National Library of Energy BETA

Sample records for gsf gross square

  1. Spreader beam analysis for the CASTOR GSF cask

    SciTech Connect (OSTI)

    Clements, E.P.

    1997-04-07

    The purpose of this report is to document the results of the 150% rated capacity load test performed by DynCorp Hoisting and Rigging on the CASTOR GSF special cask lifting beams. The two lifting beams were originally rated and tested at 20,000kg (44,000lb) by the cask manufacturer in Germany. The testing performed by DynCorp rated and tested the lifting beams to 30,000 kg (66,000 lb) +0%, -5%, for Hanford Site use. The CASTOR GSF cask, used to transport isotopic Heat Sources (canisters), must be lifted with its own designed lifting beam system (Figures 1, 2, and 3). As designed, the beam material is RSt 37-2 (equivalent to American Society for Testing and Materials [ASTM] A-570), the eye plate is St 52-2 (equivalent to ASTM A-516), and the lifting pin is St 50 (equivalent to ASTM A-515). The beam has two opposing 58 mm (2.3 in.) diameter by 120 mm(4.7 in.) length, high grade steel pins that engage the cask for lifting. The pins have a manual locking mechanism to prevent disengagement from the casks. The static, gross weight (loaded) of the cask 18,640 kg (41,000 lb) on the pins prevents movement of the pins during lifting. This is due to the frictional force of the cask on the pins when lifting begins.

  2. grossWCI.dvi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear multifragmentation, Its relation to general physics A rich test-ground of the fundamentals of statistical mechanics. D.H.E. Gross 1 Hahn-Meitner Institute Glienickerstr. 100 14109 Berlin, Germany gross@hmi.de; http://www.hmi.de/people/gross/ 2 Freie Universit¨ at Berlin, Fachbereich Physik. Received: date / Revised version: date Abstract. Heat can flow from cold to hot at any phase separation, even in macroscopic systems. Therefore also Lynden-Bell's famous gravo-thermal catastrophe [1]

  3. Samantha Gross | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Samantha Gross About Us Samantha Gross - Director, Office of International Climate and Clean Energy Samantha Gross Samantha Gross is the Director for International Climate and Clean Energy at the Office of International Affairs in the U.S. Department of Energy. She directs U.S. activities under the Clean Energy Ministerial, including the secretariat and initiatives focusing on clean energy implementation and access and energy efficiency. Her office also supports the Assistant Secretary and

  4. Jackson Square | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jackson Square Jackson Square Construction of Jackson Square Shopping Center.

  5. Michael Gross | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Gross Michael Gross Michael Gross Principal Investigator E-mail: mgross@wustl.edu Phone: (314) 935-4814 Website: Washington University in St. Louis Principal Investigator Dr. Gross's research interests include analytical chemistry, biological chemistry, biophysical chemistry, FT-ICR instrument development, MALDI matrix development, mass spectrometry for protein biochemistry and biophysics, modified DNA and cancer, physical organic chemistry, protein and peptide analysis, and proteomics.

  6. David J. Gross and the Strong Force

    Office of Scientific and Technical Information (OSTI)

    published their proposal simultaneously with H. David Politzer, a graduate student at Harvard University who independently came up with the same idea. ... The discovery of Gross,...

  7. ,"Texas Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  8. ,"Kansas Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  9. ,"Pennsylvania Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  10. ,"Kentucky Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  11. ,"Oregon Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301979" ,"Release...

  12. ,"Virginia Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  13. ,"Missouri Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  14. ,"Illinois Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  15. ,"Florida Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  16. ,"Utah Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  17. ,"Indiana Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  18. ,"Nevada Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Nevada Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301991" ,"Release...

  19. ,"Montana Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  20. ,"Ohio Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  1. ,"California Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  2. ,"Mississippi Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  3. ,"Nebraska Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  4. ,"Michigan Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  5. ,"Tennessee Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  6. ,"Oklahoma Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  7. ,"Wyoming Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  8. ,"Maryland Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  9. ,"Louisiana Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  10. ,"Colorado Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  11. David J. Gross and the Strong Force

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    David J. Gross and the Strong Force Resources with Additional Information The 2004 Nobel Prize in Physics was awarded to David Gross for "the discovery of asymptotic freedom in the theory of the strong interaction". 'Gross, who obtained his PhD in physics in 1966, currently is a professor of physics and director of the Kavli Institute for Theoretical Physics at UC Santa Barbara. ... David Gross Courtesy of UC Santa Barbara [When on the faculty at Princeton University,] he and

  12. Solar Energy Squared, LLC | Open Energy Information

    Open Energy Info (EERE)

    Squared, LLC Jump to: navigation, search Logo: Solar Energy Squared, LLC Name: Solar Energy Squared, LLC Address: 116 Ottenheimer Plaza, President Clinton Avenue Place: Little...

  13. Quantification of the Potential Gross Economic Impacts of Five...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quantification of the Potential Gross Economic Impacts of Five Methane Reduction Scenarios Quantification of the Potential Gross Economic Impacts of Five Methane Reduction ...

  14. Property:DailyOpWaterUseGross | Open Energy Information

    Open Energy Info (EERE)

    Property Name DailyOpWaterUseGross Property Type Number Description Daily Operation Water Use (afday) Gross. Retrieved from "http:en.openei.orgwindex.php?titleProperty:...

  15. Fact #564: March 30, 2009 Transportation and the Gross Domestic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4: March 30, 2009 Transportation and the Gross Domestic Product, 2007 Fact 564: March 30, 2009 Transportation and the Gross Domestic Product, 2007 Transportation plays a major ...

  16. ,"West Virginia Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"01042016 7:36:01 AM" "Back to Contents","Data 1: West Virginia Natural Gas Gross Withdrawals (MMcf)" "Sourcekey","N9010WV2" "Date","West...

  17. ,"New Mexico Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"1292016 12:20:48 AM" "Back to Contents","Data 1: New Mexico Natural Gas Gross Withdrawals (MMcf)" "Sourcekey","N9010NM2" "Date","New Mexico...

  18. ,"Alaska Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"01042016 7:35:06 AM" "Back to Contents","Data 1: Alaska Natural Gas Gross Withdrawals and Production" "Sourcekey","N9010AK2","N9011AK2","N9012AK2"...

  19. ,"Alaska Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"01042016 7:35:07 AM" "Back to Contents","Data 1: Alaska Natural Gas Gross Withdrawals and Production" "Sourcekey","N9010AK2","N9011AK2","N9012AK2"...

  20. ,"New York Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"12152015 12:10:48 PM" "Back to Contents","Data 1: New York Natural Gas Gross Withdrawals (MMcf)" "Sourcekey","N9010NY2" "Date","New York...

  1. Montana Natural Gas Gross Withdrawals (Million Cubic Feet per...

    Gasoline and Diesel Fuel Update (EIA)

    Gross Withdrawals (Million Cubic Feet per Day) Montana Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 317 313...

  2. California Natural Gas Gross Withdrawals (Million Cubic Feet...

    Gasoline and Diesel Fuel Update (EIA)

    Gross Withdrawals (Million Cubic Feet per Day) California Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 998...

  3. Virginia Natural Gas Gross Withdrawals (Million Cubic Feet per...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gross Withdrawals (Million Cubic Feet per Day) Virginia Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 271 275...

  4. Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals...

    Gasoline and Diesel Fuel Update (EIA)

    Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals (Million Cubic Feet per...

  5. Arizona Natural Gas Gross Withdrawals (Million Cubic Feet per...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Arizona Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Arizona Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct...

  6. New Mexico Natural Gas Gross Withdrawals (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gross Withdrawals (Million Cubic Feet per Day) New Mexico Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 4,406...

  7. Texas--onshore Natural Gas Gross Withdrawals (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gross Withdrawals (Million Cubic Feet) Texas--onshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  8. Kansas Natural Gas Gross Withdrawals (Million Cubic Feet per...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gross Withdrawals (Million Cubic Feet per Day) Kansas Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 1,049...

  9. West Virginia Natural Gas Gross Withdrawals (Million Cubic Feet...

    Gasoline and Diesel Fuel Update (EIA)

    Gross Withdrawals (Million Cubic Feet per Day) West Virginia Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006...

  10. New York Natural Gas Gross Withdrawals (Million Cubic Feet per...

    Gasoline and Diesel Fuel Update (EIA)

    Gross Withdrawals (Million Cubic Feet per Day) New York Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 149 147...

  11. ,"Federal Offshore Gulf of Mexico Natural Gas Gross Withdrawals...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gulf of Mexico Natural Gas Gross Withdrawals and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  12. ,"New Mexico Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  13. ,"New Mexico Natural Gas Gross Withdrawals from Oil Wells (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Gross Withdrawals from Oil Wells (MMcf)",1,"Annual",2014 ,"Release...

  14. ,"New Mexico Natural Gas Gross Withdrawals from Gas Wells (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Gross Withdrawals from Gas Wells (MMcf)",1,"Annual",2014 ,"Release...

  15. ,"Texas Natural Gas Gross Withdrawals Total Offshore (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Gross Withdrawals Total Offshore (MMcf)",1,"Annual",2014 ,"Release...

  16. ,"Alabama--State Offshore Natural Gas Gross Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama--State Offshore Natural Gas Gross Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","129...

  17. ,"Louisiana--State Offshore Natural Gas Gross Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--State Offshore Natural Gas Gross Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","129...

  18. ,"Texas--State Offshore Natural Gas Gross Withdrawals (MMcf)...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas--State Offshore Natural Gas Gross Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","129...

  19. ,"Alaska--State Offshore Natural Gas Gross Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alaska--State Offshore Natural Gas Gross Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","129...

  20. ,"US--State Offshore Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    State Offshore Natural Gas Gross Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  1. ,"California--State Offshore Natural Gas Gross Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California--State Offshore Natural Gas Gross Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","129...

  2. Nebraska Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    09 2010 2011 2012 2013 2014 View History Gross Withdrawals 2,916 2,255 1,980 1,328 1,032 402 1967-2014 From Gas Wells 2,734 2,092 1,854 1,317 1,027 400 1967-2014 From Oil Wells 182 163 126 11 5 1 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 1967-2014 Vented and Flared 9 24 21 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 2006-2014 Marketed Production 2,908 2,231 1,959 1,328 1,032 402 1967-2014 Dry Production

  3. Oregon Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    09 2010 2011 2012 2013 2014 View History Gross Withdrawals 821 1,407 1,344 770 770 950 1979-2014 From Gas Wells 821 1,407 1,344 770 770 950 1979-2014 From Oil Wells 0 0 0 0 0 0 1996-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2002-2014 Repressuring 0 0 0 0 0 0 1994-2014 Vented and Flared 0 0 0 0 0 0 1996-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 1994-2014 Marketed Production 821 1,407 1,344 770 770 950 1979-2014 Dry Production 821 1,407 1,344 770 770 950

  4. Pennsylvania Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    10 2011 2012 2013 2014 2015 View History Gross Withdrawals 572,902 1,310,592 2,256,696 3,259,042 4,214,643 4,765,305 1967-2015 From Gas Wells 173,450 242,305 210,609 207,872 174,576 1967-2014 From Oil Wells 0 0 3,456 2,987 3,564 1967-2014 From Shale Gas Wells 399,452 1,068,288 2,042,632 3,048,182 4,036,504 2007-2014 From Coalbed Wells 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 1967-2014 Vented and Flared 0 0 0 0 0 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 1997-2014 Marketed Production

  5. Virginia Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    09 2010 2011 2012 2013 2014 View History Gross Withdrawals 140,738 147,255 151,094 146,405 139,382 131,885 1967-2014 From Gas Wells 16,046 23,086 20,375 21,802 26,815 27,052 1967-2014 From Oil Wells 0 0 0 9 9 9 2006-2014 From Shale Gas Wells 18,284 16,433 18,501 17,212 13,016 12,226 2007-2014 From Coalbed Wells 106,408 107,736 112,219 107,383 99,542 92,599 2006-2014 Repressuring 0 0 0 0 0 0 2003-2014 Vented and Flared NA NA NA 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 1997-2014

  6. Kansas Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    10 2011 2012 2013 2014 2015 View History Gross Withdrawals 325,591 309,952 296,299 292,467 286,080 292,219 1967-2015 From Gas Wells 247,651 236,834 264,610 264,223 260,715 1967-2014 From Oil Wells 39,071 37,194 0 0 0 1967-2014 From Shale Gas Wells 0 0 0 0 0 2007-2014 From Coalbed Wells 38,869 35,924 31,689 28,244 25,365 2002-2014 Repressuring 548 521 0 NA NA 1967-2014 Vented and Flared 323 307 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 2002-2014 Marketed Production 324,720 309,124

  7. Kentucky Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    09 2010 2011 2012 2013 2014 View History Gross Withdrawals 113,300 135,330 124,243 106,122 94,665 78,737 1967-2014 From Gas Wells 111,782 133,521 122,578 106,122 94,665 78,737 1967-2014 From Oil Wells 1,518 1,809 1,665 0 0 0 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 2006-2014 Vented and Flared 0 0 0 0 0 0 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 2006-2014 Marketed Production 113,300 135,330 124,243 106,122

  8. Louisiana Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    10 2011 2012 2013 2014 2015 View History Gross Withdrawals 2,218,283 3,040,523 2,955,437 2,366,943 1,987,630 1,943,739 1967-2015 From Gas Wells 911,967 883,712 775,506 780,623 737,185 1967-2014 From Oil Wells 63,638 68,505 49,380 51,948 50,638 1967-2014 From Shale Gas Wells 1,242,678 2,088,306 2,130,551 1,534,372 1,199,807 2007-2014 From Coalbed Wells 0 0 0 0 0 2002-2014 Repressuring 3,606 5,015 0 2,829 3,199 1967-2014 Vented and Flared 4,578 6,302 0 3,912 4,143 1967-2014 Nonhydrocarbon Gases

  9. Deming's General Least Square Fitting

    Energy Science and Technology Software Center (OSTI)

    1992-02-18

    DEM4-26 is a generalized least square fitting program based on Deming''s method. Functions built into the program for fitting include linear, quadratic, cubic, power, Howard''s, exponential, and Gaussian; others can easily be added. The program has the following capabilities: (1) entry, editing, and saving of data; (2) fitting of any of the built-in functions or of a user-supplied function; (3) plotting the data and fitted function on the display screen, with error limits if requested,moreand with the option of copying the plot to the printer; (4) interpolation of x or y values from the fitted curve with error estimates based on error limits selected by the user; and (5) plotting the residuals between the y data values and the fitted curve, with the option of copying the plot to the printer. If the plot is to be copied to a printer, GRAPHICS should be called from the operating system disk before the BASIC interpreter is loaded.less

  10. (1)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AUI Guidance (1) Asset Utilization Index (AUI). AUI is the Department's corporate measure of facilities and land holdings against requirements. The index reflects the outcome from real property acquisition and disposal policy, planning, and resource decisions. (a) Utilization at the asset level is determined by evaluating the percentage of the real property asset required for mission accomplishment. Utilization can be determined on a gross square feet (GSF) basis or on a percentage of

  11. Blue Square Energy BSE | Open Energy Information

    Open Energy Info (EERE)

    Energy BSE Jump to: navigation, search Name: Blue Square Energy (BSE) Place: Maryland Zip: 21901 Product: US manufacturer of low-purity crystalline silicon cells and modules...

  12. GSF Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    of of montauk Energy Capital and has over 25 years of experience in LFG recovery and process operating. Coordinates: 40.438335, -79.997459 Show Map Loading map......

  13. Nebraska Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Coalbed Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Gross Withdrawals from Coalbed Wells Nebraska Natural Gas Gross Withdrawals and Production Natural Gas Gross Withdrawals from Coalbed

  14. Kentucky Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Coalbed Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Gross Withdrawals from Coalbed Wells Kentucky Natural Gas Gross Withdrawals and Production Natural Gas Gross Withdrawals from Coalbed

  15. Maryland Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Coalbed Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Gross Withdrawals from Coalbed Wells Maryland Natural Gas Gross Withdrawals and Production Natural Gas Gross Withdrawals from Coalbed

  16. Property:CoolingTowerWaterUseSummerGross | Open Energy Information

    Open Energy Info (EERE)

    Property Name CoolingTowerWaterUseSummerGross Property Type Number Description Cooling Tower Water use (summer average) (afday) Gross. Retrieved from "http:en.openei.orgw...

  17. Fact# 904: December 21, 2015 Gross Domestic Product and Vehicle...

    Broader source: Energy.gov (indexed) [DOE]

    GDP and VMT Trends, 1960-2015 Graph showing gross national product and vehicle travel trends during 2015. Note: Data for the last quarter of 2015 were not available and were ...

  18. Physics Nobel winner David Gross gives public lecture at Jefferson...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Nobel winner David Gross gives public lecture at Jefferson Lab on June 12 (Monday) ... "The Coming Revolutions in Fundamental Physics" beginning at 8 p.m. at Jefferson Lab on ...

  19. ,"Alabama Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    2015 12:34:05 PM" "Back to Contents","Data 1: Alabama Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)" "Sourcekey","NGMEPG0FGSSALMMCF" "Date","Alabama...

  20. Nevada Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    from Gas Wells (Million Cubic Feet) Nevada Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  1. Other States Natural Gas Gross Withdrawals from Coalbed Wells...

    Gasoline and Diesel Fuel Update (EIA)

    Coalbed Wells (Million Cubic Feet) Other States Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 0 0...

  2. Other States Natural Gas Gross Withdrawals from Oil Wells (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Oil Wells (Million Cubic Feet) Other States Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 3,459 3,117...

  3. Quantification of the Potential Gross Economic Impacts of Five Methane

    Energy Savers [EERE]

    Reduction Scenarios | Department of Energy Quantification of the Potential Gross Economic Impacts of Five Methane Reduction Scenarios Quantification of the Potential Gross Economic Impacts of Five Methane Reduction Scenarios This study assessed five potential methane reduction scenarios from natural gas transmission, storage, and distribution (TS&D) infrastructure using published literature on the costs and the estimated quantity of methane reduced. The results show that implementation

  4. Elmo bumpy square plasma confinement device

    DOE Patents [OSTI]

    Owen, L.W.

    1985-01-01

    The invention is an Elmo bumpy type plasma confinement device having a polygonal configuration of closed magnet field lines for improved plasma confinement. In the preferred embodiment, the device is of a square configuration which is referred to as an Elmo bumpy square (EBS). The EBS is formed by four linear magnetic mirror sections each comprising a plurality of axisymmetric assemblies connected in series and linked by 90/sup 0/ sections of a high magnetic field toroidal solenoid type field generating coils. These coils provide corner confinement with a minimum of radial dispersion of the confined plasma to minimize the detrimental effects of the toroidal curvature of the magnetic field. Each corner is formed by a plurality of circular or elliptical coils aligned about the corner radius to provide maximum continuity in the closing of the magnetic field lines about the square configuration confining the plasma within a vacuum vessel located within the various coils forming the square configuration confinement geometry.

  5. A spectral mimetic least-squares method

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bochev, Pavel; Gerritsma, Marc

    2014-09-01

    We present a spectral mimetic least-squares method for a model diffusion–reaction problem, which preserves key conservation properties of the continuum problem. Casting the model problem into a first-order system for two scalar and two vector variables shifts material properties from the differential equations to a pair of constitutive relations. We also use this system to motivate a new least-squares functional involving all four fields and show that its minimizer satisfies the differential equations exactly. Discretization of the four-field least-squares functional by spectral spaces compatible with the differential operators leads to a least-squares method in which the differential equations are alsomore » satisfied exactly. Additionally, the latter are reduced to purely topological relationships for the degrees of freedom that can be satisfied without reference to basis functions. Furthermore, numerical experiments confirm the spectral accuracy of the method and its local conservation.« less

  6. A spectral mimetic least-squares method

    SciTech Connect (OSTI)

    Bochev, Pavel; Gerritsma, Marc

    2014-09-01

    We present a spectral mimetic least-squares method for a model diffusionreaction problem, which preserves key conservation properties of the continuum problem. Casting the model problem into a first-order system for two scalar and two vector variables shifts material properties from the differential equations to a pair of constitutive relations. We also use this system to motivate a new least-squares functional involving all four fields and show that its minimizer satisfies the differential equations exactly. Discretization of the four-field least-squares functional by spectral spaces compatible with the differential operators leads to a least-squares method in which the differential equations are also satisfied exactly. Additionally, the latter are reduced to purely topological relationships for the degrees of freedom that can be satisfied without reference to basis functions. Furthermore, numerical experiments confirm the spectral accuracy of the method and its local conservation.

  7. Gross alpha analytical modifications that improve wastewater treatment compliance

    SciTech Connect (OSTI)

    Tucker, B.J.; Arndt, S.

    2007-07-01

    This paper will propose an improvement to the gross alpha measurement that will provide more accurate gross alpha determinations and thus allow for more efficient and cost-effective treatment of site wastewaters. To evaluate the influence of salts that may be present in wastewater samples from a potentially broad range of environmental conditions, two types of efficiency curves were developed, each using a thorium-230 (Th-230) standard spike. Two different aqueous salt solutions were evaluated, one using sodium chloride, and one using salts from tap water drawn from the Bergen County, New Jersey Publicly Owned Treatment Works (POTW). For each curve, 13 to 17 solutions were prepared, each with the same concentration of Th-230 spike, but differing in the total amount of salt in the range of 0 to 100 mg. The attenuation coefficients were evaluated for the two salt types by plotting the natural log of the counted efficiencies vs. the weight of the sample's dried residue retained on the planchet. The results show that the range of the slopes for each of the attenuation curves varied by approximately a factor of 2.5. In order to better ensure the accuracy of results, and thus verify compliance with the gross alpha wastewater effluent criterion, projects depending on gross alpha measurements of environmental waters and wastewaters should employ gross alpha efficiency curves prepared with salts that mimic, as closely as possible, the salt content of the aqueous environmental matrix. (authors)

  8. Latin square three dimensional gage master

    DOE Patents [OSTI]

    Jones, Lynn L. (Lexena, KS)

    1982-01-01

    A gage master for coordinate measuring machines has an nxn array of objects distributed in the Z coordinate utilizing the concept of a Latin square experimental design. Using analysis of variance techniques, the invention may be used to identify sources of error in machine geometry and quantify machine accuracy.

  9. Pioneer Valley Photovoltaics Cooperative aka PV Squared | Open...

    Open Energy Info (EERE)

    Photovoltaics Cooperative aka PV Squared Jump to: navigation, search Name: Pioneer Valley Photovoltaics Cooperative (aka PV Squared) Place: New Britain, Connecticut Zip: 6051...

  10. Gross Gamma-Ray Calibration Blocks (May 1978) | Department of Energy

    Office of Environmental Management (EM)

    Gross Gamma-Ray Calibration Blocks (May 1978) Gross Gamma-Ray Calibration Blocks (May 1978) Gross Gamma-Ray Calibration Blocks (May 1978) PDF icon Gross Gamma-Ray Calibration Blocks (May 1978) More Documents & Publications Grade Assignments for Models Used for Calibration of Gross-Count Gamma-Ray Logging Systems (December 1983) A Brief Review of the Basis for, and the Procedures Currently Utilized in, Gross Gamma-Ray Log Calibration (October 1976) Parameter Assignments for Spectral Gamma-Ray

  11. Optical inverse-square displacement sensor

    DOE Patents [OSTI]

    Howe, R.D.; Kychakoff, G.

    1989-09-12

    This invention comprises an optical displacement sensor that uses the inverse-square attenuation of light reflected from a diffused surface to calculate the distance from the sensor to the reflecting surface. Light emerging from an optical fiber or the like is directed onto the surface whose distance is to be measured. The intensity I of reflected light is angle dependent, but within a sufficiently small solid angle it falls off as the inverse square of the distance from the surface. At least a pair of optical detectors are mounted to detect the reflected light within the small solid angle, their ends being at different distances R and R + [Delta]R from the surface. The distance R can then be found in terms of the ratio of the intensity measurements and the separation length as given in an equation. 10 figs.

