Powered by Deep Web Technologies
Note: This page contains sample records for the topic "gtcc low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Greater-than-Class C Low-Level Radioactive Waste (GTCC LLW) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Greater-than-Class C Low-Level Radioactive Waste (GTCC LLW) Greater-than-Class C Low-Level Radioactive Waste (GTCC LLW) A transuranic (TRU) waste shipment makes its way to the Waste Isolation Pilot Plant in Carlsbad, N.M. A transuranic (TRU) waste shipment makes its way to the Waste Isolation Pilot Plant in Carlsbad, N.M. On February 17, 2011, DOE issued the Draft Environmental Impact Statement (EIS) for the Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste (LLRW) and GTCC-Like Waste (Draft EIS, DOE/EIS-0375D) for public review and comment. DOE is inviting public comments on this Draft EIS during a 120-day public comment period, from the date of publication of the EIS's Notice of Availability in the Federal Register. During the comment

2

DOE/EIS-0375D: Draft Environmental Impact Statement for the Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste and GTCC-Like Waste (DOE/EIS-0375D)(February 2011)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Impact Statement for the Volume 1: Chapters 1 through 8 February 2011 Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste and GTCC-Like Waste (DOE/EIS-0375-D) T H E U.S. D E P A R T M E N T O F E N E R G Y ENERGY U.S. DEPARTMENT OF On the cover: The photographs on the front cover are, from left to right: glove boxes contaminated with GTCC Other Waste, abandoned Am-241 and Cs-137 gauges and shipping shields, and disused well logging sources being loaded into a 55-gallon drum. Draft GTCC EIS Cover Sheet COVER SHEET Lead Agency: U.S. Department of Energy (DOE) Cooperating Agency: U.S. Environmental Protection Agency (EPA) Title: Draft Environmental Impact Statement for the Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste and GTCC-Like Waste (DOE/EIS-0375-D)

3

DOE/EIS-0375D: Draft Environmental Impact Statement for the Disposal of Greater-Than-Class (GTCC) Low-Level Radioactive Waste and GTCC-Like Waste (February 2011)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste and GTCC-Like Waste (DOE/EIS-0375-D) February 2011 SUMMARY ENERGY U.S. DEPARTMENT OF U.S. D E P A R T M E N T O F E N E R G Y On the cover: The photographs on the front cover are, from left to right: glove boxes contaminated with GTCC Other Waste, abandoned Am-241 and Cs-137 gauges and shipping shields, and disused well logging sources being loaded into a 55-gallon drum. COVER SHEET Lead Agency: U.S. Department of Energy (DOE) Cooperating Agency: U.S. Environmental Protection Agency (EPA) Title: Draft Environmental Impact Statement for the Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste and GTCC-Like Waste (DOE/EIS-0375-D)

4

EIS-0375: Disposal of Greater-than-Class-C Low-Level Radioactive Waste and Department of Energy GTCC-like Waste  

Energy.gov (U.S. Department of Energy (DOE))

This EIS evaluates the reasonably foreseeable environmental impacts associated with the proposed development, operation, and long-term management of a disposal facility or facilities for Greater-Than-Class C (GTCC) low-level radioactive waste and GTCC-like waste. The Environmental Protection Agency is a cooperating agency in the preparation of this EIS.

5

Disposal of Greater-than-Class C Low-Level Radioactive Waste  

NLE Websites -- All DOE Office Websites (Extended Search)

Disposal of Low-Level Radioactive Waste Disposal of Low-Level Radioactive Waste EVS prepared a draft environmental impact statement (EIS) for disposal of greater-than-Class C low-level radioactive waste (GTCC LLRW). The EVS Division prepared a draft environmental impact statement (EIS) for disposal of greater-than-Class C low-level radioactive waste (GTCC LLRW) for the DOE Office of Environmental Management. DOE is now finalizing this EIS and is including a preferred alternative. DOE intends that the final EIS will provide information to support the selection of disposal method(s) and site(s) for GTCC LLRW and GTCC-like waste. In general, GTCC LLRW is not acceptable for near-surface disposal. Typically, the waste form and disposal methods must be different from and more stringent than those specified for Class C LLRW. For GTCC LLRW, the

6

EIS-0375: Disposal of Greater-than-Class-C Low-Level Radioactive Waste and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: Disposal of Greater-than-Class-C Low-Level Radioactive 5: Disposal of Greater-than-Class-C Low-Level Radioactive Waste and Department of Energy GTCC-like Waste EIS-0375: Disposal of Greater-than-Class-C Low-Level Radioactive Waste and Department of Energy GTCC-like Waste EIS-0375: Disposal of Greater-than-Class-C Low-Level Radioactive Waste and Department of Energy GTCC-like Waste Summary This EIS evaluates the reasonably foreseeable environmental impacts associated with the proposed development, operation, and long-term management of a disposal facility or facilities for Greater-Than-Class C (GTCC) low-level radioactive waste and GTCC-like waste. The Environmental Protection Agency is a cooperating agency in the preparation of this EIS. The EIS evaluates potential impacts from the construction and operation of

7

Potential GTCC LLW sealed radiation source recycle initiatives. National Low-Level Waste Management Program  

SciTech Connect

This report suggests 11 actions that have the potential to facilitate the recycling (reuse or radionuclide) of surplus commercial sealed radiation sources that would otherwise be disposed of as greater-than-Class C low-level radioactive waste. The suggestions serve as a basis for further investigation and discussion between the Department of Energy, Nuclear Regulatory Commission, Agreement States, and the commercial sector. Information is also given that describes sealed sources, how they are used, and problems associated with recycling, including legal concerns. To illustrate the nationwide recycling potential, Appendix A gives the estimated quantity and application information for sealed sources that would qualify for disposal in commercial facilities if not recycle. The report recommends that the Department of Energy initiate the organization of a forum to explore the suggested actions and other recycling possibilities.

Fischer, D.

1992-04-01T23:59:59.000Z

8

Potential co-disposal of greater-than-class C low-level radioactive waste with Department of Energy special case waste - greater-than-class C low-level waste management program  

Science Conference Proceedings (OSTI)

This document evaluates the feasibility of co-disposing of greater-than-Class C low-level radioactive waste (GTCC LLW) with U.S. Department of Energy (DOE) special case waste (SCW). This document: (1) Discusses and evaluates key issues concerning co-disposal of GTCC LLW with SCW. This includes examining these issues in terms of regulatory concerns, technical feasibility, and economics; (2) Examines advantages and disadvantages of such co-disposal; and (3) Makes recommendations. Research and analysis of the issues presented in this report indicate that it would be technically and economically feasible to co-dispose of GTCC LLW with DOE SCW. However, a dilemma will likely arise in the current division of regulatory responsibilities between the U.S. Nuclear Regulatory Commission and DOE (i.e., current requirement for disposal of GTCC LLW in a facility licensed by the Nuclear Regulatory Commission). DOE SCW is currently not subject to this licensing requirement.

Allred, W.E.

1994-09-01T23:59:59.000Z

9

Greater-than-Class C low-level radioactive waste transportation regulations and requirements study. National Low-Level Waste Management Program  

SciTech Connect

The purpose of this report is to identify the regulations and requirements for transporting greater-than-Class C (GTCC) low-level radioactive waste (LLW) and to identify planning activities that need to be accomplished in preparation for transporting GTCC LLW. The regulations and requirements for transporting hazardous materials, of which GTCC LLW is included, are complex and include several Federal agencies, state and local governments, and Indian tribes. This report is divided into five sections and three appendices. Section 1 introduces the report. Section 2 identifies and discusses the transportation regulations and requirements. The regulations and requirements are divided into Federal, state, local government, and Indian tribes subsections. This report does not identify the regulations or requirements of specific state, local government, and Indian tribes, since the storage, treatment, and disposal facility locations and transportation routes have not been specifically identified. Section 3 identifies the planning needed to ensure that all transportation activities are in compliance with the regulations and requirements. It is divided into (a) transportation packaging; (b) transportation operations; (c) system safety and risk analysis, (d) route selection; (e) emergency preparedness and response; and (f) safeguards and security. This section does not provide actual planning since the details of the Department of Energy (DOE) GTCC LLW Program have not been finalized, e.g., waste characterization and quantity, storage, treatment and disposal facility locations, and acceptance criteria. Sections 4 and 5 provide conclusions and referenced documents, respectively.

Tyacke, M.; Schmitt, R.

1993-07-01T23:59:59.000Z

10

Southeast Interstate Low-Level Radioactive Waste Management Compact...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southeast Interstate Low-Level Radioactive Waste Management Compact (multi-state) Southeast Interstate Low-Level Radioactive Waste Management Compact (multi-state) Eligibility...

11

Northwest Interstate Compact on Low-Level Radioactive Waste Management...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northwest Interstate Compact on Low-Level Radioactive Waste Management (Multiple States) Northwest Interstate Compact on Low-Level Radioactive Waste Management (Multiple States)...

12

Atlantic Interstate Low-Level Radioactive Waste Management Compact...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Atlantic Interstate Low-Level Radioactive Waste Management Compact (South Carolina) Atlantic Interstate Low-Level Radioactive Waste Management Compact (South Carolina) Eligibility...

13

Department of Energy treatment capabilities for greater-than-Class C low-level radioactive waste  

SciTech Connect

This report provides brief profiles for 26 low-level and high-level waste treatment capabilities available at the Idaho National Engineering Laboratory (INEL), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Pacific Northwest Laboratory (PNL), Rocky Flats Plant (RFP), Savannah River Site (SRS), and West Valley Demonstration Plant (WVDP). Six of the treatments have potential use for greater-than-Class C low-level waste (GTCC LLW). They include: (a) the glass ceramic process and (b) the Waste Experimental Reduction Facility incinerator at INEL; (c) the Super Compaction and Repackaging Facility and (d) microwave melting solidification at RFP; (e) the vitrification plant at SRS; and (f) the vitrification plant at WVDP. No individual treatment has the capability to treat all GTCC LLW streams. It is recommended that complete physical and chemical characterizations be performed for each GTCC waste stream, to permit using multiple treatments for GTCC LLW.

Morrell, D.K.; Fischer, D.K.

1995-01-01T23:59:59.000Z

14

Evaluation of Department of Energy-Held Potential Greater-Than-Class C Low-Level Radioactive Waste. Revision 1  

Science Conference Proceedings (OSTI)

A number of commercial facilities have generated potential greater-than-Class C low-level radioactive waste (GTCC LLW), and, through contractual arrangements with the US Department of Energy (DOE) or for health and safety reasons, DOE is storing the waste. This report presents the results of an assessment conducted by the GTCC LLW Management Program to consider specific circumstances under which DOE accepted the waste, and to determine whether disposal in a facility licensed by the US Nuclear Regulatory Commission, or by DOE in a nonlicensed facility, is appropriate. Input from EG&G Idaho, Inc., and DOE Idaho Operations Office legal departments concerning the disposal requirements of this waste were the basis for the decision process used in this report.

NONE

1994-09-01T23:59:59.000Z

15

Low-Level Radioactive Waste Disposal Act (Pennsylvania) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Level Radioactive Waste Disposal Act (Pennsylvania) Low-Level Radioactive Waste Disposal Act (Pennsylvania) Low-Level Radioactive Waste Disposal Act (Pennsylvania) < Back Eligibility Utility Commercial Investor-Owned Utility State/Provincial Govt Municipal/Public Utility Local Government Rural Electric Cooperative Transportation Program Info State Pennsylvania Program Type Environmental Regulations Provider Pennsylvania Department of Environmental Protection This act provides a comprehensive strategy for the siting of commercial low-level waste compactors and other waste management facilities, and to ensure the proper transportation, disposal and storage of low-level radioactive waste. Commercial incineration of radioactive wastes is prohibited. Licenses are required for low-level radioactive waste disposal facilities not licensed to accept low-level radioactive waste. Disposal at

16

BLENDING OF LOW-LEVEL RADIOACTIVE WASTE  

E-Print Network (OSTI)

To provide the Commission with the results of the staff’s analysis of issues associated with the blending of low-level radioactive waste (LLRW), as directed in Chairman Jaczko’s October 8, 2009, memorandum to the staff. The closure of the Barnwell waste disposal facility to most U.S. generators of Class B and C LLRW has caused industry to examine methods for reducing the amount of these wastes, including the blending of some types of Class B and C waste with similar Class A wastes to produce a Class A mixture that can be disposed of at a currently licensed facility. This paper identifies policy, safety, and regulatory issues associated with LLRW blending, provides options for a U. S. Nuclear Regulatory Commission (NRC) blending position, and makes a recommendation for a future blending policy. This paper does not address any new commitments. SUMMARY: In this paper, the staff examines the blending or mixing of LLRW with higher concentrations of radionuclides with LLRW with lower concentrations of radionuclides to form a final homogeneous mixture. While recognizing that some mixing of waste is unavoidable, and may even be necessary and appropriate for efficiency or dose reduction purposes, NRC has historically discouraged mixing LLRW to lower the classification of waste in other circumstances.

R. W. Borchardt; Contacts James; E. Kennedy

2010-01-01T23:59:59.000Z

17

Southwestern Low-Level Radioactive Waste Disposal Compact (South Dakota) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southwestern Low-Level Radioactive Waste Disposal Compact (South Southwestern Low-Level Radioactive Waste Disposal Compact (South Dakota) Southwestern Low-Level Radioactive Waste Disposal Compact (South Dakota) < Back Eligibility Utility Investor-Owned Utility Industrial Construction Municipal/Public Utility Rural Electric Cooperative Fuel Distributor Program Info State South Dakota Program Type Siting and Permitting Provider Southwestern Low-Level Radioactive Waste Commission This legislation authorizes the state's entrance into the Southwestern Low-Level Radioactive Waste Disposal Compact, which provides for the cooperative management of low-level radioactive waste. The Compact is administered by a commission, which can regulate and impose fees on in-state radioactive waste generators. The states of Arizona, California,

18

Issue briefs on low-level radioactive wastes  

Science Conference Proceedings (OSTI)

This report contains 4 Issue Briefs on low-level radioactive wastes. They are entitled: Handling, Packaging, and Transportation, Economics of LLW Management, Public Participation and Siting, and Low Level Waste Management.

Not Available

1981-01-01T23:59:59.000Z

19

Low Level Radioactive Waste Authority (Michigan) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low Level Radioactive Waste Authority (Michigan) Low Level Radioactive Waste Authority (Michigan) Low Level Radioactive Waste Authority (Michigan) < Back Eligibility Utility Fed. Government Investor-Owned Utility Municipal/Public Utility Program Info State Michigan Program Type Safety and Operational Guidelines Provider Department of Environmental Quality Federal laws passed in 1980 and 1985 made each state responsible for the low-level radioactive waste produced within its borders. Act 204 of 1987 created the Low-Level Radioactive Waste Authority (LLRWA) to fulfill state responsibilities under federal law for managing and assuring disposal capacity for the low-level radioactive waste produced in Michigan. The LLRWA began a facility siting process in 1989 under the statutory limits of Act 204. The LLRWA eventually determined that it was impossible to find a

20

Appalachian States Low-Level Radioactive Waste Compact (Maryland)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation authorizes Maryland's entrance into the Appalachian States Low-Level Radioactive Waste Compact, which seeks to promote interstate cooperation for the proper management and disposal...

Note: This page contains sample records for the topic "gtcc low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Proceedings: Radioactive Low Level Waste Management Workshop  

Science Conference Proceedings (OSTI)

This report presents the proceedings of an EPRI workshop on low level waste management. The workshop was the fifth in a series to aid utility personnel in assessing technologies for decommissioning nuclear power plants. This workshop focused on specific aspects of low level waste management as they relate to nuclear plant decommissioning. Workshop information will help utilities assess benefits of waste management, select technologies for their individual projects, and reduce decommissioning costs.

2000-05-25T23:59:59.000Z

22

Atlantic Interstate Low-Level Radioactive Waste Management Compact (South  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Atlantic Interstate Low-Level Radioactive Waste Management Compact Atlantic Interstate Low-Level Radioactive Waste Management Compact (South Carolina) Atlantic Interstate Low-Level Radioactive Waste Management Compact (South Carolina) < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Program Info Start Date 1986 State South Carolina Program Type Environmental Regulations Siting and Permitting Provider Atlantic Compact Commission The Atlantic (Northeast) Interstate Low-Level Radioactive Waste Management Compact is a cooperative effort to plan, regulate, and administer the disposal of low-level radioactive waste in the region. The states of Connecticut, New Jersey, and South Carolina are party to this compact

23

Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Level Radioactive Waste Disposal Regional Facility Act Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) < Back Eligibility Utility Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Program Info State Pennsylvania Program Type Environmental Regulations Fees This act establishes a low-level radioactive waste disposal regional facility siting fund that requires nuclear power reactor constructors and operators to pay to the Department of Environmental Resources funds to be utilized for disposal facilities. This act ensures that nuclear facilities and the Department comply with the Low-Level Radioactive Disposal Act. The regional facility siting fund is used for reimbursement of expenses

24

Greater-Than-Class C Low-Level Radioactive Waste Transportation Strategy report and institutional plan  

SciTech Connect

This document contains two parts. Part I, Greater-Than-Class-C Low-Level Radioactive Waste Transportation Strategy, addresses the requirements, responsibilities, and strategy to transport and receive these wastes. The strategy covers (a) transportation packaging, which includes shipping casks and waste containers; (b) transportation operations relating to the five facilities involved in transportation, i.e., waste originator, interim storage, dedicated storage, treatment, and disposal; (c) system safety and risk analysis; (d) routes; (e) emergency preparedness and response; and (o safeguards and security. A summary of strategic actions is provided at the conclusion of Part 1. Part II, Institutional Plan for Greater-Than-Class C Low-Level Radioactive Waste Packaging and Transportation, addresses the assumptions, requirements, and institutional plan elements and actions. As documented in the Strategy and Institutional Plan, the most challenging issues facing the GTCC LLW Program shipping campaign are institutional issues closely related to the strategy. How the Program addresses those issues and demonstrates to the states, local governments, and private citizens that the shipments can and will be made safely will strongly affect the success or failure of the campaign.

Schmitt, R.C.; Tyacke, M.J.

1995-01-01T23:59:59.000Z

25

Directions in low-level radioactive waste management: A brief history of commercial low-level radioactive waste disposal  

SciTech Connect

This report presents a history of commercial low-level radioactive waste management in the United States, with emphasis on the history of six commercially operated low-level radioactive waste disposal facilities. The report includes a brief description of important steps that have been taken during the 1980s to ensure the safe disposal of low-level waste in the 1990s and beyond. These steps include the issuance of Title 10 Code of Federal Regulations Part 61, Licensing Requirements for the Land Disposal of Radioactive Waste, the Low-Level Radioactive Waste Policy Act of 1980, the Low-Level Radioactive Waste Policy Amendments Act of 1985, and steps taken by states and regional compacts to establish additional disposal sites. 42 refs., 13 figs., 1 tab.

Not Available

1990-10-01T23:59:59.000Z

26

Northwest Interstate Compact on Low-Level Radioactive Waste Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northwest Interstate Compact on Low-Level Radioactive Waste Northwest Interstate Compact on Low-Level Radioactive Waste Management (Multiple States) Northwest Interstate Compact on Low-Level Radioactive Waste Management (Multiple States) < Back Eligibility Utility Fed. Government Commercial Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Institutional Nonprofit Program Info Start Date 1981 State Alaska Program Type Siting and Permitting Provider Northwest Interstate Compact The Northwest Interstate Compact on Low-Level Radioactive Waste Management, enacted in 1981, was ratified by Congress in 1985. The Compact is a cooperative effort of the party states to protect their citizens, and maintain and enhance economic viability, while sharing the responsibilities

27

Low-level radioactive waste regulation: Science, politics and fear  

SciTech Connect

An inevitable consequence of the use of radioactive materials is the generation of radioactive wastes and the public policy debate over how they will be managed. In 1980, Congress shifted responsibility for the disposal of low-level radioactive wastes from the federal government to the states. This act represented a sharp departure from more than 30 years of virtually absolute federal control over radioactive materials. Though this plan had the enthusiastic support of the states in 1980, it now appears to have been at best a chimera. Radioactive waste management has become an increasingly complicated and controversial issue for society in recent years. This book discusses only low-level wastes, however, because Congress decided for political reasons to treat them differently than high-level wastes. The book is based in part on three symposia sponsored by the division of Chemistry and the Law of the American Chemical Society. Each chapter is derived in full or in part from presentations made at these meetings, and includes: (1) Low-level radioactive wastes in the nuclear power industry; (2) Low-level radiation cancer risk assessment and government regulation to protect public health; and (3) Low-level radioactive waste: can new disposal sites be found.

Burns, M.E. (ed.)

1988-01-01T23:59:59.000Z

28

ASSESSMENT OF RADIOACTIVE AND NON-RADIOACTIVE CONTAMINANTS FOUND IN LOW LEVEL RADIOACTIVE WASTE STREAMS  

Science Conference Proceedings (OSTI)

This paper describes and presents the findings from two studies undertaken for the European Commission to assess the long-term impact upon the environment and human health of non-radioactive contaminants found in various low level radioactive waste streams. The initial study investigated the application of safety assessment approaches developed for radioactive contaminants to the assessment of nonradioactive contaminants in low level radioactive waste. It demonstrated how disposal limits could be derived for a range of non-radioactive contaminants and generic disposal facilities. The follow-up study used the same approach but undertook more detailed, disposal system specific calculations, assessing the impacts of both the non-radioactive and radioactive contaminants. The calculations undertaken indicated that it is prudent to consider non-radioactive, as well as radioactive contaminants, when assessing the impacts of low level radioactive waste disposal. For some waste streams with relatively low concentrations of radionuclides, the potential post-closure disposal impacts from non-radioactive contaminants can be comparable with the potential radiological impacts. For such waste streams there is therefore an added incentive to explore options for recycling the materials involved wherever possible.

R.H. Little, P.R. Maul, J.S.S. Penfoldag

2003-02-27T23:59:59.000Z

29

Low-level radioactive waste disposal facility closure  

Science Conference Proceedings (OSTI)

Part I of this report describes and evaluates potential impacts associated with changes in environmental conditions on a low-level radioactive waste disposal site over a long period of time. Ecological processes are discussed and baselines are established consistent with their potential for causing a significant impact to low-level radioactive waste facility. A variety of factors that might disrupt or act on long-term predictions are evaluated including biological, chemical, and physical phenomena of both natural and anthropogenic origin. These factors are then applied to six existing, yet very different, low-level radioactive waste sites. A summary and recommendations for future site characterization and monitoring activities is given for application to potential and existing sites. Part II of this report contains guidance on the design and implementation of a performance monitoring program for low-level radioactive waste disposal facilities. A monitoring programs is described that will assess whether engineered barriers surrounding the waste are effectively isolating the waste and will continue to isolate the waste by remaining structurally stable. Monitoring techniques and instruments are discussed relative to their ability to measure (a) parameters directly related to water movement though engineered barriers, (b) parameters directly related to the structural stability of engineered barriers, and (c) parameters that characterize external or internal conditions that may cause physical changes leading to enhanced water movement or compromises in stability. Data interpretation leading to decisions concerning facility closure is discussed. 120 refs., 12 figs., 17 tabs.

White, G.J.; Ferns, T.W.; Otis, M.D.; Marts, S.T.; DeHaan, M.S.; Schwaller, R.G.; White, G.J. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

1990-11-01T23:59:59.000Z

30

Low-level radioactive waste technology: a selected, annotated bibliography  

SciTech Connect

This annotated bibliography of 447 references contains scientific, technical, economic, and regulatory information relevant to low-level radioactive waste technology. The bibliography focuses on environmental transport, disposal site, and waste treatment studies. The publication covers both domestic and foreign literature for the period 1952 to 1979. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Environmental Transport; General Studies and Reviews; Geology, Hydrology and Site Resources; Regulatory and Economic Aspects; Transportation Technology; Waste Production; and Waste Treatment. Specialized data fields have been incorporated into the data file to improve the ease and accuracy of locating pertinent references. Specific radionuclides for which data are presented are listed in the Measured Radionuclides field, and specific parameters which affect the migration of these radionuclides are presented in the Measured Parameters field. In addition, each document referenced in this bibliography has been assigned a relevance number to facilitate sorting the documents according to their pertinence to low-level radioactive waste technology. The documents are rated 1, 2, 3, or 4, with 1 indicating direct applicability to low-level radioactive waste technology and 4 indicating that a considerable amount of interpretation is required for the information presented to be applied. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. Indexes are provide for (1) author(s), (2) keywords, (3) subject category, (4) title, (5) geographic location, (6) measured parameters, (7) measured radionuclides, and (8) publication description.

Fore, C.S.; Vaughan, N.D.; Hyder, L.K.

1980-10-01T23:59:59.000Z

31

Disposal of low-level and mixed low-level radioactive waste during 1990  

Science Conference Proceedings (OSTI)

Isotopic inventories and other data are presented for low-level radioactive waste (LLW) and mixed LLW disposed (and occasionally stored) during calendar year 1990 at commercial disposal facilities and Department of Energy (DOE) sites. Detailed isotopic information is presented for the three commercial disposal facilities located near Barnwell, SC, Richland, WA, and Beatty, NV. Less information is presented for the Envirocare disposal facility located near Clive, UT, and for LLW stored during 1990 at the West Valley site. DOE disposal information is included for the Savannah River Site (including the saltstone facility), Nevada Test Site, Los Alamos National Laboratory, Idaho National Engineering Laboratory, Hanford Site, Y-12 Site, and Oak Ridge National Laboratory. Summary information is presented about stored DOE LLW. Suggestions are made about improving LLW disposal data.

Not Available

1993-08-01T23:59:59.000Z

32

Managing low-level radioactive wastes: a proposed approach  

SciTech Connect

In 1978, President Carter established the Interagency Review Group on Nuclear Waste Management (IRG) to review the nation's plans and progress in managing radioactive wastes. In its final report, issued in March 1979, the group recommended that the Department of Energy (DOE) assume responsibility for developing a national plan for the management of low-level wastes. Toward this end, DOE directed that a strategy be developed to guide federal and state officials in resolving issues critical to the safe management of low-level wastes. EG and G Idaho, Inc. was selected as the lead contractor for the Low-Level Waste Management Program and was given responsibility for developing the strategy. A 25 member task force was formed which included individuals from federal agencies, states, industry, universities, and public interest groups. The task force identified nineteen broad issues covering the generation, treatment, packaging, transportation, and disposal of low-level wastes. Alternatives for the resolution of each issue were proposed and recommendations were made which, taken together, form the draft strategy. These recommendations are summarized in this document.

Peel, J.W.; Levin, G.B.

1980-01-01T23:59:59.000Z

33

Microsoft Word - gtcc-draft1 4 21 11  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Greater-Than-Class C Low-Level Radioactive Waste Public Hearings Set CARLSBAD, N.M., April 21, 2011 - The U.S. Department of Energy (DOE) is holding public hearings on a draft Environmental Impact Statement for the Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste (LLRW) and GTCC-Like Waste (DOE/EIS-0375D, Draft EIS) as required under the National Environmental Policy Act. Public hearings in New Mexico will take place at the following locations and times.  April 26, 2011 - Carlsbad, N.M. at the Pecos River Village Conference Center, Carousel House, 711 Muscatel Avenue, 5:30-9:30 p.m.  April 27, 2011 - Albuquerque, N.M. at the Marriott Pyramid North, 5151 San Francisco, NE., 5:30-9:30 p.m.  April 28, 2011 - Santa Fe, N.M. at the Cities of Gold Hotel Conference Center, 10-B Cities

34

System for chemically digesting low level radioactive, solid waste material  

DOE Patents (OSTI)

An improved method and system for chemically digesting low level radioactive, solid waste material having a high through-put. The solid waste material is added to an annular vessel (10) substantially filled with concentrated sulfuric acid. Concentrated nitric acid or nitrogen dioxide is added to the sulfuric acid within the annular vessel while the sulfuric acid is reacting with the solid waste. The solid waste is mixed within the sulfuric acid so that the solid waste is substantilly fully immersed during the reaction. The off gas from the reaction and the products slurry residue is removed from the vessel during the reaction.

Cowan, Richard G. (Kennewick, WA); Blasewitz, Albert G. (Richland, WA)

1982-01-01T23:59:59.000Z

35

Southeast Interstate Low-Level Radioactive Waste Management Compact (multi-state)  

Energy.gov (U.S. Department of Energy (DOE))

The Southeast Interstate Low-Level Radioactive Waste Management Compact is administered by the Compact Commission. The Compact provides for rotating responsibility for the region's low-level...

36

Management of low-level radioactive wastes around the world  

SciTech Connect

This paper reviews the status of various practices used throughout the world for managing low-level radioactive wastes. Most of the information in this review was obtained through the DOE-sponsored International Program Support Office (IPSO) activities at Pacific Northwest Laboratory (PNL) at Richland, Washington. The objective of IPSO is to collect, evaluate, and disseminate information on international waste management and nuclear fuel cycle activities. The center's sources of information vary widely and include the proceedings of international symposia, papers presented at technical society meetings, published topical reports, foreign trip reports, and the news media. Periodically, the information is published in topical reports. Much of the information contained in this report was presented at the Fifth Annual Participants' Information Meeting sponsored by DOE's Low-Level Waste Management Program Office at Denver, Colorado, in September of 1983. Subsequent to that presentation, the information has been updated, particularly with information provided by Dr. P. Colombo of Brookhaven National Laboratory who corresponded with low-level waste management specialists in many countries. The practices reviewed in this paper generally represent actual operations. However, major R and D activities, along with future plans, are also discussed. 98 refs., 6 tabls.

Lakey, L.T.; Harmon, K.M.; Colombo, P.

1985-04-01T23:59:59.000Z

37

Commercial low-level radioactive waste transportation liability and radiological risk  

SciTech Connect

This report was prepared for States, compact regions, and other interested parties to address two subjects related to transporting low-level radioactive waste to disposal facilities. One is the potential liabilities associated with low-level radioactive waste transportation from the perspective of States as hosts to low-level radioactive waste disposal facilities. The other is the radiological risks of low-level radioactive waste transportation for drivers, the public, and disposal facility workers.

Quinn, G.J.; Brown, O.F. II; Garcia, R.S.

1992-08-01T23:59:59.000Z

38

Low-level radioactive waste transportation safety history  

SciTech Connect

The Radioactive Materials Incident Report (RMIR) database was developed fin 1981 at the Transportation Technology Center of Sandia National Laboratories to support its research and development activities for the US department of Energy (DOE). This database contains information about radioactive material (RAM) transportation incidents that have occurred in the US since 1971. These data were drawn from the US Department of Transportation`s (DOT) Hazardous Materials Incident Report system, from Nuclear Regulatory Commission (NRC) files, and from various agencies including state radiological control offices. Support for the RMIR data base is funded by the US DOE National Transportation Program (NTP). Transportation events in RMIR are classified in one of the following ways: as a transportation accident, as a handling accident, or as a reported incident. This presentation will provide definitions for these classifications and give examples of each. The primary objective of this presentation is to provide information on nuclear materials transportation accident/incident events involving low-level waste (LLW) that have occurred in the US for the period 1971 through 1996. Among the areas to be examined are: transportation accidents by mode, package response during accidents, and an examination of accidents where release of contents has occurred. Where information is available, accident and incident history and package response for LLW packages in transportation accidents will be described.

McClure, J.D. [Sandia National Labs., Albuquerque, NM (United States). Transportation Systems Analysis Dept.

1997-08-01T23:59:59.000Z

39

Selected radionuclides important to low-level radioactive waste management  

Science Conference Proceedings (OSTI)

The purpose of this document is to provide information to state representatives and developers of low level radioactive waste (LLW) management facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the environment. Extensive surveys of available literature provided information for this report. Certain radionuclides may contribute significantly to the dose estimated during a radiological performance assessment analysis of an LLW disposal facility. Among these are the radionuclides listed in Title 10 of the Code of Federal Regulations Part 61.55, Tables 1 and 2 (including alpha emitting transuranics with half-lives greater than 5 years). This report discusses these radionuclides and other radionuclides that may be significant during a radiological performance assessment analysis of an LLW disposal facility. This report not only includes essential information on each radionuclide, but also incorporates waste and disposal information on the radionuclide, and behavior of the radionuclide in the environment and in the human body. Radionuclides addressed in this document include technetium-99, carbon-14, iodine-129, tritium, cesium-137, strontium-90, nickel-59, plutonium-241, nickel-63, niobium-94, cobalt-60, curium -42, americium-241, uranium-238, and neptunium-237.

NONE

1996-11-01T23:59:59.000Z

40

Interim Storage of Greater Than Class C Low Level Waste  

Science Conference Proceedings (OSTI)

This report serves as a guideline for the safe, interim, on-site storage of low level radioactive waste (LLW) that exceeds the activity limitations for near-surface disposal set forth in 10 CFR 61.55. This waste, referred to as greater than Class C (GTCC) waste, exceeds the Class C limits in the referenced regulation. At the present time, there is no licensed disposal facility for GTCC waste in the United States. This situation forces commercial nuclear reactors to store it on site until a disposal facil...

2001-11-12T23:59:59.000Z

Note: This page contains sample records for the topic "gtcc low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Life-Cycle Cost Study for a Low-Level Radioactive Waste Disposal Facility in Texas  

SciTech Connect

This report documents the life-cycle cost estimates for a proposed low-level radioactive waste disposal facility near Sierra Blanca, Texas. The work was requested by the Texas Low-Level Radioactive Waste Disposal Authority and performed by the National Low-Level Waste Management Program with the assistance of Rogers and Associates Engineering Corporation.

B. C. Rogers; P. L. Walter (Rogers and Associates Engineering Corporation); R. D. Baird

1999-08-01T23:59:59.000Z

42

1989 Annual report on low-level radioactive waste management progress  

SciTech Connect

This report summarizes the progress during 1989 of states and compacts in establishing new low-level radioactive waste disposal facilities. It also provides summary information on the volume of low-level waste received for disposal in 1989 by commercially operated low-level waste disposal facilities. This report is in response to Section 7(b) of Title I of Public Law 99--240, the Low-Level Radioactive Waste Policy Amendments Act of 1985. 2 figs., 5 tabs.

Not Available

1990-10-01T23:59:59.000Z

43

EA-1061: The Off-site Volume Reduction of Low-level Radioactive Waste From  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: The Off-site Volume Reduction of Low-level Radioactive 1: The Off-site Volume Reduction of Low-level Radioactive Waste From the Savannah River Site, Aiken, South Carolina EA-1061: The Off-site Volume Reduction of Low-level Radioactive Waste From the Savannah River Site, Aiken, South Carolina SUMMARY This EA evaluates the environmental impacts of the proposal for off-site volume reduction of low-level radioactive wastes generated at the U.S. Department of Energy's Savannah River Site located near Aiken, South Carolina. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 28, 1995 EA-1061: Finding of No Significant Impact The Off-site Volume Reduction of Low-level Radioactive Waste From the Savannah River Site July 28, 1995 EA-1061: Final Environmental Assessment The Off-site Volume Reduction of Low-level Radioactive Waste From the

44

Mixed Low-Level Radioactive Waste (MLLW) Primer  

SciTech Connect

This document presents a general overview of mixed low-level waste, including the regulatory definitions and drivers, the manner in which the various kinds of mixed waste are regulated, and a discussion of the waste treatment options.

W. E. Schwinkendorf

1999-04-01T23:59:59.000Z

45

Rules and Regulations for the Disposal of Low-Level Radioactive Waste (Nebraska)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations, promulgated by the Department of Environmental Quality, contain provisions pertaining to the disposal of low-level radioactive waste, disposal facilities, and applicable fees.

46

18th U.S. Department of Energy Low-Level Radioactive Waste Management Conference. Program  

SciTech Connect

This conference explored the latest developments in low-level radioactive waste management through presentations from professionals in both the public and the private sectors and special guests. The conference included two continuing education seminars, a workshop, exhibits, and a tour of Envirocare of Utah, Inc., one of America's three commercial low-level radioactive waste depositories.

1997-05-20T23:59:59.000Z

47

18th U.S. Department of Energy Low-Level Radioactive Waste Management Conference. Program  

SciTech Connect

This conference explored the latest developments in low-level radioactive waste management through presentations from professionals in both the public and the private sectors and special guests. The conference included two continuing education seminars, a workshop, exhibits, and a tour of Envirocare of Utah, Inc., one of America's three commercial low-level radioactive waste depositories.

None

1997-05-20T23:59:59.000Z

48

Explanation of Significant Differences Between Models used to Assess Groundwater Impacts for the Disposal of Greater-Than-Class C Low-Level Radioactive Waste and Greater-Than-Class C-Like Waste Environmental Impact Statement (DOE/EIS-0375-D) and the  

SciTech Connect

Models have been used to assess the groundwater impacts to support the Draft Environmental Impact Statement for the Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste and GTCC-Like Waste (DOE-EIS 2011) for a facility sited at the Idaho National Laboratory and the Environmental Assessment for the INL Remote-Handled Low-Level Waste Disposal Project (INL 2011). Groundwater impacts are primarily a function of (1) location determining the geologic and hydrologic setting, (2) disposal facility configuration, and (3) radionuclide source, including waste form and release from the waste form. In reviewing the assumptions made between the model parameters for the two different groundwater impacts assessments, significant differences were identified. This report presents the two sets of model assumptions and discusses their origins and implications for resulting dose predictions. Given more similar model parameters, predicted doses would be commensurate.

Annette Schafer; Arthur S. Rood; A. Jeffrey Sondrup

2011-08-01T23:59:59.000Z

49

Waste minimization for commercial radioactive materials users generating low-level radioactive waste. Revision 1  

SciTech Connect

The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.

Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L. [Science Applications International Corp., Idaho Falls, ID (United States)

1991-07-01T23:59:59.000Z

50

Massachusetts State Briefing Book for low-level radioactive waste management  

Science Conference Proceedings (OSTI)

The Massachusetts State Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist State and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Massachusetts. The profile is the result of a survey of NRC licensees in Massachusetts. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Massachusetts.

Not Available

1981-03-12T23:59:59.000Z

51

Vermont State Briefing Book on low-level radioactive waste management  

Science Conference Proceedings (OSTI)

The Vermont State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Vermont. The profile is the result of a survey of Nuclear Regulatory Commission licensees in Vermont. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Vermont.

Not Available

1981-07-01T23:59:59.000Z

52

DATA FOR WELLS AT THE LOW-LEVEL RADIOACTIVE-WASTE BURIAL SITE...  

NLE Websites -- All DOE Office Websites (Extended Search)

rberr (Q-hert- DATA FOR WELLS AT THE LOW-LEVEL RADIOACTIVE-WASTE BURIAL SITE IN THE PALOS FOREST PRESERVE, ILLINOIS By Julio C. Olimpio U.S. GEOLOGICAL SURVEY Open-File Report...

53

South Carolina State Briefing Book for low-level radioactive waste management  

Science Conference Proceedings (OSTI)

The South Carolina State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in South Carolina. The profile is the result of a survey of NRC licensees in South Carolina. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as definied by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in South Carolina.

Not Available

1981-08-01T23:59:59.000Z

54

1994 annual report on low-level radioactive waste management progress  

Science Conference Proceedings (OSTI)

This report for calendar year 1994 summarizes the progress that states and compact regions made during the year in establishing new low-level radioactive waste disposal facilities. Although events that have occurred in 1995 greatly alter the perspective in terms of storage versus disposal, the purpose of this report is to convey the concerns as evidenced during calendar year 1994. Significant developments occurring in 1995 are briefly outlined in the transmittal letter and will be detailed in the report for calendar year 1995. The report also provides summary information on the volume of low-level radioactive waste received for disposal in 1994 by commercially operated low-level radioactive waste disposal facilities, and is prepared is in response to Section 7(b) of Title I of Public Law 99-240, the Low-Level Radioactive Waste Policy Amendments Act of 1985.

NONE

1995-04-01T23:59:59.000Z

55

Midwest Interstate Compact on Low-Level Radioactive Waste (Multiple States)  

Energy.gov (U.S. Department of Energy (DOE))

The Midwest Interstate Low-Level Radioactive Waste Compact is an agreement between the states of Indiana, Iowa, Minnesota, Missouri, Ohio, and Wisconsin that provides for the cooperative and safe...

56

Puerto Rico State Briefing Book for low-level radioactive waste management  

Science Conference Proceedings (OSTI)

The Puerto Rico State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Puerto Rico. The profile is the result of a survey of NRC licensees in Puerto Rico. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Puerto Rico.

Not Available

1981-10-01T23:59:59.000Z

57

South Dakota State Briefing Book for low-level radioactive waste management  

SciTech Connect

The South Dakota State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in South Dakota. The profile is the result of a survey of NRC licensees in South Dakota. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in South Dakota.

1981-10-01T23:59:59.000Z

58

Texas State Briefing Book for low-level radioactive waste management  

Science Conference Proceedings (OSTI)

The Texas State Briefing Book is one of a series of state briefing books on low-level radioactivee waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Texas. The profile is the result of a survey of NRC licensees in Texas. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Texas.

Not Available

1981-08-01T23:59:59.000Z

59

Nondestructive Evaluation of Low-Level Radioactive Waste Canisters for Free-Water Content  

Science Conference Proceedings (OSTI)

Federal regulations set limits on free-standing liquid in radioactive waste containers. This report identifies four nondestructive evaluation methods that may provide nuclear power plant operators with reliable and accurate determinations of the existence and amount of free-standing liquids in low-level radioactive waste (LLW) containers.

1991-06-17T23:59:59.000Z

60

Identification of low-level point radioactive sources using a sensor network  

Science Conference Proceedings (OSTI)

Identification of a low-level point radioactive source amidst background radiation is achieved by a network of radiation sensors using a two-step approach. Based on measurements from three or more sensors, a geometric difference triangulation method ... Keywords: Point radioactive source, detection and localization, sequential probability ratio test

Jren-Chit Chin; Nageswara S. V. Rao; David K. Y. Yau; Mallikarjun Shankar; Yong Yang; Jennifer C. Hou; Srinivasagopalan Srivathsan; Sitharama Iyengar

2010-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "gtcc low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

1991 annual report on low-level radioactive waste management progress  

Science Conference Proceedings (OSTI)

This report summarizes the progress during 1991 of States and compact regions in establishing new low-level radioactive waste disposal capacity. It has been prepared in response to requirements in Section 7 (b) of Title I of Public Law 99-240, the Low-Level Radioactive Waste Policy Amendments Act of 1985 (the Act). By the end of 1991, 9 compact regions (totaling 42 States) were functioning with plans to establish low-level radioactive waste disposal facilities: Appalachian, Central, Central Midwest, Midwest, Northeast, Northwest, Rocky Mountain, Southeast, and Southwestern. Also planning to construct disposal facilities, but unaffiliated with a compact region, are Maine, Massachusetts, New York, Texas, and Vermont. The District of Columbia, New Hampshire, Puerto Rico, Rhode Island and Michigan are unaffiliated with a compact region and do not plan to construct a disposal facility. Michigan was the host State for the Midwest compact region until July 1991 when the Midwest Interstate Compact Commission revoked Michigan's membership. Only the Central, Central Midwest, and Southwestern compact regions met the January 1, 1992, milestone in the Act to submit a complete disposal license application. None of the States or compact regions project meeting the January 1, 1993, milestone to have an operational low-level radioactive waste disposal facility. Also summarized are significant events that occurred in low-level radioactive waste management in 1991 and early 1992, including the 1992 United States Supreme Court decision in New York v. United States in which New York challenged the constitutionality of the Act, particularly the take-title'' provision. Summary information is also provided on the volume of low-level radioactive waste received for disposal in 1991 by commercially operated low-level radioactive waste disposal facilities.

Not Available

1992-11-01T23:59:59.000Z

62

DOE to Weigh Alternatives for Greater Than Class C Low-Level Waste Disposal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Weigh Alternatives for Greater Than Class C Low-Level Waste to Weigh Alternatives for Greater Than Class C Low-Level Waste Disposal DOE to Weigh Alternatives for Greater Than Class C Low-Level Waste Disposal July 20, 2007 - 2:55pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that it will evaluate disposal options for Greater Than Class C (GTCC) low-level radioactive waste (LLW) generated from the decommissioning of nuclear power plants, medical activities and nuclear research. DOE delivered to the Federal Register this week a Notice of Intent (NOI) to prepare an Environmental Impact Statement (EIS), which will evaluate how and where to safely dispose of GTCC LLW that is currently stored at commercial nuclear power plants and other generator sites across the country. The Energy Policy Act of 2005 requires DOE to report to Congress on its evaluation of

63

Some aspects of low-level radioactive-waste disposal in the US  

Science Conference Proceedings (OSTI)

This report summarizes the NRC supported Shallow Land Burial research program at Brookhaven National Laboraotry and its relationship to the proposed revised ruling on disposal of low level radioactive waste, 10 CFR Part 61. Section of the proposed regulation, which establish the new low level waste classification system and the performance objective placed on waste form, are described briefly. The report also summarizes the preliminary results obtained from the EPA program in which low level waste drums were retrieved from the Atlantic and Pacific Oceans.

Schweitzer, D.G.; Davis, R.E.

