National Library of Energy BETA

Sample records for growth gross domestic

  1. "Table 2. Real Gross Domestic Product Growth Trends, Projected vs. Actual"

    U.S. Energy Information Administration (EIA) Indexed Site

    Real Gross Domestic Product Growth Trends, Projected vs. Actual" "Projected Real GDP Growth Trend" " (cumulative average percent growth in projected real GDP from first year shown for each AEO)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO

  2. Table 2. Real Gross Domestic Product Growth Trends, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Real Gross Domestic Product Growth Trends, Projected vs. Actual Projected Real GDP Growth Trend (cumulative average percent growth in projected real GDP from first year shown for each AEO) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 3.09 3.15 2.86 2.78 2.73 2.65 2.62 2.60 2.56 2.53 2.52 2.49 2.45 2.41 2.40 2.36 2.32 2.29 AEO 1995 3.66 2.77 2.53 2.71 2.67 2.61 2.55 2.48 2.46 2.45 2.45 2.43 2.39 2.35 2.31 2.27 2.24 AEO 1996 2.61

  3. Fact #564: March 30, 2009 Transportation and the Gross Domestic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Housing, health care, and food are the only categories with greater shares of the GDP. GDP ... Gross Domestic Product, 2007 Housing 24.3% Health Care 17.4% Food 11.6% ...

  4. Fact# 904: December 21, 2015 Gross Domestic Product and Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    With the growth of VMT in 2015, the gap between the two series has narrowed for the first time since the Great Recession. GDP and VMT Trends, 1960-2015 Graph showing gross national ...

  5. Fact #564: March 30, 2009 Transportation and the Gross Domestic Product, 2007

    Broader source: Energy.gov [DOE]

    Transportation plays a major role in the U.S. economy. About 10% of the U.S. Gross Domestic Product (GDP) in 2007 is related to transportation. Housing, health care, and food are the only...

  6. Samantha Gross

    Broader source: Energy.gov [DOE]

    Samantha Gross is the Director for International Climate and Clean Energy at the Office of International Affairs in the U.S. Department of Energy. She directs U.S. activities under the Clean Energy...

  7. Crude Oil Domestic Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Crude Oil Domestic Production Refinery Crude Oil Inputs Refinery Gross Inputs Refinery Operable Capacity (Calendar Day) Refinery Percent Operable Utilization Net Inputs of Motor Gasoline Blending Components Net Inputs of RBOB Blending Components Net Inputs of CBOB Blending Components Net Inputs of GTAB Blending Components Net Inputs of All Other Blending Components Net Inputs of Fuel Ethanol Net Production - Finished Motor Gasoline Net Production - Finished Motor Gasoline (Excl.

  8. grossWCI.dvi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear multifragmentation, Its relation to general physics A rich test-ground of the fundamentals of statistical mechanics. D.H.E. Gross 1 Hahn-Meitner Institute Glienickerstr. 100 14109 Berlin, Germany gross@hmi.de; http://www.hmi.de/people/gross/ 2 Freie Universit¨ at Berlin, Fachbereich Physik. Received: date / Revised version: date Abstract. Heat can flow from cold to hot at any phase separation, even in macroscopic systems. Therefore also Lynden-Bell's famous gravo-thermal catastrophe [1]

  9. Michael Gross | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Gross Michael Gross Michael Gross Principal Investigator E-mail: mgross@wustl.edu Phone: (314) 935-4814 Website: Washington University in St. Louis Principal Investigator...

  10. U.S. Domestic

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic and Foreign Coal Distribution by State of Origin ...Energy Information Administration | Annual Coal Distribution Report 2013 Domestic and ...

  11. ,"Alaska Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    "Back to Contents","Data 1: Alaska Natural Gas Gross Withdrawals and Production" ... "Date","Alaska Natural Gas Gross Withdrawals (MMcf)","Alaska Natural ...

  12. ,"Arkansas Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    to Contents","Data 1: Arkansas Natural Gas Gross Withdrawals and Production" ... "Date","Arkansas Natural Gas Gross Withdrawals (MMcf)","Arkansas Natural ...

  13. Texas--onshore Natural Gas Gross Withdrawals (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) Texas--onshore Natural Gas Gross Withdrawals ... Referring Pages: Natural Gas Gross Withdrawals Texas Onshore Natural Gas Gross Withdrawals ...

  14. Texas--State Offshore Natural Gas Gross Withdrawals (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) Texas--State Offshore Natural Gas Gross Withdrawals ... Offshore Gross Withdrawals of Natural Gas Natural Gas Gross Withdrawals Texas State ...

  15. Texas Natural Gas Gross Withdrawals Total Offshore (Million Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gross Withdrawals Total Offshore (Million Cubic Feet) Texas Natural Gas Gross Withdrawals ... Offshore Gross Withdrawals of Natural Gas Natural Gas Gross Withdrawals Texas Offshore ...

  16. ,"West Virginia Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: West Virginia Natural Gas Gross Withdrawals (MMcf)" "Sourcekey","N9010WV2" "Date","West Virginia Natural Gas Gross Withdrawals (MMcf)" ...

  17. David J. Gross and the Strong Force

    Office of Scientific and Technical Information (OSTI)

    ... Nobel Laureate Says Physics Is in Need of a Revolution Videos: Nobel Lecture by David J. Gross, nobelprize.org (video) Interview with David J. Gross, nobelprize.org (video) ...

  18. ,"New Mexico Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    7:01:11 AM" "Back to Contents","Data 1: New Mexico Natural Gas Gross Withdrawals (MMcf)" "Sourcekey","N9010NM2" "Date","New Mexico Natural Gas Gross Withdrawals (MMcf)" ...

  19. State Support of Domestic Production

    SciTech Connect (OSTI)

    Amy Wright

    2007-12-30

    This project was developed in response to a cooperative agreement offering by the U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) under the State Support of Domestic Production DE-FC26-04NT15456. The Interstate Oil and Gas Compact Commission (IOGCC) performed efforts in support of State programs related to the security, reliability and growth if our nation's domestic production of oil and natural gas. The project objectives were to improve the States ability to monitor the security of oil and gas operations; to maximize the production of domestic oil and natural gas thereby minimizing the threat to national security posed by interruptions in energy imports; to assist States in developing and maintaining high standards of environmental protection; to assist in addressing issues that limit the capacity of the industry; to promote the deployment of the appropriate application of technology for regulatory efficiency; and to inform the public about emerging energy issues.

  20. Sofia Mancheno-Gross | Department of Energy

    Energy Savers [EERE]

    Sofia Mancheno-Gross Sofia Mancheno-Gross Sofia Mancheno-Gross - Senior Communications Lead Sofia specializes in Communications strategies on behalf of the Office of Energy Efficiency and Renewable Energy. Most Recent Guía Ahorre Energía: Consejos sobre el ahorro de dinero y energía en el hogar November 14

  1. Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals...

    U.S. Energy Information Administration (EIA) Indexed Site

    Referring Pages: Natural Gas Gross Withdrawals from Coalbed Wells Federal Offshore Gulf of Mexico Natural Gas Gross Withdrawals and Production Natural Gas Gross Withdrawals from ...

  2. Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals...

    U.S. Energy Information Administration (EIA) Indexed Site

    Referring Pages: Natural Gas Gross Withdrawals from Shale Gas Wells Federal Offshore Gulf of Mexico Natural Gas Gross Withdrawals and Production Natural Gas Gross Withdrawals from ...

  3. Missouri Natural Gas Gross Withdrawals from Oil Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    292016 Next Release Date: 2292016 Referring Pages: Natural Gas Gross Withdrawals from Oil Wells Missouri Natural Gas Gross Withdrawals and Production Natural Gas Gross...

  4. U.S. Domestic

    Gasoline and Diesel Fuel Update (EIA)

    2 Domestic and Foreign Distribution of U.S. Coal by State of Origin, 2012 (thousand short tons) Coal Exports Coal Origin State and Region Domestic Distribution By Coal Mines By...

  5. U.S. Domestic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Domestic and foreign distribution of U.S. coal by State of origin, 2011 (thousand short tons) Coal Exports Coal Origin State and Region Domestic Distribution By Coal Mines By...

  6. Domestic and Foreign Distribution

    U.S. Energy Information Administration (EIA) Indexed Site

    of U.S. Coal by State of Origin, 2008 Final May 2010 Domestic and Foreign Distribution of U.S. Coal by State of Origin, 2008 (Thousand Short Tons) State Region Domestic Foreign...

  7. ,"Ohio Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas Gross Withdrawals and Production",10,"Monthly","22016","1151991" ,"Release ...

  8. ,"Wyoming Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Gross Withdrawals and Production",10,"Monthly","22016","1151989" ,"Release ...

  9. ,"Utah Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Gross Withdrawals and Production",10,"Monthly","22016","1151989" ,"Release ...

  10. ,"Texas Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Gross Withdrawals and Production",10,"Monthly","22016","1151989" ,"Release ...

  11. ,"Michigan Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Gross Withdrawals and Production",10,"Monthly","22016","1151989" ,"Release ...

  12. ,"Oklahoma Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Gross Withdrawals and Production",10,"Monthly","22016","1151989" ,"Release ...

  13. ,"Montana Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Gross Withdrawals and Production",10,"Monthly","22016","1151989" ,"Release ...

  14. ,"Oregon Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas Gross Withdrawals and Production",10,"Monthly","22016","1151991" ,"Release ...

  15. David J. Gross and the Strong Force

    Office of Scientific and Technical Information (OSTI)

    published their proposal simultaneously with H. David Politzer, a graduate student at Harvard University who independently came up with the same idea. ... The discovery of Gross,...

  16. ,"Texas Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  17. ,"Kansas Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  18. ,"Pennsylvania Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  19. ,"Kentucky Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  20. ,"Oregon Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301979" ,"Release...

  1. ,"Virginia Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  2. ,"Missouri Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  3. ,"Illinois Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  4. ,"Florida Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  5. ,"Utah Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  6. ,"Indiana Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  7. ,"Nevada Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Nevada Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301991" ,"Release...

  8. ,"Montana Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  9. ,"Ohio Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  10. ,"California Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  11. ,"Mississippi Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  12. ,"Nebraska Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  13. ,"Michigan Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  14. ,"Tennessee Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  15. ,"Oklahoma Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  16. ,"Wyoming Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  17. ,"Maryland Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  18. ,"Louisiana Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  19. ,"Colorado Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  20. ,"Alaska Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"4292016 6:48:19 AM" "Back to Contents","Data 1: Alaska Natural Gas Gross Withdrawals and Production" "Sourcekey","N9010AK2","N9011AK2","N9012AK2","NGME...

  1. ,"Arkansas Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"4292016 6:48:21 AM" "Back to Contents","Data 1: Arkansas Natural Gas Gross Withdrawals and Production" "Sourcekey","N9010AR2","N9011AR2","N9012AR2","NGME...

  2. ,"Arizona Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"4292016 6:48:23 AM" "Back to Contents","Data 1: Arizona Natural Gas Gross Withdrawals and Production" "Sourcekey","N9010AZ2","N9011AZ2","N9012AZ2","NGME...

  3. ,"Arizona Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"4292016 6:48:22 AM" "Back to Contents","Data 1: Arizona Natural Gas Gross Withdrawals and Production" "Sourcekey","N9010AZ2","N9011AZ2","N9012AZ2","NGME...

  4. Quantification of the Potential Gross Economic Impacts of Five...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quantification of the Potential Gross Economic Impacts of Five Methane Reduction Scenarios Quantification of the Potential Gross Economic Impacts of Five Methane Reduction Scenarios ...

  5. Property:DailyOpWaterUseGross | Open Energy Information

    Open Energy Info (EERE)

    Property Name DailyOpWaterUseGross Property Type Number Description Daily Operation Water Use (afday) Gross. Retrieved from "http:en.openei.orgwindex.php?titleProperty:...

  6. Oregon Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    2012 2013 2014 View History Gross Withdrawals 821 1,407 1,344 770 770 950 1979-2014 From Gas Wells 821 1,407 1,344 770 770 950 1979-2014 From Oil Wells 0 0 0 0 0 0 1996-2014 From ...

  7. Fact #768: February 25, 2013 New Light Vehicle Sales and Gross Domestic Product

    Broader source: Energy.gov [DOE]

    Over the last four decades, new light vehicle sales have gone from a low of 9.9 million vehicles in 1970 to a high of 17.1 million vehicles sold in 2001, but along the way, there have been...

  8. New Mexico Natural Gas Gross Withdrawals (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gross Withdrawals (Million Cubic Feet per Day) New Mexico Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 4,406...

  9. New York Natural Gas Gross Withdrawals (Million Cubic Feet per...

    Gasoline and Diesel Fuel Update (EIA)

    Gross Withdrawals (Million Cubic Feet per Day) New York Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 149 147...

  10. Virginia Natural Gas Gross Withdrawals (Million Cubic Feet per...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gross Withdrawals (Million Cubic Feet per Day) Virginia Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 271 275...

  11. US--Federal Offshore Natural Gas Gross Withdrawals (Million Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    Gross Withdrawals (Million Cubic Feet) US--Federal Offshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  12. West Virginia Natural Gas Gross Withdrawals (Million Cubic Feet...

    Gasoline and Diesel Fuel Update (EIA)

    Gross Withdrawals (Million Cubic Feet per Day) West Virginia Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006...

  13. Montana Natural Gas Gross Withdrawals (Million Cubic Feet per...

    Gasoline and Diesel Fuel Update (EIA)

    Gross Withdrawals (Million Cubic Feet per Day) Montana Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 317 313...

  14. Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals...

    Gasoline and Diesel Fuel Update (EIA)

    Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals (Million Cubic Feet per...

  15. California Natural Gas Gross Withdrawals (Million Cubic Feet...

    Gasoline and Diesel Fuel Update (EIA)

    Gross Withdrawals (Million Cubic Feet per Day) California Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 998...

  16. Kansas Natural Gas Gross Withdrawals (Million Cubic Feet per...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gross Withdrawals (Million Cubic Feet per Day) Kansas Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 1,049...

  17. Arizona Natural Gas Gross Withdrawals (Million Cubic Feet per...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Arizona Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Arizona Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct...

  18. Why Hydrogen? Hydrogen from Diverse Domestic Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from Diverse Domestic Resources Hydrogen from Diverse Domestic Resources Distributed Generation Transportation HIGH EFFICIENCY HIGH EFFICIENCY & RELIABILITY & RELIABILITY ZERONEAR...

  19. Replacement Cost of Domestic Crude

    Energy Science and Technology Software Center (OSTI)

    1994-12-01

    The DEEPWATER model forecasts the replacement cost of domestic crude oil for 13 offshore regions in the lower 48 states. The replacement cost of domestic crude oil is the constant or levelized selling price that will recover the full expense of exploration, development, and productions with a reasonable return on capital.

  20. Virginia Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    09 2010 2011 2012 2013 2014 View History Gross Withdrawals 140,738 147,255 151,094 146,405 139,382 131,885 1967-2014 From Gas Wells 16,046 23,086 20,375 21,802 26,815 27,052 1967-2014 From Oil Wells 0 0 0 9 9 9 2006-2014 From Shale Gas Wells 18,284 16,433 18,501 17,212 13,016 12,226 2007-2014 From Coalbed Wells 106,408 107,736 112,219 107,383 99,542 92,599 2006-2014 Repressuring 0 0 0 0 0 0 2003-2014 Vented and Flared NA NA NA 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 1997-2014

  1. Kansas Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    10 2011 2012 2013 2014 2015 View History Gross Withdrawals 325,591 309,952 296,299 292,467 286,080 292,450 1967-2015 From Gas Wells 247,651 236,834 264,610 264,223 260,715 1967-2014 From Oil Wells 39,071 37,194 0 0 0 1967-2014 From Shale Gas Wells 0 0 0 0 0 2007-2014 From Coalbed Wells 38,869 35,924 31,689 28,244 25,365 2002-2014 Repressuring 548 521 0 NA NA 1967-2014 Vented and Flared 323 307 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 2002-2014 Marketed Production 324,720 309,124

  2. Pennsylvania Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    10 2011 2012 2013 2014 2015 View History Gross Withdrawals 572,902 1,310,592 2,256,696 3,259,042 4,214,643 4,768,848 1967-2015 From Gas Wells 173,450 242,305 210,609 207,872 174,576 1967-2014 From Oil Wells 0 0 3,456 2,987 3,564 1967-2014 From Shale Gas Wells 399,452 1,068,288 2,042,632 3,048,182 4,036,504 2007-2014 From Coalbed Wells 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 1967-2014 Vented and Flared 0 0 0 0 0 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 1997-2014 Marketed Production

  3. Kentucky Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    09 2010 2011 2012 2013 2014 View History Gross Withdrawals 113,300 135,330 124,243 106,122 94,665 78,737 1967-2014 From Gas Wells 111,782 133,521 122,578 106,122 94,665 78,737 1967-2014 From Oil Wells 1,518 1,809 1,665 0 0 0 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 2006-2014 Vented and Flared 0 0 0 0 0 0 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 2006-2014 Marketed Production 113,300 135,330 124,243 106,122

  4. Louisiana Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    10 2011 2012 2013 2014 2015 View History Gross Withdrawals 2,218,283 3,040,523 2,955,437 2,366,943 1,987,630 1,941,727 1967-2015 From Gas Wells 911,967 883,712 775,506 780,623 737,185 1967-2014 From Oil Wells 63,638 68,505 49,380 51,948 50,638 1967-2014 From Shale Gas Wells 1,242,678 2,088,306 2,130,551 1,534,372 1,199,807 2007-2014 From Coalbed Wells 0 0 0 0 0 2002-2014 Repressuring 3,606 5,015 0 2,829 3,199 1967-2014 Vented and Flared 4,578 6,302 0 3,912 4,143 1967-2014 Nonhydrocarbon Gases

  5. Nebraska Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    09 2010 2011 2012 2013 2014 View History Gross Withdrawals 2,916 2,255 1,980 1,328 1,032 402 1967-2014 From Gas Wells 2,734 2,092 1,854 1,317 1,027 400 1967-2014 From Oil Wells 182 163 126 11 5 1 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0 0 0 0 2006-2014 Repressuring 0 0 0 0 0 0 1967-2014 Vented and Flared 9 24 21 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 0 0 0 0 0 0 2006-2014 Marketed Production 2,908 2,231 1,959 1,328 1,032 402 1967-2014 Dry Production

  6. ,"West Virginia Natural Gas Gross Withdrawals and Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Natural Gas Gross Withdrawals and Production",10,"Monthly","22016","1151991" ,"Release ...

  7. ,"North Dakota Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Gross Withdrawals and Production",10,"Monthly","22016","1151989" ,"Release ...

  8. ,"Other States Total Natural Gas Gross Withdrawals and Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Natural Gas Gross Withdrawals and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ...

  9. ,"U.S. Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Gross Withdrawals and Production",10,"Monthly","22016","1151973" ,"Release ...

  10. Gross Gamma-Ray Calibration Blocks (May 1978) | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for, and the Procedures Currently Utilized in, Gross Gamma-Ray Log Calibration (October 1976) Parameter Assignments for Spectral Gamma-Ray Borehole Calibration Models (April 1984

  11. ,"New Mexico Natural Gas Gross Withdrawals from Oil Wells (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Gross Withdrawals from Oil Wells (MMcf)",1,"Annual",2014 ,"Release...

  12. ,"New Mexico Natural Gas Gross Withdrawals from Gas Wells (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Gross Withdrawals from Gas Wells (MMcf)",1,"Annual",2014 ,"Release...

  13. ,"Oregon Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ... Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","1...

  14. ,"Nevada Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ... Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","1...

  15. ,"Federal Offshore Gulf of Mexico Natural Gas Gross Withdrawals...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gulf of Mexico Natural Gas Gross Withdrawals and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  16. ,"New Mexico Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  17. 2014 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Uranium Production Report 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 2011 2012 2013 2014 2015 AUC LLC Reno Creek Campbell, Wyoming 2,000,000 - - Developing Developing Partially Permitted and Licensed Azarga Uranium Corp Dewey Burdock Project Fall River and Custer, South Dakota 1,000,000 Undeveloped Developing Developing Partially Permitted And Licensed Partially Permitted And Licensed Cameco Crow Butte Operation Dawes, Nebraska

  18. 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Uranium Production Report 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 Table 9. Summary production statistics of the U.S. uranium industry, 1993-2015 Exploration and Development Surface Exploration and Development Drilling Mine Production of Uranium Uranium Concentrate Production Uranium Concentrate Shipments Employment Year Drilling (million feet) Expenditures 1 (million dollars) (million pounds U 3 O 8 ) (million pounds U 3 O 8 )

  19. Kentucky Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Coalbed Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Gross Withdrawals from Coalbed Wells Kentucky Natural Gas Gross Withdrawals and Production Natural Gas Gross Withdrawals from Coalbed

  20. Maryland Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Coalbed Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Gross Withdrawals from Coalbed Wells Maryland Natural Gas Gross Withdrawals and Production Natural Gas Gross Withdrawals from Coalbed

  1. Nebraska Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Coalbed Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Gross Withdrawals from Coalbed Wells Nebraska Natural Gas Gross Withdrawals and Production Natural Gas Gross Withdrawals from Coalbed

  2. Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov ...

  3. Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals...

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil Wells (Million Cubic Feet) Federal Offshore--Gulf of Mexico Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov ...

  4. Physics Nobel winner David Gross gives public lecture at Jefferson...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Nobel winner David Gross gives public lecture at Jefferson Lab on June 12 (Monday) ... "The Coming Revolutions in Fundamental Physics" beginning at 8 p.m. at Jefferson Lab on ...

  5. Missouri Natural Gas Gross Withdrawals from Oil Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    from Oil Wells (Million Cubic Feet) Missouri Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  6. Montana Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Montana Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 4,561 3,826 4,106 ...

  7. Oklahoma Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet) Oklahoma Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 7,051 6,368 ...

  8. Louisiana Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Louisiana Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 425,704 369,500 ...

  9. Florida Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Florida Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1996 - - - - - - - - - ...

  10. Ohio Natural Gas Gross Withdrawals from Shale Gas (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet) Ohio Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 1 1 1 1 1 1 1 1 1 1 ...

  11. California Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) California Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 13,569 12,155 ...

  12. California Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet) California Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 ...

  13. Michigan Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Michigan Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 9,579 8,593 ...

  14. Texas Natural Gas Gross Withdrawals from Gas Wells (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Texas Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 507,274 440,015 ...

  15. Oklahoma Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Oklahoma Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 163,978 147,543 ...

  16. Montana Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet) Montana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 1,239 1,119 1,239 ...

  17. Michigan Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet) Michigan Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 11,582 10,461 ...

  18. Louisiana Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet) Louisiana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 1,273 1,150 ...

  19. Oregon Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    from Gas Wells (Million Cubic Feet) Oregon Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 246 244 232 ...

  20. Colorado Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet) Colorado Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 11,749 10,612 ...

  1. Mississippi Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Mississippi Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 14,797 13,076 ...

  2. Colorado Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Colorado Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 15,390 18,697 ...

  3. Pennsylvania Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    from Shale Gas (Million Cubic Feet) Pennsylvania Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 0 0 0 0 ...

  4. Texas Natural Gas Gross Withdrawals from Shale Gas (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet) Texas Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 107,415 97,020 ...

  5. Nevada Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    from Gas Wells (Million Cubic Feet) Nevada Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  6. 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Uranium Production Report 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 State(s) 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Wyoming 134 139 181 195 245 301 308 348 424 512 531 416 343 Colorado and Texas 48 140 269 263 557 696 340 292 331 248 198 105 79 Nebraska and New Mexico 92 102 123 160 149 160 159 134 127 W W W W Arizona, Utah, and Washington 47 40 75 120 245 360 273 281 W W W W W Alaska, Michigan, Nevada, and

  7. 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Uranium Production Report 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 million pounds U 3 O 8 $0 to $30 per pound $0 to $50 per pound $0 to $100 per pound $0 to $30 per pound $0 to $50 per pound $0 to $100 per pound Properties with Exploration Completed, Exploration Continuing, and Only Assessment Work W W 154.6 24.3 W 151.6 Properties Under Development for Production and Development Drilling W 38.2 W W 38.2 W Mines in Production W 19.2 W

  8. Property:CoolingTowerWaterUseSummerGross | Open Energy Information

    Open Energy Info (EERE)

    Property Name CoolingTowerWaterUseSummerGross Property Type Number Description Cooling Tower Water use (summer average) (afday) Gross. Retrieved from "http:en.openei.orgw...