  12. Optical inverse-square displacement sensor

    DOE Patents [OSTI]

    Howe, Robert D.; Kychakoff, George

    1989-01-01

    This invention comprises an optical displacement sensor that uses the inverse-square attenuation of light reflected from a diffused surface to calculate the distance from the sensor to the reflecting surface. Light emerging from an optical fiber or the like is directed onto the surface whose distance is to be measured. The intensity I of reflected light is angle dependent, but within a sufficiently small solid angle it falls off as the inverse square of the distance from the surface. At least a pair of optical detectors are mounted to detect the reflected light within the small solid angle, their ends being at different distances R and R+.DELTA.R from the surface. The distance R can then be found in terms of the ratio of the intensity measurements and the separation length as ##EQU1##

  13. Hybrid least squares multivariate spectral analysis methods

    DOE Patents [OSTI]

    Haaland, David M. (Albuquerque, NM)

    2002-01-01

    A set of hybrid least squares multivariate spectral analysis methods in which spectral shapes of components or effects not present in the original calibration step are added in a following estimation or calibration step to improve the accuracy of the estimation of the amount of the original components in the sampled mixture. The "hybrid" method herein means a combination of an initial classical least squares analysis calibration step with subsequent analysis by an inverse multivariate analysis method. A "spectral shape" herein means normally the spectral shape of a non-calibrated chemical component in the sample mixture but can also mean the spectral shapes of other sources of spectral variation, including temperature drift, shifts between spectrometers, spectrometer drift, etc. The "shape" can be continuous, discontinuous, or even discrete points illustrative of the particular effect.

  14. Property:CoolingTowerWaterUseAnnlAvgGross | Open Energy Information

    Open Energy Info (EERE)

    Property Name CoolingTowerWaterUseAnnlAvgGross Property Type Number Description Cooling Tower Water use (annual average) (afday) Gross. Retrieved from "http:en.openei.orgw...

  15. Property:CoolingTowerWaterUseWinterGross | Open Energy Information

    Open Energy Info (EERE)

    lingTowerWaterUseWinterGross Property Type Number Description Cooling Tower Water use (winter average) (afday) Gross. Retrieved from "http:en.openei.orgwindex.php?titleProper...

  16. Federal Offshore California Natural Gas Gross Withdrawals (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Gross Withdrawals (Million Cubic Feet) Federal Offshore California Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 5,417 5,166 5,431 1980's 5,900 12,763 17,751 24,168 46,363 64,558 59,078 54,805 49,167 50,791 1990's 49,972 51,855 55,231 52,150 53,561 54,790 66,784 73,345 74,985 77,809 2000's 76,075 70,947 67,816 58,095 54,655 54,088 40,407 45,516 44,902 41,229 2010's 41,200 36,579 27,262 27,454

  17. Federal Offshore--Alabama Natural Gas Gross Withdrawals (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Offshore--Alabama Natural Gas Gross Withdrawals (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 0 1990's 0 0 79,294 86,515 120,502 143,703 152,055 194,677 170,320 163,763 2000's 160,208 NA NA NA NA NA NA NA NA NA 2010's NA NA 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  18. Federal Offshore--Louisiana Natural Gas Gross Withdrawals (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Gross Withdrawals (Million Cubic Feet) Federal Offshore--Louisiana Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,838,521 4,101,321 4,262,607 1980's 4,200,273 4,202,553 3,879,918 3,313,354 3,750,641 3,286,091 3,071,900 3,384,442 3,418,949 3,373,680 1990's 3,549,524 3,401,801 3,304,336 3,351,101 3,513,981 3,460,103 3,689,170 3,760,953 3,759,040 3,732,046 2000's 3,671,424 NA NA NA NA NA NA NA NA NA

  19. Louisiana Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Gross Withdrawals Total Offshore (Million Cubic Feet) Louisiana Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,838,521 4,600,197 4,750,119 1980's 4,617,585 4,584,491 4,246,464 3,635,942 4,070,279 3,542,827 3,279,165 3,610,041 3,633,594 3,577,685 1990's 3,731,764 3,550,230 3,442,437 3,508,112 3,673,494 3,554,147 3,881,697 3,941,802 3,951,997 3,896,569 2000's 3,812,991 153,871 137,192 133,456

  20. Louisiana--State Offshore Natural Gas Gross Withdrawals (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Gross Withdrawals (Million Cubic Feet) Louisiana--State Offshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 498,876 487,512 1980's 417,312 381,938 366,546 322,588 319,638 256,736 207,265 225,599 214,645 204,005 1990's 182,240 148,429 138,101 157,011 159,513 94,044 192,527 180,848 192,956 164,523 2000's 141,567 153,871 137,192 133,456 129,245 107,584 97,479 72,868 86,198 76,386 2010's 69,836

  1. Louisiana--onshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Gross Withdrawals (Million Cubic Feet) Louisiana--onshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1,535,033 1,538,511 1,552,603 1,608,633 1,469,698 1,357,155 1,386,478 1,434,389 2000's 1,342,963 1,370,802 1,245,270 1,244,672 1,248,050 1,202,328 1,280,758 1,309,960 1,301,523 1,482,252 2010's 2,148,447 2,969,297 2,882,193 2,289,193 1,925,968 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  2. Alabama Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Gross Withdrawals Total Offshore (Million Cubic Feet) Alabama Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 9 13 1990's 19,861 32,603 191,605 218,023 349,380 356,598 361,068 409,091 392,320 376,435 2000's 361,289 200,862 202,002 194,339 165,630 152,902 145,762 134,451 125,502 109,214 2010's 101,487 84,270 87,398 75,660 70,827 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  3. Alabama--onshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Gross Withdrawals (Million Cubic Feet) Alabama--onshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 222,009 228,298 229,483 223,527 221,233 220,674 212,470 207,863 2000's 200,255 191,119 184,500 176,571 173,106 164,304 160,381 155,167 152,051 146,751 2010's 139,215 134,305 128,312 120,666 110,226 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  4. Alaska Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Gross Withdrawals Total Offshore (Million Cubic Feet) Alaska Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 72,813 71,946 1980's 63,355 71,477 66,852 68,776 68,315 62,454 63,007 69,656 101,440 122,595 1990's 144,064 171,665 216,377 233,198 224,301 113,552 126,051 123,854 133,111 125,841 2000's 263,958 262,937 293,580 322,010 334,125 380,568 354,816 374,204 388,188 357,490 2010's 370,148 364,702

  5. Alaska--onshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Gross Withdrawals (Million Cubic Feet) Alaska--onshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,409,336 2,545,144 2,861,599 3,256,352 3,247,533 3,257,096 3,245,736 3,236,241 2000's 3,265,436 3,164,843 3,183,857 3,256,295 3,309,960 3,262,379 2,850,934 3,105,086 3,027,696 2,954,896 2010's 2,826,952 2,798,220 2,857,485 2,882,956 2,803,429 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  6. Calif--onshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Gross Withdrawals (Million Cubic Feet) Calif--onshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 386,382 346,733 334,987 322,544 326,919 317,137 315,701 347,667 2000's 334,983 336,629 322,138 303,480 287,205 291,271 301,921 286,584 281,088 258,983 2010's 273,136 237,388 214,509 219,386 218,512 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  7. California Natural Gas Gross Withdrawals Total Offshore (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Gross Withdrawals Total Offshore (Million Cubic Feet) California Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 5,417 19,929 20,394 1980's 19,980 26,692 31,904 38,084 60,207 84,062 77,355 67,835 60,308 59,889 1990's 58,055 59,465 62,473 58,635 60,765 60,694 73,092 80,516 81,868 84,547 2000's 83,882 78,209 74,884 64,961 61,622 60,773 47,217 52,805 51,931 47,281 2010's 46,755 41,742

  8. Texas Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals Total Offshore (Million Cubic Feet) Texas Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 88,258 418,474 760,566 1980's 949,177 1,010,772 1,120,830 992,041 1,021,260 942,413 1,169,038 1,330,604 1,376,093 1,457,841 1990's 1,555,568 1,494,494 1,411,147 1,355,333 1,392,727 1,346,674 1,401,753 1,351,067 1,241,264 1,206,045 2000's 1,177,257 53,649 57,063 53,569 44,946 36,932 24,785

  9. Louisiana Natural Gas Gross Withdrawals (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gross Withdrawals (Million Cubic Feet) Louisiana Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 475,615 415,395 446,189 427,529 421,558 394,184 392,974 396,947 399,564 436,848 434,276 458,989 1992 453,270 402,327 420,967 411,917 431,327 417,000 427,388 382,708 381,170 414,845 406,315 428,235 1993 423,076 382,554 406,496 395,723 411,114 394,868 412,879 420,433 417,563 440,892 458,579 482,445 1994 441,368 402,280 436,425 423,914 438,127

  10. Illinois Natural Gas Gross Withdrawals (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gross Withdrawals (Million Cubic Feet) Illinois Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 41 38 40 39 38 37 37 38 37 40 40 41 1992 31 28 30 29 28 27 28 28 28 30 30 31 1993 30 29 29 27 27 27 27 28 28 29 27 30 1994 30 29 29 27 27 27 26 28 27 28 26 29 1995 30 29 29 27 27 27 27 28 27 28 26 29 1996 29 28 28 26 27 27 21 22 22 23 21 24 1997 23 22 22 20 21 21 17 17 17 18 16 18 1998 21 20 20 18 19 19 15 16 15 16 15 17 1999 19 18 18 17 17

  11. Indiana Natural Gas Gross Withdrawals (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gross Withdrawals (Million Cubic Feet) Indiana Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 21 18 20 19 19 19 19 18 19 20 19 21 1992 15 14 15 14 14 14 14 14 14 15 15 15 1993 17 15 16 16 16 15 15 15 15 17 17 17 1994 9 8 9 9 9 8 9 9 8 9 9 10 1995 4 34 22 42 21 13 22 18 8 21 28 16 1996 14 15 28 33 34 30 30 29 27 33 45 41 1997 38 40 34 34 40 29 30 40 34 39 115 52 1998 37 52 51 45 11 21 85 75 74 69 66 28 1999 76 69 79 70 82 70 66 75 59

  12. Federal Offshore Louisiana Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual-Million Cubic Feet Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013 2014 View History Gross Withdrawals NA NA NA 0 0 0 1977-2014 From Gas Wells NA NA NA 0 0 0 1977-2014 From Oil Wells NA NA NA 0 0 0 1977-2014 Repressuring 1992-1998 Marketed Production 1992-1998

  13. Augmented Classical Least Squares Multivariate Spectral Analysis

    DOE Patents [OSTI]

    Haaland, David M. (Albuquerque, NM); Melgaard, David K. (Albuquerque, NM)

    2005-07-26

    A method of multivariate spectral analysis, termed augmented classical least squares (ACLS), provides an improved CLS calibration model when unmodeled sources of spectral variation are contained in a calibration sample set. The ACLS methods use information derived from component or spectral residuals during the CLS calibration to provide an improved calibration-augmented CLS model. The ACLS methods are based on CLS so that they retain the qualitative benefits of CLS, yet they have the flexibility of PLS and other hybrid techniques in that they can define a prediction model even with unmodeled sources of spectral variation that are not explicitly included in the calibration model. The unmodeled sources of spectral variation may be unknown constituents, constituents with unknown concentrations, nonlinear responses, non-uniform and correlated errors, or other sources of spectral variation that are present in the calibration sample spectra. Also, since the various ACLS methods are based on CLS, they can incorporate the new prediction-augmented CLS (PACLS) method of updating the prediction model for new sources of spectral variation contained in the prediction sample set without having to return to the calibration process. The ACLS methods can also be applied to alternating least squares models. The ACLS methods can be applied to all types of multivariate data.

  14. Augmented Classical Least Squares Multivariate Spectral Analysis

    DOE Patents [OSTI]

    Haaland, David M. (Albuquerque, NM); Melgaard, David K. (Albuquerque, NM)

    2005-01-11

    A method of multivariate spectral analysis, termed augmented classical least squares (ACLS), provides an improved CLS calibration model when unmodeled sources of spectral variation are contained in a calibration sample set. The ACLS methods use information derived from component or spectral residuals during the CLS calibration to provide an improved calibration-augmented CLS model. The ACLS methods are based on CLS so that they retain the qualitative benefits of CLS, yet they have the flexibility of PLS and other hybrid techniques in that they can define a prediction model even with unmodeled sources of spectral variation that are not explicitly included in the calibration model. The unmodeled sources of spectral variation may be unknown constituents, constituents with unknown concentrations, nonlinear responses, non-uniform and correlated errors, or other sources of spectral variation that are present in the calibration sample spectra. Also, since the various ACLS methods are based on CLS, they can incorporate the new prediction-augmented CLS (PACLS) method of updating the prediction model for new sources of spectral variation contained in the prediction sample set without having to return to the calibration process. The ACLS methods can also be applied to alternating least squares models. The ACLS methods can be applied to all types of multivariate data.

  15. Augmented classical least squares multivariate spectral analysis

    DOE Patents [OSTI]

    Haaland, David M.; Melgaard, David K.

    2004-02-03

    A method of multivariate spectral analysis, termed augmented classical least squares (ACLS), provides an improved CLS calibration model when unmodeled sources of spectral variation are contained in a calibration sample set. The ACLS methods use information derived from component or spectral residuals during the CLS calibration to provide an improved calibration-augmented CLS model. The ACLS methods are based on CLS so that they retain the qualitative benefits of CLS, yet they have the flexibility of PLS and other hybrid techniques in that they can define a prediction model even with unmodeled sources of spectral variation that are not explicitly included in the calibration model. The unmodeled sources of spectral variation may be unknown constituents, constituents with unknown concentrations, nonlinear responses, non-uniform and correlated errors, or other sources of spectral variation that are present in the calibration sample spectra. Also, since the various ACLS methods are based on CLS, they can incorporate the new prediction-augmented CLS (PACLS) method of updating the prediction model for new sources of spectral variation contained in the prediction sample set without having to return to the calibration process. The ACLS methods can also be applied to alternating least squares models. The ACLS methods can be applied to all types of multivariate data.

  16. Physics Nobel winner David Gross gives public lecture at Jefferson Lab on

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 12 (Monday) | Jefferson Lab Physics Nobel winner David Gross gives public lecture at Jefferson Lab on June 12 (Monday) June 6, 2006 David Gross David Gross, Nobel Prize recipient and lecturer David Gross, Nobel Prize recipient is scheduled to give a free, public lecture titled "The Coming Revolutions in Fundamental Physics" beginning at 8 p.m. at Jefferson Lab on (Monday) June 12. He is one of three men - Frank Wilczek, H. David Politzer and Gross - to have their work

  17. Classical least squares multivariate spectral analysis

    DOE Patents [OSTI]

    Haaland, David M. (Albuquerque, NM)

    2002-01-01

    An improved classical least squares multivariate spectral analysis method that adds spectral shapes describing non-calibrated components and system effects (other than baseline corrections) present in the analyzed mixture to the prediction phase of the method. These improvements decrease or eliminate many of the restrictions to the CLS-type methods and greatly extend their capabilities, accuracy, and precision. One new application of PACLS includes the ability to accurately predict unknown sample concentrations when new unmodeled spectral components are present in the unknown samples. Other applications of PACLS include the incorporation of spectrometer drift into the quantitative multivariate model and the maintenance of a calibration on a drifting spectrometer. Finally, the ability of PACLS to transfer a multivariate model between spectrometers is demonstrated.

  18. Hybrid least squares multivariate spectral analysis methods

    DOE Patents [OSTI]

    Haaland, David M.

    2004-03-23

    A set of hybrid least squares multivariate spectral analysis methods in which spectral shapes of components or effects not present in the original calibration step are added in a following prediction or calibration step to improve the accuracy of the estimation of the amount of the original components in the sampled mixture. The hybrid method herein means a combination of an initial calibration step with subsequent analysis by an inverse multivariate analysis method. A spectral shape herein means normally the spectral shape of a non-calibrated chemical component in the sample mixture but can also mean the spectral shapes of other sources of spectral variation, including temperature drift, shifts between spectrometers, spectrometer drift, etc. The shape can be continuous, discontinuous, or even discrete points illustrative of the particular effect.

  19. Gross Input to Atmospheric Crude Oil Distillation Units

    Gasoline and Diesel Fuel Update (EIA)

    Day) Process: Gross Input to Atmospheric Crude Oil Dist. Units Operable Capacity (Calendar Day) Operating Capacity Idle Operable Capacity Operable Utilization Rate Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Process Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History U.S. 17,178 16,963 16,394 15,690 16,673 16,848 1985-2015 PADD 1 1,192 1,196 1,063 1,133 1,190 1,136 1985-2015 East

  20. California--State Offshore Natural Gas Gross Withdrawals (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Gross Withdrawals (Million Cubic Feet) California--State Offshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14,763 14,963 1980's 14,080 13,929 14,153 13,916 13,844 19,504 18,277 13,030 11,141 9,098 1990's 8,083 7,610 7,242 6,484 7,204 5,904 6,309 7,171 6,883 6,738 2000's 7,808 7,262 7,068 6,866 6,966 6,685 6,809 7,289 7,029 6,052 2010's 5,554 5,163 5,051 5,470 5,961 - = No Data Reported; -- =

  1. Colorado Natural Gas Gross Withdrawals (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gross Withdrawals (Million Cubic Feet) Colorado Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 21,103 24,172 24,435 25,590 23,263 23,548 23,557 24,550 23,440 24,584 25,178 31,698 1992 28,269 26,307 25,490 26,125 27,205 27,139 26,396 27,842 27,128 28,391 29,527 34,175 1993 32,694 29,383 33,718 34,380 36,385 33,931 32,995 34,802 33,910 35,488 36,448 39,870 1994 39,207 35,941 38,103 38,734 41,588 36,686 38,457 39,010 39,176 40,396 39,810

  2. Kansas Natural Gas Gross Withdrawals (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gross Withdrawals (Million Cubic Feet) Kansas Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 64,057 54,742 58,012 52,088 50,888 46,821 45,032 42,868 43,595 50,514 58,127 63,441 1992 65,091 56,523 53,640 47,570 50,404 48,717 49,180 48,695 47,944 56,453 64,486 71,039 1993 68,326 59,556 61,876 55,016 56,230 53,159 53,089 51,079 47,670 54,487 60,596 67,071 1994 70,958 61,850 64,259 57,135 58,396 55,207 55,134 53,046 49,506 56,586 62,930

  3. Kentucky Natural Gas Gross Withdrawals (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gross Withdrawals (Million Cubic Feet) Kentucky Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 7,021 6,303 6,870 6,515 6,458 6,272 6,394 6,382 6,194 6,740 6,739 7,017 1992 5,425 7,142 6,716 7,270 7,191 6,365 6,320 7,295 6,011 6,813 6,684 6,458 1993 7,343 7,269 6,783 6,309 6,962 9,647 6,801 7,537 5,997 6,422 6,163 9,732 1994 6,171 6,109 5,700 5,302 5,850 8,107 5,715 6,333 5,040 5,397 5,179 8,179 1995 6,312 6,249 5,831 5,423 5,984 8,293

  4. Mississippi Natural Gas Gross Withdrawals (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gross Withdrawals (Million Cubic Feet) Mississippi Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 16,689 14,603 15,913 14,873 14,762 14,321 14,814 14,777 13,871 15,072 15,320 15,756 1992 15,037 13,554 14,071 13,563 13,972 13,882 13,992 13,905 11,566 14,054 14,043 13,898 1993 13,573 12,177 12,578 12,247 12,462 12,188 12,879 11,849 11,949 11,652 10,841 10,630 1994 10,324 9,474 10,554 9,984 10,227 9,886 10,159 10,675 10,780 10,098 9,632

  5. Missouri Natural Gas Gross Withdrawals (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gross Withdrawals (Million Cubic Feet) Missouri Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 1 2 1 1 1 1 1 2 3 2 1992 4 4 3 2 1 1 1 1 1 2 4 3 1993 2 2 2 1 0 0 0 0 0 2 3 2 1994 1 1 1 1 0 0 0 0 0 0 2 2 1995 2 1 2 2 1 1 1 0 0 1 3 3 1996 2 2 2 1 1 1 1 0 0 3 3 11 1997 2 2 0 0 0 0 0 0 0 0 0 0 1998 0 0 0 0 0 0 0 0 0 0 0 0 1999 0 0 0 0 0 0 0 0 0 0 0 0 2000 0 0 0 0 0 0 0 0 0 0 0 0 2001 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 2003

  6. Montana Natural Gas Gross Withdrawals (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gross Withdrawals (Million Cubic Feet) Montana Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 5,317 4,533 4,861 4,866 4,600 3,543 3,583 4,173 4,023 4,479 4,241 4,783 1992 5,106 4,902 5,332 4,653 4,504 3,734 3,938 3,854 3,842 4,583 5,144 5,218 1993 5,335 4,826 5,124 4,790 4,693 4,058 3,995 3,454 4,095 5,064 4,920 5,163 1994 4,998 4,529 4,625 4,439 4,132 3,399 3,440 3,797 3,970 4,512 4,533 4,698 1995 4,965 4,316 4,752 4,417 4,186 3,459

  7. Maryland Natural Gas Gross Withdrawals (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gross Withdrawals (Million Cubic Feet) Maryland Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 5 0 0 5 0 0 3 0 0 16 1992 4 4 3 2 2 2 2 3 3 2 2 2 1993 2 2 2 2 1 2 3 3 3 3 3 2 1994 2 2 2 2 2 2 2 3 3 3 2 2 1995 2 2 2 2 2 2 2 2 2 2 2 2 1996 2 15 21 9 11 11 11 6 10 22 6 11 1997 2 13 18 8 10 10 9 5 9 20 5 9 1998 5 4 3 4 5 7 6 6 5 6 5 6 1999 2 1 2 2 1 2 2 2 2 1 1 1 2000 3 2 3 4 3 3 3 3 3 2 2 2 2001 3 2 3 3 3 3 3 3 3 2 2 2 2002 2 1 1 1 1

  8. Michigan Natural Gas Gross Withdrawals (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gross Withdrawals (Million Cubic Feet) Michigan Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 15,965 14,322 17,792 18,491 19,993 16,466 16,940 16,169 16,512 15,527 15,816 17,420 1992 14,533 13,052 16,483 15,598 13,484 21,140 16,680 17,672 19,682 18,086 14,749 19,320 1993 19,565 10,672 25,042 20,172 14,793 18,282 21,131 17,417 18,866 16,233 14,930 13,195 1994 28,151 3,543 36,182 8,227 26,191 18,882 21,165 18,682 20,799 15,884 19,038

  9. Table 6.4 Natural Gas Gross Withdrawals and Natural Gas Well Productivity, 1960-2011

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Gross Withdrawals and Natural Gas Well Productivity, 1960-2011 Year Natural Gas Gross Withdrawals From Crude Oil, Natural Gas, Coalbed, and Shale Gas Wells Natural Gas Well Productivity Texas 1 Louisiana 1 Oklahoma Other States 1 Federal Gulf of Mexico 2 Total Onshore Offshore Total Gross With- drawals From Natural Gas Wells 3 Producing Wells 4 Average Productivity Federal State Total Million Cubic Feet Million Cubic Feet Million Cubic Feet Number Cubic Feet per Well 1960 6,964,900

  10. Fact# 904: December 21, 2015 Gross Domestic Product and Vehicle Travel:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Both Increased during 2015 | Department of Energy 4: December 21, 2015 Gross Domestic Product and Vehicle Travel: Both Increased during 2015 Fact# 904: December 21, 2015 Gross Domestic Product and Vehicle Travel: Both Increased during 2015 SUBSCRIBE to the Fact of the Week The nation's highway vehicle miles of travel (VMT) and the U.S. gross domestic product (GDP) reflect strikingly similar patterns, indicating the strong relationship between the nation's economy and its travel. Beginning in

  11. Spatial confinement and thermal deconfinement in the Gross-Neveu model

    SciTech Connect (OSTI)

    Malbouisson, J. M. C.; Khanna, F. C.; Malbouisson, A. P. C.