1982-01-01T23:59:59.000Z

64

Letter report: Minor component study for low-level radioactive waste glasses  

SciTech Connect

During the waste vitrification process, troublesome minor components in low-level radioactive waste streams could adversely affect either waste vitrification rate or melter life-time. Knowing the solubility limits for these minor components is important to determine pretreatment options for waste streams and glass formulation to prevent or to minimize these problems during the waste vitrification. A joint study between Pacific Northwest Laboratory and Rensselaer Polytechnic Institute has been conducted to determine minor component impacts in low-level nuclear waste glass.

Li, H.

1996-03-01T23:59:59.000Z

65

Managing commercial low-level radioactive waste beyond 1992: Transportation planning for a LLW disposal facility  

Science Conference Proceedings (OSTI)

This technical bulletin presents information on the many activities and issues related to transportation of low-level radioactive waste (LLW) to allow interested States to investigate further those subjects for which proactive preparation will facilitate the development and operation of a LLW disposal facility. The activities related to transportation for a LLW disposal facility are discussed under the following headings: safety; legislation, regulations, and implementation guidance; operations-related transport (LLW and non-LLW traffic); construction traffic; economics; and public involvement.

Quinn, G.J. [Wastren, Inc. (United States)

1992-01-01T23:59:59.000Z

66

Guidance document for prepermit bioassay testing of low-level radioactive waste  

Science Conference Proceedings (OSTI)

In response to the mandate of Public Law 92-532, the Marine Protection, Research, and Sanctuaries Act (MPRSA) of 1972, as amended, the Environmental Protection Agency (EPA) has developed a program to promulgate regulations and criteria to control the ocean disposal of radioactive wastes. The EPA seeks to understand the mechanisms for biological response of marine organisms to the low levels of radioactivity that may arise from the release of these wastes as a result of ocean-disposal practices. Such information will play an important role in determining the adequacy of environmental assessments provided to the EPA in support of any disposal permit application. Although the EPA requires packaging of low-level radioactive waste to prevent release during radiodecay of the materials, some release of radioactive material into the deep-sea environment may occur when a package deteriorates. Therefore, methods for evaluating the impact on biota are being evaluated. Mortality and phenotypic responses are not anticipated at the expected low environmental levels that might occur if radioactive materials were released from the low-level waste packages. Therefore, traditional bioassay systems are unsuitable for assessing sublethal effects on biota in the marine environment. The EPA Office of Radiation Programs (ORP) has had an ongoing program to examine sublethal responses to radiation at the cellular level, using cytogenetic end points. This technical guidance report represents prepermit bioassay procedures that potentially may be applicable to the assessment of effects from a mixture of radionuclides that could be released from a point source at the ocean bottom. Methodologies along with rationale and a discussion of uncertainty are presented for the sediment benthic bioassay protocols identified in this report.

Anderson, S.L.; Harrison, F.L.

1990-11-01T23:59:59.000Z

67

Summary report. Low-level radioactive waste management activities in the states and compacts. Volume 4, No. 2  

Science Conference Proceedings (OSTI)

`Low-Level Radioactive Waste Management Activities in the States and Compacts` is a supplement to `LLW Notes` and is distributed periodically by Afton Associates, Inc. to state, compact and federal officials that receive `LLW Notes`. The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low- Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties.

NONE

1996-08-01T23:59:59.000Z

68

Summary report, low-level radioactive waste management activities in the states and compacts. Vol. 4. No. 1  

Science Conference Proceedings (OSTI)

`Low-Level Radioactive Waste Management Activities in the States and Compacts` is a supplement to `LLW Notes` and is distributed periodically by Afton Associates, Inc. to state, compact and federal officials that receive `LLW Notes`. The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low- Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties.

NONE

1996-01-01T23:59:59.000Z

69

Potential for Subsidence at the Low-Level Radioactive Waste Disposal Area  

Science Conference Proceedings (OSTI)

U.S. Department of Energy (DOE) Order 435.1, Radioactive Waste Management requires that DOE low-level radioactive waste (LLW) disposal facilities receive a Disposal Authorization Statement (DAS) from DOE-Headquarters. The DAS for the LLW disposal facility at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering and Environmental Laboratory (INEEL) was granted in April 2000 and included a number of conditions that must be addressed. A maintenance plan (Schuman 2000) was prepared that identifies the tasks to be completed to address the conditions in the DAS as well as a schedule for their completion. The need for a subsidence analysis was one of the conditions identified for the DAS, and thus, a task to prepare a subsidence analysis was included in the maintenance plan. This document provides the information necessary to satisfy that requirement.

Keck, K.A.; Seitz, R.R.

2002-09-26T23:59:59.000Z

70

Survey of agents and techniques applicable to the solidification of low-level radioactive wastes  

Science Conference Proceedings (OSTI)

A review of the various solidification agents and techniques that are currently available or potentially applicable for the solidification of low-level radioactive wastes is presented. An overview of the types and quantities of low-level wastes produced is presented. Descriptions of waste form matrix materials, the wastes types for which they have been or may be applied and available information concerning relevant waste form properties and characteristics follow. Also included are descriptions of the processing techniques themselves with an emphasis on those operating parameters which impact upon waste form properties. The solidification agents considered in this survey include: hydraulic cements, thermoplastic materials, thermosetting polymers, glasses, synthetic minerals and composite materials. This survey is part of a program supported by the United States Department of Energy's Low-Level Waste Management Program (LLWMP). This work provides input into LLWMP efforts to develop and compile information relevant to the treatment and processing of low-level wastes and their disposal by shallow land burial.

Fuhrmann, M.; Neilson, R.M. Jr.; Colombo, P.

1981-12-01T23:59:59.000Z

71

Vitrification treatment options for disposal of greater-than-Class-C low-level waste in a deep geologic repository  

SciTech Connect

The Department of Energy (DOE), in keeping with their responsibility under Public Law 99-240, the Low-Level Radioactive Waste Policy Amendments Act of 1985, is investigating several disposal options for greater-than-Class C low-level waste (GTCC LLW), including emplacement in a deep geologic repository. At the present time vitrification, namely borosilicate glass, is the standard waste form assumed for high-level waste accepted into the Civilian Radioactive Waste Management System. This report supports DOE`s investigation of the deep geologic disposal option by comparing the vitrification treatments that are able to convert those GTCC LLWs that are inherently migratory into stable waste forms acceptable for disposal in a deep geologic repository. Eight vitrification treatments that utilize glass, glass ceramic, or basalt waste form matrices are identified. Six of these are discussed in detail, stating the advantages and limitations of each relative to their ability to immobilize GTCC LLW. The report concludes that the waste form most likely to provide the best composite of performance characteristics for GTCC process waste is Iron Enriched Basalt 4 (IEB4).

Fullmer, K.S.; Fish, L.W.; Fischer, D.K.

1994-11-01T23:59:59.000Z

72

New York State Low-Level Radioactive Waste Status Report for 1992  

Science Conference Proceedings (OSTI)

This report summarizes data on low-level radioactive waste (LLRW) generation in New York State for calendar year 1992. It is based on reports from generators that must be filed annually with the New York State Energy Research and Development Authority (Energy Authority) and on data from the US Department of Energy. The New York State Low-Level Radioactive Waste Management Act (State Act) requires LLRW generators in the State to submit annual reports detailing the classes and quantities of waste generated. This is the seventh year generators have been required to submit reports on their waste to the Energy Authority. The data are summarized in a series of tables and figures. There are three sections in the report. Section 1 covers volume, radioactivity and other characteristics of waste generated in 1992. Section 2 shows historical LLRW generation over the years and includes generators` projections for the next five years. Section 3 provides a list of all facilities for which 1992 LLRW reports were received.

Attridge, T.; Rapaport, S.; Yang, Qian

1993-06-01T23:59:59.000Z

73

New York State low-level radioactive waste status report for 1998  

SciTech Connect

This report summarizes data on low-level radioactive waste (LLRW) generated in New York State: it is based on reports from generators that must be filed annually with the New York State Energy Research and Development Authority (NYSERDA) and on data from the US Department of Energy (US DOE). The New York State Low-Level Radioactive Waste Management Act (State Act) requires LLRW generators in the State to submit annual reports detailing the classes and quantities of waste generated. This is the 13th year generators have been required to submit these reports to NYSERDA. The data are summarized in a series of tables and figures. There are four sections in the report. Section 1 covers volume, activity, and other characteristics of waste shipped for disposal in 1998. Activity is the measure of a material`s radioactivity, or the number of radiation-emitting events occurring each second. Section 2 summarizes volume, activity, and other characteristics of waste held for storage as of December 31, 1998. Section 3 shows historical LLRW generation and includes generators` projections for the next five years. Section 4 provides a list, by county, of all facilities from which 1998 LLRW reports were received. 2 figs., 23 tabs.

Voelk, H.

1999-06-01T23:59:59.000Z

74

Model tracking system for low-level radioactive waste disposal facilities: License application interrogatories and responses  

SciTech Connect

This report describes a model tracking system for a low-level radioactive waste (LLW) disposal facility license application. In particular, the model tracks interrogatories (questions, requests for information, comments) and responses. A set of requirements and desired features for the model tracking system was developed, including required structure and computer screens. Nine tracking systems were then reviewed against the model system requirements and only two were found to meet all requirements. Using Kepner-Tregoe decision analysis, a model tracking system was selected.

Benbennick, M.E.; Broton, M.S.; Fuoto, J.S.; Novgrod, R.L.

1994-08-01T23:59:59.000Z

75

Models for estimation of service life of concrete barriers in low-level radioactive waste disposal  

SciTech Connect

Concrete barriers will be used as intimate parts of systems for isolation of low level radioactive wastes subsequent to disposal. This work reviews mathematical models for estimating the degradation rate of concrete in typical service environments. The models considered cover sulfate attack, reinforcement corrosion, calcium hydroxide leaching, carbonation, freeze/thaw, and cracking. Additionally, fluid flow, mass transport, and geochemical properties of concrete are briefly reviewed. Example calculations included illustrate the types of predictions expected of the models. 79 refs., 24 figs., 6 tabs.

Walton, J.C.; Plansky, L.E.; Smith, R.W. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

1990-09-01T23:59:59.000Z

76

Radioactive Waste Management Complex low-level waste radiological performance assessment  

Science Conference Proceedings (OSTI)

This report documents the projected radiological dose impacts associated with the disposal of radioactive low-level waste at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. This radiological performance assessment was conducted to evaluate compliance with applicable radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the public and the environment. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses were made for both offsite receptors and individuals inadvertently intruding onto the site after closure. In addition, uncertainty and sensitivity analyses were performed. The results of the analyses indicate compliance with established radiological criteria and provide reasonable assurance that public health and safety will be protected.

Maheras, S.J.; Rood, A.S.; Magnuson, S.O.; Sussman, M.E.; Bhatt, R.N.

1994-04-01T23:59:59.000Z

77

New York State low-level radioactive waste status report for 1997  

Science Conference Proceedings (OSTI)

This report summarizes data on low-level radioactive waste (LLRW) generated in New York State. It is based on reports from generators that must be filed annually with the New York State Energy Research and Development Authority (NYSERDA) and on data from the US Department of Energy (US DOE). The data are summarized in a series of tables and figures. There are four sections in this report. Section 1 covers volume, activity, and other characteristics of waste shipped for disposal in 1997. (Activity is the measure of a material`s radioactivity, or the number of radiation-emitting events occurring each second.) Section 2 summarizes volume, activity, and other characteristics of waste held for storage as of December 31, 1997. Section 3 shows historical LLRW generation and includes generators` projections for the next five years. Section 4 provides a list, by county, of all facilities from which 1997 LLRW reports were received.

NONE

1998-06-01T23:59:59.000Z

78

Impact of technology applications to the management of low-level radioactive wastes  

Science Conference Proceedings (OSTI)

Low-level radioactive wastes are generated from reactor sources (nuclear power reactors) as well as from nonreactor sources (academic, medical, governmental, and industrial). In recent years, about 50,000 m{sup 3} per year of such wastes have been generated in the United States and about 10,000 m{sup 3} per year in Canada. Direct disposal of these wastes in shallow ground has been a favored method in both countries in the past. In the United States, three operating commercial sites at Barnwell, South Carolina; Beatty, Nevada; and Richland, Washington, receive most of the commercial low-level waste generated. However, with recent advances in waste management, technologies are being applied to achieve optimum goals in terms of protection of human health and safety and the environment, as well as cost-effectiveness. These technologies must be applied from the generation sources through waste minimization and optimum segregation -- followed by waste processing, conditioning, storage, and disposal. A number of technologies that are available and can be applied as appropriate -- given the physical, chemical, and radiological characteristics of the waste -- include shredding, baling, compaction, supercompaction, decontamination, incineration, chemical treatment/conditioning, immobilization, and packaging. Interim and retrievable storage can be accomplished in a wide variety of storage structures, and several types of engineered disposal facility designs are now available. By applying an integrated approach to radioactive waste management, potential adverse impacts on human health and safety and the environment can be minimized. 15 refs., 1 fig., 1 tab.

Devgun, J.S. (Argonne National Lab., IL (USA))

1989-01-01T23:59:59.000Z

79

Assessment of microbial processes on gas production at radioactive low-level waste disposal sites  

SciTech Connect

Factors controlling gaseous emanations from low level radioactive waste disposal sites are assessed. Importance of gaseous fluxes of methane, carbon dioxide, and possible hydrogen from the site, stems from the inclusion of tritium and/or carbon-14 into the elemental composition of these compounds. In that the primary source of these gases is the biodegradation of organic components of the waste material, primary emphasis of the study involved an examination of the biochemical pathways producing methane, carbon dioxide, and hydrogen, and the environmental parameters controlling the activity of the microbial community involved. Initial examination of the data indicates that the ecosystem is anaerobic. As the result of the complexity of the pathway leading to methane production, factors such as substrate availability, which limit the initial reaction in the sequence, greatly affect the overall rate of methane evolution. Biochemical transformations of methane, hydrogen and carbon dioxide as they pass through the soil profile above the trench are discussed. Results of gas studies performed at three commercial low level radioactive waste disposal sites are reviewed. Methods used to obtain trench and soil gas samples are discussed. Estimates of rates of gas production and amounts released into the atmosphere (by the GASFLOW model) are evaluated. Tritium and carbon-14 gaseous compounds have been measured in these studies; tritiated methane is the major radionuclide species in all disposal trenches studied. The concentration of methane in a typical trench increases with the age of the trench, whereas the concentration of carbon dioxide is similar in all trenches.

Weiss, A.J.; Tate, R.L. III; Colombo, P.

1982-05-01T23:59:59.000Z

80

Low-level radioactive waste disposal in the United States: An overview of current commercial regulations and concepts  

SciTech Connect

Commercial low-level radioactive waste disposal in the United States is regulated by the US Nuclear Regulatory Commission (NRC) under 10 CFR 61 (1991). This regulation was issued in 1981 after a lengthy and thorough development process that considered the radionuclide concentrations and characteristics associated with commercial low-level radioactive waste streams; alternatives for waste classification; alternative technologies for low-level radioactive waste disposal; and data, modeling, and scenario analyses. The development process also included the publication of both draft and final environmental impact statements. The final regulation describes the general provisions; licenses; performance objectives; technical requirements for land disposal; financial assurances; participation by state governments and Indian tribes; and records, reports, tests, and inspections. This paper provides an overview of, and tutorial on, current commercial low-level radioactive waste disposal regulations in the United States.

Kennedy, W.E. Jr.

1993-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "gtcc low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

West Valley low-level radioactive waste site revisited: Microbiological analysis of leachates  

DOE Green Energy (OSTI)

The abundance and types of microorganisms in leachate samples from the West Valley low-level radioactive waste disposal site were enumerated. This study was undertaken in support of the study conducted by Ecology and Environment, Inc., to assess the extent of radioactive gas emissions from the site. Total aerobic and anaerobic bacteria were enumerated as colony forming units (CFU) by dilution agar plate technique, and denitrifiers, sulfate-reducers and methanogens by the most probable number technique (MPN). Of the three trenches 3, 9, and 11 sampled, trench 11 contained the most number of organisms in the leachate. Concentrations of carbon-14 and tritium were highest in trench 11 leachate. Populations of aerobes and anaerobes in trench 9 leachate were one order of magnitude less than in trench 11 leachate while the methanogens were three orders of magnitude greater than in trench 11 leachate. The methane content from trench 9 was high due to the presence of a large number of methanogens; the gas in this trench also contained the most radioactivity. Trench 3 leachate contained the least number of microorganisms. Comparison of microbial populations in leachates sampled from trenches 3 and 9 during October 1978 and 1989 showed differences in the total number of microbial types. Variations in populations of the different types of organisms in the leachate reflect the changing nutrient conditions in the trenches. 14 refs., 3 figs., 4 tabs.

Gillow, J.B.; Francis, A.J.

1990-10-01T23:59:59.000Z

82

Radioactive waste management complex low-level waste radiological composite analysis  

Science Conference Proceedings (OSTI)

The composite analysis estimates the projected cumulative impacts to future members of the public from the disposal of low-level radioactive waste (LLW) at the Idaho National Engineering and Environmental Laboratory (INEEL) Radioactive Waste Management Complex (RWMC) and all other sources of radioactive contamination at the INEEL that could interact with the LLW disposal facility to affect the radiological dose. Based upon the composite analysis evaluation, waste buried in the Subsurface Disposal Area (SDA) at the RWMC is the only source at the INEEL that will significantly interact with the LLW facility. The source term used in the composite analysis consists of all historical SDA subsurface disposals of radionuclides as well as the authorized LLW subsurface disposal inventory and projected LLW subsurface disposal inventory. Exposure scenarios evaluated in the composite analysis include all the all-pathways and groundwater protection scenarios. The projected dose of 58 mrem/yr exceeds the composite analysis guidance dose constraint of 30 mrem/yr; therefore, an options analysis was conducted to determine the feasibility of reducing the projected annual dose. Three options for creating such a reduction were considered: (1) lowering infiltration of precipitation through the waste by providing a better cover, (2) maintaining control over the RWMC and portions of the INEEL indefinitely, and (3) extending the period of institutional control beyond the 100 years assumed in the composite analysis. Of the three options investigated, maintaining control over the RWMC and a small part of the present INEEL appears to be feasible and cost effective.

McCarthy, J.M.; Becker, B.H.; Magnuson, S.O.; Keck, K.N.; Honeycutt, T.K.

1998-05-01T23:59:59.000Z

83

Model training curriculum for Low-Level Radioactive Waste Disposal Facility Operations  

Science Conference Proceedings (OSTI)

This document is to assist in the development of the training programs required to be in place for the operating license for a low-level radioactive waste disposal facility. It consists of an introductory document and four additional appendixes of individual training program curricula. This information will provide the starting point for the more detailed facility-specific training programs that will be developed as the facility hires and trains new personnel and begins operation. This document is comprehensive and is intended as a guide for the development of a company- or facility-specific program. The individual licensee does not need to use this model training curriculum as written. Instead, this document can be used as a menu for the development, modification, or verification of customized training programs.

Tyner, C.J.; Birk, S.M.

1995-09-01T23:59:59.000Z

84

Low-level radioactive waste technology: a selected, annotated bibliography. [416 references  

Science Conference Proceedings (OSTI)

This annotated bibliography of 416 references represents the third in a series to be published by the Hazardous Materials Information Center containing scientific, technical, economic, and regulatory information relevant to low-level radioactive waste technology. The bibliography focuses on disposal site, environmental transport, and waste treatment studies as well as general reviews on the subject. The publication covers both domestic and foreign literature for the period 1951 to 1981. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Environmental Transport; General Studies and Reviews; Geology, Hydrology, and Site Resources; Regulatory and Economic Aspects; Social Aspects; Transportation Technology; Waste Production; and Waste Treatment. Entries in each of the chapters are further classified as a field study, laboratory study, theoretical study, or general overview involving one or more of these research areas.

Fore, C.S.; Carrier, R.F.; Brewster, R.H.; Hyder, L.K.; Barnes, K.A.

1981-10-01T23:59:59.000Z

85

Shallow land burial of low-level radioactive wastes. A selected, annotated bibliography  

SciTech Connect

The data file was built to provide information support to DOE researchers in the field of low-level radioactive waste disposal and management. The scope of the data base emphasizes studies which deal with the ''old'' Manhattan sites, commercial disposal sites, and the specific parameters which affect the soil and geologic migration of radionuclides. Specialized data fields have been incorporated into the data base to improve the ease and accuracy of locating pertinent references. Specific radionuclides for which data are presented are listed in the ''Measured Radionuclides'' field, and specific parameters which affect the migration of these radionuclides are presented in the ''Measured Parameters'' field. The 504 references are rated indicating applicability to shallow land burial technology and whether interpretation is required. Indexes are provided for author, geographic location, title, measured parameters, measured radionuclides, keywords, subject categories, and publication description. (DLC)

Fore, C.S.; Vaughan, N.D.; Tappen, J. (comps.)

1978-06-01T23:59:59.000Z

86

An experimental survey of the factors that affect leaching from low-level radioactive waste forms  

SciTech Connect

This report represents the results of an experimental survey of the factors that affect leaching from several types of solidified low-level radioactive waste forms. The goal of these investigations was to determine those factors that accelerate leaching without changing its mechanism(s). Typically, although not in every case,the accelerating factors include: increased temperature, increased waste loading (i.e., increased waste to binder ratio), and decreased size (i.e., decreased waste form volume to surface area ratio). Additional factors that were studied were: increased leachant volume to waste form surface area ratio, pH, leachant composition (groundwaters, natural and synthetic chelating agents), leachant flow rate or replacement frequency and waste form porosity and surface condition. Other potential factors, including the radiation environment and pressure, were omitted based on a survey of the literature. 82 refs., 236 figs., 13 tabs.

Dougherty, D.R.; Pietrzak, R.F.; Fuhrmann, M.; Colombo, P.

1988-09-01T23:59:59.000Z

87

A data base for low-level radioactive waste disposal sites  

SciTech Connect

A computerized database was developed to assist the US Environmental Protection Agency (EPA) in evaluating methods and data for characterizing health hazards associated with land and ocean disposal options for low-level radioactive wastes. The data cover 1984 to 1987. The types of sites considered include Nuclear Regulatory Commission (NRC) licensed commercial disposal sites, EPA National Priority List (NPL) sites, US Department of Energy (DOE) Formerly Utilized Sites Remedial Action Project (FUSRAP) and DOE Surplus Facilities Management Program (SFMP) sites, inactive US ocean disposal sites, and DOE/Department of Defense facilities. Sources of information include reports from EPA, the US Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC), as well as direct communication with individuals associated with specific programs. The data include site descriptions, waste volumes and activity levels, and physical and radiological characterization of low-level wastes. Additional information on mixed waste, packaging forms, and disposal methods were compiled, but are not yet included in the database. 55 refs., 4 figs., 2 tabs.

Daum, M.L.; Moskowitz, P.D.

1989-07-01T23:59:59.000Z

88

Evaluation of ultrafiltration membranes for treating low-level radioactive contaminated liquid waste  

SciTech Connect

A series of experiments were performed on Waste Disposal Facility (WD) influent using Romicon hollow fiber ultrafiltration modules with molecular weight cutoffs ranging from 2000 to 80,000. The rejection of conductivity was low in most cases. The rejection of radioactivity ranged from 90 to 98%, depending on the membrane type and on the feed concentration. Typical product activity ranged from 7 to 100 dis/min/ml of alpha radiation. Experiments were also performed on alpha-contaminated laundry wastewater. Results ranged from 98 to >99.8%, depending on the membrane type. This yielded a product concentration of less than 0.1 dis/min/ml of alpha radiation. Tests on PP-Building decontamination water yielded rejections of 85 to 88% alpha radiation depending on the membrane type. These experiments show that the ability to remove radioactivity by membrane is a function of the contents of the waste stream because the radioactivity in the wastewater is in various forms: ionic, polymeric, colloidal, and absorbed onto suspended solids. Although removal of suspended or colloidal material is very high, removal of ionic material is not as effective. Alpha-contaminated laundry wastewater proved to be the easiest to decontaminate, whereas the low-level PP-Building decontamination water proved to be the most difficult to decontaminate. Decontamination of the WD influent, a combined waste stream, varied considerably from day to day because of its constantly changing makeup. The WD influent was also treated with various substances, such as polyelectrolytes, complexing agents, and coagulants, to determine if these additives would aid in the removal of radioactive material from the various wastewaters by complexing the ionic species. At the present time, none of the additives evaluated has had much effect; but experiments are continuing.

Koenst, J.W.; Roberts, R.C.

1978-03-31T23:59:59.000Z

89

1992 annual report on low-level radioactive waste management progress; Report to Congress in response to Public Law 99-240  

Science Conference Proceedings (OSTI)

This report summarizes the progress States and compact regions made during 1992 in establishing new low-level radioactive waste disposal facilities. It also provides summary information on the volume of low-level radioactive waste received for disposal in 1992 by commercially operated low-level radioactive waste disposal facilities. This report is in response to section 7 (b) of the Low-Level Radioactive Waste Policy Act.

NONE

1993-11-01T23:59:59.000Z

90

Vitrification of low-level radioactive waste in a slagging combustor  

Science Conference Proceedings (OSTI)

The suitability of a Babcock & Wilcox cyclone furnace to vitrify a low-level radioactive liquid waste was evaluated. The feed stream contained a mixture of simulated radioactive liquid waste and glass formers. The U.S. Department of Energy is testing technologies to vitrify over 60,000,000 gallons of this waste at the Hanford site. The tests reported here demonstrated the technical feasibility of Babcock & Wilcox`s cyclone vitrification technology to produce a glass for near surface disposal. Glass was produced over a period of 24-hours at a rate of 100 to 150 lb/hr. Based on glass analyses performed by an independent laboratory, all of the glass samples had leachabilities at least as low as those of the laboratory glass that the recipe was based upon. This paper presents the results of this demonstration, and includes descriptions of feed preparation, glass properties, system operation, and flue gas composition. The paper also provides discussions on key technical issues required to match cyclone furnace vitrification technology to this U.S. Department of Energy Hanford site application.

Holmes, M.J.; Downs, W.; Higley, B.A. [and others

1995-07-01T23:59:59.000Z

91

Extended storage of low-level radioactive waste: potential problem areas  

DOE Green Energy (OSTI)

If a state or state compact does not have adequate disposal capacity for low-level radioactive waste (LLRW) by 1986 as required by the Low-Level Waste Policy Act, then extended storage of certain LLRW may be necessary. The issue of extended storage of LLRW is addressed in order to determine for the Nuclear Regulatory Commission the areas of concern and the actions recommended to resolve these concerns. The focus is on the properties and behavior of the waste form and waste container. Storage alternatives are considered in order to characterize the likely storage environments for these wastes. The areas of concern about extended storage of LLRW are grouped into two categories: 1. Behavior of the waste form and/or container during storage, e.g., radiolytic gas generation, radiation-enhanced degradation of polymeric materials, and corrosion. 2. Effects of extended storage on the properties of the waste form and/or container that are important after storage (e.g., radiation-induced oxidative embrittlement of high-density polyethylene and the weakening of steel containers resulting from corrosion by the waste). The additional information and actions required to address these concerns are discussed and, in particular, it is concluded that further information is needed on the rates of corrosion of container material by Class A wastes and on the apparent dose-rate dependence of radiolytic processes in Class B and C waste packages. Modifications to the guidance for solidified wastes and high-integrity containers in NRC's Technical Position on Waste Form are recommended. 27 references.

Siskind, B.; Dougherty, D.R.; MacKenzie, D.R.

1985-01-01T23:59:59.000Z

92

Comparison of selected DOE and non-DOE requirements, standards, and practices for Low-Level Radioactive Waste Disposal  

SciTech Connect

This document results from the Secretary of Energy`s response to Defense Nuclear Facilities Safety Board Recommendation 94--2. The Secretary stated that the US Department of Energy (DOE) would ``address such issues as...the need for additional requirements, standards, and guidance on low-level radioactive waste management. `` The authors gathered information and compared DOE requirements and standards for the safety aspects Of low-level disposal with similar requirements and standards of non-DOE entities.

Cole, L. [Cole and Associates (United States); Kudera, D.; Newberry, W. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

1995-12-01T23:59:59.000Z

93

Microbial degradation of low-level radioactive waste. Volume 1, Annual report for FY 1993  

SciTech Connect

The Nuclear Regulatory Commission stipulates that disposed low-level radioactive waste (LLW) be stabilized. Because of apparent ease of use and normal structural integrity, cement has been widely used as a binder to solidify LLW. However, the resulting waste forms are sometimes susceptible to failure due to the actions of waste constituents, stress, and environment. This report reviews laboratory efforts that are being developed to address the effects of microbiologically influenced chemical attack on cement-solidified LLW. Groups of microorganisms are being employed that are capable of metabolically converting organic and inorganic substrates into organic and mineral acids. Such acids aggressively react with cement and can ultimately lead to structural failure. Results on the application of mechanisms inherent in microbially influenced degradation of cement-based material are the focus of this report. Sufficient data-validated evidence of the potential for microbially influenced deterioration of cement-solidified LLW has been developed during the course of this study. These data support the continued development of appropriate tests necessary to determine the resistance of cement-solidified LLW to microbially induced degradation that could impact the stability of the waste form. They also justify the continued effort of enumeration of the conditions necessary to support the microbiological growth and population expansion.

Rogers, R.D.; Hamilton, M.A.; Veeh, R.H.; McConnell, J.W. Jr.

1994-04-01T23:59:59.000Z

94

Methods for verifying compliance with low-level radioactive waste acceptance criteria  

Science Conference Proceedings (OSTI)

This report summarizes the methods that are currently employed and those that can be used to verify compliance with low-level radioactive waste (LLW) disposal facility waste acceptance criteria (WAC). This report presents the applicable regulations representing the Federal, State, and site-specific criteria for accepting LLW. Typical LLW generators are summarized, along with descriptions of their waste streams and final waste forms. General procedures and methods used by the LLW generators to verify compliance with the disposal facility WAC are presented. The report was written to provide an understanding of how a regulator could verify compliance with a LLW disposal facility`s WAC. A comprehensive study of the methodology used to verify waste generator compliance with the disposal facility WAC is presented in this report. The study involved compiling the relevant regulations to define the WAC, reviewing regulatory agency inspection programs, and summarizing waste verification technology and equipment. The results of the study indicate that waste generators conduct verification programs that include packaging, classification, characterization, and stabilization elements. The current LLW disposal facilities perform waste verification steps on incoming shipments. A model inspection and verification program, which includes an emphasis on the generator`s waste application documentation of their waste verification program, is recommended. The disposal facility verification procedures primarily involve the use of portable radiological survey instrumentation. The actual verification of generator compliance to the LLW disposal facility WAC is performed through a combination of incoming shipment checks and generator site audits.

NONE

1993-09-01T23:59:59.000Z

95

Concentrating solar collector system for the evaporation of low-level radioactive waste water  

DOE Green Energy (OSTI)

The Los Alamos National Laboratory has recently been awarded a grant under the Solar Federal Buildings Program to design, construct, and operate a high-temperature solar energy system for the processing of low-level radioactive waste water. Conceptual design studies have been completed, and detailed design work is under way for a solar system to produce process heat to evaporate 38,000 gal (143,830 L) of waste water per month. The system will use approximately 11,000 ft/sup 2/ (1022 m/sup 2/) of concentrating parabolic trough collectors operating at about 500/sup 0/F (262/sup 0/C). Construction of the system is anticipated to begin in 1981. Performance optimization of collector array size and configuration, storage medium and capacity, system operation, and control schemes are done using the active solar system simulator in the DOE-2 building energy analysis computer program. Results of this optimization are reported. This project represents a unique application of solar energy to an increasingly significant problem area in the energy field.

Diamond, S.C.; Cappiello, C.C.

1981-01-01T23:59:59.000Z

96

Gas generation from low-level radioactive waste: Concerns for disposal  

DOE Green Energy (OSTI)

The Advisory Committee on Nuclear Waste (ACNW) has urged the Nuclear Regulatory Commission (NRC) to reexamine the topic of hydrogen gas generation from low-level radioactive waste (LLW) in closed spaces to ensure that the slow buildup of hydrogen from water-bearing wastes in sealed containers does not become a problem for long-term safe disposal. Brookhaven National Laboratory (BNL) has prepared a report, summarized in this paper, for the NRC to respond to these concerns. The paper discusses the range of values for G(H{sub 2}) reported for materials of relevance to LLW disposal; most of these values are in the range of 0.1 to 0.6. Most studies of radiolytic hydrogen generation indicate a leveling off of pressurization, probably because of chemical kinetics involving, in many cases, the radiolysis of water within the waste. Even if no leveling off occurs, realistic gas leakage rates (indicating poor closure by gaskets on drums and liners) will result in adequate relief of pressure for radiolytic gas generation from the majority of commercial sector LLW packages. Biodegradative gas generation, however, could pose a pressurization hazard even at realistic gas leakage rates. Recommendations include passive vents on LLW containers (as already specified for high integrity containers) and upper limits to the G values and/or the specific activity of the LLW.

Siskind, B.

1992-01-01T23:59:59.000Z

97

Gas generation from low-level radioactive waste: Concerns for disposal  

DOE Green Energy (OSTI)

The Advisory Committee on Nuclear Waste (ACNW) has urged the Nuclear Regulatory Commission (NRC) to reexamine the topic of hydrogen gas generation from low-level radioactive waste (LLW) in closed spaces to ensure that the slow buildup of hydrogen from water-bearing wastes in sealed containers does not become a problem for long-term safe disposal. Brookhaven National Laboratory (BNL) has prepared a report, summarized in this paper, for the NRC to respond to these concerns. The paper discusses the range of values for G(H{sub 2}) reported for materials of relevance to LLW disposal; most of these values are in the range of 0.1 to 0.6. Most studies of radiolytic hydrogen generation indicate a leveling off of pressurization, probably because of chemical kinetics involving, in many cases, the radiolysis of water within the waste. Even if no leveling off occurs, realistic gas leakage rates (indicating poor closure by gaskets on drums and liners) will result in adequate relief of pressure for radiolytic gas generation from the majority of commercial sector LLW packages. Biodegradative gas generation, however, could pose a pressurization hazard even at realistic gas leakage rates. Recommendations include passive vents on LLW containers (as already specified for high integrity containers) and upper limits to the G values and/or the specific activity of the LLW.

Siskind, B.

1992-04-01T23:59:59.000Z

98

Equity of commercial low-level radioactive waste disposal fees. Report to Congress  

SciTech Connect

In the Report accompanying the Fiscal Year 1997 Senate Energy and Water Development Appropriations Bill, the Senate Appropriations Committee directed the Department of Energy (DOE) to prepare a study of the costs of operating a low-level radioactive waste (LLW) disposal facility such as the one at Barnwell, South Carolina, and to determine whether LLW generators are paying equitable disposal fees. The disposal costs of four facilities are reviewed in this report, two operating facilities and two planned facilities. The operating facilities are located at Barnwell, South Carolina, and Richland, Washington. They are operated by Chem-Nuclear, LLC, (Chem-Nuclear), and US Ecology, Inc., (US Ecology), respectively. The planned facilities are expected to be built at Ward Valley, California, and Sierra Blanca, Texas. They will be operated by US Ecology and the State of Texas, respectively. This report found that disposal fees vary significantly among facilities for a variety of reasons. However, the information suggests that at each disposal facility, LLW generators pay equitable disposal fees.

1998-02-01T23:59:59.000Z

99

Environmental assessment for Sandia National Laboratories/New Mexico offsite transportation of low-level radioactive waste  

Science Conference Proceedings (OSTI)

Sandia National Laboratories, New Mexico (SNL/NM) is managed and operated by Sandia Corporation, a Lockheed Martin Company. SNL/NM is located on land owned by the U.S. Department of Energy (DOE) within the boundaries of the Kirtland Air Force Base (KAFB) in Albuquerque, New Mexico. The major responsibilities of SNL/NM are the support of national security and energy projects. Low-level radioactive waste (LLW) is generated by some of the activities performed at SNL/NM in support of the DOE. This report describes potential environmental effects of the shipments of low-level radioactive wastes to other sites.

NONE

1996-09-01T23:59:59.000Z

100

Fifteenth annual U.S. Department of Energy low-level radioactive waste management conference: Agenda and abstracts  

SciTech Connect

The goal of the conference was to give the opportunity to identify and discuss low-level radioactive waste management issues, share lessons learned, and hear about some of the latest advances in technology. Abstracts of the presentations are arranged into the following topical sections: (1) Performance Management Track: Performance assessment perspectives; Site characterization; Modeling and performance assessment; and Remediation; (2) Technical Track: Strategic planning; Tools and options; Characterization and validation; Treatment updates; Technology development; and Storage; (3) Institutional Track: Orders and regulatory issues; Waste management options; Legal, economic, and social issues; Public involvement; Siting process; and Low-level radioactive waste policy amendment acts.

NONE

1993-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "gtcc low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Intruder scenarios for site-specific low-level radioactive waste classification  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) has revised its low-level radioactive waste (LLW) management requirements and guidelines for waste generated at its facilities supporting defense missions. Specifically, draft DOE Order 5820.2A, Chapter 3 describes the purpose, policy, and requirements necessary for the management of defense LLW. The draft DOE policy calls for LLW operations to be managed to protect the health and safety of the public, preserve the environment, and ensure that no remedial action will be necessary after termination of operations. The basic approach used by DOE is to establish overall performance objectives, in terms of groundwater protection and public radiation dose limits, and to require site-specific performance assessments to determine compliance. As a result of these performance assessments, each site will develop waste acceptance criteria that define the allowable quantities and concentrations of specific radioisotopes. Additional limitations on waste disposal design, waste form, and waste treatment will also be developed on a site-specific basis. As a key step in the site-specific performance assessments, an evaluation must be conducted of potential radiation doses to intruders who may inadvertently move onto a closed DOE LLW disposal site after loss of institutional controls. This report (1) describes the types of intruder scenarios that should be considered when performing this step of the site-specific performance assessment, (2) provides the results of generic calculations performed using unit concentrations of various radionuclides as a comparison of the magnitude of importance of the various intruder scenarios, and (3) shows the relationship between the generic doses and waste classification limits for defense wastes.

Kennedy, W.E. Jr.; Peloquin, R.A.

1988-09-01T23:59:59.000Z

102

Use of engineered soils and other site modifications for low-level radioactive waste disposal  

SciTech Connect

The U.S. Nuclear Regulatory Commission requires that low-level radioactive waste (LLW) disposal facilities be designed to minimize contact between waste and infiltrating water through the use of site design features. The purpose of this investigation is to identify engineered barriers and evaluate their ability to enhance the long-term performance of an LLW disposal facility. Previously used barriers such as concrete overpacks, vaults, backfill, and engineered soil covers, are evaluated as well as state-of-the-art barriers, including an engineered sorptive soil layer underlying a facility and an advanced design soil cover incorporating a double-capillary layer. The purpose of this investigation is also to provide information in incorporating or excluding specific engineered barriers as part of new disposal facility designs. Evaluations are performed using performance assessment modeling techniques. A generic reference disposal facility design is used as a baseline for comparing the improvements in long-term performance offered by designs incorporating engineered barriers in generic and humid environments. These evaluations simulate water infiltration through the facility, waste leaching, radionuclide transport through the facility, and decay and ingrowth. They also calculate a maximum (peak annual) dose for each disposal system design. A relative dose reduction factor is calculated for each design evaluated. The results of this investigation are presented for concrete overpacks, concrete vaults, sorptive backfill, sorptive engineered soil underlying the facility, and sloped engineered soil covers using a single-capillary barrier and a double-capillary barrier. Designs using combinations of barriers are also evaluated. These designs include a vault plus overpacks, sorptive backfill plus overpacks, and overpack with vault plus sorptive backfill, underlying sorptive soil, and engineered soil cover.

Not Available

1994-08-01T23:59:59.000Z

103

Recommended Changes to Guidelines for Operating an Interim On-Site Low Level Radioactive Waste Storage Facility - For NRC Review  

Science Conference Proceedings (OSTI)

The majority of commercial U.S. nuclear stations have constructed on-site low-level waste (LLW) storage facilities, and most of these same utilities are experiencing or have experienced at least one period of interim on-site storage. EPRI has issued two revisions of Guidelines for Operating an Interim On-Site Low Level Radioactive Waste Storage Facility. Revision 1 of these Guidelines focused on operational considerations and incorporated many of the lessons learned while operating various types of LLW s...

2011-12-19T23:59:59.000Z

104

Disposal of low-level radioactive biomedical wastes: a problem in regulation, not science  

SciTech Connect

The author discusses the public fear of radiation at any level, and shows how small the radioactivity from radioactive medical waste is compared to natural radioactivity. In view of this the author argues for a change in the Nuclear Regulatory Commission rules.

Yalow, R.S.

1981-05-01T23:59:59.000Z

105

Interim Storage of Greater than Class C Low Level Waste, Rev. 1  

Science Conference Proceedings (OSTI)

This report serves as a guideline for the safe, interim on-site storage of low-level radioactive waste (LLW) that exceeds the activity limitations for near-surface disposal set forth in 10 CFR 61.55. The nuclear industry refers to this waste as "greater than Class C (GTTC) waste" as it exceeds the Class C limits in the referenced regulation. At the present time, there is no licensed disposal facility for GTCC waste in the United States . This situation forces commercial nuclear reactors to store it on si...

2003-07-23T23:59:59.000Z

106

Discovery of underground argon with low level of radioactive 39Ar and possible applications to WIMP dark matter detectors  

E-Print Network (OSTI)

We report on the first measurement of 39Ar in argon from underground natural gas reservoirs. The gas stored in the US National Helium Reserve was found to contain a low level of 39Ar. The ratio of 39Ar to stable argon was found to be important backgrounds in argon detectors for WIMP dark matter searches. The findings reported demonstrate the possibility of constructing large multi-ton argon detectors with low radioactivity suitable for WIMP dark matter searches.

Galbiati, C

2007-01-01T23:59:59.000Z

107

Discovery of underground argon with low level of radioactive 39Ar and possible applications to WIMP dark matter detectors  

E-Print Network (OSTI)

We report on the first measurement of 39Ar in argon from underground natural gas reservoirs. The gas stored in the US National Helium Reserve was found to contain a low level of 39Ar. The ratio of 39Ar to stable argon was found to be important backgrounds in argon detectors for WIMP dark matter searches. The findings reported demonstrate the possibility of constructing large multi-ton argon detectors with low radioactivity suitable for WIMP dark matter searches.

C. Galbiati; R. Purtschert

2007-12-03T23:59:59.000Z

108

Design and operational considerations of United States commercial near-surface low-level radioactive waste disposal facilities  

Science Conference Proceedings (OSTI)

In accordance with the Low-Level Radioactive Waste Policy Amendments Act of 1985, states are responsible for providing for disposal of commercially generated low-level radioactive waste (LLW) within their borders. LLW in the US is defined as all radioactive waste that is not classified as spent nuclear fuel, high-level radioactive waste, transuranic waste, or by-product material resulting from the extraction of uranium from ore. Commercial waste includes LLW generated by hospitals, universities, industry, pharmaceutical companies, and power utilities. LLW generated by the country`s defense operations is the responsibility of the Federal government and its agency, the Department of Energy. The commercial LLRW disposal sites discussed in this report are located near: Sheffield, Illinois (closed); Maxey Flats, Kentucky (closed); Beatty, Nevada (closed); West Valley, New York (closed); Barnwell, South Carolina (operating); Richland, Washington (operating); Ward Valley, California, (proposed); Sierra Blanca, Texas (proposed); Wake County, North Carolina (proposed); and Boyd County, Nebraska (proposed). While some comparisons between the sites described in this report are appropriate, this must be done with caution. In addition to differences in climate and geology between sites, LLW facilities in the past were not designed and operated to today`s standards. This report summarizes each site`s design and operational considerations for near-surface disposal of low-level radioactive waste. The report includes: a description of waste characteristics; design and operational features; post closure measures and plans; cost and duration of site characterization, construction, and operation; recent related R and D activities for LLW treatment and disposal; and the status of the LLW system in the US.

Birk, S.M.

1997-10-01T23:59:59.000Z

109

Guide for Operating an Interim On-Site Low Level Radioactive Waste Storage Facility  

Science Conference Proceedings (OSTI)

As a result of increasing low-level waste (LLW) disposal site uncertainty, the industry expects that utilities will have to rely on their own on-site storage LLW storage programs in the near future. This report captures essential information related to the operation of an on-site LLW storage program. The report is a comprehensive reference to which utilities can routinely refer throughout the development and implementation of the storage program and operation of the storage facility.