  9. ,"U.S. Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)" "Sourcekey","NGMEPG0FGSNUSMMCF" "Date","U.S. Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)" ...

  10. Resource demand growth and sustainability due to increased world consumption

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Balatsky, Alexander V.; Balatsky, Galina I.; Borysov, Stanislav S.

    2015-03-20

    The paper aims at continuing the discussion on sustainability and attempts to forecast the impossibility of the expanding consumption worldwide due to the planet’s limited resources. As the population of China, India and other developing countries continue to increase, they would also require more natural and financial resources to sustain their growth. We coarsely estimate the volumes of these resources (energy, food, freshwater) and the gross domestic product (GDP) that would need to be achieved to bring the population of India and China to the current levels of consumption in the United States. We also provide estimations for potentially neededmore » immediate growth of the world resource consumption to meet this equality requirement. Given the tight historical correlation between GDP and energy consumption, the needed increase of GDP per capita in the developing world to the levels of the U.S. would deplete explored fossil fuel reserves in less than two decades. These estimates predict that the world economy would need to find a development model where growth would be achieved without heavy dependence on fossil fuels.« less

  11. Resource demand growth and sustainability due to increased world consumption

    SciTech Connect (OSTI)

    Balatsky, Alexander V.; Balatsky, Galina I.; Borysov, Stanislav S.

    2015-03-20

    The paper aims at continuing the discussion on sustainability and attempts to forecast the impossibility of the expanding consumption worldwide due to the planet’s limited resources. As the population of China, India and other developing countries continue to increase, they would also require more natural and financial resources to sustain their growth. We coarsely estimate the volumes of these resources (energy, food, freshwater) and the gross domestic product (GDP) that would need to be achieved to bring the population of India and China to the current levels of consumption in the United States. We also provide estimations for potentially needed immediate growth of the world resource consumption to meet this equality requirement. Given the tight historical correlation between GDP and energy consumption, the needed increase of GDP per capita in the developing world to the levels of the U.S. would deplete explored fossil fuel reserves in less than two decades. These estimates predict that the world economy would need to find a development model where growth would be achieved without heavy dependence on fossil fuels.

  12. Assessment of Unglazed Solar Domestic Water Heaters

    SciTech Connect (OSTI)

    Burch, J.; Salasovich, J.; Hillman, T.

    2005-12-01

    Conference paper investigating cost-performance tradeoffs in replacing glazed collectors with unglazed collectors in solar domestic water heating systems.

  13. Gross alpha analytical modifications that improve wastewater treatment compliance

    SciTech Connect (OSTI)

    Tucker, B.J.; Arndt, S.

    2007-07-01

    This paper will propose an improvement to the gross alpha measurement that will provide more accurate gross alpha determinations and thus allow for more efficient and cost-effective treatment of site wastewaters. To evaluate the influence of salts that may be present in wastewater samples from a potentially broad range of environmental conditions, two types of efficiency curves were developed, each using a thorium-230 (Th-230) standard spike. Two different aqueous salt solutions were evaluated, one using sodium chloride, and one using salts from tap water drawn from the Bergen County, New Jersey Publicly Owned Treatment Works (POTW). For each curve, 13 to 17 solutions were prepared, each with the same concentration of Th-230 spike, but differing in the total amount of salt in the range of 0 to 100 mg. The attenuation coefficients were evaluated for the two salt types by plotting the natural log of the counted efficiencies vs. the weight of the sample's dried residue retained on the planchet. The results show that the range of the slopes for each of the attenuation curves varied by approximately a factor of 2.5. In order to better ensure the accuracy of results, and thus verify compliance with the gross alpha wastewater effluent criterion, projects depending on gross alpha measurements of environmental waters and wastewaters should employ gross alpha efficiency curves prepared with salts that mimic, as closely as possible, the salt content of the aqueous environmental matrix. (authors)

  14. 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Uranium Production Report 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 Number of Holes Feet (thousand) Number of Holes Feet (thousand) Number of Holes Feet (thousand) 2003 NA NA NA NA W W 2004 W W W W 2,185 1,249 2005 W W W W 3,143 1,668 2006 1,473 821 3,430 1,892 4,903 2,713 2007 4,351 2,200 4,996 2,946 9,347 5,146 2008 5,198 2,543 4,157 2,551 9,355 5,093 2009 1,790 1,051 3,889 2,691 5,679 3,742 2010 2,439 1,460 4,770 3,444 7,209 4,904

  15. 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Uranium Production Report 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 Activity at U.S. Mills and In-Situ-Leach Plants 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Ore from Underground Mines and Stockpiles Fed to Mills 1 0 W W W 0 W W W W W W W 0 Other Feed Materials 2 W W W W W W W W W W W W W Total Mill Feed W W W W W W W W W W W W W (thousand pounds U 3 O 8 ) W W W W W W W W W W W W W (thousand pounds U 3 O 8 ) W W

  16. 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Uranium Production Report May 2016 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as

  17. 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    7 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 Capacity (short tons of ore per day) 2011 2012 2013 2014 2015 Anfield Resources Shootaring Canyon Uranium Mill Garfield, Utah 750 Standby Standby Standby Standby Standby EFR White Mesa LLC White Mesa Mill San Juan, Utah 2,000 Operating Operating Operating- Processing Alternate Feed Operating- Processing Alternate Feed Operating- Processing Alternate Feed Energy Fuels Wyoming Inc Sheep Mountain

  18. Other States Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Other States Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 72,328 63,451 67,732 63,118 62,276 59,557 ...

  19. New Mexico Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    10 2011 2012 2013 2014 2015 View History Gross Withdrawals 1,341,475 1,287,682 1,276,296 1,247,394 1,265,579 1,289,908 1967-2015 From Gas Wells 616,134 556,024 653,057 588,127 ...

  20. Federal Offshore Louisiana Natural Gas Gross Withdrawals and...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series Area 2009 2010 2011 2012 2013 2014 View History Gross Withdrawals NA NA NA 0 0 0 1977-2014 From Gas Wells NA NA NA 0 0 0 1977-2014 From Oil Wells NA NA NA 0 0 0 ...

  1. Kansas Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 ...

  2. Mississippi Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 ...

  3. Nebraska Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 ...

  4. Seeking New Approaches to Investigate Domestication Events |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Seeking New Approaches to Investigate Domestication Events Monday, October 29, 2012 - 3:30am SSRL Bldg. 137, Rm. 322 Krish Seetah, Stanford University, Department of Anthropology...

  5. Smart Domestic Appliances Provide Flexibility for Sustainable...

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentsmart-domestic-appliances-provide-fle Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible...

  6. Property:CoolingTowerWaterUseAnnlAvgGross | Open Energy Information

    Open Energy Info (EERE)

    Property Name CoolingTowerWaterUseAnnlAvgGross Property Type Number Description Cooling Tower Water use (annual average) (afday) Gross. Retrieved from "http:en.openei.orgw...

  7. Property:CoolingTowerWaterUseWinterGross | Open Energy Information

    Open Energy Info (EERE)

    lingTowerWaterUseWinterGross Property Type Number Description Cooling Tower Water use (winter average) (afday) Gross. Retrieved from "http:en.openei.orgwindex.php?titleProper...

  8. 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    9 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 Year Exploration Mining Milling Processing Reclamation Total 2003 W W W W 117 321 2004 18 108 W W 121 420 2005 79 149 142 154 124 648 2006 188 121 W W 155 755 2007 375 378 107 216 155 1,231 2008 457 558 W W 154 1,563 2009 175 441 W W 162 1,096 2010 211 400 W W 125 1,073 2011 208 462 W W 102 1,191 2012 161 462 W W 179 1,196 2013 149 392 W W 199 1,156 2014 86 246 W W 161 787 2015 58 251 W W 116 625

  9. 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    5 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 Production / Mining Method 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 (estimated contained thousand pounds U 3 O 8 ) W W W W W W W W W W W W W (estimated contained thousand pounds U 3 O 8 ) 0 0 0 0 0 0 0 0 0 0 0 0 0 (thousand pounds U 3 O 8 ) W W 2,681 4,259 W W W W W W W W W (thousand pounds U 3 O 8 ) W W W W W W W W W W W W W (thousand pounds U 3 O 8 ) E2,200 2,452 3,045 4,692

  10. Louisiana Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals Total Offshore (Million Cubic Feet) Louisiana Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,838,521 4,600,197 4,750,119 1980's 4,617,585 4,584,491 4,246,464 3,635,942 4,070,279 3,542,827 3,279,165 3,610,041 3,633,594 3,577,685 1990's 3,731,764 3,550,230 3,442,437 3,508,112 3,673,494 3,554,147 3,881,697 3,941,802 3,951,997 3,896,569 2000's 3,812,991 153,871 137,192 133,456

  11. Louisiana--State Offshore Natural Gas Gross Withdrawals (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Gross Withdrawals (Million Cubic Feet) Louisiana--State Offshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 498,876 487,512 1980's 417,312 381,938 366,546 322,588 319,638 256,736 207,265 225,599 214,645 204,005 1990's 182,240 148,429 138,101 157,011 159,513 94,044 192,527 180,848 192,956 164,523 2000's 141,567 153,871 137,192 133,456 129,245 107,584 97,479 72,868 86,198 76,386 2010's 69,836

  12. Louisiana--onshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) Louisiana--onshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1,535,033 1,538,511 1,552,603 1,608,633 1,469,698 1,357,155 1,386,478 1,434,389 2000's 1,342,963 1,370,802 1,245,270 1,244,672 1,248,050 1,202,328 1,280,758 1,309,960 1,301,523 1,482,252 2010's 2,148,447 2,969,297 2,882,193 2,289,193 1,925,968 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  13. Alabama Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals Total Offshore (Million Cubic Feet) Alabama Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 9 13 1990's 19,861 32,603 191,605 218,023 349,380 356,598 361,068 409,091 392,320 376,435 2000's 361,289 200,862 202,002 194,339 165,630 152,902 145,762 134,451 125,502 109,214 2010's 101,487 84,270 87,398 75,660 70,827 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  14. Alabama--onshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) Alabama--onshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 222,009 228,298 229,483 223,527 221,233 220,674 212,470 207,863 2000's 200,255 191,119 184,500 176,571 173,106 164,304 160,381 155,167 152,051 146,751 2010's 139,215 134,305 128,312 120,666 110,226 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  15. Alaska Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals Total Offshore (Million Cubic Feet) Alaska Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 72,813 71,946 1980's 63,355 71,477 66,852 68,776 68,315 62,454 63,007 69,656 101,440 122,595 1990's 144,064 171,665 216,377 233,198 224,301 113,552 126,051 123,854 133,111 125,841 2000's 263,958 262,937 293,580 322,010 334,125 380,568 354,816 374,204 388,188 357,490 2010's 370,148 364,702

  16. Alaska--onshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) Alaska--onshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,409,336 2,545,144 2,861,599 3,256,352 3,247,533 3,257,096 3,245,736 3,236,241 2000's 3,265,436 3,164,843 3,183,857 3,256,295 3,309,960 3,262,379 2,850,934 3,105,086 3,027,696 2,954,896 2010's 2,826,952 2,798,220 2,857,485 2,882,956 2,803,429 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  17. Calif--onshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) Calif--onshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 386,382 346,733 334,987 322,544 326,919 317,137 315,701 347,667 2000's 334,983 336,629 322,138 303,480 287,205 291,271 301,921 286,584 281,088 258,983 2010's 273,136 237,388 214,509 219,386 218,512 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  18. California Natural Gas Gross Withdrawals Total Offshore (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Gross Withdrawals Total Offshore (Million Cubic Feet) California Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 5,417 19,929 20,394 1980's 19,980 26,692 31,904 38,084 60,207 84,062 77,355 67,835 60,308 59,889 1990's 58,055 59,465 62,473 58,635 60,765 60,694 73,092 80,516 81,868 84,547 2000's 83,882 78,209 74,884 64,961 61,622 60,773 47,217 52,805 51,931 47,281 2010's 46,755 41,742

  19. Federal Offshore California Natural Gas Gross Withdrawals (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Gross Withdrawals (Million Cubic Feet) Federal Offshore California Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 5,417 5,166 5,431 1980's 5,900 12,763 17,751 24,168 46,363 64,558 59,078 54,805 49,167 50,791 1990's 49,972 51,855 55,231 52,150 53,561 54,790 66,784 73,345 74,985 77,809 2000's 76,075 70,947 67,816 58,095 54,655 54,088 40,407 45,516 44,902 41,229 2010's 41,200 36,579 27,262 27,454

  20. Federal Offshore--Alabama Natural Gas Gross Withdrawals (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Offshore--Alabama Natural Gas Gross Withdrawals (Million Cubic Feet) Federal Offshore--Alabama Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 0 1990's 0 0 79,294 86,515 120,502 143,703 152,055 194,677 170,320 163,763 2000's 160,208 NA NA NA NA NA NA NA NA NA 2010's NA NA 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  1. Federal Offshore--Louisiana Natural Gas Gross Withdrawals (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Gross Withdrawals (Million Cubic Feet) Federal Offshore--Louisiana Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,838,521 4,101,321 4,262,607 1980's 4,200,273 4,202,553 3,879,918 3,313,354 3,750,641 3,286,091 3,071,900 3,384,442 3,418,949 3,373,680 1990's 3,549,524 3,401,801 3,304,336 3,351,101 3,513,981 3,460,103 3,689,170 3,760,953 3,759,040 3,732,046 2000's 3,671,424 NA NA NA NA NA NA NA NA NA

  2. Physics Nobel winner David Gross gives public lecture at Jefferson Lab on

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 12 (Monday) | Jefferson Lab Nobel winner David Gross gives public lecture at Jefferson Lab on June 12 (Monday) Physics Nobel winner David Gross gives public lecture at Jefferson Lab on June 12 (Monday) June 6, 2006 David Gross David Gross, Nobel Prize recipient and lecturer David Gross, Nobel Prize recipient is scheduled to give a free, public lecture titled "The Coming Revolutions in Fundamental Physics" beginning at 8 p.m. at Jefferson Lab on (Monday) June 12. He is one of

  3. 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    11 2015 Domestic Uranium Production Report Release Date: May 5, 2016 Next Release Date: May 2017 Total Land and Other 2003 W W 31.3 NA NA NA W 2004 10.6 27.8 48.4 NA NA NA 86.9 2005 18.1 58.2 59.7 NA NA NA 136.0 2006 40.1 65.9 115.2 41.0 23.3 50.9 221.2 2007 67.5 90.4 178.2 77.7 50.3 50.2 336.2 2008 81.9 221.2 164.4 65.2 50.2 49.1 467.6 2009 35.4 141.0 104.0 17.3 24.2 62.4 280.5 2010 44.6 133.3 99.5 20.2 34.5 44.7 277.3 2011 53.6 168.8 96.8 19.6 43.5 33.7 319.2 2012 66.6 186.9 99.4 16.8 33.3

  4. Opportunities and Domestic Barriers to Clean Energy Investment...

    Open Energy Info (EERE)

    and Domestic Barriers to Clean Energy Investment in Chile Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Opportunities and Domestic Barriers to Clean Energy Investment...

  5. Table 22. Domestic Crude Oil First Purchase Prices for Selected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Form EIA-182, "Domestic Crude Oil First Purchase Report." 22. Domestic Crude Oil First Purchase Prices for Selected Crude Streams 44 Energy Information Administration ...

  6. Report to the President on Capturing Domestic Competitive Advantage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report to the President on Capturing Domestic Competitive Advantage in Advanced Manufacturing Report to the President on Capturing Domestic Competitive Advantage in Advanced ...

  7. Domestic Uranium Production Report 2004-13

    Gasoline and Diesel Fuel Update (EIA)

    Domestic Uranium Production Report 1st Quarter 2016 May 2016 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Domestic Uranium Production Report 1st Quarter 2016 ii This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer

  8. California--State Offshore Natural Gas Gross Withdrawals (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Gross Withdrawals (Million Cubic Feet) California--State Offshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14,763 14,963 1980's 14,080 13,929 14,153 13,916 13,844 19,504 18,277 13,030 11,141 9,098 1990's 8,083 7,610 7,242 6,484 7,204 5,904 6,309 7,171 6,883 6,738 2000's 7,808 7,262 7,068 6,866 6,966 6,685 6,809 7,289 7,029 6,052 2010's 5,554 5,163 5,051 5,470 5,961 - = No Data Reported; -- =

  9. Keynote Address: Ali Zaidi, the White House Domestic Policy Council

    Broader source: Energy.gov [DOE]

    Keynote address by Ali Zaidi, Deputy Director for Energy Policy, the White House Domestic Policy Council.

  10. Table 6.4 Natural Gas Gross Withdrawals and Natural Gas Well Productivity, 1960-2011

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Gross Withdrawals and Natural Gas Well Productivity, 1960-2011 Year Natural Gas Gross Withdrawals From Crude Oil, Natural Gas, Coalbed, and Shale Gas Wells Natural Gas Well Productivity Texas 1 Louisiana 1 Oklahoma Other States 1 Federal Gulf of Mexico 2 Total Onshore Offshore Total Gross With- drawals From Natural Gas Wells 3 Producing Wells 4 Average Productivity Federal State Total Million Cubic Feet Million Cubic Feet Million Cubic Feet Number Cubic Feet per Well 1960 6,964,900

  11. Virginia Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 19,038 37,808 41,230 2000's 36,700 33,118 34,936 35,256 48,784 66,951 60,321 90,573 76,983 94,829 2010's 139,755 142,284 189,848 171,588 158,672 243,116

    09 2010 2011 2012 2013 2014 View History Gross Withdrawals 140,738 147,255 151,094 146,405 139,382 131,885 1967-2014 From Gas Wells 16,046 23,086 20,375 21,802 26,815 27,052 1967-2014 From Oil Wells 0 0 0 9 9 9 2006-2014 From Shale Gas Wells 18,284

  12. Other States Total Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly-Million Cubic Feet Monthly-Million Cubic Feet per Day Annual-Million Cubic Feet Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History Gross Withdrawals 5,864,402 6,958,125 8,225,321 689,082 633,853 596,357 1991-2015 From Gas Wells 2,523,173 2,599,172 3,177,021 362,605 328,809 1991-2014 From Oil Wells 691,643 728,857 279,627 23,391 22,817 1991-2014 From

  13. Oregon Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 24,171 52,846 49,661 2000's 69,451 82,542 55,854 74,400 88,734 87,998 75,186 101,503 116,637 108,705 2010's 108,827 60,252 81,444 101,930 90,099 113,988

    09 2010 2011 2012 2013 2014 View History Gross Withdrawals 821 1,407 1,344 770 770 950 1979-2014 From Gas Wells 821 1,407 1,344 770 770 950 1979-2014 From Oil Wells 0 0 0 0 0 0 1996-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0

  14. Pennsylvania Natural Gas Gross Withdrawals from Coalbed Wells (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 20,430 30,240 31,353 2000's 20,597 22,632 50,251 41,238 76,186 80,640 100,946 143,954 141,011 210,542 2010's 245,559 306,266 393,775 362,349 390,816 439,248

    10 2011 2012 2013 2014 2015 View History Gross Withdrawals 572,902 1,310,592 2,256,696 3,259,042 4,214,643 4,768,848 1967-2015 From Gas Wells 173,450 242,305 210,609 207,872 174,576 1967-2014 From Oil Wells 0 0 3,456 2,987 3,564 1967-2014

  15. Gross national happiness as a framework for health impact assessment

    SciTech Connect (OSTI)

    Pennock, Michael; Ura, Karma

    2011-01-15

    The incorporation of population health concepts and health determinants into Health Impact Assessments has created a number of challenges. The need for intersectoral collaboration has increased; the meaning of 'health' has become less clear; and the distinctions between health impacts, environmental impacts, social impacts and economic impacts have become increasingly blurred. The Bhutanese concept of Gross National Happiness may address these issues by providing an over-arching evidence-based framework which incorporates health, social, environmental and economic contributors as well as a number of other key contributors to wellbeing such as culture and governance. It has the potential to foster intersectoral collaboration by incorporating a more limited definition of health which places the health sector as one of a number of contributors to wellbeing. It also allows for the examination of the opportunity costs of health investments on wellbeing, is consistent with whole-of-government approaches to public policy and emerging models of social progress.

  16. Grade Assignments for Models Used for Calibration of Gross-Count Gamma-Ray

    Energy Savers [EERE]

    Logging Systems (December 1983) | Department of Energy Grade Assignments for Models Used for Calibration of Gross-Count Gamma-Ray Logging Systems (December 1983) Grade Assignments for Models Used for Calibration of Gross-Count Gamma-Ray Logging Systems (December 1983) Grade Assignments for Models Used for Calibration of Gross-Count Gamma-Ray Logging Systems (December 1983) PDF icon Grade Assignments for Models Used for Calibration of Gross-Count Gamma-Ray Logging Systems (December 1983) More

  17. Spatial confinement and thermal deconfinement in the Gross-Neveu model

    SciTech Connect (OSTI)

    Malbouisson, J. M. C.; Khanna, F. C.; Malbouisson, A. P. C.

    2007-06-19

    We discuss the occurrence of spatial confinement and thermal deconfinement in the massive, D-dimensional, Gross-Neveu model with compactified spatial dimensions.

  18. Domestic Uranium Production Report - Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Uranium Production Report - Annual With Data for 2015 | Release Date: May 5, 2016 | Next Release Date: May 2017 | full report Previous domestic uranium production reports Year: 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 Go Drilling Total uranium drilling was 1,518 holes covering 0.9 million feet, 13% fewer holes than in 2015. Expenditures for uranium drilling in the United States were $29 million in 2015, an increase of 2% compared with 2014. Figure 1. U.S. Uranium drilling

  19. Office of Domestic and International Health Studies

    Broader source: Energy.gov [DOE]

    The Office of Domestic and International Health Studies engages in the conduct of international scientific studies that may provide new knowledge and information about the human response to ionizing radiation in the workplace or people exposed in communities as a result of nuclear accidents, including providing health and environmental monitoring services to populations specified by law.

  20. Other States Natural Gas Gross Withdrawals from Coalbed Wells (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Coalbed Wells (Million Cubic Feet) Other States Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 5,335 4,954 5,465 5,228 5,405 5,163 4,817 5,652 5,165 5,347 4,814 5,420 2004 5,684 5,278 5,822 5,570 5,758 5,500 5,132 6,022 5,502 5,697 5,129 5,774 2005 5,889 5,469 6,033 5,771 5,967 5,699 5,318 6,240 5,702 5,903 5,315 5,983 2006 16,225 14,883 16,627 15,979 16,802 16,447 16,891

  1. Kentucky Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,194 5,782 5,686 2000's 4,202 4,433 13,712 3,667 4,833 17,181 12,287 19,376 9,584 8,399 2010's 19,284 15,575 31,194 14,536 26,919 52,015

    09 2010 2011 2012 2013 2014 View History Gross Withdrawals 113,300 135,330 124,243 106,122 94,665 78,737 1967-2014 From Gas Wells 111,782 133,521 122,578 106,122 94,665 78,737 1967-2014 From Oil Wells 1,518 1,809 1,665 0 0 0 1967-2014 From Shale Gas Wells 0 0 0 0 0

  2. Nebraska Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,687 5,080 4,582 2000's 5,522 4,290 4,947 4,593 3,340 8,066 7,787 10,908 7,230 3,331 2010's 3,949 4,223 7,696 5,080 4,132 4,634

    09 2010 2011 2012 2013 2014 View History Gross Withdrawals 2,916 2,255 1,980 1,328 1,032 402 1967-2014 From Gas Wells 2,734 2,092 1,854 1,317 1,027 400 1967-2014 From Oil Wells 182 163 126 11 5 1 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 0 0 0

  3. Domestic Coal Distribution 2009 Q1 by Destination State: Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Domestic Coal Distribution 2009 Q1 by Destination State: Alabama (1000 Short Tons) 1 64 Domestic Coal Distribution 2009 Q1 by Destination State: Alabama (1000 Short Tons)...