    2007-06-19

    We discuss the occurrence of spatial confinement and thermal deconfinement in the massive, D-dimensional, Gross-Neveu model with compactified spatial dimensions.

  12. Grade Assignments for Models Used for Calibration of Gross-Count Gamma-Ray

    Office of Environmental Management (EM)

    Logging Systems (December 1983) | Department of Energy Grade Assignments for Models Used for Calibration of Gross-Count Gamma-Ray Logging Systems (December 1983) Grade Assignments for Models Used for Calibration of Gross-Count Gamma-Ray Logging Systems (December 1983) Grade Assignments for Models Used for Calibration of Gross-Count Gamma-Ray Logging Systems (December 1983) PDF icon Grade Assignments for Models Used for Calibration of Gross-Count Gamma-Ray Logging Systems (December 1983) More

  13. New Mexico Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    10 2011 2012 2013 2014 2015 View History Gross Withdrawals 1,341,475 1,287,682 1,276,296 1,247,394 1,265,579 1,290,139 1967-2015 From Gas Wells 616,134 556,024 653,057 588,127 535,181 1967-2014 From Oil Wells 238,580 252,326 127,009 160,649 204,054 1967-2014 From Shale Gas Wells 71,867 93,071 127,548 167,961 214,502 2007-2014 From Coalbed Wells 414,894 386,262 368,682 330,658 311,842 2002-2014 Repressuring 7,513 6,687 9,906 12,583 16,701 1967-2014 Vented and Flared 1,586 4,360 12,259 21,053

  14. Other States Total Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly-Million Cubic Feet Monthly-Million Cubic Feet per Day Annual-Million Cubic Feet Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History Gross Withdrawals 5,864,402 6,958,125 8,225,321 689,082 633,853 595,158 1991-2015 From Gas Wells 2,523,173 2,599,172 3,177,021 362,605 328,809 1991-2014 From Oil Wells 691,643 728,857 279,627 23,391 22,817 1991-2014 From

  15. Federal Offshore Gulf of Mexico Natural Gas Gross Withdrawals and

    U.S. Energy Information Administration (EIA) Indexed Site

    Production Monthly-Million Cubic Feet Monthly-Million Cubic Feet per Day Annual-Million Cubic Feet Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History Gross Withdrawals 2,259,144 1,830,913 1,527,875 1,326,697 1,275,213 1,346,074 1997-2015 From Gas Wells 1,699,908 1,353,929 1,013,914 817,340 706,413 1997-2014 From Oil Wells 559,235 476,984 513,961 509,357

  16. Gross national happiness as a framework for health impact assessment

    SciTech Connect (OSTI)

    Pennock, Michael; Ura, Karma

    2011-01-15

    The incorporation of population health concepts and health determinants into Health Impact Assessments has created a number of challenges. The need for intersectoral collaboration has increased; the meaning of 'health' has become less clear; and the distinctions between health impacts, environmental impacts, social impacts and economic impacts have become increasingly blurred. The Bhutanese concept of Gross National Happiness may address these issues by providing an over-arching evidence-based framework which incorporates health, social, environmental and economic contributors as well as a number of other key contributors to wellbeing such as culture and governance. It has the potential to foster intersectoral collaboration by incorporating a more limited definition of health which places the health sector as one of a number of contributors to wellbeing. It also allows for the examination of the opportunity costs of health investments on wellbeing, is consistent with whole-of-government approaches to public policy and emerging models of social progress.

  17. 2-D weighted least-squares phase unwrapping

    DOE Patents [OSTI]

    Ghiglia, Dennis C. (Placitas, NM); Romero, Louis A. (Albuquerque, NM)

    1995-01-01

    Weighted values of interferometric signals are unwrapped by determining the least squares solution of phase unwrapping for unweighted values of the interferometric signals; and then determining the least squares solution of phase unwrapping for weighted values of the interferometric signals by preconditioned conjugate gradient methods using the unweighted solutions as preconditioning values. An output is provided that is representative of the least squares solution of phase unwrapping for weighted values of the interferometric signals.

  18. 2-D weighted least-squares phase unwrapping

    DOE Patents [OSTI]

    Ghiglia, D.C.; Romero, L.A.

    1995-06-13

    Weighted values of interferometric signals are unwrapped by determining the least squares solution of phase unwrapping for unweighted values of the interferometric signals; and then determining the least squares solution of phase unwrapping for weighted values of the interferometric signals by preconditioned conjugate gradient methods using the unweighted solutions as preconditioning values. An output is provided that is representative of the least squares solution of phase unwrapping for weighted values of the interferometric signals. 6 figs.

  19. Word in the Square: Conversation Monitoring and Analysis Report |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Word in the Square: Conversation Monitoring and Analysis Report Word in the Square: Conversation Monitoring and Analysis Report Prepared for the Hydrogen Education Foundation December 10, 2007. This report summarizes online discussions about hydrogen within the context of alternative energy, environment, technology and sustainability. This report focuses on the online discussions for the month of November 2007. PDF icon word_square_nha.pdf More Documents &

  20. Real and effective thermal equilibrium in artificial square spin...

    Office of Scientific and Technical Information (OSTI)

    Title: Real and effective thermal equilibrium in artificial square spin ices Authors: Morgan, Jason P. ; Akerman, Johanna ; Stein, Aaron ; Phatak, Charudatta ; Evans, R. M. L. ; ...

  1. Missouri Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    from Oil Wells (Million Cubic Feet) Missouri Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 NA NA 2010's NA NA NA 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Gross Withdrawals from Oil Wells Missouri Natural Gas Gross Withdrawals

  2. Missouri Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    from Oil Wells (Million Cubic Feet) Missouri Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 NA NA 2010's NA NA NA 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Gross Withdrawals from Oil Wells Missouri Natural Gas Gross Withdrawals

  3. Nevada Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    from Gas Wells (Million Cubic Feet) Nevada Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Gross Withdrawals from Gas Wells Nevada Natural Gas Gross Withdrawals and

  4. Nevada Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Gross Withdrawals from Shale Gas Wells Nevada Natural Gas Gross Withdrawals and Production Natural Gas Gross Withdrawals from Shale

  5. Oregon Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Gross Withdrawals from Shale Gas Wells Oregon Natural Gas Gross Withdrawals and Production Natural Gas Gross Withdrawals from Shale Gas

  6. Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight The gross weight of a vehicle (GVW) is the weight of the empty vehicle plus the weight of the maximum payload that the vehicle was designed to carry. In cars and small light trucks, the difference between the empty weight of the vehicle and the GVW is not significantly different (1,000 to 1,500 lbs). The largest trucks and tractor-trailers,

  7. Fact #768: February 25, 2013 New Light Vehicle Sales and Gross Domestic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Product | Department of Energy 8: February 25, 2013 New Light Vehicle Sales and Gross Domestic Product Fact #768: February 25, 2013 New Light Vehicle Sales and Gross Domestic Product Over the last four decades, new light vehicle sales have gone from a low of 9.9 million vehicles in 1970 to a high of 17.1 million vehicles sold in 2001, but along the way, there have been significant ups and downs. Those ups and downs are also reflected in the change in Gross Domestic Product (GDP) over time

  8. 2D barrier in a superconducting niobium square

    SciTech Connect (OSTI)

    Joya, Miryam R. Barba-ortega, J.; Sardella, Edson

    2014-11-05

    The presence of barriers changes the vortex structure in superconducting Nb square in presence of a uniform applied magnetic field. The Cooper pair configurations in a mesoscopics superconducting square of Nb with a barrier are calculated within the nonlinear Ginzburg Landau equations. We predict the nucleation of multi-vortex states into the sample and a soft entry of the magnetic field inside and around into the barrier. A novel and non-conventional vortex configurations occurs at determined magnetic field.

  9. Word in the Square: Conversation Monitoring and Analysis Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Word in the Square Conversation Monitoring and Analysis Report Prepared for the Hydrogen Education Foundation December 10, 2007 Overview The Word in the Square Report summarizes online discussions about hydrogen within the context of alternative energy, environment, technology and sustainability. This report focuses on the online discussions for the month of November 2007. The report is divided into five categories: * Key Findings - provides key insight of the major topics of conversation *

  10. EIA Energy Efficiency-Table 4e. Gross Output by Selected Industries...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    e Page Last Modified: May 2010 Table 4e. Gross Output1by Selected Industries, 1998, 2002, and 2006 (Billion 2000 Dollars 2) MECS Survey Years NAICS Subsector and Industry 1998 2002...

  11. EIA Energy Efficiency-Table 3e. Gross Output by Selected Industries...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    e Page Last Modified: May 2010 Table 3e. Gross Output1 by Selected Industries, 1998, 2002, and 2006 (Current Billion Dollars) MECS Survey Years NAICS Subsector and Industry 1998...

  12. 23 V.S.A. Section 1392 Gross Weight Limits on Highways | Open...

    Open Energy Info (EERE)

    Section 1392 Gross Weight Limits on HighwaysLegal Abstract Statute establishes the motor vehicle weight, load size, not to exceed 80,000 pounds without a permit. Published NA...

  13. Fact #564: March 30, 2009 Transportation and the Gross Domestic Product, 2007

    Broader source: Energy.gov [DOE]

    Transportation plays a major role in the U.S. economy. About 10% of the U.S. Gross Domestic Product (GDP) in 2007 is related to transportation. Housing, health care, and food are the only...

  14. U.S. Natural Gas Gross Withdrawals from Gas Wells (Million Cubic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gas Wells (Million Cubic Feet) U.S. Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 1,482,053 1,363,737...

  15. U.S. Natural Gas Gross Withdrawals from Oil Wells (Million Cubic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil Wells (Million Cubic Feet) U.S. Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 475,614 500,196 1993...

  16. A Least-Squares Transport Equation Compatible with Voids

    SciTech Connect (OSTI)

    Hansen, Jon [Texas A & M Univ., College Station, TX (United States). Dept. of Nuclear Engineering; Peterson, Jacob [Texas A & M Univ., College Station, TX (United States). Dept. of Nuclear Engineering; Morel, Jim [Texas A & M Univ., College Station, TX (United States). Dept. of Nuclear Engineering; Ragusa, Jean [Texas A & M Univ., College Station, TX (United States). Dept. of Nuclear Engineering; Wang, Yaqi [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-12-01

    Standard second-order self-adjoint forms of the transport equation, such as the even-parity, odd-parity, and self-adjoint angular flux equation, cannot be used in voids. Perhaps more important, they experience numerical convergence difficulties in near-voids. Here we present a new form of a second-order self-adjoint transport equation that has an advantage relative to standard forms in that it can be used in voids or near-voids. Our equation is closely related to the standard least-squares form of the transport equation with both equations being applicable in a void and having a nonconservative analytic form. However, unlike the standard least-squares form of the transport equation, our least-squares equation is compatible with source iteration. It has been found that the standard least-squares form of the transport equation with a linear-continuous finite-element spatial discretization has difficulty in the thick diffusion limit. Here we extensively test the 1D slab-geometry version of our scheme with respect to void solutions, spatial convergence rate, and the intermediate and thick diffusion limits. We also define an effective diffusion synthetic acceleration scheme for our discretization. Our conclusion is that our least-squares Sn formulation represents an excellent alternative to existing second-order Sn transport formulations

  17. Organic light-emitting diodes from homoleptic square planar complexes

    DOE Patents [OSTI]

    Omary, Mohammad A

    2013-11-12

    Homoleptic square planar complexes [M(N.LAMBDA.N).sub.2], wherein two identical N.LAMBDA.N bidentate anionic ligands are coordinated to the M(II) metal center, including bidentate square planar complexes of triazolates, possess optical and electrical properties that make them useful for a wide variety of optical and electrical devices and applications. In particular, the complexes are useful for obtaining white or monochromatic organic light-emitting diodes ("OLEDs"). Improved white organic light emitting diode ("WOLED") designs have improved efficacy and/or color stability at high brightness in single- or two-emitter white or monochrome OLEDs that utilize homoleptic square planar complexes, including bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II) ("Pt(ptp).sub.2").

  18. High-frequency matrix converter with square wave input

    DOE Patents [OSTI]

    Carr, Joseph Alexander; Balda, Juan Carlos

    2015-03-31

    A device for producing an alternating current output voltage from a high-frequency, square-wave input voltage comprising, high-frequency, square-wave input a matrix converter and a control system. The matrix converter comprises a plurality of electrical switches. The high-frequency input and the matrix converter are electrically connected to each other. The control system is connected to each switch of the matrix converter. The control system is electrically connected to the input of the matrix converter. The control system is configured to operate each electrical switch of the matrix converter converting a high-frequency, square-wave input voltage across the first input port of the matrix converter and the second input port of the matrix converter to an alternating current output voltage at the output of the matrix converter.

  19. Latin-square three-dimensional gage master

    DOE Patents [OSTI]

    Jones, L.

    1981-05-12

    A gage master for coordinate measuring machines has an nxn array of objects distributed in the Z coordinate utilizing the concept of a Latin square experimental design. Using analysis of variance techniques, the invention may be used to identify sources of error in machine geometry and quantify machine accuracy.

  20. ,"Other States Total Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Natural Gas Gross Withdrawals and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Other States Total Natural Gas Gross Withdrawals and Production",10,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release

  1. ,"US--Federal Offshore Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Federal Offshore Natural Gas Gross Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","US--Federal Offshore Natural Gas Gross Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  2. ,"Federal Offshore California Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore California Natural Gas Gross Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  3. ,"Federal Offshore Gulf of Mexico Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gulf of Mexico Natural Gas Gross Withdrawals and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore Gulf of Mexico Natural Gas Gross Withdrawals and Production",10,"Monthly","12/2015","1/15/1997" ,"Release Date:","2/29/2016" ,"Next Release

  4. ,"Federal Offshore--Alabama Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Alabama Natural Gas Gross Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  5. ,"Federal Offshore--Louisiana Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Louisiana Natural Gas Gross Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  6. ,"Federal Offshore--Texas Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Gross Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Texas Natural Gas Gross Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  7. Word in the Square: Conversation Monitoring and Analysis Report |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Prepared for the Hydrogen Education Foundation December 10, 2007. This report summarizes online discussions about hydrogen within the context of alternative energy, environment, technology and sustainability. This report focuses on the online discussions for the month of November 2007. PDF icon word_square_nha.pdf More Documents & Publications The Department of Energy Hydrogen and Fuel Cells Program Plan 2008 Fuel Cell Technologies Market Report

  8. Gross error detection and stage efficiency estimation in a separation process

    SciTech Connect (OSTI)

    Serth, R.W.; Srikanth, B. . Dept. of Chemical and Natural Gas Engineering); Maronga, S.J. . Dept. of Chemical and Process Engineering)

    1993-10-01

    Accurate process models are required for optimization and control in chemical plants and petroleum refineries. These models involve various equipment parameters, such as stage efficiencies in distillation columns, the values of which must be determined by fitting the models to process data. Since the data contain random and systematic measurement errors, some of which may be large (gross errors), they must be reconciled to obtain reliable estimates of equipment parameters. The problem thus involves parameter estimation coupled with gross error detection and data reconciliation. MacDonald and Howat (1988) studied the above problem for a single-stage flash distillation process. Their analysis was based on the definition of stage efficiency due to Hausen, which has some significant disadvantages in this context, as discussed below. In addition, they considered only data sets which contained no gross errors. The purpose of this article is to extend the above work by considering alternative definitions of state efficiency and efficiency estimation in the presence of gross errors.

  9. "Table 2. Real Gross Domestic Product Growth Trends, Projected vs. Actual"

    U.S. Energy Information Administration (EIA) Indexed Site

    Real Gross Domestic Product Growth Trends, Projected vs. Actual" "Projected Real GDP Growth Trend" " (cumulative average percent growth in projected real GDP from first year shown for each AEO)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO

  10. R-SQUARE IMPEDANCES OF ERL FERRITE HOM ABSORBER.

    SciTech Connect (OSTI)

    HAHN, H.; BURRILL, A.; CALAGA,R.; KAYRAN, D.; ZHAO, Y.

    2005-07-10

    An R&D facility for an Energy Recovery Linac (ERL) intended as part of an electron-cooling project for RHIC is, being constructed at this laboratory. The center piece of the facility is a 5-cell 703.75 MHz super-conducting RF linac. Successful operation will depend on effective HOM damping. It is planned to achieve HOM damping exclusively with ferrite absorbers. The performance of a prototype absorber was measured by transforming it into a resonant cavity and alternatively by a conventional wire method. The results expressed as a surface or R-square impedance are presented in this paper.

  11. Federal Offshore--Texas Natural Gas Gross Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Gross Withdrawals (Million Cubic Feet) Federal Offshore--Texas Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 88,258 249,255 554,076 1980's 696,181 775,351 875,204 844,711 909,778 834,870 1,054,537 1,232,554 1,278,548 1,346,940 1990's 1,447,164 1,396,001 1,332,883 1,276,099 1,308,154 1,283,493 1,338,413 1,286,539 1,180,967 1,157,128 2000's 1,136,062 NA NA NA NA NA NA NA NA NA 2010's NA NA 0 0 0 - = No Data

  12. Alabama--State Offshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Gross Withdrawals (Million Cubic Feet) Alabama--State Offshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 9 13 1990's 19,861 32,603 112,311 131,508 228,878 212,895 209,013 214,414 222,000 212,673 2000's 201,081 200,862 202,002 194,339 165,630 152,902 145,762 134,451 125,502 109,214 2010's 101,487 84,270 87,398 75,660 70,827 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  13. Alaska--State Offshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Gross Withdrawals (Million Cubic Feet) Alaska--State Offshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 72,813 71,946 1980's 63,355 71,477 66,852 68,776 68,315 62,454 63,007 69,656 101,440 122,595 1990's 144,064 171,665 216,377 233,198 224,301 113,552 126,051 123,854 133,111 125,841 2000's 263,958 262,937 293,580 322,010 334,125 380,568 354,816 374,204 388,188 357,490 2010's 370,148 364,702 307,306

  14. Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals (Million

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cubic Feet) Gross Withdrawals (Million Cubic Feet) Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 432,713 396,681 438,926 423,131 435,592 426,888 434,325 439,712 428,689 440,668 425,849 441,756 1998 443,757 398,519 448,486 438,144 457,815 435,237 439,093 443,144 336,241 421,315 414,058 434,518 1999 436,171 395,293 435,012 424,724 432,489 414,495 431,981 424,513 408,237 421,312 409,660 419,049 2000

  15. Texas--State Offshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) Texas--State Offshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 169,219 206,490 1980's 252,996 235,421 245,626 147,330 111,482 107,543 114,501 98,050 97,545 110,901 1990's 108,404 98,493 78,263 79,234 84,573 63,181 63,340 64,528 60,298 48,918 2000's 41,195 53,649 57,063 53,569 44,946 36,932 24,785 29,229 46,786 37,811 2010's 28,574 23,791 16,506 14,036 11,222 - = No

  16. U.S. Natural Gas Gross Withdrawals Offshore (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals Offshore (Million Cubic Feet) U.S. Natural Gas Gross Withdrawals Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,932,196 5,111,413 5,603,025 1980's 5,650,097 5,693,432 5,466,050 4,734,843 5,220,061 4,631,756 4,588,565 5,078,178 5,180,875 5,231,028 1990's 5,509,312 5,308,457 5,324,039 5,373,300 5,700,666 5,431,665 5,843,661 5,906,329 5,800,561 5,689,438 2000's 5,699,377 5,815,542 5,312,348 5,215,683 4,736,252

  17. US--Federal Offshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) US--Federal Offshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,932,196 4,355,742 4,822,114 1980's 4,902,354 4,990,667 4,772,873 4,182,233 4,706,782 4,185,519 4,185,515 4,671,801 4,746,664 4,771,411 1990's 5,046,660 4,849,657 4,771,744 4,765,865 4,996,197 4,942,089 5,246,422 5,315,514 5,185,312 5,130,746 2000's 5,043,769 5,136,962 4,615,443 4,505,443 4,055,340

  18. US--State Offshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) US--State Offshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 755,671 780,911 1980's 747,743 702,765 693,177 552,610 513,279 446,237 403,050 406,377 434,211 459,617 1990's 462,652 458,800 552,294 607,435 704,469 489,576 597,239 590,815 615,249 558,692 2000's 655,609 678,580 696,905 710,240 680,911 684,671 629,652 618,042 653,704 586,953 2010's 575,601 549,151 489,505

  19. Quantification of the Potential Gross Economic Impacts of Five Methane Reduction Scenarios

    Broader source: Energy.gov (indexed) [DOE]

    Quantification of the Potential Gross Economic Impacts of Five Methane Reduction Scenarios David Keyser and Ethan Warner National Renewable Energy Laboratory Christina Curley Colorado State University Technical Report NREL/TP-6A50-63801 April 2015 The Joint Institute for Strategic Energy Analysis is operated by the Alliance for Sustainable Energy, LLC, on behalf of the U.S. Department of Energy's National Renewable Energy Laboratory, the University of Colorado-Boulder, the Colorado School of

  20. Classical and quantum dynamics in an inverse square potential

    SciTech Connect (OSTI)

    Guillaumn-Espaa, Elisa; Nez-Ypez, H. N.; Salas-Brito, A. L.

    2014-10-15

    The classical motion of a particle in a 3D inverse square potential with negative energy, E, is shown to be geodesic, i.e., equivalent to the particle's free motion on a non-compact phase space manifold irrespective of the sign of the coupling constant. We thus establish that all its classical orbits with E < 0 are unbounded. To analyse the corresponding quantum problem, the Schrdinger equation is solved in momentum space. No discrete energy levels exist in the unrenormalized case and the system shows a complete fall-to-the-center with an energy spectrum unbounded by below. Such behavior corresponds to the non-existence of bound classical orbits. The symmetry of the problem is SO(3) SO(2, 1) corroborating previously obtained results.

  1. A Galerkin least squares approach to viscoelastic flow.

    SciTech Connect (OSTI)

    Rao, Rekha R.; Schunk, Peter Randall

    2015-10-01

    A Galerkin/least-squares stabilization technique is applied to a discrete Elastic Viscous Stress Splitting formulation of for viscoelastic flow. From this, a possible viscoelastic stabilization method is proposed. This method is tested with the flow of an Oldroyd-B fluid past a rigid cylinder, where it is found to produce inaccurate drag coefficients. Furthermore, it fails for relatively low Weissenberg number indicating it is not suited for use as a general algorithm. In addition, a decoupled approach is used as a way separating the constitutive equation from the rest of the system. A Pressure Poisson equation is used when the velocity and pressure are sought to be decoupled, but this fails to produce a solution when inflow/outflow boundaries are considered. However, a coupled pressure-velocity equation with a decoupled constitutive equation is successful for the flow past a rigid cylinder and seems to be suitable as a general-use algorithm.