2004-11-16T23:59:59.000Z

110

CEMENTITIOUS BARRIERS MODELING FOR PERFORMANCE ASSESSMENTS OF SHALLOW LAND BURIAL OF LOW LEVEL RADIOACTIVE WASTE - 9243  

SciTech Connect

The Cementitious Barriers Partnership (CBP) was created to develop predictive capabilities for the aging of cementitious barriers over long timeframes. The CBP is a multi-agency, multi-national consortium working under a U.S. Department of Energy (DOE) Environmental Management (EM-21) funded Cooperative Research and Development Agreement (CRADA) with the Savannah River National Laboratory (SRNL) as the lead laboratory. Members of the CBP are SRNL, Vanderbilt University, the U.S. Nuclear Regulatory Commission (USNRC), National Institute of Standards and Technology (NIST), SIMCO Technologies, Inc. (Canada), and the Energy Research Centre of the Netherlands (ECN). A first step in developing advanced tools is to determine the current state-of-the-art. A review has been undertaken to assess the treatment of cementitious barriers in Performance Assessments (PA). Representatives of US DOE sites which have PAs for their low level waste disposal facilities were contacted. These sites are the Idaho National Laboratory, Oak Ridge National Laboratory, Los Alamos National Laboratory, Nevada Test Site, and Hanford. Several of the more arid sites did not employ cementitious barriers. Of those sites which do employ cementitious barriers, a wide range of treatment of the barriers in a PA was present. Some sites used conservative, simplistic models that even though conservative still showed compliance with disposal limits. Other sites used much more detailed models to demonstrate compliance. These more detailed models tend to be correlation-based rather than mechanistically-based. With the US DOE's Low Level Waste Disposal Federal Review Group (LFRG) moving towards embracing a risk-based, best estimate with an uncertainties type of analysis, the conservative treatment of the cementitious barriers seems to be obviated. The CBP is creating a tool that adheres to the LFRG chairman's paradigm of continuous improvement.

Taylor, G

2009-01-09T23:59:59.000Z

111

The determination of technetium-99 in low-level radioactive waste  

SciTech Connect

A method has been developed for the separation and purification of {sup 99}Tc in nuclear power plant radioactive waste samples. The classical iron hydroxide and carbonate precipitations are followed by solid phase extraction. The pure {sup 99}Tc is quantified using liquid scintillation spectrometry. Technetium-99m is used as an internal radiotracer to determine the radiochemical recovery for the process. The quality of analytical results obtained was within the 15% precision and accuracy criteria established for this technique at the Yankee Atomic Environmental Laboratory (YAEL).

Banavali, A.D.; Raimondi, J.M.; Moreno, E.M.; McCurdy, D.E. [Yankee Automic Electric Company, Bolton, MA (United States)

1995-12-31T23:59:59.000Z

112

Radiolytic gas generation from cement-based waste hosts for DOE low-level radioactive wastes  

DOE Green Energy (OSTI)

Using cement-based immobilization binders with simulated radioactive waste containing sulfate, nitrate, nitrite, phosphate, and fluoride anions, the gamma- and alpha-radiolytic gas generation factors (G/sub t/, molecules/100 eV) and gas compositions were measured on specimens of cured grouts. These tests studied the effects of; (1) waste composition; (2) the sample surface-to-volume ratio; (3) the waste slurry particle size; and (4) the water content of the waste host formula. The radiolysis test vessels were designed to minimize the ''dead'' volume and to simulate the configuration of waste packages.

Dole, L.R.; Friedman, H.A.

1986-01-01T23:59:59.000Z

113

Melting of low-level radioactive non-ferrous metal for release  

SciTech Connect

Siempelkamp Nukleartechnik GmbH has gained lots of experience from melting ferrous metals for recycling in the nuclear cycle as well as for release to general reuse. Due to the fact that the world market prices for non-ferrous metals like copper, aluminium or lead raised up in the past and will remain on a high level, recycling of low-level contaminated or activated metallic residues from nuclear decommissioning becomes more important. Based on the established technology for melting of ferrous metals in a medium frequency induction furnace, different melt treatment procedures for each kind of non-ferrous metals were developed and successfully commercially converted. Beside different procedures also different melting techniques such as crucibles, gas burners, ladles etc. are used. Approximately 340 Mg of aluminium, a large part of it with a uranium contamination, have been molten successfully and have met the release criteria of the German Radiation Protection Ordinance. The experience in copper and brass melting is based on a total mass of 200 Mg. Lead melting in a special ladle by using a gas heater results in a total of 420 Mg which could be released. The main goal of melting of non-ferrous metals is release for industrial reuse after treatment. Especially for lead, a cooperation with a German lead manufacturer also for recycling of non releasable lead is being planned. (authors)

Quade, Ulrich; Kluth, Thomas; Kreh, Rainer [Siempelkamp Nukleartechnik GmbH (Germany)

2007-07-01T23:59:59.000Z

114

Summary of expenditures of rebates from the low-level radioactive waste surcharge escrow account for calendar year 1988  

SciTech Connect

This is the third report submitted to Congress under Public Law 99-240, The Low-Level Radioactive Waste Policy Amendments Act of 1985'' (the Act). This section of the Act requires the Department of Energy to summarize the annual expenditures made by states and compacts of funds disbursed from the Department's Surcharge Escrow Account, and to assess the compliance of these expenditures with the specified limitations. This report covers expenditures made during calendar year 1988 from funds disbursed to states and compacts following the July 1, 1986, and January 1, 1988, milestones. The next milestone in the Act is January 1, 1990, following which the accumulated surcharge deposits in the Department's Surcharge Escrow Account will again be disbursed. The Act authorizes states with operating low-level radioactive waste disposal sites (sited states) to collect surcharges on disposal of waste from generators located in compact regions currently without disposal sites (non-sited compacts) and in states that do not have sites and that are not members of compacts (nonmember states). The Act requires the sited states to make a monthly deposit to the Department of Energy's Surcharge Escrow Account of 25 percent of the surcharges they collect. Following each milestone date, the Department is required to disburse these funds, with accrued interest, back to those non-sited compacts and nonmember states found in compliance with the milestone requirements for new disposal site development. 4 tabs.

Not Available

1989-06-01T23:59:59.000Z

115

Laboratory scale vitrification of low-level radioactive nitrate salts and soils from the Idaho National Engineering Laboratory  

SciTech Connect

INEL has radiologically contaminated nitrate salt and soil waste stored above and below ground in Pad A and the Acid Pit at the Radioactive Waste Management Complex. Pad A contain uranium and transuranic contaminated potassium and sodium nitrate salts generated from dewatered waste solutions at the Rocky Flats Plant. The Acid Pit was used to dispose of liquids containing waste mineral acids, uranium, nitrate, chlorinated solvents, and some mercury. Ex situ vitrification is a high temperature destruction of nitrates and organics and immobilizes hazardous and radioactive metals. Laboratory scale melting of actual radionuclides containing INEL Pad A nitrate salts and Acid Pit soils was performed. The salt/soil/additive ratios were varied to determine the range of glass compositions (resulted from melting different wastes); maximize mass and volume reduction, durability, and immobilization of hazardous and radioactive metals; and minimize viscosity and offgas generation for wastes prevalent at INEL and other DOE sites. Some mixtures were spiked with additional hazardous and radioactive metals. Representative glasses were leach tested and showed none. Samples spiked with transuranic showed low nuclide leaching. Wasteforms were two to three times bulk densities of the salt and soil. Thermally co-processing soils and salts is an effective remediation method for destroying nitrate salts while stabilizing the radiological and hazardous metals they contain. The measured durability of these low-level waste glasses approached those of high-level waste glasses. Lab scale vitrification of actual INEL contaminated salts and soils was performed at General Atomics Laboratory as part of the INEL Waste Technology Development and Environmental Restoration within the Buried Waste Integrated Demonstration Program.

Shaw, P. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Anderson, B. [General Atomics, San Diego, CA (United States). NRT Div.; Davis, D. [Envitco Inc., Toledo, OH (United States)

1993-07-01T23:59:59.000Z

116

Characterization of Class A low-level radioactive waste 1986--1990. Volume 2: Main report -- Part A  

SciTech Connect

Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen & Associates, Inc. (SC&A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG&G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the, waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 through 7 contain Appendices A through P with supporting information.

Dehmel, J.C.; Loomis, D.; Mauro, J. [S. Cohen & Associates, Inc., McLean, VA (United States); Kaplan, M. [Eastern Research Group, Inc., Lexington, MA (United States)

1994-01-01T23:59:59.000Z

117

Characterization of Class A low-level radioactive waste 1986--1990. Volume 6: Appendices G--J  

SciTech Connect

Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen & Associates, Inc. (SC&A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG&G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 through 7 contain Appendices A through P with supporting information.

Dehmel, J.C.; Loomis, D.; Mauro, J. [S. Cohen & Associates, Inc., McLean, VA (United States); Kaplan, M. [Eastern Research Group, Inc., Lexington, MA (United States)

1994-01-01T23:59:59.000Z

118

Characterization of Class A low-level radioactive waste 1986--1990. Volume 7: Appendices K--P  

SciTech Connect

Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen & Associates, Inc. (SC&A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG&G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the waste from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 through 7 contain Appendices A through P with supporting information.

Dehmel, J.C.; Loomis, D.; Mauro, J. [S. Cohen & Associates, Inc., McLean, VA (United States); Kaplan, M. [Eastern Research Group, Inc., Lexington, MA (United States)

1994-01-01T23:59:59.000Z

119

1991 annual report on low-level radioactive waste management progress. Report to Congress in response to Public Law 99-240  

Science Conference Proceedings (OSTI)

This report summarizes the progress during 1991 of States and compact regions in establishing new low-level radioactive waste disposal capacity. It has been prepared in response to requirements in Section 7 (b) of Title I of Public Law 99-240, the Low-Level Radioactive Waste Policy Amendments Act of 1985 (the Act). By the end of 1991, 9 compact regions (totaling 42 States) were functioning with plans to establish low-level radioactive waste disposal facilities: Appalachian, Central, Central Midwest, Midwest, Northeast, Northwest, Rocky Mountain, Southeast, and Southwestern. Also planning to construct disposal facilities, but unaffiliated with a compact region, are Maine, Massachusetts, New York, Texas, and Vermont. The District of Columbia, New Hampshire, Puerto Rico, Rhode Island and Michigan are unaffiliated with a compact region and do not plan to construct a disposal facility. Michigan was the host State for the Midwest compact region until July 1991 when the Midwest Interstate Compact Commission revoked Michigan`s membership. Only the Central, Central Midwest, and Southwestern compact regions met the January 1, 1992, milestone in the Act to submit a complete disposal license application. None of the States or compact regions project meeting the January 1, 1993, milestone to have an operational low-level radioactive waste disposal facility. Also summarized are significant events that occurred in low-level radioactive waste management in 1991 and early 1992, including the 1992 United States Supreme Court decision in New York v. United States in which New York challenged the constitutionality of the Act, particularly the ``take-title`` provision. Summary information is also provided on the volume of low-level radioactive waste received for disposal in 1991 by commercially operated low-level radioactive waste disposal facilities.

Not Available

1992-11-01T23:59:59.000Z

120

Summary of expenditures of rebates from the low-level radioactive waste surcharge escrow account for calendar year 1993: Report to Congress  

SciTech Connect

This is the eighth report submitted to Congress in accordance with section 5(d)(2)(E)(ii)(II) of the Low-Level Radioactive Waste Policy Act (the Act). This section of the Act directs the Department of Energy (DOE) to summarize the annual expenditures of funds disbursed from the DOE surcharge escrow account and to assess compliance of these expenditures with the following limitations specified in the Act: establish low-level radioactive waste disposal facilities; mitigate the impact of low-level radioactive waste disposal facilities on the host State; regulate low-level radioactive waste disposal facilities; or ensure the decommissioning, closure, and care during the period of institutional control of low-level radioactive waste disposal facilities. In addition to placing these limitations on the use of these funds, the Act also requires all nonsited compact regions and nonmember States to provide DOE with an itemized report of their expenditures on December 31 of each year in which funds are expended. Within six months after receiving the individual reports, the Act requires the Secretary of Energy to furnish Congress with a summary of the reported expenditures and an assessment of compliance with the specified usage limitations. This report fulfills that requirement.

Not Available

1994-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "gtcc low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Low Level Waste Disposition - Quantity and Inventory | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low Level Waste Disposition - Quantity and Inventory Low Level Waste Disposition - Quantity and Inventory Low Level Waste Disposition - Quantity and Inventory This study has been prepared by the Used Fuel Disposition (UFD) campaign of the Fuel Cycle Research and Development (FCR&D) program. The purpose of this study is to provide an estimate of the volume of low level waste resulting from a variety of commercial fuel cycle alternatives in order to support subsequent system-level evaluations of disposal system performance. This study provides an estimate of Class A/B/C low level waste (LLW), greater than Class C (GTCC) waste, mixed LLW and mixed GTCC waste generated from the following initial set of fuel cycles and recycling processes: 1. Operations at a geologic repository based upon a once through light

122

Low Level Waste Disposition - Quantity and Inventory | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low Level Waste Disposition - Quantity and Inventory Low Level Waste Disposition - Quantity and Inventory Low Level Waste Disposition - Quantity and Inventory This study has been prepared by the Used Fuel Disposition (UFD) campaign of the Fuel Cycle Research and Development (FCR&D) program. The purpose of this study is to provide an estimate of the volume of low level waste resulting from a variety of commercial fuel cycle alternatives in order to support subsequent system-level evaluations of disposal system performance. This study provides an estimate of Class A/B/C low level waste (LLW), greater than Class C (GTCC) waste, mixed LLW and mixed GTCC waste generated from the following initial set of fuel cycles and recycling processes: 1. Operations at a geologic repository based upon a once through light

123

Summary of expenditures of rebates from the low-level radioactive waste surcharge escrow account for calendar year 1991  

SciTech Connect

This is the sixth report submitted to Congress under section 5(d)(2)(E)(ii)(II) of the Low-Level Radioactive Waste Policy Act of 1985 (the Act). This section of the Act directs the Department of Energy (DOE) to summarize the annual expenditures of funds disbursed from the DOE surcharge escrow account and to assess compliance of these expenditures with the limitations specified in the Act. In addition to placing limitations on the use of these funds, the Act also requires the nonsited compact regions and nonmember States to provide DOE with an itemized report of their expenditures on December 31 of each year in which funds are expended. Within 6 months after receiving the individual reports, the Act requires the Secretary to furnish Congress with a summary of the reported expenditures and an assessment of compliance with the specified usage limitations. This report fulfills that requirement. DOE disbursed funds totaling $15,037,778.91 to the States and compact regions following the July 1, 1986, January 1, 1988, and January 1, 1990, milestones specified in the Act. Of this amount, $3,517,020.56 was expended during calendar year 1991 and $6,602,546.24 was expended during the prior 5 years. At the end of December 1991, $4,918,212.11 was unexpended. DOE has reviewed each of the reported expenditures and concluded that all reported expenditures comply with the spending limitations stated in section 5(d)(2)(E)(i) of the Act.

Not Available

1992-06-01T23:59:59.000Z

124

Summary of expenditures of rebates from the low-level radioactive waste surcharge escrow account for calendar year 1990  

SciTech Connect

This is the fifth report submitted to Congress under Title 1, section 5(d)(2)(E) of Public Law 99--240, The Low-Level Radioactive Waste Policy Amendments Act of 1985'' (the Act). This section of the Act requests the Department of Energy (DOE) to summarize the annual expenditures of funds disbursed from the DOE surcharge escrow account and to assess compliance of these expenditures with the specified limitations. The Act places limitations on the use of these funds and requires the nonsited compact regions and nonmember States to provide DOE with an itemized report of their expenditures on December 31 of each year in which funds are expended. Within 6 months after receiving the individual reports, DOE is to furnish Congress a summary of the reported expenditures and an assessment of compliance with the limitations on the use of these funds specified in the Act. This report fulfills that requirements. DOE disbursed funds totaling $15,006,587.76 to the States and compact regions following the July 1, 1986, January 1, 1988, and January 1, 1990, milestones. Of this amount, $4,328,340.44 was expended during calendar year 1990 and $2,239,205.80 was expended during the prior 4 years. At the end of December 1990, $8,439,041.52 was unexpended. 5 tabs.

Not Available

1991-06-01T23:59:59.000Z

125

Characterization of radionuclide-chelating agent complexes found in low-level radioactive decontamination waste. Literature review  

SciTech Connect

The US Nuclear Regulatory Commission is responsible for regulating the safe land disposal of low-level radioactive wastes that may contain organic chelating agents. Such agents include ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), picolinic acid, oxalic acid, and citric acid, and can form radionuclide-chelate complexes that may enhance the migration of radionuclides from disposal sites. Data from the available literature indicate that chelates can leach from solidified decontamination wastes in moderate concentration (1--100 ppm) and can potentially complex certain radionuclides in the leachates. In general it appears that both EDTA and DTPA have the potential to mobilize radionuclides from waste disposal sites because such chelates can leach in moderate concentration, form strong radionuclide-chelate complexes, and can be recalcitrant to biodegradation. It also appears that oxalic acid and citric acid will not greatly enhance the mobility of radionuclides from waste disposal sites because these chelates do not appear to leach in high concentration, tend to form relatively weak radionuclide-chelate complexes, and can be readily biodegraded. In the case of picolinic acid, insufficient data are available on adsorption, complexation of key radionuclides (such as the actinides), and biodegradation to make definitive predictions, although the available data indicate that picolinic acid can chelate certain radionuclides in the leachates.

Serne, R.J.; Felmy, A.R.; Cantrell, K.J.; Krupka, K.M.; Campbell, J.A.; Bolton, H. Jr.; Fredrickson, J.K. [Pacific Northwest National Lab., Richland, WA (United States)

1996-03-01T23:59:59.000Z

126

Low-level radioactive waste management: transitioning to off-site disposal at Los Alamos National Laboratory  

SciTech Connect

Facing the closure of nearly all on-site management and disposal capability for low-level radioactive waste (LLW), Los Alamos National Laboratory (LANL) is making ready to ship the majority of LLW off-site. In order to ship off-site, waste must meet the Treatment, Storage, and Disposal Facility's (TSDF) Waste Acceptance Criteria (WAC). In preparation, LANL's waste management organization must ensure LANL waste generators characterize and package waste compliantly and waste characterization documentation is complete and accurate. Key challenges that must be addressed to successfully make the shift to off-site disposal of LLW include improving the detail, accuracy, and quality of process knowledge (PK) and acceptable knowledge (AK) documentation, training waste generators and waste management staff on the higher standard of data quality and expectations, improved WAC compliance for off-site facilities, and enhanced quality assurance throughout the process. Certification of LANL generators will allow direct off-site shipping of LLW from their facilities.

Dorries, Alison M [Los Alamos National Laboratory

2010-11-09T23:59:59.000Z

127

Analysis of the suitability of DOE facilities for treatment of commercial low-level radioactive mixed waste  

SciTech Connect

This report evaluates the capabilities of the United States Department of Energy`s (DOE`s) existing and proposed facilities to treat 52 commercially generated low-level radioactive mixed (LLMW) waste streams that were previously identified as being difficult-to-treat using commercial treatment capabilities. The evaluation was performed by comparing the waste matrix and hazardous waste codes for the commercial LLMW streams with the waste acceptance criteria of the treatment facilities, as identified in the following DOE databases: Mixed Waste Inventory Report, Site Treatment Plan, and Waste Stream and Technology Data System. DOE facility personnel also reviewed the list of 52 commercially generated LLMW streams and provided their opinion on whether the wastes were technically acceptable at their facilities, setting aside possible administrative barriers. The evaluation tentatively concludes that the DOE is likely to have at least one treatment facility (either existing or planned) that is technically compatible for most of these difficult-to-treat commercially generated LLMW streams. This conclusion is tempered, however, by the limited amount of data available on the commercially generated LLMW streams, by the preliminary stage of planning for some of the proposed DOE treatment facilities, and by the need to comply with environmental statutes such as the Clean Air Act.

1996-02-01T23:59:59.000Z

128

Improvements in Container Management of Transuranic and Low-Level Radioactive Waste Stored at the Central Waste Complex at Hanford  

Science Conference Proceedings (OSTI)

The Central Waste Complex (CWC) is the interim storage facility for Resource Conservation and Recovery Act (RCRA) mixed waste, transuranic waste, transuranic mixed waste, low-level and low-level mixed radioactive waste at the Department of Energy's (DOE's) Hanford Site. The majority of the waste stored at the facility is retrieved from the low-level burial grounds in the 200 West Area at the Site, with minor quantities of newly generated waste from on-site and offsite waste generators. The CWC comprises 18 storage buildings that house 13,000 containers. Each waste container within the facility is scanned into its location by building, module, tier and position and the information is stored in a site-wide database. As waste is retrieved from the burial grounds, a preliminary non-destructive assay is performed to determine if the waste is transuranic (TRU) or low-level waste (LLW) and subsequently shipped to the CWC. In general, the TRU and LLW waste containers are stored in separate locations within the CWC, but the final disposition of each waste container is not known upon receipt. The final disposition of each waste container is determined by the appropriate program as process knowledge is applied and characterization data becomes available. Waste containers are stored within the CWC based on their physical chemical and radiological hazards. Further segregation within each building is done by container size (55-gallon, 85-gallon, Standard Waste Box) and waste stream. Due to this waste storage scheme, assembling waste containers for shipment out of the CWC has been time consuming and labor intensive. Qualitatively, the ratio of containers moved to containers in the outgoing shipment has been excessively high, which correlates to additional worker exposure, shipment delays, and operational inefficiencies. These inefficiencies impacted the LLW Program's ability to meet commitments established by the Tri-Party Agreement, an agreement between the State of Washington, the Department of Energy, and the Environmental Protection Agency. These commitments require waste containers to be shipped off site for disposal and/or treatment within a certain time frame. Because the program was struggling to meet production demands, the Production and Planning group was tasked with developing a method to assist the LLW Program in fulfilling its requirements. Using existing databases for container management, a single electronic spreadsheet was created to visually map every waste container within the CWC. The file displays the exact location (e.g., building, module, tier, position) of each container in a format that replicates the actual layout in the facility. In addition, each container was placed into a queue defined by the LLW and TRU waste management programs. The queues were developed based on characterization requirements, treatment type and location, and potential final disposition. This visual aid allows the user to select containers from similar queues and view their location within the facility. The user selects containers in a centralized location, rather than random locations, to expedite shipments out of the facility. This increases efficiency for generating the shipments, as well as decreasing worker exposure and container handling time when gathering containers for shipment by reducing movements of waste containers. As the containers are collected for shipment, the remaining containers are segregated by queue, which further reduces future container movements. (authors)

Uytioco, E. [Fluor Government Group, Richland, WA (United States); Baynes, P.A.; Bailey, K.B.; McKenney, D.E. [Fluor Hanford, Inc., Richland WA (United States)

2008-07-01T23:59:59.000Z

129

A Generic Technical Basis for Implementing a Very Low Level Waste Category for Disposal of Low Activity Radioactive Wastes  

Science Conference Proceedings (OSTI)

The International Atomic Energy Agency (IAEA) has recognized Very Low Level Waste (VLLW) as a category that provides both practical and economic benefits. Implementation of VLLW in the international community has been successfully demonstrated in France and Spain, as described in EPRI report 1024844, Basis for National and International Low Activity and Very Low Level Waste (VLLW) Disposal Classifications. This report presents the technical basis for a waste category of Very Low Level ...

2013-12-23T23:59:59.000Z

130

Summary of expenditures of rebates from the low-level radioactive waste surcharge escrow account for calendar year 1992  

SciTech Connect

This is the seventh report submitted to Congress in accordance with section 5(d)(2)(E)(ii)(II) of Title I--Low-Level Radioactive Waste Policy Amendments Act of 1985 (the Act). This section of the Act directs the Department of Energy (DOE) to summarize the annual expenditures of funds disbursed from the DOE surcharge escrow account and to assess compliance of these expenditures with the limitations specified in the Act. In addition to placing limitations on the use of these funds, the Act also requires the nonsited compact regions and nonmember States to provide DOE with an itemized report of their expenditures on December 31 of each year in which funds are expended. Within 6 months after receiving the individual reports, the Act requires the Secretary to furnish Congress with a summary of the reported expenditures and an assessment of compliance with the specified usage limitations. This report fulfills that requirement. DOE disbursed funds totaling $15,037,778.91 to the States and compact regions following the July 1, 1986, January 1, 1988, and January 1, 1990, milestones specified in the Act. Of this amount, $1,445,701.61 was expended during calendar year 1992 and $10,026,763.87 was expended during the prior 6 years. At the end of December 1992, $3,565,313.43 was unexpended. DOE has reviewed each of the reported expenditures and concluded that all reported expenditures comply with the spending limitations stated in section 5(d)(2)(E)(i) of the Act.

Not Available

1993-06-01T23:59:59.000Z

131

Greater-than-Class C low-level radioactive waste characterization. Appendix A-1: Nuclear utility data outputs from the GNUPS database  

SciTech Connect

The Greater-Than-Class C Nuclear Utility Projections System (GNUPS) was developed as a database for the GTCC LLW Program to estimate future volumes and radionuclide activities of nuclear utility GTCC LLW. Detailed printouts from the GNUPS database are presented in this appendix. The GNUPS projects nuclear utility volumes and activities for three cases: low, base, and high. In addition, the projections can be adjusted to account for the effects of packaging, concentration averaging, and plant operating lifetime. A brief description of how the GNUPS performs calculations of volumes and activities is given.

1994-09-01T23:59:59.000Z

132

Assessing Potential Exposure from Truck Transport of Low-level Radioactive Waste to the Nevada Test Site  

Science Conference Proceedings (OSTI)

Since 1980, over 651,558 m{sup 3} (23,000,000 ft{sup 3}) of low-level radioactive waste (LLW) have been disposed of at the Nevada Test Site (NTS) by shallow land burial. Since 1988, the majority of this waste has been generated at other United States (U.S.) Department of Energy (DOE) and Department of Defense (DoD) sites and facilities in the U.S. Between fiscal year (FY) 2002 and the publication date, the volumes of LLW being shipped by truck to the NTS increased sharply with the accelerated closure of DOE Environmental Management (EM) Program sites (DOE, 2002). The NTS is located 105 km (65 mi) northwest of Las Vegas, Nevada, in the U.S. There continue to be public concerns over the safety of LLW shipments to the NTS. They can be broadly divided into two categories: (1) the risk of accidents involving trucks traveling on public highways; and (2) whether residents along transportation routes receive cumulative exposure from individual LLW shipments that pose a long-term health risk. The DOE and U.S. Department of Transportation (DOT) regulations ensure that radiation exposure from truck shipments to members of the public is negligible. Nevertheless, particularly in rural communities along transportation routes in Utah and Nevada, there is a perceived risk from members of the public about cumulative exposure, particularly when ''Main Street'' and the routes being used by LLW trucks are one in the same. To provide an objective assessment of gamma radiation exposure to members of the public from LLW transport by truck, the Desert Research Institute (DRI) and the DOE, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) established a stationary and automated array of four pressurized ion chambers (PICs) in a vehicle pullout for LLW trucks to pass through just outside the entrance to the NTS. The PICs were positioned at a distance of 1.0 m (3.3 ft) from the sides of the truck trailer and at a height of 1.5 m (5.0 ft) to simulate conditions that a member of the public (Turner, 1995) might experience if a truck were to pass while the person was on the side of the road, or if a truck were to come to a stop at a stoplight in one of the smaller towns along the transportation routes. The 1.0-m (3.3-ft) distance also allowed for comparison with gamma readings of trucks taken with portable, hand-held instruments at the two LLW disposal sites at the NTS: the Area 5 Radioactive Waste Management Complex (RWMC) and the Area 3 Radioactive Waste Management Site (RWMS). The purpose in automating the system was to provide the most objective and consistent measurement and calculation of radiation exposure from the trucks possible. The array was set up in November 2002 and equipment was tested and calibrated over the next two months. Data collection on trucks began on February 13, 2003, and continued to the end of December 2003. In all, external gamma readings were collected from 1,012 of the 2,260 trucks that delivered LLW to the NTS during this period. Because DOE could not contractually require waste generators to participate in the study, the database is biased toward voluntary participants; however, data were collected from the 10 generators that represented 92 percent of the LLW shipments to the NTS during the study period, with another eight generators accounting for the balance of the shipments. Because of the voluntary nature of the participation, the identity of the waste generators is not used in the report. Previous studies on potential exposure to the public from transporting LLW to the NTS either relied on calculated exposures (Davis et al., 2002) or was based on a small population of trucks (e.g., 88) where a relatively high-background value of 50 microRoentgens per hour (R/h) (background value measured at the LLW disposal sites) were subtracted from the gross reading of the truck trailer as measured by portable, handheld instruments (Gertz, 2001). The dataset that resulted from the DRI study is the largest collection of measurements of LLW trucks in transit of which the authors are aware.

J. Miller; D. Shafer; K. Gray; B. Church; S. Campbell; B. Holz

2005-08-01T23:59:59.000Z

133

Assessing Potential Exposure from Truck Transport of Low-level Radioactive Waste to the Nevada Test Site  

Science Conference Proceedings (OSTI)

Since 1980, over 651,558 m{sup 3} (23,000,000 ft{sup 3}) of low-level radioactive waste (LLW) have been disposed of at the Nevada Test Site (NTS) by shallow land burial. Since 1988, the majority of this waste has been generated at other United States (U.S.) Department of Energy (DOE) and Department of Defense (DoD) sites and facilities in the U.S. Between fiscal year (FY) 2002 and the publication date, the volumes of LLW being shipped by truck to the NTS increased sharply with the accelerated closure of DOE Environmental Management (EM) Program sites (DOE, 2002). The NTS is located 105 km (65 mi) northwest of Las Vegas, Nevada, in the U.S. There continue to be public concerns over the safety of LLW shipments to the NTS. They can be broadly divided into two categories: (1) the risk of accidents involving trucks traveling on public highways; and (2) whether residents along transportation routes receive cumulative exposure from individual LLW shipments that pose a long-term health risk. The DOE and U.S. Department of Transportation (DOT) regulations ensure that radiation exposure from truck shipments to members of the public is negligible. Nevertheless, particularly in rural communities along transportation routes in Utah and Nevada, there is a perceived risk from members of the public about cumulative exposure, particularly when ''Main Street'' and the routes being used by LLW trucks are one in the same. To provide an objective assessment of gamma radiation exposure to members of the public from LLW transport by truck, the Desert Research Institute (DRI) and the DOE, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) established a stationary and automated array of four pressurized ion chambers (PICs) in a vehicle pullout for LLW trucks to pass through just outside the entrance to the NTS. The PICs were positioned at a distance of 1.0 m (3.3 ft) from the sides of the truck trailer and at a height of 1.5 m (5.0 ft) to simulate conditions that a member of the public (Turner, 1995) might experience if a truck were to pass while the person was on the side of the road, or if a truck were to come to a stop at a stoplight in one of the smaller towns along the transportation routes. The 1.0-m (3.3-ft) distance also allowed for comparison with gamma readings of trucks taken with portable, hand-held instruments at the two LLW disposal sites at the NTS: the Area 5 Radioactive Waste Management Complex (RWMC) and the Area 3 Radioactive Waste Management Site (RWMS). The purpose in automating the system was to provide the most objective and consistent measurement and calculation of radiation exposure from the trucks possible. The array was set up in November 2002 and equipment was tested and calibrated over the next two months. Data collection on trucks began on February 13, 2003, and continued to the end of December 2003. In all, external gamma readings were collected from 1,012 of the 2,260 trucks that delivered LLW to the NTS during this period. Because DOE could not contractually require waste generators to participate in the study, the database is biased toward voluntary participants; however, data were collected from the 10 generators that represented 92 percent of the LLW shipments to the NTS during the study period, with another eight generators accounting for the balance of the shipments. Because of the voluntary nature of the participation, the identity of the waste generators is not used in the report. Previous studies on potential exposure to the public from transporting LLW to the NTS either relied on calculated exposures (Davis et al., 2002) or was based on a small population of trucks (e.g., 88) where a relatively high-background value of 50 microRoentgens per hour ({micro}R/h) (background value measured at the LLW disposal sites) were subtracted from the gross reading of the truck trailer as measured by portable, handheld instruments (Gertz, 2001). The dataset that resulted from the DRI study is the largest collection of measurements of LLW trucks in transit of which the authors are aware.

Miller, J; Shafer, D; Gray, K; Church, B; Campbell, S; Holtz, B.

2005-08-15T23:59:59.000Z

134

Investigation of Alternative Waste Forms for GTCC 14C Filters  

Science Conference Proceedings (OSTI)

This report demonstrates that both cement and vinyl ester-styrene (VES) are viable engineering solutions for the immobilization of Greater than Class C (GTCC) 14C filters. The number of power plants installing submicron-size cartridge filters has increased with the incentive of radiation dose reduction. However, utilities are experiencing difficulty disposing of these filters due to significant increases in 14C concentrations. By implementing the concentration averaging recommendations of this study, nuc...

2001-11-15T23:59:59.000Z

135

The Environmental Agency's Assessment of the Post-Closure Safety Case for the BNFL DRIGG Low Level Radioactive Waste Disposal Facility  

SciTech Connect

The Environment Agency is responsible, in England and Wales, for authorization of radioactive waste disposal under the Radioactive Substances Act 1993. British Nuclear Fuels plc (BNFL) is currently authorized by the Environment Agency to dispose of solid low level radioactive waste at its site at Drigg, near Sellafield, NW England. As part of a planned review of this authorization, the Environment Agency is currently undertaking an assessment of BNFL's Post-Closure Safety Case Development Programme for the Drigg disposal facility. This paper presents an outline of the review methodology developed and implemented by the Environment Agency specifically for the planned review of BNFL's Post-Closure Safety Case. The paper also provides an overview of the Environment Agency's progress in its on-going assessment programme.

Streatfield, I. J.; Duerden, S. L.; Yearsley, R. A.

2002-02-26T23:59:59.000Z

136

Environmental restoration and management of low-level radioactive and mixed waste at Oak Ridge National Laboratory  

SciTech Connect

Management of radioactive waste at Oak Ridge National Laboratory (ORNL) must address several major challenges. First, contaminants from some disposed wastes are leaching into the groundwater and these disposal sites must be remediated. Second, some of these ``legacy`` wastes, as well as currently generated radioactive wastes, are also contaminated with chemicals, including polychlorinated biphenyls (PCBs), solvents, and metals (i.e., mixed waste). Third, wastes containing long-lived radionuclides in concentrations above established limits have been determined unsuited for disposal on the Oak Ridge Reservation. Reflecting these challenges, ORNL`s strategy for managing its radioactive wastes continues to evolve with the development of improved technologies and site-specific adaptation of some standard technologies.

Kendrick, C.M.

1994-03-01T23:59:59.000Z

137

Auxiliary analyses in support of performance assessment of a hypothetical low-level waste facility: Two-phase flow and contaminant transport in unsaturated soils with application to low-level radioactive waste disposal. Volume 2  

SciTech Connect

A numerical model of multiphase air-water flow and contaminant transport in the unsaturated zone is presented. The multiphase flow equations are solved using the two-pressure, mixed form of the equations with a modified Picard linearization of the equations and a finite element spatial approximation. A volatile contaminant is assumed to be transported in either phase, or in both phases simultaneously. The contaminant partitions between phases with an equilibrium distribution given by Henry`s Law or via kinetic mass transfer. The transport equations are solved using a Galerkin finite element method with reduced integration to lump the resultant matrices. The numerical model is applied to published experimental studies to examine the behavior of the air phase and associated contaminant movement under water infiltration. The model is also used to evaluate a hypothetical design for a low-level radioactive waste disposal facility. The model has been developed in both one and two dimensions; documentation and computer codes are available for the one-dimensional flow and transport model.

Binning, P. [Newcastle Univ., NSW (Australia); Celia, M.A.; Johnson, J.C. [Princeton Univ., NJ (United States). Dept. of Civil Engineering and Operations Research

1995-05-01T23:59:59.000Z

138

Evaluation of a performance assessment methodology for low-level radioactive waste disposal facilities: Validation needs. Volume 2  

SciTech Connect

In this report, concepts on how validation fits into the scheme of developing confidence in performance assessments are introduced. A general framework for validation and confidence building in regulatory decision making is provided. It is found that traditional validation studies have a very limited role in developing site-specific confidence in performance assessments. Indeed, validation studies are shown to have a role only in the context that their results can narrow the scope of initial investigations that should be considered in a performance assessment. In addition, validation needs for performance assessment of low-level waste disposal facilities are discussed, and potential approaches to address those needs are suggested. These areas of topical research are ranked in order of importance based on relevance to a performance assessment and likelihood of success.

Kozak, M.W.; Olague, N.E. [Sandia National Labs., Albuquerque, NM (United States)

1995-02-01T23:59:59.000Z

139

Method for making a low density polyethylene waste form for safe disposal of low level radioactive material  

DOE Patents (OSTI)

In the method of the invention low density polyethylene pellets are mixed in a predetermined ratio with radioactive particulate material, then the mixture is fed through a screw-type extruder that melts the low density polyethylene under a predetermined pressure and temperature to form a homogeneous matrix that is extruded and separated into solid monolithic waste forms. The solid waste forms are adapted to be safely handled, stored for a short time, and safely disposed of in approved depositories.

Colombo, P.; Kalb, P.D.

1984-06-05T23:59:59.000Z

140

Implementation Plan for Liquid Low-Level Radioactive Waste tank systems at Oak Ridge National Laboratory under the Federal Facility Agreement, Oak Ridge, Tennessee  

Science Conference Proceedings (OSTI)

This document summarizes the progress that has been made to date in implementing the plans and schedules for meeting the Federal Facility Agreement (FFA) commitments for the Liquid Low-Level Waste (LLLW) System at Oak Ridge National Laboratory (ORNL). These commitments were initially submitted in ES/ER-17&Dl, Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste Tank Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Information presented in this document provides a comprehensive summary to facilitate understanding of the FFA compliance program for LLLW tank systems and to present plans and schedules associated with remediation, through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process, of LLLW tank systems that have been removed from service. ORNL has a comprehensive program underway to upgrade the LLLW system as necessary to meet the FFA requirements. The tank systems that are removed from service are being investigated and remediated through the CERCLA process. Waste and risk characterizations have been submitted. Additional data will be prepared and submitted to EPA/TDEC as tanks are taken out of service and as required by the remedial investigation/feasibility study (RI/FS) process. The plans and schedules for implementing the FFA compliance program that were submitted in ES/ER-17&Dl, Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste tanks Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee, are updated in this document. Chapter 1 provides general background information and philosophies that lead to the plans and schedules that appear in Chaps. 2 through 5.

Not Available

1994-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "gtcc low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Potential GTCC LLW sealed radiation source recycle initiatives  

SciTech Connect

This report suggests 11 actions that have the potential to facilitate the recycling (reuse or radionuclide) of surplus commercial sealed radiation sources that would otherwise be disposed of as greater-than-Class C low-level radioactive waste. The suggestions serve as a basis for further investigation and discussion between the Department of Energy, Nuclear Regulatory Commission, Agreement States, and the commercial sector. Information is also given that describes sealed sources, how they are used, and problems associated with recycling, including legal concerns. To illustrate the nationwide recycling potential, Appendix A gives the estimated quantity and application information for sealed sources that would qualify for disposal in commercial facilities if not recycle. The report recommends that the Department of Energy initiate the organization of a forum to explore the suggested actions and other recycling possibilities.

Fischer, D.

1992-04-01T23:59:59.000Z

142

Life-Cycle Cost and Risk Analysis of Alternative Configurations for Shipping Low-Level Radioactive Waste to the Nevada Test Site  

SciTech Connect

The Nevada Test Site (NTS) is a major receiver of low-level radioactive waste (LLW) for disposal. Currently, all LLW received at NTS is shipped by truck. The trucks use highway routes to NTS that pass through the Las Vegas Valley and over Hoover Dam, which is a concern of local stakeholder groups in the State of Nevada. Rail service offers the opportunity to reduce transportation risks and costs, according to the Waste Management Programmatic Environmental Impact Statement (WM-PEIS). However, NTS and some DOE LLW generator sites are not served with direct rail service so intermodal transport is under consideration. Intermodal transport involves transport via two modes, in this case truck and rail, from the generator sites to NTS. LLW shipping containers would be transferred between trucks and railcars at intermodal transfer points near the LLW generator sites, NTS, or both. An Environmental Assessment (EA)for Intermodal Transportation of Low-Level Radioactive Waste to the Nevada Test Site (referred to as the NTSIntermodal -M) has been prepared to determine whether there are environmental impacts to alterations to the current truck routing or use of intermodal facilities within the State of Nevada. However, an analysis of the potential impacts outside the State of Nevada are not addressed in the NTS Intermodal EA. This study examines the rest of the transportation network between LLW generator sites and the NTS and evaluates the costs, risks, and feasibility of integrating intermodal shipments into the LLW transportation system. This study evaluates alternative transportation system configurations for NTS approved and potential generators based on complex-wide LLW load information. Technical judgments relative to the availability of DOE LLW generators to ship from their sites by rail were developed. Public and worker risk and life-cycle cost components are quantified. The study identifies and evaluates alternative scenarios that increase the use of rail (intermodal where needed) to transport LLW from generator sites to NTS.

PM Daling; SB Ross; BM Biwer

1999-12-17T23:59:59.000Z

143

Finding of No Significant Impact for the Offsite Transportation of Certain Low-Level and Mixed Radioactive Waste from Savannah River Site for Treatment and Disposal at Commercial and Government Facilities, DOE/EA-1308 (02/15/01)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Finding of No Significant Impact Finding of No Significant Impact for the Offsite Transportation of Certain Low-level and Mixed Radioactive Waste from the Savannah River Site for Treatment and Disposal at Commercial and Government Facilities Agency: U. S. Department of Energy Action: Finding of No Significant Impact Summary: The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-1308) to analyze the potential environmental impacts associated with the proposed offsite transportation of certain low-level radioactive waste (LLW) and mixed (i.e., hazardous and radioactive) low-level radioactive waste (MLLW) from the Savannah River Site (SRS), located near Aiken, South Carolina. Based on the analyses in the EA, DOE has determined that the action is not a major Federal action significantly affecting

144

IMPROVEMENTS IN CONTAINER MANAGEMENT OF TRANSURANIC (TRU) AND LOW LEVEL RADIOACTIVE WASTE STORED AT THE CENTRAL WASTE COMPLEX (CWC) AT HANFORD  

Science Conference Proceedings (OSTI)

The Central Waste Complex (CWC) is the interim storage facility for Resource Conservation & Recovery Act (RCRA) mixed waste, transuranic waste, transuranic mixed waste, low-level and low-level mixed radioactive waste at the Department of Energy's (DOE'S) Hanford Site. The majority of the waste stored at the facility is retrieved from the low-level burial grounds in the 200 West Area at the Site, with minor quantities of newly generated waste from on-site and off-site waste generators. The CWC comprises 18 storage buildings that house 13,000 containers. Each waste container within the facility is scanned into its location by building, module, tier and position and the information is stored in a site-wide database. As waste is retrieved from the burial grounds, a preliminary non-destructive assay is performed to determine if the waste is transuranic (TRU) or low-level waste (LLW) and subsequently shipped to the CWC. In general, the TRU and LLW waste containers are stored in separate locations within the CWC, but the final disposition of each waste container is not known upon receipt. The final disposition of each waste container is determined by the appropriate program as process knowledge is applied and characterization data becomes available. Waste containers are stored within the CWC based on their physical chemical and radiological hazards. Further segregation within each building is done by container size (55-gallon, 85-gallon, Standard Waste Box) and waste stream. Due to this waste storage scheme, assembling waste containers for shipment out of the CWC has been time consuming and labor intensive. Qualitatively, the ratio of containers moved to containers in the outgoing shipment has been excessively high, which correlates to additional worker exposure, shipment delays, and operational inefficiencies. These inefficiencies impacted the LLW Program's ability to meet commitments established by the Tri-Party Agreement, an agreement between the State of Washington, the Department of Energy, and the Environmental Protection Agency. These commitments require waste containers to be shipped off site for disposal and/or treatment within a certain time frame. Because the program was struggling to meet production demands, the Production and Planning group was tasked with developing a method to assist the LLW Program in fulfilling its requirements. Using existing databases for container management, a single electronic spreadsheet was created to visually map every waste container within the CWC. The file displays the exact location (e.g., building, module, tier, position) of each container in a format that replicates the actual layout in the facility. In addition, each container was placed into a queue defined by the LLW and TRU waste management programs. The queues were developed based on characterization requirements, treatment type and location, and potential final disposition. This visual aid allows the user to select containers from similar queues and view their location within the facility. The user selects containers in a centralized location, rather than random locations, to expedite shipments out of the facility. This increases efficiency for generating the shipments, as well as decreasing worker exposure and container handling time when gathering containers for shipment by reducing movements of waste container. As the containers are collected for shipment, the remaining containers are segregated by queue, which further reduces future container movements.