  4. Domestic Coal Distribution 2009 Q2 by Destination State: Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    61 Domestic Coal Distribution 2009 Q2 by Destination State: Alabama (1000 Short Tons) 1 61 Domestic Coal Distribution 2009 Q2 by Destination State: Alabama (1000 Short Tons)...

  5. Keynote Address: Ali Zaidi, the White House Domestic Policy Council...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ali Zaidi, the White House Domestic Policy Council Keynote Address: Ali Zaidi, the White House Domestic Policy Council May 21, 2014 2:05PM to 2:30PM PDT Pacific Ballroom Keynote...

  6. ENERGY USE AND DOMESTIC HOT WATER CONSUMPTION Final Report

    Office of Scientific and Technical Information (OSTI)

    USE AND DOMESTIC HOT WATER CONSUMPTION Final Report Phase 1 Prepared for THE N E W YORK ... operating data on combined domestic hot water @HW) and heating systems to be used in ...

  7. Montana Domestic Sewage Treatment Lagoons General Permit | Open...

    Open Energy Info (EERE)

    GuidanceSupplemental Material Abstract Example authorization of Domestic Sewage Treatment Lagoons General Permit. Author Montana Department of Environmental Quality -...

  8. Montana Notice of Intent: Domestic Sewage Treatment Lagoons General...

    Open Energy Info (EERE)

    Abstract Provides instructions for submitting an NOI for Domestic Sewage Treatment Lagoons General Permit. Author Montana Department of Environmental Quality -...

  9. New York Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Coalbed Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Gross Withdrawals from Coalbed Wells New York Natural Gas Gross Withdrawals and Production Natural Gas Gross Withdrawals from Coalbed

  10. Oregon Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Gross Withdrawals from Shale Gas Wells Oregon Natural Gas Gross Withdrawals and Production Natural Gas Gross Withdrawals from Shale Gas

  11. Missouri Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    from Oil Wells (Million Cubic Feet) Missouri Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 NA NA 2010's NA NA NA 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Gross Withdrawals from Oil Wells Missouri Natural Gas Gross Withdrawals

  12. Nevada Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    from Gas Wells (Million Cubic Feet) Nevada Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Gross Withdrawals from Gas Wells Nevada Natural Gas Gross Withdrawals and

  13. Nevada Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Gross Withdrawals from Shale Gas Wells Nevada Natural Gas Gross Withdrawals and Production Natural Gas Gross Withdrawals from Shale

  14. EIA Energy Efficiency-Table 4e. Gross Output by Selected Industries...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    e Page Last Modified: May 2010 Table 4e. Gross Output1by Selected Industries, 1998, 2002, and 2006 (Billion 2000 Dollars 2) MECS Survey Years NAICS Subsector and Industry 1998 2002...

  15. EIA Energy Efficiency-Table 3e. Gross Output by Selected Industries...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    e Page Last Modified: May 2010 Table 3e. Gross Output1 by Selected Industries, 1998, 2002, and 2006 (Current Billion Dollars) MECS Survey Years NAICS Subsector and Industry 1998...

  16. Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight

    Office of Energy Efficiency and Renewable Energy (EERE)

    The gross weight of a vehicle (GVW) is the weight of the empty vehicle plus the weight of the maximum payload that the vehicle was designed to carry. In cars and small light trucks, the difference...

  17. The one-dimensional Gross-Pitaevskii equation and its some excitation states

    SciTech Connect (OSTI)

    Prayitno, T. B.

    2015-04-16

    We have derived some excitation states of the one-dimensional Gross-Pitaevskii equation coupled by the gravitational potential. The methods that we have used here are taken by pursuing the recent work of Kivshar et. al. by considering the equation as a macroscopic quantum oscillator. To obtain the states, we have made the appropriate transformation to reduce the three-dimensional Gross-Pitaevskii equation into the one-dimensional Gross-Pitaevskii equation and applying the time-independent perturbation theory in the general solution of the one-dimensional Gross-Pitaevskii equation as a linear superposition of the normalized eigenfunctions of the Schrödinger equation for the harmonic oscillator potential. Moreover, we also impose the condition by assuming that some terms in the equation should be so small in order to preserve the use of the perturbation method.

  18. 23 V.S.A. Section 1392 Gross Weight Limits on Highways | Open...

    Open Energy Info (EERE)

    Section 1392 Gross Weight Limits on HighwaysLegal Abstract Statute establishes the motor vehicle weight, load size, not to exceed 80,000 pounds without a permit. Published NA...

  19. Energy-Efficient Controls for Multifamily Domestic Hot Water

    Energy Savers [EERE]

    Residential Integrated Energy Solutions Building America Webinar: Central Multifamily Water Heating Systems January 21, 2015 Energy-Efficient Controls for Multifamily Domestic Hot ...

  20. Maricopa Assn. of Governments - PV and Solar Domestic Water Heating...

    Broader source: Energy.gov (indexed) [DOE]

    June 18, 2003, MAG passed permit submission requirements for residential solar domestic water heating systems. This is in addition to the existing standards for residential and...

  1. Acquisition Letter on Contractor Domestic Extended Personnel Assignments

    Broader source: Energy.gov [DOE]

    The attached Acquisition Letter has been issued to provide guidance on the Department's policy governing reimbursement of costs associated with contractor domestic extended personnel assignments.

  2. Policy Analysis of Water Availability and Use Issues for Domestic...

    Office of Scientific and Technical Information (OSTI)

    Policy Analysis of Water Availability and Use Issues for Domestic Oil Shale and Oil Sands Development Citation Details In-Document Search Title: Policy Analysis of Water ...

  3. ORISE: Securing the Golden State from threats foreign and domestic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORISE helps California emergency planners with innovative training on state and local levels To protect the state of California from both foreign and domestic threats, ORISE ...

  4. Foreign Research Reactor/Domestic Research Reactor Receipt Coordinator...

    National Nuclear Security Administration (NNSA)

    Foreign Research ReactorDomestic Research Reactor Receipt Coordinator, Savannah River ... Mike Dunsmuir, FRRDRR Receipt Coordinator with Savannah River Nuclear Solutions (SRNS) ...

  5. Securing Clean, Domestic, Affordable Energy with Wind (Fact Sheet...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Securing Clean, Domestic, Affordable Energy with Wind The U.S. Department of Energy Wind Program is committed to developing and deploying a portfolio of innovative technologies for ...

  6. Domestic Hot Water Event Schedule Generator - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency Building Energy Efficiency Find More Like This Return to Search Domestic Hot Water Event Schedule Generator National Renewable Energy Laboratory Contact NREL About This...

  7. Montana Domestic Sewage Treatment Lagoons General Permit Information...

    Open Energy Info (EERE)

    Lagoons General Permit Information Citation Montana Department of Environmental Quality - Water Protection Bureau. 72012. Montana Domestic Sewage Treatment Lagoons General Permit...

  8. Montana Domestic Sewage Treatment Lagoons General Permit Fact...

    Open Energy Info (EERE)

    Lagoons General Permit Fact Sheet Citation Montana Department of Environmental Quality - Water Protection Bureau. 82012. Montana Domestic Sewage Treatment Lagoons General Permit...

  9. Table 21. Domestic Crude Oil First Purchase Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Administration Petroleum Marketing Annual 1996 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  10. Table 21. Domestic Crude Oil First Purchase Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    AdministrationPetroleum Marketing Annual 1998 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  11. Table 22. Domestic Crude Oil First Purchase Prices for Selected...

    U.S. Energy Information Administration (EIA) Indexed Site

    data. Source: Energy Information Administration, Form EIA-182, "Domestic Crude Oil First Purchase Report." 44 Energy Information AdministrationPetroleum Marketing Annual...

  12. Table 21. Domestic Crude Oil First Purchase Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Administration Petroleum Marketing Annual 1995 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  13. Table 22. Domestic Crude Oil First Purchase Prices for Selected...

    U.S. Energy Information Administration (EIA) Indexed Site

    data. Source: Energy Information Administration, Form EIA-182, "Domestic Crude Oil First Purchase Report." 44 Energy Information Administration Petroleum Marketing Annual...

  14. Crude Oil Prices Table 21. Domestic Crude Oil First Purchase...

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration Petroleum Marketing Annual 1995 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  15. Montana Notice of Intent: Domestic Sewage Treatment Lagoons General...

    Open Energy Info (EERE)

    Reference LibraryAdd to library Form: Montana Notice of Intent: Domestic Sewage Treatment Lagoons General Permit (MDEQ Form NOI) Abstract Form to be completed by owner or...

  16. Domestic Material Content in Molten-Salt Concentrating Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Domestic Material Content in Molten-Salt Concentrating Solar Power Plants Craig Turchi, Parthiv Kurup, Sertac Akar, and Francisco Flores Technical Report NRELTP-5500-64429 August...

  17. Domestic Uranium Production Report - Quarterly - Energy Information

    U.S. Energy Information Administration (EIA) Indexed Site

    Administration All Nuclear Reports Domestic Uranium Production Report - Quarterly Data for 1st Quarter 2016 | Release Date: May 5, 2016 | Next Release Date: August 2016 | full report Previous Issues Year: 2015-Q4 2015-Q3 2015-Q2 2015-Q1 2014-Q4 2014-Q3 2014-Q2 2014-Q1 2013-Q4 2013-Q3 2013-Q2 2013-Q1 2012-Q4 2012-Q3 2012-Q2 2012-Q1 2011-Q4 2011-Q3 2011-Q2 2011-Q1 2010-Q4 2010-Q3 2010-Q2 2010-Q1 2009-Q4 2009-Q3 2009-Q2 2009-Q1 2008-Q4 2008-Q3 2008-Q2 2008-Q1 Go 1st Quarter 2016 U.S. production

  18. ,"Texas--State Offshore Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas--State Offshore Natural Gas Gross Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File Name:","na1060_rtxsf_2a.xls"

  19. ,"US--Federal Offshore Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Federal Offshore Natural Gas Gross Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","US--Federal Offshore Natural Gas Gross Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  20. ,"US--State Offshore Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    State Offshore Natural Gas Gross Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","US--State Offshore Natural Gas Gross Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  1. ,"Alabama--State Offshore Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama--State Offshore Natural Gas Gross Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File Name:","na1060_ralsf_2a.xls"

  2. ,"Alaska--State Offshore Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska--State Offshore Natural Gas Gross Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File Name:","na1060_raksf_2a.xls"

  3. ,"California--State Offshore Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California--State Offshore Natural Gas Gross Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  4. ,"Federal Offshore California Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore California Natural Gas Gross Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  5. ,"Federal Offshore Gulf of Mexico Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gulf of Mexico Natural Gas Gross Withdrawals and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore Gulf of Mexico Natural Gas Gross Withdrawals and Production",10,"Monthly","2/2016","1/15/1997" ,"Release Date:","4/29/2016" ,"Next Release

  6. ,"Federal Offshore--Alabama Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Alabama Natural Gas Gross Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  7. ,"Federal Offshore--Louisiana Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Louisiana Natural Gas Gross Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  8. ,"Federal Offshore--Texas Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Gross Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Texas Natural Gas Gross Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  9. ,"Louisiana--State Offshore Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--State Offshore Natural Gas Gross Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  10. Gross error detection and stage efficiency estimation in a separation process

    SciTech Connect (OSTI)

    Serth, R.W.; Srikanth, B. . Dept. of Chemical and Natural Gas Engineering); Maronga, S.J. . Dept. of Chemical and Process Engineering)

    1993-10-01

    Accurate process models are required for optimization and control in chemical plants and petroleum refineries. These models involve various equipment parameters, such as stage efficiencies in distillation columns, the values of which must be determined by fitting the models to process data. Since the data contain random and systematic measurement errors, some of which may be large (gross errors), they must be reconciled to obtain reliable estimates of equipment parameters. The problem thus involves parameter estimation coupled with gross error detection and data reconciliation. MacDonald and Howat (1988) studied the above problem for a single-stage flash distillation process. Their analysis was based on the definition of stage efficiency due to Hausen, which has some significant disadvantages in this context, as discussed below. In addition, they considered only data sets which contained no gross errors. The purpose of this article is to extend the above work by considering alternative definitions of state efficiency and efficiency estimation in the presence of gross errors.

  11. U.S. Domestic and Foreign Coal Distribution by State of Origin

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic and Foreign Coal Distribution by State of Origin ...Domestic and Foreign Distribution of U.S. Coal by State of Origin, 2014 (thousand short ...

  12. The Lessons of Practice: Domestic Policy Reform as a Way to Address...

    Open Energy Info (EERE)

    Lessons of Practice: Domestic Policy Reform as a Way to Address Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Lessons of Practice: Domestic Policy...

  13. Carbon Dioxide Enhanced Oil Recovery Untapped Domestic Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oily surfaces can be cleaned if a solvent is used that is completely miscible with the oil. 5 Untapped Domestic Energy Supply and Long Term Carbon Storage Solution oilCO 2 ...

  14. Domestic Coal Distribution 2009 Q1 by Origin State: Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    Q1 by Origin State: Alabama (1000 Short Tons) 1 58 Domestic Coal Distribution 2009 Q1 by Origin State: Alabama (1000 Short Tons) Destination State Transportation Mode Electricity...

  15. Domestic Coal Distribution 2009 Q2 by Origin State: Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    Q2 by Origin State: Alabama (1000 Short Tons) 1 58 Domestic Coal Distribution 2009 Q2 by Origin State: Alabama (1000 Short Tons) Destination State Transportation Mode Electricity...

  16. Transport NAMA submissions to the UNFCCC: Domestic frameworks...

    Open Energy Info (EERE)

    Global The aim of this paper is to provide an insight into the broader domestic context in which a selection of these intentions to conduct NAMAs in the land transport...

  17. New Report Shows Domestic Offshore Wind Industry Potential, 21...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report Shows Domestic Offshore Wind Industry Potential, 21 Projects Planned in U.S. Waters ... first commercial-scale offshore wind farm, one of 21 projects totaling 15,650 ...

  18. Model Simulating Real Domestic Hot Water Use - Building America...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Historically, domestic hot water has been estimated to account for approximately 15% of residential energy use. In high performance homes, it is projected to grow to 20% of energy ...

  19. DOE National Laboratory Breakthrough Could Enhance Use of Domestic Natural

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas, Methane Hydrate Resources | Department of Energy National Laboratory Breakthrough Could Enhance Use of Domestic Natural Gas, Methane Hydrate Resources DOE National Laboratory Breakthrough Could Enhance Use of Domestic Natural Gas, Methane Hydrate Resources August 25, 2010 - 1:00pm Addthis Washington, DC - A process and related technology that could enhance the nation's ability to use natural gas and vast methane hydrate energy resources has been developed by researchers at the U.S.

  20. Domestic Health Studies and Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Domestic Health Studies and Activities Domestic Health Studies and Activities Purpose The Atomic Energy Act of 1957 - Section 8(a) requires research and development activities relating to the protection of health during research and production activities. The requirement is fulfilled by conducting and supporting health studies and other research activities to determine if DOE workers and people living in communities near DOE sites are adversely affected by exposures to hazardous materials from

  1. Domestic Wind Energy Workforce; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Tegen, Suzanne

    2015-07-30

    A robust workforce is essential to growing domestic wind manufacturing capabilities. NREL researchers conducted research to better understand today's domestic wind workforce, projected needs for the future, and how existing and new education and training programs can meet future needs. This presentation provides an overview of this research and the accompanying industry survey, as well as the Energy Department's Career Maps, Jobs & Economic Development Impacts models, and the Wind for Schools project.

  2. Department of Energy Awards $338 Million to Accelerate Domestic Geothermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy | Department of Energy 338 Million to Accelerate Domestic Geothermal Energy Department of Energy Awards $338 Million to Accelerate Domestic Geothermal Energy October 29, 2009 - 12:00am Addthis WASHINGTON, DC - U.S. Department of Energy Secretary Steven Chu today announced up to $338 million in Recovery Act funding for the exploration and development of new geothermal fields and research into advanced geothermal technologies. These grants will support 123 projects in 39 states, with

  3. Report to the President on Capturing Domestic Competitive Advantage in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Manufacturing | Department of Energy Report to the President on Capturing Domestic Competitive Advantage in Advanced Manufacturing Report to the President on Capturing Domestic Competitive Advantage in Advanced Manufacturing PDF icon pcast_july2012.pdf PDF icon pcast_annex1_july2012.pdf PDF icon pcast_annex2_july2012.pdf PDF icon pcast_annex3_july2012.pdf More Documents & Publications Report to the President on Ensuring American Leadership in Advanced Manufacturing The Advanced

  4. Department of Energy Awards $338 Million to Accelerate Domestic Geothermal

    Energy Savers [EERE]

    Energy | Department of Energy $338 Million to Accelerate Domestic Geothermal Energy Department of Energy Awards $338 Million to Accelerate Domestic Geothermal Energy October 29, 2009 - 12:32pm Addthis WASHINGTON, DC - U.S. Department of Energy Secretary Steven Chu today announced up to $338 million in Recovery Act funding for the exploration and development of new geothermal fields and research into advanced geothermal technologies. These grants will support 123 projects in 39 states, with

  5. Domestic Uranium Production Report 1st Quarter 2016

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Uranium Production Report 1st Quarter 2016 May 2016 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Domestic Uranium Production Report 1st Quarter 2016 ii This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer

  6. Seeking New Approaches to Investigate Domestication Events | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation Lightsource Seeking New Approaches to Investigate Domestication Events Monday, October 29, 2012 - 3:30am SSRL Bldg. 137, Rm. 322 Krish Seetah, Stanford University, Department of Anthropology and Zooarcheology Laboratory The domestication of wild animal species has underpinned some of the most fundamental developments in human history. The inclusion of a range of fauna into the human menagerie has altered the way we feed and transport ourselves, not to mention how we

  7. Effect of Increased Natural Gas Exports on Domestic Energy Markets

    Reports and Publications (EIA)

    2012-01-01

    This report responds to an August 2011 request from the Department of Energy's Office of Fossil Energy (DOE\\/FE) for an analysis of "the impact of increased domestic natural gas demand, as exports." Appendix A provides a copy of the DOE\\/FE request letter. Specifically, DOE\\/FE asked the U.S. Energy Information Administration (EIA) to assess how specified scenarios of increased natural gas exports could affect domestic energy markets, focusing on consumption, production, and prices.

  8. Alabama--State Offshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) Alabama--State Offshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 9 13 1990's 19,861 32,603 112,311 131,508 228,878 212,895 209,013 214,414 222,000 212,673 2000's 201,081 200,862 202,002 194,339 165,630 152,902 145,762 134,451 125,502 109,214 2010's 101,487 84,270 87,398 75,660 70,827 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  9. Alaska--State Offshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) Alaska--State Offshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 72,813 71,946 1980's 63,355 71,477 66,852 68,776 68,315 62,454 63,007 69,656 101,440 122,595 1990's 144,064 171,665 216,377 233,198 224,301 113,552 126,051 123,854 133,111 125,841 2000's 263,958 262,937 293,580 322,010 334,125 380,568 354,816 374,204 388,188 357,490 2010's 370,148 364,702 307,306

  10. Federal Offshore--Texas Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) Federal Offshore--Texas Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 88,258 249,255 554,076 1980's 696,181 775,351 875,204 844,711 909,778 834,870 1,054,537 1,232,554 1,278,548 1,346,940 1990's 1,447,164 1,396,001 1,332,883 1,276,099 1,308,154 1,283,493 1,338,413 1,286,539 1,180,967 1,157,128 2000's 1,136,062 NA NA NA NA NA NA NA NA NA 2010's NA NA 0 0 0 - = No Data

  11. US--State Offshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) US--State Offshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 755,671 780,911 1980's 747,743 702,765 693,177 552,610 513,279 446,237 403,050 406,377 434,211 459,617 1990's 462,652 458,800 552,294 607,435 704,469 489,576 597,239 590,815 615,249 558,692 2000's 655,609 678,580 696,905 710,240 680,911 684,671 629,652 618,042 653,704 586,953 2010's 575,601 549,151 489,505

  12. ASYMPTOTICALLY FREE GAUGE THEORIES - I* David J. Gross+ National Accelerator Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    national accelerator laboratory NAL-PUB-73/49-THY July, 1973 ASYMPTOTICALLY FREE GAUGE THEORIES - I* David J. Gross+ National Accelerator Laboratory and Joseph Henry Laboratories Princeton University Princeton, New Jersey 08540 and Frank Wilczek Joseph Henry Laboratories Princeton University Princeton, New Jersey 08540 * Research supported in part by the United States Air Force Office of Scientific Research under Contract F-44620-71-6-0180 t Alfred P. Sloan Foundation Research Fellow 2% Oaerated

  13. Impact of foreign LPG operations on domestic LPG markets

    SciTech Connect (OSTI)

    Jones, C.

    1981-01-01

    During 1978 the federal government passed legislation allowing a major increase in natural gas prices and offering hope that some portion of the supply will be allowed to reach free market levels. The mechanism for decontrol of crude oil was also put into effect. This favorable government action and higher world oil prices have led to a major resurgence in domestic exploration. In addition to the supply effects, there appears to have been a substantial demand response to the latest round of world oil price increases. The purpose of this paper is to discuss how these events have affected domestic LPG markets and pricing.

  14. ,"Maryland Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  15. ,"Michigan Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  16. ,"Mississippi Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  17. ,"Missouri Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  18. ,"Montana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  19. ,"Nebraska Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    from Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  20. ,"New Mexico Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Gross Withdrawals and Production",10,"Monthly","2/2016","1/15/1989" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  1. ,"New Mexico Natural Gas Gross Withdrawals from Gas Wells (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Gross Withdrawals from Gas Wells (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  2. ,"New Mexico Natural Gas Gross Withdrawals from Oil Wells (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil Wells (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Gross Withdrawals from Oil Wells (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  3. ,"New Mexico Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  4. ,"New York Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    from Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  5. ,"North Dakota Natural Gas Gross Withdrawals from Gas Wells (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Gross Withdrawals from Gas Wells (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  6. ,"North Dakota Natural Gas Gross Withdrawals from Oil Wells (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil Wells (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Gross Withdrawals from Oil Wells (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  7. ,"North Dakota Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  8. ,"Ohio Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  9. ,"Oklahoma Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  10. ,"Pennsylvania Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Gross Withdrawals and Production",10,"Monthly","2/2016","1/15/1991" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  11. ,"Pennsylvania Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  12. ,"South Dakota Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  13. ,"Tennessee Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  14. ,"Texas Natural Gas Gross Withdrawals Total Offshore (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Offshore (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Gross Withdrawals Total Offshore (MMcf)",1,"Annual",2014 ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File Name:","na1090_stx_2a.xls"

  15. ,"Texas Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  16. ,"U.S. Natural Gas Gross Withdrawals Offshore (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Offshore (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Gross Withdrawals Offshore (MMcf)",1,"Annual",2014 ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File Name:","na1090_nus_2a.xls" ,"Available

  17. ,"Utah Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  18. ,"Virginia Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  19. ,"West Virginia Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  20. ,"Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  1. ,"Alabama Natural Gas Gross Withdrawals Total Offshore (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Offshore (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Gross Withdrawals Total Offshore (MMcf)",1,"Annual",2014 ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File Name:","na1090_sal_2a.xls"

  2. ,"Alaska Natural Gas Gross Withdrawals Total Offshore (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Offshore (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Gross Withdrawals Total Offshore (MMcf)",1,"Annual",2014 ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File Name:","na1090_sak_2a.xls"

  3. ,"California Natural Gas Gross Withdrawals Total Offshore (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Offshore (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Gross Withdrawals Total Offshore (MMcf)",1,"Annual",2014 ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File Name:","na1090_sca_2a.xls"

  4. ,"California Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Gross Withdrawals and Production",10,"Monthly","2/2016","1/15/1989" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  5. ,"California Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  6. ,"Colorado Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Gross Withdrawals and Production",10,"Monthly","2/2016","1/15/1989" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  7. ,"Colorado Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  8. ,"Florida Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Gross Withdrawals and Production",10,"Monthly","2/2016","1/15/1989" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  9. ,"Florida Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  10. ,"Illinois Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas Gross Withdrawals and Production",10,"Monthly","2/2016","1/15/1991" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  11. ,"Illinois Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  12. ,"Indiana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  13. ,"Kansas Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas Gross Withdrawals and Production",10,"Monthly","2/2016","1/15/1989" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  14. ,"Kansas Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  15. ,"Kentucky Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    from Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  16. ,"Louisiana Natural Gas Gross Withdrawals Total Offshore (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Offshore (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Gross Withdrawals Total Offshore (MMcf)",1,"Annual",2014 ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File Name:","na1090_sla_2a.xls"

  17. ,"Louisiana Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Gross Withdrawals and Production",10,"Monthly","2/2016","1/15/1989" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  18. ,"Louisiana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  19. WA_1994_003_GOLDEN_PHOTOCON_INC_Waiver_of_Domestic_and_Forei.pdf |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy WA_1994_003_GOLDEN_PHOTOCON_INC_Waiver_of_Domestic_and_Forei.pdf WA_1994_003_GOLDEN_PHOTOCON_INC_Waiver_of_Domestic_and_Forei.pdf PDF icon WA_1994_003_GOLDEN_PHOTOCON_INC_Waiver_of_Domestic_and_Forei.pdf More Documents & Publications WA_1995_030_GOLDEN_PHOTON_INC_Waiver_of_Domestic_and_Foreign.pdf WA_1993_033_GOLDEN_PHOTON_INC_Waiver_of_Domestic_and_Foreign.pdf WA_03_010_SHELL_SOLAR_INDUSTRIES_Waiver_of_Domestic_and_Fore.pdf

  20. Role of CCTs in the evolving domestic electricity market

    SciTech Connect (OSTI)

    Grahame, T.J.