  2. ,"Montana Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Gross Withdrawals and Production",10,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  3. ,"Montana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  4. ,"Nebraska Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    from Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  5. ,"New Mexico Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Gross Withdrawals and Production",10,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  6. ,"New Mexico Natural Gas Gross Withdrawals from Gas Wells (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Gross Withdrawals from Gas Wells (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  7. ,"New Mexico Natural Gas Gross Withdrawals from Oil Wells (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil Wells (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Gross Withdrawals from Oil Wells (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  8. ,"New Mexico Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  9. ,"New York Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    from Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  10. ,"North Dakota Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Gross Withdrawals and Production",10,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  11. ,"North Dakota Natural Gas Gross Withdrawals from Gas Wells (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Gross Withdrawals from Gas Wells (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  12. ,"North Dakota Natural Gas Gross Withdrawals from Oil Wells (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil Wells (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Gross Withdrawals from Oil Wells (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  13. ,"North Dakota Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  14. ,"Ohio Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas Gross Withdrawals and Production",10,"Monthly","12/2015","1/15/1991" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  15. ,"Ohio Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  16. ,"Oklahoma Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Gross Withdrawals and Production",10,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  17. ,"Oklahoma Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  18. ,"Oregon Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas Gross Withdrawals and Production",10,"Monthly","12/2015","1/15/1991" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  19. ,"Pennsylvania Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Gross Withdrawals and Production",10,"Monthly","12/2015","1/15/1991" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  20. ,"Pennsylvania Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  1. ,"South Dakota Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  2. ,"Tennessee Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  3. ,"Texas Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Gross Withdrawals and Production",10,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  4. ,"Texas Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  5. ,"U.S. Natural Gas Gross Withdrawals Offshore (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Offshore (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Gross Withdrawals Offshore (MMcf)",1,"Annual",2014 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","na1090_nus_2a.xls" ,"Available

  6. ,"Utah Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Gross Withdrawals and Production",10,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  7. ,"Utah Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  8. ,"Virginia Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  9. ,"West Virginia Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Natural Gas Gross Withdrawals and Production",10,"Monthly","12/2015","1/15/1991" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  10. ,"West Virginia Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  11. ,"Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  12. ,"Alabama Natural Gas Gross Withdrawals Total Offshore (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Offshore (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Gross Withdrawals Total Offshore (MMcf)",1,"Annual",2014 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","na1090_sal_2a.xls"

  13. ,"Alaska Natural Gas Gross Withdrawals Total Offshore (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Offshore (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Gross Withdrawals Total Offshore (MMcf)",1,"Annual",2014 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","na1090_sak_2a.xls"

  14. ,"California Natural Gas Gross Withdrawals Total Offshore (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Offshore (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Gross Withdrawals Total Offshore (MMcf)",1,"Annual",2014 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","na1090_sca_2a.xls"

  15. ,"California Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Gross Withdrawals and Production",10,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  16. ,"California Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  17. ,"Colorado Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Gross Withdrawals and Production",10,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  18. ,"Colorado Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  19. ,"Florida Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Gross Withdrawals and Production",10,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  20. ,"Florida Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  1. ,"Illinois Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas Gross Withdrawals and Production",10,"Monthly","12/2015","1/15/1991" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  2. ,"Illinois Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  3. ,"Indiana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  4. ,"Kansas Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas Gross Withdrawals and Production",10,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  5. ,"Kansas Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  6. ,"Kentucky Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    from Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  7. ,"Louisiana Natural Gas Gross Withdrawals Total Offshore (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Offshore (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Gross Withdrawals Total Offshore (MMcf)",1,"Annual",2014 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","na1090_sla_2a.xls"

  8. ,"Louisiana Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Gross Withdrawals and Production",10,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  9. ,"Louisiana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  10. ,"Maryland Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  11. ,"Michigan Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Gross Withdrawals and Production",10,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  12. ,"Michigan Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  13. ,"Mississippi Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  14. ,"Missouri Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  15. ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Average Square Footage of Northeast Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total Northeast",20.8,2121,1663,921,836,656,363 "Northeast Divisions and

  16. ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Average Square Footage of Midwest Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total Midwest",25.9,2272,1898,1372,912,762,551 "Midwest Divisions and

  17. ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Average Square Footage of South Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total South",42.1,1867,1637,1549,732,642,607 "South Divisions and

  18. ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Average Square Footage of West Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total West",24.8,1708,1374,800,628,506,294 "West Divisions and States"

  19. ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Average Square Footage of Single-Family Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total Single-Family",78.6,2422,2002,1522,880,727,553 "Census

  20. ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Average Square Footage of Multi-Family Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total Multi-Family",28.1,930,807,535,453,393,261 "Census Region"

  1. ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Average Square Footage of Mobile Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total Mobile Homes",6.9,1087,985,746,413,375,283 "Census Region"

  2. ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member"

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Average Square Footage of U.S. Homes, by Housing Characteristics, 2009" " Final" ,"Housing Units1","Average Square Footage Per Housing Unit",,,"Average Square Footage Per Household Member" "Housing Characteristics","Millions","Total2","Heated","Cooled","Total2","Heated","Cooled" "Total",113.6,1971,1644,1230,766,639,478 "Census Region"

  3. Table 4a. Total Fuel Oil Consumption per Effective Occupied Square...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Table 4a. Total Fuel Oil Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Fuel Oil (thousand) Total Fuel Oil Consumption (trillion...

  4. Square Grains in Asymmetric Rod-Coil Block Copolymers (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Square Grains in Asymmetric Rod-Coil Block Copolymers Citation Details In-Document Search Title: Square Grains in Asymmetric Rod-Coil Block Copolymers Unlike the rounded grains that are well known to form in most soft materials, square grains of microphase-separated lamellae are observed in thin films of a rod-coil block copolymer because of hierarchical structuring originating from the molecular packing of the rods. The square grains are oriented with lamellar layers

  5. A Brief Review of the Basis for, and the Procedures Currently Utilized in, Gross Gamma-Ray Log Calibration (October 1976)

    Broader source: Energy.gov [DOE]

    A Brief Review of the Basis for, and the Procedures Currently Utilized in, Gross Gamma-Ray Log Calibration (October 1976)

  6. Interband magneto-spectroscopy in InSb square and parabolic quantum wells

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Interband magneto-spectroscopy in InSb square and parabolic quantum wells Citation Details In-Document Search Title: Interband magneto-spectroscopy in InSb square and parabolic quantum wells We measure the magneto-optical absorption due to intersubband optical transitions between conduction and valence subband Landau levels in InSb square and parabolic quantum wells. InSb has the narrowest band gap (0.24 eV at low temperature) of the III-V semiconductors

  7. New Better Buildings Challenge Partners Commit 70 Million Square Feet, $1.7

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Billion | Department of Energy Better Buildings Challenge Partners Commit 70 Million Square Feet, $1.7 Billion New Better Buildings Challenge Partners Commit 70 Million Square Feet, $1.7 Billion January 29, 2015 - 2:40pm Addthis News Media Contact 202-586-4940 DOENews@hq.doe.gov New Better Buildings Challenge Partners Commit 70 Million Square Feet, $1.7 Billion WASHINGTON - Building on President Obama's Climate Action Plan, the Energy Department announced today that more than 20 new partners

  8. Squaring the Circle in Biofuels? | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Squaring the Circle in Biofuels? Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements Publications History Contact BES Home 04.30.14 Squaring the Circle in Biofuels? Print Text Size: A A A Subscribe FeedbackShare Page Researchers produce a new type of plant fiber that supports normal growth while easing the difficulties of conversion to fuel. This work, featured in the Office of Science's Stories of

  9. Magnetic vortex crystal formation in the antidot complement of square artificial spin ice

    SciTech Connect (OSTI)

    Araujo, C. I. L. de Silva, R. C.; Ribeiro, I. R. B.; Nascimento, F. S.; Felix, J. F.; Ferreira, S. O.; Moura-Melo, W. A.; Pereira, A. R.; Ml, L. A. S.

    2014-03-03

    We have studied ferromagnetic nickel thin films patterned with square lattices of elongated antidots that are negative analogues of square artificial spin ice. Micromagnetic simulations and direct current magnetic moment measurements reveal in-plane anisotropy of the magnetic hysteresis loops, and the formation of a dense array of magnetic vortices with random polarization and chirality. These multiply-connected antidot arrays could be superior to lattices of disconnected nanodisks for investigations of vortex switching by applied electric current.

  10. Better Buildings Challenge to Cut Energy Waste Grows by 1 Billion Square

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Feet | Department of Energy Buildings Challenge to Cut Energy Waste Grows by 1 Billion Square Feet Better Buildings Challenge to Cut Energy Waste Grows by 1 Billion Square Feet May 9, 2014 - 11:01am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Building on President Obama's Climate Action Plan and the Administration's Better Buildings Challenge, the Energy Department announced today that Better Buildings Challenge partners are on track to meet their energy performance goals in their

  11. Failure of the gross theory of beta decay in neutron deficient nuclei

    SciTech Connect (OSTI)

    Firestone, R. B.; Schwengner, R.; Zuber, K.

    2015-05-28

    The neutron deficient isotopes 117-121Xe, 117-124Cs, and 122-124Ba were produced by a beam of 28Si from the LBNL SuperHILAC on a target of natMo. The isotopes were mass separated and their beta decay schemes were measured with a Total Absorption Spectrometer (TAS). The beta strengths derived from these data decreased dramatically to levels above ?1 MeV for the even-even decays; 34 MeV for even-Z, odd-N decays; 45 MeV for the odd-Z, even-N decays; and 78 MeV for the odd-Z, odd-N decays. The decreasing strength to higher excitation energies in the daughters contradicts the predictions of the Gross Theory of Beta Decay. The integrated beta strengths are instead found to be consistent with shell model predictions where the single-particle beta strengths are divided amoung many low-lying levels. The experimental beta strengths determined here have been used calculate the half-lives of 143 neutron deficient nuclei with Z=5164 to a precision of 20% with respect to the measured values.

  12. Weak decay processes in pre-supernova core evolution within the gross theory

    SciTech Connect (OSTI)

    Ferreira, R. C.; Dimarco, A. J.; Samana, A. R.; Barbero, C. A.

    2014-03-20

    The beta decay and electron capture rates are of fundamental importance in the evolution of massive stars in a pre-supernova core. The beta decay process gives its contribution by emitting electrons in the plasma of the stellar core, thereby increasing pressure, which in turn increases the temperature. From the other side, the electron capture removes free electrons from the plasma of the star core contributing to the reduction of pressure and temperature. In this work we calculate the beta decay and electron capture rates in stellar conditions for 63 nuclei of relevance in the pre-supernova stage, employing Gross Theory as the nuclear model. We use the abundances calculated with the Saha equations in the hypothesis of nuclear statistical equilibrium to evaluate the time derivative of the fraction of electrons. Our results are compared with other evaluations available in the literature. They have shown to be one order less or equal than the calculated within other models. Our results indicate that these differences may influence the evolution of the star in the later stages of pre-supernova.

  13. Table 2. Real Gross Domestic Product Growth Trends, Projected vs. Actual

    Gasoline and Diesel Fuel Update (EIA)

    Real Gross Domestic Product Growth Trends, Projected vs. Actual Projected Real GDP Growth Trend (cumulative average percent growth in projected real GDP from first year shown for each AEO) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 3.09 3.15 2.86 2.78 2.73 2.65 2.62 2.60 2.56 2.53 2.52 2.49 2.45 2.41 2.40 2.36 2.32 2.29 AEO 1995 3.66 2.77 2.53 2.71 2.67 2.61 2.55 2.48 2.46 2.45 2.45 2.43 2.39 2.35 2.31 2.27 2.24 AEO 1996 2.61

  14. Other States Natural Gas Gross Withdrawals from Gas Wells (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Gas Wells (Million Cubic Feet) Other States Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 72,328 63,451 67,732 63,118 62,276 59,557 61,217 60,722 59,142 65,119 67,627 70,643 1992 66,374 62,007 65,284 63,487 63,488 60,701 62,949 63,036 61,442 66,259 65,974 68,514 1993 66,943 61,161 64,007 60,709 61,964 63,278 60,746 62,204 59,969 64,103 63,410 70,929 1994 65,551 60,458 63,396 60,438 60,965 61,963 60,675 62,160

  15. Other States Natural Gas Gross Withdrawals from Shale Gas (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Shale Gas (Million Cubic Feet) Other States Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 13,204 11,926 13,204 12,778 13,204 12,778 13,204 13,204 12,778 13,204 12,778 13,204 2008 12,755 11,932 12,755 12,343 12,755 12,343 12,755 12,755 12,343 12,755 12,343 12,755 2009 12,222 11,039 12,222 11,827 12,222 11,827 12,222 12,222 11,827 12,222 11,827 12,222 2010 11,842 10,659 11,705 11,180 11,541 11,189 11,357 11,589

  16. Failure of the gross theory of beta decay in neutron deficient nuclei

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Firestone, R. B.; Schwengner, R.; Zuber, K.

    2015-05-28

    The neutron deficient isotopes 117-121Xe, 117-124Cs, and 122-124Ba were produced by a beam of 28Si from the LBNL SuperHILAC on a target of natMo. The isotopes were mass separated and their beta decay schemes were measured with a Total Absorption Spectrometer (TAS). The beta strengths derived from these data decreased dramatically to levels above ≈1 MeV for the even-even decays; 3–4 MeV for even-Z, odd-N decays; 4–5 MeV for the odd-Z, even-N decays; and 7–8 MeV for the odd-Z, odd-N decays. The decreasing strength to higher excitation energies in the daughters contradicts the predictions of the Gross Theory of Betamore » Decay. The integrated beta strengths are instead found to be consistent with shell model predictions where the single-particle beta strengths are divided amoung many low-lying levels. The experimental beta strengths determined here have been used calculate the half-lives of 143 neutron deficient nuclei with Z=51–64 to a precision of 20% with respect to the measured values.« less

  17. Simulation of gross and net erosion of high-Z materials in the DIII-D divertor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wampler, William R.; Ding, R.; Stangeby, P. C.; Elder, J. D.; Tskhakaya, D.; Kirschner, A.; Guo, H. Y.; Chan, V. S.; McLean, A. G.; Snyder, P. B.; et al

    2015-12-17

    The three-dimensional Monte Carlo code ERO has been used to simulate dedicated DIII-D experiments in which Mo and W samples with different sizes were exposed to controlled and well-diagnosed divertor plasma conditions to measure the gross and net erosion rates. Experimentally, the net erosion rate is significantly reduced due to the high local redeposition probability of eroded high-Z materials, which according to the modelling is mainly controlled by the electric field and plasma density within the Chodura sheath. Similar redeposition ratios were obtained from ERO modelling with three different sheath models for small angles between the magnetic field and themore » material surface, mainly because of their similar mean ionization lengths. The modelled redeposition ratios are close to the measured value. Decreasing the potential drop across the sheath can suppress both gross and net erosion because sputtering yield is decreased due to lower incident energy while the redeposition ratio is not reduced owing to the higher electron density in the Chodura sheath. Taking into account material mixing in the ERO surface model, the net erosion rate of high-Z materials is shown to be strongly dependent on the carbon impurity concentration in the background plasma; higher carbon concentration can suppress net erosion. As a result, the principal experimental results such as net erosion rate and profile and redeposition ratio are well reproduced by the ERO simulations.« less

  18. Non-perturbative and self-consistent models of neutron stars in R-squared gravity

    SciTech Connect (OSTI)

    Yazadjiev, Stoytcho S.; Doneva, Daniela D.; Kokkotas, Kostas D.; Staykov, Kalin V. E-mail: daniela.doneva@uni-tuebingen.de E-mail: kalin.v.staikov@gmail.com

    2014-06-01

    In the present paper we investigate non-perturbatively and self-consistently the structure of neutron stars in R-squared gravity by simultaneously solving the interior and exterior problem. The mass-radius relations are obtained for several equations of state and for wide range of the R-squared gravity parameter a. Even though the deviation from general relativity for nonzero values of a can be large, they are still comparable with the variations due to different modern realistic equations of state. That is why the current observations of the neutron star masses and radii alone can not put constraints on the value of the parameter a. We also compare our results with those obtained within the perturbative method and we discuss the differences between them.

  19. Ballistic electrons in an open square geometry: Selective probing of resonant-energy states

    SciTech Connect (OSTI)

    Zozoulenko, I.V.; Schuster, R.; Berggren, K.-.; Ensslin, K.

    1997-04-01

    We report on the interplay between classical trajectories and quantum-mechanical effects in a square geometry. At low magnetic fields the four-terminal resistance is dominated by phenomena that depend on ballistic trajectories in a classical billiard. Superimposed on these classical effects are quantum interference effects manifested by highly periodic conductance oscillations. Numerical analysis shows that these oscillations are directly related to excitations of particular eigenstates in the square. In spite of open leads, transport through an open cavity is effectively mediated by just a few (or even a single) resonant-energy states. The leads injecting electrons into the cavity play a decisive role in a selection of the particular set of states excited in the dot. The above selection rule sets a specific frequency of the oscillations seen in the experiment. {copyright} {ital 1997} {ital The American Physical Society}

  20. Method for exploiting bias in factor analysis using constrained alternating least squares algorithms

    DOE Patents [OSTI]

    Keenan, Michael R. (Albuquerque, NM)

    2008-12-30

    Bias plays an important role in factor analysis and is often implicitly made use of, for example, to constrain solutions to factors that conform to physical reality. However, when components are collinear, a large range of solutions may exist that satisfy the basic constraints and fit the data equally well. In such cases, the introduction of mathematical bias through the application of constraints may select solutions that are less than optimal. The biased alternating least squares algorithm of the present invention can offset mathematical bias introduced by constraints in the standard alternating least squares analysis to achieve factor solutions that are most consistent with physical reality. In addition, these methods can be used to explicitly exploit bias to provide alternative views and provide additional insights into spectral data sets.

  1. Fast Combinatorial Algorithm for the Solution of Linearly Constrained Least Squares Problems

    DOE Patents [OSTI]

    Van Benthem, Mark H.; Keenan, Michael R.

    2008-11-11

    A fast combinatorial algorithm can significantly reduce the computational burden when solving general equality and inequality constrained least squares problems with large numbers of observation vectors. The combinatorial algorithm provides a mathematically rigorous solution and operates at great speed by reorganizing the calculations to take advantage of the combinatorial nature of the problems to be solved. The combinatorial algorithm exploits the structure that exists in large-scale problems in order to minimize the number of arithmetic operations required to obtain a solution.

  2. High-Frequency Matrix Converter with Square Wave Input - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Solar Photovoltaic Solar Photovoltaic Geothermal Geothermal Energy Storage Energy Storage Electricity Transmission Electricity Transmission Find More Like This Return to Search High-Frequency Matrix Converter with Square Wave Input DOE Grant Recipients Contact GRANT About This Technology Publications: PDF Document Publication 8995159.pdf (1,648 KB) Technology Marketing Summary As the use of renewable energy sources increase, there is an increasing need for power converters capable of

  3. ABSTRACT: Bioenergy Harvesting Technologies to Supply Crop Residues In a Densified Large Square Bale Format

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration of Advanced Logistical Systems and Focused Bioenergy Harvesting Technologies to Supply Crop Residues and Energy Crops in a Densified Large Square Bale Format OBP WBS: 1.2.1.4 Principal Investigator: Maynard Herron Co-Principal Investigator: Bob Matousek Performing Organization: AGCO Sub-Recipients: INL, Stinger Inc., OSU, ISU, TAMU, Noble Foundation Project objectives support the adoption and production goals of the Office of Biomass Programs for feedstock adoption and cost

  4. DOE's Disposition of Excess Real Property Status of Banked Square Feet

    Office of Environmental Management (EM)

    FY 2014 Report on DOE's Disposition of Excess Real Property Status of Banked Square Feet for Future One-for-One Offsets Office of Acquisition and Project Management January 2015 DOE REPORT ON THE ELIMINATION OF EXCESS FACILITIES Background The Conference Report (Rpt. 107-258) accompanying the FY 2002 Energy and Water Development Appropriations Act directed the Department to develop an excess facility elimination report to be submitted as part of the Congressional budget. To implement the program

  5. Interband magneto-spectroscopy in InSb square and parabolic quantum wells

    SciTech Connect (OSTI)

    Kasturiarachchi, T.; Edirisooriya, M.; Mishima, T. D.; Doezema, R. E.; Santos, M. B.; Saha, D.; Pan, X.; Sanders, G. D.; Stanton, C. J.

    2015-06-07

    We measure the magneto-optical absorption due to intersubband optical transitions between conduction and valence subband Landau levels in InSb square and parabolic quantum wells. InSb has the narrowest band gap (0.24 eV at low temperature) of the III–V semiconductors leading to a small effective mass (0.014 m{sub 0}) and a large g–factor (−51). As a result, the Landau level spacing is large at relatively small magnetic fields (<8 T), and one can observe spin-splitting of the Landau levels. We examine two structures: (i) a multiple-square-well structure and (ii) a structure containing multiple parabolic wells. The energies and intensities of the strongest features are well explained by a modified Pidgeon-Brown model based on an 8-band k•p model that explicitly incorporates pseudomorphic strain. The strain is essential for obtaining agreement between theory and experiment. While modeling the square well is relatively straight-forward, the parabolic well consists of 43 different layers of various thickness to approximate a parabolic potential. Agreement between theory and experiment for the parabolic well validates the applicability of the model to complicated structures, which demonstrates the robustness of our model and confirms its relevance for developing electronic and spintronic devices that seek to exploit the properties of the InSb band structure.

  6. New self-assembly luminescent molecular triangle and square rhenium(I) complexes

    SciTech Connect (OSTI)

    Sun, S.S.; Lees, A.J.

    1999-09-20

    The design and study of well-arranged metal-containing macrocycles is one of the major current research areas in modern supramolecular chemistry. Apart from their particular structural features, supramolecular species formed by self-assembly of transition metals introduce many special functional properties such as luminescence, redox activity, and magnetism into the structure. More recently, transition metal based molecular squares have been synthesized by utilizing self-assembly of preorganized metal centers and pyridine-based bridging ligands. The 90{degree} bonding angles between ligands in transition metal complexes provide an attractive feature for constructing macrocyclic structures.

  7. The effect of interelement dipole coupling in patterned ultrathin single crystal Fe square arrays

    SciTech Connect (OSTI)

    Sun Li; Zhai Ya; Wong Pingkwanj; Zhang Wen; Xu Yongbing; Zou Xiao; Wu Jing; Luo Linqiang; Zhai Hongru

    2011-02-01

    The correlation between the magnetic properties and the interelement separation in patterned arrays of ultrathin single crystal Fe films of 12 monolayers (ML) grown on GaAs(100) has been studied. The critical condition to form single domain remanent states in the square elements was found to be 10 {mu}m in size and 20 {mu}m for the interelement separation. The coercivity was also found to increase with the increasing interelement separation in the patterned arrays. These results are attributed to the competition between the large in-plane uniaxial anisotropy, the demagnetizing field, and interelement dipole coupling as determined semiqualitatively by the ferromagnetic resonance measurements.

  8. Review of the Palisades pressure vessel accumulated fluence estimate and of the least squares methodology employed

    SciTech Connect (OSTI)

    Griffin, P.J.

    1998-05-01

    This report provides a review of the Palisades submittal to the Nuclear Regulatory Commission requesting endorsement of their accumulated neutron fluence estimates based on a least squares adjustment methodology. This review highlights some minor issues in the applied methodology and provides some recommendations for future work. The overall conclusion is that the Palisades fluence estimation methodology provides a reasonable approach to a {open_quotes}best estimate{close_quotes} of the accumulated pressure vessel neutron fluence and is consistent with the state-of-the-art analysis as detailed in community consensus ASTM standards.

  9. Self-assembly molecular squares with metal complexes as bridging ligands

    SciTech Connect (OSTI)

    Sun, S.S.; Silva, A.S.; Brinn, I.M.; Lees, A.J.

    2000-04-03

    Polynuclear transition metal complexes containing multichromophoric units, such as metal polypyridyl complexes, are of considerable current interest. Much attention has been paid to the synthesis of multicomponent systems that exhibit photoinduced intercomponent electron and/or energy-transfer processes and to their potential applications for photonic and electronic devices. Systems incorporating Re(I)- Ru(II)-, and Os(II)-based polypyridyl chromophores are the most commonly studied because of their favorable redox and spectroscopic characteristics. In this communication, the authors combine the concepts of self-assembly and complexes as ligands and report the preparation of a series of molecular squares with the general molecular formula [fac-Br(CO){sub 3}Re({mu}-(pyterpy){sub 2}M)]{sub 4}(PF{sub 6}){sub 8}, where pyterpy is 4{prime}-(4{prime}{double_prime}-pyridyl)-2,2{prime}:6{prime}2{double_prime}-terpyridine and M = Fe, Ru, or Os. The spectroscopic properties and a preliminary anion binding study of these novel octanuclear molecular squares are also presented.