UYTIOCO EM

2007-11-14T23:59:59.000Z

145

Federal Facility Agreement plans and schedules for liquid low-level radioactive waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

Science Conference Proceedings (OSTI)

The Superfund Amendments and Reauthorization Act of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requires a Federal Facility Agreement (FFA) for federal facilities placed on the National Priorities List. The Oak Ridge Reservation was placed on that list on December 21, 1989, and the agreement was signed in November 1991 by the Department of Energy Oak Ridge Field Office (DOE-OR), the US Environmental Protection Agency (EPA)-Region IV, and the Tennessee Department of Environment and Conservation (TDEC). The effective date of the FFA was January 1, 1992. Section 9 and Appendix F of the agreement impose design and operating requirements on the Oak Ridge National Laboratory (ORNL) liquid low-level radioactive waste (LLLW) tank systems and identify several plans, schedules, and assessments that must be submitted to EPA/TDEC for review or approval. The initial issue of this document in March 1992 transmitted to EPA/TDEC those plans and schedules that were required within 60 to 90 days of the FFA effective date. The current revision of this document updates the plans, schedules, and strategy for achieving compliance with the FFA, and it summarizes the progress that has been made over the past year. Chapter 1 describes the history and operation of the ORNL LLLW System, the objectives of the FFA, the organization that has been established to bring the system into compliance, and the plans for achieving compliance. Chapters 2 through 7 of this report contain the updated plans and schedules for meeting FFA requirements. This document will continue to be periodically reassessed and refined to reflect newly developed information and progress.

Not Available

1993-06-01T23:59:59.000Z

146

Eleventh annual U.S. DOE low-level radioactive waste management conference: Executive summary, opening plenary, technical session summaries, and attendees  

SciTech Connect

The conference consisted of ten technical sessions, with three sessions running simultaneously each day. Session topics included: regulatory updates; performance assessment;understanding remedial action efforts; low-level waste strategy and planning (Nuclear Energy); low-level waste strategy and planning (Defense); compliance monitoring; decontamination and decommissioning; waste characterization; waste reduction and minimization; and prototype licensing application workshop. Summaries are presented for each of these sessions.

NONE

1990-01-01T23:59:59.000Z

147

Test plan for glass melter system technologies for vitrification of high-sodium content low-level radioactive liquid waste, Project No. RDD-43288  

Science Conference Proceedings (OSTI)

This document provides a test plan for the conduct of combustion fired cyclone vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System, Low-Level Waste Vitrification Program. The vendor providing this test plan and conducting the work detailed within it is the Babcock & Wilcox Company Alliance Research Center in Alliance, Ohio. This vendor is one of seven selected for glass melter testing.

Higley, B.A.

1995-03-15T23:59:59.000Z

148

Test plan for evaluation of plasma melter technology for vitrification of high-sodium content low-level radioactive liquid wastes  

SciTech Connect

This document provides a test plan for the conduct of plasma arc vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. The vendor providing this test plan and conducting the work detailed within it [one of seven selected for glass melter testing under Purchase Order MMI-SVV-384212] is the Westinghouse Science and Technology Center (WSTC) in Pittsburgh, PA. WSTC authors of the test plan are D. F. McLaughlin, E. J. Lahoda, W. R. Gass, and N. D`Amico. The WSTC Program Manager for this test is D. F. McLaughlin. This test plan is for Phase I activities described in the above Purchase Order. Test conduct includes melting of glass frit with Hanford LLW Double-Shell Slurry Feed waste simulant in a plasma arc fired furnace.

McLaughlin, D.F.; Lahoda, E.J.; Gass, W.R.; D`Amico, N. [ed.

1994-10-20T23:59:59.000Z

149

Release of radionuclides and chelating agents from cement-solidified decontamination low-level radioactive waste collected from the Peach Bottom Atomic Power Station Unit 3  

SciTech Connect

As part of a study being performed for the Nuclear Regulatory Commission (NRC), small-scale waste-form specimens were collected during a low oxidation-state transition-metal ion (LOMI)-nitric permanganate (NP)-LOMI solidification performed in October 1989 at the Peach Bottom Atomic Power Station Unit 3. The purpose of this program was to evaluate the performance of cement-solidified decontamination waste to meet the low-level waste stability requirements defined in the NRC`s ``Technical Position on Waste Form,`` Revision 1. The samples were acquired and tested because little data have been obtained on the physical stability of actual cement-solidified decontamination ion-exchange resin waste forms and on the leachability of radionuclides and chelating agents from those waste forms. The Peach Bottom waste-form specimens were subjected to compressive strength, immersion, and leach testing in accordance with the NRC`s ``Technical Position on Waste Form,`` Revision 1. Results of this study indicate that the specimens withstood the compression tests (>500 psi) before and after immersion testing and leaching, and that the leachability indexes for all radionuclides, including {sup 14}C, {sup 99}{Tc}, and {sup 129}I, are well above the leachability index requirement of 6.0, required by the NRC`s ``Technical Position on Waste Form,`` Revision 1.

Akers, D.W.; Kraft, N.C.; Mandler, J.W. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

1994-03-01T23:59:59.000Z

150

Summary of expenditures of rebates from the low-level radioactive waste surcharge escrow account for calendar year 1989: Report to Congress in response to Public Law 99-240  

SciTech Connect

This response is submitted in response to the Low-Level Radioactive Waste Policy Amendments Act of 1985 (the Act), Public Law 99-240. The report summarizes expenditures made during the calendar year 1989 of surcharge rebates from the July 1, 1986, milestones. Title I of the Act requires the Department of Energy (DOE) to administer a Surcharge Escrow Account. This account consists of a portion of the surcharge fees paid by generators of low-level radioactive waste in nonsited compacts (regional compacts currently without operating disposal sites) and nonmember States (States without disposal sites that are not members of compacts) to the three States with operating disposal facilities (Nevada, South Carolina, and Washington) (sited States) for using their disposal facilities. In administering the Surcharge Escrow Account, the Act requires DOE to: invest the funds in interest-bearing United States Government securities; determine eligibility of rebates of the funds by evaluating State and compact progress toward developing new disposal sites against milestones set forth in the Act; disburse the collected rebates and interest; assess compliance of rebate expenditures with the limitations prescribed in the Act; and submit a report annually to Congress summarizing rebate expenditures by States and regions. 5 tabs.

Not Available

1990-06-01T23:59:59.000Z

151

Twelfth annual US DOE low-level waste management conference  

Science Conference Proceedings (OSTI)

The papers in this document comprise the proceedings of the Department of Energy's Twelfth Annual Low-Level Radioactive Waste Management Conference, which was held in Chicago, Illinois, on August 28 and 29, 1990. General subjects addressed during the conference included: mixed waste, low-level radioactive waste tracking and transportation, public involvement, performance assessment, waste stabilization, financial assurance, waste minimization, licensing and environmental documentation, below-regulatory-concern waste, low-level radioactive waste temporary storage, current challenges, and challenges beyond 1990.

Not Available

1990-01-01T23:59:59.000Z

152

Use of Multiple Innovative Technologies for Retrieval and Handling of Low-Level Radioactive Tank Wastes at Oak Ridge National Laboratory  

SciTech Connect

The U.S. Department of Energy (DOE) successfully implemented an integrated tank waste management plan at Oak Ridge National Laboratory (ORNL) (1), which resulted in the cleanup, removal, or stabilization of 37 inactive underground storage tanks (USTs) since 1998, and the reduction of risk to human health and the environment. The integrated plan helped accelerate the development and deployment of innovative technologies for the retrieval of radioactive sludge and liquid waste from inactive USTs. It also accelerated the pretreatment of the retrieved waste and newly generated waste from ORNL research and development activities to provide for volume and contamination reduction of the liquid waste. The integrated plan included: retrieval of radioactive sludge, contaminated material, and other debris from USTs at ORNL using a variety of robotic and remotely operated equipment; waste conditioning and transfer of retrieved waste to pretreatment facilities and interim, double contained storage tanks; the development and deployment of technologies for pretreating newly generated and retrieved waste transferred to interim storage tanks; waste treatment and packaging for final off-site disposal; stabilization of the inactive USTs that did not meet the regulatory requirements of the Federal Facilities Agreement between the DOE, the Environmental Protection Agency (EPA), and the Tennessee Department of Environment and Conservation (TDEC); and the continued monitoring of the active USTs that remain in long-term service. This paper summarizes the successful waste retrieval and tank stabilization operations conducted during two ORNL tank remediation projects (The Gunite Tanks Remediation Project and the Old Hydrofracture Facility Tanks Remediation Project), the sludge retrieval operations from the active Bethel Valley Evaporator Service Tanks, and pretreatment operations conducted for the tank waste. This paper also provides the status of ongoing activities conducted in preparation of treating the retrieved tank waste for final disposition, and the efforts to improve monitoring capabilities for waste collection and storage tanks that will remain in long-term service at ORNL.

Noble-Dial, J.; Riner, G.; Robinson, S.; Lewis, B.; Bolling, D.; Ganapathi, G.; Harper, M.; Billingsley, K.; Burks, B.

2002-02-26T23:59:59.000Z

153

DOE/EA-1308; Environmental Assessment for the Offsite Transportation of Certain Low-Level and Mixed Radioactive Waste from the Savannah River Site for Treatment and Disposal at Commercial and Government Facilities (February 2001)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

08 08 ENVIRONMENTAL ASSESSMENT FOR THE OFFSITE TRANSPORTATION OF CERTAIN LOW-LEVEL AND MIXED RADIOACTIVE WASTE FROM THE SAVANNAH RIVER SITE FOR TREATMENT AND DISPOSAL AT COMMERCIAL AND GOVERNMENT FACILITIES FEBRUARY 2001 U. S. DEPARTMENT OF ENERGY SAVANNAH RIVER OPERATIONS OFFICE SAVANNAH RIVER SITE i ii This page is intentionally left blank iii TABLE OF CONTENTS Page 1.0 INTRODUCTION 1 1.1 Background 1 1.2 Purpose and Need for Action 6 2.0 PROPOSED ACTION AND ALTERNATIVES 6 2.1 Proposed Action 6 2.2 Alternatives to the Proposed Action 11 2.2.1 No Action, Continue to Store These Waste Forms at SRS 11 2.2.2 Construct and Operate Onsite Treatment and Disposal Facilities 11 3.0 ENVIRONMENTAL CONSEQUENCES OF THE PROPOSED ACTION AND ALTERNATIVES 12 3.1 Onsite Loading Operations 12 3.2 Transportation Impacts

154

Low-level waste forum meeting reports  

SciTech Connect

This paper provides the results of the winter meeting of the Low Level Radioactive Waste Forum. Discussions were held on the following topics: new developments in states and compacts; adjudicatory hearings; information exchange on siting processes, storage surcharge rebates; disposal after 1992; interregional access agreements; and future tracking and management issues.

NONE

1993-12-31T23:59:59.000Z

155

Summary of expenditures of rebates from the low-level radioactive waste surcharge escrow account for calendar year 1991. Report to Congress in response to Public Law 99-240  

SciTech Connect

This is the sixth report submitted to Congress under section 5(d)(2)(E)(ii)(II) of the Low-Level Radioactive Waste Policy Act of 1985 (the Act). This section of the Act directs the Department of Energy (DOE) to summarize the annual expenditures of funds disbursed from the DOE surcharge escrow account and to assess compliance of these expenditures with the limitations specified in the Act. In addition to placing limitations on the use of these funds, the Act also requires the nonsited compact regions and nonmember States to provide DOE with an itemized report of their expenditures on December 31 of each year in which funds are expended. Within 6 months after receiving the individual reports, the Act requires the Secretary to furnish Congress with a summary of the reported expenditures and an assessment of compliance with the specified usage limitations. This report fulfills that requirement. DOE disbursed funds totaling $15,037,778.91 to the States and compact regions following the July 1, 1986, January 1, 1988, and January 1, 1990, milestones specified in the Act. Of this amount, $3,517,020.56 was expended during calendar year 1991 and $6,602,546.24 was expended during the prior 5 years. At the end of December 1991, $4,918,212.11 was unexpended. DOE has reviewed each of the reported expenditures and concluded that all reported expenditures comply with the spending limitations stated in section 5(d)(2)(E)(i) of the Act.

Not Available

1992-06-01T23:59:59.000Z

156

Low Level Heat Recovery Technology  

E-Print Network (OSTI)

With today's high fuel prices, energy conservation projects to utilize low level waste heat have become more attractive. Exxon Chemical Company Central Engineering has been developing guidelines and assessing the potential for application of low level heat recovery technology. This paper discusses heat distribution systems, latest developments in absorption refrigeration and organic Rankine cycles, and pressure, minimization possibilities. The relative merits and economics of the various possibilities and some guidelines on when they should be considered will be presented.

O'Brien, W. J.

1982-01-01T23:59:59.000Z

157

Liquid low level waste management expert system  

SciTech Connect

An expert system has been developed as part of a new initiative for the Oak Ridge National Laboratory (ORNL) systems analysis program. This expert system will aid in prioritizing radioactive waste streams for treatment and disposal by evaluating the severity and treatability of the problem, as well as the final waste form. The objectives of the expert system development included: (1) collecting information on process treatment technologies for liquid low-level waste (LLLW) that can be incorporated in the knowledge base of the expert system, and (2) producing a prototype that suggests processes and disposal technologies for the ORNL LLLW system. 4 refs., 9 figs.

Ferrada, J.J.; Abraham, T.J. (Oak Ridge National Lab., TN (United States)); Jackson, J.R. (Southwest Baptist Univ., Bolivar, MO (USA))

1991-01-01T23:59:59.000Z

158

Low level waste shipment accident lessons learned  

SciTech Connect

On October 1, 1994 a shipment of low-level waste from the Fernald Environmental Management Project, Fernald, Ohio, was involved in an accident near Rolla, Missouri. The accident did not result in the release of any radioactive material. The accident did generate important lessons learned primarily in the areas of driver and emergency response communications. The shipment was comprised of an International Standards Organization (ISO) container on a standard flatbed trailer. The accident caused the low-level waste package to separate from the trailer and come to rest on its top in the median. The impact of the container with the pavement and median inflicted relatively minor damage to the container. The damage was not substantial enough to cause failure of container integrity. The success of the package is attributable to the container design and the packaging procedures used at the Fernald Environmental Management Project for low-level waste shipments. Although the container survived the initial wreck, is was nearly breached when the first responders attempted to open the ISO container. Even though the container was clearly marked and the shipment documentation was technically correct, this information did not identify that the ISO container was the primary containment for the waste. The lessons learned from this accident have DOE complex wide applicability. This paper is intended to describe the accident, subsequent emergency response operations, and the lessons learned from this incident.

Rast, D.M.; Rowe, J.G.; Reichel, C.W.

1995-02-01T23:59:59.000Z

159

Mixed and Low-Level Treatment Facility Project  

SciTech Connect

This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

1992-04-01T23:59:59.000Z

160

Summary of expenditures of rebates from the DOE low-level radioactive waste surcharge escrow account for calendar year 1987: Report to Congress in response to Public Law 99-240  

SciTech Connect

This report is submitted to Congress. It summarizes the expenditures made by States and compact regions of funds rebated by DOE from the Surcharge Escrow Account created by the Act, and to assess the compliance of each State and compact region with the limitations on such expenditure. States with operating disposal sites (''sited States'') may collect a surcharge on disposal of low-level (compact regions currently without disposal sites) and nonmember States to transfer on a monthly basis 25 percent of the surcharges collected for deposit into a Surcharge Escrow Account administered by DOE. DOE, in turn, is required to transfer these funds, and interest which has accrued, back to the non-sited compacts and nonmember States which have compiled with milestones set forth in the Act for development of new disposal sites.

Not Available

1988-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "gtcc low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Draft Environmental Impact Statement for the Disposal of Greater-Than-Class  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Impact Statement for the Disposal of Environmental Impact Statement for the Disposal of Greater-Than-Class C Low-Level Radioactive Waste and GTCC-Like Waste Draft Environmental Impact Statement for the Disposal of Greater-Than-Class C Low-Level Radioactive Waste and GTCC-Like Waste February 18, 2011 - 12:00pm Addthis WASHINGTON - The Department of Energy (DOE) has issued a Draft Environmental Impact Statement for the Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste (LLRW) and GTCC-Like Waste (DOE/EIS-0375D, Draft EIS) as required under the National Environmental Policy Act for public review and comment. GTCC LLRW consists of a small volume of low-level radioactive waste generated throughout the United States as the result of Nuclear Regulatory Commission (NRC) and Agreement State licensed activities, including

162

DOE G 435.1-1 Chapter 4, Low-Level Waste Requirements  

Directives, Delegations, and Requirements

The guide provides criteria for determining which DOE radioactive wastes are to be managed as low-level waste in accordance with DOE M 435.1-1, Chapter IV.

1999-07-09T23:59:59.000Z

163

Alternatives to the burial of low-level radioactive waste  

SciTech Connect

Available in abstract form only. Full text of publication follows: The approach for management of LLRW in different countries has evolved differently due to many factors such as culture and public sentiment, systems of government, public policy, and geography. There are also various methods to disposition LLRW including but not limited to: - Long term statutes and unconditional or conditional release of material, - Direct Burial, - Treatment (Processing) {yields} Burial, - Treatment {yields} Unconditional Release, - Recycle for Unconditional Release or Reuse Within Any Industry, - Controlled Recycle within Nuclear Industry. (author)

Price, J. Mark [Southern California Edison (United States)

2007-07-01T23:59:59.000Z

164

Scenarios of the TWRS low-level waste disposal program  

Science Conference Proceedings (OSTI)

As a result of past Department of Energy (DOE) weapons material production operations, Hanford now stores nuclear waste from processing facilities in underground tanks on the 200 Area plateau. An agreement between the DOE, the Environmental Protection Agency (EPA), and the Washington state Department of Ecology (the Tri-Party Agreement, or TPA) establishes an enforceable schedule and a technical framework for recovering, processing, solidifying, and disposing of the Hanford tank wastes. The present plan includes retrieving the tank waste, pretreating the waste to separate into low level and high level streams, and converting both streams to a glass waste form. The low level glass will represent by far the largest volume and lowest quantity of radioactivity (i.e., large volume of waste chemicals) of waste requiring disposal. The low level glass waste will be retrievably stored in sub-surface disposal vaults for several decades. If the low level disposal system proves to be acceptable, the disposal site will be closed with the low level waste in place. If, however, at some time the disposal system is found to be unacceptable, then the waste can be retrieved and dealt with in some other manner. WHC is planning to emplace the waste so that it is retrievable for up to 50 years after completion of the tank waste processing. Acceptability of disposal of the TWRS low level waste at Hanford depends on technical, cultural, and political considerations. The Performance Assessment is a major part of determining whether the proposed disposal action is technically defensible. A Performance Assessment estimates the possible future impact to humans and the environment for thousands of years into the future. In accordance with the TPA technical strategy, WHC plans to design a near-surface facility suitable for disposal of the glass waste.

NONE

1994-10-01T23:59:59.000Z

165

Carbon - 14 In Low-Level Waste  

Science Conference Proceedings (OSTI)

This report describes EPRI's collective efforts to understand and model the behavior of long-lived radionuclide Carbon-14 ((14)C) in low-level waste (LLW) disposal facilities.

1999-09-22T23:59:59.000Z

166

Alpha low-level stored waste systems design study  

SciTech Connect

The Stored Waste System Design Study (SWSDS), commissioned by the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examines relative life-cycle costs associated with three system concepts for processing the alpha low-level waste (alpha-LLW) stored at the Radioactive Waste Management Complex`s Transuranic Storage Area at the INEL. The three system concepts are incineration/melting; thermal treatment/solidification; and sort, treat, and repackage. The SWSDS identifies system functional and operational requirements and assesses implementability; effectiveness; cost; and demonstration, testing, and evaluation (DT&E) requirements for each of the three concepts.

Feizollahi, F.; Teheranian, B. [Morrison Knudson Corp., San Francisco, CA (United States). Environmental Services Div.; Quapp, W.J. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

1992-08-01T23:59:59.000Z

167

Alpha low-level stored waste systems design study  

SciTech Connect

The Stored Waste System Design Study (SWSDS), commissioned by the Waste Technology Development Department at the Idaho National Engineering Laboratory (INEL), examines relative life-cycle costs associated with three system concepts for processing the alpha low-level waste (alpha-LLW) stored at the Radioactive Waste Management Complex's Transuranic Storage Area at the INEL. The three system concepts are incineration/melting; thermal treatment/solidification; and sort, treat, and repackage. The SWSDS identifies system functional and operational requirements and assesses implementability; effectiveness; cost; and demonstration, testing, and evaluation (DT E) requirements for each of the three concepts.

Feizollahi, F.; Teheranian, B. (Morrison Knudson Corp., San Francisco, CA (United States). Environmental Services Div.); Quapp, W.J. (EG and G Idaho, Inc., Idaho Falls, ID (United States))

1992-08-01T23:59:59.000Z

168

How dangerous is low level radiation?  

Science Conference Proceedings (OSTI)

Problems in the threshold basis for the linear-no threshold theory of radiation carcinogenesis are reviewed, and it is shown that they very strongly suggest that the theory greatly overestimates the risk of low level radiation. A direct test of the theory, based on the radon-lung cancer relationship is described; it strongly reinforces that conclusion. However, it is shown that even if the linear-no threshold theory is valid; the public`s fear of low level radiation, at least in some contexts, is grossly exaggerated. 30 refs., 2 figs., 3 tabs.

Cohen, B.L. [Univ. of Pittsburgh, PA (United States)

1995-12-01T23:59:59.000Z

169

EA-1793: Replacement Capability for Disposal of Remote-handled Low-level  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

793: Replacement Capability for Disposal of Remote-handled 793: Replacement Capability for Disposal of Remote-handled Low-level Waste Generated at the Department of Energy's Idaho Site EA-1793: Replacement Capability for Disposal of Remote-handled Low-level Waste Generated at the Department of Energy's Idaho Site Summary This EA evaluates the environmental impacts of replacement capability for disposal of remote-handled low-level radioactive waste (LLW) generated at the Idaho National Laboratory (INL) site beginning in October 2017. Public Comment Opportunities Submit Comments to: Mr. Chuck Ljungberg 1955 Fremont Avenue, Mailstop 1216 Idaho Falls, ID 83415 Electronic mail: rhllwea@id.doe.gov Documents Available for Download December 21, 2011 EA-1793: Finding of No Significant Impact Replacement Capability for Disposal of Remote-Handled Low-Level Radioactive

170

Low Level Waste On Site Storage Operating Guidelines -- Supplemental Information Manual  

Science Conference Proceedings (OSTI)

This Supplemental Information Manual captures essential information related to the implementation of an on-site low level waste (LLW) storage program. It summarizes the guidance and experience provided in the Interim On-Site Storage series of reports and should be used in concert with EPRI report 1018644, "Guidelines for Operating an Interim On Site Low Level Radioactive Waste Storage FacilityRevision 1," 2009.

2009-02-26T23:59:59.000Z

171

Draft Environmental Impact Statement for the Disposal of Greater...  

NLE Websites -- All DOE Office Websites (Extended Search)

for the Disposal of Greater-Than-Class C Low-Level Radioactive Waste and GTCC-Like Waste WASHINGTON The Department of Energy (DOE) has issued a Draft Environmental...

172

Making Use of Low-Level Heat  

E-Print Network (OSTI)

Immense amounts of energy are being thrown away every day in petroleum refineries, chemical plants, and throughout all types of industrial operations. Much of this energy is at temperature levels below 350OF and is typically rejected to the atmosphere through cooling towers and air fin coolers. We will designate this as "low-level heat". Between 20 to 30% of all the energy that enters a plant is lost as low-level heat. In a 100,000 BPD refinery, this is the equivalent of about 2,500 BPD of oil, or 15 billion Btu's per day. If any improvement can be made in the recovery and reuse of this heat, the energy efficiency of our plants would be significantly increased.

Plaster, W. E.

1979-01-01T23:59:59.000Z

173

National low-level waste management program radionuclide report series, Volume 15: Uranium-238  

Science Conference Proceedings (OSTI)

This report, Volume 15 of the National Low-Level Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of uranium-238 ({sup 238}U). The purpose of the National Low-Level Waste Management Program Radionuclide Report Series is to provide information to state representatives and developers of low-level radioactive waste disposal facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the waste disposal facility environment. This report also includes discussions about waste types and forms in which {sup 238}U can be found, and {sup 238}U behavior in the environment and in the human body.

Adams, J.P.

1995-09-01T23:59:59.000Z

174

Low-level liquid waste treatment system start-up  

Science Conference Proceedings (OSTI)

Following removal of Cs-137 by ion exchange in the Supernatant Treatment System immediately upstream, the radioactive liquid waste is volume-reduced by evaporation. Trace amounts of Cs-137 in the resulting distillate are removed by ion exchange, then the distillate is discharged to the existing plant water treatment system. The concentrated product, 37 to 41 percent solids (by weight), is encapsulated in cement, producing a stable low-level waste form. This report provides a summary of work performed to test the Liquid Waste Treatment System following construction turnover and prior to radioactive operation. All mechanical and electrical components, piping, valves, pumps, tanks, controls, and instrumentation required to operate the system were tested; first with water, then with simulated waste. Subsystems (individual tanks, pumps, and control loops) were tested individually, then as a complete system. Finally, the system began a controlled start-up phase, which included the first four months of radioactive operation. Components were tested for operability then for performance data to verify the system`s ability to produce an acceptable waste form at design feed rates.

Baker, M.N.; Gessner, R.F.

1989-07-01T23:59:59.000Z

175

A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles  

E-Print Network (OSTI)

LLW-­?GTCC   GTCC  in  NRC  criteria.   Vitrified  glass;  Matheson,   Jim.   Letter   to   NRC   Chairman   Dale   E  California   Press,   NRC  2008   Nuclear   Regulatory  

Djokic, Denia

2013-01-01T23:59:59.000Z

176

EA-0843: Idaho National Engineering Laboratory Low-Level and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

43: Idaho National Engineering Laboratory Low-Level and Mixed Waste Processing, Idaho Falls, Idaho EA-0843: Idaho National Engineering Laboratory Low-Level and Mixed Waste...

177

Low level tank waste disposal study  

SciTech Connect

Westinghouse Hanford Company (WHC) contracted a team consisting of Los Alamos Technical Associates (LATA), British Nuclear Fuel Laboratories (BNFL), Southwest Research Institute (SwRI), and TRW through the Tank Waste Remediation System (TWRS) Technical Support Contract to conduct a study on several areas concerning vitrification and disposal of low-level-waste (LLW). The purpose of the study was to investigate how several parameters could be specified to achieve full compliance with regulations. The most restrictive regulation governing this disposal activity is the National Primary Drinking Water Act which sets the limits of exposure to 4 mrem per year for a person drinking two liters of ground water daily. To fully comply, this constraint would be met independently of the passage of time. In addition, another key factor in the investigation was the capability to retrieve the disposed waste during the first 50 years as specified in Department of Energy (DOE) Order 5820.2A. The objective of the project was to develop a strategy for effective long-term disposal of the low-level waste at the Hanford site.

Mullally, J.A.

1994-09-29T23:59:59.000Z

178

Preliminary Safety Design Report for Remote Handled Low-Level Waste Disposal Facility  

SciTech Connect

A new onsite, remote-handled low-level waste disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled low-level waste disposal for remote-handled low-level waste from the Idaho National Laboratory and for nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled low-level waste in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This preliminary safety design report supports the design of a proposed onsite remote-handled low-level waste disposal facility by providing an initial nuclear facility hazard categorization, by discussing site characteristics that impact accident analysis, by providing the facility and process information necessary to support the hazard analysis, by identifying and evaluating potential hazards for processes associated with onsite handling and disposal of remote-handled low-level waste, and by discussing the need for safety features that will become part of the facility design.

Timothy Solack; Carol Mason

2012-03-01T23:59:59.000Z

179

Long-Term, Low-Level Radwaste Volume-Reduction Strategies, Volumes 1-5  

Science Conference Proceedings (OSTI)

Sharp increases in the cost of low-level radioactive waste disposal make volume reduction an attractive alternative for owners of nuclear power plants. This study evaluated the leading volume-reduction options and developed the powerful VRTECH computer code to assist utilities in making long-range volume-reduction selection decisions.

1984-11-01T23:59:59.000Z

180

R&D ERL: Low level RF  

SciTech Connect

A superconducting RF (SRF) Energy Recovery Linac (ERL) is currently under development at the Collider-Accelerator Department (C-AD) at Brookhaven National Laboratory (BNL). The major components from an RF perspective are (a) a 5-cell SRF ERL cavity, (b) an SRF photocathode electron gun, and (c) a drive laser for the photocathode gun. Each of these RF subsystems has its own set of RF performance requirements, as well as common requirements for ensuring correct synchronism between them. A low level RF (LLRF) control system is currently under development, which seeks to leverage both technology and experience gained from the recently commissioned RHIC LLRF system upgrade. This note will review the LLRF system requirements and describe the system to be installed at the ERL.

Smith, K.

2010-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "gtcc low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Mixed low-level waste form evaluation  

Science Conference Proceedings (OSTI)

A scoping level evaluation of polyethylene encapsulation and vitreous waste forms for safe storage of mixed low-level waste was performed. Maximum permissible radionuclide concentrations were estimated for 15 indicator radionuclides disposed of at the Hanford and Savannah River sites with respect to protection of the groundwater and inadvertent intruder pathways. Nominal performance improvements of polyethylene and glass waste forms relative to grout are reported. These improvements in maximum permissible radionuclide concentrations depend strongly on the radionuclide of concern and pathway. Recommendations for future research include improving the current understanding of the performance of polymer waste forms, particularly macroencapsulation. To provide context to these estimates, the concentrations of radionuclides in treated DOE waste should be compared with the results of this study to determine required performance.

Pohl, P.I.; Cheng, Wu-Ching; Wheeler, T.; Waters, R.D.

1997-03-01T23:59:59.000Z

182

NIST Quantifies Low Levels of 'Heart Attack Risk' Protein  

Science Conference Proceedings (OSTI)

NIST Quantifies Low Levels of 'Heart Attack Risk' Protein. For Immediate Release: November 3, 2009. ...

2012-10-02T23:59:59.000Z

183

Low-Level Waste Disposal Facility Federal Review Group (LFRG) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Management » Compliance » Low-Level Waste Program Management » Compliance » Low-Level Waste Disposal Facility Federal Review Group (LFRG) Low-Level Waste Disposal Facility Federal Review Group (LFRG) The Office of Environmental Management (EM) Low-Level Waste Disposal Facility Federal Review Group (LFRG) was established to fulfill the requirements contained in Section I.2.E(1)(a) of the Department of Energy (DOE) Order 435.1, Radioactive Waste Management, and exercised by the senior managers of EM. The LFRG assists EM senior managers in the review of documentation that supports the approval of performance assessments and composite analyses or appropriate Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA)documents as described in Section II of the LFRG Charter. Through its efforts, the LFRG supports the issuance

184

Disposal of low-level and low-level mixed waste: audit report  

Science Conference Proceedings (OSTI)

The Department of Energy (Department) is faced with the legacy of thousands of contaminated areas and buildings and large volumes of `backlog` waste requiring disposal. Waste management and environmental restoration activities have become central to the Department`s mission. One of the Department`s priorities is to clean up former nuclear weapons sites and find more effective and timely methods for disposing of nuclear waste. This audit focused on determining if the Department was disposing of low-level and low-level mixed waste in the most cost-effective manner.

NONE

1998-09-03T23:59:59.000Z

185

Pennsylvania Source Term Tracking System. National Low-Level Waste Management Program  

SciTech Connect

The Pennsylvania Source Term Tracking System tabulates surveys received from radioactive waste generators in the Commonwealth of radioactive waste is collected each quarter from generators using the Low-Level Radioactive Waste Management Quarterly Report Form (hereafter called the survey) and then entered into the tracking system data base. This personal computer-based tracking system can generate 12 types of tracking reports. The first four sections of this reference manual supply complete instructions for installing and setting up the tracking system on a PC. Section 5 presents instructions for entering quarterly survey data, and Section 6 discusses generating reports. The appendix includes samples of each report.

1992-08-01T23:59:59.000Z

186

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31 - 18840 of 26,764 results. 31 - 18840 of 26,764 results. Page EIS-0375: Disposal of Greater-than-Class-C Low-Level Radioactive Waste and Department of Energy GTCC-like Waste This EIS evaluates the reasonably foreseeable environmental impacts associated with the proposed development, operation, and long-term management of a disposal facility or facilities for Greater-Than-Class C (GTCC) low-level radioactive waste and GTCC-like waste. The Environmental Protection Agency is a cooperating agency in the preparation of this EIS. http://energy.gov/nepa/eis-0375-disposal-greater-class-c-low-level-radioactive-waste-and-department-energy-gtcc-waste Page EIS-0433: Keystone XL Pipeline The proposed Keystone XL project consists of a 1,700-mile crude oil pipeline and related facilities that would primarily be used to transport

187

Maintenance Guide for DOE Low-Level Waste Disposal Facility  

Energy.gov (U.S. Department of Energy (DOE))

Maintenance Guide for U.S. Department of Energy Low-Level Waste Disposal  Facility Performance Assessments and Composite Analyses

188

Concerns with low-level ionizing radiation  

SciTech Connect

Populations have been studied in geographic areas of increased natural radiation, in radiation-exposed workers, in patients medically exposed, and in accidental exposures. No reproducible evidence exists of harmful effects from increases in background radiation three to ten times the usual levels. There is no increase in leukemia or other cancers among American military participants in nuclear testing, no increase in leukemia or thyroid cancer among medical patients receiving {sup 131}I for diagnosis or treatment of hypothyroidism, and no increase in lung cancer among nonsmokers exposed to increased radon in the home. The association of radiation with the atomic bomb and with excessive regulatory and health physics as-low-as-reasonably-achievable (ALARA) radiation levels practices has created a climate of fear about the dangers of radiation at any level. However, there is no evidence that radiation exposures at the levels equivalent to medical usage are harmful. The unjustified excessive concern with radiation at any level, however, precludes beneficial uses of radiation and radioactivity in medicine, science, and industry.

Yalow, R.S.

1994-12-31T23:59:59.000Z

189

Soil characterization methods for unsaturated low-level waste sites  

SciTech Connect

To support a license application for the disposal of low-level radioactive waste (LLW), applicants must characterize the unsaturated zone and demonstrate that waste will not migrate from the facility boundary. This document provides a strategy for developing this characterization plan. It describes principles of contaminant flow and transport, site characterization and monitoring strategies, and data management. It also discusses methods and practices that are currently used to monitor properties and conditions in the soil profile, how these properties influence water and waste migration, and why they are important to the license application. The methods part of the document is divided into sections on laboratory and field-based properties, then further subdivided into the description of methods for determining 18 physical, flow, and transport properties. Because of the availability of detailed procedures in many texts and journal articles, the reader is often directed for details to the available literature. References are made to experiments performed at the Las Cruces Trench site, New Mexico, that support LLW site characterization activities. A major contribution from the Las Cruces study is the experience gained in handling data sets for site characterization and the subsequent use of these data sets in modeling studies.

Wierenga, P.J.; Young, M.H. (Arizona Univ., Tucson, AZ (United States). Dept. of Soil and Water Science); Gee, G.W.; Kincaid, C.T. (Pacific Northwest Lab., Richland, WA (United States)); Hills, R.G. (New Mexico State Univ., Las Cruces, NM (United States). Dept. of Mechanical Engineering); Nicholson, T.J.; Cady, R.E. (Nuclear Regulatory Commission, Washington, DC (United States))

1993-01-01T23:59:59.000Z

190

Certification Plan, low-level waste Hazardous Waste Handling Facility  

SciTech Connect

The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. This plan provides guidance from the HWHF to waste generators, waste handlers, and the Waste Certification Specialist to enable them to conduct their activities and carry out their responsibilities in a manner that complies with the requirements of WHC-WAC. Waste generators have the primary responsibility for the proper characterization of LLW. The Waste Certification Specialist verifies and certifies that LBL LLW is characterized, handled, and shipped in accordance with the requirements of WHC-WAC. Certification is the governing process in which LBL personnel conduct their waste generating and waste handling activities in such a manner that the Waste Certification Specialist can verify that the requirements of WHC-WAC are met.

Albert, R.

1992-06-30T23:59:59.000Z

191

National Low-Level Waste Management Program final summary report of key activities and accomplishments for fiscal year 1997  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) has responsibilities under the Low-Level Radioactive Waste Policy Amendments Act of 1985 to assist states and compacts in their siting and licensing efforts for low-level radioactive waste disposal facilities. The National Low-Level Waste Management Program (NLLWMP) is the element of the DOE that performs the key support activities under the Act. The NLLWMP`s activities are driven by the needs of the states and compacts as they prepare to manage their low-level waste under the Act. Other work is added during the fiscal year as necessary to accommodate new requests brought on by status changes in states` and compacts` siting and licensing efforts. This report summarizes the activities and accomplishments of the NLLWMP during FY 1997.

Rittenberg, R.B.

1998-03-01T23:59:59.000Z

192

The performance assessment process for DOE low-level waste disposal facilities  

Science Conference Proceedings (OSTI)

Safety of the low-level waste disposal facilities, as well as al US DOE facilities, is a primary criterion in their design and operation. Safety of low-level waste disposal facilities is evaluated from two perspectives. Operational safety is evaluated based on the perceived level of hazard of the operation. The safety evaluations vary from simple safety assessments to very complex safety analysis reports, depending on the degree of hazard associated with the facility operation. Operational requirements for the Department's low-level waste disposal facilities, including long-term safety are contained in DOE Order 5820.2A, Radioactive Waste Management (1). This paper will focus on the process of conducting long-term performance analyses rather than on operational safety analysis.

Wilhite, E.L.

1992-01-01T23:59:59.000Z

193

The performance assessment process for DOE low-level waste disposal facilities  

Science Conference Proceedings (OSTI)

Safety of the low-level waste disposal facilities, as well as al US DOE facilities, is a primary criterion in their design and operation. Safety of low-level waste disposal facilities is evaluated from two perspectives. Operational safety is evaluated based on the perceived level of hazard of the operation. The safety evaluations vary from simple safety assessments to very complex safety analysis reports, depending on the degree of hazard associated with the facility operation. Operational requirements for the Department`s low-level waste disposal facilities, including long-term safety are contained in DOE Order 5820.2A, Radioactive Waste Management (1). This paper will focus on the process of conducting long-term performance analyses rather than on operational safety analysis.

Wilhite, E.L.

1992-11-01T23:59:59.000Z

194

Low-Level Waste Forum notes and summary reports for 1994. Volume 9, Number 3, May-June 1994  

SciTech Connect

This issue includes the following articles: Vermont ratifies Texas compact; Pennsylvania study on rates of decay for classes of low-level radioactive waste; South Carolina legislature adjourns without extending access to Barnwell for out-of-region generators; Southeast Compact Commission authorizes payments for facility development, also votes on petitions, access contracts; storage of low-level radioactive waste at Rancho Seco removed from consideration; plutonium estimates for Ward Valley, California; judgment issued in Ward Valley lawsuits; Central Midwest Commission questions court`s jurisdiction over surcharge rebates litigation; Supreme Court decides commerce clause case involving solid waste; parties voluntarily dismiss Envirocare case; appellate court affirms dismissal of suit against Central Commission; LLW Forum mixed waste working group meets; US EPA Office of Radiation and Indoor Air rulemakings; EPA issues draft radiation site cleanup regulation; EPA extends mixed waste enforcement moratorium; and NRC denies petition to amend low-level radioactive waste classification regulations.

NONE

1994-06-01T23:59:59.000Z

195

Interim report: Waste management facilities cost information for mixed low-level waste  

SciTech Connect

This report contains preconceptual designs and planning level life-cycle cost estimates for treating alpha and nonalpha mixed low-level radioactive waste. This report contains information on twenty-seven treatment, storage, and disposal modules that can be integrated to develop total life cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of estimating data is also summarized in this report.

Feizollahi, F.; Shropshire, D.

1994-03-01T23:59:59.000Z

196

Advanced Volume Reduction and Waste Segregation Strategies for Low-Level Waste Disposal  

Science Conference Proceedings (OSTI)

EPRI has initiated a series of studies to mitigate the impact of limited disposal site access on continued operations. This report investigates two Class BC low level radioactive waste minimization techniques. The first is an advanced volume reduction (VR) technique for non-metal filter waste, while the second is a compilation of advanced waste segregation strategies aimed at minimizing the generation of BC wastes.

2003-11-07T23:59:59.000Z

197

Review and Demonstration of Korea Hydro & Nuclear Power (KHNP) Vitrification Technology for Low Level Waste Treatment  

Science Conference Proceedings (OSTI)

Vitrification is the process of stabilizing nuclides in a glass matrix in order to enhance disposal options. A mature technology, vitrification has been applied to high level radioactive waste (HLW) for more than 40 years. As disposal costs and public concern for the environment increase, vitrification is considered to be a promising technology for low level waste (LLW) stabilization. This report covers the characteristics of LLW generated from nuclear power plants, current melter technologies ...

2013-08-14T23:59:59.000Z

198

Performance Assessment for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility  

Science Conference Proceedings (OSTI)

This performance assessment for the Remote-Handled Low-Level Radioactive Waste Disposal Facility at the Idaho National Laboratory documents the projected radiological dose impacts associated with the disposal of low-level radioactive waste at the facility. This assessment evaluates compliance with the applicable radiological criteria of the U.S. Department of Energy and the U.S. Environmental Protection Agency for protection of the public and the environment. The calculations involve modeling transport of radionuclides from buried waste to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses are calculated for both offsite receptors and individuals who inadvertently intrude into the waste after site closure. The results of the calculations are used to evaluate the future performance of the low-level radioactive waste disposal facility and to provide input for establishment of waste acceptance criteria. In addition, one-factor-at-a-time, Monte Carlo, and rank correlation analyses are included for sensitivity and uncertainty analysis. The comparison of the performance assessment results to the applicable performance objectives provides reasonable expectation that the performance objectives will be met

Annette L. Schafer; A. Jeffrey Sondrup; Arthur S. Rood

2012-05-01T23:59:59.000Z

199

Mixed and Low-Level Treatment Facility Project. Appendix B, Waste stream engineering files, Part 1, Mixed waste streams  

SciTech Connect

This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

1992-04-01T23:59:59.000Z

200

SIGWX Charts - Low Level Significant Weather | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Ocean Research Safety States Supply Chain SIGWX Charts - Low Level Significant Weather Safety DataTools Apps Challenges Resources Blogs Let's Talk Safety You are here...

Note: This page contains sample records for the topic "gtcc low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Stabilization and disposal of Argonne-West low-level mixed wastes in ceramicrete waste forms.  

SciTech Connect

The technology of room-temperature-setting phosphate ceramics or Ceramicrete{trademark} technology, developed at Argonne National Laboratory (ANL)-East is being used to treat and dispose of low-level mixed wastes through the Department of Energy complex. During the past year, Ceramicrete{trademark} technology was implemented for field application at ANL-West. Debris wastes were treated and stabilized: (a) Hg-contaminated low-level radioactive crushed light bulbs and (b) low-level radioactive Pb-lined gloves (part of the MWIR {number_sign} AW-W002 waste stream). In addition to hazardous metals, these wastes are contaminated with low-level fission products. Initially, bench-scale waste forms with simulated and actual waste streams were fabricated by acid-base reactions between mixtures of magnesium oxide powders and an acid phosphate solution, and the wastes. Size reduction of Pb-lined plastic glove waste was accomplished by cryofractionation. The Ceramicrete{trademark} process produces dense, hard ceramic waste forms. Toxicity Characteristic Leaching Procedure (TCLP) results showed excellent stabilization of both Hg and Pb in the waste forms. The principal advantage of this technology is that immobilization of contaminants is the result of both chemical stabilization and subsequent microencapsulation of the reaction products. Based on bench-scale studies, Ceramicrete{trademark} technology has been implemented in the fabrication of 5-gal waste forms at ANL-West. Approximately 35 kg of real waste has been treated. The TCLP is being conducted on the samples from the 5-gal waste forms. It is expected that because the waste forms pass the limits set by the EPAs Universal Treatment Standard, they will be sent to a radioactive-waste disposal facility.

Barber, D. B.; Singh, D.; Strain, R. V.; Tlustochowicz, M.; Wagh, A. S.

1998-02-17T23:59:59.000Z

202

Proceedings: 1994 EPRI International Low Level Waste Conference  

Science Conference Proceedings (OSTI)

EPRI's third annual International Low Level Waste Conference focused on key economic, regulatory, and technical interests associated with low level waste. Topics discussed included advanced wet waste processing and technology, radwaste cost reduction, storage and disposal issues, mixed waste, advanced ion-exchange technology, decontamination, and source term reduction.

1995-06-14T23:59:59.000Z

203

Importance of Low-Level Jets to Climate: A Review  

Science Conference Proceedings (OSTI)

Low-level jets (LLJs) occur frequently in many parts of the world. These low-level wind speed maxima are important for both the horizontal and vertical fluxes of temperature and moisture and have been found to be associated with the development ...

David J. Stensrud

1996-08-01T23:59:59.000Z

204

Potential for Subsidence at the Low-level Waste Disposal Area  

Science Conference Proceedings (OSTI)

U.S. Department of Energy (DOE) Order 435.1, Radioactive Waste Management requires that DOE low-level radioactive waste (LLW) disposal facilities receive a Disposal Authorization Statement (DAS) from DOE-Headquarters. The DAS for the LLW disposal facility at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering and Environmental Laboratory (INEEL) was granted in April 2000 and included a number of conditions that must be addressed. A maintenance plan (Schuman 2000) was prepared that identifies the tasks to be completed to address the conditions in the DAS as well as a schedule for their completion. The need for a subsidence analysis was one of the conditions identified for the DAS, and thus, a task to prepare a subsidence analysis was included in the maintenance plan. This document provides the information necessary to satisfy that requirement.

Keck, Karen Nina; Seitz, Roger Ray

2002-09-01T23:59:59.000Z

205

Scenarios of the TWRS low-level waste disposal program. Revision 1  

Science Conference Proceedings (OSTI)

As a result of past Department of Energy (DOE) weapons material production operations, Hanford now stores nuclear waste from processing facilities in underground tanks on the 200 area plateau. An agreement between the DOE, the Environmental Protection Agency (EPA), and the Washington state Department of Ecology (the Tri-Party Agreement, or TPA) establishes an enforceable schedule and a technical framework for recovering, processing, solidifying, and disposing of the Hanford tank wastes. The present plan includes retrieving the tank waste, pre-treating the waste to separate into low level and high level streams, and converting both streams to a glass waste form. The low level glass will represent by far the largest volume and lowest quantity of radioactivity (i.e., large volume of waste chemicals) of waste requiring disposal. The low level glass waste will be retrievably stored in sub-surface disposal vaults for several decades. If the low level disposal system proves to be acceptable, the disposal site will be closed with the low level waste in place. If, however, at some time the disposal system is found to be unacceptable, then the waste can be retrieved and dealt with in some other manner. WHC is planning to emplace the waste so that it is retrievable for up to 50 years after completion of the tank waste processing. Acceptability of disposal of the TWRS low level waste at Hanford depends on technical, cultural, and political considerations. The Performance Assessment is a major part of determining whether the proposed disposal action is technically defensible. A Performance Assessment estimates the possible future impact to humans and the environment for thousands of years into the future. In accordance with the TPA technical strategy, WHC plans to design a near-surface facility suitable for disposal of the glass waste.

NONE

1995-01-01T23:59:59.000Z

206

Reversal of fortune for industry in DOE low-level waste decision  

SciTech Connect

Thanks to the Energy Department, states have triumphed over industry groups in a battle over the disposition of surcharge money collected for low-level radioactive waste disposal. In a March 31 announcement, the Energy Department ruled against industry groups seeking to prevent certain states from receiving partial rebates of surcharge money collected by DOE from generators of low-level radioactive waste. The rebated money would have gone back to generators had DOE sided with the industry groups, which included the Edison Electric Institute. The surcharge issue became controversial when some states decided to sign 18-month contracts with South Carolina to continue sending waste shipments to an existing disposal site at Barnwell, SC. South Carolina was the only one of three states with an existing low-level disposal site to keep it open to outside shipments; Nevada and Washington closed their disposal sites in June 1992 to all states outside their regional compacts. Industry groups charged that the 18-month contracts for disposal at Barnwell did not meet the statutory requirements for states to receive the surcharge rebates. They maintained the law effectively required states to develop new disposal capacity, rather than continuing to rely on Barnwell or the other two existing sites under a limited duration contract. DOE rejected that reasoning, saying that while the law was designed to encourage new capacity, it did not require it for compliance with the January 1993 milestone.

Lobsenz, G.

1994-04-06T23:59:59.000Z

207

Proceedings of the tenth annual DOE low-level waste management conference: Session 4: Waste treatment minimization  

SciTech Connect

This document contains eleven papers on various aspects of low-level radioactive waste management. Topics in this volume include: volume reduction plans; incentitives; and cost proposals; acid detoxification and reclamation; decontamination of lead; leach tests; West Valley demonstration project status report; and DOE's regional management strategies. Individual papers were processed separately for the data base. (TEM)

1988-12-01T23:59:59.000Z

208

Proceedings of the tenth annual DOE low-level waste management conference: Session 4: Waste treatment minimization  

SciTech Connect

This document contains eleven papers on various aspects of low-level radioactive waste management. Topics in this volume include: volume reduction plans; incentitives; and cost proposals; acid detoxification and reclamation; decontamination of lead; leach tests; West Valley demonstration project status report; and DOE's regional management strategies. Individual papers were processed separately for the data base. (TEM)

Not Available

1988-12-01T23:59:59.000Z

209

Proceedings of the tenth annual DOE low-level waste management conference: Session 1: Institutional and regulatory issues  

Science Conference Proceedings (OSTI)

This document contains eleven papers on various aspects of low-level radioactive waste regulation. Topics include: EPA environmental standards; international exemption principles; the concept of below regulatory concern; envirocare activities in Utah; mixed waste; FUSRAP and the Superfund; and a review of various incentive programs. Individual papers are processed separately for the data base. (TEM)

Not Available

1988-12-01T23:59:59.000Z

210

Proceedings of the tenth annual DOE low-level waste management conference: Session 2: Site performance assessment  

Science Conference Proceedings (OSTI)

This document contains twelve papers on various aspects of low-level radioactive waste management. Topics of this volume include: performance assessment methodology; remedial action alternatives; site selection and site characterization procedures; intruder scenarios; sensitivity analysis procedures; mathematical models for mixed waste environmental transport; and risk assessment methodology. Individual papers were processed separately for the database. (TEM)

Not Available

1988-12-01T23:59:59.000Z

211

Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project  

Science Conference Proceedings (OSTI)

This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

2011-03-01T23:59:59.000Z

212

Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project  

SciTech Connect

This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

David Duncan

2011-05-01T23:59:59.000Z

213

Conceptual Design Report for Remote-Handled Low-Level Waste Disposal Facility  

SciTech Connect

This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

2010-10-01T23:59:59.000Z

214

Bounding Values for Low-Level-Waste Transport Exemptions and Disposal  

Science Conference Proceedings (OSTI)

Characterizations and bounding computational results determined by the Oak Ridge National Laboratory have been offered to the U.S. Nuclear Regulatory Commission as supporting technical bases for regulatory considerations in the packaging, transport, retrievable emplacement and disposal of radioactive low-level waste contaminated with fissile materials. The fissile materials included 100 wt % U, 10 wt % U in uranium, 100 wt % U, 100 wt % Pu, or plutonium as less than 235 235 233 239 76 wt % Pu, more than 12 wt % Pu, and less than 12 wt % Pu. The considered waste matrixes 239 240 241 included silicon dioxide, carbon, light water and polyethylene, heavy water, or beryllium with summary examinations of other potential matrixes. The limiting concentrations and geometries for these bounding conjectured low-level-waste matrixes are presented in this paper.

Elam, K.R.; Hopper, C.M.; Lichtenwalter, J.J.; Parks, C.V.

1999-09-20T23:59:59.000Z

215

Low-Level Waste Disposal Facility Federal Review Group Manual  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LEVEL WASTE DISPOSAL FACILITY FEDERAL REVIEW GROUP MANUAL REVISION 3 JUNE 2008 (This page intentionally left blank) Low-Level JVllsfe Disposal Fllcili~l' Federal Review Group il1allUlli Revision 3, June 200S Concurrence The Low-Level Waste Disposal Facility Federal Review Group Manual, Revision 3, is approved for use as of the most recent date below. Date Chair, Low-Level Waste Disposal Federal Review Group Andrew WalJo, 1II Deputy Director, Otlice of Nuclear Safety, Quality Assurance, and Environment Department of Energy OHlce of Health, Safety, and Security e C. WilJiams Associate Administrator for Infrastructure and Environment National Nuclear Security Administration Low-Level 'Vaste Disposal Facility Federal Review Group J1aJll/ai

216

Low-Level Airflow in Southern Wyoming during Wintertime  

Science Conference Proceedings (OSTI)

A number of low-level flights were conducted with an instrumented aircraft to investigate wind characteristics in the planetary boundary layer over the low regions of the continental divide in southern Wyoming. The airflow upwind of the ...

John D. Marwitz; Paul J. Dawson

1984-06-01T23:59:59.000Z

217

Low-Level Waste Disposal Facility Federal Review Group Manual  

Energy.gov (U.S. Department of Energy (DOE))

This Revision 3 of the Low-Level Waste Disposal  Facility Federal Review Group (LFRG) Manual was prepared primarily to include review criteria for the review of transuranic (TRU) waste disposal...

218

Observations of Low-Level Baroclinity Generated by Anvil Shadows  

Science Conference Proceedings (OSTI)

Low-level cooling beneath the cirrus anvil canopies of supercell thunderstorms is documented in two Verification of the Origins of Rotation in Tornadoes Experiment cases and in the 17 May 1981 Arcadia, Oklahoma, supercell. Surface temperature ...

Paul M. Markowski; Erik N. Rasmussen; Jerry M. Straka; David C. Dowell

1998-11-01T23:59:59.000Z

219

Decommissioning Low Level Waste Management and Reduction Guide  

Science Conference Proceedings (OSTI)

Nuclear plants undertaking decommissioning projects find that costs of low-level waste (LLW) management are a substantial portion of the total cost. To assist the industry in planning and optimizing their decommissioning radwaste management practices, EPRI developed a guide with more than 75 areas of guidance and an extensive lessons learned section. Using this report will aid utilities in successfully planning, executing, and disposing of low-level wastes during a decommissioning project.

1999-09-17T23:59:59.000Z

220

Technology, Safety and Costs of Decommissioning a Reference Low-Level Waste Burial Ground. Appendices  

SciTech Connect

Safety and cost information are developed for the conceptual decommissioning of commercial low-level waste (LLW) burial grounds. Two generic burial grounds, one located on an arid western site and the other located on a humid eastern site, are used as reference facilities for the study. The two burial grounds are assumed to have the same site capacity for waste, the same radioactive waste inventory, and similar trench characteristics and operating procedures. The climate, geology. and hydrology of the two sites are chosen to be typical of real western and eastern sites. Volume 2 (Appendices) contains the detailed analyses and data needed to support the results given in Volume 1.

None

1980-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "gtcc low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Melter system technology testing for Hanford Site low-level tankwaste vitrification  

Science Conference Proceedings (OSTI)

Following revisions to the Tri-Party Agreement for Hanford Site cleanup, which specified vitrification for Complete melter feasibility and system operability immobilization of the low-level waste (LLW) tests, select reference melter(s), and establish reference derived from retrieval and pretreatment of the radioactive LLW glass formulation that meets complete systems defense wastes stored in 177 underground tanks, commercial requirements (June 1996). Available melter technologies were tested during 1994 to 1995 as part of a multiphase program to select reference Submit conceptual design and initiate definitive design technologies for the new LLW vitrification mission.

Wilson, C.N.

1996-05-03T23:59:59.000Z

222

Project report for the commercial disposal of mixed low-level waste debris  

SciTech Connect

This report summarizes the basis for the commercial disposal of Idaho National Engineering Laboratory (INEL) mixed low-level waste (MLLW) debris and the associated activities. Mixed waste is radioactive waste plus hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). The critical factors for this project were DOE 5820.2A exemption, contracting mechanism, NEPA documentation, sampling and analysis, time limitation and transportation of waste. This report also will provide a guide or a starting place for future use of Envirocare of Utah or other private sector disposal/treatment facilities, and the lessons learned during this project.

Andrews, G.; Balls, V.; Shea, T.; Thiesen, T.

1994-05-01T23:59:59.000Z

223

Hydrogeology of the 200 Areas low-level burial grounds: An interim report: Volume 2, Appendixes  

SciTech Connect

This report presents information derived form the installation of 35 ground-water monitoring wells around six low-level radioactive/hazardous waste burial grounds located in the 200 Areas of the Hanford Site in southeastern Washington State. This information was collected between May 20, 1987 and August 1, 1988. The contents of this report have been divided into two volumes. Volume 1 contains the main text. This Volume contains the appendixes, including data and supporting information that verify content and results found in the main text.

Last, G.V.; Bjornstad, B.N.; Bergeron, M.P.; Wallace, D.W.; Newcomer, D.R.; Schramke, J.A.; Chamness, M.A.; Cline, C.S.; Airhart, S.P.; Wilbur, J.S.

1989-01-01T23:59:59.000Z

224

Replacement Capability for Disposal of Remote-Handled Low-Level Waste Generated at the Department of Energys Idaho Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Assessment Environmental Assessment for the Replacement Capability for Disposal of Remote-Handled Low-Level Radioactive Waste Generated at the Department of Energy's Idaho Site August 2011 DOE/EA-1793 Draft Environmental Assessment for the Replacement Capability for Disposal of Remote-Handled Low-Level Radioactive Waste Generated at the Department of Energy's Idaho Site August 2011 v EXECUTIVE SUMMARY The U.S. Department of Energy (DOE) proposes to provide replacement capability for disposal of remote-handled low-level radioactive waste (LLW) generated at the Idaho National Laboratory (INL) site beginning in October 2017. Historically, INL has disposed of this LLW onsite. However, the existing disposal area located within the INL Radioactive Waste Management Complex will undergo

225

Remote-Handled Low Level Waste Disposal Project Alternatives Analysis  

Science Conference Proceedings (OSTI)

This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

David Duncan

2010-10-01T23:59:59.000Z

226

Maintenance Guide for DOE Low-Level Waste Disposal Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 G Approved: XX-XX-XX IMPLEMENTATION GUIDE for use with DOE M 435.1-1 Maintenance Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments and Composite Analyses U.S. DEPARTMENT OF ENERGY DOE G 435.1-4 i (and ii) DRAFT XX-XX-XX LLW Maintenance Guide Revision 0, XX-XX-XX Maintenance Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments and Composite Analyses CONTENTS 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . .

227

Vitrification of low-level and mixed wastes  

SciTech Connect

The US Department of Energy (DOE) and nuclear utilities have large quantities of low-level and mixed wastes that must be treated to meet repository performance requirements, which are likely to become even more stringent. The DOE is developing cost-effective vitrification methods for producing durable waste forms. However, vitrification processes for high-level wastes are not applicable to commercial low-level wastes containing large quantities of metals and small amounts of fluxes. New vitrified waste formulations are needed that are durable when buried in surface repositories.

Johnson, T.R.; Bates, J.K.; Feng, Xiangdong

1994-12-31T23:59:59.000Z

228

GRABGAM Analysis of Ultra-Low-Level HPGe Gamma Spectra  

Science Conference Proceedings (OSTI)

The GRABGAM code has been used successfully for ultra-low level HPGe gamma spectrometry analysis since its development in 1985 at Savannah River Technology Center (SRTC). Although numerous gamma analysis codes existed at that time, reviews of institutional and commercial codes indicated that none addressed all features that were desired by SRTC. Furthermore, it was recognized that development of an in-house code would better facilitate future evolution of the code to address SRTC needs based on experience with low-level spectra. GRABGAM derives its name from Gamma Ray Analysis BASIC Generated At MCA/PC.

Winn, W.G.

1999-07-28T23:59:59.000Z

229

Immobilized low-level waste disposal options configuration study  

Science Conference Proceedings (OSTI)

This report compiles information that supports the eventual conceptual and definitive design of a disposal facility for immobilized low-level waste. The report includes the results of a joint Westinghouse/Fluor Daniel Inc. evaluation of trade-offs for glass manufacturing and product (waste form) disposal. Though recommendations for the preferred manufacturing and disposal option for low-level waste are outside the scope of this document, relative ranking as applied to facility complexity, safety, remote operation concepts and ease of retrieval are addressed.

Mitchell, D.E.

1995-02-01T23:59:59.000Z

230

Application of spectral summing to indeterminate suspect low-level drums at Los Alamos National Laboratory  

Science Conference Proceedings (OSTI)

An analytical technique developed by Pajarito Scientific Corporation (PSC), utilizing spectral summing of spectra from groups of drums of similar waste type, is being employed by the Waste Disposition Project - Low Level Waste Disposal (WDP-LLWD) Group at Los Alamos National Laboratory (LANL). This technique has been used to disposition low-level radioactive waste that has dropped out of the transuranic (TRU) category and has no place to go unless it can be proven to be LLW and not TRU. The TRU program at LANL run by Mobile Characterization Services (MCS) employs two High Efficiency Neutron Counters (HENC) with built-in gamma assay systems to assay radioactive waste for shipment and disposal as TRU waste at the Waste Isolation Pilot Plant (WIPP) at Carlsbad, New Mexico. As well as being certified for WIPP assays, the HENC systems can also be used for low-level waste assays for disposal at LANL or off-site disposal facilities, such as the Nevada Test Site (NTS). Some of the waste processed through the HENC systems cannot be confinned TRU due to the absence of detected TRU alpha emitters above the TRU cutoff of 100 nCi/g. This waste becomes suspect low-level waste (SLLW). In many cases, the waste also can't be classified as LLW because the minimum detectable activity (MDA) of TRU radio nuclides is above the 100 nCi/g level. These wastes that do not have enough detectable TRU activity to be classified as TRU waste and have too high a MDA to be classified as LLW enter a radioactive waste characterization indetenninate status that prevents their dispositioning as either TRU waste or LLW. Spectral summing allows an experienced ganuna spectroscopy analyst to add the HENC gamma spectra of a number of similar waste items together to form a consolidated (summed) spectrum. This summed spectrum contains the assay results of the group of items rather than the individual item, and gamma peaks that were not discernable in the individual spectra can become quantifiable in the summed spectrum and the MDA for group sum is reduced. The group of waste items can then be properly classified as LLW based on the summed spectrum and valid assay values can be assigned for disposal. This technique has been successfully applied to a set of 52 debris drums - with individual MDA > 100 nCi/g - with a resulting group total TRU alpha activity concentration below 40nCi/g. Further application of the technique at LANL to other waste drums that are measured on a WIPP certified HENC system is planned and good candidate drum sets are being evaluated as indeterminate situations develop.

Gruetzmacher, Kathleen M [Los Alamos National Laboratory; Veilleux, John M [Los Alamos National Laboratory; Lucero, Randy P [PAJARITO SCIENTIFIC CORAPTION; Seamans, Jr., James V [PAJARITO SCIENTIFIC CORPORATION; Clapham, Martin J [PAJARITO SCIENTIFIC CORPORATION

2010-11-09T23:59:59.000Z

231

Application of spectral summing to indeterminate suspect low-level drums at Los Alamos National Laboratory  

Science Conference Proceedings (OSTI)

The spectral summing technique developed by Pajarito Scientific Corporation (PSC) is a unique modeling technique that is being employed by the Waste Disposition Project - Low Level Waste Disposition (WDP-LLWD) Group at Los Alamos National Laboratory (LANL). This technique has been used to disposition low-level radioactive waste that has dropped out of the transuranic (TRU) category and has no disposal path unless it can be proven to be LLW and not TRU. The TRU program at LANL run by Mobile Characterization Services (MCS) employs High Efficiency Neutron Counters (HENC) with built-in gamma assay systems to assay radioactive waste for shipment and disposal as TRU waste at the Waste Isolation Pilot Plant (WIPP) at Carlsbad, New Mexico. As well as being certified for WIPP assays, the HENC systems can also be used for low-level waste assays for disposal at LANL or off-site disposal facilities, such as the Nevada Test Site (NTS). Some of the waste processed through the HENC systems cannot be confirmed TRU due to the absence of detected TRU alpha emitters above the TRU cutoff of 100 nCi/g. This waste becomes suspect low-level waste (SLLW). In many cases, the waste also can't be classified as LLW because the minimum detectable activity (MDA) of TRU radionuclides is above the 100 nCi/g level. These wastes that do not have enough detectable TRU activity to be classified as TRU waste and have TRU MDAs > 100nCi/g enter a radioactive waste characterization indeterminate state that prevents their dispositioning as either TRU waste or LLW. Spectral summing allows an experienced gamma spectroscopy analyst to add the HENC gamma spectra of a number of similar waste items together to form a consolidated (summed) spectrum. This summed spectrum contains the assay results of the group of items rather than the individual item, and gamma peaks that were not discemable in the individual spectra become quantifiable in the summed spectrum and the MDA for the group sum is reduced. The group of waste items can then be properly classified as LLW waste on the summed spectrum and valid assay values can be assigned for disposal. This technique has been successfully applied to a set of 52 debris drums - with individual MDA > 100nCi/g - with a resulting group total TRU alpha activity concentration below 40nCi/g. Further application of the technique at LANL to other debris drums and sludge drums that were measured on a WIPP certified HENe is planned and good candidate drum sets are being evaluated.

Gruetzmacher, Kathleen M [Los Alamos National Laboratory; Veilleux, John M [Los Alamos National Laboratory; Lucero, Randy P [PAJARITO SCIENTIFIC CORPORATION; Seamans, Jr, J. V. [PAJARITO SCIENTIFIC CORPATION; Clapham, M. J. [PAJARITO SCIENTIFIC CORPORATION

2011-01-27T23:59:59.000Z

232

Marine plankton as an indicator of low-level radionuclide contamination in the Southern Ocean  

SciTech Connect

We have initiated an investigation of the utility of marine plankton as bioconcentrating samplers of low-level marine radioactivity in the southern hemisphere. A literature review shows that both freshwater and marine plankton have trace element and radionuclide concentration factors (relative to water) of up to 10/sup 4/. In the years 1956-1958, considerable work was done on the accumulation and distribution of a variety of fission and activation products produced by the nuclear tests in the Marshall Islands. Since then, studies have largely been confined to a few selected radionuclides, and by far most of this work has been done in the northern hemisphere. We participated in Operation Deepfreeze 1981, collecting 32 plankton samples from the U.S. Coast Guard Cutter Glacier on its Antarctic cruise, while Battelle Pacific Northwest Laboratories concurrently sampled air, water, rain and fallout. We were able to measure concentrations of the naturally occurring radionuclides /sup 7/Be, /sup 40/K and the U and th series, and we believe that we have detected low levels of /sup 144/Ce and /sup 95/Nb in seven samples ranging as far south as 68/sup 0/. There is a definite association between the radionuclide content of plankton and air filters, suggesting that aerosol resuspension of marine radioactivity may be occurring. Biological identification of the plankton suggests a possible correlation between radionuclide concentration and foraminifera content of the samples. 38 references, 7 figures, 3 tables.

Marsh, K.V.; Buddemeier, R.W.

1984-07-01T23:59:59.000Z

233

Proceedings: 1997 EPRI International Low-Level Waste Conference  

Science Conference Proceedings (OSTI)

Due to the changing business environment, U.S. utilities are evaluating methods to improve operations while minimizing costs. EPRI's sixth annual International Low-Level Waste (LLW) Conference featured 55 papers on a variety of topics. The majority of papers presented new or optimized technology and plant enhancements to reduce cost and improve LLW management.

1999-05-27T23:59:59.000Z

234

Preventing Biogas Generation in Low Level Waste: Interim Report  

Science Conference Proceedings (OSTI)

This interim report describes actions that can be taken to control and prevent biogas generation in waste containers and plant systems. In addition, it describes additional work in progress that will form the basis for the final report. This research was undertaken in response to nuclear power stations experiencing biogas generation from plant systems and low level waste containers.

1997-11-11T23:59:59.000Z

235

Proceedings: 1995 EPRI International Low-Level Waste Conference  

Science Conference Proceedings (OSTI)

EPRI's fourth annual International Low-Level Waste (LLW) Conference featured 72 papers on a variety of topics. Some of the subjects included were interim storage experiences; liquid, wet, and DAW improved processing and technology; mixed waste; decontamination; and building public trust. In addition, a nuclear industry and EPRI LLW projects update was presented.

1995-12-05T23:59:59.000Z

236

Potential Vorticity of Monsoonal Low-Level Flows  

Science Conference Proceedings (OSTI)

A study of the potential vorticity budget for the low-level flows over the Arabian Sea and Indian Ocean is presented here. This study covers a 17-day period between 11 and 27 June 1979 during the GARP Monsoon Experiment (MONEX). Data sets for ...

Da-Sheng Yang; T. N. Krishnamurti

1981-12-01T23:59:59.000Z

237

Low-Level Waste Disposal Alternatives Analysis Report  

SciTech Connect

This report identifies and compares on-site and off-site disposal options for the disposal of contract-handled and remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Potential disposal options are screened for viability by waste type resulting in a short list of options for further consideration. The most crediable option are selected after systematic consideration of cost, schedule constraints, and risk. In order to holistically address the approach for low-level waste disposal, options are compiled into comprehensive disposal schemes, that is, alternative scenarios. Each alternative scenario addresses the disposal path for all low-level waste types over the period of interest. The alternative scenarios are compared and ranked using cost, risk and complexity to arrive at the recommended approach. Schedule alignment with disposal needs is addressed to ensure that all waste types are managed appropriately. The recommended alternative scenario for the disposal of low-level waste based on this analysis is to build a disposal facility at the Idaho National Laboratory Site.

Timothy Carlson; Kay Adler-Flitton; Roy Grant; Joan Connolly; Peggy Hinman; Charles Marcinkiewicz

2006-09-01T23:59:59.000Z

238

Low-Level Cloudiness in the Appalachian Region  

Science Conference Proceedings (OSTI)

Low-level (<2 km) cloud frequencies have been derived for the Appalachian Mountain region for the period 1985–88 based on in situ measurements by optical cloud and relative humidity sensors, and regional analyses incorporating the U.S. Air Force ...

Michael J. Markus; Bruce H. Bailey; Ronald Stewart; Perry J. Samson

1991-08-01T23:59:59.000Z

239

Mixed and Low-Level Waste Treatment Facility project  

SciTech Connect

Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. The engineering studies, initiated in July 1991, identified 37 mixed waste streams, and 55 low-level waste streams. This report documents the waste stream information and potential treatment strategies, as well as the regulatory requirements for the Department of Energy-owned treatment facility option. The total report comprises three volumes and two appendices. This report consists of Volume 1, which explains the overall program mission, the guiding assumptions for the engineering studies, and summarizes the waste stream and regulatory information, and Volume 2, the Waste Stream Technical Summary which, encompasses the studies conducted to identify the INEL's waste streams and their potential treatment strategies.

1992-04-01T23:59:59.000Z

240

Low-level waste vitrification contact maintenance viability study  

SciTech Connect

This study investigates the economic viability of contact maintenance in the Low-Level Waste Vitrification Facility, which is part of the Hanford Site Tank Waste Remediation System. This document was prepared by Flour Daniel, Inc., and transmitted to Westinghouse Hanford Company in September 1995.

Leach, C.E., Westinghouse Hanford

1996-07-12T23:59:59.000Z

Note: This page contains sample records for the topic "gtcc low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

A Climatology of Nocturnal Low-Level Jets at Cabauw  

Science Conference Proceedings (OSTI)

A climatology of nocturnal low-level jets (LLJs) is presented for the topographically flat measurement site at Cabauw, the Netherlands. LLJ characteristics are derived from a 7-yr half-hourly database of wind speed profiles, obtained from the 200-...

P. Baas; F. C. Bosveld; H. Klein Baltink; A. A. M. Holtslag

2009-08-01T23:59:59.000Z

242

Record of Decision on Treating Transuranic (TRU)/Alpha Low-Level Waste at the Oak Ridge National Laboratory (DOE/EIS-0305) (8/9/00)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

83 83 Federal Register / Vol. 65, No. 154 / Wednesday, August 9, 2000 / Notices 1 TRU waste is waste containing alpha-emitting radionuclides with an atomic number greater than 92 and half-lives greater than 20 years, at concentrations greater than 100 nanocuries per gram of waste. 2 Alpha low-level waste is low-level waste that contains alpha-emitting isotopes. 3 Mixed waste contains radioactive waste regulated under the Atomic Energy Act of 1954, as amended, and a hazardous component subject to RCRA regulation. 4 Low-level waste is any radioactive waste that is not classified as high-level waste, spent nuclear fuel, TRU waste, byproduct material, or mixed waste. 5 Remote-handled TRU/alpha low-level waste contains alpha-, beta-, and gamma-emitting isotopes with a surface dose rate greater than 200 millirem

243

Scoping evaluation of the technical capabilities of DOE sites for disposal of hazardous metals in mixed low-level waste  

SciTech Connect

A team of analysts designed and conducted a scoping evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of the hazardous metals in mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Eight hazardous metals were evaluated: arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver. The analysis considered transport only through the groundwater pathway. The results are reported as site-specific estimates of maximum concentrations of each hazardous metal in treated mixed low-level waste that do not exceed the performance measures established for the analysis. Also reported are site-specific estimates of travel times of each hazardous metal to the point of compliance.

Gruebel, M.M.; Waters, R.D.; Langkopf, B.S.

1997-05-01T23:59:59.000Z

244

Radiological, physical, and chemical characterization of low-level alpha contaminated wastes stored at the Idaho National Engineering Laboratory  

SciTech Connect

This document provides radiological, physical, and chemical characterization data for low-level alpha-contaminated radioactive and low-level alpha-contaminated radioactive and hazardous (i.e., mixed) wastes stored at the Idaho National Engineering Laboratory and considered for treatment under the Private Sector Participation Initiative Program. Waste characterization data are provided in the form of INEL Waste Profile Sheets. These documents provide, for each content code, information on waste identification, waste description, waste storage configuration, physical/chemical waste composition, radionuclide and associated alpha activity waste characterization data, and hazardous constituents present in the waste. Information is provided for 97 waste streams which represent an estimated total volume of 25,450 m 3 corresponding to a total mass of approximately 12,000,000 kg. In addition, considerable information concerning alpha, beta, gamma, and neutron source term data specific to Rocky Flats-generated waste forms stored at the INEL are provided to assist in facility design specification.

Apel, M.L.; Becker, G.K.; Ragan, Z.K.; Frasure, J.; Raivo, B.D.; Gale, L.G.; Pace, D.P.

1994-03-01T23:59:59.000Z

245

A model for a national low level waste program  

SciTech Connect

A national program for the management of low level waste is essential to the success of environmental clean-up, decontamination and decommissioning, current operations and future missions. The value of a national program is recognized through procedural consistency and a shared set of resources. A national program requires a clear waste definition and an understanding of waste characteristics matched against available and proposed disposal options. A national program requires the development and implementation of standards and procedures for implementing the waste hierarchy, with a specitic emphasis on waste avoidance, minimization and recycling. It requires a common set of objectives for waste characterization based on the disposal facility's waste acceptance criteria, regulatory and license requirements and performance assessments. Finally, a national waste certification program is required to ensure compliance. To facilitate and enhance the national program, a centralized generator services organization, tasked with providing technical services to the generators on behalf of the national program, is necessary. These subject matter experts are the interface between the generating sites and the disposal facility(s). They provide an invaluable service to the generating organizations through their involvement in waste planning prior to waste generation and through championing implementation of the waste hierarchy. Through their interface, national treatment and transportation services are optimized and new business opportunities are identified. This national model is based on extensive experience in the development and on-going management of a national transuranic waste program and management of the national repository, the Waste Isolation Pilot Plant. The Low Level Program at the Savannah River Site also successfully developed and implemented the waste hierarchy, waste certification and waste generator services concepts presented below. The Savannah River Site services over forty generators and has historically managed over 12,000 cubic meters of low level waste annually. The results of the waste minimization program at the site resulted in over 900 initiatives, avoiding over 220,000 cubic meters of waste for a life cycle cost savings of $275 million. At the Los Alamos National Laboratory, the low level waste program services over 20 major generators and several hundred smaller generators that produce over 4,000 cubic meters of low level waste annually. The Los Alamos National Laboratory low level waste program utilizes both on-site and off-site disposal capabilities. Off-site disposal requires the implementation of certification requirements to utilize both federal and commercial options. The Waste Isolation Pilot Plant is the US Department of Energy's first deep geological repository for the permanent disposal of Transuanic waste. Transuranic waste was generated and retrievably stored at 39 sites across the US. Transuranic waste is defined as waste with a radionuclide concentration equal to or greater than 100 nCi/g consisting of radionuclides with half-lives greater than 20 years and with an atomic mass greater than uranium. Combining the lessons learned from the national transuranic waste program, the successful low level waste program at Savannah River Site and the experience of off-site disposal options at Los Alamos National Laboratory provides the framework and basis for developing a viable national strategy for managing low level waste.

Blankenhorn, James A [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

246

Criticality safety considerations for low-level-waste facilities  

SciTech Connect

The nuclear criticality safety for handling and burial of certain special nuclear materials (SNM) at low-level-waste (LLW) facilities is licensed by the US Nuclear Regulatory Commission (NRC). Recently, Oak Ridge National Laboratory (ORNL) staff assisted the NRC Office of Nuclear Material Safety and Safeguards, Low-Level-Waste and Decommissioning Projects Branch, in developing technical specifications for the nuclear criticality safety of {sup 235}U and {sup 235}Pu in LLW facilities. This assistance resulted in a set of nuclear criticality safety criteria that can be uniformly applied to the review of LLW package burial facility license applications. These criteria were developed through the coupling of the historic surface-density criterion with current computational technique to establish safety criteria considering SNM material form and reflector influences. This paper presents a summary of the approach used to establish and to apply the criteria to the licensing review process.

Hopper, C.M.

1995-04-01T23:59:59.000Z

247

Mixed and low-level waste treatment facility project  

SciTech Connect

The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

Not Available

1992-04-01T23:59:59.000Z

248

Proceedings: 2010 EPRI International Low Level Waste Conference  

Science Conference Proceedings (OSTI)

Nuclear utilities are continually evaluating methods to improve operations, minimize costs, and find alternatives for disposal of Nuclear Regulatory Commission (NRC) Class A, B, and C waste. The Electric Power Research Institutes (EPRIs) 19th annual International Low Level Waste (LLW) Conferencecoupled with the 33rd annual American Society of Mechanical Engineers (ASME)/EPRI Radwaste Workshopoffered valuable insights into this effort by presenting papers covering new or improved technology developed worl...

2011-06-07T23:59:59.000Z

249

Proceedings: 1996 EPRI International Low Level Waste Conference  

Science Conference Proceedings (OSTI)

Due to the changing business environment, U.S. utilities are evaluating methods to improve operations while minimizing costs. EPRI's fifth annual International Low Level Waste (LLW) Conference featured 65 papers on a variety of topics. More than a third of the papers emphasized liquid-wet waste processing enhancements, new or improved technologies, and LLW program cost reduction. Other subjects included dry active waste processing cost reduction, the new DOT/NRC transport regulations, mixed waste, vitrif...

1996-12-06T23:59:59.000Z

250

Chemical digestion of low level nuclear solid waste material  

DOE Patents (OSTI)

A chemical digestion for treatment of low level combustible nuclear solid waste material is provided and comprises reacting the solid waste material with concentrated sulfuric acid at a temperature within the range of 230.degree.-300.degree.C and simultaneously and/or thereafter contacting the reacting mixture with concentrated nitric acid or nitrogen dioxide. In a special embodiment spent ion exchange resins are converted by this chemical digestion to noncombustible gases and a low volume noncombustible residue.

Cooley, Carl R. (Richland, WA); Lerch, Ronald E. (Richland, WA)

1976-01-01T23:59:59.000Z

251

Mixed and Low-Level Waste Treatment Facility Project  

SciTech Connect

Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report documents those studies so the project can continue with an evaluation of programmatic options, system tradeoff studies, and the conceptual design phase of the project. This report, appendix B, comprises the engineering design files for this project study. The engineering design files document each waste steam, its characteristics, and identified treatment strategies.

1992-04-01T23:59:59.000Z

252

Mixed and Low-Level Waste Treatment Facility project  

SciTech Connect

Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report, Appendix A, Environmental Regulatory Planning Documentation, identifies the regulatory requirements that would be imposed on the operation or construction of a facility designed to process the INEL's waste streams. These requirements are contained in five reports that discuss the following topics: (1) an environmental compliance plan and schedule, (2) National Environmental Policy Act requirements, (3) preliminary siting requirements, (4) regulatory justification for the project, and (5) health and safety criteria.

1992-04-01T23:59:59.000Z

253

Mission Need Statement for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Project  

SciTech Connect

The Idaho National Laboratory proposes to establish replacement remote-handled low-level waste disposal capability to meet Nuclear Energy and Naval Reactors mission-critical, remote-handled low-level waste disposal needs beyond planned cessation of existing disposal capability at the end of Fiscal Year 2015. Remote-handled low-level waste is generated from nuclear programs conducted at the Idaho National Laboratory, including spent nuclear fuel handling and operations at the Naval Reactors Facility and operations at the Advanced Test Reactor. Remote-handled low-level waste also will be generated by new programs and from segregation and treatment (as necessary) of remote-handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex. Replacement disposal capability must be in place by Fiscal Year 2016 to support uninterrupted Idaho operations. This mission need statement provides the basis for the laboratory’s recommendation to the Department of Energy to proceed with establishing the replacement remote-handled low-level waste disposal capability, project assumptions and constraints, and preliminary cost and schedule information for developing the proposed capability. Without continued remote-handled low-level waste disposal capability, Department of Energy missions at the Idaho National Laboratory would be jeopardized, including operations at the Naval Reactors Facility that are critical to effective execution of the Naval Nuclear Propulsion Program and national security. Remote-handled low-level waste disposal capability is also critical to the Department of Energy’s ability to meet obligations with the State of Idaho.

Lisa Harvego

2009-06-01T23:59:59.000Z

254

Michael Burns: Low-Level Radioactive Waste Regulation: Science, Politics and Fear  

E-Print Network (OSTI)

based categories for mixed waste and waste below regulatorysite a disposal facility. Mixed wastes controlled by the EPAguidelines for siting LLRW mixed waste facilities. However,

Waendelin, Anna W.

1988-01-01T23:59:59.000Z

255

Norb.ert-- GO14),ert LOW-LEVEL RADIOACTIVE-WASTE BURIAL AT THE...  

NLE Websites -- All DOE Office Websites (Extended Search)

41 trenches were constructed and each was numbered and marked with a steel post and a brass tag. Spacing between the trenches ranged from 1 to 3 meters. In 1956, a protective...

256

Management Strategies for Treatment and Disposal of Utility-Generated Low-Level Radioactive Waste  

Science Conference Proceedings (OSTI)

Some states or regional compacts may be unable to establish LLRW disposal facilities by the January 1, 1993, deadline. The possible strategies described in this report should help nuclear utilities prepare for this possibility by identifying safe and cost-effective waste disposal options.

1989-04-11T23:59:59.000Z

257

LOW-LEVEL RADIOACTIVE WASTE BURIAL AT THE PALOS FOREST PRESERVE...  

NLE Websites -- All DOE Office Websites (Extended Search)

of numerical simulation of ground-water flow 19 11. Relative sensitivity of the hydraulic conductivity of the glacial drift (Ktill); resistance to vertical flow in the...

258

Guidelines for Operating an Interim On Site Low Level Radioactive Waste Storage Facility - Revision 1  

Science Conference Proceedings (OSTI)

The majority of commercial USA nuclear stations have constructed on-site LLW storage facilities, and most of these same utilities are experiencing or have experienced at least one period of interim on-site storage. These Guidelines focus on operational considerations and incorporate many of the lessons learned while operating various types of LLW storage facilities. This document was reviewed by the USNRC. Subsequently, the USNRC issued RIS 2008-32, Interim LLRW Storage at NPPs, which recognizes the meth...

2009-02-23T23:59:59.000Z

259

CONTAINMENT OF LOW-LEVEL RADIOACTIVE WASTE AT THE DOE SALTSTONE DISPOSAL FACILITY  

SciTech Connect

As facilities look for permanent storage of toxic materials, they are forced to address the long-term impacts to the environment as well as any individuals living in affected area. As these materials are stored underground, modeling of the contaminant transport through the ground is an essential part of the evaluation. The contaminant transport model must address the long-term degradation of the containment system as well as any movement of the contaminant through the soil and into the groundwater. In order for disposal facilities to meet their performance objectives, engineered and natural barriers are relied upon. Engineered barriers include things like the design of the disposal unit, while natural barriers include things like the depth of soil between the disposal unit and the water table. The Saltstone Disposal Facility (SDF) at the Savannah River Site (SRS) in South Carolina is an example of a waste disposal unit that must be evaluated over a timeframe of thousands of years. The engineered and natural barriers for the SDF allow it to meet its performance objective over the long time frame. Some waste disposal facilities are required to meet certain standards to ensure public safety. These type of facilities require an engineered containment system to ensure that these requirements are met. The Saltstone Disposal Facility (SDF) at the Savannah River Site (SRS) is an example of this type of facility. The facility is evaluated based on a groundwater pathway analysis which considers long-term changes to material properties due to physical and chemical degradation processes. The facility is able to meet these performance objectives due to the multiple engineered and natural barriers to contaminant migration.

Jordan, J.; Flach, G.

2012-03-29T23:59:59.000Z

260

A preliminary evaluation of alternatives for treatment of INEL Low-Level Waste and low-level mixed waste  

SciTech Connect

The Mixed and Low-Level Waste Treatment Facility (MLLWTF) project was established in 1991 by the US Department of Energy Idaho Field Office to provide treatment capabilities for Idaho National Engineering Laboratory (INEL) low-level mixed waste and low-level waste. This report identifies and evaluates the alternatives for treating that waste. Twelve treatment alternatives, ranging from ``no-action`` to constructing and operating the MLLWTF, are identified and evaluated. Evaluations include facility performance, environmental, safety, institutional, schedule, and rough order-of-magnitude cost comparisons. The performance of each alternative is evaluated against lists of ``musts`` and ``wants.`` Also included is a discussion of other key considerations for decision making. Analysis of results indicated further study is necessary to obtain the best estimate of future waste volumes and characteristics from the expanded INEL Decontamination and Decommissioning Program. It is also recommended that conceptual design begin as scheduled on the MLLWTF, maximum treatment alternative while re-evaluating the waste volume projections.

Smith, T.H.; Roesener, W.S.; Jorgensen-Waters, M.J.; Edinborough, C.R.

1992-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "gtcc low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Parametric study of radionuclide characterization -- Low-level waste. Draft  

Science Conference Proceedings (OSTI)

The criteria and guidance given in this addendum specifically address the classification of low-level waste at the Hanford Reservation into Category 1, Category 3, and Greater Than Category 3 (GTC3). These categories are developed based on the performance assessment (PA) being conducted for the Hanford Site. The radionuclides and their concentration for each category are listed in the revised Table 1-1 (Attachment 1). The information to classify the waste for US Department of Transportation (DOT) and to classify Transuranic (TRU)/ Non-TRU, Contact Handled (CH)/Remote Handled (RH) waste is given in WHC-EP-0063-3 (WHC 1991).

Amir, S.J.

1993-04-01T23:59:59.000Z

262

Nuclear reactor with low-level core coolant intake  

DOE Patents (OSTI)

A natural-circulation boiling-water reactor has skirts extending downward from control rod guide tubes to about 10 centimeters from the reactor vessel bottom. The skirts define annular channels about control rod drive housings that extend through the reactor vessel bottom. Recirculating water is forced in through the low-level entrances to these channels, sweeping bottom water into the channels in the process. The sweeping action prevents cooler water from accumulating at the bottom. This in turn minimizes thermal shock to bottom-dwelling components as would occur when accumulated cool water is swept away and suddenly replaced by warmer water.

Challberg, Roy C. (Livermore, CA); Townsend, Harold E. (Campbell, CA)

1993-01-01T23:59:59.000Z

263

Proceedings: 2003 EPRI International Low Level Waste Conference  

SciTech Connect

Nuclear utilities are continually evaluating methods to improve operations and minimize cost. EPRI's Twelfth Annual International Low Level Waste (LLW) Conference--coupled with the 24th Annual ASME/EPRI Radwaste Workshop--offered valuable insights into this effort by presenting papers covering new or improved technology developed worldwide for LLW management, processing, shipment, disposal, and regulation. EPRI accomplished the conference planning in collaboration with the International Atomic Energy Agency (IAEA). In addition to the United States, international representatives from the IAEA, Korea, Hungary, Canada, the United Kingdom, Japan, and Germany presented papers.

None

2004-04-01T23:59:59.000Z

264

The impact of NRC guidance on concentration averaging on low level waste sealed source disposal - 11424  

SciTech Connect

As part of its ongoing efforts to revise the Nuclear Regulatory Commission's (NRC) current position on blending to be risk-informed and performance based and its current review of the low-level waste classification codified in 10 CFR 61.55, the Nuclear Regulatory Commission (NRC) has stated that it may review the 1995 'Branch Technical Position on Concentration Averaging and Encapsulation' (BTP), which is still commonly used today. Such a review will have timely advantages, given the lack of commercial disposal availability within the United States for radioactive sealed sources that are in wide beneficial use across the country. The current application of the BTP guidance has resulted in an effective cap on commercial disposal for sources larger than 1.1 TBq (30 Ci). This paper will analyze how the BTP has been implemented with respect to sealed sources, what the implications have been for commercial disposal availability, and whether alternative packaging configurations could be considered for disposal.

Whitworth, Julia [Los Alamos National Laboratory; Stewart, Bill [Los Alamos National Laboratory; Cuthbertson, Abigail [DOE

2011-01-20T23:59:59.000Z

265

Evaluating off-site disposal of low-level waste at LANL-9498  

SciTech Connect

Los Alamos National Laboratory generates a wide range of waste types, including solid low-level radioactive waste (LL W), in conducting its national security mission and other science and technology activities. Although most ofLANL's LLW has been disposed on-site, limitations on expansion, stakeholder concerns, and the potential for significant volumes from environmental remediation and decontamination and demolition (D&D) have led LANL to evaluate the feasibility of increasing off-site disposal. It appears that most of the LL W generated at LANL would meet the Waste Acceptance Criteria at the Nevada Test Site or the available commercial LL W disposal site. Some waste is considered to be problematic to transport to off-site disposal even though it could meet the off-site Waste Acceptance Criteria. Cost estimates for off-site disposal are being evaluated for comparison to estimated costs under the current plans for continued on-site disposal.

