech Connect

In the first phase of the evaluation process the group identified technology areas that are clearly important for reducing US vulnerability to oil supply disruptions. The important technologies were then evaluated against the following specific criteria: Additions to world oil and gas reserves outside the Middle East; increase in efficiency in the oil consuming sectors; displacement of petroleum-based fuels; reduction in demand for oil-fueled transportation; increase in the ability to switch quickly away from petroleum based fuels; increases in domestic and international oil stocks; reduction in world oil demand; and additions to domestic, non-petroleum electrical generating capacity (important in the ultimate term). The technology areas deemed by the members of the working group to be most important are: (1) In the near term, technologies related to improved recovery of natural gas, the conversion of natural gas to liquids, advanced liquefaction of coal, the development of alternatively fueled vehicles, automobiles and light truck improvements to increase efficiency, and vehicles that operate on alternative fuels. (2) In the long term, these technologies, as well as those related to hydrogen production, storage and utilization, biomass derived fuels, electric and hybrid vehicles, building heating and cooling using solar energy, more efficient appliances, improved HVAC, and advanced building materials and envelopes were also judged to be most important. (3) In the ultimate term (>2030) other technologies have the possibility to join with these to increase energy security. These are improved oil and gas exploration and extraction, heavy oil and hydrocarbon conversion, gas recovery from unconventional sources, advanced fission reactors and fuel cycles, solar generation of electricity, and fusion energy. An increase in US electrical generating capacity is also thought to bear directly on energy security in this time-frame.

Lamont, A.D.; Schock, R.N.

1993-03-01T23:59:59.000Z

180

Enhancing mass transfer and ethanol production in syngas fermentation of Clostridium carboxidivorans P7 through a monolithic biofilm reactor  

Science Journals Connector (OSTI)

Abstract Syngas fermentation is a promising process for producing fuels and chemicals from lignocellulosic biomass. Currently syngas fermentation faces several engineering challenges, with gas-to-liquid mass transfer limitation representing the major bottleneck. The aim of this work is to evaluate the performance of a monolithic biofilm reactor (MBR) as a novel reactor configuration for syngas fermentation. The volumetric mass transfer coefficient (kLa) of the MBR was evaluated in abiotic conditions within a wide range of gas flow rates (i.e., gas velocity in monolithic channels) and liquid flow rates (i.e., liquid velocity in the channels). The kLa values of the MBR were higher than those of a controlled bubble column reactor (BCR) in certain conditions, due to the slug flow pattern in the monolithic channels. A continuous syngas fermentation using Clostridium carboxidivorans P7 was conducted in the MBR system under varying operational conditions, with the variables including syngas flow rate, liquid recirculation between the monolithic column and reservoir, and dilution rate. It was found that the syngas fermentation performance – measured by such parameters as syngas utilization efficiency, ethanol concentration and productivity, and ratio of ethanol to acetic acid – depended not only on the mass transfer efficiency but also on the biofouling or abrading of the biofilm attached on the monolithic channel wall. At a condition of 300 mL/min of syngas flow rate, 500 mL/min of liquid flow rate, and 0.48 day?1 of dilution rate, the MBR produced much higher syngas (CO/H2) utilization efficiency and much greater metabolite (ethanol/acetic acid) productivity than what was obtained using a traditional bubble column reactor. The study demonstrates the great potential of MBR as a promising reactor configuration for syngas fermentation with high mass transfer efficiency, low energy consumption, and high metabolite productivity.

Yanwen Shen; Robert Brown; Zhiyou Wen

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gtl gas-to-liquids gvwr" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Effect of Channel Configurations for Tritium Transfer in Printed Circuit Heat Exchangers  

SciTech Connect

The Next Generation Nuclear Plant (NGNP), a very High temperature Gas-Cooled Reactor (VHTR) concept, will provide the first demonstration of a closed-loop Brayton cycle at a commercial scale of a few hundred megawatts electric and hydrogen production. The power conversion system (PCS) for the NGNP will take advantage of the significantly higher reactor outlet temperatures of the VHTR to provide higher efficiencies than can be achieved in the current generation of light water reactors. Besides demonstrating a system design that can be used directly for subsequent commercial deployment, the NGNP will demonstrate key technology elements that can be used in subsequent advanced power conversion systems for other Generation IV reactors. In anticipation of the design, development and procurement of an advanced power conversion system for the NGNP, the system integration of the NGNP and hydrogen plant was initiated to identify the important design and technology options that must be considered in evaluating the performance of the proposed NGNP. In the VHTR system, an intermediate heat exchanger (IHX), which transfers heat from the reactor core to the electricity or hydrogen production system is one key component, and its effectiveness is directly related to the system overall efficiency. In the VHTRs, the gas fluids used for coolant generally have poor heat transfer capability, so it requires very large surface area for a given condition. For this reason, a compact heat exchanger (CHE), which is widely used in industry especially for gasto-gas or gas-to-liquid heat exchange is considered as a potential candidate for an IHX replacing the classical shell and tube type heat exchanger. A compact heat exchanger is arbitrary referred to be a heat exchanger having a surface area density greater than 700 m2/m3. The compactness is usually achieved by fins and micro-channels, and leads to the enormous heat transfer enhancement and size reduction. The surface area density is the total heat transfer area divided by the volume of the heat exchanger. In the case of PCHE units, the heat transfer surface area density may be as high as 2,500 m2/m3. This high compactness implies an appreciable reduction in material reducing cost. In this study, heat transfer and tritium penetration analyses have been performed for two different channel configurations of the PCHE; (1) standard and (2) off-set. One of the goals of this study was to determine whether offsetting the hot and cold streams would significantly reduce the tritium flux, and whether or not it would affect the heat transfer significantly.