  10. Differentially-charged and sequentially-switched square-wave pulse forming network

    DOE Patents [OSTI]

    North, George G. [Stockton, CA; Vogilin, George E. [Livermore, CA

    1980-04-01

    A pulse forming network for delivering a high-energy square-wave pulse to a load, including a series of inductive-capacitive sections wherein the capacitors are differentially charged higher further from the load. Each charged capacitor is isolated from adjacent sections and the load by means of a normally open switch at the output of each section. The switch between the load and the closest section to the load is closed to begin discharge of the capacitor in that section into the load. During discharge of each capacitor, the voltage thereacross falls to a predetermined potential with respect to the potential across the capacitor in the next adjacent section further from the load. When this potential is reached, it is used to close the switch in the adjacent section further from the load and thereby apply the charge in that section to the load through the adjacent section toward the load. Each successive section further from the load is sequentially switched in this manner to continuously and evenly supply energy to the load over the period of the pulse, with the differentially charged capacitors providing higher potentials away from the load to compensate for the voltage drop across the resistance of each inductor. This arrangement is low in cost and yet provides a high-energy pulse in an acceptable square-wave form.

  11. Differentially-charged and sequentially-switched square-wave pulse forming network

    DOE Patents [OSTI]

    North, G.G.; Vogilin, G.E.

    1980-04-01

    Disclosed is a pulse forming network for delivering a high-energy square-wave pulse to a load, including a series of inductive-capacitive sections wherein the capacitors are differentially charged higher further from the load. Each charged capacitor is isolated from adjacent sections and the load by means of a normally open switch at the output of each section. The switch between the load and the closest section to the load is closed to begin discharge of the capacitor in that section into the load. During discharge of each capacitor, the voltage thereacross falls to a predetermined potential with respect to the potential across the capacitor in the next adjacent section further from the load. When this potential is reached, it is used to close the switch in the adjacent section further from the load and thereby apply the charge in that section to the load through the adjacent section toward the load. Each successive section further from the load is sequentially switched in this manner to continuously and evenly supply energy to the load over the period of the pulse, with the differentially charged capacitors providing higher potentials away from the load to compensate for the voltage drop across the resistance of each inductor. This arrangement is low in cost and yet provides a high-energy pulse in an acceptable square-wave form. 5 figs.

  12. Chapter 12, Survey Design and Implementation Cross-Cutting Protocols for Estimating Gross Savings: The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    12: Survey Design and Implementation Cross-Cutting Protocols for Estimating Gross Savings Robert Baumgartner, Tetra Tech Subcontract Report NREL/SR-7A30-53827 April 2013 The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures 12 - 1 Chapter 12 - Table of Contents 1 Introduction ............................................................................................................................ 2 2 The Total Survey Error Framework

  13. Optical pattern recognition architecture implementing the mean-square error correlation algorithm

    DOE Patents [OSTI]

    Molley, Perry A.

    1991-01-01

    An optical architecture implementing the mean-square error correlation algorithm, MSE=.SIGMA.[I-R].sup.2 for discriminating the presence of a reference image R in an input image scene I by computing the mean-square-error between a time-varying reference image signal s.sub.1 (t) and a time-varying input image signal s.sub.2 (t) includes a laser diode light source which is temporally modulated by a double-sideband suppressed-carrier source modulation signal I.sub.1 (t) having the form I.sub.1 (t)=A.sub.1 [1+.sqroot.2m.sub.1 s.sub.1 (t)cos (2.pi.f.sub.o t)] and the modulated light output from the laser diode source is diffracted by an acousto-optic deflector. The resultant intensity of the +1 diffracted order from the acousto-optic device is given by: I.sub.2 (t)=A.sub.2 [+2m.sub.2.sup.2 s.sub.2.sup.2 (t)-2.sqroot.2m.sub.2 (t) cos (2.pi.f.sub.o t] The time integration of the two signals I.sub.1 (t) and I.sub.2 (t) on the CCD deflector plane produces the result R(.tau.) of the mean-square error having the form: R(.tau.)=A.sub.1 A.sub.2 {[T]+[2m.sub.2.sup.2.multidot..intg.s.sub.2.sup.2 (t-.tau.)dt]-[2m.sub.1 m.sub.2 cos (2.tau.f.sub.o .tau.).multidot..intg.s.sub.1 (t)s.sub.2 (t-.tau.)dt]} where: s.sub.1 (t) is the signal input to the diode modulation source: s.sub.2 (t) is the signal input to the AOD modulation source; A.sub.1 is the light intensity; A.sub.2 is the diffraction efficiency; m.sub.1 and m.sub.2 are constants that determine the signal-to-bias ratio; f.sub.o is the frequency offset between the oscillator at f.sub.c and the modulation at f.sub.c +f.sub.o ; and a.sub.o and a.sub.1 are constant chosen to bias the diode source and the acousto-optic deflector into their respective linear operating regions so that the diode source exhibits a linear intensity characteristic and the AOD exhibits a linear amplitude characteristic.

  14. Multivariate analysis of remote LIBS spectra using partial least squares, principal component analysis, and related techniques

    SciTech Connect (OSTI)

    Clegg, Samuel M; Barefield, James E; Wiens, Roger C; Sklute, Elizabeth; Dyare, Melinda D

    2008-01-01

    Quantitative analysis with LIBS traditionally employs calibration curves that are complicated by the chemical matrix effects. These chemical matrix effects influence the LIBS plasma and the ratio of elemental composition to elemental emission line intensity. Consequently, LIBS calibration typically requires a priori knowledge of the unknown, in order for a series of calibration standards similar to the unknown to be employed. In this paper, three new Multivariate Analysis (MV A) techniques are employed to analyze the LIBS spectra of 18 disparate igneous and highly-metamorphosed rock samples. Partial Least Squares (PLS) analysis is used to generate a calibration model from which unknown samples can be analyzed. Principal Components Analysis (PCA) and Soft Independent Modeling of Class Analogy (SIMCA) are employed to generate a model and predict the rock type of the samples. These MV A techniques appear to exploit the matrix effects associated with the chemistries of these 18 samples.

  15. Direct numerical simulation of turbulent flow in a rotating square duct

    SciTech Connect (OSTI)

    Dai, Yi-Jun; Huang, Wei-Xi Xu, Chun-Xiao; Cui, Gui-Xiang

    2015-06-15

    A fully developed turbulent flow in a rotating straight square duct is simulated by direct numerical simulations at Re{sub ?} = 300 and 0 ? Ro{sub ?} ? 40. The rotating axis is parallel to two opposite walls of the duct and normal to the main flow. Variations of the turbulence statistics with the rotation rate are presented, and a comparison with the rotating turbulent channel flow is discussed. Rich secondary flow patterns in the cross section are observed by varying the rotation rate. The appearance of a pair of additional vortices above the pressure wall is carefully examined, and the underlying mechanism is explained according to the budget analysis of the mean momentum equations.

  16. Spin-dependent Seebeck effects in a graphene nanoribbon coupled to two square lattice ferromagnetic leads

    SciTech Connect (OSTI)

    Zhou, Benhu Zeng, Yangsu; Zhou, Benliang; Zhou, Guanghui; Ouyang, Tao

    2015-03-14

    We theoretically investigate spin-dependent Seebeck effects for a system consisting of a narrow graphene nanoribbon (GNR) contacted to square lattice ferromagnetic (FM) electrodes with noncollinear magnetic moments. Both zigzag-edge graphene nanoribbons (ZGNRs) and armchair-edge graphene nanoribbons (AGNRs) were considered. Compared with our previous work with two-dimensional honeycomb-lattice FM leads, a more realistic model of two-dimensional square-lattice FM electrodes is adopted here. Using the nonequilibrium Green's function method combining with the tight-binding Hamiltonian, it is demonstrated that both the charge Seebeck coefficient S{sub C} and the spin-dependent Seebeck coefficient S{sub S} strongly depend on the geometrical contact between the GNR and the leads. In our previous work, S{sub C} for a semiconducting 15-AGNR system near the Dirac point is two orders of magnitude larger than that of a metallic 17-AGNR system. However, S{sub C} is the same order of magnitude for both metallic 17-AGNR and semiconducting 15-AGNR systems in the present paper because of the lack of a transmission energy gap for the 15-AGNR system. Furthermore, the spin-dependent Seebeck coefficient S{sub S} for the systems with 20-ZGNR, 17-AGNR, and 15-AGNR is of the same order of magnitude and its maximum absolute value can reach 8 μV/K. The spin-dependent Seebeck effects are not very pronounced because the transmission coefficient weakly depends on spin orientation. Moreover, the spin-dependent Seebeck coefficient is further suppressed with increasing angle between the relative alignments of magnetization directions of the two leads. Additionally, the spin-dependent Seebeck coefficient can be strongly suppressed for larger disorder strength. The results obtained here may provide valuable theoretical guidance in the experimental design of heat spintronic devices.

  17. Sensitivity of Global Terrestrial Gross Primary Production to Hydrologic States Simulated by the Community Land Model Using Two Runoff Parameterizations

    SciTech Connect (OSTI)

    Lei, Huimin; Huang, Maoyi; Leung, Lai-Yung R.; Yang, Dawen; Shi, Xiaoying; Mao, Jiafu; Hayes, Daniel J.; Schwalm, C.; Wei, Yaxing; Liu, Shishi

    2014-09-01

    The terrestrial water and carbon cycles interact strongly at various spatio-temporal scales. To elucidate how hydrologic processes may influence carbon cycle processes, differences in terrestrial carbon cycle simulations induced by structural differences in two runoff generation schemes were investigated using the Community Land Model 4 (CLM4). Simulations were performed with runoff generation using the default TOPMODEL-based and the Variable Infiltration Capacity (VIC) model approaches under the same experimental protocol. The comparisons showed that differences in the simulated gross primary production (GPP) are mainly attributed to differences in the simulated leaf area index (LAI) rather than soil moisture availability. More specifically, differences in runoff simulations can influence LAI through changes in soil moisture, soil temperature, and their seasonality that affect the onset of the growing season and the subsequent dynamic feedbacks between terrestrial water, energy, and carbon cycles. As a result of a relative difference of 36% in global mean total runoff between the two models and subsequent changes in soil moisture, soil temperature, and LAI, the simulated global mean GPP differs by 20.4%. However, the relative difference in the global mean net ecosystem exchange between the two models is small (2.1%) due to competing effects on total mean ecosystem respiration and other fluxes, although large regional differences can still be found. Our study highlights the significant interactions among the water, energy, and carbon cycles and the need for reducing uncertainty in the hydrologic parameterization of land surface models to better constrain carbon cycle modeling.

  18. Fixed conditions for achieving the real-valued partition function of one-dimensional Gross-Pitaevskii equation coupled with time-dependent potential

    SciTech Connect (OSTI)

    Prayitno, T. B.

    2014-03-24

    We have imposed the conditions in order to preserve the real-valued partition function in the case of onedimensional Gross-Pitaevskii equation coupled by time-dependent potential. In this case we have solved the Gross-Pitaevskii equation by means of the time-dependent perturbation theory by extending the previous work of Kivshar et al. [Phys. Lett A 278, 225–230 (2001)]. To use the method, we have treated the equation as the macroscopic quantum oscillator and found that the expression of the partition function explicitly has complex values. In fact, we have to choose not only the appropriate functions but also the suitable several values of the potential to keep the real-valued partition function.

  19. The tunneling solutions of the time-dependent Schroedinger equation for a square-potential barrier

    SciTech Connect (OSTI)

    Elci, A.; Hjalmarson, H. P.

    2009-10-15

    The exact tunneling solutions of the time-dependent Schroedinger equation with a square-potential barrier are derived using the continuous symmetry group G{sub S} for the partial differential equation. The infinitesimal generators and the elements for G{sub S} are represented and derived in the jet space. There exist six classes of wave functions. The representative (canonical) wave functions for the classes are labeled by the eigenvalue sets, whose elements arise partially from the reducibility of a Lie subgroup G{sub LS} of G{sub S} and partially from the separation of variables. Each eigenvalue set provides two or more time scales for the wave function. The ratio of two time scales can act as the duration of an intrinsic clock for the particle motion. The exact solutions of the time-dependent Schroedinger equation presented here can produce tunneling currents that are orders of magnitude larger than those produced by the energy eigenfunctions. The exact solutions show that tunneling current can be quantized under appropriate boundary conditions and tunneling probability can be affected by a transverse acceleration.

  20. Simulated Stochastic Approximation Annealing for Global Optimization with a Square-Root Cooling Schedule

    SciTech Connect (OSTI)

    Liang, Faming; Cheng, Yichen; Lin, Guang

    2014-06-13

    Simulated annealing has been widely used in the solution of optimization problems. As known by many researchers, the global optima cannot be guaranteed to be located by simulated annealing unless a logarithmic cooling schedule is used. However, the logarithmic cooling schedule is so slow that no one can afford to have such a long CPU time. This paper proposes a new stochastic optimization algorithm, the so-called simulated stochastic approximation annealing algorithm, which is a combination of simulated annealing and the stochastic approximation Monte Carlo algorithm. Under the framework of stochastic approximation Markov chain Monte Carlo, it is shown that the new algorithm can work with a cooling schedule in which the temperature can decrease much faster than in the logarithmic cooling schedule, e.g., a square-root cooling schedule, while guaranteeing the global optima to be reached when the temperature tends to zero. The new algorithm has been tested on a few benchmark optimization problems, including feed-forward neural network training and protein-folding. The numerical results indicate that the new algorithm can significantly outperform simulated annealing and other competitors.

  1. Nanocluster building blocks of artificial square spin ice: Stray-field studies of thermal dynamics

    SciTech Connect (OSTI)

    Pohlit, Merlin Porrati, Fabrizio; Huth, Michael; Müller, Jens

    2015-05-07

    We present measurements of the thermal dynamics of a Co-based single building block of an artificial square spin ice fabricated by focused electron-beam-induced deposition. We employ micro-Hall magnetometry, an ultra-sensitive tool to study the stray field emanating from magnetic nanostructures, as a new technique to access the dynamical properties during the magnetization reversal of the spin-ice nanocluster. The obtained hysteresis loop exhibits distinct steps, displaying a reduction of their “coercive field” with increasing temperature. Therefore, thermally unstable states could be repetitively prepared by relatively simple temperature and field protocols allowing one to investigate the statistics of their switching behavior within experimentally accessible timescales. For a selected switching event, we find a strong reduction of the so-prepared states' “survival time” with increasing temperature and magnetic field. Besides the possibility to control the lifetime of selected switching events at will, we find evidence for a more complex behavior caused by the special spin ice arrangement of the macrospins, i.e., that the magnetic reversal statistically follows distinct “paths” most likely driven by thermal perturbation.

  2. What is Gross Up?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reimbursement amount. You do not see the money in your pocket, but rather it offsets taxes that would have reduced the payment if we had not paid you the additional amount. For...

  3. Natural Gas Gross Withdrawals

    Gasoline and Diesel Fuel Update (EIA)

    Feet Monthly-Million Cubic Feet per Day Annual-Million Cubic Feet Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes...

  4. Natural Gas Gross Withdrawals

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska 221,340 204,073 261,150 279,434 289,770 304,048 1991-2015 Arkansas 85,763 83,954 81,546 83,309 79,278 80,492 1991-2015 California 19,225 19,655 18,928 18,868 18,266 18,868 ...

  5. Natural Gas Gross Withdrawals

    Gasoline and Diesel Fuel Update (EIA)

    Period-Unit: Monthly-Million Cubic Feet Monthly-Million Cubic Feet per Day Annual-Million Cubic Feet Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History U.S. 2,767,207 2,765,998 2,750,252 2,817,792 2,740,123 2,822,700 1973-2015 Alaska 221,340 204,073 261,150 279,434 289,770 304,048 1991-2015 Arkansas 85,763 83,954 81,546 83,309 79,278 80,492

  6. Natural Gas Gross Withdrawals

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History U.S. 26,816,085 28,479,026 29,542,313 29,522,551 31,345,546 32,960,531 1936-2015 U.S. Offshore 2,875,945 2,416,644 2,044,643 1,859,469 1,818,267 1977-2014 U.S. State Offshore 575,601 549,151 489,505 505,318 514,809 1978-2014 Federal Offshore U.S. 2,300,344 1,867,492 1,555,138 1,354,151 1,303,458 1977-2014 Alaska 3,197,100 3,162,922 3,164,791 3,215,358 3,168,566 3,175,163 1967-2015 Alaska Onshore 2,826,952 2,798,220 2,857,485 2,882,956 2,803,429

  7. Natural Gas Gross Withdrawals

    Gasoline and Diesel Fuel Update (EIA)

    Monthly-Million Cubic Feet per Day Annual-Million Cubic Feet Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History U.S. 26,816,085 28,479,026 29,542,313 29,522,551 31,345,546 32,960,531 1936-2015 U.S. Offshore 2,875,945 2,416,644 2,044,643 1,859,469 1,818,267 1977-2014 U.S. State Offshore 575,601 549,151 489,505 505,318 514,809 1978-2014 Federal Offshore U.S.

  8. Sofia Mancheno-Gross

    Broader source: Energy.gov [DOE]

    Sofia specializes in Communications strategies on behalf of the Office of Energy Efficiency and Renewable Energy.

  9. A Continuous Measure of Gross Primary Production for the Conterminous U.S. Derived from MODIS and AmeriFlux Data

    SciTech Connect (OSTI)

    Xia, Jingfeng; Zhuang, Qianlai; Law, Beverly E.; Chen, Jiquan; Baldocchi, Dennis D.; Cook, David R.; Oren, Ram; Richardson, Andrew D.; Wharton, Sonia; Ma, Siyan; Martin, Timothy A.; Verma, Shashi B.; Suyker, Andrew E.; Scott, Russell L.; Monson, Russell K.; Litvak, Marcy; Hollinger, David Y.; Sun, Ge; Davis, Kenneth J.; Bolstad, Paul V.; Burns, Sean P.; Curtis, Peter S.; Drake, Bert G.; Falk, Matthias; Fischer, Marc L.; Foster, David R.; Gu, Lianhong; Hadley, Julian L.; Katul, Gabriel G.; Matamala, Roser; McNulty, Steve; Meyers, Tilden P.; Munger, J. William; Noormets, Asko; Oechel, Walter C.; U, Kyaw Tha Paw; Schmid, Hans Peter; Starr, Gregory; Torn, Margaret S.; Wofsy, Steven C.

    2009-01-28

    The quantification of carbon fluxes between the terrestrial biosphere and the atmosphere is of scientific importance and also relevant to climate-policy making. Eddy covariance flux towers provide continuous measurements of ecosystem-level exchange of carbon dioxide spanning diurnal, synoptic, seasonal, and interannual time scales. However, these measurements only represent the fluxes at the scale of the tower footprint. Here we used remotely-sensed data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to upscale gross primary productivity (GPP) data from eddy covariance flux towers to the continental scale. We first combined GPP and MODIS data for 42 AmeriFlux towers encompassing a wide range of ecosystem and climate types to develop a predictive GPP model using a regression tree approach. The predictive model was trained using observed GPP over the period 2000-2004, and was validated using observed GPP over the period 2005-2006 and leave-one-out cross-validation. Our model predicted GPP fairly well at the site level. We then used the model to estimate GPP for each 1 km x 1 km cell across the U.S. for each 8-day interval over the period from February 2000 to December 2006 using MODIS data. Our GPP estimates provide a spatially and temporally continuous measure of gross primary production for the U.S. that is a highly constrained by eddy covariance flux data. Our study demonstrated that our empirical approach is effective for upscaling eddy flux GPP data to the continental scale and producing continuous GPP estimates across multiple biomes. With these estimates, we then examined the patterns, magnitude, and interannual variability of GPP. We estimated a gross carbon uptake between 6.91 and 7.33 Pg C yr{sup -1} for the conterminous U.S. Drought, fires, and hurricanes reduced annual GPP at regional scales and could have a significant impact on the U.S. net ecosystem carbon exchange. The sources of the interannual variability of U.S. GPP were dominated by these extreme climate events and disturbances.

  10. Table 10.6 Solar Thermal Collector Shipments by Type, Price, and Trade, 1974-2009 (Thousand Square Feet, Except as Noted)

    U.S. Energy Information Administration (EIA) Indexed Site

    Solar Thermal Collector Shipments by Type, Price, and Trade, 1974-2009 (Thousand Square Feet, Except as Noted) Year Low-Temperature Collectors 1 Medium-Temperature Collectors 2 High-Temperature Collectors 3 Total Shipments Trade Number of U.S. Manu- facturers Quantity Shipped Shipments per Manu- facturer Price 4 (dollars 5 per square foot) Number of U.S. Manu- facturers Quantity Shipped Shipments per Manu- facturer Price 4 (dollars 5 per square foot) Quantity Shipped Price 4 (dollars 5 per

  11. Width dependent transition of quantized spin-wave modes in Ni{sub 80}Fe{sub 20} square nanorings

    SciTech Connect (OSTI)

    Banerjee, Chandrima; Saha, Susmita; Barman, Saswati; Barman, Anjan, E-mail: abarman@bose.res.in [Thematic Unit of Excellence on Nanodevice Technology, Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700098 (India); Rousseau, Olivier [CEMS-RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Otani, YoshiChika [CEMS-RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan)

    2014-10-28

    We investigated optically induced ultrafast magnetization dynamics in square shaped Ni{sub 80}Fe{sub 20} nanorings with varying ring width. Rich spin-wave spectra are observed whose frequencies showed a strong dependence on the ring width. Micromagnetic simulations showed different types of spin-wave modes, which are quantized upto very high quantization number. In the case of widest ring, the spin-wave mode spectrum shows quantized modes along the applied field direction, which is similar to the mode spectrum of an antidot array. As the ring width decreases, additional quantization in the azimuthal direction appears causing mixed modes. In the narrowest ring, the spin-waves exhibit quantization solely in azimuthal direction. The different quantization is attributed to the variation in the internal field distribution for different ring width as obtained from micromagnetic analysis and supported by magnetic force microscopy.

  12. Inflection points of microcanonical entropy: Monte Carlo simulation of q state Potts model on a finite square lattice

    SciTech Connect (OSTI)

    Praveen, E. Satyanarayana, S. V. M.

    2014-04-24

    Traditional definition of phase transition involves an infinitely large system in thermodynamic limit. Finite systems such as biological proteins exhibit cooperative behavior similar to phase transitions. We employ recently discovered analysis of inflection points of microcanonical entropy to estimate the transition temperature of the phase transition in q state Potts model on a finite two dimensional square lattice for q=3 (second order) and q=8 (first order). The difference of energy density of states (DOS) ? ln g(E) = ln g(E+ ?E) ?ln g(E) exhibits a point of inflexion at a value corresponding to inverse transition temperature. This feature is common to systems exhibiting both first as well as second order transitions. While the difference of DOS registers a monotonic variation around the point of inflexion for systems exhibiting second order transition, it has an S-shape with a minimum and maximum around the point of inflexion for the case of first order transition.

  13. 1020 One Energy Square

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... to respond effectively in crisis situations and deliver ... scheduled to provide technical and financial bids to build. ... Corporation, 2012) since 2007, only forty seven of ...

  14. Concord Four Square Retrofit

    SciTech Connect (OSTI)

    2010-07-09

    This case study describes the retrofit of a home in West Concord, Massachusetts that proved that a 50% reduction in home energy use could be met today in existing housing.