Hargis, Kenneth M [Los Alamos National Laboratory; French, Sean B [Los Alamos National Laboratory; Boyance, Julien A [NORTH WIND, INC.

2009-01-01T23:59:59.000Z

266

National Low-Level Waste Management Program Radionuclide Report Series: Volume 12, Cobalt-60  

SciTech Connect

This report outlines the basic radiological and chemical characteristics of cobalt-60 ({sup 60}Co) and examines how these characteristics affect the behavior of {sup 60}Co in various environmental media, such as soils, groundwater, plants, animals, the atmosphere, and the human body. Discussions also include methods of {sup 60}Co production, waste types, and waste forms that contain {sup 60}Co. All cobalt atoms contain 27 protons (Z = 27) and various numbers of neutrons (typically N = 27 to 37 neutrons) within the atom`s nucleus. There is only one stable isotope of cobalt, namely {sup 59}Co. All other cobalt isotopes, including {sup 60}Co, are radioactive. The radioactive isotopes of cobalt have half-lives ranging from less than a second ({sup 54}Co-0.19 s) to 5.2 years ({sup 60}Co). The radioactive isotopes of cobalt are not a normal constituent of the natural environment and are generated as a result of human activities. The primary source of {sup 60}Co in the environment has been low-level radioactive waste material generated as a result of neutron activation of stable {sup 59}Co that is present in the structural components of nuclear reactor vessels. This isotope is also intentionally produced, usually in reactors but also to some degree in accelerators for industrial and medical uses, such as for radiation sources for cancer treatment and nondestructive testing of metals and welds. {sup 60}Co may enter the environment as a result of the activities associated with nuclear reactor operations and decommissioning and when industrial and medical sources are being used, manufactured, or disposed.

Adams, J.P.

1995-06-01T23:59:59.000Z

267

Treatment options for low-level radiologically contaminated ORNL filtercake  

Science Conference Proceedings (OSTI)

Water softening sludge (>4000 stored low level contaminated drums; 600 drums per year) generated by the ORNL Process Waste Treatment Plant must be treated, stabilized, and placed in safe storage/disposal. The sludge is primarily CaCO{sub 3} and is contaminated by low levels of {sup 90}Sr and {sup 137}Cs. In this study, microwave sintering and calcination were evaluated for treating the sludge. The microwave melting experiments showed promise: volume reductions were significant (3-5X), and the waste form was durable with glass additives (LiOH, fly ash). A commercial vendor using surrogate has demonstrated a melt mineralization process that yields a dense monolithic waste form with a volume reduction factor (VR) of 7.7. Calcination of the sludge at 850-900 C yielded a VR of 2.5. Compaction at 4500 psi increased the VR to 4.2, but the compressed form is not dimensionally stable. Addition of paraffin helped consolidate fines and yielded a VR of 3.5. In conclusion, microwave melting or another form of vitrification is likely to be the best method; however for immediate implementation, the calculation/compaction/waxing process is viable.

Lee, Hom-Ti [Oak Ridge Associated Universities, Inc., TN (United States); Bostick, W.D. [Oak Ridge K-25 Site, TN (United States)

1996-04-01T23:59:59.000Z

268

Steam Reforming of Low-Level Mixed Waste  

Science Conference Proceedings (OSTI)

Under DOE Contract No. DE-AR21-95MC32091, Steam Reforming of Low-Level Mixed Waste, ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design construction, and testing of the PDU as well as performance and economic projections for a 500- lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area published April 1997.1 The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfidly tested including a 750-hour test on material simulating a PCB- and Uranium- contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (>99.9999oA) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radlonuclides in the volume-reduced solids. Cost studies have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies.

None

1998-01-01T23:59:59.000Z

269

Review of private sector and Department of Energy treatment, storage, and disposal capabilities for low-level and mixed low-level waste  

SciTech Connect

Private sector capacity for treatment, storage, and disposal (TSD) of various categories of radioactive waste has been researched and reviewed for the Idaho National Engineering Laboratory (INEL) by Lockheed Idaho Technologies Company, the primary contractor for the INEL. The purpose of this document is to provide assistance to the INEL and other US Department of Energy (DOE) sites in determining if private sector capabilities exist for those waste streams that currently cannot be handled either on site or within the DOE complex. The survey of private sector vendors was limited to vendors currently capable of, or expected within the next five years to be able to perform one or more of the following services: low-level waste (LLW) volume reduction, storage, or disposal; mixed LLW treatment, storage, or disposal; alpha-contaminated mixed LLW treatment; LLW decontamination for recycling, reclamation, or reuse; laundering of radioactively-contaminated laundry and/or respirators; mixed LLW treatability studies; mixed LLW treatment technology development. Section 2.0 of this report will identify the approach used to modify vendor information from previous revisions of this report. It will also illustrate the methodology used to identify any additional companies. Section 3.0 will identify, by service, specific vendor capabilities and capacities. Because this document will be used to identify private sector vendors that may be able to handle DOE LLW and mixed LLW streams, it was decided that current DOE capabilities should also be identified. This would encourage cooperation between DOE sites and the various states and, in some instances, may result in a more cost-effective alternative to privatization. The DOE complex has approximately 35 sites that generate the majority of both LLW and mixed LLW. Section 4.0 will identify these sites by Operations Office, and their associated LLW and mixed LLW TSD units.

Willson, R.A.; Ball, L.W.; Mousseau, J.D.; Piper, R.B.

1996-03-01T23:59:59.000Z

270

International low level waste disposal practices and facilities  

SciTech Connect

The safe management of nuclear waste arising from nuclear activities is an issue of great importance for the protection of human health and the environment now and in the future. The primary goal of this report is to identify the current situation and practices being utilized across the globe to manage and store low and intermediate level radioactive waste. The countries included in this report were selected based on their nuclear power capabilities and involvement in the nuclear fuel cycle. This report highlights the nuclear waste management laws and regulations, current disposal practices, and future plans for facilities of the selected international nuclear countries. For each country presented, background information and the history of nuclear facilities are also summarized to frame the country's nuclear activities and set stage for the management practices employed. The production of nuclear energy, including all the steps in the nuclear fuel cycle, results in the generation of radioactive waste. However, radioactive waste may also be generated by other activities such as medical, laboratory, research institution, or industrial use of radioisotopes and sealed radiation sources, defense and weapons programs, and processing (mostly large scale) of mineral ores or other materials containing naturally occurring radionuclides. Radioactive waste also arises from intervention activities, which are necessary after accidents or to remediate areas affected by past practices. The radioactive waste generated arises in a wide range of physical, chemical, and radiological forms. It may be solid, liquid, or gaseous. Levels of activity concentration can vary from extremely high, such as levels associated with spent fuel and residues from fuel reprocessing, to very low, for instance those associated with radioisotope applications. Equally broad is the spectrum of half-lives of the radionuclides contained in the waste. These differences result in an equally wide variety of options for the management of radioactive waste. There is a variety of alternatives for processing waste and for short term or long term storage prior to disposal. Likewise, there are various alternatives currently in use across the globe for the safe disposal of waste, ranging from near surface to geological disposal, depending on the specific classification of the waste. At present, there appears to be a clear and unequivocal understanding that each country is ethically and legally responsible for its own wastes, in accordance with the provisions of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. Therefore the default position is that all nuclear wastes will be disposed of in each of the 40 or so countries concerned with nuclear power generation or part of the fuel cycle. To illustrate the global distribution of radioactive waste now and in the near future, Table 1 provides the regional breakdown, based on the UN classification of the world in regions illustrated in Figure 1, of nuclear power reactors in operation and under construction worldwide. In summary, 31 countries operate 433 plants, with a total capacity of more than 365 gigawatts of electrical energy (GW[e]). A further 65 units, totaling nearly 63 GW(e), are under construction across 15 of these nations. In addition, 65 countries are expressing new interest in, considering, or actively planning for nuclear power to help address growing energy demands to fuel economic growth and development, climate change concerns, and volatile fossil fuel prices. Of these 65 new countries, 21 are in Asia and the Pacific region, 21 are from the Africa region, 12 are in Europe (mostly Eastern Europe), and 11 in Central and South America. However, 31 of these 65 are not currently planning to build reactors, and 17 of those 31 have grids of less than 5 GW, which is said to be too small to accommodate most of the reactor designs available. For the remaining 34 countries actively planning reactors, as of September 2010: 14 indicate a strong intention to precede w

Nutt, W.M. (Nuclear Engineering Division)

2011-12-19T23:59:59.000Z

271

Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Project  

Science Conference Proceedings (OSTI)

The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

Lisa Harvego; Mike Lehto

2010-10-01T23:59:59.000Z

272

Hazard Classification of the Remote Handled Low-Level Waste Disposal Facility  

Science Conference Proceedings (OSTI)

The Battelle Energy Alliance (BEA) at the Idaho National Laboratory (INL) is constructing a new facility to replace remote-handled low-level radioactive waste disposal capability for INL and Naval Reactors Facility operations. Current disposal capability at the Radioactive Waste Management Complex (RWMC) will continue until the facility is full or closed for remediation (estimated at approximately fiscal year 2015). Development of a new onsite disposal facility is the highest ranked alternative and will provide RH-LLW disposal capability and will ensure continuity of operations that generate RH-LLW for the foreseeable future. As a part of establishing a safety basis for facility operations, the facility will be categorized according to DOE-STD-1027-92. This classification is important in determining the scope of analyses performed in the safety basis and will also dictate operational requirements of the completed facility. This paper discusses the issues affecting hazard classification in this nuclear facility and impacts of the final hazard categorization.

Boyd D. Christensen

2012-05-01T23:59:59.000Z

273

Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Facility  

Science Conference Proceedings (OSTI)

The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

Lisa Harvego; Mike Lehto

2010-05-01T23:59:59.000Z

274

Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Facility  

Science Conference Proceedings (OSTI)

The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

Lisa Harvego; Mike Lehto

2010-02-01T23:59:59.000Z

275

Technical assessment of processes to enable recycling of low-level contaminated metal waste  

Science Conference Proceedings (OSTI)

Accumulations of metal waste exhibiting low levels of radioactivity (LLCMW) have become a national burden, both financially and environmentally. Much of this metal could be considered as a resource. The Department of Energy was assigned the task of inventorying and classifying LLCMW, identifying potential applications, and applying and/or developing the technology necessary to enable recycling. One application for recycled LLCMW is high-quality canisters for permanent repository storage of high-level waste (HLW). As many as 80,000 canisters will be needed by 2035. Much of the technology needed to decontaminate LLCMW has already been developed, but no integrated process has been described, even on a pilot scale, for recycling LLCMW into HLW canisters. This report reviews practices for removal of radionuclides and for producing low carbon stainless steel. Contaminants that readily form oxides may be reduced to below de minimis levels and combined with a slag. Most of the radioactivity remaining in the ingot is concentrated in the inclusions. Radionuclides that chemically resemble the elements that comprise stainless steel can not be removed effectively. Slag compositions, current melting practices, and canister fabrication techniques were reviewed.

Reimann, G.A.

1991-10-01T23:59:59.000Z

276

Siting process for disposal site of low level radiactive waste in Thailand  

SciTech Connect

The radioactive waste in Thailand is composed of low level waste from the application of radioisotopes in medical treatment and industry, the operation of the 2 MW TRIGA Mark III Research Reactor and the production of radioisotopes at OAEP. In addition, the high activity of sealed radiation sources i.e. Cs-137 Co-60 and Ra-226 are also accumulated. Since the volume of treated waste has been gradually increased, the general needs for a repository become apparent. The near surface disposal method has been chosen for this aspect. The feasibility study on the underground disposal site has been done since 1982. The site selection criteria have been established, consisting of the rejection criteria, the technical performance criteria and the economic criteria. About 50 locations have been picked for consideration and 5 candidate sites have been selected and subsequent investigated. After thoroughly investigation, a definite location in Ratchburi Province, about 180 kilometers southwest of Bangkok, has been selected as the most suitable place for the near surface disposal of radioactive waste in Thailand.

Yamkate, P.; Sriyotha, P.; Thiengtrongjit, S.; Sriyotha, K. (Atomic Energy for Peace, Bangkok (Thailand))

1992-01-01T23:59:59.000Z

277

MEASUREMENTS TAKEN IN SUPPORT OF QUALIFICATION OF PROCESSING SAVANNAH RIVER SITE LOW-LEVEL LIQUID WASTE INTO SALTSTONE  

Science Conference Proceedings (OSTI)

The Saltstone Facility at the Savannah River Site (SRS) immobilizes low-level liquid waste into Saltstone to be disposed of in the Z-Area Saltstone Disposal Facility, Class Three Landfill. In order to meet the permit conditions and regulatory limits set by the South Carolina Department of Health and Environmental Control (SCDHEC), the Resource Conservation and Recovery Act (RCRA) and the Environmental Protection Agency (EPA), both the low-level salt solution and Saltstone samples are analyzed quarterly. Waste acceptance criteria (WAC) are designed to confirm the salt solution sample from the Tank Farm meets specific radioactive and chemical limits. The toxic characteristic leaching procedure (TCLP) is used to confirm that the treatment has immobilized the hazardous constituents of the salt solution. This paper discusses the methods used to characterize the salt solution and final Saltstone samples from 2007-2009.

Reigel, M.; Bibler, N.; Diprete, C.; Cozzi, A.; Staub, A.; Ray, J.

2010-01-27T23:59:59.000Z

278

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

81 - 18890 of 31,917 results. 81 - 18890 of 31,917 results. Download State Energy Program Assurances- Texas Governor Perry http://energy.gov/downloads/state-energy-program-assurances-texas-governor-perry Article Draft Environmental Impact Statement for the Disposal of Greater-Than-Class C Low-Level Radioactive Waste and GTCC-Like Waste WASHINGTON - The Department of Energy (DOE) has issued a Draft Environmental Impact Statement for the Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste (LLRW) and GTCC-Like Waste (DOE/EIS-0375D, Draft EIS) as required under the National Environmental Policy Act for public review and comment. http://energy.gov/em/articles/draft-environmental-impact-statement-disposal-greater-class-c-low Download Final Supplemental Environmental Impact Statement for a Geologic

279

Session 35 - Panel: Remaining US Disposition Issues for Orphan or Small Volume Low Level and Low Level Mixed Waste Streams  

Science Conference Proceedings (OSTI)

Faced with closure schedules as a driving force, significant progress has been made during the last 2 years on the disposition of DOE mixed waste streams thought previously to be problematic. Generators, the Department of Energy and commercial vendors have combined to develop unique disposition paths for former orphan streams. Recent successes and remaining issues will be discussed. The session will also provide an opportunity for Federal agencies to share lessons learned on low- level and mixed low-level waste challenges and identify opportunities for future collaboration. This panel discussion was organized by PAC member Dick Blauvelt, Navarro Research and Engineering Inc who served as co-chair along with Dave Eaton from INL. In addition, George Antonucci, Duratek Barnwell and Rich Conley, AFSC were invited members of the audience, prepared to contribute the Barnwell and DOD perspective to the issues as needed. Mr. Small provide information regarding the five year 20K M3 window of opportunity at the Nevada Test Site for DOE contractors to dispose of mixed waste that cannot be received at the Energy Solutions (Envirocare) site in Utah because of activity levels. He provided a summary of the waste acceptance criteria and the process sites must follow to be certified to ship. When the volume limit or time limit is met, the site will undergo a RCRA closure. Ms. Gelles summarized the status of the orphan issues, commercial options and the impact of the EM reorganization on her program. She also announced that there would be a follow-on meeting in 2006 to the very successful St. Louis meeting of last year. It will probably take place in Chicago in July. Details to be announced. Mr. McKenney discussed progress made at the Hanford Reservation regarding disposal of their mixed waste inventory. The news is good for the Hanford site but not good for the rest of the DOE complex since shipment for out of state of both low level and low level mixed waste will continue to be prohibited until the completion of a new NEPA study. This is anticipated to take several years. Bill Franz from Portsmouth and Dave Eaton representing the INL provided the audience with information regarding some of the problematic mixed waste streams at their respective sites. Portsmouth has some unique radiological issues with isotopes such as Tc-99 while the INL is trying to deal with mixed waste in the 10-100 nCi/g range. Kaylin Loveland spoke of the new,Energy Solutions organization and provided information on mixed waste treatment capabilities at the Clive site. Mike Lauer described the licensing activities at the WCS site in Texas where they are trying to eventually have disposal capabilities for Class A, B and C mixed waste from both DOE and the commercial sector. The audience included about 75 WM'06 attendees who asked some excellent questions and provided an active and informative exchange of information on the topic. (authors)

Blauvelt, Richard [Navarro Engineering Research Inc. (United States); Small, Ken [Doe Nevada (United States); Gelles, Christine [DOE EM HQ (United States); McKenney, Dale [Fluor Hanford (United States); Franz, Bill [LATA Portsmouth (United States); Loveland, Kaylin [Energy Solutions Inc. (United States); Lauer, Mike [Waste Control Specialists (United States)

2006-07-01T23:59:59.000Z

280

Technical Scope and Approach for the 2004 Composite Analysis of Low Level Waste Disposal at the Hanford Site  

SciTech Connect

A composite analysis is required by U.S. Department of Energy (DOE) Manual 435.1-1 to ensure public safety through the management of active and planned low-level radioactive waste disposal facilities associated with the Hanford Site (DOE/HQ-Manual 435.1-1). A Composite Analysis is defined as ''a reasonably conservative assessment of the cumulative impact from active and planned low-level waste disposal facilities, and all other sources from radioactive contamination that could interact with the low-level waste disposal facility to affect the dose to future members of the public''. At the Hanford Site, a composite analysis is required for continued disposal authorization for the immobilized low-activity waste, tank waste vitrification plant melters, low level waste in the 200 East and 200 West Solid Waste Burial Grounds, and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) waste in the Environmental Restoration Disposal Facility. The 2004 Composite Analysis will be a site-wide analysis, considering final remedial actions for the Columbia River corridor and the Central Plateau at the Hanford Site. The river corridor includes waste sites and facilities in each of the 100 Areas as well as the 300, 400, and 600 Areas. The remedial actions for the river corridor are being conducted to meet residential land use standards with the vision of the river corridor being devoted to a combination of recreation and preservation. The ''Central Plateau'' describes the region associated with operations and waste sites of the 200 Areas. DOE is developing a strategy for closure of the Central Plateau area by 2035. At the time of closure, waste management activities will shrink to a Core Zone within the Central Plateau. The Core Zone will contain the majority of Hanford's permanently disposed waste

Kincaid, Charles T.; Bryce, Robert W.; Buck, John W.

2004-07-09T23:59:59.000Z

Note: This page contains sample records for the topic "gtcc low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Understanding radioactive waste  

SciTech Connect

This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

Murray, R.L.

1981-12-01T23:59:59.000Z

282

Low-Level Nuclear Activity in Nearby Spiral Galaxies  

E-Print Network (OSTI)

We are conducting a search for supermassive black holes (SMBHs) with masses below 10^7 M_sun by looking for signs of extremely low-level nuclear activity in nearby galaxies that are not known to be AGNs. Our survey has the following characteristics: (a) X-ray selection using the Chandra X-ray Observatory, since x-rays are a ubiquitous feature of AGNs; (b) Emphasis on late-type spiral and dwarf galaxies, as the galaxies most likely to have low-mass SMBHs; (c) Use of multiwavelength data to verify the source is an AGN; and (d) Use of the highest angular resolution available for observations in x-rays and other bands, to separate nuclear from off-nuclear sources and to minimize contamination by host galaxy light. Here we show the feasibility of this technique to find AGNs by applying it to six nearby, face-on spiral galaxies (NGC 3169, NGC 3184, NGC 4102, NGC 4647, NGC 4713, NGC 5457) for which data already exist in the Chandra archive. All six show nuclear x-ray sources. The data as they exist at present are ambiguous regarding the nature of the nuclear x-ray sources in NGC 4713 and NGC 4647. We conclude, in accord with previous studies, that NGC 3169 and NGC 4102 are almost certainly AGNs. Most interestingly, a strong argument can be made that NGC 3184 and NGC 5457, both of type Scd, host AGNs.

Himel Ghosh; Smita Mathur; Fabrizio Fiore; Laura Ferrarese

2008-01-28T23:59:59.000Z

283

Steam reforming of low-level mixed waste. Final report  

Science Conference Proceedings (OSTI)

ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design, construction, and testing of the PDU as well as performance and economic projections for a 300-lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area and published in April 1997. The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfully tested including a 750-hour test on material simulating a PCB- and Uranium-contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (> 99.9999%) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radionuclides in the volume-reduced solids. Economic evaluations have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies.

NONE

1998-06-01T23:59:59.000Z

284

New study sees greater low-level radiation threat  

SciTech Connect

A new analysis of Energy Department medical records has found higher than expected cancer rates among workers at DOE's Hanford nuclear weapons plant, suggesting occupational exposure to low-level radiation may be more dangerous than previously thought. The study, released Tuesday by the Philadelphia-based Three Mile Island Public Health Fund, is important not only because of its controversial conclusions, but also because it represents the first independent review of DOE's long-secret worker medical records. The new study done by Stewart and Kneale looked at Hanford worker health records dating up to 1986 - part of a huge trove of data withheld by DOE from independent researchers until two years ago. In their re-analysis of the Hanford worker records, Stewart and Kneale found increased cancer rates among older workers who were over 40 years of age when exposed. And they said that increased susceptibility of older people to radiation-induced cancer was not reflected in the highly influential Japanese atomic bomb studies because people over 50 years of age were [open quotes]grossly under-represented[close quotes] in the A-bomb analyses, possibly because many bomb victims suffered early deaths from high doses.

Lobsenz, G.

1992-12-09T23:59:59.000Z

285

Mind-sets, low-level exposures, and research  

Science Conference Proceedings (OSTI)

Much of our environmental policy is based on the notion that carcinogenic agents are harmful at even minuscule doses. From where does this thinking come What is the scientific evidence that supports such policy Moreover, why is the public willing to buy into this Or is it the other way around: Has the scientific community bought into a paradigm that has its origins in public imagery Or, most likely, are there interactions between the two It is essential that we find out whether or not there are risks associated with low-level exposures to radiation. The author can see three obvious areas where the future depends on better information: The increasing radiation exposures resulting from the use of medical diagnostic and therapeutic practices need to be properly evaluated for safety; Environmental policies, which direct enormous resources to the reduction of small radiation exposures, needs to be put on a firmer scientific basis; The future of nuclear energy, dependent as it is on public acceptance, may well rely upon a better understanding of low-dose effects. Nuclear energy could provide an important solution of global warming and other possible environmental hazards, but will probably not be implemented as long as fear of low-dose radiation persists. Although an established paradigm has great resilience, it cannot resist the onslaught of inconsistent scientific observations or of the social value system that supports it. Only new research will enable us to determine if a paradigm shift is in order here.

Sagan, L.A. (Electric Power Research Inst., Palo Alto, CA (United States). Environment Division)

1993-03-01T23:59:59.000Z

286

Low-level waste certification plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility. Revision 1  

SciTech Connect

The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan is composed to meet the requirements found in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and follows the suggested outline provided by WHC in the letter of April 26, 1990, to Dr. R.H. Thomas, Occupational Health Division, LBL. LLW is to be transferred to the WHC Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington.

1995-01-10T23:59:59.000Z

287

Comparison of costs for alternative mixed low-level waste treatment systems  

SciTech Connect

Total life cycle costs (TLCCs), including disposal costs, of thermal, nonthermal and enhanced nonthermal systems were evaluated to guide future research and development programs for the treatment of mixed low-level waste (MLLW) consisting of RCRA hazardous and low-level radioactive wastes. In these studies, nonthermal systems are defined as those systems that process waste at temperatures less than 350 C. Preconceptual designs and costs were developed for thirty systems with a capacity (2,927 lbs/hr) to treat the DOE MLLW stored inventor y(approximately 236 million pounds) in 20 years in a single, centralized facility. A limited comparison of the studies` results is presented in this paper. Sensitivity of treatment costs with respect to treatment capacity, number of treatment facilities, and system availability were also determined. The major cost element is operations and maintenance (O and M), which is 50 to 60% of the TLCC for both thermal and nonthermal systems. Energy costs constitute a small fraction (< 1%) of the TLCCs. Equipment cost is only 3 to 5% of the treatment cost. Evaluation of subsystem costs demonstrate that receiving and preparation is the highest cost subsystem at about 25 to 30% of the TLCC for both thermal and nonthermal systems. These studies found no cost incentives to use nonthermal or hybrid (combined nonthermal treatment with stabilization by vitrification) systems in place of thermal systems. However, there may be other incentives including fewer air emissions and less local objection to a treatment facility. Building multiple treatment facilities to treat the same total mass of waste as a single facility would increase the total treatment cost significantly, and improved system availability decreases unit treatment costs by 17% to 30%.

Schwinkendorf, W.E.; Harvego, L. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Cooley, C.R. [Dept. of Energy (United States); Biagi, C. [Morrison Knudsen (United States)

1996-12-31T23:59:59.000Z

288

Surveillance and maintenance plan for the inactive liquid low-level waste tanks at Oak Ridge National Laboratory  

Science Conference Proceedings (OSTI)

ORNL has a total of 54 inactive liquid low-level waste (ILLLW) tanks. In the past, these tanks were used to contain radioactive liquid wastes from various research programs, decontamination operations, and reactor operations. The tanks have since been removed from service for various reasons; the majority were retired because of their age, some due to integrity compromises, and others because they did not meet the current standards set by the Federal Facilities Agreement (FFA). Many of the tanks contain residual radioactive liquids and/or sludges. Plans are to remediate all tanks; however, until remediation of each tank, this Surveillance and Maintenance (S&M) Plan will be used to monitor the safety and inventory containment of these tanks.

Not Available

1994-11-01T23:59:59.000Z

289

Performance evaluation of the technical capabilities of DOE sites for disposal of mixed low-level waste: Volume 3, Site evaluations  

Science Conference Proceedings (OSTI)

A team of analysts designed and conducted a performance evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Volume 1 summarizes the process for selecting the fifteen sites, the methodology used in the evaluation, and the conclusions derived from the evaluation. Volume 2 provides details about the site-selection process, the performance-evaluation methodology, and the overall results of the analysis. Volume 3 contains detailed evaluations of the fifteen sites and discussion of the results for each site.

Waters, R.D.; Gruebel, M.M. [eds.] [eds.

1996-03-01T23:59:59.000Z

290

EA-0874: Low-level Waste Drum Staging Building at Weapons Engineering...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

74: Low-level Waste Drum Staging Building at Weapons Engineering Tritium Facility, TA-16 Los Alamos National Laboratory, Los Alamos, New Mexico EA-0874: Low-level Waste Drum...

291

EA-1189: Non-thermal Treatment of Hanford Site Low-level Mixed...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: Non-thermal Treatment of Hanford Site Low-level Mixed Waste, Richland, Washington EA-1189: Non-thermal Treatment of Hanford Site Low-level Mixed Waste, Richland, Washington...

292

EA-1203: Trench 33 Widening in 218-W-5 Low-level Burial Ground...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Trench 33 Widening in 218-W-5 Low-level Burial Ground, Hanford Site, Richland, Washington EA-1203: Trench 33 Widening in 218-W-5 Low-level Burial Ground, Hanford Site, Richland,...

293

Format and Content Guide for DOE Low-Level Waste Disposal Facility Closure Plans  

Energy.gov (U.S. Department of Energy (DOE))

Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans

294

Low-Level Plutonium Sample Involved in NIST-Boulder Lab ...  

Science Conference Proceedings (OSTI)

Low-Level Plutonium Sample Involved in NIST-Boulder Lab Incident. For Immediate Release: June 10, 2008. ...

2010-10-05T23:59:59.000Z

295

Facility accident analysis for low-level waste management alternatives in the US Department of Energy Waste Management Program  

Science Conference Proceedings (OSTI)

The risk to human health of potential radiological releases resulting from facility accidents constitutes an important consideration in the US Department of Energy (DOE) waste management program. The DOE Office of Environmental Management (EM) is currently preparing a Programmatic Environmental Impact Statement (PEIS) that evaluates the risks associated with managing five types of radiological and chemical wastes in the DOE complex. Several alternatives for managing each of the five waste types are defined and compared in the EM PEIS. The alternatives cover a variety of options for storing, treating, and disposing of the wastes. Several treatment methods and operation locations are evaluated as part of the alternatives. The risk induced by potential facility accidents is evaluated for storage operations (current and projected waste storage and post-treatment storage) and for waste treatment facilities. For some of the five waste types considered, facility accidents cover both radiological and chemical releases. This paper summarizes the facility accident analysis that was performed for low-level (radioactive) waste (LLW). As defined in the EM PEIS, LLW includes all radioactive waste not classified as high-level, transuranic, or spent nuclear fuel. LLW that is also contaminated with chemically hazardous components is treated separately as low-level mixed waste (LLMW).

Roglans-Ribas, J.; Mueller, C.; Nabelssi, B.; Folga, S.; Tompkins, M.

1995-06-01T23:59:59.000Z

296

Update of the management strategy for Oak Ridge National Laboratory Liquid Low-Level Waste  

Science Conference Proceedings (OSTI)

The strategy for management of the Oak Ridge National Laboratory`s (ORNL) radioactively contaminated liquid waste was reviewed in 1991. The latest information available through the end of 1990 on waste characterization, regulations, US Department of Energy (DOE) budget guidance, and research and development programs was evaluated to determine how the strategy should be revised. Few changes are needed to update the strategy to reflect new waste characterization, research, and regulatory information. However, recent budget guidance from DOE indicates that minimum funding will not be sufficient to accomplish original objectives to upgrade the liquid low-level waste (LLLW) system to comply with the Federal Facilities Agreement, provide long-term LLLW treatment capability, and minimize environmental, safety, and health risks. Options are presented that might allow the ORNL LLLW system to continue operations temporarily, but they would significantly reduce its capabilities to handle emergency situations, provide treatment for new waste streams, and accommodate waste from the Environmental Restoration Program and from decontamination and decommissioning of surplus facilities. These options are also likely to increase worker radiation exposure, risk of environmental insult, and generation of solid waste for on-site and off-site disposal/storage beyond existing facility capacities. The strategy will be fully developed after receipt of additional guidance. The proposed budget limitations are too severe to allow ORNL to meet regulatory requirements or continue operations long term.

Robinson, S.M.; Abraham, T.J.; DePaoli, S.M.; Walker, A.B.

1995-04-01T23:59:59.000Z

297

Comparison of low-level waste disposal programs of DOE and selected international countries  

SciTech Connect

The purpose of this report is to examine and compare the approaches and practices of selected countries for disposal of low-level radioactive waste (LLW) with those of the US Department of Energy (DOE). The report addresses the programs for disposing of wastes into engineered LLW disposal facilities and is not intended to address in-situ options and practices associated with environmental restoration activities or the management of mill tailings and mixed LLW. The countries chosen for comparison are France, Sweden, Canada, and the United Kingdom. The countries were selected as typical examples of the LLW programs which have evolved under differing technical constraints, regulatory requirements, and political/social systems. France was the first country to demonstrate use of engineered structure-type disposal facilities. The UK has been actively disposing of LLW since 1959. Sweden has been disposing of LLW since 1983 in an intermediate-depth disposal facility rather than a near-surface disposal facility. To date, Canada has been storing its LLW but will soon begin operation of Canada`s first demonstration LLW disposal facility.

Meagher, B.G. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Cole, L.T. [Cole and Associates (United States)

1996-06-01T23:59:59.000Z

298

Mixed Waste Management Options: 1995 Update. National Low-Level Waste Management Program  

SciTech Connect

In the original mixed Waste Management Options (DOE/LLW-134) issued in December 1991, the question was posed, ``Can mixed waste be managed out of existence?`` That study found that most, but not all, of the Nation`s mixed waste can theoretically be managed out of existence. Four years later, the Nation is still faced with a lack of disposal options for commercially generated mixed waste. However, since publication of the original Mixed Waste Management Options report in 1991, limited disposal capacity and new technologies to treat mixed waste have become available. A more detailed estimate of the Nation`s mixed waste also became available when the US Environmental Protection Agency (EPA) and the US Nuclear Regulatory Commission (NRC) published their comprehensive assessment, titled National Profile on Commercially Generated Low-Level Radioactive Mixed Waste (National Profile). These advancements in our knowledge about mixed waste inventories and generation, coupled with greater treatment and disposal options, lead to a more applied question posed for this updated report: ``Which mixed waste has no treatment option?`` Beyond estimating the volume of mixed waste requiring jointly regulated disposal, this report also provides a general background on the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA). It also presents a methodical approach for generators to use when deciding how to manage their mixed waste. The volume of mixed waste that may require land disposal in a jointly regulated facility each year was estimated through the application of this methodology.

Kirner, N.; Kelly, J.; Faison, G.; Johnson, D. [Foster Wheeler Environmental Corp. (United States)

1995-05-01T23:59:59.000Z

299

National Low-Level Waste Management Program Radionuclide Report Series. Volume 10, Nickel-63  

Science Conference Proceedings (OSTI)

This report outlines the basic radiological, chemical, and physical characteristics of nickel-63 ({sup 63}Ni) and examines how these characteristics affect the behavior of {sup 63}Ni in various environmental media, such as soils, groundwater, plants, animals, the atmosphere, and the human body. Discussions also include methods of {sup 63}Ni production, waste types, and waste forms that contain {sup 63}Ni. The primary source of {sup 63}Ni in the environment has been low-level radioactive waste material generated as a result of neutron activation of stable {sup 62}Ni that is present in the structural components of nuclear reactor vessels. {sup 63}Ni enters the environment from the dismantling activities associated with nuclear reactor decommissioning. However, small amounts of {sup 63}Ni have been detected in the environment following the testing of thermonuclear weapons in the South Pacific. Concentrations as high as 2.7 Bq{sup a} per gram of sample (or equivalently 0.0022 parts per billion) were observed on Bikini Atoll (May 1954). {sup 63}Ni was not created as a fission product species (e.g., from {sup 235}U or {sup 239}Pu fissions), but instead was produced as a result of neutron capture in {sup 63}Ni, a common nickel isotope present in the stainless steel components of nuclear weapons (e.g., stainless-304 contains {approximately}9% total Ni or {approximately}0.3% {sup 63}Ni).

Carboneau, M.L.; Adams, J.P.

1995-02-01T23:59:59.000Z

300

EA-1276: Widening Trench 36 of the 218-E-12B Low-level Burial Ground,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

76: Widening Trench 36 of the 218-E-12B Low-level Burial 76: Widening Trench 36 of the 218-E-12B Low-level Burial Ground, Hanford Site, Richland, Washington EA-1276: Widening Trench 36 of the 218-E-12B Low-level Burial Ground, Hanford Site, Richland, Washington SUMMARY This EA evaluates the environmental impacts for the proposal to widen and operate unused Trench 36 in the 218-E-12B Low-Level Burial Ground for disposal of low-level waste at the U.S. Department of Energy Hanford Site. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD February 11, 1999 EA-1276: Finding of No Significant Impact Widening Trench 36 of the 218-E-12B Low-level Burial Ground, Hanford Site, Richland, Washington February 11, 1999 EA-1276: Final Environmental Assessment Widening Trench 36 of the 218-E-12B Low-level Burial Ground, Hanford Site,

Note: This page contains sample records for the topic "gtcc low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Replacement Capability for Disposal of Remote-Handled Low-Level Waste Generated at the Department of Energys Idaho Site  

NLE Websites -- All DOE Office Websites (Extended Search)

93 93 Environmental Assessment for the Replacement Capability for Disposal of Remote-Handled Low-Level Radioactive Waste Generated at the Department of Energy's Idaho Site Final December 2011 Department of Energy Idaho Operations Office 1955 Fremont Avenue Idaho Falls, ID 83415 December 21, 2011 Dear Citizen: The U.S. Department of Energy (DOE) has completed the Final Environmental Assessment (EA) for the Replacement Capability for Disposal of Remote-Handled Low-Level Radioactive Waste Generated at the Department of Energy's Idaho Site and determined that a Finding of No Significant Impact (FONSI) is appropriate. The draft EA was made available for an 81-day public review and comment period on September 1,2011. DOE considered all comments made

302

Replacement Capability for Disposal of Remote-Handled Low-Level Waste Generated at the Department of Energys Idaho Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FINDING OF NO SIGNIFICANT IMPACT FINDING OF NO SIGNIFICANT IMPACT FOR THE ENVIRONMENTAL ASSESSMENT FOR THE REPLACEMENT CAPABILITY FOR THE DISOPOSAL OF REMOTE-HANDLED LOW-LEVEL RADIOACTIVE WASTE GENERATED AT THE DEPARTMENT OF ENERGY'S IDAHO SITE Agency: U. S. Department of Energy (DOE) Action: Finding ofNo Significant Impact (FONSI) Summary: Operations conducted in support ofIdaho National Laboratory (INL) and Naval Reactors Facility (NRF) missions on the Idaho site generate low-level radioactive waste (LL W). DOE classifies some of the LL W generated at the INL as remote-handled LL W because its potential radiation dose is high enough to require additional protection of workers using distance and shielding. Remote-handled wastes are those with radiation levels exceeding 200 millirem

303

EA-1189: Non-thermal Treatment of Hanford Site Low-level Mixed Waste,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: Non-thermal Treatment of Hanford Site Low-level Mixed 9: Non-thermal Treatment of Hanford Site Low-level Mixed Waste, Richland, Washington EA-1189: Non-thermal Treatment of Hanford Site Low-level Mixed Waste, Richland, Washington SUMMARY This EA evaluates the environmental impacts for the proposal to demonstrate the feasibility of commercial treatment of contact-handled low-level mixed waste to meet existing Federal and State regulatory standards for eventual land disposal at the U.S. Department of Energy Richland Operations Office. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD September 29, 1998 EA-1189: Finding of No Significant Impact Non-thermal Treatment of Hanford Site Low-level Mixed Waste September 29, 1998 EA-1189: Final Environmental Assessment Non-thermal Treatment of Hanford Site Low-level Mixed Waste

304

EIS-0305: Treating Transuranic (TRU)/Alpha Low-Level at the Oak Ridge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

05: Treating Transuranic (TRU)/Alpha Low-Level at the Oak 05: Treating Transuranic (TRU)/Alpha Low-Level at the Oak Ridge National Laboratory, Oak Ridge, Tennessee EIS-0305: Treating Transuranic (TRU)/Alpha Low-Level at the Oak Ridge National Laboratory, Oak Ridge, Tennessee SUMMARY This EIS evaluates DOE's proposal to construct, operate, and decontaminate/decommission a Transuranic (TRU) Waste Treatment Facility in Oak Ridge, Tennessee. The four waste types that would be treated at the proposed facility would be remote-handled TRU mixed waste sludge, liquid low-level waste associated with the sludge, contact-handled TRU/alpha low-level waste solids, and remote-handled TRU/alpha low-level waste solids. The mixed waste sludge and some of the solid waste contain metals regulated under the Resource Conservation and Recovery Act and may be

305

EA-1203: Trench 33 Widening in 218-W-5 Low-level Burial Ground, Hanford  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Trench 33 Widening in 218-W-5 Low-level Burial Ground, 3: Trench 33 Widening in 218-W-5 Low-level Burial Ground, Hanford Site, Richland, Washington EA-1203: Trench 33 Widening in 218-W-5 Low-level Burial Ground, Hanford Site, Richland, Washington SUMMARY This EA evaluates the environmental impacts for the proposal to widen and operate the unused Trench 33 in the 218-W-5 Low-Level Burial Ground at the U.S. Department of Energy's Richland Operations Office. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 28, 1997 EA-1203: Finding of No Significant Impact Trench 33 Widening in 218-W-5 Low-level Burial Ground, Hanford Site, Richland, Washington July 28, 1997 EA-1203: Final Environmental Assessment Trench 33 Widening in 218-W-5 Low-level Burial Ground, Hanford Site, Richland, Washington

306

Low-Level Plutonium Bioassay Measurements at the Lawrence Livermore National Laboratory  

Science Conference Proceedings (OSTI)

Plutonium-239 ({sup 239}Pu) and plutonium-240 ({sup 240}Pu) are important alpha emitting radionuclides contained in radioactive debris from nuclear weapons testing. {sup 239}Pu and {sup 240}Pu are long-lived radionuclides with half-lives of 24,400 years and 6580 years, respectively. Concerns over human exposure to plutonium stem from knowledge about the persistence of plutonium isotopes in the environment and the high relative effectiveness of alpha-radiation to cause potential harm to cells once incorporated into the human body. In vitro bioassay tests have been developed to assess uptakes of plutonium based on measured urinary excretion patterns and modeled metabolic behaviors of the absorbed radionuclides. Systemic plutonium absorbed by the deep lung or from the gastrointestinal tract after ingestion is either excreted or distributed to other organs, primarily to the liver and skeleton, where it is retained for biological half-times of around 20 and 50 years, respectively. Dose assessment and atoll rehabilitation programs in the Marshall Islands have historically given special consideration to residual concentrations of plutonium in the environment even though the predicted dose from inhalation and/or ingestion of plutonium accounts for less than 5% of the annual effective dose from exposure to fallout contamination. Scientists from the Lawrence Livermore National Laboratory (LLNL) have developed a state-of-the-art bioassay test to assess urinary excretion rates of plutonium from Marshallese populations. This new heavy-isotope measurement system is based on Accelerator Mass Spectrometry (AMS). The AMS system at LLNL far exceeds the standard measurement requirements established under the latest United States Department of Energy (DOE) regulation, 10CFR 835, for occupational monitoring of plutonium, and offers several advantages over classical as well as competing new technologies for low-level detection and measurement of plutonium isotopes. The United States National Institute of Standards and Technology (NIST) has independently verified the accuracy and precision of the AMS detection system for low-level bioassay measurements of plutonium isotopes through participation in an intercomparison exercise whereby performance evaluation samples were prepared in a synthetic urine matrix and submitted to participating laboratories for blind analysis. The results of the analyses were then sent to the NIST to independently evaluate the performance of laboratory participants. At LLNL, the AMS measurements of {sup 239}Pu and {sup 240}Pu met ANSI 13.30 criteria for both precision and accuracy at all sample test levels. Livermore scientists continue to test the performance of the Marshall Islands Plutonium Urinalysis Program by routine blind analysis of externally prepared quality control test samples, and through the rigorous implementation of standardized methods and procedures. Although not addressed directly in the report, AMS measurements show that the urinary excretion of plutonium by selected Marshallese populations fall into a low and reproducible range. Moreover, there appears to be no evidence of small incremental intakes of plutonium associated with resettlement activities - past or present. The improved quality, reliability and detection sensitivity of AMS for low-level plutonium isotope measurements will enable DOE to develop high-quality, baseline urinary excretion data for Marshallese populations, and accurately assess and track potential uptakes of plutonium. associated with resettlement activities and/or from long-term changes in plutonium exposure conditions in the Marshall Islands.

Hamilton, T; Brown, T; Hickman, D; Marchetti, A; Williams, R; Kehl, S

2007-06-18T23:59:59.000Z

307

The Use of Collective Dose for Optimization of a Low-Level Waste Site Closure Cover  

Science Conference Proceedings (OSTI)

Low-level radioactive waste management regulations require that releases to the environment be as low as reasonably achievable. Collective dose’s use in quantitative cost benefit analysis is well accepted for optimization of operational radiation safety, but seldom applied to routine environmental releases. One concern is that collective dose for large areas and long time periods may obscure the spatial and temporal distribution of risk and the magnitude of individual doses. Use of collective dose for optimization also requires that the decision maker justify subjective inputs including truncation limits for the summation of collective dose in space and time, a monetary value for collective dose, and a discount rate for future health detriment. In this study, a probabilistic collective dose model is developed and used to optimize the closure of the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada Test Site. Collective dose’s shortcomings are addressed by preparing a dose matrix that disaggregates the collective dose in space and time and by reporting individual doses for exposed subgroups. Important subjective inputs are assigned discrete values reflecting differing opinions, and the consequence of the differences on the final decision is described. The resulting optimization process remains subjective, but clearly identifies subjective inputs, the values selected, and their impact on the decision. For the Area 5 RWMS, the value of the collective dose is small compared to closure cover cost options over a broad range of subjective values for the spatial and temporal limits for truncation of collective dose, monetary value of collective dose, and discount rates for future dose. The collective dose matrix and individual doses indicate that the societal and individual risks are greatest for future residents within the disposal site boundary, suggesting that options deterring intrusion have the greatest potential for cost-effectiveness. The cost of various closure options far exceeds the value of the collective dose averted, indicating that there are few opportunities for cost-effective improvements when closures meet the low dose constraints in waste management regulations.