    1997-12-31

    The paper summarizes the key points and issues in the role of clean coal technologies in the domestic marketplace. Then suggested solutions to bringing precommercial CCTs to the market are presented. Finally, the outlook for possible actions by government and the private sector are briefly discussed.

  1. Analysis Model for Domestic Hot Water Distribution Systems: Preprint

    SciTech Connect (OSTI)

    Maguire, J.; Krarti, M.; Fang, X.

    2011-11-01

    A thermal model was developed to estimate the energy losses from prototypical domestic hot water (DHW) distribution systems for homes. The developed model, using the TRNSYS simulation software, allows researchers and designers to better evaluate the performance of hot water distribution systems in homes. Modeling results were compared with past experimental study results and showed good agreement.

  2. Table 23. Domestic Crude Oil First Purchase Prices by API Gravity

    U.S. Energy Information Administration (EIA) Indexed Site

    18.62 19.26 Source: Energy Information Administration, Form EIA-182, "Domestic Crude Oil First Purchase Report." 23. Domestic Crude Oil First Purchase Prices by API Gravity Energy...

  3. Table 23. Domestic Crude Oil First Purchase Prices by API Gravity

    U.S. Energy Information Administration (EIA) Indexed Site

    20.23 20.91 Source: Energy Information Administration, Form EIA-182, "Domestic Crude Oil First Purchase Report." 23. Domestic Crude Oil First Purchase Prices by API Gravity Energy...

  4. Secure Fuels from Domestic Resources - Oil Shale and Tar Sands | Department

    Energy Savers [EERE]

    of Energy Secure Fuels from Domestic Resources - Oil Shale and Tar Sands Secure Fuels from Domestic Resources - Oil Shale and Tar Sands Profiles of Companies Engaged in Domestic Oil Shale and Tar Sands Resource and Technology Development PDF icon Profiles of Companies Engaged in Domestic Oil Shale and Tar Sands Resource and Technology Development More Documents & Publications Oil Shale RD&D Leases in the United States National Strategic Unconventional Resource Model Oil Shale

  5. Table 23. Domestic Crude Oil First Purchase Prices by API Gravity

    U.S. Energy Information Administration (EIA) Indexed Site

    reported. Source: Energy Information Administration, Form EIA-182, "Domestic Crude Oil First Purchase Report." Energy Information Administration Petroleum Marketing Annual...

  6. Accelerated Depletion: Assessing Its Impacts on Domestic Oil and Natural Gas Prices and Production

    Reports and Publications (EIA)

    2000-01-01

    Analysis of the potential impacts of accelerated depletion on domestic oil and natural gas prices and production.

  7. United States Domestic Research Reactor Infrastrucutre TRIGA Reactor Fuel Support

    SciTech Connect (OSTI)

    Douglas Morrell

    2011-03-01

    The United State Domestic Research Reactor Infrastructure Program at the Idaho National Laboratory manages and provides project management, technical, quality engineering, quality inspection and nuclear material support for the United States Department of Energy sponsored University Reactor Fuels Program. This program provides fresh, unirradiated nuclear fuel to Domestic University Research Reactor Facilities and is responsible for the return of the DOE-owned, irradiated nuclear fuel over the life of the program. This presentation will introduce the program management team, the universities supported by the program, the status of the program and focus on the return process of irradiated nuclear fuel for long term storage at DOE managed receipt facilities. It will include lessons learned from research reactor facilities that have successfully shipped spent fuel elements to DOE receipt facilities.

  8. Effect of Increased Natural Gas Exports on Domestic Energy Markets

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effect of Increased Natural Gas Exports on Domestic Energy Markets as requested by the Office of Fossil Energy January 2012 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of

  9. American Chemical Society International-Domestic Student Summit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Society International-Domestic Student Summit - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense

  10. Table 5. Domestic Crude Oil Production, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Crude Oil Production, Projected vs. Actual" "Projected" " (million barrels)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",2507.55,2372.5,2255.7,2160.8,2087.8,2022.1,1952.75,1890.7,1850.55,1825,1799.45,1781.2,1766.6,1759.3,1777.55,1788.5,1806.75,1861.5 "AEO

  11. Table 5. Domestic Crude Oil Production, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Crude Oil Production, Projected vs. Actual Projected (million barrels) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 2508 2373 2256 2161 2088 2022 1953 1891 1851 1825 1799 1781 1767 1759 1778 1789 1807 1862 AEO 1995 2402 2307 2205 2095 2037 1967 1953 1924 1916 1905 1894 1883 1887 1887 1920 1945 1967 AEO 1996 2387 2310 2248 2172 2113 2062 2011 1978 1953 1938 1916 1920 1927 1949 1971 1986 2000 2018 2055 AEO 1997 2362 2307

  12. Other States Natural Gas Gross Withdrawals from Oil Wells (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Oil Wells (Million Cubic Feet) Other States Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 3,459 3,117 3,336 1,781 1,806 1,881 1,841 1,820 1,781 1,699 1,247 1,228 1992 4,284 3,872 4,141 4,027 4,047 3,883 3,964 3,957 3,892 4,169 4,146 4,334 1993 4,123 3,693 4,049 3,865 3,942 3,786 3,915 3,924 3,861 4,146 4,114 4,200 1994 3,639 3,242 3,557 3,409 3,488 3,384 3,552 3,643 3,597 3,796 3,818 3,991 1995 3,937 3,524

  13. Other States Natural Gas Gross Withdrawals from Shale Gas (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Shale Gas (Million Cubic Feet) Other States Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 13,204 11,926 13,204 12,778 13,204 12,778 13,204 13,204 12,778 13,204 12,778 13,204 2008 12,755 11,932 12,755 12,343 12,755 12,343 12,755 12,755 12,343 12,755 12,343 12,755 2009 12,222 11,039 12,222 11,827 12,222 11,827 12,222 12,222 11,827 12,222 11,827 12,222 2010 11,842 10,659 11,705 11,180 11,541 11,189 11,357 11,589

  14. Failure of the gross theory of beta decay in neutron deficient nuclei

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Firestone, R. B.; Schwengner, R.; Zuber, K.

    2015-05-28

    The neutron deficient isotopes 117-121Xe, 117-124Cs, and 122-124Ba were produced by a beam of 28Si from the LBNL SuperHILAC on a target of natMo. The isotopes were mass separated and their beta decay schemes were measured with a Total Absorption Spectrometer (TAS). The beta strengths derived from these data decreased dramatically to levels above ≈1 MeV for the even-even decays; 3–4 MeV for even-Z, odd-N decays; 4–5 MeV for the odd-Z, even-N decays; and 7–8 MeV for the odd-Z, odd-N decays. The decreasing strength to higher excitation energies in the daughters contradicts the predictions of the Gross Theory of Betamore » Decay. The integrated beta strengths are instead found to be consistent with shell model predictions where the single-particle beta strengths are divided amoung many low-lying levels. The experimental beta strengths determined here have been used calculate the half-lives of 143 neutron deficient nuclei with Z=51–64 to a precision of 20% with respect to the measured values.« less

  15. Failure of the gross theory of beta decay in neutron deficient nuclei

    SciTech Connect (OSTI)

    Firestone, R. B.; Schwengner, R.; Zuber, K.

    2015-05-28

    The neutron deficient isotopes 117-121Xe, 117-124Cs, and 122-124Ba were produced by a beam of 28Si from the LBNL SuperHILAC on a target of natMo. The isotopes were mass separated and their beta decay schemes were measured with a Total Absorption Spectrometer (TAS). The beta strengths derived from these data decreased dramatically to levels above ?1 MeV for the even-even decays; 34 MeV for even-Z, odd-N decays; 45 MeV for the odd-Z, even-N decays; and 78 MeV for the odd-Z, odd-N decays. The decreasing strength to higher excitation energies in the daughters contradicts the predictions of the Gross Theory of Beta Decay. The integrated beta strengths are instead found to be consistent with shell model predictions where the single-particle beta strengths are divided amoung many low-lying levels. The experimental beta strengths determined here have been used calculate the half-lives of 143 neutron deficient nuclei with Z=5164 to a precision of 20% with respect to the measured values.

  16. Weak decay processes in pre-supernova core evolution within the gross theory

    SciTech Connect (OSTI)

    Ferreira, R. C.; Dimarco, A. J.; Samana, A. R.; Barbero, C. A.

    2014-03-20

    The beta decay and electron capture rates are of fundamental importance in the evolution of massive stars in a pre-supernova core. The beta decay process gives its contribution by emitting electrons in the plasma of the stellar core, thereby increasing pressure, which in turn increases the temperature. From the other side, the electron capture removes free electrons from the plasma of the star core contributing to the reduction of pressure and temperature. In this work we calculate the beta decay and electron capture rates in stellar conditions for 63 nuclei of relevance in the pre-supernova stage, employing Gross Theory as the nuclear model. We use the abundances calculated with the Saha equations in the hypothesis of nuclear statistical equilibrium to evaluate the time derivative of the fraction of electrons. Our results are compared with other evaluations available in the literature. They have shown to be one order less or equal than the calculated within other models. Our results indicate that these differences may influence the evolution of the star in the later stages of pre-supernova.

  17. Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect SciTech Connect Search Results Technical Report: Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources Citation Details In-Document Search Title: Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources This report summarizes the significant findings from the Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources program sponsored by the Department of Energy through the National Energy Technology

  18. Domestic Distribution of U.S. Coal by Origin State, Consumer...

    U.S. Energy Information Administration (EIA) Indexed Site

    Origin State, Consumer, Destination and Method of Transportation Home > Coal > Annual Coal Distribution > Coal Origin Map > Domestic Distribution by Origin: Alaska Data For: 2002...

  19. WA_04_069__EATON_CORPORATION_Waiver_of_Domestic_and_Foreign_.pdf |

    Energy Savers [EERE]

    Department of Energy 69__EATON_CORPORATION_Waiver_of_Domestic_and_Foreign_.pdf WA_04_069__EATON_CORPORATION_Waiver_of_Domestic_and_Foreign_.pdf PDF icon WA_04_069__EATON_CORPORATION_Waiver_of_Domestic_and_Foreign_.pdf More Documents & Publications WA_04_059_EATON_CORPORATION_Waiver_of_Patent_Rights_Under_a_.pdf WA_02_048_EATON_CORPORATION_Waviver_of_Patent_Rights_Under_A.pdf WA_04_074_EATON_CORPORATION_Waiver_of_Domestic_and_Foreign_I.pdf

  20. WA_97_027_GENERAL_ATOMICS__CORPORATION_Waiver_of_Domestic_an.pdf |

    Energy Savers [EERE]

    Department of Energy 97_027_GENERAL_ATOMICS__CORPORATION_Waiver_of_Domestic_an.pdf WA_97_027_GENERAL_ATOMICS__CORPORATION_Waiver_of_Domestic_an.pdf PDF icon WA_97_027_GENERAL_ATOMICS__CORPORATION_Waiver_of_Domestic_an.pdf More Documents & Publications WA_99_014_UNITED_SOLAR_SYSTEMS_CORP_Waiver_of_Domestic_and_F.pdf Class Patent Waiver W(C)2004-001 WA_97_006_MOTOROLA_MANUFACTURING_SYSTEMS_Waiver_of_Patent_Ri

  1. U.S. Domestic and Foreign Coal Distribution by State of Origin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (thousand short tons) Coal Exports Coal Origin State and Region Domestic Distribution By Coal Mines By Brokers & Traders* Total Exports Total Distribution Alabama 10,679.56...

  2. Domestic and Foreign Distribution of U.S. Coal by State of Origin...

    U.S. Energy Information Administration (EIA) Indexed Site

    1 " "State Region ","Domestic ","Foreign ","Total "," " "Alabama ",14828,4508,19336," " "Alaska ",825,698,1524," " "Arizona ",13143,"-",13143," " "Arkansas ",13,"-",13," "...

  3. Domestic and Foreign Distribution of U.S. Coal by State of Origin...

    U.S. Energy Information Administration (EIA) Indexed Site

    4 (Thousand Short Tons) " "State Region ","Domestic ","Foreign ","Total "," " "Alabama",18367,3744,22111," " "Alaska",957,546,1502," " "Arizona",13041,"-",13041," "...

  4. Drilling Sideways - A Review of Horizontal Well Technology and Its Domestic Application

    Reports and Publications (EIA)

    1993-01-01

    Focuses primarily on domestic horizontal drilling applications, past and present, and on salient aspects of current and near-future horizontal drilling and completion technology.

  5. Table 23. Domestic Crude Oil First Purchase Prices by API Gravity

    U.S. Energy Information Administration (EIA) Indexed Site

    17.18 17.64 Source: Energy Information Administration, Form EIA-182, "Domestic Crude Oil First Purchase Report." Energy Information AdministrationPetroleum Marketing Annual 1999...

  6. Table 23. Domestic Crude Oil First Purchase Prices by API Gravity

    U.S. Energy Information Administration (EIA) Indexed Site

    12.17 12.80 Source: Energy Information Administration, Form EIA-182, "Domestic Crude Oil First Purchase Report." Energy Information AdministrationPetroleum Marketing Annual 1998...

  7. Domestic Price List | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    NBL Program Office Home About Programs Certified Reference Materials (CRMs) Prices and ... Prices and Certificates Domestic Price List Print Text Size: A A A FeedbackShare Page ...

  8. The domestic natural gas and oil initiative. Energy leadership in the world economy

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    Two key overarching goals of this Initiative are enhancing the efficiency and competitiveness of U.S. industry and reducing the trends toward higher imports. These goals take into account new Federal policies that reflect economic needs, including economic growth, deficit reduction, job creation and security, and global competitiveness, as well as the need to preserve the environment, improve energy efficiency, and provide for national security. The success of this Initiative clearly requires coordinated strategies that range far beyond policies primarily directed at natural gas and oil supplies. Therefore, this Initiative proposes three major strategic activities: Strategic Activity 1 -- increase domestic natural gas and oil production and environmental protection by advancing and disseminating new exploration, production, and refining technologies; Strategic Activity 2 -- stimulate markets for natural gas and natural-gas-derived products, including their use as substitutes for imported oil where feasible; and Strategic Activity 3 -- ensure cost-effective environmental protection by streamlining and improving government communication, decision making, and regulation. Finally, the Initiative will reexamine the costs and benefits of increase oil imports through a broad new Department of Energy study. This study will form the basis for additional actions found to be warranted under the study.

  9. "Variable","Average Absolute Percent Differences","Percent of Projections Over- Estimated"

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual Energy Outlook Retrospective Review, 2014" "Variable","Average Absolute Percent Differences","Percent of Projections Over- Estimated" "Gross Domestic Product" "Real Gross Domestic Product (Average Cumulative Growth)* (Table 2)",0.9204312786,45.77777778 "Petroleum" "Imported Refiner Acquisition Cost of Crude Oil (Constant $) (Table 3a)",37.71300779,17.33333333 "Imported Refiner Acquisition Cost of Crude Oil

  10. Department of Energy to Invest $50 Million to Advance Domestic Solar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Market, Achieve SunShot Goal | Department of Energy 50 Million to Advance Domestic Solar Manufacturing Market, Achieve SunShot Goal Department of Energy to Invest $50 Million to Advance Domestic Solar Manufacturing Market, Achieve SunShot Goal August 2, 2011 - 3:53pm Addthis August 2, 2011 Department of Energy to Invest $50 Million to Advance Domestic Solar Manufacturing Market, Achieve SunShot GoalSUNPATH Program Will Boost American Competitiveness, Lower Cost of Solar Energy

  11. Simulation of gross and net erosion of high-Z materials in the DIII-D divertor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wampler, William R.; Ding, R.; Stangeby, P. C.; Elder, J. D.; Tskhakaya, D.; Kirschner, A.; Guo, H. Y.; Chan, V. S.; McLean, A. G.; Snyder, P. B.; et al

    2015-12-17

    The three-dimensional Monte Carlo code ERO has been used to simulate dedicated DIII-D experiments in which Mo and W samples with different sizes were exposed to controlled and well-diagnosed divertor plasma conditions to measure the gross and net erosion rates. Experimentally, the net erosion rate is significantly reduced due to the high local redeposition probability of eroded high-Z materials, which according to the modelling is mainly controlled by the electric field and plasma density within the Chodura sheath. Similar redeposition ratios were obtained from ERO modelling with three different sheath models for small angles between the magnetic field and themore » material surface, mainly because of their similar mean ionization lengths. The modelled redeposition ratios are close to the measured value. Decreasing the potential drop across the sheath can suppress both gross and net erosion because sputtering yield is decreased due to lower incident energy while the redeposition ratio is not reduced owing to the higher electron density in the Chodura sheath. Taking into account material mixing in the ERO surface model, the net erosion rate of high-Z materials is shown to be strongly dependent on the carbon impurity concentration in the background plasma; higher carbon concentration can suppress net erosion. As a result, the principal experimental results such as net erosion rate and profile and redeposition ratio are well reproduced by the ERO simulations.« less

  12. Building America Top Innovations 2012: Model Simulating Real Domestic Hot Water Use

    SciTech Connect (OSTI)

    none,

    2013-01-01

    This Building America Top Innovations profile describes Building America research that is improving domestic hot water modeling capabilities to more effectively address one of the largest energy uses in residential buildings.

  13. New Technologies that Enhance Environmental Protection, Increase Domestic Production, Result from DOE-Supported Consortium

    Broader source: Energy.gov [DOE]

    New technologies that help small, independent oil and natural gas operators contribute to domestic energy production while improving environmental protection have resulted from U.S. Department of Energy support of the Stripper Well Consortium.

  14. FORM EIA-23L ANNUAL SURVEY OF DOMESTIC OIL AND GAS RESERVES

    U.S. Energy Information Administration (EIA) Indexed Site

    Date: 7312016 Version No.: 2016.01 FORM EIA-23L ANNUAL SURVEY OF DOMESTIC OIL AND GAS RESERVES SURVEY YEAR 2015 COVER PAGE This report is mandatory under the Federal ...

  15. Model Simulating Real Domestic Hot Water Use- Building America Top Innovation

    Broader source: Energy.gov [DOE]

    This Building America Innovations profile describes Building America research that is improving domestic hot water modeling capabilities to more effectively address one of the largest energy uses in residential buildings.

  16. Fact #828: July 7, 2014 Japanese Auto Manufacturers Increase Domestic Production for U.S. Sales

    Broader source: Energy.gov [DOE]

    In 1980, all Japanese-brand vehicles sold in the U.S. were imported. By 1990, just over one-third of Japanese-brand vehicles sold in the U.S. were produced domestically in North America which...

  17. International and Domestic Market Opportunities for Biomass Power: Volumes I and II

    SciTech Connect (OSTI)

    Not Available

    1998-09-01

    This report examines the domestic and international markets for biopower. Domestic and foreign markets present fundamentally different challenges to private power developers. Volume I focuses on the domestic market for biopower. The domestic challenge lies in finding economically viable opportunities for biopower. Vol. I outlines the current state of the U.S. biomass industry, discusses policies affecting biomass development, describes some demonstration projects currently underway, and discusses the future direction of the industry. Volume II focuses on the international market for biopower. Recent literature states that the electricity investment and policy climate in foreign markets are the key elements in successful private project development. Vol. II discusses the financing issues, policy climate, and business incentives and barriers to biopower development. As India and China are the largest future markets for biopower, they are the focus of this volume. Three other top markets- -Brazil, Indonesia, and the Philippines--are also discussed. Potential financial resources wrap up the discussion.

  18. Policy Analysis of Water Availability and Use Issues for Domestic Oil Shale

    Office of Scientific and Technical Information (OSTI)

    and Oil Sands Development (Technical Report) | SciTech Connect Policy Analysis of Water Availability and Use Issues for Domestic Oil Shale and Oil Sands Development Citation Details In-Document Search Title: Policy Analysis of Water Availability and Use Issues for Domestic Oil Shale and Oil Sands Development Oil shale and oil sands resources located within the intermountain west represent a vast, and as of yet, commercially untapped source of energy. Development will require water, and

  19. Innovation at Los Alamos Unlocking a New Source of Domestic Oil... From

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algae! | Department of Energy at Los Alamos Unlocking a New Source of Domestic Oil... From Algae! Innovation at Los Alamos Unlocking a New Source of Domestic Oil... From Algae! May 17, 2011 - 12:46pm Addthis Lipid droplets before (left) and after (right) ultrasonic lysis | Photo courtesy of Los Alamos National Laboratory Lipid droplets before (left) and after (right) ultrasonic lysis | Photo courtesy of Los Alamos National Laboratory Joyce Yang Director, The National Laboratory Impact

  20. Domestic Price List | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Domestic Price List NBL Program Office NBL PO Home About Programs Certified Reference Materials (CRMs) Prices and Certificates Ordering Information NEPA Documents News Safety Data Sheets (SDS) for NBL Program Office Certified Reference Materials (CRM) Contact Information NBL Program Office U.S. Department of Energy Building 201 9800 South Cass Avenue Argonne, IL 60439-4899 P: (630) 252-2442 (NBL PO) P: (630) 252-2767 (CRM sales) F: (630) 252-6256 E: Email Us Prices and Certificates Domestic

  1. Chapter 12, Survey Design and Implementation Cross-Cutting Protocols for Estimating Gross Savings: The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chapter 12: Survey Design and Implementation Cross-Cutting Protocols for Estimating Gross Savings Robert Baumgartner, Tetra Tech Subcontract Report NREL/SR-7A30-53827 April 2013 The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures 12 - 1 Chapter 12 - Table of Contents 1 Introduction ............................................................................................................................ 2 2 The Total Survey Error Framework

  2. Electrochemical Solution Growth: Gallium Nitride Crystal Growth...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ID Number Title and Abstract Primary Lab Date Patent 7,435,297 Patent 7,435,297 Molten-salt-based growth of group III nitrides A method for growing Group III nitride...