  15. SU-F-18C-14: Hessian-Based Norm Penalty for Weighted Least-Square CBCT Reconstruction

    SciTech Connect (OSTI)

    Sun, T; Sun, N; Tan, S; Wang, J

    2014-06-15

    Purpose: To develop a Hessian-based norm penalty for cone-beam CT (CBCT) reconstruction that has a similar ability in suppressing noise as the total variation (TV) penalty while avoiding the staircase effect and better preserving low-contrast objects. Methods: We extended the TV penalty to a Hessian-based norm penalty based on the Frobenius norm of the Hessian matrix of an image for CBCT reconstruction. The objective function was constructed using the penalized weighted least-square (PWLS) principle. An effective algorithm was developed to minimize the objective function using a majorization-minimization (MM) approach. We evaluated and compared the proposed penalty with the TV penalty on a CatPhan 600 phantom and an anthropomorphic head phantom, each acquired at a low-dose protocol (10mA/10ms) and a high-dose protocol (80mA/12ms). For both penalties, contrast-to-noise (CNR) in four low-contrast regions-of-interest (ROIs) and the full-width-at-half-maximum (FWHM) of two point-like objects in constructed images were calculated and compared. Results: In the experiment of CatPhan 600 phantom, the Hessian-based norm penalty has slightly higher CNRs and approximately equivalent FWHM values compared with the TV penalty. In the experiment of the anthropomorphic head phantom at the low-dose protocol, the TV penalty result has several artificial piece-wise constant areas known as the staircase effect while in the Hessian-based norm penalty the image appears smoother and more similar to that of the FDK result using the high-dose protocol. Conclusion: The proposed Hessian-based norm penalty has a similar performance in suppressing noise to the TV penalty, but has a potential advantage in suppressing the staircase effect and preserving low-contrast objects. This work was supported in part by National Natural Science Foundation of China (NNSFC), under Grant Nos. 60971112 and 61375018, and Fundamental Research Funds for the Central Universities, under Grant No. 2012QN086.

  16. Two-dimensional equations of the surface harmonics method for solving problems of spatial neutron kinetics in square-lattice reactors

    SciTech Connect (OSTI)

    Boyarinov, V. F. Kondrushin, A. E. Fomichenko, P. A.

    2014-12-15

    Two-dimensional time-dependent finite-difference equations of the surface harmonics method (SHM) for the description of the neutron transport are derived for square-lattice reactors. These equations are implemented in the SUHAM-TD code. Verification of the derived equations and the developed code are performed by the example of known test problems, and the potential and efficiency of the SHM as applied to the solution of the time-dependent neutron transport equation in the diffusion approximation in two-dimensional geometry are demonstrated. These results show the substantial advantage of SHM over direct finite-difference modeling in computational costs.

  17. Table 10.7 Solar Thermal Collector Shipments by Market Sector, End Use, and Type, 2001-2009 (Thousand Square Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Solar Thermal Collector Shipments by Market Sector, End Use, and Type, 2001-2009 (Thousand Square Feet) Year and Type By Market Sector By End Use Total Residential Commercial 1 Industrial 2 Electric Power 3 Other 4 Pool Heating Water Heating Space Heating Space Cooling Combined Heating 5 Process Heating Electricity Generation Total Shipments 6<//td> 2001 Total 10,125 1,012 17 1 35 10,797 274 70 0 12 34 2 11,189 Low 7 9,885 987 12 0 34 10,782 42 61 0 0 34 0 10,919 Medium 8 240 24 5 0 1 16

  18. Pb{sub 5}Fe{sub 3}TiO{sub 11}Cl: A rare example of Ti(IV) in a square pyramidal oxygen coordination

    SciTech Connect (OSTI)

    Batuk, Maria; Batuk, Dmitry; Abakumov, Artem M.; Hadermann, Joke

    2014-07-01

    A new oxychloride Pb{sub 5}Fe{sub 3}TiO{sub 11}Cl has been synthesized using the solid state method. Its crystal and magnetic structure was investigated in the 1.5550 K temperature range using electron diffraction, high angle annular dark field scanning transmission electron microscopy, atomic resolution energy dispersive X-ray spectroscopy, neutron and X-ray powder diffraction. At room temperature Pb{sub 5}Fe{sub 3}TiO{sub 11}Cl crystallizes in the P4/mmm space group with the unit cell parameters a=3.91803(3) and c=19.3345(2) . Pb{sub 5}Fe{sub 3}TiO{sub 11}Cl is a new n=4 member of the oxychloride perovskite-based homologous series A{sub n+1}B{sub n}O{sub 3n?1}Cl. The structure is built of truncated Pb{sub 3}Fe{sub 3}TiO{sub 11} quadruple perovskite blocks separated by CsCl-type Pb{sub 2}Cl slabs. The perovskite blocks consist of two layers of (Fe,Ti)O{sub 6} octahedra sandwiched between two layers of (Fe,Ti)O{sub 5} square pyramids. The Ti{sup 4+} cations are preferentially located in the octahedral layers, however, the presence of a noticeable amount of Ti{sup 4+} in a five-fold coordination environment has been undoubtedly proven using neutron powder diffraction and atomic resolution compositional mapping. Pb{sub 5}Fe{sub 3}TiO{sub 11}Cl is antiferromagnetically ordered below 450(10) K. The ordered Fe magnetic moments at 1.5 K are 4.06(4) ?{sub B} and 3.86(5) ?{sub B} on the octahedral and square-pyramidal sites, respectively. - Highlights: Pb{sub 5}Fe{sub 3}TiO{sub 11}Cl has been synthesized using the solid state method. The structure has been refined using neutron powder diffraction data at 1.5550 K. It is a new n=4 member of the perovskite-related homologous series A{sub n+1}B{sub n}O{sub 3n?1}Cl. Ti{sup 4+} cations have both octahedral and square-pyramidal coordination environment. Pb{sub 5}Fe{sub 3}TiO{sub 11}Cl is antiferromagnetically ordered below T{sub N}?450 K.

  19. Uncertainty in least-squares fits to the thermal noise spectra of nanomechanical resonators with applications to the atomic force microscope

    SciTech Connect (OSTI)

    Sader, John E.; Yousefi, Morteza; Friend, James R.; Melbourne Centre for Nanofabrication, Clayton, Victoria 3800

    2014-02-15

    Thermal noise spectra of nanomechanical resonators are used widely to characterize their physical properties. These spectra typically exhibit a Lorentzian response, with additional white noise due to extraneous processes. Least-squares fits of these measurements enable extraction of key parameters of the resonator, including its resonant frequency, quality factor, and stiffness. Here, we present general formulas for the uncertainties in these fit parameters due to sampling noise inherent in all thermal noise spectra. Good agreement with Monte Carlo simulation of synthetic data and measurements of an Atomic Force Microscope (AFM) cantilever is demonstrated. These formulas enable robust interpretation of thermal noise spectra measurements commonly performed in the AFM and adaptive control of fitting procedures with specified tolerances.

  20. High-throughput prediction of Acacia and eucalypt lignin syringyl/guaiacyl content using FT-Raman spectroscopy and partial least squares modeling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lupoi, Jason S.; Healey, Adam; Singh, Seema; Sykes, Robert; Davis, Mark; Lee, David J.; Shepherd, Merv; Simmons, Blake A.; Henry, Robert J.

    2015-01-16

    High-throughput techniques are necessary to efficiently screen potential lignocellulosic feedstocks for the production of renewable fuels, chemicals, and bio-based materials, thereby reducing experimental time and expense while supplanting tedious, destructive methods. The ratio of lignin syringyl (S) to guaiacyl (G) monomers has been routinely quantified as a way to probe biomass recalcitrance. Mid-infrared and Raman spectroscopy have been demonstrated to produce robust partial least squares models for the prediction of lignin S/G ratios in a diverse group of Acacia and eucalypt trees. The most accurate Raman model has now been used to predict the S/G ratio from 269 unknown Acaciamore » and eucalypt feedstocks. This study demonstrates the application of a partial least squares model composed of Raman spectral data and lignin S/G ratios measured using pyrolysis/molecular beam mass spectrometry (pyMBMS) for the prediction of S/G ratios in an unknown data set. The predicted S/G ratios calculated by the model were averaged according to plant species, and the means were not found to differ from the pyMBMS ratios when evaluating the mean values of each method within the 95 % confidence interval. Pairwise comparisons within each data set were employed to assess statistical differences between each biomass species. While some pairwise appraisals failed to differentiate between species, Acacias, in both data sets, clearly display significant differences in their S/G composition which distinguish them from eucalypts. In conclusion, this research shows the power of using Raman spectroscopy to supplant tedious, destructive methods for the evaluation of the lignin S/G ratio of diverse plant biomass materials.« less

  1. A chi-square goodness-of-fit test for non-identically distributed random variables: with application to empirical Bayes

    SciTech Connect (OSTI)

    Conover, W.J.; Cox, D.D.; Martz, H.F.

    1997-12-01

    When using parametric empirical Bayes estimation methods for estimating the binomial or Poisson parameter, the validity of the assumed beta or gamma conjugate prior distribution is an important diagnostic consideration. Chi-square goodness-of-fit tests of the beta or gamma prior hypothesis are developed for use when the binomial sample sizes or Poisson exposure times vary. Nine examples illustrate the application of the methods, using real data from such diverse applications as the loss of feedwater flow rates in nuclear power plants, the probability of failure to run on demand and the failure rates of the high pressure coolant injection systems at US commercial boiling water reactors, the probability of failure to run on demand of emergency diesel generators in US commercial nuclear power plants, the rate of failure of aircraft air conditioners, baseball batting averages, the probability of testing positive for toxoplasmosis, and the probability of tumors in rats. The tests are easily applied in practice by means of corresponding Mathematica{reg_sign} computer programs which are provided.

  2. Precession effect of the gravitational self-force in a Schwarzschild spacetime and the effective one-body formalism

    SciTech Connect (OSTI)

    Barack, Leor; Damour, Thibault; Sago, Norichika

    2010-10-15

    Using a recently presented numerical code for calculating the Lorenz-gauge gravitational self-force (GSF), we compute the O(m) conservative correction to the precession rate of the small-eccentricity orbits of a particle of mass m moving around a Schwarzschild black hole of mass M>>m. Specifically, we study the gauge-invariant function {rho}(x), where {rho} is defined as the O(m) part of the dimensionless ratio ({Omega}-circumflex{sub r}/{Omega}-circumflex{sub {phi}}){sup 2} between the squares of the radial and azimuthal frequencies of the orbit, and where x=[Gc{sup -3}(M+m){Omega}-circumflex{sub {phi}}]{sup 2/3} is a gauge-invariant measure of the dimensionless gravitational potential (mass over radius) associated with the mean circular orbit. Our GSF computation of the function {rho}(x) in the interval 0GSF data give access to higher-order PN terms of {rho}(x) and can be used to set useful new constraints on the values of yet-undetermined EOB parameters. Most significantly, we observe that an excellent global representation of {rho}(x) can be obtained using a simple '2-point' Pade approximant which combines 3PN knowledge at x=0 with GSF information at a single strong-field point (say, x=1/6).

  3. A laser gyro with a four-mirror square resonator: formulas for simulating the dynamics of the synchronisation zone parameters of the frequencies of counterpropagating waves during the device operation in the self-heating regime

    SciTech Connect (OSTI)

    Bondarenko, E A

    2014-04-28

    For a laser gyro with a four-mirror square resonator we have developed a mathematical model, which allows one to simulate the temporal behaviour of the synchronisation zone parameters of the frequencies of counterpropagating waves in a situation when the device operates in the self-heating regime and is switched-on at different initial temperatures. (laser gyroscopes)

  4. A VIRTUAL SKY WITH EXTRAGALACTIC H I AND CO LINES FOR THE SQUARE KILOMETRE ARRAY AND THE ATACAMA LARGE MILLIMETER/SUBMILLIMETER ARRAY

    SciTech Connect (OSTI)

    Obreschkow, D.; Kloeckner, H.-R.; Heywood, I.; Rawlings, S.; Levrier, F.

    2009-10-01

    We present a sky simulation of the atomic H I-emission line and the first 10 {sup 12}C{sup 16}O rotational emission lines of molecular gas in galaxies beyond the Milky Way. The simulated sky field has a comoving diameter of 500 h {sup -1} Mpc; hence, the actual field of view depends on the (user-defined) maximal redshift z {sub max}; e.g., for z {sub max} = 10, the field of view yields approx4 x 4 deg{sup 2}. For all galaxies, we estimate the line fluxes, line profiles, and angular sizes of the H I and CO-emission lines. The galaxy sample is complete for galaxies with cold hydrogen masses above 10{sup 8} M {sub sun}. This sky simulation builds on a semi-analytic model of the cosmic evolution of galaxies in a LAMBDA cold dark matter (LAMBDACDM) cosmology. The evolving CDM distribution was adopted from the Millennium Simulation, an N-body CDM simulation in a cubic box with a side length of 500 h {sup -1} Mpc. This side length limits the coherence scale of our sky simulation: it is long enough to allow the extraction of the baryon acoustic oscillations in the galaxy power spectrum, yet the position and amplitude of the first acoustic peak will be imperfectly defined. This sky simulation is a tangible aid to the design and operation of future telescopes, such as the Square Kilometre Array, Large Millimeter Telescope, and Atacama Large Millimeter/Submillimeter Array. The results presented in this paper have been restricted to a graphical representation of the simulated sky and fundamental dN/dz analyses for peak flux density limited and total flux limited surveys of H I and CO. A key prediction is that H I will be harder to detect at redshifts z approx> 2 than predicted by a no-evolution model. The future verification or falsification of this prediction will allow us to qualify the semi-analytic models.

  5. Total Natural Gas Gross Withdrawals (Summary)

    Gasoline and Diesel Fuel Update (EIA)

    Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 1231 Reserves...

  6. Solar Energy Gross Receipts Tax Deduction

    Broader source: Energy.gov [DOE]

    The seller must have a signed copy of Form RPD-41341 to claim the deduction or other evidence acceptable to EMNRD that the service or equipment was purchased for the sole use of the sale and...

  7. Advanced Energy Gross Receipts Tax Deduction

    Broader source: Energy.gov [DOE]

    To qualify for the exemption, the owner of a qualified generating facility must first obtain a certificate of eligibility from the Department of Environment. The owner must then present the...

  8. Property:GrossGen | Open Energy Information

    Open Energy Info (EERE)

    B Blundell 1 Geothermal Facility + 213,599 + Blundell 2 Geothermal Facility + 85,633 + G Gumuskoy Geothermal Power Plant + 104,000 + L Las Tres Virgenes Geothermal Plant + 19 +...

  9. Mississippi Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    2-2015 Repressuring NA NA NA NA NA NA 1991-2015 Vented and Flared NA NA NA NA NA NA 1996-2015 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1991-2015 Marketed Production NA NA NA NA NA NA 1989-2015 Dry Production 2006

  10. Missouri Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    7-2015 Repressuring NA NA NA NA NA NA 1991-2015 Vented and Flared NA NA NA NA NA NA 1991-2015 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1991-2015 Marketed Production NA NA NA NA NA NA 1991-2015 Dry Production 2007

  11. Natural Gas Gross Withdrawals from Coalbed Wells

    Gasoline and Diesel Fuel Update (EIA)

    2002-2015 Alaska NA NA NA NA NA NA 2002-2015 Arkansas NA NA NA NA NA NA 2006-2015 California NA NA NA NA NA NA 2002-2015 Colorado NA NA NA NA NA NA 2002-2015 Federal Offshore Gulf of Mexico NA NA NA NA NA NA 2002-2015 Kansas NA NA NA NA NA NA 2002-2015 Louisiana NA NA NA NA NA NA 2002-2015 Montana NA NA NA NA NA NA 2002-2015 New Mexico NA NA NA NA NA NA 2002-2015 North Dakota NA NA NA NA NA NA 2002-2015 Ohio NA NA NA NA NA NA 2006-2015 Oklahoma NA NA NA NA NA NA 2002-2015 Pennsylvania NA NA NA

  12. Nebraska Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    NA NA NA NA NA NA 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA NA NA 2006-2015 Repressuring NA NA NA NA NA NA 1991-2015 Vented and Flared NA NA NA NA NA NA 1991-2015 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1991-2015 Marketed Production NA NA NA NA NA NA 1991

  13. Nevada Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

  14. Alabama Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Offshore U.S. State Offshore Federal Offshore U.S. Alaska Alaska Onshore Alaska Offshore Alaska State Offshore Arkansas California California Onshore California Offshore California State Offshore Federal Offshore California Colorado Federal Offshore Gulf of Mexico Federal Offshore Alabama Federal Offshore Louisiana Federal Offshore Texas Kansas Louisiana Louisiana Onshore Louisiana Offshore Louisiana State Offshore Montana New Mexico North Dakota Ohio Oklahoma Pennsylvania Texas Texas

  15. Alabama Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    Alaska Arkansas California Colorado Federal Offshore Gulf of Mexico Kansas Louisiana Montana New Mexico North Dakota Ohio Oklahoma Pennsylvania Texas Utah West Virginia Wyoming Other States Total Alabama Arizona Florida Illinois Indiana Kentucky Maryland Michigan Mississippi Missouri Nebraska Nevada New York Oregon South Dakota Tennessee Virginia Period-Unit: Monthly-Million Cubic Feet Monthly-Million Cubic Feet per Day Annual-Million Cubic Feet Download Series History Download Series History

  16. Alaska Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Offshore U.S. State Offshore Federal Offshore U.S. Alaska Alaska Onshore Alaska Offshore Alaska State Offshore Arkansas California California Onshore California Offshore California State Offshore Federal Offshore California Colorado Federal Offshore Gulf of Mexico Federal Offshore Alabama Federal Offshore Louisiana Federal Offshore Texas Kansas Louisiana Louisiana Onshore Louisiana Offshore Louisiana State Offshore Montana New Mexico North Dakota Ohio Oklahoma Pennsylvania Texas Texas

  17. Alaska Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    Alaska Arkansas California Colorado Federal Offshore Gulf of Mexico Kansas Louisiana Montana New Mexico North Dakota Ohio Oklahoma Pennsylvania Texas Utah West Virginia Wyoming Other States Total Alabama Arizona Florida Illinois Indiana Kentucky Maryland Michigan Mississippi Missouri Nebraska Nevada New York Oregon South Dakota Tennessee Virginia Period-Unit: Monthly-Million Cubic Feet Monthly-Million Cubic Feet per Day Annual-Million Cubic Feet Download Series History Download Series History

  18. Arizona Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Offshore U.S. State Offshore Federal Offshore U.S. Alaska Alaska Onshore Alaska Offshore Alaska State Offshore Arkansas California California Onshore California Offshore California State Offshore Federal Offshore California Colorado Federal Offshore Gulf of Mexico Federal Offshore Alabama Federal Offshore Louisiana Federal Offshore Texas Kansas Louisiana Louisiana Onshore Louisiana Offshore Louisiana State Offshore Montana New Mexico North Dakota Ohio Oklahoma Pennsylvania Texas Texas

  19. Arkansas Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Offshore U.S. State Offshore Federal Offshore U.S. Alaska Alaska Onshore Alaska Offshore Alaska State Offshore Arkansas California California Onshore California Offshore California State Offshore Federal Offshore California Colorado Federal Offshore Gulf of Mexico Federal Offshore Alabama Federal Offshore Louisiana Federal Offshore Texas Kansas Louisiana Louisiana Onshore Louisiana Offshore Louisiana State Offshore Montana New Mexico North Dakota Ohio Oklahoma Pennsylvania Texas Texas

  20. Arkansas Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    Alaska Arkansas California Colorado Federal Offshore Gulf of Mexico Kansas Louisiana Montana New Mexico North Dakota Ohio Oklahoma Pennsylvania Texas Utah West Virginia Wyoming Other States Total Alabama Arizona Florida Illinois Indiana Kentucky Maryland Michigan Mississippi Missouri Nebraska Nevada New York Oregon South Dakota Tennessee Virginia Period-Unit: Monthly-Million Cubic Feet Monthly-Million Cubic Feet per Day Annual-Million Cubic Feet Download Series History Download Series History

  1. Indiana Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

  2. Kentucky Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    NA NA NA NA NA NA 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA NA NA 2006-2015 Repressuring NA NA NA NA NA NA 1991-2015 Vented and Flared NA NA NA NA NA NA 1991-2015 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1991-2015 Marketed Production NA NA NA NA NA NA 1991

  3. Maryland Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    6-2015 Repressuring NA NA NA NA NA NA 1991-2015 Vented and Flared NA NA NA NA NA NA 1991-2015 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1991-2015 Marketed Production NA NA NA NA NA NA 1991

  4. Tennessee Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

  5. Louisiana Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    159,456 166,570 164,270 166,973 161,280 163,799 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA ...

  6. ,"Arizona Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","122015","1151991" ,"Release Date:","2292016" ,"Next Release Date:","3312016" ,"Excel File Name:","ngprodsumdcsazmmcfm.xls" ,"Available from Web ...

  7. Natural Gas Gross Withdrawals from Oil Wells

    U.S. Energy Information Administration (EIA) Indexed Site

    1-2015 Illinois NA NA NA NA NA NA 1991-2015 Indiana NA NA NA NA NA NA 1991-2015 Kentucky NA NA NA NA NA NA 1991-2015 Maryland NA NA NA NA NA NA 1991-2015 Michigan NA NA NA NA NA NA ...

  8. Michigan Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    NA NA NA NA NA NA 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed ...

  9. Colorado Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    39,822 143,397 138,325 144,845 139,698 141,947 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA ...

  10. ,"Arkansas Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","122015","1151991" ,"Release Date:","2292016" ,"Next Release Date:","331...14,19600,16058,3542,,,156,21,0,18960 35445,19915,16196,3719,,,208,5,0,19147 ...

  11. Kansas Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    24,842 24,864 23,819 23,559 22,371 22,744 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA ...

  12. Arizona Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    NA NA NA NA NA NA 1996-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed ...

  13. Natural Gas Gross Withdrawals from Gas Wells

    U.S. Energy Information Administration (EIA) Indexed Site

    6-2015 Illinois NA NA NA NA NA NA 1991-2015 Indiana NA NA NA NA NA NA 1991-2015 Kentucky NA NA NA NA NA NA 1991-2015 Maryland NA NA NA NA NA NA 1991-2015 Michigan NA NA NA NA NA NA ...

  14. Florida Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    6-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA NA NA 2002-2015 Repressuring NA NA NA NA NA NA ...

  15. Montana Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    4,941 4,756 4,573 4,827 4,568 4,681 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 ...

  16. California Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    9,225 19,655 18,928 18,868 18,266 18,868 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA ...

  17. Illinois Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA NA NA 2006-2015 Repressuring NA NA NA NA NA NA 1991-2015 Vented and ...