Greg Shott, Vefa Yucel

2010-03-07T23:59:59.000Z

308

Format and Content Guide for DOE Low-Level Waste Disposal Facility  

Energy.gov (U.S. Department of Energy (DOE))

Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments and Composite Analyses

309

Annual and Nonseasonal Variability of Monthly Low-Level Wind Fields over the Southeastern Tropical Pacific  

Science Conference Proceedings (OSTI)

The time and space variability of low-level winds over the Southeast Tropical Pacific (SETP) region is described for the 6-year period 1974–80. The data set consists of monthly averaged low-level cloud-motion vector winds supplemented by coastal ...

David B. Enfield

1981-10-01T23:59:59.000Z

310

Low-Level Mesocyclonic Concentration by Nonaxisymmetric Transport. Part I: Supercell and Mesocyclone Evolution  

Science Conference Proceedings (OSTI)

An idealized simulation of a supercell using the Regional Atmospheric Modeling System (RAMS) was able to produce a low-level mesocyclone near the intersection of the forward- and rear-flank downdrafts. The creation of the low-level mesocyclone is ...

Brian J. Gaudet; William R. Cotton

2006-04-01T23:59:59.000Z

311

12/2000 Low-Level Waste Disposal Capacity Report Version 2 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Waste Management » Waste Disposition » 12/2000 Services » Waste Management » Waste Disposition » 12/2000 Low-Level Waste Disposal Capacity Report Version 2 12/2000 Low-Level Waste Disposal Capacity Report Version 2 The purpose of this Report is to assess whether U.S. Department of Energy (DOE or the Department) disposal facilities have sufficient volumetric and radiological capacity to accommodate the low-level waste (LLW) and mixed low-level waste (MLLW) that the Department expects to dispose at these facilities. 12/2000 Low-Level Waste Disposal Capacity Report Version 2 More Documents & Publications EIS-0243: Record of Decision EIS-0200: Record of Decision EIS-0286: Record of Decision Waste Management Nuclear Materials & Waste Tank Waste and Waste Processing Waste Disposition Packaging and Transportation

312

EA-0843: Idaho National Engineering Laboratory Low-Level and Mixed Waste  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

43: Idaho National Engineering Laboratory Low-Level and Mixed 43: Idaho National Engineering Laboratory Low-Level and Mixed Waste Processing, Idaho Falls, Idaho EA-0843: Idaho National Engineering Laboratory Low-Level and Mixed Waste Processing, Idaho Falls, Idaho SUMMARY This EA evaluates the environmental impacts of a proposal to (1) reduce the volume of the U.S. Department of Energy's Idaho National Engineering Laboratory's (INEL) generated low-level waste (LLW) through sizing, compaction, and stabilization at Waste Experimental Reduction Facility (WERF); and (2) use commercial offsite facilities for supplemental LLW volume reduction (incineration). PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD June 3, 1994 EA-0843: Finding of No Significant Impact Idaho National Engineering Laboratory Low-Level and Mixed Waste Processing

313

Perspectives of Decision-Making and Estimation of Risk in Populations Exposed to Low Levels of Ionizing Radiations  

E-Print Network (OSTI)

exposure to radioactive fallout in radiation-associatedheight of the radioactive fallout deliberations in the early

Fabrikant, J.I.

2010-01-01T23:59:59.000Z

314

CHROMOSOMAL ABERRATIONS IN A NATURAL POPULATION OF CHIRONOMUS TENTANS EXPOSED TO CHRONIC LOW-LEVEL ENVIRONMENTAL RADIATION  

SciTech Connect

The salivary gland chromosomes of Chironomus tentans larvae collected from White Oak Creek, an area contaminated by radioactive waste from the Oak Ridge National Laboratory, and from six uncontaminated areas were examined for chromosomal aberrations. White Oak Creek populations were exposed to absorbed doses as high as 230 rads per year or about 1000 times background. Chromosomal maps were constructed to make a general comparison of the banding pattern of the salivary chromosomes of the C. tentans in the East Tennessee area with those of Canada and Europe. These maps were used as a reference in scoring aberrations. Fifteen different chromosomal aberrations were found in 365 larvae taken from the irradiated population as compared with five different aberrations observed in 356 larvae from six control populations, but the mean number of aberrations per larva did not differ in any of the populations. The quantitative amount of heterozygosity was essentially the same in the irradiated and the control population, but there were three times the variety of chromosomal aberrations found in the irradiated area. From this evidence it was concluded that chronic low-level irradiation from radioactive waste was increasing the variability of chromosomal aberrations without significantly increasing the frequency. It was also concluded that chromosomal polymorphism can be maintained in a natural population without superiority of the heterozygous individuals. (C.H.)

Blaylock, B G; Auerbach, S I; Nelson, D J

1964-01-29T23:59:59.000Z

315

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31 - 16340 of 28,560 results. 31 - 16340 of 28,560 results. Article DEPARTMENT OF ENERGY SOLICITS PUBLIC INPUT TO INFORM DEVELOPMENT OF A PREFERRED ALTERNATIVE FOR DISPOSAL OF GREATER-THAN-CLASS C WASTE During the months of April and May, 2011 the Department of Energy's Office of Environmental Management will be holding nine public hearings on the Draft Environmental Impact Statement (EIS) for the Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste and GTCC-Like Waste. Hearings will be held at the each of the sites being considered for disposal of GTCC wastes and in Washington, DC. http://energy.gov/em/articles/department-energy-solicits-public-input-inform-development-preferred Download Preliminary Notice of Violation, International Technology Corporation- EA-1999-01

316

DEPARTMENT OF ENERGY SOLICITS PUBLIC INPUT TO INFORM DEVELOPMENT OF A  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DEPARTMENT OF ENERGY SOLICITS PUBLIC INPUT TO INFORM DEVELOPMENT OF DEPARTMENT OF ENERGY SOLICITS PUBLIC INPUT TO INFORM DEVELOPMENT OF A PREFERRED ALTERNATIVE FOR DISPOSAL OF GREATER-THAN-CLASS C WASTE DEPARTMENT OF ENERGY SOLICITS PUBLIC INPUT TO INFORM DEVELOPMENT OF A PREFERRED ALTERNATIVE FOR DISPOSAL OF GREATER-THAN-CLASS C WASTE March 1, 2011 - 12:00pm Addthis During the months of April and May, 2011 the Department of Energy's Office of Environmental Management will be holding nine public hearings on the Draft Environmental Impact Statement (EIS) for the Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste and GTCC-Like Waste. Hearings will be held at the each of the sites being considered for disposal of GTCC wastes and in Washington, DC. DOE does not have a preferred alternative at this time. These hearings will

317

Precision Dual-Aquifer Dewatering at a Low Level Radiological Cleanup in New Jersey  

SciTech Connect

Cleanup of low-level radioactive wastes at the Wayne Interim Storage Site (WISS), Wayne, New Jersey during the period October, 2000 through November, 2001 required the design, installation and operation of a dual-aquifer dewatering system to support excavation of contaminated soils. Waste disposal pits from a former rare-earth processing facility at the WISS had been in contact with the water table aquifer, resulting in moderate levels of radionuclides being present in the upper aquifer groundwater. An uncontaminated artesian aquifer underlies the water table aquifer, and is a localized drinking water supply source. The lower aquifer, confined by a silty clay unit, is flowing artesian and exhibits potentiometric heads of up to 4.5 meters above grade. This high potentiometric head presented a strong possibility that unloading due to excavation would result in a ''blowout'', particularly in areas where the confining unit was < 1 meter thick. Excavation of contaminated materials w as required down to the surface of the confining unit, potentially resulting in an artesian aquifer head of greater than 8 meters above the excavation surface. Consequently, it was determined that a dual-aquifer dewatering system would be required to permit excavation of contaminated material, with the water table aquifer dewatered to facilitate excavation, and the deep aquifer depressurized to prevent a ''blowout''. An additional concern was the potential for vertical migration of contamination present in the water table aquifer that could result from a vertical gradient reversal caused by excessive pumping in the confined system. With these considerations in mind, a conceptual dewatering plan was developed with three major goals: (1) dewater the water table aquifer to control radionuclide migration and allow excavation to proceed; (2) depressurize the lower, artesian aquifer to reduce the potential for a ''blowout''; and (3) develop a precise dewatering level control mechanism to insure a vertical gradient reversal did not result in cross-contamination. The plan was executed through a hydrogeologic investigation culminating with the design and implementation of a complex, multi-phased dual-aquifer dewatering system equipped with a state of the art monitoring network.

Gosnell, A. S.; Langman, J. W. Jr.; Zahl, H. A.; Miller, D. M.

2002-02-27T23:59:59.000Z

318

Performance evaluation of the technical capabilities of DOE sites for disposal of mixed low-level waste. Volume 1: Executive summary  

SciTech Connect

A team of analysts designed and conducted a performance evaluation (PE) to estimate the technical capabilities of fifteen Department of Energy sites for disposal of mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Volume 1 summarizes the process for selecting the fifteen sites, the methodology used in the evaluation, and the conclusions derived from the evaluation. Volume 1 is an executive summary both of the PE methodology and of the results obtained from the PEs. While this volume briefly reviews the scope and method of analyses, its main objective is to emphasize the important insights and conclusions derived from the conduct of the PEs. Volume 2 provides details about the site-selection process, the performance-evaluation methodology, and the overall results of the analysis. Volume 3 contains detailed evaluations of the fifteen sites and discussions of the results for each site.

NONE

1996-03-01T23:59:59.000Z

319

Performance evaluation of the technical capabilities of DOE sites for disposal of mixed low-level waste. Volume 2: Technical basis and discussion of results  

Science Conference Proceedings (OSTI)

A team of analysts designed and conducted a performance evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Volume 1 summarizes the process for selecting the fifteen sites, the methodology used in the evaluation, and the conclusions derived from the evaluation. Volume 2 first describes the screening process used to determine the sites to be considered in the PEs. This volume then provides the technical details of the methodology for conducting the performance evaluations. It also provides a comparison and analysis of the overall results for all sites that were evaluated. Volume 3 contains detailed evaluations of the fifteen sites and discussions of the results for each site.

Waters, R.D.; Gruebel, M.M.; Hospelhorn, M.B. [and others

1996-03-01T23:59:59.000Z

320

EA-0874: Low-level Waste Drum Staging Building at Weapons Engineering  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

74: Low-level Waste Drum Staging Building at Weapons 74: Low-level Waste Drum Staging Building at Weapons Engineering Tritium Facility, TA-16 Los Alamos National Laboratory, Los Alamos, New Mexico EA-0874: Low-level Waste Drum Staging Building at Weapons Engineering Tritium Facility, TA-16 Los Alamos National Laboratory, Los Alamos, New Mexico SUMMARY This EA evaluates the environmental impacts of a proposal to place a 3 meter (m) by 4.5 m prefabricated storage building (transportainer) adjacent to the existing Weapons Engineering Tritium Facility at Technical Area 16, U.S. Department of Energy's Los Alamos National Laboratory in Los Alamos, New Mexico, and to use the building as a staging site for sealed 55-gallon drums of noncompactible waste contaminated with low levels of tritium. PUBLIC COMMENT OPPORTUNITIES

Note: This page contains sample records for the topic "gtcc low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Summertime Low-Level Jets over the High-Latitude Arctic Ocean  

Science Conference Proceedings (OSTI)

The application of a simple analytic boundary layer model developed by Thorpe and Guymer did not produce good agreement with observational data for oceanic low-level jet observations even though this model has worked well for the predictions of ...

Douglas O. ReVelle; E. Douglas Nilsson

2008-06-01T23:59:59.000Z

322

EIS-0305: Treating Transuranic (TRU)/Alpha Low-Level at the Oak...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

waste types that would be treated at the proposed facility would be remote-handled TRU mixed waste sludge, liquid low-level waste associated with the sludge, contact-handled...

323

EA-1292: On-site Treatment of Low Level Mixed Waste, Golden, Colorado  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts for the proposal to evaluate the proposed treatment of low level mixed waste at the U.S. Department of Energy's Rocky Flats Environmental Technology Site.

324

The Summertime Low-Level Jet over the Gulf of California  

Science Conference Proceedings (OSTI)

Special pilot balloon and aircraft observations made during the 1990 Southwest Area Monsoon Project (SWAMP-90) are used to describe the structure of a low-level jet (LLJ) observed in the southerly flow over the Gulf of California and ...

Michael W. Douglas

1995-08-01T23:59:59.000Z

325

Low-Level Potential Vorticity and Cyclogenesis to the Lee of the Alps  

Science Conference Proceedings (OSTI)

High-resolution numerical model simulations over the Alpine region are presented that reveal the presence of low-level elongated bands of potential vorticity (PV) downstream of high topography. These PV streamers (or PV banners) occur when the ...

Urs Aebischer; Christoph Schär

1998-01-01T23:59:59.000Z

326

Basis for National and International Low Activity and Very Low Level Waste Disposal Classifications  

Science Conference Proceedings (OSTI)

In order to determine whether the Very Low Level Waste (VLLW) category would be a viable option in the United States, European and U.S. experiences were reviewed in detail.

2012-03-30T23:59:59.000Z

327

Propagation of Low-Level Circulation Features in the Vicinity of Mountain Ranges  

Science Conference Proceedings (OSTI)

The local influence of mountains upon large- and synoptic-scale low-level atmospheric circulations is investigated in this study. The sea-level pressure associated with low-frequency fluctuations exhibit phase propagation of monopolar structures ...

Huang-Hsiung Hsu

1987-09-01T23:59:59.000Z

328

On the Movement and Low-Level Structure of Cold Fronts  

Science Conference Proceedings (OSTI)

This paper presents a review of theoretical and observational studies relating to the low-level structure of cold fronts and explores the factors that are pertinent to frontal motion.

Roger K. Smith; Michael J. Reeder

1988-10-01T23:59:59.000Z

329

EA-1135: Offsite Thermal Treatment of Low-level Mixed Waste, Richland, Washington  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts of the proposal to treat contact-handled low-level mixed waste, containing polychlorinated biphenyls and other organics, to meet existing regulatory...

330

Global Precipitation Extremes Associated with Diurnally Varying Low-Level Jets  

Science Conference Proceedings (OSTI)

Extreme rainfall events have important societal impacts: for example, by causing flooding, replenishing reservoirs, and affecting agricultural yields. Previous literature has documented linkages between rainfall extremes and nocturnal low-level ...

Andrew J. Monaghan; Daran L. Rife; James O. Pinto; Christopher A. Davis; John R. Hannan

2010-10-01T23:59:59.000Z

331

A generalized binding framework for the Low Level Reader Protocol (LLRP)  

E-Print Network (OSTI)

This Master of Engineering Thesis describes the design, implementation and testing of an XML binding framework for the RFID Low Level Reader Protocol (LLRP). LLRP is a recently released protocol which standardizes the ...

Poulopoulos, Dimitrios

2008-01-01T23:59:59.000Z

332

The Dependence of the Low-Level Equatorial Easterly Jet on Hadley and Walker Circulations  

Science Conference Proceedings (OSTI)

How the time-mean Hadley and Walker circulations affect the formation of a low-level equatorial easterly jet is investigated. Experiments are conducted for equinoctial conditions using a general circulation model, the Community Climate Model (...

David S. Battisti; David D. Ovens

1995-11-01T23:59:59.000Z

333

Midsummer Gap Winds and Low-Level Circulation over the Eastern Tropical Pacific  

Science Conference Proceedings (OSTI)

The low-level seasonal and intraseasonal wind variability over the northeastern tropical Pacific (NETP), its relationship with other variables, and the connection with large- and middle-scale atmospheric patterns are analyzed using a suite of ...

Rosario Romero-Centeno; Jorge Zavala-Hidalgo; G. B. Raga

2007-08-01T23:59:59.000Z

334

Low-Level Mesocyclonic Concentration by Nonaxisymmetric Transport. Part II: Vorticity Dynamics  

Science Conference Proceedings (OSTI)

An idealized supercell simulation using the Regional Atmospheric Modeling System (RAMS) produced an elongated low-level mesocyclone that subsequently collapsed into a concentrated vortex. Though vorticity continually increased in the mesocyclone ...

Brian J. Gaudet; William R. Cotton; Michael T. Montgomery

2006-04-01T23:59:59.000Z

335

The Shipboard Use of a Low-Level Atmospheric Thermograph in Fog and Stratus Investigations  

Science Conference Proceedings (OSTI)

A Low-Level Atmospheric Thermograph (LLAT) to obtain fine-scaled and detailed vertical temperature profiles to an altitude of 1000 m has been developed through a simple modification of the Sippican Expendable Bathythermograph (XBT) system. Only ...

J. G. Norton; G. E. Schacher

1980-02-01T23:59:59.000Z

336

Development of a Nationwide, Low-Level Wind Shear Mosaic in France  

Science Conference Proceedings (OSTI)

An algorithm for the detection of horizontal wind shear at low levels was developed. The algorithm makes use of data collected by all radars from the Application Radar à la Météorologie Infra-Synoptique (ARAMIS) operational network, in order to ...

Clotilde Augros; Pierre Tabary; Adrien Anquez; Jean-Marc Moisselin; Pascal Brovelli; Olivier Bousquet

2013-10-01T23:59:59.000Z

337

Comparing Aerosol and Low-Level Moisture Influences on Supercell Tornadogenesis: Three-Dimensional Idealized Simulations  

Science Conference Proceedings (OSTI)

Four three-dimensional, nested-grid numerical simulations were performed using the Regional Atmospheric Modeling System (RAMS) to compare the effects of aerosols acting as cloud condensation nuclei (CCN) to those of low-level moisture [and thus ...

David G. Lerach; William R. Cotton

2012-03-01T23:59:59.000Z

338

A Carolina Coastal Low-Level Jet during GALE IOP 2  

Science Conference Proceedings (OSTI)

During the Intensive Observation Period 2 of the Genesis of Atlantic Lows Experiment a persistent, diurnally varying, northeasterly low-level jet (LLJ) was observed along the Carolina coastal plain. Nocturnal maxima of over 20 m s?1 were observed ...

James D. Doyle; Thomas T. Warner

1991-10-01T23:59:59.000Z

339

12/2000 Low-Level Waste Disposal Capacity Report Version 2  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Current and Planned Current and Planned Low-Level Waste Disposal Capacity Report Revision 2 December 2000 U.S. Department of Energy Office of Environmental Management i TABLE OF CONTENTS EXECUTIVE SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ES-1 1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 1.1 Summary of Report Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 1.2 History of Past DOE Low-Level Waste Disposal Operations . . . . . . . . . . . . . . . . . . . . . . 1-2 1.3 Current Status of the Low-Level and Mixed Low-Level Waste Disposal Configuration . . 1-3 1.4 Methodology for Base Case and Alternative Scenarios Analyses . . . . . . . . . . . . . . . . . . . 1-5 1.5 Radiological Assessments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7 1.6 Data Sources for Waste Disposal Volumes, Waste Radiological Profiles, and Disposal

340

Climatic Role of North American Low-Level Jets on U.S. Regional Tornado Activity  

Science Conference Proceedings (OSTI)

Variability of springtime tornadic activity over the United States is assessed through the connectivity of preferred modes of North American low-level jet (NALLJ) variability to the local thermodynamic environment and remote SST variations. The ...

Scott J. Weaver; Stephen Baxter; Arun Kumar

2012-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "gtcc low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Diffusion from Low-Level Urban Sources: Reexamination Using Recently Available Experimental Data  

Science Conference Proceedings (OSTI)

Experimental meteorological tracer data recently collected or declassified concerning dispersion from low-level sources in urban areas are examined in terms of the findings of the St. Louis Dispersion Study. The latter still provides a standard ...

James L. McElroy

1997-08-01T23:59:59.000Z

342

Licensing an assured isolation facility for low-level radioactive waste. Volume 1: Licensing strategy and issues  

Science Conference Proceedings (OSTI)

This report provides a detailed set of proposed criteria and guidance for the preparation of a license application for an assured isolation facility (AIF). The report is intended to provide a detailed planning basis upon which a prospective applicant may begin pre-licensing discussions with the Nuclear Regulatory Commission and initiate development of a license application. The report may also be useful to the NRC or to state regulatory agencies that may be asked to review such an application. Volume 1 of this report provides background information, and describes the licensing approach and methodology. Volume 2 identifies specific information that is recommended for inclusion in a license application.

Silverman, D.J.; Bauser, M.A. [Morgan, Lewis and Bockius, Washington, DC (United States); Baird, R.D. [Rogers and Associates Engineering Corp., Salt Lake City, UT (United States)

1998-07-01T23:59:59.000Z

343

Summary report: Low-level radioactive waste management activities in the states and compacts, Volume 5, Number 1  

Science Conference Proceedings (OSTI)

Information is given on the ten compacts and their host state, describing the governing body, member states, date established, current waste management, and siting, licensing, and projected date of a disposal facility. Reports are also given on the eight states that remain unaffiliated with a compact commission.

Norris, C. [ed.

1997-01-01T23:59:59.000Z

344

Summary report: Low-level radioactive waste management activities in the states and compacts, Volume 5, Number 2  

Science Conference Proceedings (OSTI)

Information is given on the ten compacts and their host state, describing the governing body, member states, date established, current waste management, and siting, licensing, and projected date of a disposal facility. Reports are also given on the eight states that remain unaffiliated with a compact commission.

Norris, C. [ed.

1997-07-01T23:59:59.000Z

345

Assessing Potential Exposure from Truck Transport of Low-level Radioactive Waste to the Nevada Test Site  

SciTech Connect

This study has shown that, based upon measurements from industry standard radiation detection instruments, such as the RS model RSS-131 PICs in a controlled configuration, a person may be exposed to gamma radiation above background when in close proximity to some LLW trucks. However, in approximately half (47.7 percent) the population of trucks measured in this study, a person would receive no exposure above background at a distance of 1.0 m (3.3 ft) away from a LLW truck. An additional 206 trucks had net exposures greater than zero, but equal to or less than 1 {micro}R/h. Finally, nearly 80 percent of the population of trucks (802 of 1,012) had net exposures less than or equal to 10 {micro}R/h. Although there are no shipping or exposure standards at 1.0 m (3.3 ft) distance, one relevant point of comparison is the DOT shipping standard of 10 mrem/h at 2.0 m (6.6 ft) distance. Assuming a one-to-one correspondence between Roentgens and Rems, then 903 trucks (89.2 percent of the trucks measured) were no greater than one percent of the DOT standard at 1.0 m (3.3 ft). Had the distance at which the trucks been measured increased to 2.0 m (6.6 ft), the net exposure would be even less because of the increase in distance between the truck and the receptor. However, based on the empirical data from this study, the rate of decrease may be slower than for either a point or line source as was done for previous studies (Gertz, 2001; Davis et al., 2001). The highest net exposure value at 1.0 m (3.3 ft) distance, 11.9 mR/h, came from the only truck with a value greater than 10 mR/h at 1.0 m (3.3 ft) distance.

J. Miller; D. Shafer; K. Gray; B. Church; S.Campbell; B. Holz

2005-08-15T23:59:59.000Z

346

Radionuclide-Chelating Agent Complexes in Low-Level Radioactive Decontamination Waste; Stability, Adsorption and Transport Potential  

SciTech Connect

Speciation calculations were done to determine whether organic complexants facilitate transport of radionuclides leached from waste buried in soils. EDTA readily mobilizes divalent transition metals and moderately impacts trivalent actinides. Picolinate readily mobilizes only Ni2+ and Co2+. These speciation predictions ignore the influence of soil adsorption and biodegradation that break apart the complexes. In adsorption studies, picolinate concentrations have to be >10-4 M to lower the adsorption of Ni and Co. For Sm(III), Th(IV), Np(V), U(VI), and Pu, the picolinate concentration must be >10-3 M before adsorption decreases. EDTA forms strong complexes with divalent transition metals and can stop adsorption of Ni and Co when EDTA solution concentrations are 10-5 M. EDTA complexes with Np(V), U(VI), and Pu are much weaker; EDTA concentrations would have to be >10-3 M to adversely effects non-transition metal/radionuclide adsorption. Most picolinate and ETDA-metal complexes appear to readily dissociate during interactions with soils. The enhanced migration of radionuclide-organic complexes may be limited to a few unique conditions. We recommend that mixtures of metal/radionuclides and EDTA should not be solidified or co-disposed with high pH materials such as cement. For weaker binding organic complexants, such as picolinate, citrate and oxalate, co-disposal of decontamination wastes and concrete should be acceptable.

Serne, R. Jeffrey; Cantrell, Cantrell J.; Lindenmeier, Clark W.; Owen, Antionette T.; Kutnyakov, Igor V.; Orr, Robert D.; Felmy, Andrew R.

2002-02-01T23:59:59.000Z

347

Corrosion mechanisms of low level vitrified radioactive waste in a loamy soil M.I. Ojovan1  

E-Print Network (OSTI)

Topic: Briefings by environmental groups, industry groups, pub- lic policy groups, and state, is the central authority responsi- ble for evaluating and supervising the nuclear industry's research and 1.95 meters in diameter. It is fabricated from forged steel with a stainless steel coating. The cask

Sheffield, University of

348

Notice of Intent to Prepare an Environmental Impact Statement for the Greater-than-Class C Low Level Radioactive Waste  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

35 Federal Register 35 Federal Register / Vol. 72, No. 140 / Monday, July 23, 2007 / Notices frequent performance reports under 34 CFR 75.720(c). For specific requirements on reporting, please go to http://www.ed.gov/fund/grant/apply/ appforms/appforms.html. Note: NIDRR will provide information by letter to grantees on how and when to submit the report. 4. Performance Measures: To evaluate the overall success of its research program, NIDRR assesses the quality of its funded projects through review of grantee performance and products. Each year, NIDRR examines, through expert review, a portion of its grantees to determine: The percentage of newly awarded NIDRR projects that are conducting at least one multi-site, collaborative, controlled trial. The number of accomplishments (e.g.,

349

Mixed and Low-Level Waste Treatment Facility Project. Appendix B, Waste stream engineering files: Part 2, Low-level waste streams  

SciTech Connect

Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report documents those studies so the project can continue with an evaluation of programmatic options, system tradeoff studies, and the conceptual design phase of the project. This report, appendix B, comprises the engineering design files for this project study. The engineering design files document each waste steam, its characteristics, and identified treatment strategies.

1992-04-01T23:59:59.000Z

350

Proceedings of the Third Annual Information Meeting DOE Low-Level Waste-Management Program  

SciTech Connect

The Third Annual Participants Information Meeting of the Low-Level Waste Management Program was held in New Orleans, Louisiana, November 4-6, 1981 The specific purpose was to bring together appropriate representatives of industry, USNRC, program management, participating field offices, and contractors to: (1) exchange information and analyze program needs, and (2) involve participants in planning, developing and implementing technology for low-level waste management. One hundred seven registrants participated in the meeting. Presentation and workshop findings are included in these proceedings under the following headings: low-level waste activities; waste treatment; shallow land burial; remedial action; greater confinement; ORNL reports; panel workshops; and summary. Forty-six papers have been abstracted and indexed for the data base.

Large, D.E.; Lowrie, R.S.; Stratton, L.E.; Jacobs, D.G. (comps.)

1981-12-01T23:59:59.000Z

351

Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis  

SciTech Connect

This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

David Duncan

2009-10-01T23:59:59.000Z

352

Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis  

SciTech Connect

This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

David Duncan

2011-03-01T23:59:59.000Z

353

Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis  

SciTech Connect

This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

David Duncan

2011-04-01T23:59:59.000Z

354

Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis  

SciTech Connect

This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

David Duncan

2010-06-01T23:59:59.000Z

355

Format and Content Guide for DOE Low-Level Waste Disposal Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 G Approved: XX-XX-XX IMPLEMENTATION GUIDE for use with DOE M 435.1-1 Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments and Composite Analyses U.S. DEPARTMENT OF ENERGY DOE G 435.1-2 i DRAFT XX-XX-XX LLW PA and CA Format and Content Guide Revision 0, XX-XX-XX Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Performance Assessments and Composite Analyses CONTENTS List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v List of Acronyms and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v PART A: INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

356

An Evaluation of Alternative Classification Methods for Routine Low Level Waste from the Nuclear Power Industry  

Science Conference Proceedings (OSTI)

This report investigates the feasibility of classifying all routine nuclear power plant low level waste, including Class B and Class C waste, as Class A low level waste within the framework of NRC regulatory requirements. A change in classification could expand disposal venues and reduce the uncertainty of future disposal. The report shows that all of the waste, when managed as a composite stream, will meet the requirements for Class A disposal without leaving a portion of the stream orphaned to on-site ...

2007-11-19T23:59:59.000Z

357

Conceptual Evaluation for the Installation of Treatment Capability for Mixed Low Level Waste at the Nevada National Security Site  

SciTech Connect

National Security Technologies, LLC, initiated an evaluation of treatment technologies that they would manage and operate as part of the mixed low-level waste (MLLW) disposal facilities at the Nevada National Security Site (NNSS). The NNSS Disposal Facility has been receiving radioactive waste from the U.S. Department of Energy (DOE) complex since the 1960s, and since 2005 the NNSS Disposal Facility has been receiving radioactive and MLLW for disposal only. In accordance with the Resource Conservation and Recovery Act (RCRA), all mixed waste must meet land disposal restrictions (LDRs) prior to disposal. Compliance with LDRs is attained through treatment of the waste to mitigate the characteristics of the listed waste hazard. Presently, most generators utilize commercial capacity for waste treatment prior to shipment to the NNSS Disposal Facility. The objectives of this evaluation are to provide a conceptual study of waste treatment needs (i.e., demand), identify potential waste treatment technologies to meet demand, and analyze implementation considerations for initiating MLLW treatment capacity at the NNSS Disposal Facility. A review of DOE complex waste generation forecast data indicates that current and future Departmental demand for mixed waste treatment capacity will remain steady and strong. Analysis and screening of over 30 treatment technologies narrowed the field of treatment technologies to four: • Macroencapsulation • Stabilization/microencapsulation • Sort and segregation • Bench-scale mercury amalgamation The analysis of treatment technologies also considered existing permits, current the NNSS Disposal Facility infrastructure such as utilities and procedures, and past experiences such as green-light and red-light lessons learned. A schedule duration estimate has been developed for permitting, design, and construction of onsite treatment capability at the NNSS Disposal Facility. Treatment capability can be ready in 20 months.

NSTec Environmental Management

2010-11-24T23:59:59.000Z

358

Report on waste burial charges. Escalation of decommissioning waste disposal costs at low-level waste burial facilities, Revision 4  

SciTech Connect

One of the requirements placed upon nuclear power reactor licensees by the U.S. Nuclear Regulatory Commission (NRC) is for the licensees to periodically adjust the estimate of the cost of decommissioning their plants, in dollars of the current year, as part of the process to provide reasonable assurance that adequate funds for decommissioning will be available when needed. This report, which is scheduled to be revised periodically, contains the development of a formula for escalating decommissioning cost estimates that is acceptable to the NRC. The sources of information to be used in the escalation formula are identified, and the values developed for the escalation of radioactive waste burial costs, by site and by year, are given. The licensees may use the formula, the coefficients, and the burial escalation factors from this report in their escalation analyses, or they may use an escalation rate at least equal to the escalation approach presented herein. This fourth revision of NUREG-1307 contains revised spreadsheet results for the disposal costs for the reference PWR and the reference BWR and the ratios of disposal costs at the Washington, Nevada, and South Carolina sites for the years 1986, 1988, 1991 and 1993, superseding the values given in the May 1993 issue of this report. Burial cost surcharges mandated by the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA) have been incorporated into the revised ratio tables for those years. In addition, spreadsheet results for the disposal costs for the reference reactors and ratios of disposal costs at the two remaining burial sites in Washington and South Carolina for the year 1994 are provided. These latter results do not include any LLRWPAA surcharges, since those provisions of the Act expired at the end of 1992. An example calculation for escalated disposal cost is presented, demonstrating the use of the data contained in this report.

Not Available

1994-06-01T23:59:59.000Z

359

Report on waste burial charges: Escalation of decommissioning waste disposal costs at Low-Level Waste Burial facilities. Revision 5  

SciTech Connect

One of the requirements placed upon nuclear power reactor licensees by the US Nuclear Regulatory Commission (NRC) is for the licensees to periodically adjust the estimate of the cost of decommissioning their plants, in dollars of the current year, as part of the process to provide reasonable assurance that adequate funds for decommissioning will be available when needed. This report, which is scheduled to be revised periodically, contains the development of a formula for escalating decommissioning cost estimates that is acceptable to the NRC. The sources of information to be used in the escalation formula are identified, and the values developed for the escalation of radioactive waste burial costs, by site and by year, are given. The licensees may use the formula, the coefficients, and the burial escalation factors from this report in their escalation analyses, or they may use an escalation rate at least equal to the escalation approach presented herein. This fifth revision of NUREG-1307 contains revised spreadsheet results for the disposal costs for the reference PWR and the reference BWR and the ratios of disposal costs at the Washington, Nevada, and South Carolina sites for the years 1986, 1988, 1991, 1993, and 1994, superseding the values given in the June 1994 issue of this report. Burial cost surcharges mandated by the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA) have been incorporated into the revised ratio tables for those years. In addition, spreadsheet results for the disposal costs for the reference reactors and ratios of disposal costs at the two remaining burial sites in Washington and South Carolina for the year 1995 are provided. These latter results do not include any LLRWPAA surcharges, since those provisions of the Act expired at the end of 1992. An example calculation for escalated disposal cost is presented, demonstrating the use of the data contained in this report.

NONE

1995-08-01T23:59:59.000Z

360

Low-Level Waste Forum notes and summary reports for 1994. Volume 9, Number 4, July 1994  

SciTech Connect

This issue includes the following articles: Federal Facility Compliance Act Task Force forms mixed waste workgroup; Illinois Department of Nuclear Safety considers construction of centralized storage facility; Midwest Commission agrees on capacity limit, advisory committee; EPA responds to California site developer`s queries regarding application of air pollutant standards; county-level disqualification site screening of Pennsylvania complete; Texas Compact legislation introduced in US Senate; Generators ask court to rule in their favor on surcharge rebates lawsuit; Vermont authority and Battelle settle wetlands dispute; Eighth Circuit affirms decision in Nebraska community consent lawsuit; Nebraska court dismisses action filed by Boyd County local monitoring committee; NC authority, Chem-Nuclear, and Stowe exonerated; Senator Johnson introduces legislation to transfer Ward Valley site; Representative Dingell writes to Clinton regarding disposal of low-level radioactive waste; NAS committee on California site convenes; NRC to improve public petition process; NRC releases draft proposed rule on criteria for decontamination and closure of NRC-licensed facilities; and EPA names first environmental justice federal advisory council.

NONE

1994-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "gtcc low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Assessment of Geochemical Environment for the Proposed INL Remote-Handled Low-Level Waste Disposal Facility  

Science Conference Proceedings (OSTI)

Conservative sorption parameters have been estimated for the proposed Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility. This analysis considers the influence of soils, concrete, and steel components on water chemistry and the influence of water chemistry on the relative partitioning of radionuclides over the life of the facility. A set of estimated conservative distribution coefficients for the primary media encountered by transported radionuclides has been recommended. These media include the vault system, concrete-sand-gravel mix, alluvium, and sedimentary interbeds. This analysis was prepared to support the performance assessment required by U.S. Department of Energy Order 435.1, 'Radioactive Waste Management.' The estimated distribution coefficients are provided to support release and transport calculations of radionuclides from the waste form through the vadose zone. A range of sorption parameters are provided for each key transport media, with recommended values being conservative. The range of uncertainty has been bounded through an assessment of most-likely-minimum and most-likely-maximum distribution coefficient values. The range allows for adequate assessment of mean facility performance while providing the basis for uncertainty analysis.

D. Craig Cooper

2011-11-01T23:59:59.000Z

362

Mesoscale Structure of the Low-Level Flow near the Equatorial East African Coast  

Science Conference Proceedings (OSTI)

A field experiment called MONSOON 77 was organized in June-July 1977 to delineate the kinematics and thermodynamics of the low-level flow near the equator over the East African coast. The National Center for Atmospheric Research's Electra flew ...

Henry M. E. Van De Boogaard; Gandikota V. Rao

1984-01-01T23:59:59.000Z

363

On construction of a library of formally verified low-level arithmetic functions  

Science Conference Proceedings (OSTI)

Most information security infrastructures rely on cryptography, which is usually implemented with low-level arithmetic functions. The formal verification of these functions therefore becomes a prerequisite to firmly assess any security property. We propose ... Keywords: hoare logic, multi-precision, proof-assistant, simulation

Reynald Affeldt

2012-03-01T23:59:59.000Z

364

Interim On-Site Storage of Low Level Waste: Volume 1: Licensing and Regulatory Issues  

Science Conference Proceedings (OSTI)

This report is an all-inclusive resource guide for evaluating a utility's on-site storage licensing requirements. Specifically, the report offers an extensive review of licensing and regulatory documents related to on-site storage of low level waste as well as a methodology for evaluating on-site storage licensing issues.

1992-06-01T23:59:59.000Z

365

Quality assurance program plan for low-level waste at the WSCF Laboratory  

Science Conference Proceedings (OSTI)

The purpose of this document is to provide guidance for the implementation of the Quality Assurance Program Plan (QAPP) for the management of low-level waste at the Waste Sampling and Characterization Facility (WSCF) Laboratory Complex as required by WHC-CM-4-2, Quality Assurance Manual, which is based on Quality Assurance Program Requirements for Nuclear Facilities, NQA-1 (ASME).

Morrison, J.A.

1994-11-01T23:59:59.000Z

366

Analysis and Forecasting of the Low-Level Wind during the Sydney 2000 Forecast Demonstration Project  

Science Conference Proceedings (OSTI)

During the Sydney 2000 Forecast Demonstration Project (FDP) a four-dimensional variational assimilation (4DVAR) scheme was run to analyze the low-level wind field with high spatial and temporal resolution. The 4DVAR scheme finds an optimal fit to ...

N. Andrew Crook; Juanzhen Sun

2004-02-01T23:59:59.000Z

367

Glass science tutorial: Lecture No. 8, introduction cementitious systems for Low-Level Waste immobilization  

SciTech Connect

This report presents details about cementitious systems for low-level waste immobilization. Topics discussed include: composition and properties of portland cement; hydration properties; microstructure of concrete; pozzolans; slags; zeolites; transport properties; and geological aspects of long-term durability of concrete.

Young, J.F.; Kirkpatrick, R.J.; Mason, T.O.; Brough, A.

1995-07-01T23:59:59.000Z

368

The Great Plains Low-Level Jet during the Warm Season of 1993  

Science Conference Proceedings (OSTI)

Hourly wind profiler observations from the NOAA Profiler Network were used to develop a climatology of the low-level jet (LLJ) over the Great Plains of the central United States from April to September of 1993. The peak precipitation episode of ...

Raymond W. Arritt; Thomas D. Rink; Moti Segal; Dennis P. Todey; Craig A. Clark; Mark J. Mitchell; Kenneth M. Labas

1997-09-01T23:59:59.000Z

369

Environmental Assessment Offsite Thermal Treatment of Low-Level Mixed Waste  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE), Richland Operations Office (RL) needs to demonstrate the economics and feasibility of offsite commercial treatment of contact-handled low-level mixed waste (LLMW), containing polychlorinated biphenyls (PCBS) and other organics, to meet existing regulatory standards for eventual disposal.

N /A

1999-05-06T23:59:59.000Z

370

Low-Level Jet Development during a Numerically Simulated Return Flow Event  

Science Conference Proceedings (OSTI)

The evolution of the southerly low-level jet (LLJ) during a return flow event is studied using output from the Penn State/NCAR Mesoscale Model (Version 4). Three geographically different southerly LLJs develop in the simulation: one over the ...

Richard C. Igau; John W. Nielsen-Gammon

1998-11-01T23:59:59.000Z

371

A Case Study of a Chaco Low-Level Jet Event  

Science Conference Proceedings (OSTI)

This paper concentrates on the analysis of the life cycle of the low-level jet (LLJ) during a summer Chaco jet event. This is accomplished through the use of the Eta/Centro de Previsão del Tempo e Estudos Climáticos (CPTEC) regional model, in ...

A. Celeste Saulo; Marcelo E. Seluchi; Matilde Nicolini

2004-11-01T23:59:59.000Z

372

Low-Level Temperature Inversions of the Eurasian Arctic and Comparisons with Soviet Drifting Station Data  

Science Conference Proceedings (OSTI)

Seasonal and regional variations in characteristics of the Arctic low-level temperature inversion are examined using up to 12 years of twice-daily rawinsonde data from 31 inland and coastal sites of the Eurasian Arctic and a total of nearly six ...

Mark C. Serreze; Russell C. Schnell; Jonathan D. Kahl

1992-06-01T23:59:59.000Z

373

The Impact of the Sierra Nevada on Low-Level Winds and Water Vapor Transport  

Science Conference Proceedings (OSTI)

To understand the influence of the Sierra Nevada on the water cycle in California the authors have analyzed low-level winds and water vapor fluxes upstream of the mountain range in regional climate model simulations. In a low Froude number (Fr) ...

Jinwon Kim; Hyun-Suk Kang

2007-08-01T23:59:59.000Z

374

Mesoscale Moisture Transport by the Low-Level Jet during the IHOP Field Experiment  

Science Conference Proceedings (OSTI)

Previous studies of the low-level jet (LLJ) over the central Great Plains of the United States have been unable to determine the role that mesoscale and smaller circulations play in the transport of moisture. To address this issue, two aircraft ...

Edward I. Tollerud; Fernando Caracena; Steven E. Koch; Brian D. Jamison; R. Michael Hardesty; Brandi J. McCarty; Christoph Kiemle; Randall S. Collander; Diana L. Bartels; Steven Albers; Brent Shaw; Daniel L. Birkenheuer; W. Alan Brewer

2008-10-01T23:59:59.000Z

375

A Numerical Model of the Formation and Evolution of a Low-Level Jet  

Science Conference Proceedings (OSTI)

A one-layer. one-dimensional numerical model is described which simulates the life cycle of the extratropical low-level jet (LLJ). The LLJ starts as an isallobaric wind near the point of maximum pressure tall. Subsequently, the LLJ expands over a ...

Dušan Djuri?

1981-02-01T23:59:59.000Z

376

A Climatology of the Warm Season Great Plains Low-Level Jet Using Wind Profiler Observations  

Science Conference Proceedings (OSTI)

Hourly observations from the Wind Profiler Demonstration Network during the warm season months of 1991 and 1992 were used to develop a climatology of the low-level jet (LLJ) over the Great Plains of the central United States. The maximum overall ...

Mark J. Mitchell; Raymond W. Arritt; Ken Labas

1995-09-01T23:59:59.000Z

377

National low-level waste management program radionuclide report series, Volume 14: Americium-241  

Science Conference Proceedings (OSTI)

This report, Volume 14 of the National Low-Level Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of americium-241 ({sup 241}Am). This report also includes discussions about waste types and forms in which {sup 241}Am can be found and {sup 241}Am behavior in the environment and in the human body.

Winberg, M.R.; Garcia, R.S.

1995-09-01T23:59:59.000Z

378

A Case Study of the Summertime Great Plains Low Level Jet  

Science Conference Proceedings (OSTI)

A case study of the kinematical and dynamical evolution of the summertime Great Plains low level jet (LLJ) is presented. Airborne radar altimetry was used to discern the x and y components of the geostrophic wind at three levels in the lower ...

Thomas R. Parish; Alfred R. Rodi; Richard D. Clark

1988-01-01T23:59:59.000Z

379

Proceedings: 2004 EPRI International Low-Level Waste Conference and Exhibit Show  

Science Conference Proceedings (OSTI)

Nuclear utilities are continually evaluating methods to improve operations and minimize cost. EPRI's thirteenth annual International Low Level Waste (LLW) Conference -- coupled with the 25th annual ASME/EPRI Radwaste Workshop -- offered valuable insights into this effort by presenting papers covering new or improved technology developed worldwide for LLW management, processing, shipment, disposal, and regulation.

2005-06-14T23:59:59.000Z

380

Structure of a Low-Level Jet over Lower Cook Inlet, Alaska  

Science Conference Proceedings (OSTI)

During February 1982 a NOAA research aircraft investigated a cold, low-level jet blowing from a gap between mountain ranges on line west side of Cook Inlet, Alaska. The jet blew 200 km southeastward across Cook Inlet between the Kenai Peninsula ...

S. Allen Macklin; Nicholas A. Bond; Jeffrey P. Walker

1990-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "gtcc low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Proceedings of the Fifth Annual Participants' Information Meeting: DOE Low-Level Waste Management Program  

SciTech Connect

The meeting consisted of the following six sessions: (1) plenary session I; (2) disposal technology; (3) characteristics and treatment of low-level waste; (4) environmental aspects and performance prediction; (5) overall summary sessions; and (6) plenary session II. Fifty two papers of the papers presented were processed for inclusion in the Energy Data Base. (ATT)

Not Available

1983-12-01T23:59:59.000Z

382

Identification of Low-Level Point Radiation Sources Using a Sensor Network  

Science Conference Proceedings (OSTI)

Identification of a low-level point radiation source amidst background radiation is achieved by a network of radiation sensors using a two-step approach. Based on measurements from three sensors, the geometric difference triangulation method is used ... Keywords: Point radiation source, detection and localization, sequential probability ratio test

Nageswara S. V. Rao; Mallikarjun Shankar; Jren-Chit Chin; David K. Y. Yau; Srinivasagopalan Srivathsan; S. Sitharama Iyengar; Yong Yang; Jennifer C. Hou

2008-04-01T23:59:59.000Z

383

On the Formation of the Low-Level Jet over Texas  

Science Conference Proceedings (OSTI)

The low-level jet (LLJ) in the winter half-year originates as a south wind over the high plains of Colorado. Kansas, western Oklahoma and West Texas. After formation, the LLJ spreads horizontally and upstream toward the Gulf of Mexico. The air in ...