  3. Carbon Pollution Being Captured, Stored and Used to Produce More Domestic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil | Department of Energy Carbon Pollution Being Captured, Stored and Used to Produce More Domestic Oil Carbon Pollution Being Captured, Stored and Used to Produce More Domestic Oil May 10, 2013 - 11:38am Addthis Learn more about how the Office of Fossil Energy's carbon capture, utilization and storage program is benefiting the economy and the environment. Christopher A. Smith Christopher A. Smith Assistant Secretary for Fossil Energy What does this project do? More than 90% of the CO2 at

  4. Domestic production of medical isotope Mo-99 moves a step closer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Domestic Uranium Production Report - Annual With Data for 2015 | Release Date: May 5, 2016 | Next Release Date: May 2017 | full report Previous domestic uranium production reports Year: 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 Go Drilling Total uranium drilling was 1,518 holes covering 0.9 million feet, 13% fewer holes than in 2015. Expenditures for uranium drilling in the United States were $29 million in 2015, an increase of 2% compared with 2014. Figure 1. U.S. Uranium drilling

  5. Measure Guideline. Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems

    SciTech Connect (OSTI)

    Rudd, Armin

    2012-08-01

    This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

  6. Measure Guideline: Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems

    SciTech Connect (OSTI)

    Rudd, A.

    2012-08-01

    This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

  7. Sensitivity of Global Terrestrial Gross Primary Production to Hydrologic States Simulated by the Community Land Model Using Two Runoff Parameterizations

    SciTech Connect (OSTI)

    Lei, Huimin; Huang, Maoyi; Leung, Lai-Yung R.; Yang, Dawen; Shi, Xiaoying; Mao, Jiafu; Hayes, Daniel J.; Schwalm, C.; Wei, Yaxing; Liu, Shishi

    2014-09-01

    The terrestrial water and carbon cycles interact strongly at various spatio-temporal scales. To elucidate how hydrologic processes may influence carbon cycle processes, differences in terrestrial carbon cycle simulations induced by structural differences in two runoff generation schemes were investigated using the Community Land Model 4 (CLM4). Simulations were performed with runoff generation using the default TOPMODEL-based and the Variable Infiltration Capacity (VIC) model approaches under the same experimental protocol. The comparisons showed that differences in the simulated gross primary production (GPP) are mainly attributed to differences in the simulated leaf area index (LAI) rather than soil moisture availability. More specifically, differences in runoff simulations can influence LAI through changes in soil moisture, soil temperature, and their seasonality that affect the onset of the growing season and the subsequent dynamic feedbacks between terrestrial water, energy, and carbon cycles. As a result of a relative difference of 36% in global mean total runoff between the two models and subsequent changes in soil moisture, soil temperature, and LAI, the simulated global mean GPP differs by 20.4%. However, the relative difference in the global mean net ecosystem exchange between the two models is small (2.1%) due to competing effects on total mean ecosystem respiration and other fluxes, although large regional differences can still be found. Our study highlights the significant interactions among the water, energy, and carbon cycles and the need for reducing uncertainty in the hydrologic parameterization of land surface models to better constrain carbon cycle modeling.

  8. Analysis of Selected Provisions of the Domestic Manufacturing and Energy Jobs Act of 2010

    Reports and Publications (EIA)

    2010-01-01

    This report responds to a letter dated August 16, 2010, from Janice Mays, Staff Director of the U.S. House of Representatives' Committee on Ways and Means, requesting that the U.S. Energy Information Administration (EIA) analyze several provisions included in the July 26, 2010, discussion draft of the Domestic Manufacturing and Energy Jobs Act of 2010.

  9. Development of Standardized Domestic Hot Water Event Schedules for Residential Buildings

    SciTech Connect (OSTI)

    Hendron, R.; Burch, J.

    2008-08-01

    The Building America Research Benchmark is a standard house definition created as a point of reference for tracking progress toward multi-year energy savings targets. As part of its development, the National Renewable Energy Laboratory has established a set of domestic hot water events to be used in conjunction with sub-hourly analysis of advanced hot water systems.

  10. The domestic natural gas and oil initiatve. First annual progress report

    SciTech Connect (OSTI)

    1995-02-01

    This document is the first of a series of annual progress reports designed to inform the industry and the public of the accomplishments of the Domestic Natural Gas and Oil Initiative (the Initiative) and the benefits realized. Undertaking of the Initiative was first announced by Hazel O`Leary, Secretary of the Department of Energy (Department or DOE), in April 1993.

  11. Safeguards and security by design (SSBD) for the domestic threat - theft and sabotage

    SciTech Connect (OSTI)

    Demuth, Scott F; Mullen, Mark

    2011-10-05

    Safeguards by Design (SBD) is receiving significant interest with respect to international safeguards objectives. However, less attention has been focused on the equally important topic of domestic Safeguards and Security by Design (SSBD), which addresses requirements such as those of the Nuclear Regulatory Commission (NRC) in the United States. While international safeguards are concerned with detecting State diversion of nuclear material from peaceful to nuclear explosives purposes, domestic Material Protection, Control and Accounting measures (MPC&A) are focused on non-State theft and sabotage. The International Atomic Energy Agency (IAEA) has described the Safeguards by Design (SBD) concept as an approach in which 'international safeguards are fully integrated into the design process of a new nuclear facility from the initial planning through design, construction, operation, and decommissioning.' This same concept is equally applicable to SSBD for domestic requirements. The United States Department of Energy (DOE) has initiated a project through its Office of Nuclear Energy (NE) and more specifically its Fuel Cycle Research and Development (FCRD) program, to develop a domestic SSBD discipline and methodology in parallel with similar efforts sponsored by the DOE Next Generation Safeguards Initiative (NGSI) and the IAEA for international safeguards. This activity includes the participation of industry (through DOE-sponsored contracts) and DOE National Laboratories. This paper will identify the key domestic safeguards and security requirements (i.e. MC&A and physical protection) and explain how and why Safeguards and Security by Design (SSBD) is important and beneficial for the design of future US nuclear energy systems.

  12. Fixed conditions for achieving the real-valued partition function of one-dimensional Gross-Pitaevskii equation coupled with time-dependent potential

    SciTech Connect (OSTI)

    Prayitno, T. B.

    2014-03-24

    We have imposed the conditions in order to preserve the real-valued partition function in the case of onedimensional Gross-Pitaevskii equation coupled by time-dependent potential. In this case we have solved the Gross-Pitaevskii equation by means of the time-dependent perturbation theory by extending the previous work of Kivshar et al. [Phys. Lett A 278, 225–230 (2001)]. To use the method, we have treated the equation as the macroscopic quantum oscillator and found that the expression of the partition function explicitly has complex values. In fact, we have to choose not only the appropriate functions but also the suitable several values of the potential to keep the real-valued partition function.

  13. Natural Gas Gross Withdrawals

    U.S. Energy Information Administration (EIA) Indexed Site

    Federal Offshore Gulf of Mexico 122,038 116,075 106,086 112,137 108,556 101,200 1997-2016 Kansas 23,819 23,559 22,451 22,896 22,535 20,900 1991-2016 Louisiana 164,270 166,973 ...

  14. What is Gross Up?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reimbursement amount. You do not see the money in your pocket, but rather it offsets taxes that would have reduced the payment if we had not paid you the additional amount. For...

  15. Natural Gas Gross Withdrawals

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History U.S. 26,816,085 28,479,026 29,542,313 29,522,551 31,345,546 32,965,038 1936-2015 U.S. Offshore 2,875,945 2,416,644 2,044,643 1,859,469 1,818,267 1977-2014 U.S. State Offshore 575,601 549,151 489,505 505,318 514,809 1978-2014 Federal Offshore U.S. 2,300,344 1,867,492 1,555,138 1,354,151 1,303,458 1977-2014 Alaska 3,197,100 3,162,922 3,164,791 3,215,358 3,168,566 3,175,163 1967-2015 Alaska Onshore 2,826,952 2,798,220 2,857,485 2,882,956 2,803,429

  16. Natural Gas Gross Withdrawals

    U.S. Energy Information Administration (EIA) Indexed Site

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History U.S. 2,750,252 2,817,792 2,743,783 2,823,547 2,823,205 2,668,567 1973-2016 Alaska 261,150 279,434 289,770 304,048 298,809 273,296 1991-2016 Arkansas 81,546 83,309 79,289 80,509 77,827 71,965 1991-2016 California 18,928 18,868 18,261 18,749 18,796 17,195 1991-2016 Colorado 138,325 144,845 139,733 142,189 143,369 134,150 1991-2016 Federal Offshore Gulf of Mexico 122,038 116,075 106,086 112,137 108,556 101,200 1997-2016 Kansas 23,819 23,559

  17. Natural Gas Gross Withdrawals

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly-Million Cubic Feet per Day Annual-Million Cubic Feet Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History U.S. 26,816,085 28,479,026 29,542,313 29,522,551 31,345,546 32,965,038 1936-2015 U.S. Offshore 2,875,945 2,416,644 2,044,643 1,859,469 1,818,267 1977-2014 U.S. State Offshore 575,601 549,151 489,505 505,318 514,809 1978-2014 Federal Offshore U.S.

  18. Natural Gas Gross Withdrawals

    Gasoline and Diesel Fuel Update (EIA)

    Feet Monthly-Million Cubic Feet per Day Annual-Million Cubic Feet Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes...

  19. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corp. , Columbus, Ohio. Final report

    SciTech Connect (OSTI)

    1980-11-01

    The Solar Energy System located at the Columbia Gas Corporation, Columbus, Ohio, has 2978 ft/sup 2/ of Honeywell single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/h Bryan water-tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton Arkla hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts are included from the site files, specification references, drawings, installation, operation and maintenance instructions.

  20. MARS-KS code validation activity through the atlas domestic standard problem

    SciTech Connect (OSTI)

    Choi, K. Y.; Kim, Y. S.; Kang, K. H.; Park, H. S.; Cho, S.

    2012-07-01

    The 2 nd Domestic Standard Problem (DSP-02) exercise using the ATLAS integral effect test data was executed to transfer the integral effect test data to domestic nuclear industries and to contribute to improving the safety analysis methodology for PWRs. A small break loss of coolant accident of a 6-inch break at the cold leg was determined as a target scenario by considering its technical importance and by incorporating interests from participants. Ten calculation results using MARS-KS code were collected, major prediction results were described qualitatively and code prediction accuracy was assessed quantitatively using the FFTBM. In addition, special code assessment activities were carried out to find out the area where the model improvement is required in the MARS-KS code. The lessons from this DSP-02 and recommendations to code developers are described in this paper. (authors)

  1. Expert Meeting Report: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems

    SciTech Connect (OSTI)

    Rudd, A.; Ueno, K.; Bergey, D.; Osser, R.

    2012-07-01

    The topic of this meeting was 'Recommendations For Applying Water Heaters In Combination Space And Domestic Water Heating Systems.' Presentations and discussions centered on the design, performance, and maintenance of these combination systems, with the goal of developing foundational information toward the development of a Building America Measure Guideline on this topic. The meeting was held at the Westford Regency Hotel, in Westford, Massachusetts on 7/31/2011.

  2. Expert Meeting Report: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems

    Energy Savers [EERE]

    Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems A. Rudd, K. Ueno, D. Bergey, R. Osser Building Science Corporation June 2012 i This report received minimal editorial review at NREL. NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners makes any warranty, express

  3. Report to the President: Capturing a Domestic Competitive Advantage in Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    REPORT TO THE PRESIDENT CAPTURING A DOMESTIC COMPETITIVE ADVANTAGE IN ADVANCED MANUFACTURING Report of the Advanced Manufacturing Partnership Steering Committee Annex 2: Shared Infrastructure and Facilities Workstream Report Executive Office of the President President's Council of Advisors on Science and Technology JULY 2012 PREFACE In June 2011, the President established the Advanced Manufacturing Partnership (AMP), which is led by a Steering Committee that operates within the framework of the

  4. Report to the President: Capturing a Domestic Competitive Advantage in Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    REPORT TO THE PRESIDENT CAPTURING A DOMESTIC COMPETITIVE ADVANTAGE IN ADVANCED MANUFACTURING Report of the Advanced Manufacturing Partnership Steering Committee Annex 3: Education and Workforce Development Workstream Report Executive Office of the President President's Council of Advisors on Science and Technology JULY 2012 PREFACE In June 2011, the President established the Advanced Manufacturing Partnership (AMP), which is led by a Steering Committee that operates within the framework of the

  5. FAR 9.108, Prohibition on Contracting with Inverted Domestic Corporations

    Broader source: Energy.gov [DOE]

    The purpose of this Flash is to inform Contracting Officers that the prohibition on contracting with inverted domestic corporations at FAR 9.108-3 was extended to all Fiscal Year 2010 appropriated funds by the Civilian Agency Acquisition Council and will be included in a forthcoming Federal Register notice and Federal Acquisition Circular. The extension implements section 740 of the FY 20 10 Consolidated Appropriations Act (Public Law 1 1 1 - 1 1 7).

  6. Renewable Energy Growth Program

    Broader source: Energy.gov [DOE]

    In 2014, Act H 7727 created the Renewable Energy Growth (REG) program with the goal to promote installation of grid connected renewable energy within the load zones of electric distribution...

  7. Regional companies eye growth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional companies eye growth Regional companies eye growth Adaptive Radio Technologies, Los Alamos Visualization Associates, Mesa Tech International Inc., and ThermaSun Inc. were awarded from the Venture Acceleration Fund. August 21, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new

  8. FGF growth factor analogs

    DOE Patents [OSTI]

    Zamora, Paul O.; Pena, Louis A.; Lin, Xinhua; Takahashi, Kazuyuki

    2012-07-24

    The present invention provides a fibroblast growth factor heparin-binding analog of the formula: ##STR00001## where R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, X, Y and Z are as defined, pharmaceutical compositions, coating compositions and medical devices including the fibroblast growth factor heparin-binding analog of the foregoing formula, and methods and uses thereof.

  9. Audit Report on "The Department's Management of Nuclear Materials Provided to Domestic Licensees"

    SciTech Connect (OSTI)

    2009-02-01

    The objective if to determine whether the Department of Energy (Department) was adequately managing its nuclear materials provided to domestic licensees. The audit was performed from February 2007 to September 2008 at Department Headquarters in Washington, DC, and Germantown, MD; the Oak Ridge Office and the Oak Ridge National Laboratory in Oak Ridge, TN. In addition, we visited or obtained data from 40 different non-Departmental facilities in various states. To accomplish the audit objective, we: (1) Reviewed Departmental and Nuclear Regulatory Commission (NRC) requirements for the control and accountability of nuclear materials; (2) Analyzed a Nuclear Materials Management and Safeguards System (NMMSS) report with ending inventory balances for Department-owned nuclear materials dated September 30, 2007, to determine the amount and types of nuclear materials located at non-Department domestic facilities; (3) Held discussions with Department and NRC personnel that used NMMSS information to determine their roles and responsibilities related to the control and accountability over nuclear materials; (4) Selected a judgmental sample of 40 non-Department domestic facilities; (5) Met with licensee officials and sent confirmations to determine whether their actual inventories of Department-owned nuclear materials were consistent with inventories reported in the NMMSS; and, (6) Analyzed historical information related to the 2004 NMMSS inventory rebaselining initiative to determine the quantity of Department-owned nuclear materials that were written off from the domestic licensees inventory balances. This performance audit was conducted in accordance with generally accepted Government auditing standards. Those standards require that we plan and perform the audit to obtain sufficient, appropriate evidence to provide a reasonable basis for our findings and conclusions based on our audit objective. We believe that the evidence obtained provides a reasonable basis for our findings and conclusions based on our audit objectives. The audit included tests of controls and compliance with laws and regulations related to managing the Department-owned nuclear materials provided to non-Departmental domestic licensees. Because our review was limited it would not necessarily have disclosed all internal control deficiencies that may have existed at the time of our audit. We examined the establishment of performance measures in accordance with Government Performance and Results Act of 1993, as they related to the audit objective. We found that the Department had established performance measures related to removing or disposing of nuclear materials and radiological sources around the world. We utilized computer generated data during our audit and performed procedures to validate the reliability of the information as necessary to satisfy our audit objective. As noted in the report, we questioned the reliability of the NMMSS data.

  10. Use of New Strategically Sourced Blanket Purchase Agreement for Domestic Delivery Services with United Parcel Service

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) is participating as an authorized user of the second generation General Services Administration (GSA) Blanket Purchase Agreement (BPA) GS-33F-BQV08 for Express and Ground Domestic Delivery Services (DDS2) in the continental United States, Alaska, Hawaii, and Puerto Rico. DDS2 is a full service Federal Strategic Sourcing Initiative (FSSI) solution providing agencies with a range of delivery options as well as streamlined acquisition, data analytics, and dedicated customer service. GSA awarded one (1) master task order to the DDS2 BPA holder, United Parcel Service (UPS).

  11. Japanese suppliers in transition from domestic nuclear reactor vendors to international suppliers

    SciTech Connect (OSTI)

    Forsberg, C.W.; Reich, W.J.; Rowan, W.J.

    1994-06-27

    Japan is emerging as a major leader and exporter of nuclear power technology. In the 1990s, Japan has the largest and strongest nuclear power supply industry worldwide as a result of the largest domestic nuclear power plant construction program. The Japanese nuclear power supply industry has moved from dependence on foreign technology to developing, design, building, and operating its own power plants. This report describes the Japanese nuclear power supply industry and examines one supplier--the Mitsubishi group--to develop an understanding of the supply industry and its relationship to the utilities, government, and other organizations.

  12. Economics of large-scale thorium oxide production: assessment of domestic resources

    SciTech Connect (OSTI)

    Young, J.K.; Bloomster, C.H.; Enderlin, W.I.; Morgenstern, M.H.; Ballinger, M.Y.; Drost, M.K.; Weakley, S.A.

    1980-02-01

    The supply curve illustrates that sufficient amounts of thorium exist supply a domestic thorium-reactor economy. Most likely costs of production range from $3 to $60/lb ThO/sub 2/. Near-term thorium oxide resources include the stockpiles in Ohio, Maryland, and Tennessee and the thorite deposits at Hall Mountain, Idaho. Costs are under $10/lb thorium oxide. Longer term economic deposits include Wet Mountain, Colorado; Lemhi Pass, Idaho; and Palmer, Michigan. Most likely costs are under $20/lb thorium oxide. Long-term deposits include Bald Mountain, Wyoming; Bear Lodge, Wyoming; and Conway, New Hampshire. Costs approximately equal or exceed $50/lb thorium oxide.

  13. ,"Domestic Crude Oil First Purchase Prices by API Gravity"

    U.S. Energy Information Administration (EIA) Indexed Site

    API Gravity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Domestic Crude Oil First Purchase Prices by API Gravity",6,"Monthly","2/2016","10/15/1993" ,"Release Date:","5/2/2016" ,"Next Release Date:","6/1/2016" ,"Excel File

  14. Variable Average Absolute Percent Differences

    U.S. Energy Information Administration (EIA) Indexed Site

    Variable Average Absolute Percent Differences Percent of Projections Over- Estimated Gross Domestic Product Real Gross Domestic Product (Average Cumulative Growth)* (Table 2) 0.9 45.8 Petroleum Imported Refiner Acquisition Cost of Crude Oil (Constant $) (Table 3a) 37.7 17.3 Imported Refiner Acquisition Cost of Crude Oil (Nominal $) (Table 3b) 36.6 18.7 Total Petroleum Consumption (Table 4) 7.9 70.7 Crude Oil Production (Table 5) 8.1 51.1 Petroleum Net Imports (Table 6) 24.7 73.8 Natural Gas

  15. Variable Grid Method for Visualizing Uncertainty Associated with Spatial

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Variable Average Absolute Percent Differences Percent of Projections Over- Estimated Gross Domestic Product Real Gross Domestic Product (Average Cumulative Growth)* (Table 2) 0.9 45.8 Petroleum Imported Refiner Acquisition Cost of Crude Oil (Constant $) (Table 3a) 37.7 17.3 Imported Refiner Acquisition Cost of Crude Oil (Nominal $) (Table 3b) 36.6 18.7 Total Petroleum Consumption (Table 4) 7.9 70.7 Crude Oil Production (Table 5) 8.1 51.1 Petroleum Net Imports (Table 6) 24.7 73.8 Natural Gas

  16. Plant growth promoting rhizobacterium

    DOE Patents [OSTI]

    Doktycz, Mitchel John; Pelletier, Dale A.; Schadt, Christopher Warren; Tuskan, Gerald A.; Weston, David

    2015-08-11

    The present invention is directed to the Pseudomonas fluorescens strain GM30 deposited under ATCC Accession No. PTA-13340, compositions containing the GM30 strain, and methods of using the GM30 strain to enhance plant growth and/or enhance plant resistance to pathogens.

  17. Economic Effects of High Oil Prices (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    The Annual Energy Outlook 2006 projections of future energy market conditions reflect the effects of oil prices on the macroeconomic variables that affect oil demand, in particular, and energy demand in general. The variables include real gross domestic product (GDP) growth, inflation, employment, exports and imports, and interest rates.

  18. Research needs to maximize economic producibility of the domestic oil resource

    SciTech Connect (OSTI)

    Tham, M.K.; Burchfield, T.; Chung, Ting-Horng; Lorenz, P.; Bryant, R.; Sarathi, P.; Chang, Ming Ming; Jackson, S.; Tomutsa, L. ); Dauben, D.L. )

    1991-10-01

    NIPER was contracted by the US Department of Energy Bartlesville (Okla.) Project Office (DOE/BPO) to identify research needs to increase production of the domestic oil resource, and K A Energy Consultants, Inc. was subcontracted to review EOR field projects. This report summarizes the findings of that investigation. Professional society and trade journals, DOE reports, dissertations, and patent literature were reviewed to determine the state-of-the-art of enhanced oil recovery (EOR) and drilling technologies and the constraints to wider application of these technologies. The impacts of EOR on the environment and the constraints to the application of EOR due to environmental regulations were also reviewed. A review of well documented EOR field projects showed that in addition to the technical constraints, management factors also contributed to the lower-than-predicted oil recovery in some of the projects reviewed. DOE-sponsored projects were reviewed, and the achievements by these projects and the constraints which these projects were designed to overcome were also identified. Methods of technology transfer utilized by the DOE were reviewed, and several recommendations for future technology transfer were made. Finally, several research areas were identified and recommended to maximize economic producibility of the domestic oil resource. 14 figs., 41 tabs.

  19. Emission factors for domestic use of L.P. gas in the metropolitan area of Mexico City

    SciTech Connect (OSTI)

    Molina, M.M.; Schifter, I.; Ontiveros, L.E.; Salinas, A.; Moreno, S.; Melgarejo, L.A.; Molina, R.; Krueger, B.

    1998-12-31

    One of the main problems found in air pollution in the Metropolitan Area of Mexico City (MAMC) is the presence of high concentrations of ozone at ground level in the atmosphere. The official Mexican standard for ozone concentration in the air (0.11 ppm, one hour, once every 3 years) has been exceeded more than 300 days per year. Ozone is formed due to the emissions of nitrogen oxides and hydrocarbons originated from either combustion processes or vapors emanating from fuel handling operations. The results of an evaluation of several domestic devices like stoves and water heaters with L.P. gas as fuel are presented. A method for the evaluation of hydrocarbon emission was developed. A prototype of domestic installation was constructed. The prototype includes L.P. gas tank, domestic stove, water heater, piping and instrumentation. Several combinations of stoves and water heaters were evaluated. The sampling and analysis of hydrocarbons were performed using laboratory equipment originally designed for the evaluation of combustion and evaporative emissions in automobiles: a SHED camera (sealed room equipped with an hydrocarbon analyzer) was used to measure leaks in the prototype of domestic installation and a Constant Volume Sampler (CVS) for the measurement of incomplete combustion emissions. Emission factors were developed for each domestic installation.