  18. Monthly Natural Gas Gross Production Report

    Gasoline and Diesel Fuel Update (EIA)

  19. Michigan Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    159,400 136,782 143,826 129,333 123,622 114,946 1967-2014 From Gas Wells 20,867 7,345 18,470 17,041 17,502 13,799 1967-2014 From Oil Wells 12,919 9,453 11,620 4,470 4,912 5,507 1967-2014 From Shale Gas Wells 125,614 119,984 113,736 107,822 101,208 95,640 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2002-2014 Repressuring 2,340 2,340 2,340 0 NA NA 1967-2014 Vented and Flared 3,324 3,324 3,324 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 1996-2014 Marketed Production 153,736 131,118

  20. Mississippi Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    352,888 401,660 443,351 452,915 59,272 54,440 1967-2014 From Gas Wells 337,168 387,026 429,829 404,457 47,385 43,091 1967-2014 From Oil Wells 8,934 8,714 8,159 43,421 7,256 7,150 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 6,785 5,921 5,363 5,036 4,630 4,199 2002-2014 Repressuring 3,039 3,480 3,788 0 NA NA 1967-2014 Vented and Flared 7,875 8,685 9,593 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 253,817 315,775 348,482 389,072 0 0 1980-2014 Marketed Production

  1. Missouri Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    NA NA NA NA 9 9 1967-2014 From Gas Wells NA NA NA NA 8 8 1967-2014 From Oil Wells NA NA NA NA 1 * 2007-2014 From Shale Gas Wells NA NA NA NA 0 0 2007-2014 From Coalbed Wells NA NA NA NA 0 0 2007-2014 Repressuring NA NA NA NA 0 0 2007-2014 Vented and Flared NA NA NA NA 0 0 2007-2014 Nonhydrocarbon Gases Removed NA NA NA NA 0 0 2007-2014 Marketed Production NA NA NA NA 9 9 1967-2014 Dry Production NA NA NA NA 9 9

  2. Montana Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    93,266 79,506 66,954 63,242 59,930 57,296 1967-2015 From Gas Wells 51,117 37,937 27,518 19,831 11,796 1967-2014 From Oil Wells 19,292 21,777 20,085 23,152 23,479 1967-2014 From Shale Gas Wells 12,937 13,101 15,619 18,636 18,890 2007-2014 From Coalbed Wells 9,920 6,691 3,731 1,623 5,766 2002-2014 Repressuring 5 4 0 NA NA 1967-2014 Vented and Flared 5,722 4,878 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed NA NA 0 NA NA 1996-2014 Marketed Production 87,539 74,624 66,954 63,242 59,930 57,296

  3. Natural Gas Gross Withdrawals from Coalbed Wells

    U.S. Energy Information Administration (EIA) Indexed Site

    2,010,171 1,916,762 1,779,055 1,539,395 1,425,783 1,285,189 2002-2014 Alaska 0 0 0 0 0 0 2002-2014 Alaska Onshore 0 0 0 0 0 0 2007-2014 Arkansas 0 0 0 0 0 0 2006-2014 California 0 0 0 0 0 0 2002-2014 Colorado 544,215 529,891 514,531 376,543 449,281 419,132 2002-2014 Federal Offshore Gulf of Mexico 0 0 0 0 0 0 2002-2014 Kansas 43,661 38,869 35,924 31,689 28,244 25,365 2002-2014 Louisiana 0 0 0 0 0 0 2002-2014 Louisiana Onshore 0 0 0 0 0 0 2007-2014 Montana 12,376 9,920 6,691 3,731 1,623 5,766

  4. Natural Gas Gross Withdrawals from Gas Wells

    U.S. Energy Information Administration (EIA) Indexed Site

    14,414,287 13,247,498 12,291,070 12,504,227 10,759,545 10,384,119 1967-2014 U.S. State Offshore 259,848 234,236 208,970 204,667 186,887 159,337 1978-2014 Federal Offshore U.S. 1,878,928 1,701,665 1,355,489 1,028,474 831,636 720,400 1977-2014 Alaska 137,639 127,417 112,268 107,873 91,686 104,219 1967-2014 Alaska Onshore 96,685 85,383 76,066 74,998 64,537 81,565 1992-2014 Alaska State Offshore 40,954 42,034 36,202 32,875 27,149 22,654 1978-2014 Arkansas 164,316 152,108 132,230 121,684 107,666

  5. Natural Gas Gross Withdrawals from Oil Wells

    U.S. Energy Information Administration (EIA) Indexed Site

    5,674,120 5,834,703 5,907,919 4,965,833 5,404,699 5,922,088 1967-2014 U.S. State Offshore 327,105 341,365 340,182 284,838 318,431 355,472 1978-2014 Federal Offshore U.S. 606,403 598,679 512,003 526,664 522,515 583,058 1977-2014 Alaska 3,174,747 3,069,683 3,050,654 3,056,918 3,123,671 3,064,346 1967-2014 Alaska Onshore 2,858,211 2,741,569 2,722,154 2,782,486 2,818,418 2,721,864 1992-2014 Alaska State Offshore 316,537 328,114 328,500 274,431 305,253 342,482 1978-2014 Arkansas 5,743 5,691 9,291

  6. Nevada Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    4 3 4 3 3 1991-2014 From Gas Wells 0 0 0 0 0 3 2006-2014 From Oil Wells 4 4 3 4 3 * 1991-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 2006-2014 Vented and Flared 0 0 0 0 0 0 1991-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 2006-2014 Marketed Production 4 4 3 4 3 3 1991-2014 Dry Production 4 4 3 4 3 3 1991

  7. Ohio Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    78,122 78,858 84,482 166,017 518,767 1,014,600 1967-2015 From Gas Wells 73,459 30,655 65,025 55,583 78,204 1967-2014 From Oil Wells 4,651 45,663 6,684 10,317 13,037 1967-2014 From Shale Gas Wells 11 2,540 12,773 100,117 427,525 2007-2014 From Coalbed Wells 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 1967-2014 Vented and Flared 0 0 0 0 0 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 2006-2014 Marketed Production 78,122 78,858 84,482 166,017 518,767 1,014,600 1967-2015 Dry Production 78,122

  8. Oklahoma Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    1,827,328 1,888,870 2,023,461 1,993,754 2,310,114 2,497,569 1967-2015 From Gas Wells 1,140,111 1,281,794 1,394,859 1,210,315 1,456,519 1967-2014 From Oil Wells 210,492 104,703 53,720 71,515 106,520 1967-2014 From Shale Gas Wells 406,143 449,167 503,329 663,507 706,837 2007-2014 From Coalbed Wells 70,581 53,206 71,553 48,417 40,238 2002-2014 Repressuring 0 0 0 0 0 1967-2014 Vented and Flared 0 0 0 0 0 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 1996-2014 Marketed Production 1,827,328

  9. Tennessee Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    5,478 5,144 4,851 5,825 5,400 5,294 1967-2014 From Gas Wells 5,478 5,144 4,851 5,825 5,400 5,294 1967-2014 From Oil Wells 0 0 0 0 0 0 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 1967-2014 Vented and Flared 0 0 0 0 0 0 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 1997-2014 Marketed Production 5,478 5,144 4,851 5,825 5,400 5,294 1967-2014 Dry Production 5,478 4,638 4,335 5,324 4,912 4,912

  10. Texas Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    7,593,697 7,934,689 8,143,510 8,299,472 8,663,333 8,765,412 1967-2015 From Gas Wells 4,441,188 3,794,952 3,619,901 3,115,409 2,734,153 1967-2014 From Oil Wells 849,560 1,073,301 860,675 1,166,810 1,520,200 1967-2014 From Shale Gas Wells 2,302,950 3,066,435 3,662,933 4,017,253 4,408,980 2007-2014 From Coalbed Wells 0 0 0 0 0 2002-2014 Repressuring 558,854 502,020 437,367 423,413 452,150 1967-2014 Vented and Flared 39,569 35,248 47,530 76,113 81,755 1967-2014 Nonhydrocarbon Gases Removed 279,981

  11. Utah Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    436,885 461,507 490,393 470,863 453,207 422,353 1967-2015 From Gas Wells 328,135 351,168 402,899 383,216 360,587 1967-2014 From Oil Wells 42,526 49,947 31,440 36,737 44,996 1967-2014 From Shale Gas Wells 0 0 1,333 992 1,003 2007-2014 From Coalbed Wells 66,223 60,392 54,722 49,918 46,622 2002-2014 Repressuring 1,187 1,449 0 NA NA 1967-2014 Vented and Flared 2,080 1,755 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 1,573 778 0 NA NA 1996-2014 Marketed Production 432,045 457,525 490,393 470,863

  12. Virginia Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    NA NA NA NA NA NA 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA NA NA 2006-2015 Repressuring NA NA NA NA NA NA 1991-2015 Vented and Flared NA NA NA NA NA NA 1991-2015 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1991-2015 Marketed Production NA NA NA NA NA NA

  13. Texas Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    752,341 754,086 731,049 739,603 714,788 720,593 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA NA NA 2002-2015 Repressuring NA NA NA NA NA NA 1991-2015 Vented and Flared NA NA NA NA NA NA 1991-2015 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1991-2015 Marketed Production 675,828 677,396 656,702 664,386 642,094 647,308

  14. Offshore Gross Withdrawals of Natural Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Federal Offshore 121,847 124,795 122,038 116,075 103,357 109,286 1997-2015 From Gas Wells NA NA NA NA NA NA 1997-2015 From Oil Wells NA NA NA NA NA NA 1997-2015

  15. Offshore Gross Withdrawals of Natural Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History U.S. Total Offshore 2,875,945 2,416,644 2,044,643 1,859,469 1,818,267 1977-2014 State Offshore 575,601 549,151 489,505 505,318 514,809 1978-2014 From Gas Wells 234,236 208,970 204,667 186,887 159,337 1978-2014 From Oil Wells 341,365 340,182 284,838 318,431 355,472 1978-2014 Federal Offshore 2,300,344 1,867,492 1,555,138 1,354,151 1,303,458 1977-2014 From Gas Wells 1,701,665 1,355,489 1,028,474 831,636 720,400 1977-2014 From Oil Wells 598,679 512,003

  16. Ohio Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    88,406 87,904 89,371 104,127 104,572 113,096 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA NA NA 2006-2015 Repressuring NA NA NA NA NA NA 1991-2015 Vented and Flared NA NA NA NA NA NA 1991-2015 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1991-2015 Marketed Production 88,406 87,904 89,371 104,127 104,572 113,096 1991

  17. Oklahoma Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    217,883 213,529 204,298 209,342 200,704 206,487 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA NA NA 2002-2015 Repressuring NA NA NA NA NA NA 1996-2015 Vented and Flared NA NA NA NA NA NA 1996-2015 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1996-2015 Marketed Production 217,883 213,529 204,298 209,342 200,704 206,487 1989

  18. Oregon Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    NA NA NA NA NA NA 1996-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1996-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA NA NA 2002-2015 Repressuring NA NA NA NA NA NA 1996-2015 Vented and Flared NA NA NA NA NA NA 1996-2015 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1996-2015 Marketed Production NA NA NA NA NA NA

  19. Pennsylvania Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    398,737 408,325 396,931 404,431 403,683 429,251 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA NA NA 2006-2015 Repressuring NA NA NA NA NA NA 1991-2015 Vented and Flared NA NA NA NA NA NA 1991-2015 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1991-2015 Marketed Production 398,737 408,325 396,931 404,431 403,683 429,251

  20. Wyoming Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    68,548 167,539 162,880 167,555 163,345 165,658 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA NA NA 2002-2015 Repressuring NA NA NA NA NA NA 1991-2015 Vented and Flared NA NA NA NA NA NA 1991-2015 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1991-2015 Marketed Production 150,260 149,361 145,208 149,375 145,622 147,684 1989

  1. California Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    319,891 279,130 246,822 252,310 252,718 222,803 1967-2015 From Gas Wells 73,017 63,902 91,904 88,203 75,684 1967-2014 From Oil Wells 151,369 120,880 67,065 69,839 69,521 1967-2014 From Shale Gas Wells 95,505 94,349 87,854 94,268 107,513 2007-2014 From Coalbed Wells 0 0 0 0 0 2002-2014 Repressuring 27,240 23,905 0 NA NA 1967-2014 Vented and Flared 2,790 2,424 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 3,019 2,624 0 NA NA 1980-2014 Marketed Production 286,841 250,177 246,822 252,310 252,718

  2. Colorado Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    1,589,664 1,649,306 1,709,376 1,604,860 1,631,390 1,671,511 1967-2015 From Gas Wells 526,077 563,750 1,036,572 801,749 779,042 1967-2014 From Oil Wells 338,565 359,537 67,466 106,784 177,305 1967-2014 From Shale Gas Wells 195,131 211,488 228,796 247,046 255,911 2007-2014 From Coalbed Wells 529,891 514,531 376,543 449,281 419,132 2002-2014 Repressuring 10,043 10,439 0 NA NA 1967-2014 Vented and Flared 1,242 1,291 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 1980-2014 Marketed

  3. Florida Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    290 13,938 17,129 18,681 18,011 21,259 1971-2014 From Gas Wells 0 0 0 17,182 16,459 19,742 1996-2014 From Oil Wells 290 13,938 17,129 1,500 1,551 1,517 1971-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2002-2014 Repressuring 0 0 0 17,909 17,718 20,890 1976-2014 Vented and Flared 0 0 0 0 0 0 1971-2014 Nonhydrocarbon Gases Removed 32 1,529 2,004 0 NA NA 1980-2014 Marketed Production 257 12,409 15,125 773 292 369 1967-2014 Dry Production 257 12,409 15,125 773 292

  4. Illinois Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    1,443 1,702 2,121 2,125 2,887 2,626 1967-2014 From Gas Wells 1,438 1,697 2,114 2,125 2,887 2,626 1967-2014 From Oil Wells 5 5 7 0 0 0 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 2006-2014 Vented and Flared 0 0 0 0 0 0 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 2006-2014 Marketed Production 1,443 1,702 2,121 2,125 2,887 2,626 1967-2014 Dry Production 1,412 1,357 1,078 2,125 2,887 2,579

  5. Indiana Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    4,927 6,802 9,075 8,814 7,938 6,616 1967-2014 From Gas Wells 4,927 6,802 9,075 8,814 7,938 6,616 1967-2014 From Oil Wells 0 0 0 0 0 0 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 2003-2014 Vented and Flared 0 0 0 0 0 0 2003-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 1997-2014 Marketed Production 4,927 6,802 9,075 8,814 7,938 6,616 1967-2014 Dry Production 4,927 6,802 9,075 8,814 7,938 6,616

  6. Maryland Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    43 43 34 44 32 20 1967-2014 From Gas Wells 43 43 34 44 32 20 1967-2014 From Oil Wells 0 0 0 0 0 0 2006-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 2006-2014 Vented and Flared 0 0 0 0 0 0 2006-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 2006-2014 Marketed Production 43 43 34 44 32 20 1967-2014 Dry Production 43 43 34 44 32 20

  7. Utah Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    35,984 33,029 30,933 31,404 30,891 34,204 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA NA NA 2002-2015 Repressuring NA NA NA NA NA NA 1991-2015 Vented and Flared NA NA NA NA NA NA 1994-2015 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1996-2015 Marketed Production 35,984 33,029 30,933 31,404 30,891 34,204

  8. Wyoming Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    ,514,657 2,375,301 2,225,622 2,047,757 1,997,666 1,983,188 1967-2015 From Gas Wells 1,787,599 1,709,218 1,762,095 1,673,667 1,671,442 1967-2014 From Oil Wells 151,871 152,589 24,544 29,134 38,974 1967-2014 From Shale Gas Wells 5,519 4,755 9,252 16,175 25,387 2007-2014 From Coalbed Wells 569,667 508,739 429,731 328,780 261,863 2002-2014 Repressuring 2,810 5,747 6,630 2,124 5,210 1967-2014 Vented and Flared 42,101 57,711 45,429 34,622 29,641 1967-2014 Nonhydrocarbon Gases Removed 164,221 152,421

  9. ,"Wyoming Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 37695,159737,143763,15974,,0,10880,1965,13536,133356 37726,151054,135949,15105,,0,11144,1639,12903,125368 37756,143494,129144,14349,,0,10300,1461,5571,126161 ...

  10. Natural Gas Gross Withdrawals from Oil Wells

    Gasoline and Diesel Fuel Update (EIA)

    5,674,120 5,834,703 5,907,919 4,965,833 5,404,699 5,922,088 1967-2014 U.S. State Offshore 327,105 341,365 340,182 284,838 318,431 355,472 1978-2014 Federal Offshore U.S. 606,403...

  11. Natural Gas Gross Withdrawals from Coalbed Wells

    Gasoline and Diesel Fuel Update (EIA)

    2002-2015 Alaska NA NA NA NA NA NA 2002-2015 Arkansas NA NA NA NA NA NA 2006-2015 California NA NA NA NA NA NA 2002-2015 Colorado NA NA NA NA NA NA 2002-2015 Federal Offshore Gulf...

  12. Natural Gas Gross Withdrawals from Coalbed Wells

    U.S. Energy Information Administration (EIA) Indexed Site

    2,010,171 1,916,762 1,779,055 1,539,395 1,425,783 1,285,189 2002-2014 Alaska 0 0 0 0 0 0 2002-2014 Alaska Onshore 0 0 0 0 0 0 2007-2014 Arkansas 0 0 0 0 0 0 2006-2014 California 0...

  13. Natural Gas Gross Withdrawals from Gas Wells

    U.S. Energy Information Administration (EIA) Indexed Site

    6-2015 Illinois NA NA NA NA NA NA 1991-2015 Indiana NA NA NA NA NA NA 1991-2015 Kentucky NA NA NA NA NA NA 1991-2015 Maryland NA NA NA NA NA NA 1991-2015 Michigan NA NA NA NA NA NA...

  14. Natural Gas Gross Withdrawals from Oil Wells

    Gasoline and Diesel Fuel Update (EIA)

    1-2015 Illinois NA NA NA NA NA NA 1991-2015 Indiana NA NA NA NA NA NA 1991-2015 Kentucky NA NA NA NA NA NA 1991-2015 Maryland NA NA NA NA NA NA 1991-2015 Michigan NA NA NA NA NA NA...

  15. Natural Gas Gross Withdrawals from Gas Wells

    U.S. Energy Information Administration (EIA) Indexed Site

    14,414,287 13,247,498 12,291,070 12,504,227 10,759,545 10,384,119 1967-2014 U.S. State Offshore 259,848 234,236 208,970 204,667 186,887 159,337 1978-2014 Federal Offshore U.S....

  16. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    A. Consumption and Gross Energy Intensity by Climate Zonea for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet)...

  17. Partially-reflected water-moderated square-piteched U(6.90)O2 fuel rod lattices with 0.67 fuel to water volume ratio (0.800 CM Pitch)

    SciTech Connect (OSTI)

    Harms, Gary A.

    2015-09-01

    The US Department of Energy (DOE) Nuclear Energy Research Initiative funded the design and construction of the Seven Percent Critical Experiment (7uPCX) at Sandia National Laboratories. The start-up of the experiment facility and the execution of the experiments described here were funded by the DOE Nuclear Criticality Safety Program. The 7uPCX is designed to investigate critical systems with fuel for light water reactors in the enrichment range above 5% 235U. The 7uPCX assembly is a water-moderated and -reflected array of aluminum-clad square-pitched U(6.90%)O2 fuel rods.

  18. Kennett Square, Pennsylvania: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.8467767, -75.7116032 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  19. Square Engineering Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Product: Fabrication and erection contractor; has a manufacturing contract with Green & Gold Energy of Australia for the SunCube PV concentrator system, under which it will build a...

  20. Property:GrossProdCapacity | Open Energy Information

    Open Energy Info (EERE)

    1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWA...

  1. Montana Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 31,610 32,229 68,064 1970's 48,302 38,136 38,137 60,931 59,524 44,547 45,097 48,181 48,497...

  2. California Natural Gas Gross Withdrawals (Million Cubic Feet...

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 861,320 816,925 767,342 1970's 727,245 679,244 555,392 513,586 426,974 367,653 427,640 387,497...

  3. South Dakota Natural Gas Gross Withdrawals from Coalbed Wells (Million

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0

  4. Tennessee Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0

  5. Louisiana Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0

  6. Maryland Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014 NA NA NA NA NA NA NA NA NA NA NA NA 2015 NA NA NA NA NA NA NA NA NA NA NA NA

  7. Michigan Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0

  8. Mississippi Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 7,673 7,250 6,785 2010's 5,921 5,363 5,036 4,630 4,199

  9. Mississippi Natural Gas Gross Withdrawals from Oil Wells (Million Cubic

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 41,701 34,645 35,609 1970's 33,283 28,809 25,377 26,985 22,700 18,133 16,776 17,162 13,199 12,023 1980's 12,394 12,597 11,822 13,216 13,881 11,685 15,132 14,463 14,640 15,856 1990's 19,983 22,155 20,384 15,631 9,597 6,051 6,210 7,276 8,628 5,750 2000's 5,339 5,132 5,344 4,950 4,414 4,966 4,511 6,203 7,542 8,934 2010's 8,714 8,159 43,421 7,256 7,150

  10. Mississippi Natural Gas Gross Withdrawals from Shale Gas (Million Cubic

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 2010's 0 0 0 0 0

  11. Missouri Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 NA NA 2010's NA NA NA 0 0

  12. Montana Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 7,230 12,241 11,630 11,721 13,154 14,496 12,376 2010's 9,920 6,691 3,731 1,623 5,766

  13. Wyoming Natural Gas Gross Withdrawals (Million Cubic Feet per...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 5,624 5,636 5,666 5,613 5,495 5,656 5,823 5,730 5,658 6,063 6,164 6,284 2007 6,196 6,040 6,149 6,093...

  14. Alaska Natural Gas Gross Withdrawals (Million Cubic Feet per...

    Gasoline and Diesel Fuel Update (EIA)

    8,040 8,606 8,120 8,476 8,943 9,380 9,577 9,668 2010 9,389 9,849 9,966 9,107 8,009 7,666 6,641 6,593 8,809 9,442 9,534 10,214 2011 7,663 9,761 9,800 9,519 8,688 8,282 6,032...

  15. Virginia Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 81,624 86,275 101,567 106,408 2010's 107,736 112,219 107,383 99,542 92,599

  16. Wyoming Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 445,665 563,274 590,205 2010's 569,667 508,739 429,731 328,780 261,863

  17. Nebraska Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014 NA NA NA NA NA NA NA NA NA NA NA NA 2015 NA NA NA NA NA NA NA NA NA NA NA NA

  18. Nevada Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0

  19. North Dakota Natural Gas Gross Withdrawals from Coalbed Wells (Million

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0

  20. Oklahoma Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 82,125 76,860 67,525 2010's 70,581 53,206 71,553 48,417 40,238

  1. Oregon Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0

  2. Pennsylvania Natural Gas Gross Withdrawals from Coalbed Wells (Million

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0

  3. Pennsylvania Natural Gas Gross Withdrawals from Shale Gas (Million Cubic

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 9,757 89,074 2010's 399,452 1,068,288 2,042,632 3,048,182 4,036,504

  4. Virginia Natural Gas Gross Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 3,818 3,389 2,846 1970's 2,805 2,619 2,787 5,101 7,096 6,723 6,937 8,220 8,492 8,544 1980's...

  5. New Mexico Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    State Offshore Federal Offshore California Colorado Federal Offshore Gulf of Mexico Federal Offshore Alabama Federal Offshore Louisiana Federal Offshore Texas Kansas...

  6. New Mexico Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    Alaska Arkansas California Colorado Federal Offshore Gulf of Mexico Kansas Louisiana Montana New Mexico North Dakota Ohio Oklahoma Pennsylvania Texas Utah West Virginia Wyoming...

  7. U.S. Natural Gas Gross Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 NA NA NA NA NA NA NA NA NA NA NA NA 1974 NA NA NA NA NA NA NA NA NA NA NA NA 1975 NA NA NA NA NA NA NA NA NA NA NA NA 1976 NA NA NA NA NA NA NA NA NA NA NA NA 1977 NA NA NA NA NA NA NA NA NA NA NA NA 1978 NA NA NA NA NA NA NA NA NA NA NA NA 1979 NA NA NA NA NA NA NA NA NA NA NA NA 1980 1,960,000 1,840,000 1,971,000 1,806,000 1,840,000 1,725,000 1,756,000 1,716,000 1,723,000 1,790,000 1,790,000 1,949,000 1981 1,890,000 1,702,000 1,871,000

  8. Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals...

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 5,242,169 5,110,327 5,052,936 2000's 4,967,694 5,066,015 4,547,627 4,447,348 4,000,685 3,150,818...

  9. Quantification of the Potential Gross Economic Impacts of Five...

    Broader source: Energy.gov (indexed) [DOE]

    ... as having any special scientific ... are feasible. 3 This report is available at no cost ... Methodology All cost and emissions abatement scenarios in this study are ...