Dus?an Djuri?; Michel S. Damiani Jr.

1980-11-01T23:59:59.000Z

384

EIS-0375: EPA Notice of Availability of the Draft Environmental Impact  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of the Draft Environmental EPA Notice of Availability of the Draft Environmental Impact Statement EIS-0375: EPA Notice of Availability of the Draft Environmental Impact Statement Disposal of Greater-Than-Class C Low-Level Radioactive Waste DOE/EIS-0375, Environmental Protection Agency, Notice of Availability of the Draft Environmental Impact Statement for the Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste and GTCC-Like Waste, Proposed Development, Operation, and Long-Term Management of a Disposal Facility, 76 FR 10584 (February 2011) More Documents & Publications EIS-0444: EPA Notice of Availability of the Final Environmental Impact Statement EIS-0434: Notice of Cancellation of an Environmental Impact Statement EIS-0439: EPA Notice of Availability of the Draft Environmental Impact

385

Preliminary Evaluation of Removing Used Nuclear Fuel From Nine Shutdown Sites  

SciTech Connect

he Blue Ribbon Commission on America’s Nuclear Future identified removal of stranded used nuclear fuel at shutdown sites as a priority so that these sites may be completely decommissioned and put to other beneficial uses. In this report, a preliminary evaluation of removing used nuclear fuel from nine shutdown sites was conducted. The shutdown sites included Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, and Zion. At these sites a total of 7649 used nuclear fuel assemblies and a total of 2813.2 metric tons heavy metal (MTHM) of used nuclear fuel are contained in 248 storage canisters. In addition, 11 canisters containing greater-than-Class C (GTCC) low-level radioactive waste are stored at these sites. The evaluation was divided in four components: • characterization of the used nuclear fuel and GTCC low-level radioactive waste inventory at the shutdown sites • an evaluation of the onsite transportation conditions at the shutdown sites • an evaluation of the near-site transportation infrastructure and experience relevant to the shipping of transportation casks containing used nuclear fuel from the shutdown sites • an evaluation of the actions necessary to prepare for and remove used nuclear fuel and GTCC low-level radioactive waste from the shutdown sites. Using these evaluations the authors developed time sequences of activities and time durations for removing the used nuclear fuel and GTCC low-level radioactive waste from a single shutdown site, from three shutdown sites located close to each other, and from all nine shutdown sites.

Maheras, Steven J.; Best, Ralph; Ross, Steven B.; Buxton, Kenneth A.; England, Jeffery L.; McConnell, Paul

2013-04-30T23:59:59.000Z

386

Evaluation of an Alternate, Advanced Filtration Media for Radioactive Liquid Processing  

Science Conference Proceedings (OSTI)

Spent filter media is typically the most expensive solid low level radioactive waste routinely generated by commercial nuclear plants. This report documents the investigation of innovative dissolvable filtration technology with significant volume and cost reduction potential.

2004-08-09T23:59:59.000Z

387

An Evaluation of Long-Term Performance of Liner Systems for Low-Level Waste Disposal Facilities  

SciTech Connect

Traditional liner systems consisting of a geosynthetic membrane underlying a waste disposal facility coupled with a leachate collection system have been proposed as a means of containing releases of low-level radioactive waste within the confines of the disposal facility and thereby eliminating migration of radionuclides into the vadose zone and groundwater. However, this type of hydraulic containment liner system is only effective as long as the leachate collection system remains functional or an overlying cover limits the total infiltration to the volumetric pore space of the disposal system. If either the leachate collection system fails, or the overlying cover becomes less effective during the 1,000’s of years of facility lifetime, the liner may fill with water and release contaminated water in a preferential or focused manner. If the height of the liner extends above the waste, the waste will become submerged which could increase the release rate and concentration of the leachate. If the liner extends near land surface, there is the potential for contamination reaching land surface creating a direct exposure pathway. Alternative protective liner systems can be engineered that eliminate radionuclide releases to the vadose zone during operations and minimizing long term migration of radionuclides from the disposal facility into the vadose zone and aquifer. Non-traditional systems include waste containerization in steel or composite materials. This type of system would promote drainage of clean infiltrating water through the facility without contacting the waste. Other alternatives include geochemical barriers designed to transmit water while adsorbing radionuclides beneath the facility. Facility performance for a hypothetical disposal facility has been compared for the hydraulic and steel containerization liner alternatives. Results were compared in terms of meeting the DOE Order 435.1 low-level waste performance objective of 25 mrem/yr all-pathways dose during the 1) institutional control period (0-100 years), compliance period (0-1000 years) and post-compliance period (>1000 years). Evaluation of the all pathway dose included the dose from ingestion and irrigation of contaminated groundwater extracted from a well 100 meters downgradient, in addition to the dose received from direct contact of radionuclides deposited near the surface resulting from facility overflow. Depending on the disposal facility radionuclide inventory, facility design, cover performance, and the location and environment where the facility is situated, the dose from exposure via direct contact of near surface deposited radionuclides can be much greater than the dose received via transport to the groundwater and subsequent ingestion.

Arthur S. Rood; Annette L. Schafer; A. Jeffrey Sondrup

2011-03-01T23:59:59.000Z

388

Format and Content Guide for DOE Low-Level Waste Disposal Facility Closure Plans  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 G Approved: XX-XX-XX IMPLEMENTATION GUIDE for use with DOE M 435.1-1 Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans U.S. DEPARTMENT OF ENERGY DOE G 435.1-3 i DRAFT XX-XX-XX LLW Closure Plan Format and Content Guide Revision 0, XX-XX-XX Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans CONTENTS PART A: INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. PURPOSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. ORGANIZATION OF DOCUMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3.1 Closure Objectives and Relationship to Other Programs . . . . . . . . . . . . . . . . . . . . . . 2 3.2

389

Mixed and low-level waste treatment facility project. Volume 3, Waste treatment technologies (Draft)  

SciTech Connect

The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

1992-04-01T23:59:59.000Z

390

Technical area status report for low-level mixed waste final waste forms. Volume 2, Appendices  

Science Conference Proceedings (OSTI)

This report presents information on low-level mixed waste forms.The descriptions of the low-level mixed waste (LLMW) streams that are considered by the Mixed Waste Integrated Program (MWIP) are given in Appendix A. This information was taken from descriptions generated by the Mixed Waste Treatment Program (MWTP). Appendix B provides a list of characteristic properties initially considered by the Final Waste Form (FWF) Working Group (WG). A description of facilities available to test the various FWFs discussed in Volume I of DOE/MWIP-3 are given in Appendix C. Appendix D provides a summary of numerous articles that were reviewed on testing of FWFS. Information that was collected by the tests on the characteristic properties considered in this report are documented in Appendix D. The articles reviewed are not a comprehensive list, but are provided to give an indication of the data that are available.

Mayberry, J.L.; Huebner, T.L. [Science Applications International Corp., Idaho Falls, ID (United States); Ross, W. [Pacific Northwest Lab., Richland, WA (United States); Nakaoka, R. [Los Alamos National Lab., NM (United States); Schumacher, R. [Westinghouse Savannah River Co., Aiken, SC (United States); Cunnane, J.; Singh, D. [Argonne National Lab., IL (United States); Darnell, R. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Greenhalgh, W. [Westinghouse Hanford Co., Richland, WA (United States)

1993-08-01T23:59:59.000Z

391

Assessment of a Low-Level Waste Outside Storage Pad Design Method  

Science Conference Proceedings (OSTI)

EPRI has developed a method for designing an outside pad and modules for interim on-site storage of low-level waste. A detailed comparison between EPRI's outside storage pad facility design and cost projections and those of Boston Edison revealed excellent agreement between the two estimates. This report provides detailed information on how to approach the design of an outside storage pad facility as well as use of the EPRI method for an on-site storage project.

1996-04-19T23:59:59.000Z

392

Proceedings: 2006 EPRI International Low Level Waste Conference and Exhibit Show  

Science Conference Proceedings (OSTI)

Nuclear utilities are continually evaluating methods to improve operations and minimize cost. EPRI's 15th Annual International Low Level Waste (LLW) Conferencecoupled with the 27th Annual ASME/EPRI Radwaste Workshopoffered valuable insight into this effort by presenting papers covering new or improved technology developed worldwide for LLW management, processing, shipment, disposal and regulation. Attendees from several foreign countries, including Korea, the United Kingdom, Canada and Sweden, presented ...

2007-05-15T23:59:59.000Z

393

Proceedings: Vitrification of Low-Level Waste--the Process and Potential  

Science Conference Proceedings (OSTI)

Vitrification technology, or the consolidation of waste in a glass matrix, represents a proven method for achieving volume reduction for high-level industrial waste. Application of this technology is emerging as a viable treatment of low-level waste. This workshop focused on the range of vitrification technologies now available and highlighted issues associated with application of the vitrification process in the nuclear power industry.

1996-05-21T23:59:59.000Z

394

Proceedings: 2011 EPRI International Low Level Waste Conference and Exhibit Show  

Science Conference Proceedings (OSTI)

Nuclear utilities are continually evaluating methods to improve operations, minimize costs, and find alternatives for disposal of Nuclear Regulatory Commission (NRC) Class A, B, and C waste. The Electric Power Research Institute's (EPRI's) 20th Annual International Low Level Waste (LLW) Conferencecoupled with the 34th Annual American Society of Mechanical Engineers (ASME)/EPRI Radwaste Workshopoffered valuable insights into this effort by presenting papers covering new or improved technology developed wo...

2012-03-21T23:59:59.000Z

395

Waste Management Facilities cost information for mixed low-level waste. Revision 1  

Science Conference Proceedings (OSTI)

This report contains preconceptual designs and planning level life-cycle cost estimates for managing mixed low-level waste. The report`s information on treatment, storage, and disposal modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

Shropshire, D.; Sherick, M.; Biadgi, C.

1995-06-01T23:59:59.000Z

396

Proceedings: 2012 EPRI International Low Level Waste Conference and Exhibit Show  

Science Conference Proceedings (OSTI)

Nuclear utilities are continually evaluating methods to improve operations, minimize costs, and find alternatives for disposal of Nuclear Regulatory Commission (NRC) Class A, B, and C waste. The Electric Power Research Institute’s (EPRI’s) 21st annual International Low Level Waste (LLW) Conference—coupled with the 35th annual American Society of Mechanical Engineers (ASME)/EPRI Radwaste Workshop—offered valuable insights into this effort by presenting papers covering new or ...

2013-05-31T23:59:59.000Z

397

Proceedings: 2008 EPRI International Low-Level Waste Conference and Exhibit Show  

Science Conference Proceedings (OSTI)

Nuclear utilities are continually evaluating methods to improve operations, minimize cost and find alternatives for disposal of NRC Class A, B & C waste. EPRI's 17th Annual International Low Level Waste (LLW) Conference - coupled with the 31st Annual ASME/EPRI Radwaste Workshop - offered valuable insights into this effort by presenting papers covering new or improved technology developed worldwide for LLW management, processing, shipment, disposal and regulation. Attendees from several foreign countries ...

2008-11-18T23:59:59.000Z

398

Liquid low-level waste generation projections for ORNL in 1993  

SciTech Connect

Liquid low-level waste (LLLW) is generated by various programs and projects throughout Oak Ridge National Laboratory (ORNL). These wastes are collected in underground collection tanks, bottles, and trucks; they are then neutralized with sodium hydroxide and treated for volume reduction at the ORNL evaporator facility. This report presents historical and projected data concerning the volume and characterization of LLLW, prior to and after evaporation. Storage space for projected waste generation is also discussed.

DePaoli, S.M.

1994-04-01T23:59:59.000Z

399

Research Programs on Low-Level Radiation Health Effects Supported by FEPCO  

SciTech Connect

The federation of Electric Power Companies (FEPCO) of Japan has been supporting several research projects on low-level radiation health effects for the purpose of the following: 1. to assist in the establishment of a reasonable system of radiation protection; 2. to release the public from unnecessary fear of ionizing radiation. We present some of the findings and current research programs funded or supported by FEPCO.

Kaneko, Masahito

1999-06-06T23:59:59.000Z

400

Surrogate formulations for thermal treatment of low-level mixed waste. Part 1: Radiological surrogates  

SciTech Connect

The evaluation and comparison of proposed thermal treatment systems for mixed wastes can be expedited by tests in which the radioactive components of the wastes are replaced by surrogate materials chosen to mimic, as far as is possible, the chemical and physical properties of the radioactive materials of concern. In this work, sponsored by the Mixed Waste Integrated Project of the US Department of Energy, the authors have examined reported experience with such surrogates and suggest a simplified standard list of materials for use in tests of thermal treatment systems. The chief radioactive nuclides of concern in the treatment of mixed wastes are {sup 239}Pu, {sup 238}U, {sup 235}U, {sup 137}Cs, {sup 103}Ru, {sup 99}Tc, and {sup 90}Sr. These nuclides are largely by-products of uranium enrichment, reactor fuel reprocessing, and weapons program activities. Cs, Ru, and Sr all have stable isotopes that can be used as perfect surrogates for the radioactive forms. Technetium exists only in radioactive form, as do plutonium and uranium. If one wishes to preclude radioactive contamination of the thermal treatment system under trial burn, surrogate elements must be chosen for these three. For technetium, the authors suggest the use of natural ruthenium, and for both plutonium and uranium, they recommend cerium. The seven radionuclides listed can therefore be simulated by a surrogate package containing stable isotopes of ruthenium, strontium, cesium, and cerium.

Stockdale, J.A.D.; Bostick, W.D.; Hoffmann, D.P. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States); Lee, H.T. [Oak Ridge Associated Universities, TN (United States)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "gtcc low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Low-level Waste Safely Dispositioned Under Runoff Cover at SRS | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-level Waste Safely Dispositioned Under Runoff Cover at SRS Low-level Waste Safely Dispositioned Under Runoff Cover at SRS Low-level Waste Safely Dispositioned Under Runoff Cover at SRS April 26, 2011 - 12:00pm Addthis The liner installer heat-welds a sand anchor closed. The sand anchors are installed under the liner and across the length of the slit trench to keep the liner in place and minimize the effects of wind lift. The liner installer heat-welds a sand anchor closed. The sand anchors are installed under the liner and across the length of the slit trench to keep the liner in place and minimize the effects of wind lift. A view of the Slit Trenches 1-4 operational cover in E Area. A view of the Slit Trenches 1-4 operational cover in E Area. The liner installer heat-welds a sand anchor closed. The sand anchors are installed under the liner and across the length of the slit trench to keep the liner in place and minimize the effects of wind lift.

402

Corrective Action Plan for INEL low-level waste management ES&H vulnerabilities  

SciTech Connect

Low-level waste (LLW) activities at INEL include numerous waste generators, storage facilities, three treatment facilities, and one disposal facility. The Working Group Assessment Team (WGAT) conducted an assessment of the LLW management program in response to the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-2 (Conformance with Safety Standards at Department of Energy Low-Level Nuclear Waste and Disposal Facilities). Assessment included review of waste generators, liquid effluent treatment, storage facilities and practices, and a disposal facility with vaults and a shallow subsurface burial site. WGAT reviewed relevant documents and conducted tours concerning these LLW operations. The vulnerabilities identified by WGAT were similar to those self-identified by INEL (storage and disposal of LLW). This assessment resulted in the documentation of 8 vulnerabilities and 3 conditions. WGAT assessed the overall LLW/mixed low-level waste (MLLW) management program at INEL as being generally effective. As recommended by DNFSB, a site-specific Corrective Action Plan has been prepared and constitutes the initial site improvement activities.

1996-07-01T23:59:59.000Z

403

Framework for DOE mixed low-level waste disposal: Site fact sheets  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE) is required to prepare and submit Site Treatment Plans (STPS) pursuant to the Federal Facility Compliance Act (FFCAct). Although the FFCAct does not require that disposal be addressed in the STPS, the DOE and the States recognize that treatment of mixed low-level waste will result in residues that will require disposal in either low-level waste or mixed low-level waste disposal facilities. As a result, the DOE is working with the States to define and develop a process for evaluating disposal-site suitability in concert with the FFCAct and development of the STPS. Forty-nine potential disposal sites were screened; preliminary screening criteria reduced the number of sites for consideration to twenty-six. The DOE then prepared fact sheets for the remaining sites. These fact sheets provided additional site-specific information for understanding the strengths and weaknesses of the twenty-six sites as potential disposal sites. The information also provided the basis for discussion among affected States and the DOE in recommending sites for more detailed evaluation.

Gruebel, M.M.; Waters, R.D.; Hospelhorn, M.B.; Chu, M.S.Y. [eds.

1994-11-01T23:59:59.000Z

404

Assessment of Potential Flood Events and Impacts at INL's Proposed Remote-Handled Low-Level Waste Disposal Facility Sites  

Science Conference Proceedings (OSTI)

Rates, depths, erosion potential, increased subsurface transport rates, and annual exceedance probability for potential flooding scenarios have been evaluated for the on-site alternatives of Idaho National Laboratory’s proposed remote handled low-level waste disposal facility. The on-site disposal facility is being evaluated in anticipation of the closure of the Radioactive Waste Management Complex at the INL. An assessment of flood impacts are required to meet the Department of Energy’s Low-Level Waste requirements (DOE-O 435.1), its natural phenomena hazards assessment criteria (DOE-STD-1023-95), and the Radioactive Waste Management Manual (DOE M 435.1-1) guidance in addition to being required by the National Environmental Policy Act (NEPA) environmental assessment (EA). Potential sources of water evaluated include those arising from (1) local precipitation events, (2) precipitation events occurring off of the INL (off-site precipitation), and (3) increased flows in the Big Lost River in the event of a Mackay Dam failure. On-site precipitation events include potential snow-melt and rainfall. Extreme rainfall events were evaluated for the potential to create local erosion, particularly of the barrier placed over the disposal facility. Off-site precipitation carried onto the INL by the Big Lost River channel was evaluated for overland migration of water away from the river channel. Off-site precipitation sources evaluated were those occurring in the drainage basin above Mackay Reservoir. In the worst-case scenarios, precipitation occurring above Mackay Dam could exceed the dam’s capacity, leading to overtopping, and eventually complete dam failure. Mackay Dam could also fail during a seismic event or as a result of mechanical piping. Some of the water released during dam failure, and contributing precipitation, has the potential of being carried onto the INL in the Big Lost River channel. Resulting overland flows from these flood sources were evaluated for their erosion potential, ability to overflow the proposed disposal facility, and for their ability to increase migration of contaminants from the facility. The assessment of available literature suggests that the likelihood of detrimental flood water impacting the proposed RH-LLW facility is extremely low. The annual exceedance probability associated with uncontrolled flows in the Big Lost River impacting either of the proposed sites is 1x10-5, with return interval (RI) of 10,000yrs. The most probable dam failure scenario has an annual exceedance probability of 6.3x10-6 (1.6x105 yr RI). In any of the scenarios generating possible on-site water, the duration is expected to be quite short, water depths are not expected to exceed 0.5 m, and the erosion potential can easily be mitigated by emplacement of a berm (operational period), and an engineered cover (post closure period). Subsurface mobilization of radionuclides was evaluated for a very conservative flooding scenario resulting in 50 cm deep, 30.5 day on-site water. The annual exceedance probability for which is much smaller than 3.6x10-7 (2.8x106 yr RI). For the purposes of illustration, the facility was assumed to flood every 500 years. The periodically recurring flood waters were predicted to marginally increase peak radionuclide fluxes into the aquifer by at most by a factor of three for non-sorbing radionuclides, and to have limited impact on peak radionuclide fluxes into the aquifer for contaminants that do sorb.

A. Jeff Sondrup; Annette L. Schafter

2010-09-01T23:59:59.000Z

405

Evaluation of interim and final waste forms for the newly generated liquid low-level waste flowsheet  

SciTech Connect

The purpose of this review is to evaluate the final forms that have been proposed for radioactive-containing solid wastes and to determine their application to the solid wastes that will result from the treatment of newly generated liquid low-level waste (NGLLLW) and Melton Valley Storage Tank (MVST) supernate at the Oak Ridge National Laboratory (ORNL). Since cesium and strontium are the predominant radionuclides in NGLLLW and MVST supernate, this review is focused on the stabilization and solidification of solid wastes containing these radionuclides in cement, glass, and polymeric materials-the principal waste forms that have been tested with these types of wastes. Several studies have shown that both cesium and strontium are leached by distilled water from solidified cement, although the leachabilities of cesium are generally higher than those of strontium under similar conditions. The situation is exacerbated by the presence of sulfates in the solution, as manifested by cracking of the grout. Additives such as bentonite, blast-furnace slag, fly ash, montmorillonite, pottery clay, silica, and zeolites generally decrease the cesium and strontium release rates. Longer cement curing times (>28 d) and high ionic strengths of the leachates, such as those that occur in seawater, also decrease the leach rates of these radionuclides. Lower cesium leach rates are observed from vitrified wastes than from grout waste forms. However, significant quantities of cesium are volatilized due to the elevated temperatures required to vitrify the waste. Hence, vitrification will generally require the use of cleanup systems for the off-gases to prevent their release into the atmosphere.

Abotsi, G.M.K. [Clark Atlanta Univ., GA (United States); Bostick, D.T.; Beck, D.E. [Oak Ridge National Lab., TN (United States)] [and others

1996-05-01T23:59:59.000Z

406

MWIP: Surrogate formulations for thermal treatment of low-level mixed waste. Part 4, Wastewater treatment sludges  

Science Conference Proceedings (OSTI)

The category of sludges, filter cakes, and other waste processing residuals represent the largest volume of low-level mixed (hazardous and radioactive) wastes within the US Department of Energy (DOE) complex. Treatment of these wastes to minimize the mobility of contaminants, and to eliminate the presence of free water, is required under the Federal Facility Compliance Act agreements between DOE and the Environmental Protection Agency. In the text, we summarize the currently available data for several of the high priority mixed-waste sludge inventories within DOE. Los Alamos National Laboratory TA-50 Sludge and Rocky Flats Plant By-Pass Sludge are transuranic (TRU)-contaminated sludges that were isolated with the use of silica-based filter aids. The Oak Ridge Y-12 Plant West End Treatment Facility Sludge is predominantly calcium carbonate and biomass. The Oak Ridge K-25 Site Pond Waste is a large-volume waste stream, containing clay, silt, and other debris in addition to precipitated metal hydroxides. We formulate ``simulants`` for the waste streams described above, using cerium oxide as a surrogate for the uranium or plutonium present in the authentic material. Use of nonradiological surrogates greatly simplifies material handling requirements for initial treatability studies. The use of synthetic mixtures for initial treatability testing will facilitate compositional variation for use in conjunction with statistical design experiments; this approach may help to identify any ``operating window`` limitations. The initial treatability testing demonstrations utilizing these ``simulants`` will be based upon vitrification, although the materials are also amenable to testing grout-based and other stabilization procedures. After the feasibility of treatment and the initial evaluation of treatment performance has been demonstrated, performance must be verified using authentic samples of the candidate waste stream.

Bostick, W.D.; Hoffmann, D.P.; Stevenson, R.J.; Richmond, A.A. [Oak Ridge National Lab., TN (United States); Bickford, D.F. [Westinghouse Savannah River Co., Aiken, SC (United States)

1994-01-01T23:59:59.000Z

407

EA-1146: Radioactive Waste Storage at Rocky Flats Environmental Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

46: Radioactive Waste Storage at Rocky Flats Environmental 46: Radioactive Waste Storage at Rocky Flats Environmental Technology Site, Golden, Colorado EA-1146: Radioactive Waste Storage at Rocky Flats Environmental Technology Site, Golden, Colorado SUMMARY This EA evaluates the environmental impacts of the proposal to convert buildings at the U.S. Department of Energy Rocky Flats Environmental Technology Site from their former uses to interim waste storage facilities in order to increase storage capacity for low-level waste, low-level mixed waste, transuranic waste, and transuranic mixed waste. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD April 9, 1996 EA-1146: Finding of No Significant Impact Radioactive Waste Storage at Rocky Flats Environmental Technology Site, Golden, Colorado

408

Remote-Handled Low-Level Waste (RHLLW) Disposal Project Code of Record  

Science Conference Proceedings (OSTI)

The Remote-Handled Low-Level Waste Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of fiscal year 2015). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability.

S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

2010-10-01T23:59:59.000Z

409

Preliminary Project Execution Plan for the Remote-Handled Low-Level Waste Disposal Project  

Science Conference Proceedings (OSTI)

This preliminary project execution plan (PEP) defines U.S. Department of Energy (DOE) project objectives, roles and responsibilities of project participants, project organization, and controls to effectively manage acquisition of capital funds for construction of a proposed remote-handled low-level waste (LLW) disposal facility at the Idaho National Laboratory (INL). The plan addresses the policies, requirements, and critical decision (CD) responsibilities identified in DOE Order 413.3B, 'Program and Project Management for the Acquisition of Capital Assets.' This plan is intended to be a 'living document' that will be periodically updated as the project progresses through the CD process to construction and turnover for operation.

David Duncan

2011-05-01T23:59:59.000Z

410

Integrating Volume Reduction and Packaging Alternatives to Achieve Cost Savings for Low Level Waste Disposal at the Rocky Flats Environmental Technology Site  

Science Conference Proceedings (OSTI)

In order to reduce costs and achieve schedules for Closure of the Rocky Flats Environmental Technology Site (RFETS), the Waste Requirements Group has implemented a number of cost saving initiatives aimed at integrating waste volume reduction with the selection of compliant waste packaging methods for the disposal of RFETS low level radioactive waste (LLW). Waste Guidance Inventory and Shipping Forecasts indicate that over 200,000 m3 of low level waste will be shipped offsite between FY2002 and FY2006. Current projections indicate that the majority of this waste will be shipped offsite in an estimated 40,000 55-gallon drums, 10,000 metal and plywood boxes, and 5000 cargo containers. Currently, the projected cost for packaging, shipment, and disposal adds up to $80 million. With these waste volume and cost projections, the need for more efficient and cost effective packaging and transportation options were apparent in order to reduce costs and achieve future Site packaging a nd transportation needs. This paper presents some of the cost saving initiatives being implemented for waste packaging at the Rocky Flats Environmental Technology Site (the Site). There are many options for either volume reduction or alternative packaging. Each building and/or project may indicate different preferences and/or combinations of options.

Church, A.; Gordon, J.; Montrose, J. K.

2002-02-26T23:59:59.000Z

411

RADIOACTIVE BATTERY  

DOE Patents (OSTI)

A radioactive battery which includes a capsule containing the active material and a thermopile associated therewith is presented. The capsule is both a shield to stop the radiations and thereby make the battery safe to use, and an energy conventer. The intense radioactive decay taking place inside is converted to useful heat at the capsule surface. The heat is conducted to the hot thermojunctions of a thermopile. The cold junctions of the thermopile are thermally insulated from the heat source, so that a temperature difference occurs between the hot and cold junctions, causing an electrical current of a constant magnitude to flow.

Birden, J.H.; Jordan, K.C.

1959-11-17T23:59:59.000Z

412

Summary of Conceptual Models and Data Needs to Support the INL Remote-Handled Low-Level Waste Disposal Facility Performance Assessment and Composite Analysis  

SciTech Connect

An overview of the technical approach and data required to support development of the performance assessment, and composite analysis are presented for the remote handled low-level waste disposal facility on-site alternative being considered at Idaho National Laboratory. Previous analyses and available data that meet requirements are identified and discussed. Outstanding data and analysis needs are also identified and summarized. The on-site disposal facility is being evaluated in anticipation of the closure of the Radioactive Waste Management Complex at the INL. An assessment of facility performance and of the composite performance are required to meet the Department of Energy’s Low-Level Waste requirements (DOE Order 435.1, 2001) which stipulate that operation and closure of the disposal facility will be managed in a manner that is protective of worker and public health and safety, and the environment. The corresponding established procedures to ensure these protections are contained in DOE Manual 435.1-1, Radioactive Waste Management Manual (DOE M 435.1-1 2001). Requirements include assessment of (1) all-exposure pathways, (2) air pathway, (3) radon, and (4) groundwater pathway doses. Doses are computed from radionuclide concentrations in the environment. The performance assessment and composite analysis are being prepared to assess compliance with performance objectives and to establish limits on concentrations and inventories of radionuclides at the facility and to support specification of design, construction, operation and closure requirements. Technical objectives of the PA and CA are primarily accomplished through the development of an establish inventory, and through the use of predictive environmental transport models implementing an overarching conceptual framework. This document reviews the conceptual model, inherent assumptions, and data required to implement the conceptual model in a numerical framework. Available site-specific data and data sources are then addressed. Differences in required analyses and data are captured as outstanding data needs.

A. Jeff Sondrup; Annette L. Schafter; Arthur S. Rood

2010-09-01T23:59:59.000Z

413

Iron-Phosphate Ceramics for Solidification of Mixed Low-Level Waste  

DOE Patents (OSTI)

A method of immobilizing mixed low-level waste is provided which uses low cost materials and has a relatively long hardening period. The method includes: forming a mixture of iron oxide powders having ratios, in mass %, of FeO: Fe{sub 2}O{sub 3}: Fe{sub 3}O{sub 4} equal to 25-40: 40-10: 35-50, or weighing a definite amount of magnitite powder. Metallurgical cinder can also be used as the source of iron oxides. A solution of the orthophosphoric acid, or a solution of the orthophosphoric acid and ferric oxide, is formed and a powder phase of low-level waste and the mixture of iron oxide powders or cinder (or magnetite powder) is also formed. The acid solution is mixed with the powder phase to form a slurry with the ratio of components (mass %) of waste: iron oxide powders or magnitite: acid solution = 30-60: 15-10: 55-30. The slurry is blended to form a homogeneous mixture which is cured at room temperature to form the final product.

Aloy, Albert S.; Kovarskaya, Elena N.; Koltsova, Tatiana I.; Macheret, Yevgeny; Medvedev, Pavel G.; Todd, Terry

1998-08-07T23:59:59.000Z

414

Iron-phosphate ceramics for solidification of mixed low-level waste  

DOE Patents (OSTI)

A method of immobilizing mixed low-level waste is provided which uses low cost materials and has a relatively long hardening period. The method includes: forming a mixture of iron oxide powders having ratios, in mass %, of FeO:Fe.sub.2 O.sub.3 :Fe.sub.3 O.sub.4 equal to 25-40:40-10:35-50, or weighing a definite amount of magnetite powder. Metallurgical cinder can also be used as the source of iron oxides. A solution of the orthophosphoric acid, or a solution of the orthophosphoric acid and ferric oxide, is formed and a powder phase of low-level waste and the mixture of iron oxide powders or cinder (or magnetite powder) is also formed. The acid solution is mixed with the powder phase to form a slurry with the ratio of components (mass %) of waste:iron oxide powders or magnetite:acid solution=30-60:15-10:55-30. The slurry is blended to form a homogeneous mixture which is cured at room temperature to form the final product.

Aloy, Albert S. (St. Petersburg, RU); Kovarskaya, Elena N. (St. Petersburg, RU); Koltsova, Tatiana I. (St. Petersburg, RU); Macheret, Yevgeny (Idaho Falls, ID); Medvedev, Pavel G. (Ozersk, RU); Todd, Terry (Aberdeen, ID)

2000-01-01T23:59:59.000Z

415

BEIR-III report and the health effects of low-level radiation  

SciTech Connect

The present BEIR-III Committee has not highlighted any controversy over the health effects of low-level radiation. In its evaluation of the experimental data and epidemiological surveys, the Committee has carefully reviewed and assessed the value of all the available scientific evidence for estimating numerical risk coefficients for the health hazards to human populations exposed to low levels of ionizing radiation. Responsible public awareness of the possible health effects of ionizing radiations from medical and industrial radiation exposure, centers on three important matters of societal concern: (1) to place into perspective the extent of harm to the health of man and his descendants to be expected in the present and in the future from those societal activities involving ionizing radiation; (2) to develop quantitative indices of harm based on dose-effect relationships; such indices could then be used with prudent caution to introduce concepts of the regulation of population doses on the basis of somatic and genetic risks; and (3) to identify the magnitude and extent of radiation activities which could cause harm, to assess their relative significance, and to provide a framework for recommendations on how to reduce unnecessary radiation exposure to human populations. The main difference of the BEIR Committee Report is not so much from new data or new interpretations of existing data, but rather from a philosophical approach and appraisal of existing and future radiation protection resulting from an atmosphere of constantly changing societal conditions and public attitudes. (PCS)

Fabrikant, J.I.

1980-01-01T23:59:59.000Z

416

Limitations and Problems in Deriving Risk Estimates for Low-level Radiation Exposure  

E-Print Network (OSTI)

Some of the problems in determining the cancer risk of low-level radiation from studies of exposed groups are reviewed and applied to the study of Hanford workers by Mancuso, Stewart, and Kneale. Problems considered are statistical limitations, variation of cancer rates with geography and race, the "healthy worker effect, " calendar year and age variation of cancer mortality, choosing from long lists, use of proportional mortality rates, cigarette smoking-cancer correlations, use of averages to represent data distributions, ignoring other data, and correlations between radiation exposure and other factors that may cause cancer. The current status of studies of the Hanford workers is reviewed. There have been several papers in recent years purporting to give evidence that low level radiation (- 10 rad) is more dangerous than indicated by conventional estimates like those of the National Academy of Sciences Committee on Biological Effects of Ionizing Radiation (BEIR) [1], the United Nations Scientific Committee on Effects of Atomic Radiation (UNSCEAR) [21, and the International Commission on Radiological Protection (ICRP) [3]. The best known of these is the study by Mancuso, Stewart, and Kneale [4] (hereafter referred to as MSK) on workers at the

Bernard L. Cohen; D. Sc

1981-01-01T23:59:59.000Z

417

E AREA LOW LEVEL WASTE FACILITY DOE 435.1 PERFORMANCE ASSESSMENT  

Science Conference Proceedings (OSTI)

This Performance Assessment for the Savannah River Site E-Area Low-Level Waste Facility was prepared to meet requirements of Chapter IV of the Department of Energy Order 435.1-1. The Order specifies that a Performance Assessment should provide reasonable assurance that a low-level waste disposal facility will comply with the performance objectives of the Order. The Order also requires assessments of impacts to water resources and to hypothetical inadvertent intruders for purposes of establishing limits on radionuclides that may be disposed near-surface. According to the Order, calculations of potential doses and releases from the facility should address a 1,000-year period after facility closure. The point of compliance for the performance measures relevant to the all pathways and air pathway performance objective, as well as to the impact on water resources assessment requirement, must correspond to the point of highest projected dose or concentration beyond a 100-m buffer zone surrounding the disposed waste following the assumed end of active institutional controls 100 years after facility closure. During the operational and institutional control periods, the point of compliance for the all pathways and air pathway performance measures is the SRS boundary. However, for the water resources impact assessment, the point of compliance remains the point of highest projected dose or concentration beyond a 100-m buffer zone surrounding the disposed waste during the operational and institutional control periods. For performance measures relevant to radon and inadvertent intruders, the points of compliance are the disposal facility surface for all time periods and the disposal facility after the assumed loss of active institutional controls 100 years after facility closure, respectively. The E-Area Low-Level Waste Facility is located in the central region of the SRS known as the General Separations Area. It is an elbow-shaped, cleared area, which curves to the northwest, situated immediately north of the Mixed Waste Management Facility. The E-Area Low-Level Waste Facility is comprised of 200 acres for waste disposal and a surrounding buffer zone that extends out to the 100-m point of compliance. Disposal units within the footprint of the low-level waste facilities include the Slit Trenches, Engineered Trenches, Component-in-Grout Trenches, the Low-Activity Waste Vault, the Intermediate-Level Vault, and the Naval Reactor Component Disposal Area. Radiological waste disposal operations at the E-Area Low-Level Waste Facility began in 1994. E-Area Low-Level Waste Facility closure will be conducted in three phases: operational closure, interim closure, and final closure. Operational closure will be conducted during the 25-year operation period (30-year period for Slit and Engineered Trenches) as disposal units are filled; interim closure measures will be taken for some units. Interim closure will take place following the end of operations and will consist of an area-wide runoff cover along with additional grading over the trench units. Final closure of all disposal units in the E-Area Low-Level Waste Facility will take place at the end of the 100-year institutional control period and will consist of the installation of an integrated closure system designed to minimize moisture contact with the waste and to serve as a deterrent to intruders. Radiological dose to human receptors is analyzed in this PA in the all-pathways analysis, the inadvertent intruder analysis and the air pathway analysis, and the results are compared to the relevant performance measures. For the all-pathways analysis, the performance measure of relevance is a 25-mrem/yr EDE to representative members of the public, excluding dose from radon and its progeny in air. For the inadvertent intruder, the applicable performance measures are 100-mrem/yr EDE and 500 mrem/yr EDE for chronic and exposure scenarios, respectively. The relevant performance measure for the air pathway is 10-mrem/yr EDE via the air pathway, excluding dose from radon and its progeny in air. Protecti

Wilhite, E

2008-03-31T23:59:59.000Z

418

A case study of the low-level jet during an episode of spring convection  

E-Print Network (OSTI)

Circulation and transport of the low-level jet (LLJ) were examined for a case of severe convection that occurred in Spring 1995. Radiosonde observations and Eta model output on constant pressure and isentropic surfaces allowed a detailed examination of the relationship between the LLJ and a subtropical jet (STJ) streak. Height falls associated with a lee cyclone caused an ageostrophic and isallobalic wind that strengthened the LLJ. The smaller horizontal resolution of Eta model giids and hourly forecasts allowed a detailed examination of the LLJ evolution and transport methods. The model's accurate placement of terrain provided realistic plots of the LLJ at the commonly used 850 mb level. The radiosonde observations, when interpolated to grid points, yielded suspicious results over higher terrain. The hourly forecast of transport variables revealed a step-by-step progression of convection along ridges of equivalent potential temperature advection. The evolution of the LLJ appeared to be influenced by a thermally indirect circulation (TIC) induced in the exit region of a STJ streak. A low-level isaflobaric wind responding to a leeside trough and cyclogenesis also effected the LLJ. The TIC is part of the ageostrophic circulation in the exit region of the streak. The low-level isallobaric wind coincided with a trough moving east over the northern Great Plains and a deepening trough in the lee of the Rockies. Results of the case study for the LLJ evolution showed 1) The LLJ developed beneath a STJ streak exit region as the lower branch of an indirect circulation. 2) A strong cross-contour ageostrophic wind in the lower troposphere aided in accelerating the LLJ. 3) The LLJ strengthened in response to a isaflobaric wind associated with lee cyclogenesis. 4) LLJ speed and magnitude decreased during a transition between the large scale forcing mechanisms as the ageostrophic circulation, cross-contour ageostrophic wind, and isabobaiic wind all weakened. 5) Eta model hourly forecasts fairly well predicted heat and water vapor transport, offering an hourly look at convective movement.

Donahoe, Christopher Scott

1996-01-01T23:59:59.000Z

419

Radioactivity and Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Radioactivity and Radiation Radioactivity and Radiation Uranium and Its Compounds line line What is Uranium? Chemical Forms of Uranium Properties of Uranium Compounds Radioactivity and Radiation Uranium Health Effects Radioactivity and Radiation Discussion of radioactivity and radiation, uranium and radioactivity, radiological health risks of uranium isotopes and decay products. Radioactivity Radioactivity is the term used to describe the natural process by which some atoms spontaneously disintegrate, emitting both particles and energy as they transform into different, more stable atoms. This process, also called radioactive decay, occurs because unstable isotopes tend to transform into a more stable state. Radioactivity is measured in terms of disintegrations, or decays, per unit time. Common units of radioactivity

420

Hanford Low-Level Waste Form Performance for Meeting Land Disposal Requirements  

Science Conference Proceedings (OSTI)

Immobilized Low-activity waste (ILAW) from the Hanford site will be disposed of in near-surface burial grounds and must be processed into a chemically durable waste form to prevent release of hazardous constituents to the environment. To meet his goal, the LAW will be immobilized in borosilicate glass. the DOE office of River Protection and the Rive Protection Project-Waste Treatment Plant (RPP-WTP) project have agreed on testing requirements that the immobilized LAW glass must meet to demonstrate chemically durability. Two of the tests are the Product Consistency Test (PCT) and Environmental Protection Agency's (EPA) Toxicity Characteristic Leaching Procedure (TCLP). This paper provides results of RPP-WTP PCT and TCLP testing on both actual radioactive and non-radioactive simulant LAW glasses to show they meet the associated land disposal requirements.

Crawford, C.L.

2003-01-07T23:59:59.000Z

Note: This page contains sample records for the topic "gtcc low-level radioactive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Preliminary analysis of the ORNL Liquid Low-Level Waste system  

Science Conference Proceedings (OSTI)

The objective of this report is to summarize the status of the Liquid Low-Level Waste (LLLW) Systems Analysis project. The focus of this project has been to collect and tabulate data concerning the LLLW system, analyze the current LLLW system operation, and develop the information necessary for the development of long-term treatment options for the LLLW generated at ORNL. The data used in this report were collected through a survey of Oak Ridge National Laboratory (ORNL) literature, various letter reports, and a survey of all current LLLW generators. These data are also being compiled in a user friendly database for ORNL-wide distribution. The database will allow the quick retrieval of all information collected on the ORNL LLLW system and will greatly benefit any LLLW analysis effort. This report summarizes the results for the analyses performed to date on the LLLW system.

Abraham, T.J.; DePaoli, S.M.; Robinson, S.M.; Walker, A.B.

1994-08-01T23:59:59.000Z

422

DOE/SC-ARM/TR-119 Investigations of Possible Low-Level  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 Investigations of Possible Low-Level Temperature and Moisture Anomalies During the AMIE Field Campaign on Manus Island CN Long DJ Holdridge November 2012 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or

423

PROMETHEE: An Alpha Low Level Waste Assay System Using Passive and Active Neutron Measurement Methods  

Science Conference Proceedings (OSTI)

The development of a passive-active neutron assay system for alpha low level waste characterization at the French Atomic Energy Commission is discussed. Less than 50 Bq[{alpha}] (about 50 {mu}g Pu) per gram of crude waste must be measured in 118-l 'European' drums in order to reach the requirements for incinerating wastes. Detection limits of about 0.12 mg of effective {sup 239}Pu in total active neutron counting, and 0.08 mg of effective {sup 239}Pu coincident active neutron counting, may currently be detected (empty cavity, measurement time of 15 min, neutron generator emission of 1.6 x 10{sup 8} s{sup -1} [4{pi}]). The most limiting parameters in terms of performances are the matrix of the drum - its composition (H, Cl...), its density, and its heterogeneity degree - and the localization and self-shielding properties of the contaminant.

Passard, Christian [French Atomic Energy Commission, C.E.A. Cadarache (France); Mariani, Alain [French Atomic Energy Commission, C.E.A. Cadarache (France); Jallu, Fanny [French Atomic Energy Commission, C.E.A. Cadarache (France); Romeyer-Dherbey, Jacques [French Atomic Energy Commission, C.E.A. Cadarache (France); Recroix, Herve [French Atomic Energy Commission, C.E.A. Cadarache (France); Rodriguez, Michel [French Atomic Energy Commission, C.E.A. Cadarache (France); Loridon, Joel [French Atomic Energy Commission, C.E.A. Cadarache (France); Denis, Caroline [French Atomic Energy Commission, C.E.A. Cadarache (France); Toubon, Herve [COGEMA (France)

2002-12-15T23:59:59.000Z

424

Phosphate ceramic process for macroencapsulation and stabilization of low-level debris wastes  

SciTech Connect

Across the DOE complex, large quantities of contaminated debris and irradiated lead bricks have been accumulated for disposal. Under the US Environmental Protection Agency`s Alternative Treatment Standards, the preferred method of disposal of these wastes is macroencapsulation. Chemically bonded phosphate ceramic (CBPC) is a novel binder that was developed at Argonne National Laboratory to stabilize and solidify various low-level mixed wastes. This binder is extremely strong, dense, and impervious to water. In this investigation, CBPC has been used to demonstrate macroencapsulation of various contaminated debris wastes, including cryofractured debris, lead bricks, lead-lined plastic gloves, and mercury-contaminated crushed glass. This paper describes the fabrication of the waste forms, as well as the results of various characterizations performed on the waste forms. The results show that the simple and low-cost CBPC is an excellent material system for the macroencapsulation of debris wastes.

Singh, D.; Wagh, A.S.; Tlustochowicz, M.; Jeong, S.Y. [Argonne National Lab., IL (United States). Energy Technology Div.

1998-12-31T23:59:59.000Z