  20. A Continuous Measure of Gross Primary Production for the Conterminous U.S. Derived from MODIS and AmeriFlux Data

    SciTech Connect (OSTI)

    Xia, Jingfeng; Zhuang, Qianlai; Law, Beverly E.; Chen, Jiquan; Baldocchi, Dennis D.; Cook, David R.; Oren, Ram; Richardson, Andrew D.; Wharton, Sonia; Ma, Siyan; Martin, Timothy A.; Verma, Shashi B.; Suyker, Andrew E.; Scott, Russell L.; Monson, Russell K.; Litvak, Marcy; Hollinger, David Y.; Sun, Ge; Davis, Kenneth J.; Bolstad, Paul V.; Burns, Sean P.; Curtis, Peter S.; Drake, Bert G.; Falk, Matthias; Fischer, Marc L.; Foster, David R.; Gu, Lianhong; Hadley, Julian L.; Katul, Gabriel G.; Matamala, Roser; McNulty, Steve; Meyers, Tilden P.; Munger, J. William; Noormets, Asko; Oechel, Walter C.; U, Kyaw Tha Paw; Schmid, Hans Peter; Starr, Gregory; Torn, Margaret S.; Wofsy, Steven C.

    2009-01-28

    The quantification of carbon fluxes between the terrestrial biosphere and the atmosphere is of scientific importance and also relevant to climate-policy making. Eddy covariance flux towers provide continuous measurements of ecosystem-level exchange of carbon dioxide spanning diurnal, synoptic, seasonal, and interannual time scales. However, these measurements only represent the fluxes at the scale of the tower footprint. Here we used remotely-sensed data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to upscale gross primary productivity (GPP) data from eddy covariance flux towers to the continental scale. We first combined GPP and MODIS data for 42 AmeriFlux towers encompassing a wide range of ecosystem and climate types to develop a predictive GPP model using a regression tree approach. The predictive model was trained using observed GPP over the period 2000-2004, and was validated using observed GPP over the period 2005-2006 and leave-one-out cross-validation. Our model predicted GPP fairly well at the site level. We then used the model to estimate GPP for each 1 km x 1 km cell across the U.S. for each 8-day interval over the period from February 2000 to December 2006 using MODIS data. Our GPP estimates provide a spatially and temporally continuous measure of gross primary production for the U.S. that is a highly constrained by eddy covariance flux data. Our study demonstrated that our empirical approach is effective for upscaling eddy flux GPP data to the continental scale and producing continuous GPP estimates across multiple biomes. With these estimates, we then examined the patterns, magnitude, and interannual variability of GPP. We estimated a gross carbon uptake between 6.91 and 7.33 Pg C yr{sup -1} for the conterminous U.S. Drought, fires, and hurricanes reduced annual GPP at regional scales and could have a significant impact on the U.S. net ecosystem carbon exchange. The sources of the interannual variability of U.S. GPP were dominated by these extreme climate events and disturbances.

  1. Growth in Solar Means Growth in Ohio | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Growth in Solar Means Growth in Ohio Growth in Solar Means Growth in Ohio October 6, 2010 - 2:26pm Addthis Lorelei Laird Writer, Energy Empowers Editor's Note: Yesterday Secretary Chu announced that solar panels and a solar hot water heater will be added to the White House by the end of next spring. This entry is cross-posted from the Energy Empowers blog and deals with how the continued growth of solar power is not only a boon for industry, but for local economies as well. The solar industry

  2. Table 5.18 Crude Oil Domestic First Purchase Prices, 1949-2011 (Dollars per Barrel)

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Crude Oil Domestic First Purchase Prices, 1949-2011 (Dollars per Barrel) Year Alaska North Slope California Texas U.S. Average Nominal 1 Real 2 Nominal 1 Real 2 Nominal 1 Real 2 Nominal 1 Real 2 1949 – – – – NA NA NA NA 2.54 17.52 [R] 1950 – – – – NA NA NA NA 2.51 17.13 [R] 1951 – – – – NA NA NA NA 2.53 16.10 [R] 1952 – – – – NA NA NA NA 2.53 15.83 [R] 1953 – – – – NA NA NA NA 2.68 16.57 [R] 1954 – – – – NA NA NA NA 2.78 17.03 [R] 1955 – – – – NA NA NA NA 2.77 16.69

  3. Analysis of space heating and domestic hot water systems for energy-efficient residential buildings

    SciTech Connect (OSTI)

    Dennehy, G

    1983-04-01

    An analysis of the best ways of meeting the space heating and domestic hot water (DHW) needs of new energy-efficient houses with very low requirements for space heat is provided. The DHW load is about equal to the space heating load in such houses in northern climates. The equipment options which should be considered are discussed, including new equipment recently introduced in the market. It is concluded that the first consideration in selecting systems for energy-efficient houses should be identification of the air moving needs of the house for heat distribution, heat storage, ventilation, and ventilative cooling. This is followed, in order, by selection of the most appropriate distribution system, the heating appliances and controls, and the preferred energy source, gas, oil, or electricity.

  4. Evaluating Domestic Hot Water Distribution System Options with Validated Analysis Models

    SciTech Connect (OSTI)

    Weitzel, E.; Hoeschele, E.

    2014-09-01

    A developing body of work is forming that collects data on domestic hot water consumption, water use behaviors, and energy efficiency of various distribution systems. Transient System Simulation Tool (TRNSYS) is a full distribution system developed that has been validated using field monitoring data and then exercised in a number of climates to understand climate impact on performance. In this study, the Building America team built upon previous analysis modeling work to evaluate differing distribution systems and the sensitivities of water heating energy and water use efficiency to variations of climate, load, distribution type, insulation and compact plumbing practices. Overall, 124 different TRNSYS models were simulated. The results of this work are useful in informing future development of water heating best practices guides as well as more accurate (and simulation time efficient) distribution models for annual whole house simulation programs.

  5. Growth, microstructure, and luminescent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Growth, microstructure, and luminescent properties of direct-bandgap InAlP on relaxed InGaAs on GaAs substrates K. Mukherjee, D. A. Beaton, T. Christian, E. J. Jones, K. Alberi et al. Citation: J. Appl. Phys. 113, 183518 (2013); doi: 10.1063/1.4804264 View online: http://dx.doi.org/10.1063/1.4804264 View Table of Contents: http://jap.aip.org/resource/1/JAPIAU/v113/i18 Published by the AIP Publishing LLC. Additional information on J. Appl. Phys. Journal Homepage: http://jap.aip.org/ Journal

  6. EA-1929: NorthStar Medical Technologies LLC, Commercial Domestic Production of the Medical Isotope Molybdenum-99

    Broader source: Energy.gov [DOE]

    This EA evaluates the potential environmental impacts of a proposal to use federal funds to support and accelerate Northstar Medical Radioisotopes' project to develop domestic, commercial production capability for the medical isotope Molybdenum-99 without the use of highly enriched uranium.

  7. Global Green Growth Institute | Open Energy Information

    Open Energy Info (EERE)

    Growth Institute Redirect page Jump to: navigation, search REDIRECT Green Growth Strategy Support Retrieved from "http:en.openei.orgwindex.php?titleGlobalGreenGrowthIn...

  8. IM I L

    Gasoline and Diesel Fuel Update (EIA)

    per Dollar of Gross Domestic Product ... 14 1.10 Passenger Car Efficiency ... ... 15 1.11 Heating...

  9. Municipal solid waste generation in municipalities: Quantifying impacts of household structure, commercial waste and domestic fuel

    SciTech Connect (OSTI)

    Lebersorger, S.; Beigl, P.

    2011-09-15

    Waste management planning requires reliable data concerning waste generation, influencing factors on waste generation and forecasts of waste quantities based on facts. This paper aims at identifying and quantifying differences between different municipalities' municipal solid waste (MSW) collection quantities based on data from waste management and on socio-economic indicators. A large set of 116 indicators from 542 municipalities in the Province of Styria was investigated. The resulting regression model included municipal tax revenue per capita, household size and the percentage of buildings with solid fuel heating systems. The model explains 74.3% of the MSW variation and the model assumptions are met. Other factors such as tourism, home composting or age distribution of the population did not significantly improve the model. According to the model, 21% of MSW collected in Styria was commercial waste and 18% of the generated MSW was burned in domestic heating systems. While the percentage of commercial waste is consistent with literature data, practically no literature data are available for the quantity of MSW burned, which seems to be overestimated by the model. The resulting regression model was used as basis for a waste prognosis model (Beigl and Lebersorger, in preparation).

  10. Summary history of domestic uranium procurement under US Atomic Energy Commission contracts. Final report

    SciTech Connect (OSTI)

    Albrethsen, H. Jr.; McGinley, F.E.

    1982-09-01

    During the period 1947 through 1970, the Atomic Energy Commission (AEC) fostered the rapid development and expansion of the domestic uranium mining and milling industry by providing a market for uranium. Some thirty-two mills were constructed during that period to produce U/sub 3/O/sub 8/ concentrates for sale to the AEC. In addition, there were various pilot plants, concentrators, upgraders, heap leach, and solution mining facilities that operated during the period. The purpose of this report is to compile a short narrative history of the AEC's uranium concentrate procurement program and to describe briefly each of the operations that produced uranium for sale to the AEC. Contractual arrangements are described and data are given on quantities of U/sub 3/O/sub 8/ purchased and prices paid. Similar data are included for V/sub 2/O/sub 5/, where applicable. Mill and other plant operating data were also compiled from old AEC records. These latter data were provided by the companies, as a contractual requirement, during the period of operation under AEC contracts. Additionally, an effort was made to determine the present status of each facility by reference to other recently published reports. No sites were visited nor were the individual reports reviewed by the companies, many of which no longer exist. The authors relied almost entirely on published information for descriptions of facilities and milling processes utilized.

  11. Impacts of different data averaging times on statistical analysis of distributed domestic photovoltaic systems

    SciTech Connect (OSTI)

    Widen, Joakim; Waeckelgaard, Ewa; Paatero, Jukka; Lund, Peter

    2010-03-15

    The trend of increasing application of distributed generation with solar photovoltaics (PV-DG) suggests that a widespread integration in existing low-voltage (LV) grids is possible in the future. With massive integration in LV grids, a major concern is the possible negative impacts of excess power injection from on-site generation. For power-flow simulations of such grid impacts, an important consideration is the time resolution of demand and generation data. This paper investigates the impact of time averaging on high-resolution data series of domestic electricity demand and PV-DG output and on voltages in a simulated LV grid. Effects of 10-minutely and hourly averaging on descriptive statistics and duration curves were determined. Although time averaging has a considerable impact on statistical properties of the demand in individual households, the impact is smaller on aggregate demand, already smoothed from random coincidence, and on PV-DG output. Consequently, the statistical distribution of simulated grid voltages was also robust against time averaging. The overall judgement is that statistical investigation of voltage variations in the presence of PV-DG does not require higher resolution than hourly. (author)

  12. Domestic wastewater treatment using tidal-flow cinder bed with Cyperus alternifolius

    SciTech Connect (OSTI)

    Chan, S.Y.; Tsang, Y.F.; Chua, H.

    2008-07-01

    A lab-scale vertical flow cinder bed was set up to treat domestic wastewater. Cinder, which is a common coal waste from electricity generation, was used as the filter medium in the six vertical flow column beds in this study. Three of the six columns were planted with umbrella grass (Cyperus alternifolius) to mimic a wetland system and to investigate the effects of plant on the pollutant removal efficiencies of the column bed systems. The six column beds were divided into three groups, operating with different durations of wet and dry periods. Group 2 column beds, with 4 hours wet periods and 4 hours dry periods, showed the highest carbonaceous removal. Similar ammonia nitrogen removal efficiencies were demonstrated in column beds of group 2 and in column beds of group 3 (6 hours wet periods and 2 hours dry periods). Phosphorus removal efficiencies were not significantly different in all groups of column bed. No significant differences in pollutant removal were observed between planted and unplanted column beds in this study (p > 0.05).

  13. Life cycle costs for the domestic reactor-based plutonium disposition option

    SciTech Connect (OSTI)

    Williams, K.A.

    1999-10-01

    Projected constant dollar life cycle cost (LCC) estimates are presented for the domestic reactor-based plutonium disposition program being managed by the US Department of Energy Office of Fissile Materials Disposition (DOE/MD). The scope of the LCC estimate includes: design, construction, licensing, operation, and deactivation of a mixed-oxide (MOX) fuel fabrication facility (FFF) that will be used to purify and convert weapons-derived plutonium oxides to MOX fuel pellets and fabricate MOX fuel bundles for use in commercial pressurized-water reactors (PWRs); fuel qualification activities and modification of facilities required for manufacture of lead assemblies that will be used to qualify and license this MOX fuel; and modification, licensing, and operation of commercial PWRs to allow irradiation of a partial core of MOX fuel in combination with low-enriched uranium fuel. The baseline cost elements used for this document are the same as those used for examination of the preferred sites described in the site-specific final environmental impact statement and in the DOE Record of Decision that will follow in late 1999. Cost data are separated by facilities, government accounting categories, contract phases, and expenditures anticipated by the various organizations who will participate in the program over a 20-year period. Total LCCs to DOE/MD are projected at approximately $1.4 billion for a 33-MT plutonium disposition mission.

  14. Evaluating Domestic Hot Water Distribution System Options With Validated Analysis Models

    SciTech Connect (OSTI)

    Weitzel, E.; Hoeschele, M.

    2014-09-01

    A developing body of work is forming that collects data on domestic hot water consumption, water use behaviors, and energy efficiency of various distribution systems. A full distribution system developed in TRNSYS has been validated using field monitoring data and then exercised in a number of climates to understand climate impact on performance. This study builds upon previous analysis modelling work to evaluate differing distribution systems and the sensitivities of water heating energy and water use efficiency to variations of climate, load, distribution type, insulation and compact plumbing practices. Overall 124 different TRNSYS models were simulated. Of the configurations evaluated, distribution losses account for 13-29% of the total water heating energy use and water use efficiency ranges from 11-22%. The base case, an uninsulated trunk and branch system sees the most improvement in energy consumption by insulating and locating the water heater central to all fixtures. Demand recirculation systems are not projected to provide significant energy savings and in some cases increase energy consumption. Water use is most efficient with demand recirculation systems, followed by the insulated trunk and branch system with a central water heater. Compact plumbing practices and insulation have the most impact on energy consumption (2-6% for insulation and 3-4% per 10 gallons of enclosed volume reduced). The results of this work are useful in informing future development of water heating best practices guides as well as more accurate (and simulation time efficient) distribution models for annual whole house simulation programs.

  15. Experimental and cost analyses of a one kilowatt-hour/day domestic refrigerator-freezer

    SciTech Connect (OSTI)

    Vineyard, E.A.; Sand, J.R.

    1997-05-01

    Over the past ten years, government regulations for energy standards, coupled with the utility industry`s promotion of energy-efficient appliances, have prompted appliance manufacturers to reduce energy consumption in refrigerator-freezers by approximately 40%. Global concerns over ozone depletion have also required the appliance industry to eliminate CFC-12 and CFC-11 while concurrently improving energy efficiency to reduce greenhouse emissions. In response to expected future regulations that will be more stringent, several design options were investigated for improving the energy efficiency of a conventionally designed, domestic refrigerator-freezer. The options, such as cabinet and door insulation improvements and a high-efficiency compressor were incorporated into a prototype refrigerator-freezer cabinet and refrigeration system. Baseline energy consumption of the original 1996 production refrigerator-freezer, along with cabinet heat load and compressor calorimeter test results, were extensively documented to provide a firm basis for experimentally measured energy savings. The goal for the project was to achieve an energy consumption that is 50% below in 1993 National Appliance Energy Conservation Act (NAECA) standard for 20 ft{sup 3} (570 l) units. Based on discussions with manufacturers to determine the most promising energy-saving options, a laboratory prototype was fabricated and tested to experimentally verify the energy consumption of a unit with vacuum insulation around the freezer, increased door thicknesses, a high-efficiency compressor, a low wattage condenser fan, a larger counterflow evaporator, and adaptive defrost control.

  16. Fridge of the future: Designing a one-kilowatt-hour/day domestic refrigerator-freezer

    SciTech Connect (OSTI)

    Vineyard, E.A.; Sand, J.R.

    1998-03-01

    An industry/government Cooperative Research and Development Agreement (CRADA) was established to evaluate and test design concepts for a domestic refrigerator-freezer unit that represents approximately 60% of the US market. The goal of the CRADA was to demonstrate advanced technologies which reduce, by 50 percent, the 1993 NAECA standard energy consumption for a 20 ft{sup 3} (570 I) top-mount, automatic-defrost, refrigerator-freezer. For a unit this size, the goal translated to an energy consumption of 1.003 kWh/d. The general objective of the research was to facilitate the introduction of cost-efficient technologies by demonstrating design changes that can be effectively incorporated into new products. A 1996 model refrigerator-freezer was selected as the baseline unit for testing. Since the unit was required to meet the 1993 NAECA standards, the energy consumption was quite low (1.676 kWh/d), thus making further reductions in energy consumption very challenging. Among the energy saving features incorporated into the original design of the baseline unit were a low-wattage evaporator fan, increased insulation thicknesses, and liquid line flange heaters.

  17. Quartz crystal growth

    DOE Patents [OSTI]

    Baughman, Richard J.

    1992-01-01

    A process for growing single crystals from an amorphous substance that can undergo phase transformation to the crystalline state in an appropriate solvent. The process is carried out in an autoclave having a lower dissolution zone and an upper crystallization zone between which a temperature differential (.DELTA.T) is maintained at all times. The apparatus loaded with the substance, solvent, and seed crystals is heated slowly maintaining a very low .DELTA.T between the warmer lower zone and cooler upper zone until the amorphous substance is transformed to the crystalline state in the lower zone. The heating rate is then increased to maintain a large .DELTA.T sufficient to increase material transport between the zones and rapid crystallization. .alpha.-Quartz single crystal can thus be made from fused quartz in caustic solvent by heating to 350.degree. C. stepwise with a .DELTA.T of 0.25.degree.-3.degree. C., increasing the .DELTA.T to about 50.degree. C. after the fused quartz has crystallized, and maintaining these conditions until crystal growth in the upper zone is completed.

  18. Biological restoration of major transportation facilities domestic demonstration and application project (DDAP): technology development at Sandia National Laboratories.

    SciTech Connect (OSTI)

    Ramsey, James L., Jr.; Melton, Brad; Finley, Patrick; Brockman, John; Peyton, Chad E.; Tucker, Mark David; Einfeld, Wayne; Griffith, Richard O.; Brown, Gary Stephen; Lucero, Daniel A.; Betty, Rita G.; McKenna, Sean Andrew; Knowlton, Robert G.; Ho, Pauline

    2006-06-01

    The Bio-Restoration of Major Transportation Facilities Domestic Demonstration and Application Program (DDAP) is a designed to accelerate the restoration of transportation nodes following an attack with a biological warfare agent. This report documents the technology development work done at SNL for this DDAP, which include development of the BROOM tool, an investigation of surface sample collection efficiency, and a flow cytometry study of chlorine dioxide effects on Bacillus anthracis spore viability.

  19. Economic Environment 0 Anirban Basu, Chairman & CEO, Sage Policy Group,

    Energy Savers [EERE]

    Inc. | Department of Energy Economic Environment 0 Anirban Basu, Chairman & CEO, Sage Policy Group, Inc. Economic Environment 0 Anirban Basu, Chairman & CEO, Sage Policy Group, Inc. Topics Discussed: Real GDP Growth, 20 Fastest and Slowest Growing Countries Estimated Growth in Output by Select Global Areas Median Weekly Earnings, Full-Time U.S. Workers Construction Employment Cost Index Industrial Production Gross Domestic Product More... PDF icon Workshop 2015 - Basu_Economic

  20. Assumptions to the Annual Energy Outlook 2015

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Macroeconomic Activity Module The Macroeconomic Activity Module (MAM) represents interactions between the U.S. economy and energy markets. How fast the economy grows, as measured by either growth in gross domestic product or industrial shipments, is a key determinant of growth in the demand for energy. Associated economic factors, such as interest rates and disposable income, strongly influence various elements of the supply and demand for energy. At the same time, reactions to energy markets

  1. Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation

    SciTech Connect (OSTI)

    Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews

    2007-09-15

    The U.S. Department of Energy (DOE) estimates that in the coming decades the United States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could come domestically from the production of synthetic natural gas (SNG) via coal gasification-methanation. The objective of this study is to compare greenhouse gas (GHG), SOx, and NOx life-cycle emissions of electricity generated with NG/LNG/SNG and coal. This life-cycle comparison of air emissions from different fuels can help us better understand the advantages and disadvantages of using coal versus globally sourced NG for electricity generation. Our estimates suggest that with the current fleet of power plants, a mix of domestic NG, LNG, and SNG would have lower GHG emissions than coal. If advanced technologies with carbon capture and sequestration (CCS) are used, however, coal and a mix of domestic NG, LNG, and SNG would have very similar life-cycle GHG emissions. For SOx and NOx we find there are significant emissions in the upstream stages of the NG/LNG life-cycles, which contribute to a larger range in SOx and NOx emissions for NG/LNG than for coal and SNG. 38 refs., 3 figs., 2 tabs.

  2. Evaluation of technology transferring: The experiences of the first Navy Domestic Technology Transfair. Final report

    SciTech Connect (OSTI)

    Not Available

    1989-12-31

    In August 1989 the Office of the Chief of Naval Research and the American Defense Preparedness Association conducted the first Navy Domestic Technology Transfair. The objective of the Transfair was to expose the US Navy`s years of solid experience across a broad span of technology to organizations outside of the Navy. It was an opportunity for private industry to capitalize on the Navy developed technology and this opening for industry was the primary focus of the Transfair. The event provided a unique forum to meet leading Navy scientific and engineering innovators face-to-face. Information was available concerning licensing of naval technology that was for sale to the private sector. Further, discussions covered opportunities for new cooperative research and development agreements with Navy laboratories and R&D activities. These agreements were authorized under the Federal Technology Transfer Act of 1986. The Transfair program was conducted in such a manner as to allow each Navy inventor, either scientist or engineer, to present a system, piece of hardware, or licensable concept in a formal paper presentation. Then, the Navy inventors were available in two, two-hour periods in which individual discussions were conducted, with attendees pursuing specific venues of cooperative agreements as desired. This report provides specifics concerning the technologies that were made available for transfer to the private sector during the Transfair. The Transfair concept sought to add special emphasis to the opening that the 1988 Technology Transfer Act brought to the marketplace. The experience was a step in the education of the possibilities for cooperation between the government and the private sector to share technology. Of additional significance is the economic enhancement for business expansion with the application of the technology to markets beyond defense.

  3. OPEC and lower oil prices: Impacts on production capacity, export refining, domestic demand and trade balances

    SciTech Connect (OSTI)

    Fesharaki, F.; Fridley, D.; Isaak, D.; Totto, L.; Wilson, T.

    1988-12-01

    The East-West Center has received a research grant from the US Department of Energy's Office of Policy, Planning, and Analysis to study the impact of lower oil prices on OPEC production capacity, on export refineries, and petroleum trade. The project was later extended to include balance-of-payments scenarios and impacts on OPEC domestic demand. As the study progressed, a number of preliminary presentations were made at the US Department of Energy in order to receive feedback from DOE officials and to refine the focus of our analysis. During one of the presentations on June 4, 1987, the then Director of Division of Oil and Gas, John Stanley-Miller, advised us to focus our work on the Persian Gulf countries, since these countries were of special interest to the United States Government. Since then, our team has visited Iran, the United Arab Emirates, and Saudi Arabia and obtained detailed information from other countries. The political turmoil in the Gulf, the Iran/Iraq war, and the active US military presence have all worked to delay the final submission of our report. Even in countries where the United States has close ties, access to information has been difficult. In most countries, even mundane information on petroleum issues are treated as national secrets. As a result of these difficulties, we requested a one-year no cost extension to the grant and submitted an Interim Report in May 1988. As part of our grant extension request, we proposed to undertake additional tasks which appear in this report. 20 figs., 21 tabs.

  4. Effects of in-situ and reanalysis climate data on estimation of cropland gross primary production using the Vegetation Photosynthesis Model

    SciTech Connect (OSTI)

    Jin, Cui; Xiao, Xiangming; Wagle, Pradeep; Griffis, Timothy; Dong, Jinwei; Wu, Chaoyang; Qin, Yuanwei; Cook, David R.

    2015-11-01

    Satellite-based Production Efficiency Models (PEMs) often require meteorological reanalysis data such as the North America Regional Reanalysis (NARR) by the National Centers for Environmental Prediction (NCEP) as model inputs to simulate Gross Primary Production (GPP) at regional and global scales. This study first evaluated the accuracies of air temperature (TNARR) and downward shortwave radiation (RNARR) of the NARR by comparing with in-situ meteorological measurements at 37 AmeriFlux non-crop eddy flux sites, then used one PEM – the Vegetation Photosynthesis Model (VPM) to simulate 8-day mean GPP (GPPVPM) at seven AmeriFlux crop sites, and investigated the uncertainties in GPPVPM from climate inputs as compared with eddy covariance-based GPP (GPPEC). Results showed that TNARR agreed well with in-situ measurements; RNARR, however, was positively biased. An empirical linear correction was applied to RNARR, and significantly reduced the relative error of RNARR by ~25% for crop site-years. Overall, GPPVPM calculated from the in-situ (GPPVPM(EC)), original (GPPVPM(NARR)) and adjusted NARR (GPPVPM(adjNARR)) climate data tracked the seasonality of GPPEC well, albeit with different degrees of biases. GPPVPM(EC) showed a good match with GPPEC for maize (Zea mays L.), but was slightly underestimated for soybean (Glycine max L.). Replacing the in-situ climate data with the NARR resulted in a significant overestimation of GPPVPM(NARR) (18.4/29.6% for irrigated/rainfed maize and 12.7/12.5% for irrigated/rainfed soybean). GPPVPM(adjNARR) showed a good agreement with GPPVPM(EC) for both crops due to the reduction in the bias of RNARR. The results imply that the bias of RNARR introduced significant uncertainties into the PEM-based GPP estimates, suggesting that more accurate surface radiation datasets are needed to estimate primary production of terrestrial ecosystems at regional and global scales.

  5. final ERI-2142 18-1501 Analysis of Potential Effects on Domestic Industries of DOE Excess Uranium Inventory 2015-2024.docx

    Energy Savers [EERE]

    ERI-2142.18-1501 Analysis of the Potential Effects on the Domestic Uranium Mining, Conversion and Enrichment Industries of the Introduction of DOE Excess Uranium Inventory During CY 2015 Through 2024 ENERGY RESOURCES INTERNATIONAL, INC. 1015 18 th Street, NW, Suite 650 Washington, DC 20036 USA Telephone: (202) 785-8833 Facsimile: (202) 785-8834 ERI-2142.18-1501 Analysis of the Potential Effects on the Domestic Uranium Mining, Conversion and Enrichment Industries of the Introduction of DOE

  6. Isotropic Monte Carlo Grain Growth

    Energy Science and Technology Software Center (OSTI)

    2013-04-25

    IMCGG performs Monte Carlo simulations of normal grain growth in metals on a hexagonal grid in two dimensions with periodic boundary conditions. This may be performed with either an isotropic or a misorientation - and incliantion-dependent grain boundary energy.

  7. Formation of algae growth constitutive relations for improved algae modeling.

    SciTech Connect (OSTI)

    Gharagozloo, Patricia E.; Drewry, Jessica L.

    2013-01-01

    This SAND report summarizes research conducted as a part of a two year Laboratory Directed Research and Development (LDRD) project to improve our abilities to model algal cultivation. Algae-based biofuels have generated much excitement due to their potentially large oil yield from relatively small land use and without interfering with the food or water supply. Algae mitigate atmospheric CO2 through metabolism. Efficient production of algal biofuels could reduce dependence on foreign oil by providing a domestic renewable energy source. Important factors controlling algal productivity include temperature, nutrient concentrations, salinity, pH, and the light-to-biomass conversion rate. Computational models allow for inexpensive predictions of algae growth kinetics in these non-ideal conditions for various bioreactor sizes and geometries without the need for multiple expensive measurement setups. However, these models need to be calibrated for each algal strain. In this work, we conduct a parametric study of key marine algae strains and apply the findings to a computational model.

  8. Energy efficiency, human behavior, and economic growth: Challenges to cutting energy demand to sustainable levels

    SciTech Connect (OSTI)

    Santarius, Tilman

    2015-03-30

    Increasing energy efficiency in households, transportation, industries, and services is an important strategy to reduce energy service demand to levels that allow the steep reduction of greenhouse gases, and a full fledged switch of energy systems to a renewable basis. Yet, technological efficiency improvements may generate so-called rebound effects, which may eat up parts of the technical savings potential. This article provides a comprehensive review of existing research on these effects, raises critiques, and points out open questions. It introduces micro-economic rebound effect and suggests extending consumer-side analysis to incorporate potential psychological rebound effects. It then discusses meso-economic rebound effects, i.e. producer-side and market-level rebounds, which so far have achieved little attention in the literature. Finally, the article critically reviews evidence for macro-economic rebound effects as energy efficiency-induced economic growth impacts. For all three categories, the article summarizes assessments of their potential quantitative scope, while pointing out remaining methodological weaknesses and open questions. As a rough rule of thumb, in the long term and on gross average, only half the technical savings potential of across-the-board efficiency improvements may actually be achieved in the real world. Policies that aim at cutting energy service demand to sustainable levels are well advised to take due note of detrimental behavioral and economic growth impacts, and should foster policies and measures that can contain them.

  9. Digital electronic bone growth stimulator

    DOE Patents [OSTI]

    Kronberg, James W.

    1995-01-01

    A device for stimulating bone tissue by applying a low level alternating current signal directly to the patient's skin. A crystal oscillator, a binary divider chain and digital logic gates are used to generate the desired waveforms that reproduce the natural electrical characteristics found in bone tissue needed for stimulating bone growth and treating osteoporosis. The device, powered by a battery, contains a switch allowing selection of the correct waveform for bone growth stimulation or osteoporosis treatment so that, when attached to the skin of the patient using standard skin contact electrodes, the correct signal is communicated to the underlying bone structures.

  10. Digital electronic bone growth stimulator

    DOE Patents [OSTI]

    Kronberg, J.W.

    1995-05-09

    A device is described for stimulating bone tissue by applying a low level alternating current signal directly to the patient`s skin. A crystal oscillator, a binary divider chain and digital logic gates are used to generate the desired waveforms that reproduce the natural electrical characteristics found in bone tissue needed for stimulating bone growth and treating osteoporosis. The device, powered by a battery, contains a switch allowing selection of the correct waveform for bone growth stimulation or osteoporosis treatment so that, when attached to the skin of the patient using standard skin contact electrodes, the correct signal is communicated to the underlying bone structures. 5 figs.

  11. Nonlinear structural crack growth monitoring

    DOE Patents [OSTI]

    Welch, Donald E.; Hively, Lee M.; Holdaway, Ray F.

    2002-01-01

    A method and apparatus are provided for the detection, through nonlinear manipulation of data, of an indicator of imminent failure due to crack growth in structural elements. The method is a process of determining energy consumption due to crack growth and correlating the energy consumption with physical phenomena indicative of a failure event. The apparatus includes sensors for sensing physical data factors, processors or the like for computing a relationship between the physical data factors and phenomena indicative of the failure event, and apparatus for providing notification of the characteristics and extent of such phenomena.

  12. A program to develop the domestic natural gas industry in Indonesia: Case history of two World Bank projects

    SciTech Connect (OSTI)

    Klass, D.L. ); Khwaja, S. )

    1991-01-01

    Indonesia depends heavily on revenues from the export of LNG and oil, the availability of which appears to be decreasing. It is therefore making a strong effort to accelerate development of a domestic natural gas industry. A high priority has been given to the conversion of power plants and city gas systems, including local industries and commercial facilities, from liquid fuels to natural gas. This will release more oil for export, help to meet the objectives of Repelita V, and provide substantial environmental benefits. The World Bank recently provided loans to the Indonesian Government for two projects that are aimed at substituting natural gas for oil and manufactured gas in domestic markets. One project involves expansion of the gas distribution systems of Indonesia's natural gas utility (PGN) in three cities: Jakarta and Bogor in Java, and Medan in Sumatra. The project also includes training programs for PGN staff and an energy pricing policy study to be carried out by Indonesia's Ministry of Mines and Energy. The second project involves expansion of the supply of natural gas for Surabaya and twelve other towns in its vicinity in East Java, and further expansion of Medan's supply system. Technical assistance will be provided to enhance the skills ofPGN and the Ministry of Mines and Energy, and a Gas Technology Unit similar to the Institute of Gas Technology will be established at Indonesia's Research and Development Center for Oil and Gas (LEMIGAS) in Jakarta. 14 refs., 3 figs., 11 tabs.

  13. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect (OSTI)

    Joel L. Morrison

    2004-05-17

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the thirteenth quarterly technical progress report for the SWC. Key activities for this reporting period included: (1) hosting three fall technology transfer meetings in Wyoming, Texas, and Pennsylvania, (2) releasing the 2004 SWC request-for-proposal (RFP), and (3) initial planning of the SWC spring meeting in Golden Colorado for selecting the 2004 SWC projects. The Fall technology transfer meetings attracted 100+ attendees between the three workshops. The SWC membership which attended the Casper, Wyoming workshop was able to see several SWC-funded projects operating in the field at the Rocky Mountain Oilfield Testing Center. The SWC is nearing the end of its initial funding cycle. The Consortium has a solid membership foundation and a demonstrated ability to review and select projects that have relevancy to meet the needs of domestic stripper well operators.

  14. The United States after the great recession: the challenge of sustainable growth

    SciTech Connect (OSTI)

    Meltzer, Joshua

    2013-02-15

    The paper outlines the strengths and weaknesses of the U.S. economic growth model, assesses its’ ability to respond to the key economic, environmental and social challenges currently facing the U.S. and proposes policies that if adopted would move the U.S. onto a more sustainable growth path. The paper provides scenarios of projected future growth trajectories, as well as recommendations for specific policies in key areas: employment, infrastructure, energy and fiscal rebalancing. To reach this goal this paper focuses on four areas for action: Increasing employment, which is the most urgent priority to accelerate recovery from the Great Recession, while addressing underlying structural issues that have led to a decade of poor economic outcomes for most citizens; Investing in the future, as the key marker of whether the United States is prepared to make farsighted decisions to improve education, build new infrastructure and increase innovation; Maximizing an increased energy endowment in a way that grows the economy, while reinforcing the trend towards reducing resource demand and reducing greenhouse gas emissions; and, Fiscal rebalancing, where the United States must insulate economic recovery from the process of fiscal reform while reducing and stabilizing debt over the long term. Finally, we argue that President Obama can re-energize America’s global leadership if he builds on a platform of domestic actions that enhance the sustainability of America’s society and economy.

  15. 2015 NREL Industry Growth Forum

    Broader source: Energy.gov [DOE]

    During NREL’s 2015 Industry Growth Forum, 30 competitively selected clean energy startups will pitch their businesses to investors and compete to win the NREL Best Venture Award.  One of the...

  16. SBA Growth Accelerator Fund Competition

    Broader source: Energy.gov [DOE]

    The U.S. Small Business Administration (SBA) is accepting applications for the Growth Accelerator Fund Competition to identify the nation's innovative accelerators and similar organizations and award them cash prizes they may use to fund their operations costs and allow them to bring startup competitions to scale and new ideas to life.

  17. Direct flow crystal growth system

    DOE Patents [OSTI]

    Montgomery, Kenneth E.; Milanovich, Fred P.

    1992-01-01

    A crystal is grown in a constantly filtered solution which is flowed directly into the growing face of a crystal. In a continuous flow system, solution at its saturation temperature is removed from a crystal growth tank, heated above its saturation temperature, filtered, cooled back to its saturation temperature, and returned to the tank.

  18. Biomimetic Approach to Nanoparticle Growth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomimetic Approach to Nanoparticle Growth - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  19. Method for crystal growth control

    DOE Patents [OSTI]

    Yates, Douglas A. (Burlington, MA); Hatch, Arthur E. (Waltham, MA); Goldsmith, Jeff M. (Medford, MA)

    1981-01-01

    The growth of a crystalline body of a selected material is controlled so that the body has a selected cross-sectional shape. The apparatus is of the type which includes the structure normally employed in known capillary die devices as well as means for observing at least the portion of the surfaces of the growing crystalline body and the meniscus (of melt material from which the body is being pulled) including the solid/liquid/vapor junction in a direction substantially perpendicular to the meniscus surface formed at the junction when the growth of the crystalline body is under steady state conditions. The cross-sectional size of the growing crystalline body can be controlled by determining which points exhibit a sharp change in the amount of reflected radiation of a preselected wavelength and controlling the speed at which the body is being pulled or the temperature of the growth pool of melt so as to maintain those points exhibiting a sharp change at a preselected spatial position relative to a predetermined reference position. The improvement comprises reference object means positioned near the solid/liquid/vapor junction and capable of being observed by the means for observing so as to define said reference position so that the problems associated with convection current jitter are overcome.

  20. Study of domestic social and economic impacts of ocean thermal energy conversion (OTEC) commercial development. Volume I. Economic impacts

    SciTech Connect (OSTI)

    1981-12-22

    This analysis identifies the economic impacts associated with OTEC development and quantifies them at the national, regional, and industry levels. It focuses on the effects on the United States' economy of the domestic development and utilization of twenty-five and fifty 400 MWe OTEC power plants by the year 2000. The methodology employed was characteristic of economic impact analysis. After conducting a literature review, a likely future OTEC scenario was developed on the basis of technological, siting, and materials requirements parameters. These parameters were used to identify the industries affected by OTEC development; an economic profile was constructed for each of these industries. These profiles established an industrial baseline from which the direct, indirect, and induced economic impacts of OTEC implementation could be estimated. Each stage of this analysis is summarized; and the economic impacts are addressed. The methodology employed in estimating the impacts is described.

  1. Establishment of an Industry-Driven Consortium Focused on Improving the Production Performance of Domestic Stripper Wells

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2006-05-01

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) established a national industry-driven Stripper Well Consortium (SWC) that is focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the eighth quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) Organize and host the 2006 Spring Meeting in State College, PA to review and select projects for SWC co-funding; (2) Participation in the 2006 PA CleanEnergy Expo Energy Theater to air the DVD on ''Independent Oil: Rediscovering American's Forgotten Wells''; (3) New member additions; (4) Improving communications; and (5) Planning of the fall technology meetings.

  2. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect (OSTI)

    Joel L. Morrison

    2004-12-28

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the first quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) hosting the SWC spring proposal meeting in Golden Colorado, (2) planning of the upcoming SWC fall technology transfer meetings, and (3) recruiting the SWC base membership.

  3. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect (OSTI)

    Joel L. Morrison

    2004-12-23

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the fifteenth quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) hosting the SWC spring proposal meeting in Golden Colorado, (2) planning of the upcoming SWC fall technology transfer meetings, and (3) recruiting the SWC base membership.

  4. Establishment of an Industry-Driven Consortium Focused on Improving the Production Performance of Domestic Stripper Wells

    SciTech Connect (OSTI)

    Joel Morrison; Sharon Elder

    2006-01-24

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the sixth quarterly technical progress report for the SWC. Key activities for this reporting period included: (1) Organized and hosted two technology transfer meetings; (2) Collaborated with the Pennsylvania Oil and Gas Association (POGAM) to host a Natural Gas Outlook conference in Pittsburgh, PA; (3) Provided a SWC presentation at the Interstate Oil and Gas Compact Commission (IOGCC) meeting in Jackson Hole, WY; and (4) Completed and released a stripper well industry documentary entitled: ''Independent Oil: Rediscovering America's Forgotten Wells''.

  5. Microsoft Word - Highlights.docx

    Gasoline and Diesel Fuel Update (EIA)

    September 2011 1 Independent Statistics & Analysis U.S. Energy Information Administration September 2011 Short-Term Energy Outlook September 7, 2011 Release Highlights  EIA's economic growth assumptions have been lowered substantially compared with last month's Outlook. This forecast assumes that U.S. real gross domestic product (GDP) grows by 1.5 percent this year and 1.9 percent next year compared with 2.4 percent and 2.6 percent, respectively, in the previous Outlook. World

  6. Annual Energy Outlook 2015 - Appendix A

    Gasoline and Diesel Fuel Update (EIA)

    2 Reference case Table A10. Electricity trade (billion kilowatthours, unless otherwise noted) Energy Information Administration / Annual Energy Outlook 2015 Table A10. Electricity trade (billion kilowatthours, unless otherwise noted) Electricity trade Reference case Annual growth 2013-2040 (percent) 2012 2013 2020 2025 2030 2035 2040 Interregional electricity trade Gross domestic sales Firm power .......................................................... 156 157 122 63 28 28 28 -6.2% Economy

  7. New Partners for Smart Growth Conference

    Broader source: Energy.gov [DOE]

    The New Partners for Smart Growth Conference is the nation's largest smart growth and sustainability conference. The three-day conference is themed, "Practical Tools and Innovative Strategies for Creating Great Communities."

  8. Projections of the impact of expansion of domestic heavy oil production on the U.S. refining industry from 1990 to 2010. Topical report

    SciTech Connect (OSTI)

    Olsen, D.K.; Ramzel, E.B.; Strycker, A.R.; Guariguata, G.; Salmen, F.G.

    1994-12-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil (10{degrees} to 20{degrees} API gravity) production. This report provides a compendium of the United States refining industry and analyzes the industry by Petroleum Administration for Defense District (PADD) and by ten smaller refining areas. The refining capacity, oil source and oil quality are analyzed, and projections are made for the U.S. refining industry for the years 1990 to 2010. The study used publicly available data as background. A linear program model of the U.S. refining industry was constructed and validated using 1990 U.S. refinery performance. Projections of domestic oil production (decline) and import of crude oil (increases) were balanced to meet anticipated demand to establish a base case for years 1990 through 2010. The impact of additional domestic heavy oil production, (300 MB/D to 900 MB/D, originating in select areas of the U.S.) on the U.S. refining complex was evaluated. This heavy oil could reduce the import rate and the balance of payments by displacing some imported, principally Mid-east, medium crude. The construction cost for refining units to accommodate this additional domestic heavy oil production in both the low and high volume scenarios is about 7 billion dollars for bottoms conversion capacity (delayed coking) with about 50% of the cost attributed to compliance with the Clean Air Act Amendment of 1990.

  9. Modeling delamination growth in composites

    SciTech Connect (OSTI)

    Reedy, E.D. Jr.; Mello, F.J.

    1996-12-01

    A method for modeling the initiation and growth of discrete delaminations in shell-like composite structures is presented. The laminate is divided into two or more sublaminates, with each sublaminate modeled with four-noded quadrilateral shell elements. A special, eight-noded hex constraint element connects opposing sublaminate shell elements. It supplies the nodal forces and moments needed to make the two opposing shell elements act as a single shell element until a prescribed failure criterion is satisfied. Once the failure criterion is attained, the connection is broken, creating or growing a discrete delamination. This approach has been implemented in a 3D finite element code. This code uses explicit time integration, and can analyze shell-like structures subjected to large deformations and complex contact conditions. The shell elements can use existing composite material models that include in-plane laminate failure modes. This analysis capability was developed to perform crashworthiness studies of composite structures, and is useful whenever there is a need to estimate peak loads, energy absorption, or the final shape of a highly deformed composite structure. This paper describes the eight-noded hex constraint element used to model the initiation and growth of a delamination, and discusses associated implementation issues. Particular attention is focused on the delamination growth criterion, and it is verified that calculated results do not depend on element size. In addition, results for double cantilever beam and end notched flexure specimens are presented and compared to measured data to assess the ability of the present approach to model a growing delamination.

  10. Plenum type crystal growth process

    DOE Patents [OSTI]

    Montgomery, Kenneth E.

    1992-01-01

    Crystals are grown in a tank which is divided by a baffle into a crystal growth region above the baffle and a plenum region below the baffle. A turbine blade or stirring wheel is positioned in a turbine tube which extends through the baffle to generate a flow of solution from the crystal growing region to the plenum region. The solution is pressurized as it flows into the plenum region. The pressurized solution flows back to the crystal growing region through return flow tubes extending through the baffle. Growing crystals are positioned near the ends of the return flow tubes to receive a direct flow of solution.

  11. Apparatus for monitoring crystal growth

    DOE Patents [OSTI]

    Sachs, Emanual M. (Watertown, MA)

    1981-01-01

    A system and method are disclosed for monitoring the growth of a crystalline body from a liquid meniscus in a furnace. The system provides an improved human/machine interface so as to reduce operator stress, strain and fatigue while improving the conditions for observation and control of the growing process. The system comprises suitable optics for forming an image of the meniscus and body wherein the image is anamorphic so that the entire meniscus can be viewed with good resolution in both the width and height dimensions. The system also comprises a video display for displaying the anamorphic image. The video display includes means for enhancing the contrast between any two contrasting points in the image. The video display also comprises a signal averager for averaging the intensity of at least one preselected portions of the image. The value of the average intensity, can in turn be utilized to control the growth of the body. The system and method are also capable of observing and monitoring multiple processes.

  12. Method of monitoring crystal growth

    DOE Patents [OSTI]

    Sachs, Emanual M. (Watertown, MA)

    1982-01-01

    A system and method are disclosed for monitoring the growth of a crystalline body from a liquid meniscus in a furnace. The system provides an improved human/machine interface so as to reduce operator stress, strain and fatigue while improving the conditions for observation and control of the growing process. The system comprises suitable optics for forming an image of the meniscus and body wherein the image is anamorphic so that the entire meniscus can be viewed with good resolution in both the width and height dimensions. The system also comprises a video display for displaying the anamorphic image. The video display includes means for enhancing the contrast between any two contrasting points in the image. The video display also comprises a signal averager for averaging the intensity of at least one preselected portions of the image. The value of the average intensity, can in turn be utilized to control the growth of the body. The system and method are also capable of observing and monitoring multiple processes.

  13. Korea's Green Growth Strategy: Mitigating Climate Change and...

    Open Energy Info (EERE)

    Korea's Green Growth Strategy: Mitigating Climate Change and Developing New Growth Engines Jump to: navigation, search Name Korea's Green Growth Strategy: Mitigating Climate Change...

  14. Well having inhibited microbial growth

    DOE Patents [OSTI]

    Lee, Brady D.; Dooley, Kirk J.

    2006-08-15

    The invention includes methods of inhibiting microbial growth in a well. A packing material containing a mixture of a first material and an antimicrobial agent is provided to at least partially fill a well bore. One or more access tubes are provided in an annular space around a casing within the well bore. The access tubes have a first terminal opening located at or above a ground surface and have a length that extends from the first terminal opening at least part of the depth of the well bore. The access tubes have a second terminal opening located within the well bore. An antimicrobial material is supplied into the well bore through the first terminal opening of the access tubes. The invention also includes well constructs.

  15. Conditioning biomass for microbial growth

    DOE Patents [OSTI]

    Bodie, Elizabeth A; England, George

    2015-03-31

    The present invention relates to methods for improving the yield of microbial processes that use lignocellulose biomass as a nutrient source. The methods comprise conditioning a composition comprising lignocellulose biomass with an enzyme composition that comprises a phenol oxidizing enzyme. The conditioned composition can support a higher rate of growth of microorganisms in a process. In one embodiment, a laccase composition is used to condition lignocellulose biomass derived from non-woody plants, such as corn and sugar cane. The invention also encompasses methods for culturing microorganisms that are sensitive to inhibitory compounds in lignocellulose biomass. The invention further provides methods of making a product by culturing the production microorganisms in conditioned lignocellulose biomass.

  16. Controlled growth of semiconductor crystals

    DOE Patents [OSTI]

    Bourret-Courchesne, Edith D.

    1992-01-01

    A method for growth of III-V, II-VI and related semiconductor single crystals that suppresses random nucleation and sticking of the semiconductor melt at the crucible walls. Small pieces of an oxide of boron B.sub.x O.sub.y are dispersed throughout the comminuted solid semiconductor charge in the crucible, with the oxide of boron preferably having water content of at least 600 ppm. The crucible temperature is first raised to a temperature greater than the melt temperature T.sub.m1 of the oxide of boron (T.sub.m1 =723.degree. K. for boron oxide B.sub.2 O.sub.3), and the oxide of boron is allowed to melt and form a reasonably uniform liquid layer between the crucible walls and bottom surfaces and the still-solid semiconductor charge. The temperature is then raised to approximately the melt temperature T.sub.m2 of the semiconductor charge material, and crystal growth proceeds by a liquid encapsulated, vertical gradient freeze process. About half of the crystals grown have a dislocation density of less than 1000/cm.sup.2. If the oxide of boron has water content less than 600 ppm, the crucible material should include boron nitride, a layer of the inner surface of the crucible should be oxidized before the oxide of boron in the crucible charge is melted, and the sum of thicknesses of the solid boron oxide layer and liquid boron oxide layer should be at least 50 .mu.m.

  17. Controlled growth of semiconductor crystals

    DOE Patents [OSTI]

    Bourret-Courchesne, E.D.

    1992-07-21

    A method is disclosed for growth of III-V, II-VI and related semiconductor single crystals that suppresses random nucleation and sticking of the semiconductor melt at the crucible walls. Small pieces of an oxide of boron B[sub x]O[sub y] are dispersed throughout the comminuted solid semiconductor charge in the crucible, with the oxide of boron preferably having water content of at least 600 ppm. The crucible temperature is first raised to a temperature greater than the melt temperature T[sub m1] of the oxide of boron (T[sub m1]=723 K for boron oxide B[sub 2]O[sub 3]), and the oxide of boron is allowed to melt and form a reasonably uniform liquid layer between the crucible walls and bottom surfaces and the still-solid semiconductor charge. The temperature is then raised to approximately the melt temperature T[sub m2] of the semiconductor charge material, and crystal growth proceeds by a liquid encapsulated, vertical gradient freeze process. About half of the crystals grown have a dislocation density of less than 1000/cm[sup 2]. If the oxide of boron has water content less than 600 ppm, the crucible material should include boron nitride, a layer of the inner surface of the crucible should be oxidized before the oxide of boron in the crucible charge is melted, and the sum of thicknesses of the solid boron oxide layer and liquid boron oxide layer should be at least 50 [mu]m. 7 figs.

  18. Microsoft Word - Highlights.doc

    Gasoline and Diesel Fuel Update (EIA)

    September 2010 1 September 2010 Short-Term Energy Outlook September 8, 2010 Release Highlights  These projections reflect updated expectations for economic activity, with forecasted U.S. real gross domestic product (GDP) growth of 2.8 percent in 2010 and 2.3 percent in 2011, down from the previous Outlook's growth projections of 3.1 and 2.7 percent for 2010 and 2011, respectively. The 2011 world oil-consumption-weighted real GDP growth rate is also lowered, to 3.3 percent from the 3.6 percent

  19. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect (OSTI)

    Joel L. Morrison

    2002-08-27

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the sixth quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) release of 2002 SWC request-for-proposal, (2) organized and hosted the Spring SWC meeting in Columbus, Ohio for membership proposal presentations and review; (3) tentatively scheduled the 2002 fall technology transfer meeting sites, and (4) continued to recruit additional Consortium members. In addition, a literature search that focuses on the use of lasers, microwaves, and acoustics for potential stripper well applications continued.

  20. Synthetic heparin-binding growth factor analogs

    DOE Patents [OSTI]

    Pena, Louis A.; Zamora, Paul; Lin, Xinhua; Glass, John D.

    2007-01-23

    The invention provides synthetic heparin-binding growth factor analogs having at least one peptide chain that binds a heparin-binding growth factor receptor, covalently bound to a hydrophobic linker, which is in turn covalently bound to a non-signaling peptide that includes a heparin-binding domain. The synthetic heparin-binding growth factor analogs are useful as soluble biologics or as surface coatings for medical devices.

  1. VP 100: Growth in solar means growth in Ohio | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Growth in solar means growth in Ohio VP 100: Growth in solar means growth in Ohio October 6, 2010 - 10:57am Addthis DuPont is betting on major growth in the market for solar energy -- and therefore for its Tedlar film, a durable backing for silicon solar panels. | Photo Courtesy of DuPont DuPont is betting on major growth in the market for solar energy -- and therefore for its Tedlar film, a durable backing for silicon solar panels. | Photo Courtesy of DuPont Lorelei Laird Writer, Energy

  2. GROWTH AND ELECTROCHEMICAL CHARACTERIZATION OF CARBON NANOSPIKE...

    Office of Scientific and Technical Information (OSTI)

    Title: GROWTH AND ELECTROCHEMICAL CHARACTERIZATION OF CARBON NANOSPIKE THIN FILM ELECTRODES Authors: Sheridan, Leah B 1 ; Hensley, Dale K 1 ; Lavrik, Nickolay V 1 ; Smith, ...

  3. "Conflict Between Economic Growth and Environmental Protection...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9, 2012, 4:15pm Colloquia MBG Auditorium "Conflict Between Economic Growth and Environmental Protection", Dr. Bryan Czech, resident, Center for the Advancement of the Steady State...

  4. HUD (Housing and Urban Development) Intermediate Minimum Property Standards Supplement 4930. 2 (1989 edition). Solar heating and domestic hot water systems

    SciTech Connect (OSTI)

    Not Available

    1989-12-01

    The Minimum Property Standards for Housing 4910.1 were developed to provide a sound technical basis for housing under numerous programs of the Department of Housing and Urban Development (HUD). These Intermediate Minimum Property Standards for Solar Heating and Domestic Hot Water Systems are intended to provide a companion technical basis for the planning and design of solar heating and domestic hot water systems. These standards have been prepared as a supplement to the Minimum Property Standards (MPS) and deal only with aspects of planning and design that are different from conventional housing by reason of the solar systems under consideration. The document contains requirements and standards applicable to one- and two-family dwellings, multifamily housing, and nursing homes and intermediate care facilities references made in the text to the MPS refer to the same section in the Minimum Property Standards for Housing 4910.1.

  5. Digital electronic bone growth stimulator

    DOE Patents [OSTI]

    Kronberg, J.W.

    1993-01-01

    The present invention relates to the electrical treatment of biological tissue. In particular, the present invention discloses a device that produces discrete electrical pulse trains for treating osteoporosis and accelerating bone growth. According to its major aspects and broadly stated, the present invention consists of an electrical circuit configuration capable of generating Bassett-type waveforms shown with alternative signals provide for the treatment of either fractured bones or osteoporosis. The signal generator comprises a quartz clock, an oscillator circuit, a binary divider chain, and a plurality of simple, digital logic gates. Signals are delivered efficiently, with little or no distortion, and uniformly distributed throughout the area of injury. Perferably, power is furnished by widely available and inexpensive radio batteries, needing replacement only once in several days. The present invention can be affixed to a medical cast without a great increase in either weight or bulk. Also, the disclosed stimulator can be used to treat osteoporosis or to strengthen a healing bone after the cast has been removed by attaching the device to the patient`s skin or clothing.

  6. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect (OSTI)

    Joel L. Morrison

    2002-09-30

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), has established a national industry-driven Stripper Well Consortium (SWC) that is focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the second topical report. The SWC has grown and diversified its membership during its first 24 months of existence. The Consortium is now focused on building strategic alliances with additional industrial, state, and federal entities to expand further the SWC membership base and transfer technologies as they are developed. In addition, the Consortium has successfully worked to attract state support to co-fund SWC projects. Penn State has entered a co-funding arrangement with the New York State Energy Development Authority (NYSERDA) which has provided $200,000 over the last two years to co-fund stripper well production-orientated projects that have relevance to New York state producers. During this reporting period, the Executive Council approved co-funding for 14 projects that have a total project value of $2,116,897. Since its inception, the SWC has approved cofunding for 27 projects that have a total project value of $3,632,109.84. The SWC has provided $2,242,701 in co-funding for these projects and programmatically maintains a cost share of 39%.

  7. Wind Turbine Design Cost and Scaling Model

    SciTech Connect (OSTI)

    Fingersh, L.; Hand, M.; Laxson, A.

    2006-12-01

    This model intends to provide projections of the impact on cost from changes in economic indicators such as the Gross Domestic Product and Producer Price Index.

  8. Annual Energy Outlook 2015

    Gasoline and Diesel Fuel Update (EIA)

    ... GDP Gross domestic product. Btu British thermal unit. - - Not applicable. Sources: 2012 and 2013: IHS Economics, Industry and Employment models, November 2014. Projections: ...

  9. Microsoft PowerPoint - conti_conference_Final.ppt

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Reference thousand vehicles thousand Btu per 2000 dollar of shipments 2006 dollars per barrel Gross Domestic Product Industrial Energy Intensity Conventional Light Duty Vehicle ...

  10. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption and Expenditures Indicators Estimates Energy Consumption, 1949-2011 Energy Expenditures, 1970-2010 Energy Consumption per Real Dollar of Gross Domestic...

  11. R A N K I N G S U.S. Energy Information Administration | State...

    Gasoline and Diesel Fuel Update (EIA)

    7 Table C12. Total Energy Consumption Estimates, Real Gross Domestic Product (GDP), Energy Consumption Estimates per Real Dollar of GDP, Ranked by State, 2013 Rank Total Energy...

  12. Word Pro - S1

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    value of gross domestic product (GDP) plus the value of intermediate inputs used to produce GDP. Web Page: http:www.eia.govtotalenergydatamonthlysummary. Source: Table 1.7

  13. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... per unit gross domestic product (GDP) - among China's provinces in the 12th FYP. Drawing on internationalmore experience - especially the European Union (EU) Triptych ...

  14. Domestic Uranium Production Report

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Work W W 130.7 W W 154.6 Properties Under Development for Production and Development Drilling W 31.8 W W 38.2 W Mines in Production W 19.6 W W 19.2 W Mines Closed Temporarily, ...

  15. Domestic Uranium Production Report

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1993-2014 Year Exploration and development surface drilling (million feet) Exploration and development drilling expenditures 1 (million dollars) Mine production of uranium ...

  16. Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    2003-14 million dollars Year Drilling1 Production2 Land and other 3 Total ... W Data withheld to avoid disclosure of individual company data. 1 Drilling: All ...

  17. Domestic Uranium Production Report

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1. U.S. uranium drilling activities, 2003-14 Exploration drilling Development drilling Exploration and development drilling Year Number of holes Feet (thousand) Number of holes ...

  18. Domestic Shipping with Portunus

    SciTech Connect (OSTI)

    Sutton, F. G.

    2015-08-18

    This report considers shipping options in the United States and presents a case study on ports in southern California to identify variables that might affect cost.

  19. Domestic Uranium Production Report

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3. U.S. uranium concentrate production, shipments, and sales, 2003-14 Activity at U.S. mills and In-Situ-Leach plants 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014...

  20. Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    6. Employment in the U.S. uranium production industry by category, 2003-14 person-years Year Exploration Mining Milling Processing Reclamation Total 2003 W W W W 117 321 2004 18...

  1. Domestic Uranium Production Report

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    7. Employment in the U.S. uranium production industry by state, 2003-14 person-years State(s) 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Wyoming 134 139 181 195...

  2. Domestic Uranium Production Report

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    12 12 11 E Estimated data. W Data withheld to avoid disclosure of individual company data. 1Other includes, in various years, mine water, mill site cleanup and mill tailings,...

  3. Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    or dissolving-out from mined rock, of the soluble uranium constituents by the natural action of percolating a prepared chemical solution through mounded (heaped) rock material. ...

  4. Domestic* Foreign* Total Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    754 6,007 Mississippi 3,603 - 3,603 Missouri 596 - 596 Montana 39,612 653 40,265 New Mexico 26,262 - 26,262 North Dakota 30,055 - 30,055 Ohio 21,155 635 21,790 Oklahoma 1,782...

  5. Clean Domestic Power

    Broader source: Energy.gov [DOE]

    This document provides an overview of the Geothermal Technologies Program and its program goals, efforts, and plans.

  6. Security's (DHS) Domestic Nuclear

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The apex of the railroad locomo- tive's importance and popularity is almost exclusively associated with the industrial age, but the upcoming transport of an historic locomotive ...

  7. Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    5. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status at end of the year, 2011-15 In-Situ-Leach plant owner In-Situ-Leach plant name County, state (existing and planned locations) Production capacity (pounds U3O8 per year) Operating status at end of the year 2011 2012 2013 2014 2015 AUC LLC Reno Creek Campbell, Wyoming 2,000,000 - - Developing Developing Partially Permitted and Licensed Azarga Uranium Corp Dewey Burdock Project Fall River and Custer, South

  8. Draft STEO Bullets … December 2003

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    In this forecast, U.S. real gross domestic product (GDP) is expected to decline by 2 percent in 2009, leading to decreases in domestic energy consumption for all major fuels. ...

  9. Microsoft Word - Highlights.doc

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Release Highlights U.S. real gross domestic product (GDP) is expected to decline by 2.7 percent in 2009, triggering decreases in domestic energy consumption for all major fuels. ...

  10. Geothermal Energy Growth Continues, Industry Survey Reports

    Broader source: Energy.gov [DOE]

    A survey released by the Geothermal Energy Association (GEA) shows continued growth in the number of new geothermal power projects under development in the United States, a 20% increase since January of this year.

  11. Experimental Performance of R-1234yf and R-1234ze as Drop-in Replacements for R-134a in Domestic Refrigerators

    SciTech Connect (OSTI)

    Karber, Kyle M; Abdelaziz, Omar; Vineyard, Edward Allan

    2012-01-01

    Concerns about anthropogenic climate change have generated an interest in low global warming potential (GWP) refrigerants and have spawned policies and regulations that encourage the transition to low GWP refrigerants. Recent research has largely focused on hydrofluoroolefins (HFOs), including R-1234yf (GWP = 4) as a replacement for R-134a (GWP = 1430) in automotive air-conditioning applications. While R-1234yf and R-1234ze (GWP = 6) have been investigated theoretically as a replacements for R-134a in domestic refrigeration, there is a lack of experimental evidence. This paper gives experimental performance data for R-1234yf and R-1234ze as drop-in replacements for R134a in two household refrigerators one baseline and one advanced technology. An experiment was conducted to evaluate and compare the performance of R-134a to R-1234yf and R-1234ze, using AHAM standard HRF-1 to evaluate energy consumption. These refrigerants were tested as drop-in replacements, with no performance enhancing modifications to the refrigerators. In Refrigerator 1 and 2, R-1234yf had 2.7% and 1.3% higher energy consumption than R-134a, respectively. This indicates that R-1234yf is a suitable drop-in replacement for R-134a in domestic refrigeration applications. In Refrigerator 1 and 2, R-1234ze had 16% and 5.4% lower energy consumption than R-134a, respectively. In order to replace R-134a with R-1234ze in domestic refrigerators the lower capacity would need to be addressed, thus R-1234ze might not be suitable for drop-in replacement.

  12. Housing standards: change to HUD 4930. 2 Intermediate Minimum Property Standard (IMPS) supplement for solar heating and domestic hot water systems

    SciTech Connect (OSTI)

    Not Available

    1982-08-17

    This rule is made to provide an updating, clarification, and improvement of requirements contained in HUD Handbook 4930.2, Intermediate Minimum Property Standards (IMPS) Supplement concerning solar heating and domestic hot water systems. Changes pertain to fire protection, penetration, roof covering, conditions of use, thermal stability, rain resistance, ultraviolet stability, and compatibility with transfer medium. Additional changes cover applicable standards, labeling, flash point, chemical and physical commpatibility, flame spread classification, lightening protection, and parts of a solar energy system. Altogether, there are over 50 changes, some of which apply to tables and worksheets. Footnotes are included.

  13. Microsoft Word - Highlights.doc

    Gasoline and Diesel Fuel Update (EIA)

    May 2010 1 May 2010 Short-Term Energy Outlook May 11, 2010 Release Highlights  EIA projects U.S. real gross domestic product (GDP) will grow by 3.0 percent and world real oil-consumption-weighted GDP will increase by 3.6 percent in 2010, both of which are 0.2 percent higher than in the previous Outlook. The 2011 forecast for real GDP growth is at 2.9 percent and 3.7 percent for the United States and the world, respectively.  The more optimistic economic growth forecasts lead to an increase

  14. Apparatus for silicon web growth of higher output and improved growth stability

    DOE Patents [OSTI]

    Duncan, Charles S.; Piotrowski, Paul A.

    1989-01-01

    This disclosure describes an apparatus to improve the web growth attainable from prior web growth configurations. This apparatus modifies the heat loss at the growth interface in a manner that minimizes thickness variations across the web, especially regions of the web adjacent to the two bounding dendrites. In the unmodified configuration, thinned regions of web, adjacent to the dendrites, were found to be the origin of crystal degradation which ultimately led to termination of the web growth. According to the present invention, thinning adjacent to the dendrites is reduced and the incidence of crystal degradation is similarly reduced.

  15. Low Carbon Growth: a Potential Path for Mexico - GHG Abatement...

    Open Energy Info (EERE)

    "ESMAP Low Carbon Growth Country Studies Program" Retrieved from "http:en.openei.orgwindex.php?titleLowCarbonGrowth:aPotentialPathforMexico-GHGAbatementCostCurve&...

  16. Epitaxial Growth of Strontium Bismuth Tantalate/Niobate of Buffered...

    Office of Scientific and Technical Information (OSTI)

    Conference: Epitaxial Growth of Strontium Bismuth TantalateNiobate of Buffered Magnesium Oxide Substrates Citation Details In-Document Search Title: Epitaxial Growth of Strontium ...

  17. Growth of the NGV Market: Lessons Learned Roadmap for Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Growth of the NGV Market: Lessons Learned Roadmap for Infrastructure Development Growth of the NGV Market: Lessons Learned Roadmap for Infrastructure Development Presented at ...

  18. NREL Growth Forum Brings Together Clean Energy Innovators - News...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Growth Forum Brings Together Clean Energy Innovators Event recognizes the top startup businesses and clean energy technologies November 5, 2015 The Industry Growth Forum, hosted by...

  19. Understanding Cost Growth and Performance Shortfalls in Pioneer...

    Office of Environmental Management (EM)

    Cost Growth and Performance Shortfalls in Pioneer Process Plants Understanding Cost Growth and Performance Shortfalls in Pioneer Process Plants This report presents an empirical...

  20. Enhancing Plant Growth and Stress Tolerance through Use of Fungi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhancing Plant Growth and Stress Tolerance through Use of Fungi and Bacteria that Comprise Plant Microbiomes Enhancing Plant Growth and Stress Tolerance through Use of Fungi and ...

  1. China-ClimateWorks Low Carbon Growth Planning Support | Open...

    Open Energy Info (EERE)

    ClimateWorks Low Carbon Growth Planning Support Jump to: navigation, search Name China-Low Carbon Growth Planning Support AgencyCompany Organization ClimateWorks, Project...

  2. Low Carbon Green Growth: Integrated Policy Approach to Climate...

    Open Energy Info (EERE)

    Growth: Integrated Policy Approach to Climate Change for Asia-Pacific Developing Countries Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Low Carbon Green Growth:...

  3. Ghana Goes for Green Growth: National Engagement on Climate Change...

    Open Energy Info (EERE)

    Ghana Goes for Green Growth: National Engagement on Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Ghana Goes for Green Growth: National Engagement on...

  4. ClimateWorks-Egypt-Low Carbon Growth Planning Support | Open...

    Open Energy Info (EERE)

    ClimateWorks-Egypt-Low Carbon Growth Planning Support Redirect page Jump to: navigation, search REDIRECT ClimateWorks Low Carbon Growth Planning Support Retrieved from "http:...

  5. Republic of Macedonia-Low Carbon Growth Country Studies Program...

    Open Energy Info (EERE)

    Low Carbon Growth Country Studies Program Jump to: navigation, search Name Republic of Macedonia-Low Carbon Growth Country Studies Program AgencyCompany Organization Energy...

  6. Nanoparticles to Mitigate Biofilm Growth. (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Nanoparticles to Mitigate Biofilm Growth. Citation Details In-Document Search Title: Nanoparticles to Mitigate Biofilm Growth. Abstract not provided. Authors: Altman, Susan Jeanne ...

  7. Atomistic mechanisms for bilayer growth of graphene on metal...

    Office of Scientific and Technical Information (OSTI)

    Atomistic mechanisms for bilayer growth of graphene on metal substrates Title: Atomistic mechanisms for bilayer growth of graphene on metal substrates Authors: Chen, Wei ; Cui, ...

  8. Suppression of Grain Boundaries in Graphene Growth on Superstructured...

    Office of Scientific and Technical Information (OSTI)

    Suppression of Grain Boundaries in Graphene Growth on Superstructured Mn-Cu(111) Surface Title: Suppression of Grain Boundaries in Graphene Growth on Superstructured Mn-Cu(111) ...

  9. Thailand-Green Growth Planning | Open Energy Information

    Open Energy Info (EERE)

    search Name Thailand-Green Growth Planning AgencyCompany Organization Global Green Growth Institute (GGGI) Partner Korea International Cooperation Agency (KOICA)...

  10. Cambodia-Green Growth Planning | Open Energy Information

    Open Energy Info (EERE)

    search Name Cambodia-Green Growth Planning AgencyCompany Organization Global Green Growth Institute (GGGI) Partner Korea International Cooperation Agency (KOICA)...

  11. Global Green Growth Institute (GGGI) | Open Energy Information

    Open Energy Info (EERE)

    "GGGI is dedicated to pioneering and diffusing a new model of economic growth, known as "green growth," that simultaneously targets key aspects of economic performance, such as...

  12. Green Growth e-Learning | Open Energy Information

    Open Energy Info (EERE)

    Tool Summary LAUNCH TOOL Name: Green Growth e-Learning AgencyCompany Organization: Green Growth Best Practice Initiative (GGBPI) Focus Area: Economic Development, Energy...

  13. Peru-Green Growth Planning | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name Peru-Green Growth Planning AgencyCompany Organization Global Green Growth Institute (GGGI) Partner Korea International Cooperation Agency (KOICA)...

  14. Jordan-Green Growth Planning | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name Jordan-Green Growth Planning AgencyCompany Organization Global Green Growth Institute (GGGI) Partner Korea International Cooperation Agency (KOICA)...

  15. Ethiopia-Green Growth Planning | Open Energy Information

    Open Energy Info (EERE)

    search Name Ethiopia-Green Growth Planning AgencyCompany Organization Global Green Growth Institute (GGGI), Korea International Cooperation Agency (KOICA) Partner...

  16. From Climate Finance to Financing Green Growth | Open Energy...

    Open Energy Info (EERE)

    green growth and the importance of developing the right policies to support a transition towards the low carbon economy. It assesses the financing needs of green growth in...

  17. Indonesia-Low Carbon Growth Project | Open Energy Information

    Open Energy Info (EERE)

    Growth Project Jump to: navigation, search Name Indonesia Low Carbon Growth Project AgencyCompany Organization United Kingdom Department for International Development Partner...

  18. Kenya-ClimateWorks Low Carbon Growth Planning Support | Open...

    Open Energy Info (EERE)

    ClimateWorks Low Carbon Growth Planning Support Jump to: navigation, search Name Kenya-Low Carbon Growth Planning Support AgencyCompany Organization ClimateWorks, Project...

  19. India-ClimateWorks Low Carbon Growth Planning Support | Open...

    Open Energy Info (EERE)

    ClimateWorks Low Carbon Growth Planning Support Jump to: navigation, search Name India-Low Carbon Growth Planning Support AgencyCompany Organization ClimateWorks, Project...

  20. Brazil-ClimateWorks Low Carbon Growth Planning Support | Open...

    Open Energy Info (EERE)

    ClimateWorks Low Carbon Growth Planning Support Jump to: navigation, search Name Brazil-Low Carbon Growth Planning Support AgencyCompany Organization ClimateWorks, Project...