Chang Oh; Eung Kim; Robert Shrake; Mike Patterson

2009-05-01T23:59:59.000Z

182

Real-Time Gene Expression Profiling of Live Shewanella Oneidensis Cells  

SciTech Connect

The overall objective of this proposal is to make real-time observations of gene expression in live Shewanella oneidensis cells with high sensitivity and high throughput. Gene expression, a central process to all life, is stochastic because most genes often exist in one or two copies per cell. Although the central dogma of molecular biology has been proven beyond doubt, due to insufficient sensitivity, stochastic protein production has not been visualized in real time in an individual cell at the single-molecule level. We report the first direct observation of single protein molecules as they are generated, one at a time in a single live E. coli cell, yielding quantitative information about gene expression [Science 2006; 311: 1600-1603]. We demonstrated a general strategy for live-cell single-molecule measurements: detection by localization. It is difficult to detect single fluorescence protein molecules inside cytoplasm - their fluorescence is spread by fast diffusion to the entire cell and overwhelmed by the strong autofluorescence. We achieved single-molecule sensitivity by immobilizing the fluorescence protein on the cell membrane, where the diffusion is much slowed. We learned that under the repressed condition protein molecules are produced in bursts, with each burst originating from a stochastically-transcribed single messenger RNA molecule, and that protein copy numbers in the bursts follow a geometric distribution. We also simultaneously published a paper reporting a different method using ?-glactosidase as a reporter [Nature 440, 358 (2006)]. Many important proteins are expressed at low levels, inaccessible by previous proteomic techniques. Both papers allowed quantification of protein expression with unprecedented sensitivity and received overwhelming acclaim from the scientific community. The Nature paper has been identified as one of the most-cited papers in the past year [http://esi-topics.com/]. We have also an analytical framework describing the steady-state distribution of protein concentration in live cells, considering that protein production occurs in random bursts with an exponentially distributed number of molecules. This model allows for the extraction of kinetic parameters of gene expression from steady-state distributions of protein concentration in a cell population, which are available from single cell data obtained by fluorescence microscopy. [Phys. Rev. Lett. 97, 168302 (2006)]. A major objective in the Genome to Life (GtL) program is to monitor and understand the gene expression profile of a complete bacterial genome. We developed genetic and imaging methods for sensitive protein expression profiling in individual S. oneidensis cell. We have made good progress in constructing YFP-library with several hundred chromosomal fusion proteins and studied protein expression profiling in living Shewanella oneidensis cells. Fluorescence microscopy revealed the average abundance of specific proteins, as well as their noise in gene expression level across a population. We also explored ways to adapt our fluorescence measurement for other growth conditions, such as anaerobic growth.

Xiaoliang Sunney Xie

2009-03-30T23:59:59.000Z

183

Partial Oxidation Gas Turbine for Power and Hydrogen Co-Production from Coal-Derived Fuel in Industrial Applications  

SciTech Connect

The report presents a feasibility study of a new type of gas turbine. A partial oxidation gas turbine (POGT) shows potential for really high efficiency power generation and ultra low emissions. There are two main features that distinguish a POGT from a conventional gas turbine. These are associated with the design arrangement and the thermodynamic processes used in operation. A primary design difference of the POGT is utilization of a non?catalytic partial oxidation reactor (POR) in place of a conventional combustor. Another important distinction is that a much smaller compressor is required, one that typically supplies less than half of the air flow required in a conventional gas turbine. From an operational and thermodynamic point of view a key distinguishing feature is that the working fluid, fuel gas provided by the OR, has a much higher specific heat than lean combustion products and more energy per unit mass of fluid can be extracted by the POGT expander than in the conventional systems. The POGT exhaust stream contains unreacted fuel that can be combusted in different bottoming ycle or used as syngas for hydrogen or other chemicals production. POGT studies include feasibility design for conversion a conventional turbine to POGT duty, and system analyses of POGT based units for production of power solely, and combined production of power and yngas/hydrogen for different applications. Retrofit design study was completed for three engines, SGT 800, SGT 400, and SGT 100, and includes: replacing the combustor with the POR, compressor downsizing for about 50% design flow rate, generator replacement with 60 90% ower output increase, and overall unit integration, and extensive testing. POGT performances for four turbines with power output up to 350 MW in POGT mode were calculated. With a POGT as the topping cycle for power generation systems, the power output from the POGT ould be increased up to 90% compared to conventional engine keeping hot section temperatures, pressures, and volumetric flows practically identical. In POGT mode, the turbine specific power (turbine net power per lb mass flow from expander exhaust) is twice the value of the onventional turbine. POGT based IGCC plant conceptual design was developed and major components have been identified. Fuel flexible fluid bed gasifier, and novel POGT unit are the key components of the 100 MW IGCC plant for co producing electricity, hydrogen and/or yngas. Plant performances were calculated for bituminous coal and oxygen blown versions. Various POGT based, natural gas fueled systems for production of electricity only, coproduction of electricity and hydrogen, and co production of electricity and syngas for gas to liquid and hemical processes were developed and evaluated. Performance calculations for several versions of these systems were conducted. 64.6 % LHV efficiency for fuel to electricity in combined cycle was achieved. Such a high efficiency arise from using of syngas from POGT exhaust s a fuel that can provide required temperature level for superheated steam generation in HRSG, as well as combustion air preheating. Studies of POGT materials and combustion instabilities in POR were conducted and results reported. Preliminary market assessment was performed, and recommendations for POGT systems applications in oil industry were defined. POGT technology is ready to proceed to the engineering prototype stage, which is recommended.

Joseph Rabovitser

2009-06-30T23:59:59.000Z