  10. Mississippi Natural Gas Gross Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 181,309 171,617 168,714 1970's 157,020 136,536 119,697 117,761 98,995 92,500 89,914 102,155 148,482 192,376 1980's 215,105 232,870 221,696 201,984 209,268 191,898 210,086 224,983 237,180 199,856 1990's 200,592 180,772 165,538 145,026 121,802 119,452 123,622 126,623 129,216 126,755 2000's 114,380 136,740 147,415 161,676 176,329 189,371 212,081 272,878 346,465 352,888 2010's 401,660 443,351 452,915 59,272 54,440

  11. Missouri Natural Gas Gross Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 22 9 33 33 30 29 20 1980's 4 4 4 4 4 4 1990's 7 15 27 14 8 16 25 5 0 0 2000's 0 0 0 0 0 0 0 0 NA NA 2010's NA NA NA 9 9

  12. Montana Natural Gas Gross Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 31,610 32,229 68,064 1970's 48,302 38,136 38,137 60,931 59,524 44,547 45,097 48,181 48,497 56,094 1980's 53,802 58,502 58,184 53,516 52,930 54,151 48,246 47,845 53,014 52,583 1990's 51,537 53,002 54,810 55,517 51,072 50,763 51,668 53,621 59,506 61,545 2000's 70,424 81,802 86,424 86,431 97,838 108,555 114,037 120,575 119,399 105,251 2010's 93,266 79,506 66,954 63,242 59,930 57,296

  13. Natural Gas Gross Withdrawals from Shale Gas Wells

    Gasoline and Diesel Fuel Update (EIA)

    2007-2015 Arkansas NA NA NA NA NA NA 2007-2015 California NA NA NA NA NA NA 2007-2015 Colorado NA NA NA NA NA NA 2007-2015 Federal Offshore Gulf of Mexico NA NA NA NA NA NA 2007-2015 Kansas NA NA NA NA NA NA 2007-2015 Louisiana NA NA NA NA NA NA 2007-2015 Montana NA NA NA NA NA NA 2007-2015 New Mexico NA NA NA NA NA NA 2007-2015 North Dakota NA NA NA NA NA NA 2007-2015 Ohio NA NA NA NA NA NA 2007-2015 Oklahoma NA NA NA NA NA NA 2007-2015 Pennsylvania NA NA NA NA NA NA 2007-2015 Texas NA NA NA NA

  14. Natural Gas Gross Withdrawals from Shale Gas Wells

    Gasoline and Diesel Fuel Update (EIA)

    2007-2015 Arkansas NA NA NA NA NA NA 2007-2015 California NA NA NA NA NA NA 2007-2015 Colorado NA NA NA NA NA NA 2007-2015 Federal Offshore Gulf of Mexico NA NA NA NA NA NA 2007-2015 Kansas NA NA NA NA NA NA 2007-2015 Louisiana NA NA NA NA NA NA 2007-2015 Montana NA NA NA NA NA NA 2007-2015 New Mexico NA NA NA NA NA NA 2007-2015 North Dakota NA NA NA NA NA NA 2007-2015 Ohio NA NA NA NA NA NA 2007-2015 Oklahoma NA NA NA NA NA NA 2007-2015 Pennsylvania NA NA NA NA NA NA 2007-2015 Texas NA NA NA NA

  15. Nebraska Natural Gas Gross Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 10,082 9,329 7,416 1970's 6,309 5,054 4,741 4,670 4,675 3,963 3,308 2,849 2,882 3,208 1980's 2,550 2,713 2,280 2,091 2,300 1,944 1,403 1,261 910 878 1990's 793 784 1,177 2,114 2,898 2,240 1,876 1,670 1,695 1,395 2000's 1,218 1,208 1,193 1,466 1,499 1,201 1,217 1,560 3,083 2,916 2010's 2,255 1,980 1,328 1,032 402

  16. Nevada Natural Gas Gross Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 53 30 21 16 13 11 9 9 8 2000's 7 7 6 6 5 5 5 5 4 4 2010's 4 3 4 3 3

  17. Colorado Natural Gas Gross Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 128,014 129,583 123,337 1970's 115,157 113,340 122,122 141,442 147,852 174,145 186,028 190,647 185,019 192,694 1980's 191,806 200,739 214,933 172,842 180,616 189,565 175,618 186,286 212,030 237,372 1990's 268,683 295,118 333,994 414,004 467,031 539,633 584,016 646,725 704,809 729,937 2000's 760,213 825,378 945,659 1,021,294 1,089,622 1,143,985 1,214,396 1,254,529 1,402,845 1,511,654 2010's 1,589,664 1,649,306

  18. Federal Offshore Gulf of Mexico Natural Gas Gross Withdrawals and

    Gasoline and Diesel Fuel Update (EIA)

    Production 121,847 124,795 122,038 116,075 103,357 109,286 1997-2015 From Gas Wells NA NA NA NA NA NA 1997-2015 From Oil Wells NA NA NA NA NA NA 1997-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA NA NA 2002-2015 Repressuring NA NA NA NA NA NA 1997-2015 Vented and Flared NA NA NA NA NA NA 1997-2015 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1997-2015 Marketed Production 120,019 122,924 120,208 114,334 101,806 107,646 1997-2015 Dry Production

  19. Florida Natural Gas Gross Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,258 15,805 33,857 38,137 44,383 46,513 48,778 51,595 50,190 1980's 46,421 38,539 26,397 23,356 13,867 11,604 9,766 9,132 8,407 8,773 1990's 7,566 5,898 7,584 8,011 8,468 7,133 6,706 6,907 6,547 6,702 2000's 7,279 6,446 3,785 3,474 3,525 2,954 2,845 2,000 2,742 290 2010's 13,938 17,129 18,681 18,011 21,259

  20. Illinois Natural Gas Gross Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 5,270 4,482 3,893 1970's 4,972 4,495 3,000 1,638 1,436 1,440 1,556 1,003 1,159 1,585 1980's 1,574 1,295 1,162 1,030 1,530 1,324 1,887 1,371 1,338 1,477 1990's 677 466 347 340 333 335 298 231 209 195 2000's 189 185 180 174 170 166 170 1,394 1,193 1,443 2010's 1,702 2,121 2,125 2,887 2,626

  1. Indiana Natural Gas Gross Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 198 234 171 1970's 153 537 355 276 176 346 192 183 163 350 1980's 463 330 233 135 394 367 365 217 412 416 1990's 399 232 174 192 107 249 360 526 615 855 2000's 899 1,064 1,309 1,464 3,401 3,135 2,921 3,606 4,701 4,927 2010's 6,802 9,075 8,814 7,938 6,616

  2. Kansas Natural Gas Gross Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 876,353 839,773 887,603 1970's 904,475 889,592 893,736 897,289 889,450 846,164 831,664 783,637 857,071 800,163 1980's 737,246 641,833 442,243 448,515 481,614 529,575 480,166 474,127 594,386 602,722 1990's 575,090 630,185 659,741 688,157 714,659 723,389 715,631 689,053 605,220 554,918 2000's 527,151 481,445 456,132 420,027 398,197 378,250 372,029 366,859 375,314 355,394 2010's 325,591 309,952 296,299 292,467

  3. Kentucky Natural Gas Gross Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 89,174 89,039 81,304 1970's 77,892 72,723 63,648 62,396 71,876 60,511 66,137 60,902 70,044 59,520 1980's 57,180 61,312 51,924 46,720 61,518 73,126 80,195 70,125 73,629 72,417 1990's 75,333 78,904 79,690 86,966 73,081 74,754 81,435 79,547 81,869 76,770 2000's 81,545 81,723 88,259 87,608 94,259 92,795 95,320 95,437 114,116 113,300 2010's 135,330 124,243 106,122 94,665 78,737

  4. Louisiana Natural Gas Gross Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 6,087,425 6,777,516 7,561,027 1970's 8,076,157 8,318,551 8,159,763 8,491,194 7,919,810 7,242,408 7,143,040 7,350,929 7,638,931 7,358,795 1980's 7,008,489 6,829,507 6,216,868 5,379,359 5,888,043 5,218,098 4,964,758 5,204,984 5,248,205 5,142,971 1990's 5,303,485 5,100,068 4,977,470 5,046,623 5,226,097 5,162,780 5,351,395 1,538,003 1,579,435 1,598,912 2000's 1,484,530 1,524,673 1,382,461 1,378,128 1,377,295

  5. Maryland Natural Gas Gross Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 621 864 978 1970's 813 214 244 298 133 93 75 82 88 28 1980's 68 56 36 31 60 39 20 44 29 34 1990's 22 29 33 28 26 22 135 118 63 18 2000's 34 32 22 48 34 46 48 35 28 43 2010's 43 34 44 32 20

  6. Michigan Natural Gas Gross Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 43,092 43,930 38,690 1970's 40,038 26,450 35,253 45,696 70,464 103,901 121,631 133,226 152,184 164,860 1980's 164,110 158,293 158,771 144,574 150,201 137,519 132,951 153,307 151,809 162,826 1990's 177,815 201,413 200,479 210,299 228,321 243,867 251,404 311,614 283,740 283,028 2000's 302,220 280,700 280,140 242,651 265,345 266,776 268,673 270,571 158,794 159,400 2010's 136,782 143,826 129,333 123,622 114,946

  7. Arizona Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0

  8. Arizona Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014 NA NA NA NA NA NA NA NA NA NA NA NA 2015 NA NA NA NA NA NA NA NA NA NA NA NA

  9. California Natural Gas Gross Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 861,320 816,925 767,342 1970's 727,245 679,244 555,392 513,586 426,974 367,653 427,640 387,497 383,501 337,497 1980's 407,151 481,833 483,914 509,414 574,638 596,368 558,324 527,486 501,044 466,493 1990's 446,000 459,836 448,855 405,367 395,752 383,238 400,011 397,652 397,569 432,214 2000's 418,865 414,838 397,021 368,440 348,827 352,044 349,137 339,389 333,019 306,263 2010's 319,891 279,130 246,822 252,310

  10. South Dakota Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

  11. U.S. Natural Gas Gross Withdrawals (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 NA NA NA NA NA NA NA NA NA NA NA NA 1974 NA NA NA NA NA NA NA NA NA NA NA NA 1975 NA NA NA NA NA NA NA NA NA NA NA NA 1976 NA NA NA NA NA NA NA NA NA NA NA NA 1977 NA NA NA NA NA NA NA NA NA NA NA NA 1978 NA NA NA NA NA NA NA NA NA NA NA NA 1979 NA NA NA NA NA NA NA NA NA NA NA NA 1980 1,960 1,840 1,971 1,806 1,840 1,725 1,756 1,716 1,723 1,790 1,790 1,949 1981 1,890 1,702 1,871 1,808 1,838 1,770 1,797 1,841 1,716 1,781 1,714 1,860 1982

  12. U.S. Natural Gas Gross Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1930's 2,691,512 3,084,567 3,108,858 3,387,095 1940's 3,752,702 4,168,116 4,525,095 5,024,449 5,708,288 6,000,161 6,293,037 6,733,230 7,178,777 7,546,825 1950's 8,479,650 9,689,372 10,272,566 10,645,798 10,984,850 11,719,794 12,372,905 12,906,669 13,146,635 14,229,272 1960's 15,087,911 15,460,312 16,038,973 16,973,368 17,535,553 17,963,100 19,033,839 20,251,776 21,325,000 22,679,195 1970's 23,786,453 24,088,031

  13. U.S. Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska Arkansas California Colorado Federal Offshore Gulf of Mexico Kansas Louisiana Montana New Mexico North Dakota Ohio Oklahoma Pennsylvania Texas Utah West Virginia Wyoming Other States Total Alabama Arizona Florida Illinois Indiana Kentucky Maryland Michigan Mississippi Missouri Nebraska Nevada New York Oregon South Dakota Tennessee Virginia Period-Unit: Monthly-Million Cubic Feet Monthly-Million Cubic Feet per Day Annual-Million Cubic Feet Download Series History Download Series History

  14. Mississippi Natural Gas Gross Withdrawals (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Aug Sep Oct Nov Dec 2006 520 546 489 552 551 583 595 593 606 630 653 653 2007 678 690 709 736 749 756 714 717 752 809 845 813 2008 847 877 880 896 929 913 927 948 945 1,046...

  15. Oklahoma Natural Gas Gross Withdrawals from Gas Wells (Million...

    Gasoline and Diesel Fuel Update (EIA)

    1980's 1,613,584 1,605,256 1,493,009 1,329,549 1,557,729 1,486,126 1,471,153 1,582,709 1,705,643 1,801,763 1990's 1,830,380 1,794,138 1,674,405 1,732,997 1,626,858 1,521,857...

  16. Michigan Natural Gas Gross Withdrawals from Gas Wells (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 22,709 24,151 22,285 1970's 23,774 10,968 13,523 23,272 45,745 71,907 81,628 86,037 97,866...

  17. New Mexico Natural Gas Gross Withdrawals (Million Cubic Feet...

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,075,010 1,170,524 1,142,594 1970's 1,141,889 1,170,400 1,221,757 1,223,562 1,254,299 1,227,200...

  18. New York Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 2,041 1,820 1,983 1,881 1,865 1,796 1,832 1,831 1,794 1,953 1,950 2,032 1992 2,091 1,866 1,995 1,930 1,945 1,884 1,923 ...

  19. Pennsylvania Natural Gas Gross Withdrawals (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 13,538 12,153 13,271 12,588 12,483 12,115 12,372 12,338 11,991 13,054 13,042 13,555 1992 12,329 11,001 11,762 11,377 ...

  20. South Dakota Natural Gas Gross Withdrawals (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 525 421 458 445 421 427 474 480 458 497 569 629 1992 595 576 581 593 626 539 589 582 559 576 556 591 1993 569 523 600 563 ...

  1. Utah Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 29,169 25,803 28,696 27,430 26,066 25,904 26,327 27,840 23,393 28,671 28,721 25,640 1992 27,197 25,078 25,991 23,358 ...

  2. Florida Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 562 543 606 668 655 669 1992 657 597 565 552 587 658 624 638 623 727 658 698 1993 700 633 663 660 685 634 713 694 644 688 ...

  3. Ohio Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 13,138 11,794 12,855 12,191 12,085 11,737 11,966 11,942 11,590 12,612 12,611 13,130 1992 12,811 11,514 12,436 11,936 ...

  4. Alaska Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 19,603 17,374 18,242 16,811 13,749 15,213 15,490 15,533 14,062 15,744 17,704 17,979 1992 18,671 17,990 17,767 16,587 ...

  5. Mississippi Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 14,797 13,076 14,007 12,950 12,852 12,298 12,701 12,832 12,133 13,315 13,649 14,006 1992 13,518 12,036 12,319 11,938 ...

  6. Nebraska Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 57 58 65 63 69 65 68 61 61 68 64 83 1992 107 115 108 97 105 94 95 90 85 86 90 105 1993 181 168 164 150 151 141 144 138 146 ...

  7. Nevada Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 3 3 5 6 6 5 5 4 4 5 4 3 1992 3 3 3 3 3 2 3 2 2 2 2 2 1993 2 2 2 2 2 2 2 2 2 1 2 2 1994 1 1 1 1 1 1 1 1 1 1 1 1 1995 1 1 1 ...

  8. West Virginia Natural Gas Gross Withdrawals (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 17,794 15,880 17,289 16,401 16,256 15,660 15,973 15,968 15,638 17,037 16,994 17,715 1992 16,181 14,439 15,437 14,931 ...

  9. Kansas Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 56,283 48,348 51,908 44,073 45,894 40,469 40,132 40,476 38,187 44,369 48,726 51,378 1992 57,280 49,740 47,203 41,861 ...

  10. Tennessee Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 165 148 161 153 152 148 150 150 146 159 159 165 1992 157 141 152 146 145 140 142 143 141 152 152 159 1993 147 131 141 135 ...

  11. Alabama Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 17,285 15,785 17,309 16,914 17,826 16,927 18,794 19,282 16,121 17,522 19,554 24,826 1992 33,123 31,992 32,526 32,898 ...

  12. Arizona Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 56 14 55 64 114 85 127 105 151 142 118 93 1992 97 91 81 67 66 57 50 47 43 44 40 40 1993 30 33 39 35 37 34 30 52 63 59 49 ...

  13. U.S. Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas Wells NA NA NA NA NA NA 2007-2015 From Coalbed Wells NA NA NA NA NA NA ...

  14. Colorado Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 15,390 18,697 18,642 19,833 17,163 17,617 17,647 18,387 17,297 18,230 18,875 25,131 1992 22,042 19,795 18,841 19,366 ...

  15. California Natural Gas Gross Withdrawals (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 36,651 32,831 39,214 37,554 37,761 35,557 39,094 37,700 38,819 43,053 41,556 40,046 1992 40,367 36,985 39,291 39,024 ...

  16. Wyoming Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 81,224 72,419 87,728 83,390 79,090 78,893 79,998 84,670 79,188 84,356 86,145 81,377 1992 91,656 66,059 86,107 82,918 ...

  17. North Dakota Natural Gas Gross Withdrawals (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 5,413 4,886 5,408 5,186 5,231 5,259 5,595 5,337 4,737 4,987 5,214 5,404 1992 5,278 4,889 5,203 4,783 4,881 4,865 5,024 ...

  18. Virginia Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 1,849 1,545 1,076 906 698 555 1,240 1,579 1,217 1,043 1,598 1,600 1992 1,891 2,025 1,860 1,545 1,493 1,365 2,597 2,021 ...

  19. Texas Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 613,705 540,324 578,880 556,087 561,205 546,366 555,274 551,733 550,257 590,111 588,828 612,771 1992 598,880 528,013 ...

  20. California Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 13,569 12,155 14,518 13,903 13,980 13,164 14,474 13,957 14,372 15,939 15,385 14,826 1992 13,855 12,694 13,485 13,394 ...

  1. Michigan Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 9,579 8,593 10,675 11,095 11,996 9,880 10,164 9,701 9,907 9,316 9,490 10,452 1992 8,720 7,831 9,890 9,359 8,090 12,684 ...

  2. Oklahoma Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 194,179 176,577 189,362 182,592 181,866 168,292 176,757 171,545 167,685 180,504 179,976 184,516 1992 184,091 166,004 ...

  3. Louisiana Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 425,704 369,500 394,133 375,706 368,379 343,024 341,136 345,609 348,857 382,865 382,974 405,804 1992 396,490 348,791 ...

  4. New Mexico Natural Gas Gross Withdrawals from Coalbed Wells ...

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 514,913 541,408 534,760 616,485 485,682 458,805 2010's 414,894 386,262 368,682 330,658...

  5. Alabama Offshore Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

  6. Alabama Onshore Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    46,751 139,215 134,305 128,312 120,666 110,226 1992-2014 From Gas Wells 33,294 29,961 32,602 27,009 27,182 24,726 1992-2014 From Oil Wells 5,758 6,195 5,975 10,978 8,794 7,937 1992-2014 From Shale Gas Wells 0 0 2012-2014 From Coalbed Wells 107,699 103,060 95,727 90,325 84,690 77,563 2007-2014 Repressuring 783 736 531 NA NA NA 1992-2014 Vented and Flared 1,972 2,085 3,012 NA NA NA 1992-2014 Nonhydrocarbon Gases Removed 9,239 8,200 13,830 NA NA NA 1992-2014 Marketed Production 134,757 128,194

  7. Alabama State Offshore Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    From Gas Wells 109,214 101,487 84,270 87,398 75,660 70,827 1987-2014 From Shale Gas Wells 0 0 2012-2014 From Coalbed Wells 0 0 2012-2014 Repressuring 0 NA NA NA 2011-2014 Vented and Flared 523 531 478 NA NA NA 1992-2014 Nonhydrocarbon Gases Removed 7,419 6,218 5,142 NA NA NA 1992-2014 Marketed Production 101,272 94,738 78,649 87,398 75,660 70,827 1992-2014 Dry Production 83,420 67,106 2012

  8. Alaska Offshore Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

  9. New Mexico Natural Gas Gross Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 98,168 81,480 90,924 87,912 87,739 83,496 78,816 84,884 85,430 93,028 91,833 94,910 1992 97,887 88,307 96,143 103,739 110,218 103,727 113,534 115,909 110,818 113,532 115,884 120,081 1993 118,270 110,194 120,573 115,915 121,341 115,051 116,464 121,483 117,900 122,550 123,183 127,407 1994 130,793 121,891 133,334 128,118 134,175 127,092 128,736 134,315 130,437 135,442 136,403 141,061 1995 135,680 126,422 138,319 132,959 139,198 131,949

  10. Oregon Natural Gas Gross Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 159 100 139 159 164 155 170 137 155 156 132 118 1997 122 114 118 119 121 115 117 118 102 115 108 114 1998 105 93 113 108 109 107 112 111 107 99 102 96 1999 99 100 144 134 136 134 132 91 110 150 160 166 2000 144 122 124 115 119 109 104 112 113 127 113 108 2001 113 108 116 103 97 89 93 89 80 80 68 76 2002 75 69 71 74 73 73 71 68 63 70 65 64 2003 70 64 70 66 68 61 61 62 54 49 50 56 2004 49 42 43 39 37 32 37 39 37 41 37 34 2005 29 26 29 28 26

  11. Other States Natural Gas Gross Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 75,788 66,569 71,068 64,899 64,083 61,437 63,057 62,542 60,924 66,818 68,874 71,871 1992 70,658 65,880 69,425 67,513 67,536 64,584 66,912 66,993 65,334 70,429 70,120 72,849 1993 71,066 64,854 68,056 64,575 65,906 67,063 64,661 66,128 63,830 68,248 67,524 75,129 1994 69,191 63,700 66,954 63,848 64,453 65,346 64,227 65,804 63,328 67,240 66,191 72,981 1995 68,143 62,619 65,848 62,597 63,794 64,475 62,396 63,513 61,017 64,990 64,151 71,434

  12. Oklahoma Natural Gas Gross Withdrawals from Gas Wells (Million...

    Gasoline and Diesel Fuel Update (EIA)

    150,824 151,327 156,539 1992 152,795 137,783 137,616 139,465 137,016 138,059 133,464 132,103 132,992 141,785 143,420 147,907 1993 153,723 137,280 147,920 141,860 142,878...

  13. ,"Texas Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas...

  14. ,"North Dakota Natural Gas Gross Withdrawals from Shale Gas ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","North...

  15. ,"Nebraska Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska...

  16. ,"Mississippi Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi...

  17. ,"Indiana Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Indiana...

  18. ,"California Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California...

  19. ,"South Dakota Natural Gas Gross Withdrawals from Shale Gas ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","South...

  20. ,"Kansas Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas...

  1. ,"Louisiana Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana...

  2. ,"Utah Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah...

  3. ,"Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming...

  4. ,"West Virginia Natural Gas Gross Withdrawals from Shale Gas...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","West...

  5. Natural Gas Gross Withdrawals from Shale Gas Wells (Summary)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2,869,960 3,958,315 5,817,122 8,500,983 10,532,858 11,896,204 2007-2013 Federal Offshore Gulf of Mexico 0 0 0 0 0 0 2007-2013 Alabama 0 0 0 0 0 0 2007-2013 Arizona 0 0 0 0 0 0...

  6. ,"Michigan Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan...

  7. ,"Oklahoma Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma...

  8. ,"Ohio Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio...

  9. ,"New Mexico Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico...

  10. ,"New York Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York...

  11. Natural Gas Gross Withdrawals from Shale Gas Wells (Summary)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2007-2015 Federal Offshore Gulf of Mexico NA NA NA NA NA NA 2007-2015 Alabama NA NA NA NA NA NA 2007-2015 Arizona NA NA NA NA NA NA 2007-2015 Arkansas NA NA NA NA NA NA 2007-2015...

  12. ,"Oregon Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oregon...

  13. ,"Montana Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana...

  14. ,"Florida Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Florida...

  15. ,"Virginia Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Virginia...

  16. ,"Nevada Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Nevada...

  17. ,"Tennessee Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee...

  18. ,"Maryland Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maryland...

  19. ,"Kentucky Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky...

  20. ,"Colorado Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado...