Powered by Deep Web Technologies
Note: This page contains sample records for the topic "growing primary energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Primary coal crushers grow to meet demand  

Science Conference Proceedings (OSTI)

Mine operators look for more throughput with less fines generation in primary crushers (defined here as single role crushers and two stage crushers). The article gives advice on crusher selection and application. Some factors dictating selection include the desired product size, capacity, Hard Grove grindability index, percentage of rock to be freed and hardness of that rock. The hardness of coal probably has greatest impact on product fineness. 2 refs., 1 fig., 1 tab.

Fiscor, S.

2009-09-15T23:59:59.000Z

2

Green Button Initiative Growing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Button Initiative Growing Green Button Initiative Growing Green Button Initiative Growing May 17, 2013 - 1:17pm Addthis The Green Button initiative, which is the common-sense idea that electricity customers should be able to securely download their own energy usage information from their utility websites, is continuing to gain traction across the country. In the May 1 issue of PowerGrid International, OE's smart grid standards and interoperability coordinator Chris Irwin discusses the growth of Green Button. This initiative to enable energy innovation is part of a comprehensive grid modernization strategy to move the nation to a cleaner, more secure energy future. Addthis Related Articles At the White House Energy Datapalooza in October 2012, developers showcased new apps that help consumers harness and interpret their energy use data. The expanding Green Button movement will make apps like these more ubiquitous. | Photo by Sarah Gerrity, Energy Department.

3

Renewable energy has political support, room to grow  

Science Conference Proceedings (OSTI)

Renewable energy sources enjoy growing political support and have plenty of room to grow in the worldwide energy mix. And grow they will, according to most projections. The US Energy Information Administration`s (EIA`s) International Energy Outlook 1997 says consumption of hydroelectricity and other renewables will increase by 56% during 1995--2015. The renewable share of the total energy mix will remain at about current levels, however. The EIA projection includes only renewable fuels used in the generation of electricity. It therefore excludes most biomass energy. Despite the importance of biomass energy, data on consumption of it are sparse. IEA estimates that in the industrialized world, the biomass share of primary energy consumption amounts to 3.5%. Also excluded from EIA`s projection because of insufficiency of data are dispersed renewables, a category that includes energy consumed at the site of production, such as solar panels used for water heating. This paper discusses regional trends, North American activity, Western Europe, Asian developments, and the rest of the world.

NONE

1997-08-11T23:59:59.000Z

4

Many small consumers, one growing problem: Achieving energy savings...  

NLE Websites -- All DOE Office Websites (Extended Search)

Many small consumers, one growing problem: Achieving energy savings for electronic equipment operating in low power modes Title Many small consumers, one growing problem: Achieving...

5

Grow NJ (New Jersey) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grow NJ (New Jersey) Grow NJ (New Jersey) Eligibility Commercial Savings For Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization...

6

Northern Virginia Grows Local Energy Business | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northern Virginia Grows Local Energy Business Northern Virginia Grows Local Energy Business Northern Virginia Grows Local Energy Business January 7, 2010 - 1:08pm Addthis Kristan Castro weatherizes a northern Virginia home. | Photo courtesy EDGE Energy Kristan Castro weatherizes a northern Virginia home. | Photo courtesy EDGE Energy Joshua DeLung What does this mean for me? American taxpayers can benefit from the Residential Energy Property Credit (Section 1121) that increases the energy tax credit for homeowners' energy-efficiency improvements to their existing homes. It didn't take long for Kristan Castro to be convinced of the benefits of performing energy audits on homes and weatherizing them to improve their energy efficiency. He's been in the remodeling business for about 13 years, but it wasn't until this year that he decided to join a team that

7

On carbon footprints and growing energy use  

SciTech Connect

Could fractional reductions in the carbon footprint of a growing organization lead to a corresponding real reduction in atmospheric CO{sub 2} emissions in the next ten years? Curtis M. Oldenburg, head of the Geologic Carbon Sequestration Program of LBNL’s Earth Sciences Division, considers his own organization's carbon footprint and answers this critical question? In addressing the problem of energy-related greenhouse gas (GHG) emissions and climate change, it is essential that we understand which activities are producing GHGs and the scale of emission for each activity, so that reduction efforts can be efficiently targeted. The GHG emissions to the atmosphere of an individual or group are referred to as the ‘carbon footprint’. This terminology is entirely appropriate, because 85% of the global marketed energy supply comes from carbon-rich fossil fuel sources whose combustion produces CO{sub 2}, the main GHG causing global climate change. Furthermore, the direct relation between CO2 emissions and fossil fuels as they are used today makes energy consumption a useful proxy for carbon footprint. It would seem to be a simple matter to reduce energy consumption across the board, both individually and collectively, to help reduce our carbon footprints and therefore solve the energyclimate crisis. But just how much can we reduce carbon footprints when broader forces, such as growth in energy use, cause the total footprint to simultaneously expand? In this feature, I present a calculation of the carbon footprint of the Earth Sciences Division (ESD), the division in which I work at Lawrence Berkeley National Laboratory (LBNL), and discuss the potential for reducing this carbon footprint. It will be apparent that in terms of potential future carbon footprint reductions under projections of expected growth, ESD may be thought of as a microcosm of the situation of the world as a whole, in which alternatives to the business-as-usual use of fossil fuels are needed if absolute GHG emission reductions are to be achieved.

Oldenburg, C.M.

2011-06-01T23:59:59.000Z

8

FOA aimed at growing expansive database of Renewable Energy and...  

Open Energy Info (EERE)

FOA aimed at growing expansive database of Renewable Energy and Energy Efficiency Incentives and Policies Home > Groups > Utility Rate Graham7781's picture Submitted by...

9

Quantum grow—A quantum dynamics sampling approach for growing potential energy surfaces and nonadiabatic couplings  

Science Conference Proceedings (OSTI)

A quantum sampling algorithm for the interpolation of diabatic potential energy matrices by the Grow method is introduced. The new procedure benefits from penetration of the wave packet into classically forbidden regions

Oded Godsi; Michael A. Collins; Uri Peskin

2010-01-01T23:59:59.000Z

10

Growing Significance of Renewable Energy (Presentation)  

DOE Green Energy (OSTI)

Presentation on renewable energy innovations and policies by Dr. Dan Arvizu of the National Renewable Energy Laboratory.

Arvizu, D. E.

2007-02-05T23:59:59.000Z

11

Primary Energy Ventures | Open Energy Information  

Open Energy Info (EERE)

Primary Energy Ventures Primary Energy Ventures Jump to: navigation, search Name Primary Energy Ventures Place Oak Brook, Illinois Zip 60523 Product Primary Energy Ventures is a privately held developer, owner and operator of on-site combined heat and power and recycled energy projects. References Primary Energy Ventures[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Primary Energy Ventures is a company located in Oak Brook, Illinois . References ↑ "Primary Energy Ventures" Retrieved from "http://en.openei.org/w/index.php?title=Primary_Energy_Ventures&oldid=349951" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes

12

Growing Energy Biomass crops as a  

E-Print Network (OSTI)

to provide our heat, electricity and liquid transport fuels. It is widely agreed that wind, wave, tidal carbon emissions set by the Kyoto Protocol are to be met. Biomass from crop plants can make an important of research activities aimed at the sustainable production of biomass from energy crops for heat and power

Rambaut, Andrew

13

Better Buildings Challenge Continues to Grow | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Buildings Challenge Continues to Grow Better Buildings Challenge Continues to Grow Better Buildings Challenge Continues to Grow June 18, 2012 - 9:49am Addthis Heather Zichal, Deputy Assistant to the President for Energy and Climate Change, at the 23rd Annual Energy Efficiency Forum in Washington, D.C. | Photo courtesy of the Energy Efficiency Forum. Heather Zichal, Deputy Assistant to the President for Energy and Climate Change, at the 23rd Annual Energy Efficiency Forum in Washington, D.C. | Photo courtesy of the Energy Efficiency Forum. Maria Tikoff Vargas Director, Department of Energy Better Buildings Challenge What are the key facts? The Better Buildings Challenge helps America's commercial and industrial buildings become 20 percent more efficient over the next decade. Last week, at the 23rd Annual Energy Efficiency Forum, six new

14

HEAT THAT GROWS ON TREES Short description of timber energy  

E-Print Network (OSTI)

HEAT THAT GROWS ON TREES 6 Short description of timber energy · Along with hydro-electric power, wood is Switzerland's most important energy source. · Wood is CO2-neutral: in sustainably managed, a balance is maintained between growth and combustion). · Wood energy represents a welcome potential use

15

The Growing Web of Open Data | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Growing Web of Open Data The Growing Web of Open Data The Growing Web of Open Data September 26, 2012 - 10:57am Addthis NREL's Visual API Browser presents energy data APIs as a web of key words. NREL's Visual API Browser presents energy data APIs as a web of key words. Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs Across the federal government, Open Data Initiatives aim to "liberate" government data to empower entrepreneurs, improve the lives of Americans, and create jobs. An example of this process is the way that the National Oceanic and Atmospheric Administration makes weather data freely available for download by anyone. This open data has been used to improve weather newscasts, mobile applications, websites, and even insurance plans.

16

The Growing Web of Open Data | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Growing Web of Open Data The Growing Web of Open Data The Growing Web of Open Data September 26, 2012 - 10:57am Addthis NREL's Visual API Browser presents energy data APIs as a web of key words. NREL's Visual API Browser presents energy data APIs as a web of key words. Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs Across the federal government, Open Data Initiatives aim to "liberate" government data to empower entrepreneurs, improve the lives of Americans, and create jobs. An example of this process is the way that the National Oceanic and Atmospheric Administration makes weather data freely available for download by anyone. This open data has been used to improve weather newscasts, mobile applications, websites, and even insurance plans.

17

Energy risk in Latin America:Energy risk in Latin America: the growing challengesthe growing challenges  

E-Print Network (OSTI)

natural gas reserves and hydro potential capacity, coupled to high demand growth -need to diversify energy and natural gas) · Andean Community Countries with abundant energy resources that could be better used markets #12;-one of the most dynamic regions of interaction between electricity and natural gas -important

Catholic University of Chile (Universidad CatĂłlica de Chile)

18

Energy risk in Latin America:Energy risk in Latin America: the growing challengesthe growing challenges  

E-Print Network (OSTI)

markets #12;-one of the most dynamic regions of interaction between electricity and natural gas -important,8 TCF Argentina 0,7 TCM (25,8 TCF) Important load Natural gas reserve Hydro reserve #12;In Operation and natural gas) · Andean Community Countries with abundant energy resources that could be better used

Rudnick, Hugh

19

Effect of energy supply on amino acid utilization by growing steers.  

E-Print Network (OSTI)

??Effects of energy supply on the efficiency of methionine and leucine utilization in growing steers were evaluated in 3 studies. We hypothesized that increased energy… (more)

Schroeder, Guillermo Fernando

2006-01-01T23:59:59.000Z

20

Maine Company Growing with Weatherization Work | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine Company Growing with Weatherization Work Maine Company Growing with Weatherization Work Maine Company Growing with Weatherization Work January 5, 2010 - 2:15pm Addthis BIOSAFE Environmental Services Inc. touts itself as a leader in lead and asbestos removal and has worked for more than a decade making homes hazard-free. So it came as a surprise to Mark Coleman, president and founder of BIOSAFE, when in 2003 he received an interesting proposal from Maine's regional community action programs. "They realized we had talent in . . . lead abatement and home repair and approached us about expanding into weatherization," he said. Mark welcomed the chance to collaborate with the community action groups to grow the business and offer employment to out-of-work individuals, he says. "We saw an opportunity to create job growth through federal funding and

Note: This page contains sample records for the topic "growing primary energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Hanford Grows Young Minds Through Site Tours | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Grows Young Minds Through Site Tours Hanford Grows Young Minds Through Site Tours Hanford Grows Young Minds Through Site Tours June 3, 2013 - 12:00pm Addthis John Britton, with Office of River Protection contractor Washington River Protection Solutions, explains the Hanford tank waste program to Western Washington University students in a recent tour of the Hanford site. John Britton, with Office of River Protection contractor Washington River Protection Solutions, explains the Hanford tank waste program to Western Washington University students in a recent tour of the Hanford site. RICHLAND, Wash. - It is harvest season for cherries, raspberries and rhubarb in Washington state. But employees at the Hanford site are helping grow the young minds of the nation's future science, technology,

22

FOA aimed at growing expansive database of Renewable Energy and Energy  

Open Energy Info (EERE)

FOA aimed at growing expansive database of Renewable Energy and Energy FOA aimed at growing expansive database of Renewable Energy and Energy Efficiency Incentives and Policies Home > Groups > Utility Rate Graham7781's picture Submitted by Graham7781(2002) Super contributor 12 December, 2012 - 11:30 DOE energy efficiency FOA funding opportunity Renewable Energy A new funding opportunity is available to anyone interested in helping develop a public database of federal, state, and local policies and incentives. These resources will be made available through state-of-the-art web and mobile interfaces, on-demand web services, and a downloadable data feed designed to reach a wide variety of stakeholders including energy professionals and end consumers. The Department of Energy is anticipating providing $1.5 million total to one Awardee over a period of up to three years to accomplish the goals of

23

Property:Primary Organization | Open Energy Information  

Open Energy Info (EERE)

Primary Organization Primary Organization Jump to: navigation, search Property Name Primary Organization Property Type Page Company Pages using the property "Primary Organization" Showing 25 pages using this property. (previous 25) (next 25) M MHK Technologies/Aegir Dynamo + Ocean Navitas + MHK Technologies/AirWEC + Resolute Marine Energy Inc + MHK Technologies/Anaconda bulge tube drives turbine + Checkmate SeaEnergy + MHK Technologies/AquaBuoy + Finavera Renewables Ocean Energy Ltd + MHK Technologies/Aquanator + Atlantis Resources Corporation + MHK Technologies/Aquantis + Ecomerit Technologies LLC see Dehlsen Associates LLC + MHK Technologies/Archimedes Wave Swing + AWS Ocean Energy formerly Oceanergia + MHK Technologies/Atlantis AN 150 + Atlantis Resources Corporation +

24

Ris Energy Report 2 Three growing concerns sustainability (particularly in  

E-Print Network (OSTI)

sector), security of energy supply and cli- mate change ­ have combined to increase interest in bioenergy of cover- ing a considerable part of the world's energy needs, increasing the security of energy supply and Danish energy supply, industry and energy research. The report presents the status of current R

25

Growing Pains for New Energy-Saving Technologies  

DOE Green Energy (OSTI)

As we contemplate a revolution in the lighting industry, it is yet unclear in what form tomorrow's solid-state lighting will emerge. Similarly, photovoltaic (PV) power supplied on a utility scale may take a different form from today's flat-plate silicon modules. The success of the PV industry-now a multibillion dollar a year industry and growing at more than 25% per year-has largely come from integrating solar cells into other products. In many cases, this integration required the formation of new business entities. The solid-state lighting industry faces hurdles that are similar to those faced by the PV industry. Therefore, based on the experiences of the PV industry and others, we predict that the growing pains of the solid-state lighting industry will include: (1) identifying entry markets, (2) integrating light-emitting diodes into attractive products, (3) attaining high reliability for these products, and (4) increasing production of these products, thus lowering costs and opening up new markets. These activities must be implemented, keeping in mind that most consumers do not care about buying ''solid-state lighting'' and ''solar cells.'' Rather, they want to buy attractive lighting and inexpensive electricity.

Kurtz, S.

2004-10-01T23:59:59.000Z

26

Economic growth continues to drive China's growing need for energy ...  

U.S. Energy Information Administration (EIA)

... which has grown at an average real rate of about 10 percent per year over the last 10 years, is a key driver of the increase in energy consumption, ...

27

Economic growth continues to drive China's growing need for energy ...  

U.S. Energy Information Administration (EIA)

China is the world's largest energy consumer. China's economy, which has grown at an average real rate of about 10 percent per year over the last 10 years, is a key ...

28

Communication China's growing methanol economy and its implications for energy  

E-Print Network (OSTI)

in the environment. 3.7. Global energy economy Historically, coal prices have been more stable than oil and natural gas prices. In recent years, however, coal prices have been unusually volatile. The expansion of China gas emissions, and jeopardize consumer safety, while possibly increasing coal price volatility. China

Jackson, Robert B.

29

improving energy efficiency in the built environment is now seen as a growing  

E-Print Network (OSTI)

improving energy efficiency in the built environment is now seen as a growing policy priority the 1973 oil embargo. Codes by state but they generally establish a minimum energy efficiency stan- dard.S. Department of Energy to establish building code energy efficiency targets by January 1, 2014. it also

Kotchen, Matthew J.

30

EIA Data: Total International Primary Energy Consumption

This...  

Open Energy Info (EERE)

EIA Data: Total International Primary Energy Consumption

This table lists total primary energy consumption by country and region in Quadrillion Btu.  Figures in this table...

31

NRRI's Bill Berguson promotes fast-growing trees as part of America's new energy future.  

E-Print Network (OSTI)

to increase energy independence with new biorefinery industries and sustainable new crops. A study undertaken Commission with representatives from the union, paper industry, legislature, University, energy company andNRRI's Bill Berguson promotes fast-growing trees as part of America's new energy future. Winter

Netoff, Theoden

32

Category:PrimarySchool | Open Energy Information  

Open Energy Info (EERE)

PrimarySchool PrimarySchool Jump to: navigation, search Go Back to PV Economics By Building Type Media in category "PrimarySchool" The following 77 files are in this category, out of 77 total. SVPrimarySchool Bismarck ND Montana-Dakota Utilities Co (North Dakota).png SVPrimarySchool Bismar... 70 KB SVPrimarySchool Cedar City UT Moon Lake Electric Assn Inc (Utah).png SVPrimarySchool Cedar ... 60 KB SVPrimarySchool International Falls MN Northern States Power Co (Minnesota) Excel Energy.png SVPrimarySchool Intern... 86 KB SVPrimarySchool LA CA City of Los Angeles California (Utility Company).png SVPrimarySchool LA CA ... 86 KB SVPrimarySchool Memphis TN City of Memphis Tennessee (Utility Company).png SVPrimarySchool Memphi... 65 KB SVPrimarySchool Minneapolis MN Northern States Power Co (Minnesota) Excel Energy.png

33

Table 1.1 Primary Energy Overview (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review November 2013 3 Table 1.1 Primary Energy Overview (Quadrillion Btu) Production Trade

34

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "New Jersey" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,...

35

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Illinois" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,19...

36

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Virginia" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,19...

37

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Texas" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,...

38

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Washington" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,...

39

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Montana" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,199...

40

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Maine" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,...

Note: This page contains sample records for the topic "growing primary energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "South Dakota" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,199...

42

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Kansas" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999...

43

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "West Virginia" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,19...

44

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Louisiana" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1...

45

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "New Hampshire" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,19...

46

Table E1. Estimated Primary Energy Consumption in the United ...  

U.S. Energy Information Administration (EIA)

Table E1. Estimated Primary Energy Consumption in the United States, Selected Years, 1635-1945 (Quadrillion Btu) Year: Fossil Fuels

47

U.S. Commercial Buildings Weather Adjusted Primary Energy ...  

U.S. Energy Information Administration (EIA)

Weather-Adjusted Primary Energy. 1. by Census Region and Principal. Building Activity, 1992, 1995, and 2003 (Million Btu per Building) Principal ...

48

U.S. Commercial Buildings Weather Adjusted Primary Energy ...  

U.S. Energy Information Administration (EIA)

Using . Weather-Adjusted. Primary Energy. 1. by Census Region and Principal Building Activity, 1992, 1995, and 2003 (Thousand Btu per Square Foot) ...

49

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Utah" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2...

50

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Iowa" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2...

51

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Ohio" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2...

52

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "New York" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,19...

53

Remote area wind energy harvesting for low-power autonomous sensors Abstract--A growing demand for deployment of autonomous  

E-Print Network (OSTI)

Remote area wind energy harvesting for low-power autonomous sensors Abstract--A growing demand wind energy harvesting is presented, with a focus on an anemometer-based solution. By utilizing for localized, independent energy harvesting capabilities for each node. In this paper, a method of remote area

54

Energy Control in Primary Aluminium Casthouse Furnaces  

Science Conference Proceedings (OSTI)

In order to effectively run a furnace with low energy consumption the burner's fuel ... Oxidation of Commercial Purity Aluminium Melts: An Experimental Study.

55

Many Small Consumers, One Growing Problem: Achieving Energy Savings for Electronic Equipment Operating in Low Power Modes  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Consumers, One Growing Problem: Achieving Energy Savings Small Consumers, One Growing Problem: Achieving Energy Savings for Electronic Equipment Operating in Low Power Modes Christopher Payne, Lawrence Berkeley National Laboratory Alan Meier, International Energy Agency ABSTRACT An increasing amount of electricity is used by equipment that is neither fully "on" nor fully "off." We call these equipment states low power modes, or "lopomos." "Standby" and "sleep" are the most familiar lopomos, but some new products already have many modes. Lopomos are becoming common in household appliances, safety equipment, and miscellaneous products. Ross and Meier (2000) reports that several international studies have found standby power to be as much as 10% of residential energy consumption. Lopomo energy consumption is

56

EIA projections show U.S. energy production growing faster than ...  

U.S. Energy Information Administration (EIA)

Short-Term Energy Outlook › Annual Energy Outlook ... EIA has just issued its Annual Energy Outlook 2013 (AEO2013) Reference case, ...

57

N.C. Agency Growing, Helping Citizens Save Money | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

N.C. Agency Growing, Helping Citizens Save Money N.C. Agency Growing, Helping Citizens Save Money N.C. Agency Growing, Helping Citizens Save Money March 12, 2010 - 5:20pm Addthis Reginald Speight, CEO of Martin County Community Action | Photo courtesy of Martin County Community Action Reginald Speight, CEO of Martin County Community Action | Photo courtesy of Martin County Community Action Joshua DeLung North Carolina will receive $132 million, or 10 times more money than in years past, for its weatherization program through the Recovery Act. Martin County Community Action is tasked with weatherizing about 1,029 units with its $7.7 million share. The agency has also surpassed its 123 units from its usual fiscal year funding. "It's been interesting ramping up like this, but we've put our agency in a position the last couple of years to be able to do more creative

58

N.C. Agency Growing, Helping Citizens Save Money | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

N.C. Agency Growing, Helping Citizens Save Money N.C. Agency Growing, Helping Citizens Save Money N.C. Agency Growing, Helping Citizens Save Money March 12, 2010 - 5:20pm Addthis Reginald Speight, CEO of Martin County Community Action | Photo courtesy of Martin County Community Action Reginald Speight, CEO of Martin County Community Action | Photo courtesy of Martin County Community Action Joshua DeLung North Carolina will receive $132 million, or 10 times more money than in years past, for its weatherization program through the Recovery Act. Martin County Community Action is tasked with weatherizing about 1,029 units with its $7.7 million share. The agency has also surpassed its 123 units from its usual fiscal year funding. "It's been interesting ramping up like this, but we've put our agency in a position the last couple of years to be able to do more creative

59

Umatilla Tribes to Grow Native Plants for Hanford | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Umatilla Tribes to Grow Native Plants for Hanford Umatilla Tribes to Grow Native Plants for Hanford Umatilla Tribes to Grow Native Plants for Hanford January 2, 2012 - 12:00pm Addthis The Confederated Tribes of the Umatilla Indian Reservation’s field station, located in Mission, Ore., will be home to one-of-a-kind research and development for revegetation efforts. The Confederated Tribes of the Umatilla Indian Reservation's field station, located in Mission, Ore., will be home to one-of-a-kind research and development for revegetation efforts. Tribal construction workers stand in front of the hexagonal greenhouse dome structure that will house the seeds for revegetation efforts. Tribal construction workers stand in front of the hexagonal greenhouse dome structure that will house the seeds for revegetation efforts.

60

Total Primary Energy Use in the U.S. by Sector, 1998 (chart)  

U.S. Energy Information Administration (EIA)

Home > Energy Users > Energy Efficiency Page > Figure 1. Total Primary Energy Use by Sector [Trends in Building-Related Energy and ...

Note: This page contains sample records for the topic "growing primary energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

U.S. Primary Energy Use and GDP, 1970-1998 (chart)  

U.S. Energy Information Administration (EIA)

Home > Energy Users > Energy Efficiency Page > Figure 2. U.S. primary energy use and GDP [Trends in Building-Related Energy and ...

62

U.S. energy use projected to grow slowly and become less carbon ...  

U.S. Energy Information Administration (EIA)

Both energy consumption and energy-related carbon dioxide emissions fell during the recent economic recession. Projections contained in the Early Release Reference ...

63

EIA projections show U.S. energy production growing faster than ...  

U.S. Energy Information Administration (EIA)

EIA has just issued its Annual Energy Outlook 2013 (AEO2013) Reference case, which highlights a growth in total U.S. energy production that exceeds growth in total U ...

64

Cotton Growing  

NLE Websites -- All DOE Office Websites (Extended Search)

Cotton Growing Cotton Growing Name: anna Location: N/A Country: N/A Date: N/A Question: Hi, My name is Anna, and I live in southern Maryland. Everybody i ask says I'm crazy or they don't have a clue about growing cotton. I believe any thing is possible. I would love to grow some not as a crop because i dont have that much room. But ihave even gone to places like SouthernStates and they can't hlep me even find seeds or whatever it is you plant. If yu could please tell me how to get some, along with maybe some instruction to grow it. I would be mighty obliged, Well Thank You Kindly For any help. P.S. please don't tell me you can't grow cotton in Maryland. L, Anna Replies: Dear Anna, The following may be useful: http://muextension.missouri.edu/xplor/agguides/crops/g04268.htm

65

Table 1.2 Primary Energy Production by Source (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review November 2013 5 Table 1.2 Primary Energy Production by Source (Quadrillion Btu)

66

Table 1.4a Primary Energy Imports by Source (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

10 U.S. Energy Information Administration / Monthly Energy Review October 2013 Table 1.4a Primary Energy Imports by Source (Quadrillion Btu) Imports

67

Table 1.3 Primary Energy Consumption by Source (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review October 2013 7 Table 1.3 Primary Energy Consumption by Source (Quadrillion Btu)

68

Table 1.3 Primary Energy Consumption by Source (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review November 2013 7 Table 1.3 Primary Energy Consumption by Source (Quadrillion Btu)

69

Table 1.4b Primary Energy Exports by Source and Total Net Imports  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review August 2013 11 Table 1.4b Primary Energy Exports by Source and Total Net Imports

70

Table 1.2 Primary Energy Production by Source (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review August 2013 5 Table 1.2 Primary Energy Production by Source (Quadrillion Btu) Fossil Fuels

71

Wind power is a rapidly growing con-tributor to worldwide energy supplies and  

E-Print Network (OSTI)

the U.S., represent- ing nearly one-third of the total installed wind energy capacity in the country for wind turbine siting and wind source prediction. Ironically, PPM has hired 3TIER to provide wind energy and operates wind farms in Ireland, Scotland, England, Wales and the United States. With the recent extension

72

Many small consumers, one growing problem: Achieving energy savings for electronic equipment operating in low power modes  

SciTech Connect

An increasing amount of electricity is used by equipment that is neither fully ''on'' nor fully ''off.'' We call these equipment states low power modes, or ''lopomos.'' ''Standby'' and ''sleep'' are the most familiar lopomos, but some new products already have many modes. Lopomos are becoming common in household appliances, safety equipment, and miscellaneous products. Ross and Meier (2000) reports that several international studies have found standby power to be as much as 10 percent of residential energy consumption. Lopomo energy consumption is likely to continue growing rapidly as products with lopomos that use significant amounts of energy penetrate the market. Other sectors such as commercial buildings and industry also have lopomo energy use, perhaps totaling more in aggregate than that of households, but no comprehensive measurements have been made. In this paper, we propose a research agenda for study of lopomo energy consumption. This agenda has been developed with input from over 200 interested parties. Overall, there is consensus that lopomo energy consumption is an important area for research. Many see this as a critical time for addressing lopomo issues. As equipment designs move from the binary ''on/off'' paradigm to one that encompasses multiple power modes, there is a unique opportunity to address the issue of low power mode energy consumption while technology development paths are still flexible.

Payne, Christopher T.; Meier, Alan K.

2004-08-24T23:59:59.000Z

73

Prospects of Renewable Energy for Meeting Growing Electricity Demand in Pakistan  

Science Conference Proceedings (OSTI)

Pakistan is an energy deficit country. About half of the country's population has access to electricity and per capita supply is only 520 kWh. Majority of the country's population resides in rural areas and most of them are yet without electricity. Conventional electricity generation includes 66.8% thermal

Mohammad Aslam Uqaili; Khanji Harijan; Mujeebuddin Memon

2007-01-01T23:59:59.000Z

74

Net primary energy balance of a solar-driven photo-electrochemical...  

NLE Websites -- All DOE Office Websites (Extended Search)

Net primary energy balance of a solar-driven photo-electrochemical water-splitting device Title Net primary energy balance of a solar-driven photo-electrochemical water-splitting...

75

International Energy Outlook - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas International Energy Outlook 2004 Natural Gas Natural gas is the fastest growing primary energy source in the IEO2004 forecast. Consumption of natural gas is projected...

76

Global wind energy market report. Wind energy industry grows at steady pace, adds over 8,000 MW in 2003  

Science Conference Proceedings (OSTI)

Cumulative global wind energy generating capacity topped 39,000 megawatts (MW) by the end of 2003. New equipment totally over 8,000 MW in capacity was installed worldwide during the year. The report, updated annually, provides information on the status of the wind energy market throughout the world and gives details on various regions. A listing of new and cumulative installed capacity by country and by region is included as an appendix.

anon.

2004-03-01T23:59:59.000Z

77

Table 1.3 Primary Energy Consumption Estimates by Source, 1949 ...  

U.S. Energy Information Administration (EIA)

Table 1.3 Primary Energy Consumption Estimates by Source, 1949-2011 (Quadrillion Btu) Year: Fossil Fuels: Nuclear Electric Power

78

EIA Energy Efficiency-Table 1c. U.S. Commercial Buildings Primary ...  

U.S. Energy Information Administration (EIA)

Commercial Buildings Primary Energy Consumption by Principal Building Activity and Census Region. ... 3 Laboratory buildings are included in the "Other" category.

79

Table 1.1 Primary Energy Overview, 1949-2011 (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

Table 1.1 Primary Energy Overview, 1949-2011 (Quadrillion Btu) Year: Production: Trade: Stock Change and Other 8: Consumption: Fossil Fuels 2

80

U.S. Residential Housing Primary Energy Consumption  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency > Residential Housing Energy Intensities > Table 1c Glossary U.S. Resident ...

Note: This page contains sample records for the topic "growing primary energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Table A33. Total Primary Consumption of Energy for All Purposes by Employment  

U.S. Energy Information Administration (EIA) Indexed Site

Primary Consumption of Energy for All Purposes by Employment" Primary Consumption of Energy for All Purposes by Employment" " Size Categories, Industry Group, and Selected Industries, 1991 (Continued)" " (Estimates in Trillion Btu)" ,,,,,"Employment Size" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," "," ",,500,"Row" "Code(a)","Industry Groups and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"," "," "," "," "," "," "," "

82

Figure 1.1 Primary Energy Overview (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

Web Page: http://www.eia.gov/totalenergy/data/monthly/#summary. Source: Table 1.1. 2 U.S. Energy Information Administration / Monthly Energy Review October 2013

83

U.S. Commercial Buildings Weather-Adjusted Primary Energy  

U.S. Energy Information Administration (EIA)

Public Order and Safety. 50 78. Q Religious Worship. 21 27. 43 Warehouse and Storage. 159 146. 121 ... Department of Energy. Title: EIA Energy Efficiency: Table 1d.

84

"Table A3. Total Primary Consumption of Combustible Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"*",0,"*","*",0,0,0,"*",32.5 3274," Lime","*",0,0,"*",0,"Q","W","*",31.9 3296," Mineral Wool","*",0,"W","*","W",0,0,"*",2 33,"Primary Metal Industries",909,"W","*",22,"W",808,17,54...

85

"Table A3. Total Primary Consumption of Combustible Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

,"*",0,21,"*",0,0,0,"*",32.5 3274," Lime","*",0,0,"*",0,"Q","W","*",31.9 3296," Mineral Wool","*",0,"W","*","W",0,0,"*",2 33,"Primary Metal Industries",909,"W",61,22,"W",30190,671,...

86

Figure 1.2 Primary Energy Production by Source  

U.S. Energy Information Administration (EIA)

4 Geothermal, solar/photovoltaic, and wind. Source: Table 1.2. Renewable Energy4 Gas electric Power ...

87

A Suggestion for Establishing Energy Management Policy in Primary ...  

Science Conference Proceedings (OSTI)

... even in countries with significant fossil fuel resources. Decisions related to energy consumption in any industry will have a long-term effect on different parts of ...

88

File:Wind Is Energy Teacher Guide for Primary Students.pdf | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search File Edit History Facebook icon Twitter icon » File:Wind Is Energy Teacher Guide for Primary Students.pdf Jump to: navigation, search File File history File usage Metadata File:Wind Is Energy Teacher Guide for Primary Students.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 3.8 MB, MIME type: application/pdf, 68 pages)

89

Table 4. Electric Power Industry Capability by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,2000,20...

90

Table A14. Total First Use (formerly Primary Consumption) of Energy for All P  

U.S. Energy Information Administration (EIA) Indexed Site

4. Total First Use (formerly Primary Consumption) of Energy for All Purposes" 4. Total First Use (formerly Primary Consumption) of Energy for All Purposes" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," "," (million dollars)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",500,"Row"," "," "," ",," "," "," "," " "Code(a)","Industry Group and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"," "," "," "," "," "," "," "," ",," "

91

Table A30. Total Primary Consumption of Energy for All Purposes by Value of  

U.S. Energy Information Administration (EIA) Indexed Site

0. Total Primary Consumption of Energy for All Purposes by Value of" 0. Total Primary Consumption of Energy for All Purposes by Value of" "Shipment Categories, Industry Group, and Selected Industries, 1991" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," ","(million dollars)" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," "," "," ",500,"Row"," "," "," ",," "," "," "," " "Code(a)","Industry Groups and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"," "," "," "," "," "," "," "," ",," "

92

"Table A11. Total Primary Consumption of Combustible Energy for Nonfuel"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Total Primary Consumption of Combustible Energy for Nonfuel" 1. Total Primary Consumption of Combustible Energy for Nonfuel" " Purposes by Census Region and Economic Characteristics of the Establishment," 1991 " (Estimates in Btu or Physical Units)" " "," "," "," ","Natural"," "," ","Coke"," "," " " ","Total","Residual","Distillate","Gas(c)"," ","Coal","and Breeze","Other(d)","RSE" " ","(trillion","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000","(1000","(trillion","Row"

93

DOE Commercial Building Energy Asset Rating Program Focus Groups with Primary Stakeholders in Seattle -- Final Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Building Commercial Building Energy Asset Rating Program Focus Groups with Primary Stakeholders in Seattle Final Report G Redmond Wolf J Dohack LD Winges Battelle Centers for Public Health Research and Evaluation Seattle, Washington Prepared for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Washington, D.C. February 2012 DOE Commercial Building Energy Asset Rating Program Focus Groups with Primary Stakeholders in Seattle Final Report G Redmond Wolf J Dohack LD Winges Centers for Public Health Research and Evaluation Seattle, Washington Prepared for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Washington, D.C. February 2012 Contents 1.0 Introduction .................................................................................................................................. 1

94

Effect of neutron composition and excitation energy on the primary fragment yield distribution in multifragmentation reaction  

E-Print Network (OSTI)

The isotopic properties of the primary and secondary fragment yield distribution in the multifragmentation of $^{58}$Fe + $^{58}$Ni and $^{58}$Fe + $^{58}$Fe reactions are studied with respect to the $^{58}$Ni + $^{58}$Ni reaction at 30, 40 and 47 MeV/nucleon. The reduced neutron and proton densities from the observed fragment yield distribution show primary fragment yield distribution to undergo strongly secondary de-excitations. The effect is small at the lowest excitation energy and smallest neutron-to-proton ratio and becomes large at higher excitation energies and higher neutron-to-proton ratio. The symmetry energy of the primary fragments deduced from the reduced neutron density is significantly lower than that for the normal nuclei at saturation density, indicating that the fragments are highly excited and formed at a reduced density. Furthermore, the symmetry energy is also observed to decrease slowly with increasing excitation energy. The observed effect is explained using the statistical multifragmentation model.

D. V. Shetty; A. S. Botvina; S. J. Yennello; G. A. Souliotis; E. Bell; A. Keksis

2004-09-23T23:59:59.000Z

95

Direct use geothermal energy utilization for ethanol production and commercial mushroom growing at Brady's Hot Springs, Nevada. Volume 1. Technical feasibility  

DOE Green Energy (OSTI)

The report is concerned with the technical and economic viability of constructing and operating two geothermally cascaded facilities, a bio-mass fuel ethanol production facility and a mushroom growing facility, where Geothermal Food Processors presently operates the world's largest direct-use geothermal vegetable dehydration facility. A review and analysis of the data generated from the various project tasks indicates that existing, state-of-the-art, ethanol production and mushroom growing technologies can be successfully adapted to include the use of geothermal energy. Additionally, a carefully performed assessment of the geothermal reservoir indicates that this resource is capable of supporting the yearly production of 10 million gallons of fuel ethanol and 1.5 million pounds of mushrooms, in addition to the demands of the dehydration plant. Further, data indicates that the two facilities can be logistically supported from existing agricultural and commerce sources located within economical distances from the geothermal source.

Not Available

1981-09-01T23:59:59.000Z

96

Table A20. Total First Use (formerly Primary Consumption) of Energy for All P  

U.S. Energy Information Administration (EIA) Indexed Site

Total First Use (formerly Primary Consumption) of Energy for All Purposes by Census" Total First Use (formerly Primary Consumption) of Energy for All Purposes by Census" " Region, Census Division, and Economic Characteristics of the Establishment, 1994" " (Estimates in Btu or Physical Units)" ,,,,,,,,"Coke",,"Shipments" " "," ","Net","Residual","Distillate","Natural Gas(e)"," ","Coal","and Breeze"," ","of Energy Sources","RSE" " ","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","(billion","LPG","(1000","(1000","Other(f)","Produced Onsite(g)","Row"

97

Atomic-Resolution STEM at Low Primary Energies  

Science Conference Proceedings (OSTI)

Aberration-corrected scanning transmission electron microscopes (STEMs) can now produce electron probes as small as 1 {angstrom} at 60 keV. This level of performance allows individual light atoms to be imaged in various novel materials including graphene, monolayer boron nitride, and carbon nanotubes. Operation at 60 keV avoids direct knock-on damage in such materials, but some radiation damage often remains, and limits the maximum usable electron dose. Elemental identification by electron energy loss spectroscopy (EELS) is then usefully supplemented by annular dark-field (ADF) imaging, for which the signal is much larger and the spatial resolution significantly better. Because of its strong dependence on the atomic number Z, ADF can be used to identify the chemical type of individual atoms, both heavy and light. We review the instrumental requirements for atomic resolution imaging at 60 keV and lower energies, and we illustrate the kinds of studies that have now become possible by ADF images of graphene, monolayer BN, and single-wall carbon nanotubes, and by ADF images and EEL spectra of carbon nanotubes containing nanopods filled with single atoms of Er. We then discuss likely future developments.

Krivanek, Ondrej L. [Nion Co; Chisholm, Matthew F [ORNL; Dellby, N. [Nion Company, WA; Murfitt, M. F. [Nion Company, WA

2011-01-01T23:59:59.000Z

98

"Table B23. Primary Space-Heating Energy Sources, Floorspace, 1999"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Primary Space-Heating Energy Sources, Floorspace, 1999" 3. Primary Space-Heating Energy Sources, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings with Space Heating","Primary Space-Heating Energy Source Useda" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings ................",67338,61602,17627,32729,3719,5077 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,5684,1567,3080,482,"Q" "5,001 to 10,000 ..............",8238,7090,1496,4292,557,"Q" "10,001 to 25,000 .............",11153,9865,3035,5320,597,232 "25,001 to 50,000 .............",9311,8565,2866,4416,486,577

99

Table A9. Total Primary Consumption of Energy for All Purposes by Census  

U.S. Energy Information Administration (EIA) Indexed Site

A9. Total Primary Consumption of Energy for All Purposes by Census" A9. Total Primary Consumption of Energy for All Purposes by Census" " Region and Economic Characteristics of the Establishment, 1991" " (Estimates in Btu or Physical Units)" ,,,,,,,,"Coke" " "," ","Net","Residual","Distillate","Natural Gas(d)"," ","Coal","and Breeze"," ","RSE" " ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","LPG","(1000","(1000","Other(e)","Row" "Economic Characteristics(a)","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","(cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

100

Table A17. Total First Use (formerly Primary Consumption) of Energy for All P  

U.S. Energy Information Administration (EIA) Indexed Site

Total First Use (formerly Primary Consumption) of Energy for All Purposes" Total First Use (formerly Primary Consumption) of Energy for All Purposes" " by Employment Size Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," "," Employment Size(b)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",1000,"Row" "Code(a)","Industry Group and Industry","Total","Under 50","50-99","100-249","250-499","500-999","and Over","Factors" ,"RSE Column Factors:",0.6,1.5,1.5,1,0.9,0.9,0.9 , 20,"Food and Kindred Products",1193,119,207,265,285,195,122,6

Note: This page contains sample records for the topic "growing primary energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Primary cell of high energy density in which the anode active material is an alkali metal  

Science Conference Proceedings (OSTI)

A primary cell of high specific energy in which the anode active material is an alkali metal and the cathode active material is sulphur oxychloride which simultaneously acts as an electrolyte solvent, said electrolyte further containing a dissolved salt and a co-solvent. The co-solvent is chosen from among phosphoryl chloride and benzoyl chloride; the dissolved salt is lithium tetrachloroaluminate.

Gabano, J.

1983-02-01T23:59:59.000Z

102

90.1 Prototype Building Models Primary School | Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Primary School Primary School The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

103

Growing tissue in the lab  

NLE Websites -- All DOE Office Websites (Extended Search)

tissue in the lab tissue in the lab Name: mike s Location: N/A Country: N/A Date: N/A Question: How do Scientists grow new tissue cells in the lab? Replies: I'm not quite sure what you mean by "new" cells. Several kinds of cell growing are done. One way is to break an organ or tissue apart into its individual cells and grow them in a medium of nutrients, controlled temperature, humidity, and carbon dioxide/oxygen. This is called "primary culture" because the cells come right out of an organism. Another method is to create an "immortal cell line". This is a type of cell isolated from a cancerous tumor, or a non-tumor cell which is infected with a cancer gene after it's isolated. Being cancerous, these cells grow forever in a dish, with the appropriate nutrients etc as long as you remove cells from time to time to prevent overcrowding. These cells can be frozen at about -100F forever and rethawed when needed. There is a library of frozen cells, thousands of types, and a catalog. Scientists can order what they need any time! Finally, you can make specific mutant cell lines by starting as above with an immortal cell, and inserting a specific gene (or deleting one) permanently from the DNA of the cell to change almost any property you want. So there it is.

104

Energy conservation in the primary aluminum and chlor-alkali industries  

SciTech Connect

The primary aluminum and chlor-alkali industries together use nearly 13% of the electrical energy consumed by US industry. As part of its mission to promote energy conservation in basic US industries, the DOE surveys the present technological status of the major electrochemical industries and evaluates promising technological innovations that may lead to reduced energy requirements. This study provides technical and economic analyses in support of a government program of research and development in advanced electrolytic technology. This program is intended to supplement the development efforts directed toward energy savings by private industry. Sections II and III of this report cover aluminum and chlorine production processes only, since these two industries represent over 90% of the electrical energy requirements of all electrolytic industries in the United States. Section IV examines barriers to accelerated research and development by the electrolytic industries, and makes suggestions for government actions to overcome these barriers.

1980-10-01T23:59:59.000Z

105

Recent world fossil-fuel and primary energy production and consumption trends  

SciTech Connect

Worldwide fossil fuel and primary electric power production figures since 1973 show a recent drop in oil production similar to the 1975 decline after recession. Crude oil consumption has declined since 1978, while production has increased. Natural gas production and consumption continue to increase as does power generation from all energy sources. Differences are noted between data sources and comparisons made of the validity of the data. 13 references, 7 figures, 12 tables. (DCK)

Parent, J.D.

1982-08-02T23:59:59.000Z

106

Abstract Bioenergy is a critical part of renewable energy solution to today's energy crisis that threatens world economic growth. Corn ethanol has been growing rapidly  

E-Print Network (OSTI)

127 Abstract Bioenergy is a critical part of renewable energy solution to today's energy crisis, Institute of Process Engineering, Beijing 100190, China M. Cai College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310035, China T. Gu (*) Department of Chemical

Gu, Tingyue

107

Study of the ultrahigh-energy primary-cosmic-ray composition with the MACRO experiment  

Science Conference Proceedings (OSTI)

We present the analysis of multiple-muon events collected with one supermodule (1013 h live time) and two supermodules (1195 h live time) of the MACRO detector at Gran Sasso, Italy. Multimuon rates are shown to be sensitive to primary-cosmic-ray energies between {similar to}50 TeV and several thousand TeV. Experimental data are compared with the expected rates from two composition models: a light (i.e., proton-rich) and a heavy (i.e., Fe-rich) composition. The predictions are based on a Monte Carlo simulation of the hadronic interactions of cosmic-ray nuclei, followed by a detailed tracking of the muons through the rock and the experimental apparatus. The results show good sensitivity of the MACRO detector to primary composition. The data exhibit a preference towards the light composition model.

Ahlen, S.; Ambrosio, M.; Antolini, R.; Auriemma, G.; Baldini, A.; Bam, B.B.; Barbarino, G.C.; Barish, B.C.; Battistoni, G.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bisi, V.; Bloise, C.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, P.; Campana, D.; Carboni, M.; Cecchini, S.; Cei, F.; Chiarella, V.; Chiera, C.; Cobis, A.; Cormack, R.; Corona, A.; Coutu, S.; DeCataldo, G.; DeMarzo, C.; De Vincenzi, M.; Di Credico, A.; Diehl, E.; Erriquez, O.; Favuzzi, C.; Ficenec, D.; Forti, C.; Foti, L.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Giubellino, P.; Grassi, M.; Green, P.; Grillo, A.; Guarino, F.; Gustavino, C.; Habig, A.; Heinz, R.; Hong, J.T.; Iarocci, E.; Katsavounidis, E.; Kearns, E.; Klein, S.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Lee, C.; Levin, D.; Lipari, P.; Liu, G.; Liu, R.; Longo, M.J.; Ludlam, G.; Mancarella, G.; Mandrioli, G.; Margiotta-Neri, A.; Marin, A.; Marini, A.; Martello, D.; Martellotti, G.; Marzari Chiesa, A.; Masera, M.; Matteuzzi; (MACRO Collaboration)

1992-08-01T23:59:59.000Z

108

Master Project: Study of the interaction between multiple Wind Farms Wind Energy is the fastest growing source of energy, and its expansion seems  

E-Print Network (OSTI)

of wind turbines (so called wind farms) are being built. At present, much knowledge exists regarding single wind turbines and also about wind turbine interaction. Nevertheless, little is known aboutMaster Project: Study of the interaction between multiple Wind Farms Wind Energy is the fastest

109

Turkey's energy demand and supply  

SciTech Connect

The aim of the present article is to investigate Turkey's energy demand and the contribution of domestic energy sources to energy consumption. Turkey, the 17th largest economy in the world, is an emerging country with a buoyant economy challenged by a growing demand for energy. Turkey's energy consumption has grown and will continue to grow along with its economy. Turkey's energy consumption is high, but its domestic primary energy sources are oil and natural gas reserves and their production is low. Total primary energy production met about 27% of the total primary energy demand in 2005. Oil has the biggest share in total primary energy consumption. Lignite has the biggest share in Turkey's primary energy production at 45%. Domestic production should be to be nearly doubled by 2010, mainly in coal (lignite), which, at present, accounts for almost half of the total energy production. The hydropower should also increase two-fold over the same period.

Balat, M. [Sila Science, Trabzon (Turkey)

2009-07-01T23:59:59.000Z

110

How do plants grow?  

NLE Websites -- All DOE Office Websites (Extended Search)

How do plants grow? How do plants grow? Name: Sally McCombs Location: N/A Country: N/A Date: N/A Question: A 4th grade class at our school is doing plant research and would like to know if plants grow from the top up or from the bottom up? Thanks for your help! Replies: Plants grow from the top up (or from the bottom down, in the case of root growth). Right at the tip, more cells form by division, and just behind that is an area where cells get bigger). More amazing than all of this is where your question comes from. I went to 4th grade there!!! Amazing, Just after the school was built, I think, maybe around 1959 to about early 1960's. Then I moved on to St. Pete High School, then my parents got jobs in Alabama, where I did the last year of High School. Then onto college in New England, graduate school in California, a research job in England, and now finally as a professor at the University of Washington in Seattle. Brings back memories...

111

EIA Energy Efficiency-Table 2a. First Use for All Purposes (Primary a  

Gasoline and Diesel Fuel Update (EIA)

a a Page Last Modified: May 2010 Table 2a. Consumption of Energy (Primary 1 Energy) for All Purposes (First Use) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) MECS Survey Years NAICS Subsector and Industry 1998 2002 2006 311 Food 1,468 1,579 1,665 312 Beverage and Tobacco Products 156 157 164 313 Textile Mills 459 377 304 314 Textile Product Mills 86 94 110 315 Apparel 84 54 27 316 Leather and Allied Products 14 11 5 321 Wood Products 652 520 625 322 Paper 3,224 2,805 2,825 323 Printing and Related Support 199 197 171 324 Petroleum and Coal Products 7,571 7,051 7,125 325 Chemicals 7,211 7,499 6,135 326 Plastics and Rubber Products 692 710 684 327 Nonmetallic Mineral Products 1,245 1,338 1,394

112

Table ET1. Primary Energy, Electricity, and Total Energy Price and Expenditure Estimates, Selected Years, 1970-2011, United States  

Gasoline and Diesel Fuel Update (EIA)

ET1. Primary Energy, Electricity, and Total Energy Price and Expenditure Estimates, Selected Years, 1970-2011, United States ET1. Primary Energy, Electricity, and Total Energy Price and Expenditure Estimates, Selected Years, 1970-2011, United States Year Primary Energy Electric Power Sector h,j Retail Electricity Total Energy g,h,i Coal Coal Coke Natural Gas a Petroleum Nuclear Fuel Biomass Total g,h,i,j Coking Coal Steam Coal Total Exports Imports Distillate Fuel Oil Jet Fuel b LPG c Motor Gasoline d Residual Fuel Oil Other e Total Wood and Waste f,g Prices in Dollars per Million Btu 1970 0.45 0.36 0.38 1.27 0.93 0.59 1.16 0.73 1.43 2.85 0.42 1.38 1.71 0.18 1.29 1.08 0.32 4.98 1.65 1975 1.65 0.90 1.03 2.37 3.47 1.18 2.60 2.05 2.96 4.65 1.93 2.94 3.35 0.24 1.50 2.19 0.97 8.61 3.33 1980 2.10 1.38 1.46 2.54 3.19 2.86 6.70 6.36 5.64 9.84 3.88 7.04 7.40 0.43 2.26 4.57 1.77 13.95 6.89 1985 2.03 1.67 1.69 2.76 2.99 4.61 7.22 5.91 6.63 9.01 4.30 R 7.62 R 7.64 0.71 2.47 4.93 1.91 19.05

113

Mitigation, Adaptation, Uncertainty -- Growing Water  

E-Print Network (OSTI)

UrbanLab is Sarah Dunn + Martin Felsen, with Lee Greenberg,Growing Water Martin Felsen and Sarah Dunn The Growing Water

Felsen, Martin; Dunn, Sarah

2008-01-01T23:59:59.000Z

114

EIA Energy Efficiency-Table 2b. Primary Fuel Consumption for Selected  

Gasoline and Diesel Fuel Update (EIA)

b b Page Last Modified: May 2010 Table 2b. End Uses of Fuel Consumption (Primary 1 Energy) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) MECS Survey Years NAICS Subsector and Industry 1998 2002 2006 311 Food 1,468 1,572 1,665 312 Beverage and Tobacco Products 156 156 166 313 Textile Mills 457 375 304 314 Textile Product Mills 85 94 110 315 Apparel 84 54 27 316 Leather and Allied Products 14 11 5 321 Wood Products 647 518 619 322 Paper 3,221 2,803 2,833 323 Printing and Related Support 199 197 171 324 Petroleum and Coal Products 3,873 3,454 3,657 325 Chemicals 4,851 4,803 4,181 326 Plastics and Rubber Products 691 707 683 327 Nonmetallic Mineral Products 1,235 1,331 1,385 331 Primary Metals 3,660 3,100 2,617 332 Fabricated Metal Products 791 706 670 333 Machinery 404 341 416 334 Computer and Electronic Products

115

Stability of growing vesicles  

E-Print Network (OSTI)

We investigate the stability of growing vesicles using the formalism of nonequilibrium thermodynamics. The vesicles are growing due to the accretion of lipids to the bilayer which forms the vesicle membrane. The thermodynamic description is based on the hydrodynamics of a water{/}lipid mixture together with a model of the vesicle as a discontinuous system in the sense of linear nonequilibrium thermodynamics. This formulation allows the forces and fluxes relevant to the dynamic stability of the vesicle to be identified. The method is used to analyze the stability of a spherical vesicle against arbitrary axisymmetric perturbations. It is found that there are generically two critical radii at which changes of stability occur. In the case where the perturbation takes the form of a single zonal harmonic, only one of these radii is physical and is given by the ratio $2 L_p / L_\\gamma$, where $L_p$ is the hydraulic conductivity and $L_\\gamma$ is the Onsager coefficient related to changes in membrane area due to lipid accretion. The stability of such perturbations is related to the value of $l$ corresponding to the particular zonal harmonic: those with lower $l$ are more unstable than those with higher $l$. Possible extensions of the current work and the need for experimental input are discussed.

Richard G. Morris; Alan J. McKane

2010-12-15T23:59:59.000Z

116

Energy spectrum and mass composition of primary cosmic radiation in the region above the knee from the GAMMA experiment  

E-Print Network (OSTI)

The energy spectrum of the primary cosmic radiation in the energy range 1 - 100 PeV and the extensive air shower (EAS) characteristics obtained on the basis of the expanded data bank of the GAMMA experiment (Mt. Aragats, Armenia) are presented. With increased statistics we confirm our previous results on the energy spectrum. The spectral index above the knee is about -3.1, but at energies beyond 20 PeV a flattening of the spectrum is observed. The existence of the 'bump' at about 70 PeV is confirmed with a significance of more than 4{\\sigma}. In the energy range of 10 - 100 PeV the shower age becomes energy independent and we observe a direct proportionality of the EAS size to the primary energy. This suggests an approximately constant depth of the EAS maximum in this energy range. This is evidence in favour of an increasing average mass of primary particles at energies above 20 PeV. The additional source scenario, which is a possible explanation of the 'bump' in the spectrum, also leads to the conclusion of ...

Martirosov, R M; Vardanyan, H S; Erlykin, A D; Nikolskaya, N M; Gallant, Y A; Jones, L W; Babayan, H A

2012-01-01T23:59:59.000Z

117

"Table B29. Primary Space-Heating Energy Sources, Total Floorspace for Non-Mall Buildings, 2003"  

U.S. Energy Information Administration (EIA) Indexed Site

9. Primary Space-Heating Energy Sources, Total Floorspace for Non-Mall Buildings, 2003" 9. Primary Space-Heating Energy Sources, Total Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Buildings with Space Heating","Primary Space-Heating Energy Source Used a" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings* ...............",64783,60028,15996,32970,3818,4907 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,5668,1779,2672,484,"Q" "5,001 to 10,000 ..............",6585,5786,1686,3068,428,"Q" "10,001 to 25,000 .............",11535,10387,3366,5807,536,"Q" "25,001 to 50,000 .............",8668,8060,2264,4974,300,325

118

PSTAR: Primary and secondary terms analysis and renormalization: A unified approach to building energy simulations and short-term monitoring  

DOE Green Energy (OSTI)

This report presents a unified method of hourly simulation of a building and analysis of performance data. The method is called Primary and Secondary Terms Analysis and Renormalization (PSTAR). In the PSTAR method, renormalized parameters are introduced for the primary terms such that the renormalized energy balance equation is best satisfied in the least squares sense, hence, the name PSTAR. PSTAR allows extraction of building characteristics from short-term tests on a small number of data channels. These can be used for long-term performance prediction (''ratings''), diagnostics, and control of heating, ventilating, and air conditioning systems (HVAC), comparison of design versus actual performance, etc. By combining realistic building models, simple test procedures, and analysis involving linear equations, PSTAR provides a powerful tool for analyzing building energy as well as testing and monitoring. It forms the basis for the Short-Term Energy Monitoring (STEM) project at SERI.

Subbarao, K.

1988-09-01T23:59:59.000Z

119

Impacts of Electric Vehicles on Primary Energy Consumption and Petroleum Displacement  

E-Print Network (OSTI)

be derived primarily from non-petroleum sources. 3O power isis due to two sources: the use of petroleum for electricityas the impact with petroleum as the primary source. For this

Wang, Quanlu; Delucchi, Mark A.

1991-01-01T23:59:59.000Z

120

File:Large Construction Site Notice for Primary Operators.pdf | Open Energy  

Open Energy Info (EERE)

Primary Operators.pdf Primary Operators.pdf Jump to: navigation, search File File history File usage Metadata File:Large Construction Site Notice for Primary Operators.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 866 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 17:00, 10 April 2013 Thumbnail for version as of 17:00, 10 April 2013 1,275 × 1,650 (866 KB) Alevine (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information) File usage There are no pages that link to this file. Metadata This file contains additional information, probably added from the digital

Note: This page contains sample records for the topic "growing primary energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

The Primary Research Design of the Integrated Architecture and Using Solar Energy  

Science Conference Proceedings (OSTI)

This article try to research the designing method of how to melt using solar energy and architecture in an excellent form. It compares the functions and the shape with both structure of buildings and the equipments of solar energy to find the way to ... Keywords: solar energy, architecture, reasonable, Artistic

Cao Ziyu; Gao Guanghua; Zhao Mengyu

2012-05-01T23:59:59.000Z

122

How plants grow toward light  

NLE Websites -- All DOE Office Websites (Extended Search)

How plants grow toward light How plants grow toward light Name: schwobtj Location: N/A Country: N/A Date: N/A Question: When a seed is planted below the surface of the ground, how does it "know" to grow toward the light? Replies: Plants don't know where the light is, they do respond to gravity. Since light is usually up, a plant seed grows up and finds light enough to keep things going. Psych One way that plants below ground can tell which way is up is with the use of STATOLITHS. Statoliths are dense pieces of material that settle to the bottom of a STATOCYST. In plants, pieces of starch or another material denser than water will settle to the bottom of the cell. Somehow the plant cell determines on what side the statolith has fallen, and then somehow relays a message (probably a chemical) that tells the bottom cells to grow faster than the top cells, therefore causing upward growth. There is still quite a lot of mystery in there to be discovered. I got this explanation from BIOLOGY by Neil Campbell. This is similar to the way in which plants use chemical signals to help them grow towards light.

123

Mexico Week: U.S. is Mexico’s primary energy trade partner amid ...  

U.S. Energy Information Administration (EIA)

Source: U.S. Energy Information Administration based on Mexico's online tariff information system (SIAVI). Note: : U.S.-Mexico coal and electricity trading is so ...

124

HOW THE LEED VENTILATION CREDIT IMPACTS ENERGY CONSUMPTION OF GSHP SYSTEMS A CASE STUDY FOR PRIMARY SCHOOLS  

Science Conference Proceedings (OSTI)

This paper presents a study on the impacts of increased outdoor air (OA) ventilation on the performance of ground-source heat pump (GSHP) systems that heat and cool typical primary schools. Four locations Phoenix, Miami, Seattle, and Chicago are selected in this study to represent different climate zones in the United States. eQUEST, an integrated building and HVAC system energy analysis program, is used to simulate a typical primary school and the GSHP system at the four locations with minimum and 30% more than minimum OA ventilation. The simulation results show that, without an energy recovery ventilator, the 30% more OA ventilation results in an 8.0 13.3% increase in total GSHP system energy consumption at the four locations. The peak heating and cooling loads increase by 20.2 30% and 14.9 18.4%, respectively, at the four locations. The load imbalance of the ground heat exchanger is increased in hot climates but reduced in mild and cold climates.

Liu, Xiaobing [ORNL

2011-01-01T23:59:59.000Z

125

Biomass Stove Pollution Sam Beck ATOC-3500 Biomass energy accounts for about 15% of the world's primary energy consumption and  

E-Print Network (OSTI)

Biomass Stove Pollution Sam Beck ATOC-3500 Biomass energy accounts for about 15% of the world. Furthermore, biomass often accounts for more than 90% of the total rural energy supplies in developing countries. The traditional stoves in developing countries waste a lot of biomass, mainly because

Toohey, Darin W.

126

Solar Among the Fastest Growing Job Markets in America | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to expand at a double-digit annual growth rate shows that efforts to grow the solar market and make solar energy more accessible to all Americans are working. The solar...

127

Table A1. Total First Use (formerly Primary Consumption) of Energy for All Pu  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ",," ","Shipments","RSE" "SIC"," ",,"Net","Residual","Distillate",," ",,"Coke and"," ","of Energy Sources","Row" "Code(a)","Industry Group and Industry","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","LPG","Coal","Breeze","Other(f)","Produced Onsite(g)","Factors"

128

Table A1. Total First Use (formerly Primary Consumption) of Energy for All Pu  

U.S. Energy Information Administration (EIA) Indexed Site

1 " 1 " " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ","Coke and"," ","Shipments"," " " "," ",,"Net","Residual","Distillate","Natural Gas(e)"," ","Coal","Breeze"," ","of Energy Sources","RSE" "SIC"," ","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","(billion","LPG","(1000","(1000","Other(f)","Produced Onsite(g)","Row"

129

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Wyoming" Wyoming" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",39378154,38667162,41852352,40154595,42337169,39683722,40851631,40765087,44699071,42951057,44585709,43764015,42532420,42261405,43059537,44031568,42905244,43144350,43909400,43182207,44738543,98,93 " Coal",38681220,37862584,41153537,39301199,41380267,38804539,39551555,39315335,43287140,41718548,43355361,42560578,41685278,41490825,42372775,43112061,41948761,42204359,42900080,41040274,42126910,95.3,87.5 " Petroleum",45561,60850,54839,56970,47029,67673,59443,58765,42871,46197,35159,33744,38686,41567,43450,40311,44240,46116,43765,49958,55973,0.1,0.1

130

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Idaho" Idaho" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",8617977,8281502,6260025,9022654,7303193,10062854,12230805,13511823,11978079,12456120,10114257,6666589,8164140,7732812,7765655,8032438,10495090,8611890,8893983,9977502,8589208,84.9,71.4 " Petroleum",615,311,475,103,31,311,245,95,253,155,2792,3723,65,116,136,5,144,134,120,41,74,"*","*" " Natural Gas","-","-","-","-","-","-","-","-","-","-","-","-",76168,61229,27775,73353,94504,240504,230189,286865,170231,"-",1.4

131

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Oklahoma" Oklahoma" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",45063182,44850089,45942891,48810720,45380625,47955288,47544649,48380102,51454036,50278792,51403249,50413729,51218320,49776514,48298390,54250814,51917155,54177692,60074823,57516914,57421195,92.5,79.5 " Coal",25188557,26027968,27666494,28990113,27453911,29714368,31876730,33036688,31026837,30588375,32852645,32164601,33444114,34200128,31240478,33604628,32324391,31610751,33625415,31645255,29102532,59.1,40.3 " Petroleum",49422,18533,15180,14027,11456,77528,124951,12568,7541,7622,46637,146375,10311,111555,21008,13181,24187,139391,12600,12433,12606,0.1,"*"

132

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Michigan" Michigan" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",89058681,94567383,82679444,92250107,83720636,92478772,95155261,89564616,85146307,87874695,89572141,97067330,100451718,96634055,99608512,104830689,97373706,96785842,94503953,82787341,89666874,86,80.4 " Coal",65295742,65138291,61434530,61558991,67538611,65425002,66097259,65552021,69142807,69118017,66980252,66931691,65389899,66448916,67253690,69158736,66654737,69406550,68421489,65867455,64766712,64.3,58.1 " Petroleum",689461,553863,498159,619777,655860,687264,651860,602053,1005170,1282696,993932,724313,1090767,883847,714881,788563,272106,445915,281604,215189,195180,1,0.2

133

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Maryland" Maryland" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",31497406,38215120,39586558,43488284,43765565,44658945,44380543,44552905,48513503,49323828,31783195,88150,30734,51722,30023,44235,11941,23712,5856,2294,2996,62.1,"*" " Coal",23299412,22622989,23625314,24890670,25394481,27369905,27780141,27394342,29077013,29352347,20353004,"-","-","-","-","-","-","-","-","-","-",39.8,"-" " Petroleum",3328080,3935221,2611820,3953777,4133533,1407598,1401195,1478623,3311978,3897208,1507860,87790,30734,51722,30023,44235,11941,23712,5856,2294,2832,2.9,"*"

134

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Massachusetts" Massachusetts" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",36478610,35802358,32838301,28163544,27466049,26971667,27758877,33898697,26036881,4359511,1704653,1566491,1156651,2055622,1524169,1622208,942917,493885,507254,447912,802906,4.4,1.9 " Coal",11273069,11861344,10949228,9815909,10209727,10586608,11500536,12488802,8168608,1073628,1094848,1096681,"-",1074514,903789,1025141,"-","-","-","-","-",2.8,"-" " Petroleum",14556403,15612257,13282101,11112574,9561302,5848663,6221378,11586081,10019730,300040,123931,131797,220435,517767,290865,189211,29031,58456,57639,32698,42546,0.3,0.1

135

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Oregon" Oregon" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",49171999,46298021,41220343,40743085,37490089,44031261,47883913,49068279,46352310,51698318,46059938,38059649,39731986,38577937,39092958,37407039,43068822,43202516,44590530,42703218,41142684,88.9,74.6 " Coal",1297978,2814199,3682715,3502742,3814009,1527874,1727583,1500879,3348089,3697900,3785462,4423843,3768531,4285697,3535764,3463644,2370628,4351624,4044319,3196902,4126435,7.3,7.5 " Petroleum",26809,9648,9212,32365,5398,4346,6631,10942,33127,7699,52038,92767,5893,44035,20305,47427,4323,5044,9974,2825,3330,0.1,"*"

136

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Delaware" Delaware" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",7099663,7603723,6267492,8306462,8501043,8324101,8121853,6578599,6317738,6239372,4137127,1872053,170994,31107,23751,25989,16558,47830,19068,12768,30059,69.1,0.5 " Coal",4904473,4598301,3813594,5185396,4754309,4226615,4225125,3925643,3811669,2762460,3319195,1626254,"-","-","-","-","-","-","-","-","-",55.4,"-" " Petroleum",1436186,1899201,1829938,2094383,1619659,917065,1188294,832577,1234464,1234121,398100,209088,154118,9863,10083,6442,113,4132,512,457,843,6.6,"*"

137

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Rhode Island" Rhode Island" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",591756,171457,109308,53740,68641,653076,3301111,3562833,2061351,9436,10823,"-",11836,11771,12402,10805,11008,11075,10612,10612,10827,0.2,0.1 " Petroleum",158154,54218,74715,28582,33836,50334,61675,16609,8827,9436,10823,"-",11836,11771,12402,10805,11008,11075,10612,10612,10827,0.2,0.1 " Natural Gas",433602,117239,34593,25158,34805,602742,3239436,3546224,2052524,"-","-","-","-","-","-","-","-","-","-","-","-","-","-"

138

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania" Pennsylvania" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",165682846,162366875,166034292,166200686,169029050,168941707,175022081,177166516,173903236,161595988,97075771,27633966,30537243,30099444,33900004,1058313,1311434,1077389,1224597,1159659,1086500,48.1,0.5 " Coal",101996271,100359157,102198817,100390066,93951561,96799645,100857561,105445514,106516740,85580341,36704124,13863092,15935860,15944113,18396944,"-","-","-","-","-","-",18.2,"-" " Petroleum",4013814,3713606,2220932,4559186,5182491,3072153,3212502,2307411,4097006,3063268,1656505,21609,39420,34944,32129,7717,2942,"-",873,710,525,0.8,"*"

139

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Nevada" Nevada" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",19286260,20922439,20962974,19820333,20519076,19997354,21362057,22869773,26552567,26485602,29341675,27896065,25008568,24634871,24246391,24112225,19686302,22376989,22979409,26095005,23710917,82.7,67.5 " Coal",15053277,16365730,16443169,15627860,15324714,13971824,14656868,15250606,17161341,16907530,18931521,17736970,16413025,17085959,18257265,18384261,7253521,7090911,6884521,6376887,5584370,53.4,15.9 " Petroleum",284108,238321,327585,246506,166446,26549,93811,31156,50285,35418,64614,911611,25472,16793,95766,20500,17347,11447,9865,8472,7675,0.2,"*"

140

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota" Minnesota" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",41549628,40427575,37783876,41254101,40917280,42502869,41791506,40302526,43976935,44153826,46615673,44798014,48568719,49576276,47232462,46791349,46710674,47793039,46758314,44442211,45428599,90.7,84.6 " Coal",27587603,26186299,24443013,27110850,26399834,26820765,27329077,27081067,29884402,28366977,31731081,31037544,32200713,33157032,31477117,30514512,30600302,31199099,30771207,28582304,27176478,61.7,50.6 " Petroleum",440740,575916,638979,630166,596987,484708,640427,763764,649866,674398,440264,599557,640129,845239,752362,752774,484235,362765,211633,49502,25870,0.9,"*"

Note: This page contains sample records for the topic "growing primary energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Maryland" Maryland" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",9758,10723,10862,10709,10837,10957,10957,11101,10970,10955,753,70,69,70,79,79,79,80,80,80,80,7.2,0.6 " Coal",3975,4617,4617,4628,4631,4636,4636,4647,4647,4647,"-","-","-","-","-","-","-","-","-","-","-","-","-" " Petroleum",2479,2427,3040,2717,2648,1394,2618,2631,2516,2673,241,70,69,70,79,79,79,80,80,80,80,2.3,0.6 " Natural Gas",1225,1601,1127,1275,1353,2722,1498,1618,1602,1448,"-","-","-","-","-","-","-","-","-","-","-","-","-"

142

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut" Connecticut" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",7141,7060,6988,6754,6733,6722,6321,6294,5616,2919,2204,185,34,210,174,25,37,111,111,111,160,34.2,1.9 " Coal",385,385,385,385,385,385,385,385,385,"-","-","-","-","-","-","-","-","-","-","-","-","-","-" " Petroleum",3335,3263,3191,2957,2738,2728,2831,2801,2744,756,176,176,25,201,165,16,28,30,30,30,76,2.7,0.9 " Natural Gas","-","-","-","-",214,214,338,341,341,"-","-","-","-","-","-","-","-",71,71,71,75,"-",0.9

143

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

District of Columbia" District of Columbia" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",806,806,806,806,806,806,806,806,806,806,"-","-","-","-","-","-","-","-","-","-","-","-","-" " Petroleum",806,806,806,806,806,806,806,806,806,806,"-","-","-","-","-","-","-","-","-","-","-","-","-" "Independent Power Producers and Combined Heat and Power",3,3,3,3,3,3,"-","-","-","-",804,806,806,806,806,806,806,806,790,790,790,100,100

144

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut" Connecticut" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",32155574,23552082,25153644,28714867,27201416,26931900,15773738,13227766,15122925,20484367,16992594,2816826,21463,59812,45095,41709,47612,37217,52334,47137,65570,51.5,0.2 " Coal",2351049,2117781,2148078,1907826,2104045,2269352,2367889,2557934,1482608,"-","-","-","-","-","-","-","-","-","-","-","-","-","-" " Petroleum",8632571,7890483,5297424,4206354,3353897,3397400,5255050,8431425,8608001,5793975,7726,11032,928,13955,9253,695,1282,3325,2597,2465,2604,"*","*"

145

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Colorado" Colorado" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",31312872,31038231,31899303,32687317,33324413,32673972,33971688,34375573,35471294,36167349,40108260,41957723,41509933,41226252,40436218,41014609,42055989,42353281,41176711,37467527,39584166,90.8,78 " Coal",29602738,28922906,30001882,30456351,31401250,30276010,31952337,32002082,33079201,32605202,35101982,35654162,35135198,35807527,35570358,35285966,36003331,35722617,34639561,31454143,34386818,79.5,67.8 " Petroleum",25129,37883,39164,8898,8913,10136,15539,14623,36736,32430,91320,158742,22519,33927,11797,15464,17646,14748,18092,12583,17424,0.2,"*"

146

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

District of Columbia" District of Columbia" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",361043,179814,73991,188452,274252,188862,109809,70661,243975,230003,97423,"-","-","-","-","-","-","-","-","-","-",67.5,"-" " Petroleum",361043,179814,73991,188452,274252,188862,109809,70661,243975,230003,97423,"-","-","-","-","-","-","-","-","-","-",67.5,"-" "Independent Power Producers and Combined Heat and Power","-","-","-","-","-","-","-","-","-","-",46951,123239,261980,74144,36487,226042,81467,75251,72316,35499,199858,32.5,100

147

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

California" California" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",114528000,104967938,119309725,125782063,126749186,121881402,114706047,112183063,114926213,87874809,85856285,70132656,74588271,81728209,75177122,89348213,100338454,87348589,83346844,85123706,96939535,41.3,47.5 " Petroleum",4385235,598489,325424,2007674,1862719,488530,674899,141872,121385,51769,144590,316691,43933,50996,51482,57974,58991,65296,58187,50625,40819,0.1,"*" " Natural Gas",45221848,43940427,56609607,46499103,61530357,39089723,30768135,36300778,26385452,13917748,12411961,11918703,8808012,9873371,10759580,12982348,19805412,22896497,26129803,25237449,31251994,6,15.3

148

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania" Pennsylvania" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",33440,33337,33446,33423,33675,33699,33723,33825,33781,25251,13394,4978,4887,4921,4968,455,455,455,455,455,455,36.3,1 " Coal",17543,16894,17515,17480,17492,17503,17463,17386,17386,10108,3133,2407,2360,2360,2407,"-","-","-","-","-","-",8.5,"-" " Petroleum",5031,5031,4845,4875,4881,4860,4881,3208,3374,3022,1999,3,3,"-","-","-","-","-","-","-","-",5.4,"-"

149

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Maine" Maine" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",2407,2417,2405,2402,2433,2432,2387,1498,1457,88,21,17,16,19,19,19,19,19,19,19,19,0.5,0.4 " Petroleum",1126,1126,1115,1111,1109,1109,1069,1064,1025,54,18,17,16,19,19,19,19,19,19,19,19,0.4,0.4 " Nuclear",860,870,870,870,870,870,870,"-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-" " Hydroelectric",420,420,420,421,422,421,416,404,402,34,3,"-","-","-","-","-","-","-","-","-","-",0.1,"-"

150

FEASIBILITY OF HYDROGEN PRODUCTION USING LASER INERTIAL FUSION AS THE PRIMARY ENERGY SOURCE  

DOE Green Energy (OSTI)

The High Average Power Laser (HAPL) program is developing technology for Laser IFE with the goal of producing electricity from the heat generated by the implosion of deuterium-tritium (DT) targets. Alternatively, the Laser IFE device could be coupled to a hydrogen generation system where the heat would be used as input to a water-splitting process to produce hydrogen and oxygen. The production of hydrogen in addition to electricity would allow fusion energy plants to address a much wider segment of energy needs, including transportation. Water-splitting processes involving direct and hybrid thermochemical cycles and high temperature electrolysis are currently being developed as means to produce hydrogen from high temperature nuclear fission reactors and solar central receivers. This paper explores the feasibility of this concept for integration with a Laser IFE plant, and it looks at potential modifications to make this approach more attractive. Of particular interest are: (1) the determination of the advantages of Laser IFE hydrogen production compared to other hydrogen production concepts, and (2) whether a facility of the size of FTF would be suitable for hydrogen production.

Gorensek, M

2006-11-03T23:59:59.000Z

151

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Vermont" Vermont" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",4992578,5258829,4698045,4300537,5293892,4839820,5004219,5323432,4393537,4734555,5307016,4734002,2971224,626337,643426,673607,802680,701474,752800,711507,720853,84.2,10.9 " Petroleum",2543,5244,2581,4805,5764,13357,3428,9816,41265,22392,60660,31740,9406,22607,17800,10179,7371,7811,4266,2439,4509,1,0.1 " Natural Gas",65281,95341,63120,20558,5806,6593,97,93,827,18291,90790,11000,3275,2029,3224,2240,1875,1889,2655,4431,3783,1.4,0.1 " Nuclear",3616268,4108314,3734594,3372148,4315544,3858509,3798790,4266866,3357696,4059107,4548065,4171120,2367209,"-","-","-","-","-","-","-","-",72.2,"-"

152

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee" Tennessee" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",73902614,73931670,75396209,71614268,74853548,82277534,88647111,93293232,94142638,89682569,92311813,92937315,92570929,88678127,94371964,93942273,90960035,92474664,88262641,77432806,79816049,96.3,96.9 " Coal",50186951,46671234,49995747,59559596,52132070,57971909,55504189,58899058,55120297,55220519,60675314,58166973,58080553,53376149,56583558,57560600,59146323,58849255,55752210,40426487,42259569,63.3,51.3 " Petroleum",134397,160072,127282,234545,295961,252611,257586,192880,699233,502286,539784,379703,250325,379007,166943,201121,137187,155646,207233,182291,211654,0.6,0.3

153

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Oregon" Oregon" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",11236,11236,11237,10133,10166,10446,10526,10537,10449,10293,10337,10354,10348,10338,9555,9839,9971,10502,10491,10683,10846,91.7,76.1 " Coal",530,530,508,508,508,508,508,508,528,530,557,557,557,556,556,585,585,585,585,585,585,4.9,4.1 " Petroleum",109,109,109,109,106,103,103,103,"-","-","-","-","-","-","-","-","-","-","-","-","-","-","-" " Natural Gas",493,493,493,493,493,767,849,849,849,706,706,729,753,725,725,967,962,1354,1364,1341,1337,6.3,9.4

154

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin" Wisconsin" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",45550958,47148818,46463756,47762861,49437481,51012390,51651435,48560127,52529065,54704370,55665471,54959426,54773666,56068698,56142364,55169108,51914755,44284480,45536712,41375366,45579970,93.3,70.9 " Coal",32144557,33489286,32740540,33558049,35282695,36863872,38144842,40819517,39785759,39899142,41057919,40185649,38583501,40579973,40981609,40506086,38866178,38719363,40452933,36238643,39185565,68.8,60.9 " Petroleum",47444,62162,54332,105173,171563,147493,124088,169863,200225,220944,191091,170443,162990,185625,494535,470219,591486,725019,647602,458848,478866,0.3,0.7

155

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota" Dakota" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",26824491,27535034,28592323,28499824,29003713,28842021,30769712,29719764,30518976,31259830,31122917,30135733,31147221,31075012,29526814,31512768,30328375,30402807,30852784,31375152,31343796,99.4,90.2 " Coal",25092696,25750792,26864520,27048924,27099914,26336456,27529906,26314471,28176015,28610457,28952976,28769721,29518865,29298347,27938264,30133242,28761820,29041826,29551647,29486194,28349079,92.5,81.6 " Petroleum",20682,27636,28951,35795,47340,49107,88834,85698,47091,40300,47457,33850,35728,45648,36565,32480,39269,47332,40977,41475,35855,0.2,0.1

156

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Kentucky" Kentucky" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",73807286,75505081,77351259,84997718,84097034,86161578,88438224,91558046,86151121,81658150,81349922,83677982,80161524,80696982,82921402,85679912,86816479,85259079,86012151,90029962,97472144,87.5,99.2 " Coal",70500461,71713851,73476309,81722246,79897442,82539467,84659818,87875331,82412216,78544604,78598836,79381504,75308162,76367048,78574428,81188722,83068626,81877334,83197690,84037596,91053858,84.5,92.7 " Petroleum",118646,111558,83886,96727,154819,130598,135437,125625,127062,103755,118876,120418,135412,130280,93651,96557,79520,96733,106853,2016282,2284852,0.1,2.3

157

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Washington" Washington" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",24173,24243,24221,24259,24255,24277,24276,25273,25235,25189,23840,24055,24141,24216,23878,24065,24303,24511,26243,26322,26498,91.5,86.9 " Coal",1310,1360,1360,1390,1390,1340,1390,1390,1390,1340,"-","-","-","-","-","-","-","-","-","-","-","-","-" " Petroleum",173,173,173,173,88,88,87,62,62,4,4,133,40,39,39,39,39,3,3,3,3,"*","*" " Natural Gas",590,590,590,590,590,590,590,838,838,955,955,987,1146,1153,1184,1141,1138,1111,2768,2782,2849,3.7,9.3

158

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Hawaii" Hawaii" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",1487,1521,1560,1602,1602,1602,1610,1595,1616,1608,1626,1622,1622,1624,1691,1705,1730,1730,1730,1859,1828,68.1,72.1 " Petroleum",1483,1518,1556,1598,1598,1598,1607,1592,1612,1605,1621,1616,1618,1620,1687,1699,1724,1724,1724,1740,1711,67.9,67.5 " Hydroelectric",3,3,3,3,3,3,3,3,4,4,4,3,2,2,2,4,4,4,4,4,4,0.1,0.2 " Other Renewables1","-","-","-","-","-","-","-","-","-","-",2,2,2,2,2,2,2,2,2,115,113,0.1,4.5

159

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Arizona" Arizona" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",14906,14910,14973,15034,15098,15222,15147,15164,15084,15091,15140,15284,15699,16193,16141,18860,19566,19551,19717,20127,20115,98.9,76.2 " Coal",5116,5070,5070,5108,5119,5159,5201,5256,5286,5311,5336,5336,5336,5336,5336,5362,5762,5750,5750,6159,6165,34.9,23.4 " Petroleum",78,78,78,100,100,95,184,248,248,240,244,243,263,191,108,108,86,89,89,89,89,1.6,0.3 " Natural Gas",3306,3236,3236,3236,3236,3273,3126,2989,2924,2919,2939,3080,3444,3908,3955,6566,6897,6891,6987,6987,6969,19.2,26.4

160

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska" Nebraska" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",21630677,22971934,22387247,22724286,21945525,25279277,27322697,28388030,28720209,29980967,29045739,30411669,31550226,30367879,31944127,31391643,31599046,32403289,32355676,33776062,36242921,99.8,98.9 " Coal",12658464,13562815,12402148,14739783,14002015,16079519,16040775,17209080,18335965,17794136,18424799,20193542,19899803,20907970,20414960,20772590,20632855,19611849,21479723,23307746,23214616,63.3,63.4 " Petroleum",12981,13459,9482,19035,18201,26679,19973,31059,41892,28807,53715,25154,18410,47971,21004,30026,18914,35552,34655,22869,30849,0.2,0.1

Note: This page contains sample records for the topic "growing primary energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Iowa" Iowa" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",7952,8090,8092,8074,8217,8237,8161,8238,8368,8435,8508,8352,8407,9093,9895,10090,9562,10669,11274,11479,11282,93.5,77.3 " Coal",5860,5912,5909,5818,5975,5995,5807,5573,5717,5702,5920,5668,5620,5666,5741,5705,5666,6535,6528,6529,6389,65.1,43.8 " Petroleum",659,723,714,746,755,755,861,872,877,932,1001,1012,980,912,908,936,935,930,924,921,915,11,6.3 " Natural Gas",779,816,829,870,847,825,835,913,906,938,932,916,1007,1710,2381,2376,2370,2401,2394,2345,2296,10.2,15.7 " Nuclear",530,515,515,515,515,528,520,535,520,520,520,520,566,562,563,581,"-","-","-","-","-",5.7,"-"

162

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

South Carolina" South Carolina" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",69259815,69837984,71478648,75588386,74193685,78439814,76325556,78374450,84396897,87347364,90421081,86734778,93689257,91544429,94406828,99104373,95872763,99997011,97921204,97336653,100610887,96.9,96.6 " Coal",22874805,23165807,23013743,26532193,26993543,25801600,30307236,31042658,32377814,35246389,38664405,36302690,36490769,37065509,38516633,39352428,39140908,41270230,41184319,34146526,37340392,41.4,35.9 " Petroleum",71997,83385,68375,95193,108250,129854,125657,188326,331357,300739,265931,225008,205664,289474,690071,484181,135522,174663,160102,490911,178378,0.3,0.2

163

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Mexico" Mexico" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",5042,5045,5062,5062,5078,5078,5077,5183,5294,5299,5250,5250,5463,5398,5393,5692,6223,6324,6324,6344,6345,93.8,78 " Coal",3899,3901,3901,3901,3901,3901,3901,3901,3913,3942,3942,3942,3942,3942,3937,3957,3957,3957,3957,3977,3990,70.4,49.1 " Petroleum",24,24,24,24,24,44,24,23,15,"-","-","-",15,35,35,35,26,26,26,26,20,"-",0.2 " Natural Gas",1063,1063,1079,1079,1096,1076,1094,1200,1285,1275,1226,1226,1425,1339,1339,1619,2158,2259,2259,2259,2253,21.9,27.7

164

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Georgia" Georgia" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",97565058,90809416,91779352,95737505,98752712,102015724,98729242,101780433,108716930,110536794,116176834,110564676,111855967,115755114,117918895,126444777,127367613,132831987,126031263,115074702,120425913,93.8,87.5 " Coal",67564750,59985395,58235454,63295811,64727519,65880095,63230856,66179551,69871150,74067633,79007166,73443695,77288328,77858022,79185166,86358096,85700960,89532913,84652246,68863420,72550375,63.8,52.7 " Petroleum",164987,107662,128485,237473,161235,218515,292018,200873,670924,662699,641415,275630,233940,278618,156672,189819,86798,82380,67971,64833,70781,0.5,0.1

165

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Mexico" Mexico" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",28491171,25064613,27707513,28364368,30018011,29431903,29364389,30568142,31428332,31654480,32855587,32210683,29926241,31770151,32242728,33561875,35411074,34033374,33844547,34245148,30848406,96.6,85.1 " Coal",25826928,22129312,25348413,25507029,26752349,26121447,26357179,27078660,27537426,28067704,29065954,28402187,26902880,28812844,29263899,29947248,29859008,27603647,27014233,29117308,25617789,85.4,70.7 " Petroleum",34081,32240,35614,35337,22929,23073,22452,21075,23020,40133,29529,30210,30710,47860,30321,32528,40634,42969,52012,44599,49394,0.1,0.1

166

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

United States" United States" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",2808151009,2825022865,2797219151,2882524766,2910712079,2994528592,3077442152,3122523144,3212170791,3173673550,3015383376,2629945673,2549457170,2462280615,2505231152,2474845558,2483655548,2504130899,2475366697,2372775997,2471632103,79.3,59.9 " Coal",1559605707,1551166838,1575895394,1639151186,1635492971,1652914466,1737453477,1787806344,1807479829,1767679446,1696619307,1560145542,1514669950,1500281112,1513640806,1484855188,1471421060,1490984698,1466395192,1322092036,1378028414,44.6,33.4 " Petroleum",117016961,111462979,88916308,99538857,91038583,60844256,67346095,77752652,110157895,86929098,72179917,78907846,59124871,69930457,73693695,69722196,40902849,40719414,28123785,25216814,26064909,1.9,0.6

167

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Oklahoma" Oklahoma" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",12769,12848,12881,12859,12898,12928,13091,12931,12622,12861,13438,13436,13387,13463,13550,13992,14648,14495,15913,16187,16015,94.6,76.2 " Coal",4850,4865,4874,4874,4868,4831,4848,4848,4837,4808,4856,4856,4896,4941,4949,4964,4981,4975,4912,4940,4940,34.2,23.5 " Petroleum",58,58,58,58,58,58,64,62,61,61,61,60,60,62,68,68,72,68,69,69,67,0.4,0.3 " Natural Gas",6858,6870,6888,6866,6885,6952,7007,6934,6634,6887,7411,7410,7314,7340,7427,7899,8364,8221,9701,9842,9669,52.2,46 " Other Gases1","-",52,52,52,52,52,52,52,55,63,57,57,61,61,58,"-","-","-","-","-","-",0.4,"-"

168

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Michigan" Michigan" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",22315,22275,22374,22412,22413,21981,21985,21909,21943,22374,22752,22831,23279,23345,23314,23029,22734,21894,21885,21759,21639,88.3,72.5 " Coal",11931,11960,11976,11929,11928,11794,11793,11796,11840,11573,11636,11638,11627,11636,11623,11633,11534,11533,11543,11431,11218,45.1,37.6 " Petroleum",3460,3171,3184,3235,3235,2618,2620,2617,2632,2634,1831,1860,1654,1685,1649,1647,1397,616,610,612,568,7.1,1.9 " Natural Gas",702,727,798,800,800,1434,1436,1435,1439,2131,3244,3302,3958,3964,3982,3669,3695,4461,4447,4446,4618,12.6,15.5

169

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Vermont" Vermont" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",1065,1091,1094,1094,1093,1090,1092,1094,774,782,777,262,261,260,251,258,259,258,259,257,260,79,23 " Petroleum",117,117,120,120,120,118,119,119,117,117,112,111,107,107,101,100,101,101,101,100,100,11.4,8.9 " Nuclear",496,496,496,496,496,496,496,496,500,506,506,"-","-","-","-","-","-","-","-","-","-",51.4,"-" " Hydroelectric",404,430,430,430,430,426,427,423,103,107,106,99,102,96,93,100,101,99,100,100,103,10.8,9.1

170

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Wyoming" Wyoming" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",5809,5826,5847,5869,5874,5970,5966,6044,6018,6011,6048,6052,6122,6088,6086,6241,6137,6142,6450,6713,6931,97.1,86.8 " Coal",5525,5545,5545,5567,5567,5662,5662,5737,5710,5709,5710,5710,5692,5692,5692,5817,5747,5747,5832,5829,5935,91.6,74.3 " Petroleum",15,15,15,15,15,15,10,10,10,"-","-",5,5,5,5,"-","-",5,5,5,5,"-",0.1 " Natural Gas","-","-","-","-","-","-","-","-","-","-",34,34,119,85,80,113,79,79,79,79,79,0.5,1

171

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri" Missouri" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",59010858,60120689,56627107,53202268,61519090,65400254,67827241,71073239,74894188,73504882,76283550,78990878,79796801,86102107,86419717,90159045,91118304,89925724,89178555,86704766,90176805,99.6,97.7 " Coal",48501751,47907503,46829678,40688696,48592766,53582211,57176084,59903073,62488551,61249846,62624807,65445161,67147996,73904272,74711159,77123580,77113165,74745712,73246599,71401581,74829029,81.8,81.1 " Petroleum",89342,118645,80522,634432,730820,682321,95980,125449,309734,280945,247622,637504,528353,155968,195098,168258,59958,59611,56620,87081,124866,0.3,0.1

172

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

California" California" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",43681,43599,43763,44313,43297,43302,43934,43709,30663,24323,24319,24405,24609,23223,23867,25248,26346,26334,26467,28021,28689,46.5,42.6 " Petroleum",2800,2473,1759,1553,1553,1692,1692,1072,737,526,526,524,296,297,297,297,245,226,222,204,174,1,0.3 " Natural Gas",21815,22074,22810,23285,22208,22040,22365,23193,10581,5671,5670,5733,5954,5042,5567,6850,7917,8188,8134,9629,10333,10.8,15.3 " Nuclear",4746,4746,4310,4310,4310,4310,4746,4310,4310,4310,4310,4324,4324,4324,4324,4324,4390,4390,4390,4390,4390,8.2,6.5

173

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

North Carolina" North Carolina" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",79845217,83520063,83007307,88753614,91454784,96109819,102786590,107371092,113112235,109882388,114433191,109807278,115597653,118433112,118328694,121674733,117797331,123215621,118778090,112961309,121251138,93.6,94.2 " Coal",46631040,46762330,54011457,59383147,53234497,55698342,64097781,70181392,69000633,68569499,71719489,68775284,71223313,70630278,71956852,74915235,72311023,76611703,72625233,62765545,69274374,58.7,53.8 " Petroleum",186899,174136,147134,165175,199418,234263,259252,211974,285902,284400,468482,412765,376170,459947,250402,231141,219114,236042,232446,232119,245987,0.4,0.2

174

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi" Mississippi" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",22923971,23305127,20487946,23234028,26222313,26395165,28838302,31227619,31991676,32212133,33896003,47550273,35099283,31358938,32838145,30619168,34158706,34426533,33796221,34759024,40841436,90.1,75 " Coal",9445584,8750253,7796112,8819755,8889624,9259980,12010196,12500586,11747963,13037100,13877065,19196065,12483658,13742273,14274786,13389906,14907777,14422788,14033627,9610808,10309709,36.9,18.9 " Petroleum",705474,370130,371568,3545055,1106209,23738,1173503,2633109,5417924,3141934,2970676,5120602,26357,1620395,2763630,1432077,395330,397080,71597,12475,76832,7.9,0.1

175

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Kansas" Kansas" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",9578,9609,9693,9706,9715,9675,9694,9786,9915,10020,10086,10223,10244,10731,10705,10734,10829,10944,11246,11733,11732,99.5,93.5 " Coal",5064,5091,5149,5189,5220,5244,5256,5364,5407,5325,5295,5295,5310,5265,5222,5250,5203,5208,5190,5180,5179,52.3,41.3 " Petroleum",622,602,613,611,613,579,578,510,494,520,522,652,546,564,587,583,565,569,564,564,550,5.2,4.4 " Natural Gas",2755,2784,2772,2772,2722,2685,2697,2749,2850,3005,3099,3106,3219,3735,3729,3734,3793,3900,4232,4580,4546,30.6,36.2

176

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina" Carolina" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",20190,20131,20148,20182,19767,20597,20923,21054,21020,21182,22015,23478,23652,23726,23671,23822,24553,25500,25558,25529,25553,89.9,92.3 " Coal",12500,12500,12500,12503,12438,12440,12440,12440,12440,12440,12440,12440,12440,12440,12495,12487,12439,12394,12411,12294,12271,50.8,44.3 " Petroleum",760,773,773,804,804,1676,776,791,794,791,791,790,836,836,541,540,509,510,507,509,524,3.2,1.9 " Natural Gas",270,257,274,286,286,314,1514,1511,1511,1676,2509,3931,4010,4010,4035,4200,4975,5597,5660,5749,5773,10.2,20.9

177

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri" Missouri" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",15180,15308,15385,15433,15488,15724,15978,16212,16282,16755,17180,17726,18409,18587,18606,18970,19675,19570,19621,19600,20360,99.4,93.7 " Coal",10678,10722,10724,10738,10754,10540,10557,10920,10943,10889,11032,11032,11053,11172,11159,11172,11199,11165,11146,11137,11976,63.8,55.1 " Petroleum",1498,1533,1546,1569,1617,1710,1730,1200,1181,1181,1198,1616,1236,1259,1243,1241,1265,1274,1267,1257,1197,6.9,5.5 " Natural Gas",818,817,878,891,892,1240,1444,1839,1815,2359,2607,2736,3778,3806,3853,4158,4809,4728,4790,4790,4771,15.1,21.9

178

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Virginia" Virginia" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",13661,13652,13772,14054,13763,14342,14806,15291,15314,15311,15606,15761,15818,17128,17567,18091,18166,18376,18828,19135,19434,80.4,80.6 " Coal",4225,4210,4215,4217,4217,5451,5099,5099,5099,5099,4796,4784,4789,4468,4468,4586,4586,4605,4587,4587,4594,24.7,19.1 " Petroleum",2753,2753,2753,2784,2689,1374,2192,2192,2213,2213,2175,2180,2083,2081,2098,2031,2027,2041,2041,2050,2048,11.2,8.5 " Natural Gas",192,198,377,595,400,995,994,1524,1524,1524,2083,2248,2097,3714,4101,4395,4395,4429,4897,5076,5122,10.7,21.2

179

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois" Illinois" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",32602,32643,32636,32769,32952,33139,33164,33549,30367,16992,17495,4420,4151,3007,2994,3987,4742,4642,4691,4830,4800,48.1,10.9 " Coal",14912,14916,14947,15063,15090,14916,14931,15339,14250,5543,5473,2862,2862,1866,1859,1844,1844,1767,1833,1998,1993,15.1,4.5 " Petroleum",4480,4207,3928,2848,2448,2645,2648,2671,1569,989,867,700,406,368,401,399,399,377,381,372,372,2.4,0.8 " Natural Gas",591,901,1143,2236,2792,2963,2963,2917,4006,732,1229,846,871,761,722,1729,2485,2483,2462,2442,2417,3.4,5.5

180

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Arkansas" Arkansas" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",37053436,38365135,37369823,38049072,39547768,39526825,43677535,42789637,43198908,44130705,41486451,44728133,42873364,41636514,45055455,40545220,42068467,45522928,45880232,45423149,47108063,94.6,77.2 " Coal",19160989,19573925,20030355,18025615,19780738,21506397,24339185,22760970,23140020,24612079,24073573,24678344,22986650,23422401,25248810,22940659,24095405,25642175,25993257,24986333,26421729,54.9,43.3 " Petroleum",73856,64278,49640,65624,96439,53208,98250,66622,143834,141475,206991,846105,136134,263982,476133,162961,135291,76212,57158,80962,37140,0.5,0.1

Note: This page contains sample records for the topic "growing primary energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Montana" Montana" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",4912,4828,4871,4871,4907,4943,4943,4943,4944,2997,3005,2232,2232,2274,2189,2186,2163,2179,2190,2232,2340,58.2,39.9 " Coal",2260,2260,2260,2260,2260,2260,2260,2294,2300,792,792,52,52,52,52,52,52,52,52,52,52,15.4,0.9 " Petroleum","-","-","-","-","-","-",5,5,5,5,5,"-","-","-","-",2,2,2,2,2,2,0.1,"*" " Natural Gas",120,120,120,120,120,120,120,53,52,53,58,58,58,97,98,100,100,100,100,102,186,1.1,3.2

182

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota" Minnesota" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",8834,8884,8880,8864,8951,8923,9180,9216,9089,8987,9067,10110,10329,10162,10179,10543,10458,10719,11432,11639,11547,88.4,78.5 " Coal",5757,5786,5771,5708,5742,5630,5779,5811,5657,5605,5613,5729,5726,5342,5260,5087,5083,5048,5077,4667,4630,54.7,31.5 " Petroleum",1004,1020,1026,1070,1065,1044,1112,1102,1056,1013,1019,1051,1020,669,699,711,718,728,746,759,748,9.9,5.1 " Natural Gas",307,305,305,302,353,454,457,464,461,459,475,1373,1637,2276,2336,2852,2719,2974,3528,4118,3929,4.6,26.7

183

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Indiana" Indiana" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",97738497,98199986,97299582,99951149,103485409,105188892,105557018,110466291,112771878,114182827,119721399,114666355,112029989,112395725,114690471,117373699,117643504,116727908,115887993,103594020,107852560,93.7,86.2 " Coal",96012872,96526976,95745949,98776088,102043025,103774522,104413600,108911799,110696190,112336883,117619535,113135350,109441044,109839659,112899892,115413188,116284183,114974642,114321205,101000267,103204599,92,82.4 " Petroleum",673984,354297,287064,197848,209379,213051,320566,606905,821530,813232,845481,371623,470976,407648,393135,244554,134035,155132,165142,132655,137977,0.7,0.1

184

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Indiana" Indiana" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",20588,20773,20821,20901,20710,20712,20681,20200,20337,20358,20554,20616,20802,21016,21126,22017,22021,22012,23598,23631,23008,85.9,83.2 " Coal",19556,19588,19562,19542,19192,18844,19045,18426,18709,18566,18734,18734,18530,18400,18426,18455,18428,18416,18401,18434,17774,78.3,64.3 " Petroleum",492,490,491,491,492,486,487,486,486,486,471,471,473,474,479,479,487,487,487,486,486,2,1.8 " Natural Gas",473,628,700,799,958,1087,1087,1087,1083,1090,1290,1353,1741,2082,2162,3024,3024,3020,4620,4616,4371,5.4,15.8

185

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Jersey" Jersey" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",13730,13725,13824,13850,13500,13817,13645,13684,13390,12085,1244,1244,1244,1244,1005,1005,1005,558,477,466,460,7.5,2.5 " Coal",1652,1652,1629,1644,1634,1629,1629,1635,1658,1643,387,387,387,387,307,307,307,23,23,23,"-",2.3,"-" " Petroleum",3784,3480,3548,3212,2967,2890,2842,3915,3573,2373,286,286,286,286,232,232,232,69,54,43,49,1.7,0.3 " Natural Gas",4101,4410,4434,4761,4657,5056,4912,3872,3897,3807,171,171,171,171,66,66,66,66,"-","-","-",1,"-"

186

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Florida" Florida" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",123623905,130743964,133976775,140066943,141790885,147156684,145140217,147983676,169447167,166914264,169888638,170966177,182346629,188034719,193383664,196096285,200015227,200533885,196524348,195063261,206062185,88.6,89.9 " Coal",59073203,61122819,61631012,61889050,60770030,61864438,65782399,66034628,65470151,62680522,67143257,63090794,60997142,62094661,60013823,57559411,60413597,62633944,59731231,49942611,56074369,35,24.5 " Petroleum",25092296,30115618,28176184,34277523,33330039,21583186,22890565,25742149,40952580,36697343,34337080,39075398,32449236,35545897,35824155,36122039,22508349,19841026,11830552,9028865,8867397,17.9,3.9

187

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina" Carolina" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",14908,16162,16314,16131,16691,16701,17173,17431,17627,17681,17716,18246,19101,19402,20406,20787,21019,21730,22152,22190,22172,94.8,92.5 " Coal",4818,4812,4812,4812,5352,5352,5471,5794,6007,6055,6054,6077,5925,5925,5968,5968,5984,6460,7060,7028,7048,32.4,29.4 " Petroleum",897,894,894,816,828,1192,1488,1192,1163,1163,957,955,955,970,684,689,682,682,699,663,664,5.1,2.8 " Natural Gas",301,396,396,328,336,345,345,585,576,576,779,1279,2150,2437,3712,3708,3923,3956,3919,3964,3966,4.2,16.5

188

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Rhode Island" Rhode Island" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",263,261,156,153,148,442,441,441,7,7,6,7,9,9,9,6,8,8,7,7,7,0.5,0.4 " Petroleum",262,161,155,152,146,20,20,20,5,5,5,6,7,7,7,5,7,7,7,7,7,0.4,0.4 " Natural Gas","-",99,"-","-","-",420,420,420,"-","-","-","-","-","-","-","-","-","-","-","-","-","-","-" " Hydroelectric",1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,"-","-","-",0.1,"-"

189

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee" Tennessee" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",16996,16269,16294,16224,16482,16144,17253,17361,17546,17253,17893,18600,19137,19235,19239,19120,19768,19977,20456,20418,20968,92,97.9 " Coal",9289,8702,8683,8691,8615,8615,8615,8604,8604,8618,8618,8618,8602,8609,8623,8618,8585,8599,8624,8589,8589,44.3,40.1 " Petroleum",1152,1100,1080,1080,1982,1096,1096,1135,1252,784,800,836,56,56,56,58,58,58,58,58,58,4.1,0.3 " Natural Gas",516,480,488,488,"-",472,472,514,571,732,1344,1960,3116,3128,3137,3032,3659,3632,4082,4099,4639,6.9,21.7

190

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Georgia" Georgia" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",20731,20752,21399,21504,22039,22290,22782,23147,23390,23329,24860,24099,25821,24804,25404,26538,26542,26432,26462,26558,26639,89.6,72.7 " Coal",12952,12972,13104,13115,13164,12551,13234,13222,13540,13095,13470,13503,13498,13331,13215,13192,13192,13192,13129,13084,13103,48.5,35.8 " Petroleum",1488,1493,1635,1351,1341,1231,1228,1228,1172,1145,1145,1145,1145,1055,991,991,991,973,991,991,991,4.1,2.7 " Natural Gas",96,103,103,362,841,1274,1276,1281,1273,1564,2647,1974,3386,2827,3470,4618,4609,4577,4577,4652,4646,9.5,12.7

191

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

York" York" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",31224,31349,31108,32731,32824,32147,30060,29985,29585,17679,15806,11572,11675,11902,11386,11927,12046,12056,11784,11871,11032,44.4,28 " Coal",3887,3897,3897,3879,3879,3870,3891,3880,3891,668,668,302,302,302,297,297,297,297,45,45,"-",1.9,"-" " Petroleum",12349,9869,8992,8885,7684,7637,11500,12759,12530,4991,5035,3638,3638,3688,2642,2450,2468,2465,2467,2465,1607,14.1,4.1 " Natural Gas",5065,7634,8304,7895,9194,8469,4718,3249,3131,2600,2227,2682,2783,2908,3894,4628,4628,4644,4623,4629,4619,6.3,11.7

192

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Massachusetts" Massachusetts" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",9910,9771,9494,9461,9287,9288,9365,9442,3385,2214,996,993,1090,981,981,983,837,827,829,930,937,8.1,6.8 " Coal",1723,1692,1684,1679,1675,1707,1730,1737,328,146,145,145,145,145,145,144,"-","-","-","-","-",1.2,"-" " Petroleum",5216,5070,4913,5041,4132,4058,4030,4094,787,547,475,474,771,663,661,661,659,648,624,624,528,3.8,3.9 " Natural Gas",289,330,378,219,953,993,1082,1086,333,302,330,329,130,130,131,131,131,131,157,257,353,2.7,2.6

193

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama" Alabama" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",20023,19902,19930,19972,19878,20463,20692,20840,21292,21462,22366,22532,23429,23007,23186,23252,23218,23182,23144,23285,23642,95,72.9 " Coal",11777,11589,11599,11579,11494,11669,11515,11286,11349,11349,11301,11362,11246,11217,11238,11500,11465,11452,11414,11401,11356,48,35 " Petroleum",65,18,18,18,388,18,20,16,16,30,34,34,34,34,34,34,34,34,34,34,34,0.1,0.1 " Natural Gas",400,530,544,586,202,987,1437,1706,1971,2076,3041,3157,4182,3550,3627,3471,3440,3440,3440,3593,3937,12.9,12.1

194

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio" Ohio" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",26996,27540,27130,27186,27192,27365,27278,26630,26768,27083,26302,27081,27885,27694,27684,19312,20147,20012,20340,20356,20179,92.3,61 " Coal",23086,23317,23060,23043,23058,23123,23033,22415,22456,22626,21675,21675,21599,21258,21366,16272,16296,16204,15909,15932,15733,76.1,47.6 " Petroleum",1151,1148,907,907,907,853,856,805,824,891,1031,1381,1000,1017,1008,588,588,596,575,575,577,3.6,1.7 " Natural Gas",501,817,902,980,976,1140,1140,1154,1232,1271,1300,1661,2921,3056,3074,2346,3156,3105,3749,3741,3760,4.6,11.4

195

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana" Louisiana" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",16751,16795,16699,16885,16873,17019,17150,17079,17014,16339,14317,14165,14233,14090,14176,15137,15176,14756,15755,15615,16471,67.8,61.6 " Coal",3343,3343,3343,3343,3343,2843,3453,3453,3448,3453,1723,1723,1723,1723,1723,1723,1723,1739,1739,1739,1674,8.2,6.3 " Petroleum",17,17,228,212,231,35,35,16,16,11,16,20,16,16,26,239,239,240,240,240,775,0.1,2.9 " Natural Gas",11380,11424,11122,11324,11293,12130,11651,11599,11539,10864,10566,10350,10423,10284,10372,11051,11095,10650,11622,11494,11880,50,44.4

196

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Florida" Florida" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",32714,32708,33411,34814,35487,35857,36898,36727,36472,36536,37264,38240,40313,41996,42619,45196,45184,47224,47222,50781,50853,89.7,86 " Coal",9971,10001,10034,10030,10037,10069,10763,10823,10676,10770,10783,10783,11301,10223,9653,9634,9564,9528,9499,9495,9210,26,15.6 " Petroleum",11107,11117,11590,11598,14724,13478,13653,13493,12222,12153,12431,12552,10650,10063,10715,10611,10593,10586,12043,11549,10980,29.9,18.6 " Natural Gas",7775,7712,7909,9313,6857,8447,8560,8485,9655,9665,10102,10955,14401,17751,18290,20990,21065,23148,21698,25731,26424,24.3,44.7

197

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Arizona" Arizona" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",62288980,66767347,70108979,68025039,71203728,68966538,70877043,78060498,81299241,83095924,88149792,85807868,81710063,80348246,81351521,82914964,84355976,88825573,94452931,89640192,91232664,99.1,81.6 " Coal",31636037,32306088,34602347,37020817,38072165,31710476,30780575,34219281,36225373,37994159,40662627,39731623,37957468,37739559,39419177,39750729,40056468,40911234,43505012,39464060,43347748,45.7,38.8 " Petroleum",116407,88935,72838,59875,128437,63610,65097,60927,61227,46287,189396,311787,51061,46706,39414,41127,71761,46137,48324,61381,63439,0.2,0.1

198

Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Hawaii" Hawaii" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",7996096,7333192,6861255,6083815,6055087,6190584,6420195,6212643,6301169,6452068,6534692,6383088,7513051,6493205,6982469,6915159,7040473,6928397,6700636,6509550,6416068,61.7,59.2 " Petroleum",7967354,7312791,6851432,6070063,6036282,6174627,6402329,6193852,6287107,6429429,6516929,6362846,7502913,6489565,6971259,6904293,7015977,6913231,6682593,6262182,6178666,61.5,57 " Hydroelectric",22743,20401,9823,13752,18805,15957,17866,18791,13750,18844,15114,18132,8533,2078,9724,9169,23656,14729,17872,28608,16719,0.1,0.2

199

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

United States" United States" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",690465,693016,695059,699971,702229,706111,709942,711889,686692,639324,604319,549920,561074,547249,550550,556235,567523,571200,584908,596769,602076,74.4,57.9 " Coal",299781,299444,300385,300634,300941,300569,302420,302866,299739,277780,260990,244451,244056,236473,235976,229705,230644,231289,231857,234397,235707,32.2,22.7 " Petroleum",76390,72393,71266,69046,69549,64451,70421,69557,62704,49020,41032,38456,33876,32570,31415,30867,30419,29115,30657,30174,28972,5.1,2.8 " Natural Gas",121300,126837,128149,132427,133620,142295,139936,141713,130404,123192,123665,112841,127692,125612,131734,147752,157742,162756,173106,180571,184231,15.2,17.7

200

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota" Dakota" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",2708,2710,2744,2733,2965,2950,2954,2927,2923,2895,2812,2814,2854,2650,2618,2759,2889,2826,2911,3042,2994,100,82.6 " Coal",495,484,499,467,488,475,474,467,477,477,477,477,477,476,477,482,492,492,497,497,497,17,13.7 " Petroleum",298,296,293,293,291,291,297,276,276,278,297,296,238,237,228,221,229,223,227,226,225,10.6,6.2 " Natural Gas",93,110,132,153,366,363,363,363,363,333,360,360,459,385,385,553,649,645,722,722,676,12.8,18.7 " Hydroelectric",1821,1821,1821,1820,1820,1820,1820,1820,1806,1806,1678,1678,1678,1549,1526,1500,1516,1463,1463,1594,1594,59.7,44

Note: This page contains sample records for the topic "growing primary energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Idaho" Idaho" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",2282,2282,2357,2304,2500,2559,2553,2576,2576,2571,2585,2659,2690,2439,2394,2558,2558,2547,2686,3029,3035,85.7,76.1 " Petroleum",56,56,56,6,6,6,6,6,6,6,6,5,5,5,5,5,5,5,5,5,5,0.2,0.1 " Natural Gas","-","-","-","-",136,136,136,136,136,136,136,212,212,212,212,376,376,376,536,543,543,4.5,13.6 " Hydroelectric",2227,2226,2302,2299,2358,2418,2412,2435,2435,2429,2444,2441,2472,2221,2176,2176,2176,2166,2144,2481,2486,81,62.3 "Independent Power Producers and Combined Heat and Power",314,353,379,404,409,415,434,434,433,433,432,577,574,563,592,602,652,649,692,729,955,14.3,23.9

202

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Utah" Utah" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",4805,4785,4802,4812,4816,4927,4926,4945,5077,5102,5111,5129,5573,5574,5754,6053,6212,6710,6499,6581,6648,97.9,88.7 " Coal",4316,4271,4271,4271,4273,4374,4374,4318,4448,4463,4464,4464,4461,4461,4645,4645,4645,4645,4645,4645,4677,85.5,62.4 " Petroleum",26,28,26,25,25,25,23,33,33,44,44,50,45,46,38,35,35,25,25,25,23,0.8,0.3 " Natural Gas",228,228,228,228,227,231,231,296,296,296,303,332,782,782,796,1098,1257,1755,1542,1624,1660,5.8,22.1 " Hydroelectric",213,236,251,253,257,261,262,263,265,265,265,251,252,252,252,253,253,253,253,253,253,5.1,3.4

203

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota" Dakota" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",4525,4546,4476,4478,4488,4485,4207,4733,4656,4675,4678,4677,4659,4562,4673,4625,4636,4668,4691,4852,4912,99.2,79.4 " Coal",3876,3903,3856,3856,3867,3862,3585,4062,4068,4084,4107,4107,4084,4107,4105,4106,4106,4098,4098,4127,4131,87.1,66.8 " Petroleum",94,88,65,66,67,69,68,117,61,63,65,64,69,72,71,75,75,72,72,68,68,1.4,1.1 " Natural Gas",10,10,10,10,10,10,10,9,9,10,10,10,10,10,10,10,10,10,10,15,15,0.2,0.2 " Hydroelectric",545,545,545,545,545,545,545,545,518,518,497,497,497,371,485,432,443,486,486,508,508,10.5,8.2

204

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Nevada" Nevada" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",4944,5125,5119,5235,5478,5556,5643,5642,5642,5434,5434,5388,5384,5323,5389,5611,6771,6998,8741,8741,8713,80.9,76.3 " Coal",2692,2692,2692,2717,2717,2717,2807,2806,2806,2806,2806,2747,2658,2657,2657,2657,2657,2689,2689,2689,2655,41.8,23.2 " Petroleum",79,260,260,260,260,50,46,46,46,46,46,46,43,45,45,45,45,45,45,45,45,0.7,0.4 " Natural Gas",1142,1142,1136,1227,1455,1743,1743,1743,1743,1533,1533,1547,1636,1576,1642,1862,3023,3217,4964,4964,4970,22.8,43.5 " Hydroelectric",1031,1031,1031,1031,1046,1046,1046,1046,1046,1049,1049,1048,1048,1045,1045,1047,1047,1048,1043,1043,1043,15.6,9.1

205

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Colorado" Colorado" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",6633,6610,6642,6648,6675,6647,6794,6850,6937,7254,7269,7479,7603,7883,7954,7955,8034,8008,8142,8454,9114,86.6,66.2 " Coal",4945,4945,4955,4950,4954,4954,4961,4955,4963,4981,4981,4981,4891,4891,4891,4888,4899,4921,4925,4970,5661,59.3,41.1 " Petroleum",221,221,222,222,222,221,177,177,174,180,181,178,193,193,207,181,179,179,181,176,176,2.2,1.3 " Natural Gas",393,387,387,379,369,359,542,541,624,917,917,1142,1333,1612,1662,1684,1752,1704,1832,2105,2078,10.9,15.1 " Hydroelectric",542,524,546,566,598,582,582,615,614,614,614,600,600,601,601,610,609,610,610,610,606,7.3,4.4

206

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Arkansas" Arkansas" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",9641,9634,9639,9672,9674,9639,9639,9688,9618,9278,9330,9615,9551,9777,9772,10434,10669,11467,11459,11456,11488,96,71.9 " Coal",3817,3817,3817,3817,3817,3817,3817,3865,3817,3680,3680,3741,3757,3745,3745,3793,3846,3846,3861,3864,3865,37.9,24.2 " Petroleum",221,213,215,216,217,217,217,308,308,29,29,29,25,25,25,23,23,22,22,22,22,0.3,0.1 " Natural Gas",2620,2620,2620,2620,2620,2585,2585,2494,2494,2454,2504,2645,2578,2752,2750,3369,3561,4414,4390,4384,4411,25.8,27.6 " Nuclear",1694,1694,1694,1694,1694,1694,1694,1694,1694,1694,1695,1782,1776,1840,1837,1834,1824,1838,1839,1835,1835,17.4,11.5

207

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi" Mississippi" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",7016,7016,7032,7045,7114,7170,7177,7159,7156,6817,7057,7964,8888,9279,9015,8904,9407,9377,10093,10081,10858,78.3,69.2 " Coal",2244,2246,2227,2238,2228,2255,2255,2131,2136,2121,2208,2208,2225,2231,2220,2123,2108,2102,2115,2115,2086,24.5,13.3 " Petroleum",894,894,894,896,125,31,31,31,40,35,60,54,36,36,32,34,36,36,36,35,35,0.7,0.2 " Natural Gas",2736,2733,2768,2769,3619,3711,3712,3797,3776,3456,3579,4492,5396,5749,5493,5481,5997,5971,6683,6680,7486,39.7,47.7 " Nuclear",1142,1143,1143,1143,1143,1173,1179,1200,1204,1204,1210,1210,1231,1263,1270,1266,1266,1268,1259,1251,1251,13.4,8

208

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska" Alaska" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",1542,1547,1672,1711,1737,1732,1734,1750,1721,1744,1794,1770,1740,1753,1722,1769,1736,1820,1847,1868,1889,85.1,91.4 " Coal",56,56,54,54,54,54,54,54,25,25,25,25,25,25,25,52,25,25,25,25,25,1.2,1.2 " Petroleum",494,498,500,539,570,572,569,575,585,593,610,527,522,529,517,526,527,581,601,604,618,28.9,29.9 " Natural Gas",756,756,766,767,762,754,759,759,752,752,762,819,796,803,785,785,785,814,818,818,825,36.2,39.9 " Hydroelectric",236,237,352,352,352,353,353,362,359,374,396,399,396,396,395,397,397,397,400,414,414,18.8,20.1

209

Table 4. Electric Power Industry Capability by Primary Energy Source, 1990 Throu  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska" Nebraska" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percentage Share" ,,,,,,,,,,,,,,,,,,,,,,2000,2010 "Electric Utilities",5452,5450,5453,5512,5518,5529,5632,5760,5811,5829,5939,6010,6052,6667,6722,7007,7056,6959,7011,7675,7647,99.7,97.3 " Coal",3094,3087,3066,3103,3112,3112,3111,3152,3169,3181,3181,3181,3196,3196,3196,3196,3196,3196,3196,3863,3863,53.4,49.2 " Petroleum",370,311,334,342,342,331,544,547,518,528,636,708,638,637,638,639,641,330,382,387,387,10.7,4.9 " Natural Gas",565,630,631,645,643,666,559,644,712,723,723,721,811,1317,1374,1589,1630,1889,1874,1864,1849,12.1,23.5 " Nuclear",1254,1254,1254,1254,1254,1254,1250,1250,1245,1234,1234,1234,1234,1233,1232,1238,1238,1240,1252,1252,1245,20.7,15.8

210

International Energy Statistics - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Total Primary Energy Production | Total Primary Energy Consumption ; Indicators. CO2 Emissions ; Carbon Intensity ; Energy Intensity ; Conversions ; Population ;

211

International Energy Statistics - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Biofuels Consumption | Heat Content ; Total Energy. Total Primary Energy Production | Total Primary Energy Consumption ; Indicators. CO2 Emissions ; Carbon Intensity ;

212

Applications of thermal energy storage to process heat and waste heat recovery in the primary aluminum industry. Final report, September 1977-September 1978  

DOE Green Energy (OSTI)

The results of a study entitled, Applications of Thermal Energy Storage to Process Heat and Waste Heat Recovery in the Primary Aluminum Industry are presented. In this preliminary study, a system has been identified by which the large amounts of low-grade waste energy in the primary pollution control system gas stream can be utilized for comfort heating in nearby communities. Energy is stored in the form of hot water, contained in conventional, insulated steel tanks, enabling a more efficient utilization of the constant energy source by the cyclical energy demand. Less expensive energy storage means (heated ponds, aquifers), when they become fully characterized, will allow even more cost-competitive systems. Extensive design tradeoff studies have been performed. These tradeoff studies indicate that a heating demand equivalent to 12,000 single-family residences can be supplied by the energy from the Intalco plant. Using a 30-year payback criterion (consistent with utility planning practice), the average cost of energy supplied over the system useful life is predicted at one-third the average cost of fossil fuel. The study clearly shows that the utilization of waste energy from aluminum plants is both technically and economically attractive. The program included a detailed survey of all aluminum plants within the United States, allowing the site specific analyses to be extrapolated to a national basis. Should waste heat recovery systems be implemented by 1985, a national yearly savings of 6.5 million barrels of oil can be realized.

Katter, L.B.; Hoskins, R.L.

1979-04-01T23:59:59.000Z

213

Silicon crystal growing by oscillating crucible technique  

DOE Patents (OSTI)

A process for growing silicon crystals from a molten melt comprising oscillating the container during crystal growth is disclosed.

Schwuttke, G.H.; Kim, K.M.; Smetana, P.

1983-08-03T23:59:59.000Z

214

Growing Nanowires Horizontally Yields New Benefit: 'Nano ...  

Science Conference Proceedings (OSTI)

Growing Nanowires Horizontally Yields New Benefit: 'Nano-LEDs'. ... Optical microscope image of “nano LEDs” emitting light. ...

2012-10-17T23:59:59.000Z

215

Forecast Technical Document Growing Stock Volume  

E-Print Network (OSTI)

Forecast Technical Document Growing Stock Volume Forecasts A document describing how growing stock (`standing') volume is handled in the 2011 Production Forecast. Tom Jenkins Robert Matthews Ewan Mackie Lesley Halsall #12;PF2011 ­ Growing stock volume forecasts Background A forecast of standing volume (or

216

EIA - Annual Energy Outlook 2012 Early Release  

Gasoline and Diesel Fuel Update (EIA)

Consumption by Primary Fuel Consumption by Primary Fuel Total primary energy consumption, which was 101.4 quadrillion Btu in 2007, grows by 10 percent in the AEO2012 Reference case, from 98.2 quadrillion Btu in 2010 to 108.0 quadrillion Btu in 2035-6 quadrillion Btu less than the AEO2011 projection for 2035. The fossil fuel share of energy consumption falls from 83 percent of total U.S. energy demand in 2010 to 77 percent in 2035. Biofuel consumption has been growing and is expected to continue to grow over the projection period. However, the projected increase would present challenges, particularly for volumes of ethanol beyond the saturation level of the E10 gasoline pool. Those additional volumes are likely to be slower in reaching the market, as infrastructure and consumer demand adjust. In

217

Energy & Water:Energy & Water: A Growing and IncreasinglyA Growing and Increasingly  

E-Print Network (OSTI)

SubstationTo SCE Mirage Substation To WAPATo WAPA #12;13 Metropolitan Small Hydro Power Plants GenerationSolar Generation FacilityFacility · 1 MW Solar Facility · Ground Mounted · Single-Axis Tracking · 5

Keller, Arturo A.

218

International Energy Statistics  

U.S. Energy Information Administration (EIA)

Total Primary Energy Production | Total Primary Energy Consumption ; Indicators. CO2 Emissions ; Carbon Intensity ; Energy Intensity ; Conversions ; Population ;

219

International Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Natural Gas Natural gas is the fastest growing primary energy source in the IEO2003 forecast. Consumption of natural gas is projected to nearly double between 2001 and 2025, with the most robust growth in demand expected among the developing nations. Natural gas is expected to be the fastest growing component of world primary energy consumption in the International Energy Outlook 2003 (IEO2003) reference case. Consumption of natural gas worldwide is projected to increase by an average of 2.8 percent annually from 2001 to 2025, compared with projected annual growth rates of 1.8 percent for oil consumption and 1.5 percent for coal. Natural gas consumption in 2025, at 176 trillion cubic feet, is projected to be nearly double the 2001 total of 90 trillion cubic feet (Figure 40). The natural gas share of total energy consumption is projected to increase from 23 percent in 2001 to 28 percent in 2025.

220

Greater fuel diversity needed to meet growing US electricity demand  

Science Conference Proceedings (OSTI)

Electricity demand is growing in the USA. One way to manage the uncertainty is to diversity fuel sources. Fuel sources include coal, natural gas, nuclear and renewable energy sources. Tables show actual and planned generation projects by fuel types. 1 fig., 2 tabs.

Burt, B.; Mullins, S. [Industrial Info Resources (United States)

2008-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "growing primary energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

International Energy Statistics - Energy Information Administration  

U.S. Energy Information Administration (EIA)

> Countries > International Energy Statistics: International Energy Statistics; Petroleum. ... Total Primary Energy Consumption (Quadrillion Btu) Loading ...

222

Scientists Classify Forest Disturbances to Grow Understanding...  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientists Classify Forest Disturbances to Grow Understanding of Climate Change Daniel Hayes, shown here outside of Nome, Alaska, traveled to the Arctic in June to study climate...

223

International Energy Outlook 2001 - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Natural Gas picture of a printer Printer Friendly Version (PDF) Natural gas is the fastest growing primary energy source in the IEO2001 forecast. The use of natural gas is projected to nearly double between 1999 and 2020, providing a relatively clean fuel for efficient new gas turbine power plants. Natural gas is expected to be the fastest growing component of world energy consumption in the International Energy Outlook 2001 (IEO2001) reference case. Gas use is projected to almost double, to 162 trillion cubic feet in 2020 from 84 trillion cubic feet in 1999 (Figure 38). With an average annual growth rate of 3.2 percent, the share of natural gas in total primary energy consumption is projected to grow to 28 percent from 23 percent. The largest increments in gas use are expected in Central and

224

PSTAR: Primary and secondary terms analysis and renormalization: A unified approach to building energy simulations and short-term monitoring: A summary  

DOE Green Energy (OSTI)

This report summarizes a longer report entitled PSTAR - Primary and Secondary Terms Analysis and Renormalization. A Unified Approach to Building Energy Simulations and Short-Term Monitoring. These reports highlight short-term testing for predicting long-term performance of residential buildings. In the PSTAR method, renormalized parameters are introduced for the primary terms such that the renormalized energy balance equation is best satisfied in the least squares sense; hence, the name PSTAR. Testing and monitoring the energy performance of buildings has several important applications, among them: extrapolation to long-term performance, refinement of design tools through feedback from comparing design versus actual parameters, building-as-a-calorimeter for heating, ventilating, and air conditioning (HVAC) diagnostics, and predictive load control. By combining realistic building models, simple test procedures, and analysis involving linear equations, PSTAR provides a powerful tool for analyzing building energy as well as testing and monitoring. It forms the basis for the Short-Term Energy Monitoring (STEM) project at SERI. 3 figs., 1 tab.

Subbarao, K.

1988-09-01T23:59:59.000Z

225

International Energy Statistics - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Total Primary Energy Production | Total Primary Energy Consumption ; ... Crude Oil Proved Reserves ... Sudan and South Sudan 0.563 ...

226

International Energy Statistics - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Total Primary Energy Production | Total Primary Energy Consumption ; Indicators. ... Production of Crude Oil including Lease Condensate (Thousand Barrels Per Day)

227

International Energy Statistics - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Total Primary Energy Consumption ; Indicators. CO2 Emissions ; Carbon Intensity ; ... Total Primary Energy Consumption per Capita (Million Btu per Person)

228

Energy Programs | The Energy Challenge  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Challenge Page 1 of 3 Our nation faces a grand challenge: finding alternatives to fossil fuels and improving energy efficiency to meet our exponentially growing energy...

229

A Monte Carlo study to measure the energy spectra of the primary cosmic-ray components at the knee using a new Tibet AS core detector array  

E-Print Network (OSTI)

A new hybrid experiment has been started by AS{\\gamma} experiment at Tibet, China, since August 2011, which consists of a low threshold burst-detector-grid (YAC-II, Yangbajing Air shower Core array), the Tibet air-shower array (Tibet-III) and a large underground water Cherenkov muon detector (MD). In this paper, the capability of the measurement of the chemical components (proton, helium and iron) with use of the (Tibet-III+YAC-II) is investigated by means of an extensive Monte Carlo simulation in which the secondary particles are propagated through the (Tibet-III+YAC-II) array and an artificial neural network (ANN) method is applied for the primary mass separation. Our simulation shows that the new installation is powerful to study the chemical compositions, in particular, to obtain the primary energy spectrum of the major component at the knee.

The Tibet As? Collaboration; :; M. Amenomori; X. J. Bi; D. Chen; W. Y. Chen; S. W. Cui; Danzengluobu; L. K. Ding; X. H. Ding; C. F. Feng; Zhaoyang Feng; Z. Y. Feng; Q. B. Gou; H. W. Guo; Y. Q. Guo; H. H. He; Z. T. He; K. Hibino; N. Hotta; Haibing Hu; H. B. Hu; J. Huang; W. J. Li; H. Y. Jia; L. Jiang; F. Kajino; K. Kasahara; Y. Katayose; C. Kato; K. Kawata; Labaciren; G. M. Le; A. F. Li; C. Liu; J. S. Liu; H. Lu; X. R. Meng; K. Mizutani; K. Munakata; H. Nanjo; M. Nishizawa; M. Ohnishi; I. Ohta; S. Ozawa; X. L. Qian; X. B. Qu; T. Saito; T. Y. Saito; M. Sakata; T. K. Sako; J. Shao; M. Shibata; A. Shiomi; T. Shirai; H. Sugimoto; M. Takita; Y. H. Tan; N. Tateyama; S. Torii; H. Tsuchiya; S. Udo; H. Wang; H. R. Wu; L. Xue; Y. Yamamoto; Z. Yang; S. Yasue; A. F. Yuan; T. Yuda; L. M. Zhai; H. M. Zhang; J. L. Zhang; X. Y. Zhang; Y. Zhang; Yi Zhang; Ying Zhang; Zhaxisangzhu; X. X. Zhou

2013-03-12T23:59:59.000Z

230

A Monte Carlo study to measure the energy spectra of the primary cosmic-ray components at the knee using a new Tibet AS core detector array  

E-Print Network (OSTI)

A new hybrid experiment has been started by AS{\\gamma} experiment at Tibet, China, since August 2011, which consists of a low threshold burst-detector-grid (YAC-II, Yangbajing Air shower Core array), the Tibet air-shower array (Tibet-III) and a large underground water Cherenkov muon detector (MD). In this paper, the capability of the measurement of the chemical components (proton, helium and iron) with use of the (Tibet-III+YAC-II) is investigated by means of an extensive Monte Carlo simulation in which the secondary particles are propagated through the (Tibet-III+YAC-II) array and an artificial neural network (ANN) method is applied for the primary mass separation. Our simulation shows that the new installation is powerful to study the chemical compositions, in particular, to obtain the primary energy spectrum of the major component at the knee.

:,; Bi, X J; Chen, D; Chen, W Y; Cui, S W; Danzengluobu,; Ding, L K; Ding, X H; Feng, C F; Feng, Zhaoyang; Feng, Z Y; Gou, Q B; Guo, H W; Guo, Y Q; He, H H; He, Z T; Hibino, K; Hotta, N; Hu, Haibing; Hu, H B; Huang, J; Li, W J; Jia, H Y; Jiang, L; Kajino, F; Kasahara, K; Katayose, Y; Kato, C; Kawata, K; Labaciren,; Le, G M; Li, A F; Liu, C; Liu, J S; Lu, H; Meng, X R; Mizutani, K; Munakata, K; Nanjo, H; Nishizawa, M; Ohnishi, M; Ohta, I; Ozawa, S; Qian, X L; Qu, X B; Saito, T; Saito, T Y; Sakata, M; Sako, T K; Shao, J; Shibata, M; Shiomi, A; Shirai, T; Sugimoto, H; Takita, M; Tan, Y H; Tateyama, N; Torii, S; Tsuchiya, H; Udo, S; Wang, H; Wu, H R; Xue, L; Yamamoto, Y; Yang, Z; Yasue, S; Yuan, A F; Yuda, T; Zhai, L M; Zhang, H M; Zhang, J L; Zhang, X Y; Zhang, Y; Zhang, Yi; Zhang, Ying; Zhaxisangzhu,; Zhou, X X

2013-01-01T23:59:59.000Z

231

Energy Intensity Trends in AEO2010 (released in AEO2010)  

Reports and Publications (EIA)

Energy intensity (energy consumption per dollar of real GDP) indicates how much energy a country uses to produce its goods and services. From the early 1950s to the early 1970s, U.S. total primary energy consumption and real GDP increased at nearly the same annual rate (Figure 17). During that period, real oil prices remained virtually flat. In contrast, from the mid-1970s to 2008, the relationship between energy consumption and real GDP growth changed, with primary energy consumption growing at less than one-third the previous average rate and real GDP growth continuing to grow at its historical rate. The decoupling of real GDP growth from energy consumption growth led to a decline in energy intensity that averaged 2.8 percent per year from 1973 to 2008. In the AEO2010 Reference case, energy intensity continues to decline, at an average annual rate of 1.9 percent from 2008 to 2035.

Information Center

2010-05-11T23:59:59.000Z

232

Only tough choices in Meeting growing demand  

SciTech Connect

U.S. electricity demand is not growing very fast by international or historical standards. Yet meeting this relatively modest growth is proving difficult because investment in new capacity is expected to grow at an even slower pace. What is more worrisome is that a confluence of factors has added considerable uncertainties, making the investment community less willing to make the long-term commitments that will be needed during the coming decade.

NONE

2007-12-15T23:59:59.000Z

233

U.S. Residential Housing Primary  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency Page > Energy Intensities >Table 7c Glossary U.S. Residential Housing Primary Page Last Revised: July 2009

234

International Energy Statistics  

U.S. Energy Information Administration (EIA)

Total Primary Energy Production | Total Primary Energy Consumption ; Indicators. ... Total Oil Supply (Thousand Barrels Per Day) Loading ... Units Conversion ...

235

International Energy Statistics  

U.S. Energy Information Administration (EIA)

Total Primary Energy Production | Total Primary Energy Consumption ; ... Imports of Crude Oil including Lease Condensate ... Sudan and South Sudan 0 ...

236

International Energy Outlook 2000 - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural gas is the fastest growing primary energy source in the IEO2000 forecast. The use of natural gas is projected to more than double between 1997 and 2020, providing a relatively clean fuel for efficient new gas turbine power plants. Natural gas is the fastest growing primary energy source in the IEO2000 forecast. The use of natural gas is projected to more than double between 1997 and 2020, providing a relatively clean fuel for efficient new gas turbine power plants. World natural gas consumption continues to grow, increasing its market share of total primary energy consumption. In the International Energy Outlook 2000 (IEO2000), natural gas remains the fastest growing component of world energy consumption. Over the IEO2000 forecast period from 1997 to 2020, gas use is projected to more than double in the reference case, reaching 167 trillion cubic feet in 2020 from the 1997 level of 82 trillion cubic feet (Figure 46). Over the 1997-2020 period, the role of natural gas in energy use is projected to increase in all regions except the Middle

237

International Energy Outlook 1998  

Gasoline and Diesel Fuel Update (EIA)

World Energy Consumption World Energy Consumption IEO98 projects that total annual world energy consumption could be 75 percent higher in 2020 than it was in 1995. Demand for all sources of energy except nuclear power is expected to grow over the projection period. Altenative Growth Cases Trends in Energy Intensity Emissions of Greenhouse Gases and the Kyoto Protocol Carbon Emissions Reference Case Trends in Primary Energy Consumption Forecast Comparisons By 2020 the world is projected to consume three times the amount of energy it used 25 years ago (Figure 11). Despite the recent economic crisis in Southeast Asia, which may reduce expected growth of energy consumption in the short term, EIA believes that almost half of the worldÂ’s projected energy increment will occur in developing Asia. Indeed, the IEO98 reference

238

REVIEW Algal Photosynthesis as the Primary Driver for a Sustainable Development in Energy, Feed, and Food Production  

E-Print Network (OSTI)

Abstract High oil prices and global warming that accompany the use of fossil fuels are an incentive to find alternative forms of energy supply. Photosynthetic biofuel production represents one of these since for this, one uses renewable resources. Sunlight is used for the conversion of water and CO2 into biomass. Two strategies are used in parallel: plantbased production via sugar fermentation into ethanol and biodiesel production through transesterification. Both, however, exacerbate other problems, including regional nutrient balancing and the world's food supply, and suffer from the modest efficiency of photosynthesis. Maximizing the efficiency of natural and engineered photosynthesis is therefore of utmost importance. Algal photosynthesis is the system of choice for this particularly for energy applications. Complete conversion of CO2 into biomass is not necessary for this. Innovative methods of synthetic biology allow one to combine photosynthetic and fermentative metabolism via the so-called Photanol approach to form biofuel directly from Calvin cycle intermediates through use of the naturally transformable cyanobacterium Synechocystis sp. PCC 6803. Beyond providing transport energy and chemical feedstocks, photosynthesis will continue to be used for food and feed applications. Also for this application, arguments of efficiency will become more and more important as the size of the world population continues to increase. Photosynthetic cells can be used for food applications in various innovative forms, e.g., as a substitute for the fish proteins in the diet supplied to carnivorous fish or perhaps—after acid

Ida G. Anemaet; Martijn Bekker; Klaas J. Hellingwerf

2010-01-01T23:59:59.000Z

239

Primary Radiation Damage Formation  

SciTech Connect

The physical processes that give rise to changes in the microstructure, and the physical and mechanical properties of materials exposed to energetic particles are initiated by essentially elastic collisions between atoms in what has been called an atomic displacement cascade. The formation and evolution of this primary radiation damage mechanism are described to provide an overview of how stable defects are formed by displacement cascades, as well as the nature and morphology of the defects themselves. The impact of the primary variables cascade energy and irradiation temperature are discussed, along with a range of secondary factors that can influence damage formation.

Stoller, Roger E [ORNL

2012-01-01T23:59:59.000Z

240

Prealloyed catalyst for growing silicon carbide whiskers  

DOE Patents (OSTI)

A prealloyed metal catalyst is used to grow silicon carbide whiskers, especially in the .beta. form. Pretreating the metal particles to increase the weight percentages of carbon or silicon or both carbon and silicon allows whisker growth to begin immediately upon reaching growth temperature.

Shalek, Peter D. (Los Alamos, NM); Katz, Joel D. (Niagara Falls, NY); Hurley, George F. (Los Alamos, NM)

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "growing primary energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Calculations of Bacteriochlorophyll g primary donors in photosynthetic Heliobacteria. How to shift the energy of a phototrap by 2000 cm{sup -1}  

SciTech Connect

Heliobacteria are a recently uncovered class of photosynthetic bacteria comprised of a novel chromophore, bacteriochlorophyll (BChl) g. Only the substitution of a vinyl; group for an acetyl group on ring I distinguishes the macrocycle of BChl g from that of the more common BChl b. The different substituents impart small differences of 30 nm or {approx} 500 cm{sup -1} in the Qy transitions of the chromophores in vitro but result in 2000-cm{sup -1} differences in the energies of the primary donors in reaction centers containing BChls b (960 nm) and BChls g (800)nm. INDO/s calculations are presented that consider whether this large spectral shift reflects a different mode of aggregation or architecture for the primary donor in Heliobacteria or whether the observed difference can be explained in terms of the dimers or special pairs found in organisms comprised of BChls b or a. Calculations based on the crystallographic coordinates of the BChls b in Rhodopseudomonas viridis with the acetyl groups replaced by vinyls yield good agreement with the observed Qy energies of BChl g monomers in vitro. The calculations are also extended to predict the spectral properties of an as-yet undiscovered organism comprised of BChls {open_quotes}h{close_quotes}, hypothetical vinyl-substituted analogues of BChls a. The calculations may also offer some guidelines for the considerable effort now devoted to chlorin-based artificial photosynthetic models. Introduction of acetyl functions or other polar substients that can conjugate with the chlorin {pi} system clearly provide simple synthetic avenues to modulate the optical properties of porphinoid monomers; effects that are further enhanced by dimerization, as evidenced by the large differences in the BCgls g and b in vivo. 31 refs., 1 fig., 1 tab.

Thompson, M.A.; Fajer, J. [Pacific Northwest Laboratory, Richland, WA (United States)

1992-04-02T23:59:59.000Z

242

Modeling wealth distribution in growing markets  

E-Print Network (OSTI)

We introduce an auto-regressive model which captures the growing nature of realistic markets. In our model agents do not trade with other agents, they interact indirectly only through a market. Change of their wealth depends, linearly on how much they invest, and stochastically on how much they gain from the noisy market. The average wealth of the market could be fixed or growing. We show that in a market where investment capacity of agents differ, average wealth of agents generically follow the Pareto-law. In few cases, the individual distribution of wealth of every agent could also be obtained exactly. We also show that the underlying dynamics of other well studied kinetic models of markets can be mapped to the dynamics of our auto-regressive model.

Urna Basu; P. K. Mohanty

2008-03-27T23:59:59.000Z

243

EIA - Annual Energy Outlook 2013 Early Release  

Gasoline and Diesel Fuel Update (EIA)

Consumption by Primary Fuel Consumption by Primary Fuel Total primary energy consumption grows by 7 percent in the AEO2013 Reference case, from 98 quadrillion Btu in 2011 to 104 quadrillion Btu in 2035-2.5 quadrillion Btu less than in AEO2012-and continues to grow at a rate of 0.6 percent per year, reaching about 108 quadrillion Btu in 2040 (Figure 7). The fossil fuel share of energy consumption falls from 82 percent in 2011 to 78 percent in 2040, as consumption of petroleum-based liquid fuels falls, largely as a result of the incorporation of new fuel efficiency standards for LDVs. figure dataWhile total liquid fuels consumption falls, consumption of domestically produced biofuels increases significantly, from 1.3 quadrillion Btu in 2011 to 2.1 quadrillion Btu in 2040, and its share of

244

Stereotactic Radiotherapy of Primary Lung Cancer and Other Targets: Results of Consultant Meeting of the International Atomic Energy Agency  

Science Conference Proceedings (OSTI)

To evaluate the current status of stereotactic body radiotherapy (SBRT) and identify both advantages and disadvantages of its use in developing countries, a meeting composed of consultants of the International Atomic Energy Agency was held in Vienna in November 2006. Owing to continuous developments in the field, the meeting was extended by subsequent discussions and correspondence (2007-2010), which led to the summary presented here. The advantages and disadvantages of SBRT expected to be encountered in developing countries were identified. The definitions, typical treatment courses, and clinical results were presented. Thereafter, minimal methodology/technology requirements for SBRT were evaluated. Finally, characteristics of SBRT for developing countries were recommended. Patients for SBRT should be carefully selected, because single high-dose radiotherapy may cause serious complications in some serial organs at risk. Clinical experiences have been reported in some populations of lung cancer, lung oligometastases, liver cancer, pancreas cancer, and kidney cancer. Despite the disadvantages expected to be experienced in developing countries, SBRT using fewer fractions may be useful in selected patients with various extracranial cancers with favorable outcome and low toxicity.

Nagata, Yasushi, E-mail: nagat@hiroshima-u.ac.j [Hiroshima University Hospital, Department of Radiation Oncology, Hiroshima (Japan); Wulf, Joern [Institut of Radiation Oncology, Lindenhospital, Bern (Switzerland); Lax, Ingmar [Division of Oncology and Hospital Physics, Radiumhemmet, Karolinska University Hospital (Sweden); Timmerman, Robert [Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas (United States); Zimmermann, Frank [Department of Radiation Oncology, University Hospital, University Basel, Basel (Switzerland); Stojkovski, Igor; Jeremic, Branislav [International Atomic Energy Agency, Vienna (Austria)

2011-03-01T23:59:59.000Z

245

Strategic Eurasian Natural Gas Model for Energy Security  

E-Print Network (OSTI)

fossil fuels (such as coal or oil).4 In 2009, natural gas consumption in the EU totalled 503 billion cubic metres (bcm) (or about a quarter of total primary energy consumption) (IEA, 2010). By 2030, consumption was projected to grow at an average...

Chyong, Chi-Kong; Hobbs, Benjamin F.

2011-04-06T23:59:59.000Z

246

International Energy Statistics  

U.S. Energy Information Administration (EIA)

Total Primary Energy Consumption ; Indicators. CO2 Emissions ; Carbon Intensity ; Energy Intensity ; Conversions ; Population ; Coal Prices ; ...

247

Financial Times-World Energy Council Energy Leaders Summit | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Financial Times-World Energy Council Energy Leaders Summit Financial Times-World Energy Council Energy Leaders Summit Financial Times-World Energy Council Energy Leaders Summit September 16, 2008 - 3:43pm Addthis Remarks for (Acting) Deputy Energy Secretary Jeffrey F. Kupfer Thank you very much. It's a pleasure to be here among so many distinguished speakers and attendees. And I applaud the Financial Times and the World Energy Council for hosting this important summit together. There are few issues more timely and pressing than the need to secure our global energy future. The fact is, we face a new energy reality. The International Energy Agency's (IEA) most recent World Energy Outlook estimates the world's primary energy needs will grow by 55 percent by 2030. As we address this increased global energy demand, we must also address the environmental

248

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Consumption by Primary Fuel Consumption by Primary Fuel Total primary energy consumption, which was 101.7 quadrillion Btu in 2007, grows by 21 percent in the AEO2011 Reference case, from 94.8 quadrillion Btu in 2009 to 114.3 quadrillion Btu in 2035, to about the same level as in the AEO2010 projection in 2035. The fossil fuel share of energy consumption falls from 84 percent of total U.S. energy demand in 2009 to 78 percent in 2035, reflecting the impacts of CAFE standards and provisions in the American Recovery and Reinvestment Act of 2009 (ARRA), Energy Improvement and Extension Act of 2008 (EIEA2008), Energy Independence and Security Act of 2007 (EISA2007), and State legislation. Although the situation is uncertain, EIA's present view of the projected rates of technology development and market penetration of cellulosic

249

Join Secretary Chu Tomorrow for a Google+ Hangout on America's Growing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Chu Tomorrow for a Google+ Hangout on America's Secretary Chu Tomorrow for a Google+ Hangout on America's Growing Solar Industry Join Secretary Chu Tomorrow for a Google+ Hangout on America's Growing Solar Industry February 21, 2013 - 3:06pm Addthis Join Secretary Chu Tomorrow for a Google+ Hangout on America's Growing Solar Industry Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs How can I participate? Sign up at the Google+ Event page. Email questions to newmedia@hq.doe.gov, and tweet questions to @ENERGY using #AskEnergy. Tune in at 2pm ET on energy.gov/live. Over the past four years, solar energy generation in the U.S. has more than doubled. At the same time, the cost of solar power continues to fall each year and American companies and workers are helping to lead the way with

250

Join Secretary Chu Tomorrow for a Google+ Hangout on America's Growing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Join Secretary Chu Tomorrow for a Google+ Hangout on America's Join Secretary Chu Tomorrow for a Google+ Hangout on America's Growing Solar Industry Join Secretary Chu Tomorrow for a Google+ Hangout on America's Growing Solar Industry February 21, 2013 - 3:06pm Addthis Join Secretary Chu Tomorrow for a Google+ Hangout on America's Growing Solar Industry Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs How can I participate? Sign up at the Google+ Event page. Email questions to newmedia@hq.doe.gov, and tweet questions to @ENERGY using #AskEnergy. Tune in at 2pm ET on energy.gov/live. Over the past four years, solar energy generation in the U.S. has more than doubled. At the same time, the cost of solar power continues to fall each year and American companies and workers are helping to lead the way with

251

International Energy Outlook 1999 - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

natgas.jpg (4355 bytes) natgas.jpg (4355 bytes) Natural gas is the fastest growing primary energy source in the IEO99 forecast. Because it is a cleaner fuel than oil or coal and not as controversial as nuclear power, gas is expected to be the fuel of choice for many countries in the future. Prospects for natural gas demand worldwide remain bright, despite the impact of the Asian economic recession on near-term development. Natural gas consumption in the International Energy Outlook 1999 (IEO99) is somewhat increased from last yearÂ’s outlook, and the fuel remains the fastest growing primary energy source in the forecast period. Worldwide gas use more than doubles in the reference case projection, reaching 174 trillion cubic feet in 2020 from 82 trillion cubic feet in 1996 (Figure

252

Industrial Technologies - Energy Innovation Portal  

With the growing pressure placed on energy efficiency and reliance on fossil fuels, alternative sources of energy are increasingly important.

253

Energy and Biomedical / Primary Production  

Science Conference Proceedings (OSTI)

Mar 15, 2012 ... The distillation product by vacuum distillation process produced a high purity metal magnesium product, it can be deduced that reversion ...

254

Economic growth continues to drive China's growing need for energy ...  

U.S. Energy Information Administration (EIA)

Have a question, comment, or suggestion for a future article? Send your feedback to todayinenergy@eia.gov

255

seeds grow into tall plants. My - Energy Information Administration  

U.S. Energy Information Administration (EIA)

into water vapor. I had evaporated! I rose high into the sky. Many of my friends came with me. They had evaporated, too. Together, we formed a cloud.

256

Fast-growing willow shrub named `Canastota`  

DOE Patents (OSTI)

A distinct male cultivar of Salix sachalinensis.times.S. miyabeana named `Canastota`, characterized by rapid stem growth producing greater than 2.7-fold more woody biomass than its female parent (Salix sachalinensis `SX61`), 28% greater woody biomass yield than its male parent (Salix miyabeana `SX64`), and 20% greater woody biomass yield than a standard production cultivar, Salix dasyclados `SV1` when grown in the same field for the same length of time (two growing seasons after coppice) in Tully, N.Y. `Canastota` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. `Canastota` displays a low incidence of rust disease or damage by willow sawfly.

Abrahamson, Lawrence P. (Marcellus, NY); Kopp, Richard F. (Marietta, NY); Smart, Lawrence B. (Geneva, NY); Volk, Timothy A. (Syracuse, NY)

2007-05-15T23:59:59.000Z

257

GARS | Sustainable Energy Technologies Department  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy storage The Sustainable Energy Technologies Department finds alternatives to fossil fuels and improves energy efficiency to meet our exponentially growing energy needs...

258

NEAC Recommended Goals for Nuclear Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NEAC Recommended Goals for Nuclear Energy NEAC Recommended Goals for Nuclear Energy NEAC Recommended Goals for Nuclear Energy Nuclear energy currently provides approxi- mately 20 percent of the electricity for the U.S. The primary alternative for power generation is fossil fuels. Though still controversial, evidence continues to mount about the negative health and environmental effects of carbon emissions. Nuclear power is the most significant technology available for meeting anticipated energy needs while reducing emissions to the environment. Nuclear energy is an essential component to a secure and prosperous future for the U.S. and the world. The reliance on fossil fuels for the growing energy usage of an expanding world population will bring about enormous global environmental problems. Nuclear energy is the single largest tool

259

International Energy Statistics - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Total Primary Energy Production | Total Primary Energy Consumption ; Indicators. CO2 Emissions ; Carbon Intensity ; ... Total Oil Supply (Thousand Barrels Per Day)

260

Vehicle Technologies Office: Fact #288: October 6, 2003 Primary...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sources by Sector, 2002 on AddThis.com... Fact 288: October 6, 2003 Primary Energy Sources by Sector, 2002 Nearly 97% of primary energy used in the transportation sector is...

Note: This page contains sample records for the topic "growing primary energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Scientists Classify Forest Disturbances to Grow Understanding of Climate  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 SHARE Scientists Classify Forest Disturbances to Grow Understanding of Climate Change Daniel Hayes, shown here outside of Nome, Alaska, traveled to the Arctic in June to study climate change. Image credit: Santonu Goswami Daniel Hayes, shown here outside of Nome, Alaska, traveled to the Arctic in June to study climate change. Image credit: Santonu Goswami (hi-res image) This feature describes Oak Ridge National Laboratory research presented at the 98th annual meeting of the Ecological Society of America. The theme of the meeting, held Aug. 4-9 in Minnesota, is "Sustainable Pathways: Learning From the Past and Shaping the Future." Fire, logging, insects and extreme weather can wreak havoc on forests. With support from the Department of Energy and the National Science Foundation,

262

Turkey opens electricity markets as demand grows  

Science Conference Proceedings (OSTI)

Turkey's growing power market has attracted investors and project developers for over a decade, yet their plans have been dashed by unexpected political or financial crises or, worse, obstructed by a lengthy bureaucratic approval process. Now, with a more transparent retail electricity market, government regulators and investors are bullish on Turkey. Is Turkey ready to turn the power on? This report closely examine Turkey's plans to create a power infrastructure capable of providing the reliable electricity supplies necessary for sustained economic growth. It was compiled with on-the-ground research and extensive interview with key industrial and political figures. Today, hard coal and lignite account for 21% of Turkey's electricity generation and gas-fired plants account for 50%. The Alfin Elbistan-B lignite-fired plant has attracted criticism for its lack of desulfurization units and ash dam facilities that have tarnished the industry's image. A 1,100 MW hard-coal fired plant using supercritical technology is under construction. 9 figs., 1 tab.

McKeigue, J.; Da Cunha, A.; Severino, D. [Global Business Reports (United States)

2009-06-15T23:59:59.000Z

263

Mission | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mission Mission Mission The U.S. Department of Energy's Office of Fossil Energy plays a key role in helping the United States meet its continually growing need for secure, reasonably priced and environmentally sound fossil energy supplies. Put simply, FE's primary mission is to ensure the nation can continue to rely on traditional resources for clean, secure and affordable energy while enhancing environmental protection. Realizing the Promise of Clean Coal For the first time in the long history of fossil fuel use, we now see emerging from our laboratories and test sites the tools and technologies that can turn the concept of a virtually zero-emission-including carbon dioxide (CO2)-coal-based energy plant into a viable reality, not 50 or 100 years into the future, but within the coming decade.

264

International Energy Outlook 2001 - Transportation Energy Use  

Gasoline and Diesel Fuel Update (EIA)

Transportation Energy Use Transportation Energy Use picture of a printer Printer Friendly Version (PDF) Oil is expected to remain the primary fuel source for transportation throughout the world, and transportation fuels are projected to account for almost 57 percent of total world oil consumption by 2020. Transportation fuel use is expected to grow substantially over the next two decades, despite oil prices that hit 10-year highs in 2000. The relatively immature transportation sectors in much of the developing world are expected to expand rapidly as the economies of developing nations become more industrialized. In the reference case of the International Energy Outlook 2001 (IEO2001), energy use for transportation is projected to increase by 4.8 percent per year in the developing world, compared with

265

Energy Outlook  

U.S. Energy Information Administration (EIA)

... 2013 * China poised to become the world’s largest net oil importer later ... 2013 Renewable energy and nuclear power are the fastest growing ...

266

International Energy Statistics - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Total Primary Energy Consumption ; Indicators. CO2 Emissions ; Carbon Intensity ; Energy Intensity ; Conversions ; Population ; Coal Prices ; ...

267

China Energy and Emissions Paths to 2030  

E-Print Network (OSTI)

17 Figure 13. 2030 Residential Primary Energy Savings by26 Figure 22. 2030 Commercial Primary Energy Savings by End-2030 .

Fridley, David

2012-01-01T23:59:59.000Z

268

Cultivation of fast-growing hardwoods  

DOE Green Energy (OSTI)

The intensive culture of hybrid poplar has received in-depth study as part of the Fast-Growing Hardwood Program. Research has concentrated on short-rotation intensive culture systems. Specific studies and operations included establishing and maintaining a nursery/cutting orchard, installing clone-site trials in central and southern New York State and initiating studies of no-till site preparation, nutrient utilization efficiency, wood quality and soil solution chemistry. The nursery/cutting orchard was used to provide material for various research plantings and as a genotype repository. Clone- site trials results showed that hybrid poplar growth potential was affected by clone type and was related to inherent soil-site conditions. No-till techniques were shown to be successful in establishing hybrid poplar in terms of survival and growth when compared to conventional clean tillage and/or no competition control, and can be considered for use on sites that are particularly prone to erosion. Nutrient use efficiency was significantly affected by clone type, and should be a consideration when selecting clones for operational planting if fertilization is to be effectively and efficiently used. Wood quality differed among clones with site condition and tree age inferred as important factors. Soil solution chemistry was minimally affected by intensive cultural practices with no measured adverse effect on soil water quality. Generally, results of these studies showed that appropriate hybrid poplar clones grown in short-rotation intensively cultured systems can be used successfully in New York State if proper site conditions exist and appropriate establishment and maintenance techniques are used. 37 refs., 4 figs., 22 tabs.

White, E.H.; Abrahamson, L.P. (State Univ. of New York, Syracuse, NY (United States). Coll. of Environmental Science and Forestry)

1991-10-01T23:59:59.000Z

269

International Energy Outlook 2013 - Energy Information ...  

U.S. Energy Information Administration (EIA)

Highlights. The International Energy Outlook 2013 (IEO2013) projects that world energy consumption will grow by 56 percent between 2010 and 2040.

270

McElroy grows longwall production safely  

Science Conference Proceedings (OSTI)

One of America's leading underground coal mines has successfully transitions to a two-panel mine. A second longwall face way installed by CONSOL Energy at the McElroy mine south of Moundsville, W.Va. as part of a $200 m upgrade some five years ago. The article describes this installation and the current operations. 3 photos.

Fiscor, S.

2009-05-15T23:59:59.000Z

271

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

National Income (billion 1980 yuan) Energy Consumption (Primary Energy Consumption per Unit of National Income IV-24National Total Balance^ Total Primary Energy Consumption * (

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

272

Geek-Up[10.15.2010]: Growing Nanoparticles, Developing Plastic from  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

15.2010]: Growing Nanoparticles, Developing Plastic from 15.2010]: Growing Nanoparticles, Developing Plastic from Bacteria and Wireless Water Heaters Geek-Up[10.15.2010]: Growing Nanoparticles, Developing Plastic from Bacteria and Wireless Water Heaters October 15, 2010 - 5:56pm Addthis Nanoparticles grown under the irradiation of high-energy X-rays | Source: Argonne National Lab and Carnegie Institution of Washington Nanoparticles grown under the irradiation of high-energy X-rays | Source: Argonne National Lab and Carnegie Institution of Washington Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What are the key facts? Watching nanoparticles in real time can help improve the performance of their application as solar cells, chemical and biological sensors and diagnostic imaging. Scientists are using bacteria with free wastewater to develop

273

Solar Among the Fastest Growing Job Markets in America | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Among the Fastest Growing Job Markets in America Solar Among the Fastest Growing Job Markets in America Solar Among the Fastest Growing Job Markets in America November 8, 2012 - 1:00pm Addthis The Long Island Solar Farm (LISF) -- currently the largest solar photovoltaic power plant in the Eastern United States -- generates enough renewable energy to power approximately 4,500 homes. LISF is located at Brookhaven National Laboratory. | Photo courtesy of Brookhaven National Laboratory. The Long Island Solar Farm (LISF) -- currently the largest solar photovoltaic power plant in the Eastern United States -- generates enough renewable energy to power approximately 4,500 homes. LISF is located at Brookhaven National Laboratory. | Photo courtesy of Brookhaven National Laboratory. Minh Le Minh Le Program Manager, Solar Program

274

Geek-Up[10.15.2010]: Growing Nanoparticles, Developing Plastic from  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geek-Up[10.15.2010]: Growing Nanoparticles, Developing Plastic from Geek-Up[10.15.2010]: Growing Nanoparticles, Developing Plastic from Bacteria and Wireless Water Heaters Geek-Up[10.15.2010]: Growing Nanoparticles, Developing Plastic from Bacteria and Wireless Water Heaters October 15, 2010 - 5:56pm Addthis Nanoparticles grown under the irradiation of high-energy X-rays | Source: Argonne National Lab and Carnegie Institution of Washington Nanoparticles grown under the irradiation of high-energy X-rays | Source: Argonne National Lab and Carnegie Institution of Washington Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What are the key facts? Watching nanoparticles in real time can help improve the performance of their application as solar cells, chemical and biological sensors and diagnostic imaging.

275

International Energy Statistics  

U.S. Energy Information Administration (EIA)

Total Primary Energy Production | Total Primary Energy Consumption ; Indicators. CO2 Emissions ; Carbon Intensity ; ... Sudan and South Sudan 76.6 87.4 85 ...

276

Building Technologies Office: Take Action to Develop New Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

20% primary energy savings Water Heating: aggregated 60% primary energy savings Appliances: aggregated 20% primary energy savings Sensors and Controls: aggregated...

277

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Nuclear from Market Trends Nuclear from Market Trends Renewables and natural gas lead rise in primary energy consumption figure data The aggregate fossil fuel share of total energy use falls from 82 percent in 2011 to 78 percent in 2040 in the Reference case, while renewable use grows rapidly (Figure 54). The renewable share of total energy use (including biofuels) grows from 9 percent in 2011 to 13 percent in 2040 in response to the federal renewable fuels standard; availability of federal tax credits for renewable electricity generation and capacity during the early years of the projection; and state renewable portfolio standard (RPS) programs. Natural gas consumption grows by about 0.6 percent per year from 2011 to 2040, led by the increased use of natural gas in electricity generation

278

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

natural gas Natural Gas natural gas Natural Gas exec summary Executive Summary The United States becomes a net exporter of natural gas....Read full section Coal's share of electric power generation falls over the projection period ...Read full section Natural gas consumption grows in industrial and electric power sectors....Read full section Mkt trends Market Trends Energy expenditures decline relative to grows domestic product and gross output.... Read full section Production of liquid fuels from biomass, coal, and natural gas increases... Read full section Renewables and natural gas lead rise in primary energy consumption... Read full section Reliance on natural gas and natural gas liquids, and renewables rises as industrial energy use grows....Read full section Heavy-duty vehicles dominate natural gas consumption in the

279

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

natural gas Natural Gas natural gas Natural Gas exec summary Executive Summary The United States becomes a net exporter of natural gas....Read full section Coal's share of electric power generation falls over the projection period ...Read full section Natural gas consumption grows in industrial and electric power sectors....Read full section Mkt trends Market Trends Energy expenditures decline relative to grows domestic product and gross output.... Read full section Production of liquid fuels from biomass, coal, and natural gas increases... Read full section Renewables and natural gas lead rise in primary energy consumption... Read full section Reliance on natural gas and natural gas liquids, and renewables rises as industrial energy use grows....Read full section Heavy-duty vehicles dominate natural gas consumption in the

280

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Nuclear from Market Trends Nuclear from Market Trends Renewables and natural gas lead rise in primary energy consumption figure data The aggregate fossil fuel share of total energy use falls from 82 percent in 2011 to 78 percent in 2040 in the Reference case, while renewable use grows rapidly (Figure 54). The renewable share of total energy use (including biofuels) grows from 9 percent in 2011 to 13 percent in 2040 in response to the federal renewable fuels standard; availability of federal tax credits for renewable electricity generation and capacity during the early years of the projection; and state renewable portfolio standard (RPS) programs. Natural gas consumption grows by about 0.6 percent per year from 2011 to 2040, led by the increased use of natural gas in electricity generation

Note: This page contains sample records for the topic "growing primary energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

The effect of palm oil supplementation on growth and carcass composition of growing lambs  

E-Print Network (OSTI)

The effect of palm oil supplementation on growth and carcass composition of growing lambs M Hilmi Selangor, Malaysia Palm oil is considered as a cheap source of energy supplementation in a commercial feed for sheep. However there is a scarcity of report on the effect of oil supplementation on the growth

Recanati, Catherine

282

Technology Assistance Program Growing technology-based business with free service  

E-Print Network (OSTI)

) at Pacific Northwest National Laboratory (PNNL) may be just what you're looking for. Created in 1994 and sponsored by the U.S. Department of Energy, the TAP program at PNNL helps grow and diversify the nation Assistance Program leverages PNNL's expertise in a variety of scientific disciplines to help members

283

International Energy Statistics - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Total Primary Energy Consumption ; Indicators. CO2 Emissions ; Carbon Intensity ; Energy Intensity ; Conversions ; ... 2013 JAN FEB MAR APR ...

284

International Energy Statistics - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Total Energy. Total Primary Energy ... 2013 JAN FEB MAR ... Germany 282 281 280 281 286 285 283 287 ...

285

International Energy Statistics - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Total Primary Energy Consumption ; Indicators. CO2 Emissions ; Carbon Intensity ; Energy Intensity ; Conversions ; Population ; Coal Prices ; Electricity Prices ;

286

International Energy Statistics - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Total Primary Energy Consumption ; Indicators. CO2 Emissions ; Carbon Intensity ; Energy Intensity ; ... Puerto Rico 0 0 0 0 0 ...

287

International Energy Statistics - Energy Information Administration  

U.S. Energy Information Administration (EIA)

International Energy Statistics; Petroleum. Production| Annual Monthly/Quarterly. ... Total Primary Energy Consumption ; Indicators. CO2 Emissions ; Carbon Intensity ;

288

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial exec summary Executive Summary Natural gas consumption grows in industrial and electric power sectors.... Read full section Mkt trends Market Trends Industrial and commercial sectors lead U.S. growth in primary energy use.... Read full section Growth in industrial energy consumption is slower than growth in shipments.... Read full section Reliance on natural gas, natural gas liquids, and renewables rises as industrial energy use grows.... Read full section Iron and steel,cement, amd glass industries are most sensitive to economic growth rate.... Read full section Energy use reflects output and efficiency trends in energy-intensive industries.... Read full section Most of the growth in shipments from energy-intensive industries occurs before 2025.... Read full section

289

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial exec summary Executive Summary Natural gas consumption grows in industrial and electric power sectors.... Read full section Mkt trends Market Trends Industrial and commercial sectors lead U.S. growth in primary energy use.... Read full section Growth in industrial energy consumption is slower than growth in shipments.... Read full section Reliance on natural gas, natural gas liquids, and renewables rises as industrial energy use grows.... Read full section Iron and steel,cement, amd glass industries are most sensitive to economic growth rate.... Read full section Energy use reflects output and efficiency trends in energy-intensive industries.... Read full section Most of the growth in shipments from energy-intensive industries occurs before 2025.... Read full section

290

The growing world LP-gas supply  

Science Conference Proceedings (OSTI)

The possible range of future (LPG) export availabilities is huge, but actual production levels depend on factors, many of which are beyond our direct control - world demand for crude oil and gas, developments in technology, and the price of both energy in general and LPG specifically. Although these factors limit some of the potential developments, a substantial increase in LPG supply is certain, and this is likely to depress its price relative to other products. Over the last few years, a dramatic expansion has taken place in the industry. From 1980 to 1987, non-Communist world production of LPG increased by close to 35%, to a total of 115 million tonnes. If this is set against the general energy scene, LPG represented 3.7% of crude oil production by weight in 1980, rising to 5.4% in 1987. This growth reflects rise in consciousness around the world of the value of the product. LPG is no longer regarded as a byproduct, which is flared or disposed of at low value, but increasingly as a co-product, and much of the growth in production has been due to the installation of tailored recovery systems. LPG markets historically developed around sources of supply, constrained by the costs of transportation. The major exceptions, of course, were the Middle East, the large exporter, and Japan, the large importer.

Hoare, M.C.

1988-11-01T23:59:59.000Z

291

International Energy Outlook 1998  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Natural Gas By 2020, the worldÂ’s annual consumption of natural gas is projected to be more than double the 1995 level. Much of the growth is expected to fuel electricity generation worldwide. Reserves Regional Activity Natural gas is expected to be the fastest-growing primary energy source in the world over the next 25 years. In the IEO98 reference case, gas consumption grows by 3.3 percent annually through 2020, as compared with 2.1-percent annual growth for oil and renewables and 2.2 percent for coal. By 2020, the worldÂ’s consumption of natural gas is projected to equal 172 trillion cubic feet, more than double the 1995 level (Figure 43). Much of the growth is expected to fuel electricity generation worldwide (Figure 44), but resource availability, cost, and environmental considerations will

292

International Energy Statistics - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Total Primary Energy Consumption ; Indicators. CO2 Emissions ; Carbon Intensity ; ... Puerto Rico ...

293

Fast-growing willow shrub named `Otisco`  

DOE Patents (OSTI)

A distinct female cultivar of Salix viminalis.times.S. miyabeana named `Otisco`, characterized by rapid stem growth producing greater than 42% more woody biomass than one of its parents (`SX64`) and 33% more biomass than a current production cultivar (`SV1`). `Otisco` produced greater than 2.5-fold more stem biomass than two other current production cultivars, `SX67` and `SX61`. `Otisco` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. The stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Otisco` displays a low incidence of rust disease and is not damaged by potato leafhoppers.

Abrahamson, Lawrence P. (Marcellus, NY); Kopp, Richard F. (Marietta, NY); Smart, Lawrence B. (Geneva, NY); Volk, Timothy A. (Syracuse, NY)

2007-09-11T23:59:59.000Z

294

Fast-growing willow shrub named `Oneida`  

DOE Patents (OSTI)

A distinct male cultivar of Salix purpurea.times.S. miyabeana named `Oneida`, characterized by rapid stem growth producing 2.7-times greater woody biomass than one of its parents (`SX67`) and greater than 36% more biomass than current production cultivars (`SV1` and `SX64`). `Oneida` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. The stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Oneida` displays a low incidence of rust disease or damage by beetles or sawflies.

Abrahamson, Lawrence P. (Marcellus, NY); Kopp, Richard F. (Marietta, NY); Smart, Lawrence B. (Geneva, NY); Volk, Timothy A. (Syracuse, NY)

2007-05-01T23:59:59.000Z

295

Fast-growing shrub willow named `Owasco`  

DOE Patents (OSTI)

A distinct female cultivar of Salix viminalis.times.Salix miyabeana named `Owasco`, characterized by rapid stem growth producing greater than 49% more woody biomass than one of its parents (`SX64`) and 39% more biomass than a current production cultivar (`SV1`). `Otisco` produced greater than 2.7-fold more stem biomass than two other current production cultivars, `SX67` and `SX61`. `Owasco` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. The stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Owasco` displays a low incidence of rust disease and is not damaged by potato leafhoppers.

Abrahamson, Lawrence P. (Marcellus, NY); Kopp, Richard F. (Marietta, NY); Smart, Lawrence B. (Geneva, NY); Volk, Timothy A. (Syracuse, NY)

2007-07-03T23:59:59.000Z

296

Fast-growing willow shrub named `Millbrook`  

DOE Patents (OSTI)

A distinct female cultivar of Salix purpurea.times.Salix miyabeana named `Millbrook`, characterized by rapid stem growth producing 9% more woody biomass than one of its parents (`SX64`) and 2% more biomass than a current production cultivar (`SV1`). `Millbrook` produced greater than 2-fold more stem biomass than two other current production cultivars, `SX67` and `SX61`. `Millbrook` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. The stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Millbrook` displays a low incidence of rust disease.

Abrahamson, Lawrence P [Marcellus, NY; Kopp, Richard F [Marietta, NY; Smart, Lawrence B [Geneva, NY; Volk, Timothy A [Syracuse, NY

2007-04-24T23:59:59.000Z

297

International Energy Outlook 2006  

Gasoline and Diesel Fuel Update (EIA)

Natural gas trails coal as the fastest growing primary energy source in IEO2006. Natural gas trails coal as the fastest growing primary energy source in IEO2006. The natural gas share of total world energy consumption increases from 24 percent in 2003 to 26 percent in 2030. Consumption of natural gas worldwide increases from 95 trillion cubic feet in 2003 to 182 trillion cubic feet in 2030 in the IEO2006 reference case (Figure 34). Although natural gas is expected to be an important fuel source in the electric power and industrial sectors, the annual growth rate for natural gas consumption in the projec- tions is slightly lower than the growth rate for coal con- sumption-in contrast to past editions of the IEO. Higher world oil prices in IEO2006 increase the demand for and price of natural gas, making coal a more econom- ical fuel source in the projections. Natural gas consumption worldwide increases at an average rate of 2.4 percent

298

NREL: Wind Research - Providing Incentives to Help Grow Small...  

NLE Websites -- All DOE Office Websites (Extended Search)

Providing Incentives to Help Grow Small Wind: Wind Powering America Lessons Learned February 25, 2013 Wind Powering America asked Mark Mayhew, small wind program manager for the...

299

EIA - AEO2010 - Energy intensity trends in AEO2010  

Gasoline and Diesel Fuel Update (EIA)

intensity trends in AEO2010 intensity trends in AEO2010 Annual Energy Outlook 2010 with Projections to 2035 Figure 17. Trends in U.S. oil prices, energy consumption, and economic output, 1950-2035 Click to enlarge » Figure source and data excel logo Energy intensity trends in AEO2010 Energy intensity—energy consumption per dollar of real GDP—indicates how much energy a country uses to produce its goods and services. From the early 1950s to the early 1970s, U.S. total primary energy consumption and real GDP increased at nearly the same annual rate (Figure 17). During that period, real oil prices remained virtually flat. In contrast, from the mid-1970s to 2008, the relationship between energy consumption and real GDP growth changed, with primary energy consumption growing at less than one-third the previous average rate and real GDP growth continuing to grow at its historical rate. The decoupling of real GDP growth from energy consumption growth led to a decline in energy intensity that averaged 2.8 percent per year from 1973 to 2008. In the AEO2010 Reference case, energy intensity continues to decline, at an average annual rate of 1.9 percent from 2008 to 2035.

300

Interest grows in African oil and gas opportunities  

Science Conference Proceedings (OSTI)

As African countries continue a slow drift towards democratic government and market economics, the continent is increasingly attractive to international oil and gas companies. Though Africa remains politically diverse, and its volatile politics remains a major barrier to petroleum companies, a number of recent developments reflect its growing significance for the industry. Among recent projects and events reflecting changes in Africa: oil and gas exporter Algeria has invited foreign oil companies to help develop major gas discoveries, with a view to boosting exports to Europe; oil and gas producer Egypt invited foreign companies to explore in the Nile Delta region, and the result appears to be a flowering world scale gas play; west African offshore exploration has entered deep water and new areas, and a number of major projects are expected in years to come; Nigeria`s reputation as a difficult place to operate has been justified by recent political and civil events, but a long-planned liquefied natural gas (LNG) export plant is being built there; South Africa, which has returned to the international scene after years of trade isolation because of apartheid, is emerging as a potential driver for energy industry schemes throughout the continent. Activities are discussed.

Knott, D.

1997-05-12T23:59:59.000Z

Note: This page contains sample records for the topic "growing primary energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

OPEC influence grows with world output in next decade  

SciTech Connect

World crude oil and condensate output will rise to 75 million bopd in 2004, concludes a recently released Petroconsultant study, entitled Worldwide Crude Oil 10-Year Forecast. It also projects that OPEC`s role in supplying demand will simultaneously grow to nearly 50% of total output. In reaching these conclusions, this report analyzed and predicted each of 94 significant producing nations for the 1995--2004 period. Output has been projected separately for the onshore and offshore sectors. Each nation, including the new republics of the former Soviet Union and individual emirates of the United Arab Emirates, is discussed within its regional and global framework; and key aspects of each of the seven major regions have been delineated. The study integrated full-cycle resource analysis, economics, infrastructure, politics, history, consumption levels and patterns, energy balances, and other pertinent data to cover both supply and demand pictures. The entire discovery and production history was used to frame exploration and development maturity. Future discovery potential has been estimated from largely geologic parameters.

Foreman, N.E. [Petroconsultants, Inc., Houston, TX (United States)

1996-02-01T23:59:59.000Z

302

International Energy Statistics  

U.S. Energy Information Administration (EIA)

Total Primary Energy Consumption ; Indicators. CO2 Emissions ; Carbon Intensity ; Energy Intensity ; Conversions ; ... Jordan 0 0 0 0 0 ...

303

International Energy Statistics  

U.S. Energy Information Administration (EIA)

Total Primary Energy Consumption ; Indicators. CO2 Emissions ; Carbon Intensity ; Energy Intensity ; Conversions ; ... Jordan 0 0 0 Kuwait 0 ...

304

International Energy Statistics  

U.S. Energy Information Administration (EIA)

Total Primary Energy Consumption ; Indicators. CO2 Emissions ; Carbon Intensity ; Energy Intensity ; Conversions ; Population ; Coal Prices ; Electricity Prices ;

305

International Energy Statistics  

U.S. Energy Information Administration (EIA)

Total Primary Energy Consumption ; Indicators. CO2 Emissions ; Carbon Intensity ; Energy Intensity ; Conversions ; ... 2013 JAN FEB MAR APR ...

306

EIA - Annual Energy Outlook 2014 Early Release  

Gasoline and Diesel Fuel Update (EIA)

Consumption by Primary Fuel Consumption by Primary Fuel Total primary energy consumption grows by 12% in the AEO2014 Reference case, from 95 quadrillion Btu in 2012 to 106 quadrillion Btu in 2040-1.3 quadrillion Btu less than in AEO2013 (Figure 8). The fossil fuel share of energy consumption falls from 82% in 2012 to 80% in 2040, as consumption of petroleum-based liquid fuels declines, largely as a result of slower growth in VMT and increased vehicle efficiency. figure dataTotal U.S. consumption of petroleum and other liquids, which was 35.9 quadrillion Btu (18.5 MMbbl/d) in 2012, increases to 36.9 quadrillion Btu (19.5 MMbbl/d) in 2018, then declines to 35.4 quadrillion Btu (18.7 MMbbl/d) in 2034 and remains at that level through 2040. Total consumption of domestically produced biofuels increases slightly through 2022 and then

307

Primary enzyme quantitation  

DOE Patents (OSTI)

The disclosure relates to the quantitation of a primary enzyme concentration by utilizing a substrate for the primary enzyme labeled with a second enzyme which is an indicator enzyme. Enzyme catalysis of the substrate occurs and results in release of the indicator enzyme in an amount directly proportional to the amount of primary enzyme present. By quantifying the free indicator enzyme one determines the amount of primary enzyme present.

Saunders, G.C.

1982-03-04T23:59:59.000Z

308

Status of fossil energy resources: A global perspective  

SciTech Connect

This article deals with recently status of global fossil energy sources. Fossil energy sources have been split into three categories: oil,coal, and natural gas. Fossil fuels are highly efficient and cheap. Currently oil is the fastest primary energy source in the world (39% of world energy consumption). Coal will be a major source of energy for the world for the foreseeable future (24% of world energy consumption). In 2030, coal covers 45% of world energy needs. Natural gas is expected to be the fastest growing component of world energy consumption (23% of world energy consumption). Fossil fuel extraction and conversion to usable energy has several environmental impacts. They could be a major contributor to global warming and greenhouse gases and a cause of acid rain; therefore, expensive air pollution controls are required.

Balat, M. [SILA Science, Trabzon (Turkey)

2007-07-01T23:59:59.000Z

309

EIA - Annual Energy Outlook 2012 Early Release  

Gasoline and Diesel Fuel Update (EIA)

Energy prices Energy consumption by sector Energy consumption by primary fuel Energy intensity Energy production and imports Electricity generation Energy-related CO2...

310

Economic Development for a Growing Economy Tax Credit Program (Illinois) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Economic Development for a Growing Economy Tax Credit Program Economic Development for a Growing Economy Tax Credit Program (Illinois) Economic Development for a Growing Economy Tax Credit Program (Illinois) < Back Eligibility Agricultural Commercial Construction Industrial Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Illinois Program Type Corporate Tax Incentive Provider Illinois Department of Commerce and Economic Opportunity The Economic Development for a Growing Economy Tax Credit Program encourages companies to remain, expand, or locate in Illinois. The program provides tax credits to qualifying companies equal to the amount of state income taxes withheld from salaries for newly created jobs. A company must

311

Economic Development for a Growing Economy Tax Credit (Indiana) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Economic Development for a Growing Economy Tax Credit (Indiana) Economic Development for a Growing Economy Tax Credit (Indiana) Economic Development for a Growing Economy Tax Credit (Indiana) < Back Eligibility Commercial Agricultural Industrial Construction Retail Supplier Fuel Distributor Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Indiana Program Type Corporate Tax Incentive Provider Indiana Economic Development Corporation The Economic Development for a Growing Economy Tax Credit is awarded to businesses with projects that result in net new jobs. The tax credit must be a major factor in the company's decision to move forward with the project in Indiana. The refundable tax credit is calculated as a percentage of the expected increased tax withholdings generated from the new jobs. The

312

Idaho Cleanup Project grows its workforce to complete ARRA work  

NLE Websites -- All DOE Office Websites (Extended Search)

Idaho Cleanup Project grows its workforce to complete ARRA work CWI President and CEO John Fulton greets newly hired ICP employees at a June orientation session in Idaho Falls....

313

Tropospheric Static Stability and Central North American Growing Season Rainfall  

Science Conference Proceedings (OSTI)

This study investigates the relation between tropospheric static stability and central North American growing season (May–August) rainfall for the highly contrasting years of 1975. 1976, and 1979. It uses two extensive sets of meteorological data ...

Randy A. Peppler; Peter J. Lamb

1989-06-01T23:59:59.000Z

314

System development & validation process for emerging growing organizations  

E-Print Network (OSTI)

This thesis has the main purpose of presenting the Development and Validation phase of the product development system from the point of view of an emerging and growing product development organization, denoting the obstacles ...

Almazán López, José Antonio

2009-01-01T23:59:59.000Z

316

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Transportation Transportation Mkt trends Market Trends Output growth for energy-intensive industries remains slow.... Read full section Inustrial and commercial sectors lead U.S. growth in primary energy use.... Read full section Transportation energy use grows slowly in comparison with historical trend.... Read full section CAFE and greenhouse gas emissions standards boost vehicle fuel economy.... Read full section Travel demand for personal vehicles increases more slowly than in the past.... Read full section Sales of alternative fuel, fuel flexible, and hybrid vehicles rise.... Read full section Heavy-duty vehicle energy demand continues to grow but slows from historical rates.... Read full section Transportation uses lead growth in consumption of petroleum and other liquids.... Read full section

317

primary frequency standards  

Science Conference Proceedings (OSTI)

NIST-F1 Cesium Fountain Atomic Clock The Primary Time and Frequency Standard for the United States. NIST-F1, the nation's ...

2013-02-04T23:59:59.000Z

318

Energy Information Administration / Annual Energy Outlook 2011  

Annual Energy Outlook 2012 (EIA)

Table A1. Total Energy Supply, Disposition, and Price Summary (Quadrillion Btu per Year, Unless Otherwise Noted) Supply, Disposition, and Prices Reference Case Annual Grow th...

319

International Energy Outlook 2013 - Energy Information ...  

U.S. Energy Information Administration (EIA)

However, fossil fuels continue to supply almost 80 percent of world energy use through 2040. Natural gas is the fastest-growing fossil fuel in the outlook. Global ...

320

Role of Energy Efficiency and Renewable Energy in Rebalancing...  

NLE Websites -- All DOE Office Websites (Extended Search)

seen growing tightness in all major U.S. energy markets - petroleum fuel, coal, natural gas, and electricity - resulting from surging demand for energy, tightening supply markets...

Note: This page contains sample records for the topic "growing primary energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

UK Availability and Consumption of Primary and Secondary Fuels...  

Open Energy Info (EERE)

Availability and Consumption of Primary and Secondary Fuels (1974) The then UK Department of Energy, in conjunction with the UK Government Statistical Service published statistics...

322

Refining Primary Lead by Granulation–Leaching–Electrowinning  

Science Conference Proceedings (OSTI)

Primary lead production is usually viewed in terms of two distinct operations: ... and local energy costs are certainly factors that would be relevant in a choice ...

323

Table A22. Total First Use (formerly Primary Consumption)...  

U.S. Energy Information Administration (EIA) Indexed Site

First Use (formerly Primary Consumption) of Combustible Energy for Nonfuel" " Purposes by Census Region, Census Division, and Economic Characteristics of the Establishment," 1994 "...

324

Photon Absorbed-Dose-to-Water Primary Standards  

Science Conference Proceedings (OSTI)

Photon Absorbed-Dose-to-Water Primary Standards. ... and scattering/perturbation for the water calorimeter in both Co-60 and high-energy x-ray ...

2013-03-08T23:59:59.000Z

325

Power Quality Improvement by Supercapacitor Energy Storage.  

E-Print Network (OSTI)

??Harnessing green and renewable sources of energy is a future solution that addresses rising energy demands and growing environmental concerns. Among these, tapping wind energy… (more)

Syed, Irtaza Mohammad

2010-01-01T23:59:59.000Z

326

Education research Primary Science  

E-Print Network (OSTI)

Education research Primary Science Survey Report December 2011 #12;Primary Science Survey Report, Wellcome Trust 1 Background In May 2009 Key Stage 2 science SATs (Standard Assessment Tests) were abolished fiasco might occur, where the results were delayed and their quality questioned. The loss of science SATs

Rambaut, Andrew

327

International Energy Outlook 2007  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal In the IEO2007 reference case, world coal consumption increases by 74 percent from 2004 to 2030, international coal trade increases by 44 percent from 2005 to 2030, and coal's share of world energy consumption increases from 26 percent in 2004 to 28 percent in 2030. In the IEO2007 reference case, world coal consumption increases by 74 percent over the projection period, from 114.4 quadrillion Btu in 2004 to 199.0 quadrillion Btu in 2030 (Figure 54). Coal consumption increases by 2.6 per- cent per year on average from 2004 to 2015, then slows to an average increase of 1.8 percent annually from 2015 to 2030. World GDP and primary energy consumption also grow more rapidly in the first half than in the second half of the projections, reflecting a gradual slowdown of economic growth in non-OECD Asia. Regionally, increased use of coal in non-OECD

328

NREL: Energy Analysis - Jeffrey Logan  

NLE Websites -- All DOE Office Websites (Extended Search)

energy policy and markets Primary research interests Clean energy and carbon markets Renewable energy policy Linkages between climate mitigation and energy security Education...

329

Monthly Energy Review - December 2007  

Annual Energy Outlook 2012 (EIA)

2) December 2007 Monthly Energy Review The Monthly Energy Review (MER) is the Energy Information Administration's (EIA) primary report of recent and historical energy statistics....

330

Monthly Energy Review - February 2007  

Annual Energy Outlook 2012 (EIA)

7 DOEEIA-0035(200702) Monthly Energy Review The Monthly Energy Review (MER) is the Energy Information Administration's (EIA) primary report of recent and historical energy...

331

Monthly Energy Review - February 2009  

Annual Energy Outlook 2012 (EIA)

2) Monthly Energy Review The Monthly Energy Review (MER) is the Energy Information Administration's (EIA) primary report of recent and historical energy statistics. Included are...

332

Growing bubbles in a slightly supersaturated liquid solution  

E-Print Network (OSTI)

We have designed and constructed an experimental system to study gas bubble growth in slightly supersatu- rated liquids. This is achieved by working with carbon dioxide dissolved in water, pressurized at a maximum of 1 MPa and applying a small pressure drop from saturation conditions. Bubbles grow from hydrophobic cavities etched on silicon wafers, which allows us to control their number and position. Hence, the experiment can be used to investigate the interaction among bubbles growing in close proximity when the main mass transfer mechanism is diffusion and there is a limited availability of the dissolved species.

Enríquez, Oscar R; Bruggert, Gert-Wim; Lohse, Detlef; Prosperetti, Andrea; van der Meer, Devaraj; Sun, Chao

2013-01-01T23:59:59.000Z

333

A comparison of global optimization algorithms with standard benchmark functions and real-world applications using Energy Plus  

E-Print Network (OSTI)

Rejection equipment (cooling tower) Total primary energy useRejection equipment (cooling tower) Total primary energy useRejection equipment (cooling tower) Total primary energy use

Kamph, Jerome Henri

2010-01-01T23:59:59.000Z

334

Renewable generation provides a growing share of California ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA - Official Energy Statistics from the U.S. Government ... CAISO classifies small hydroelectric units as renewable, ...

335

International Energy Statistics - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Total Primary Energy Consumption ; Indicators. CO2 Emissions ; Carbon Intensity ; Energy Intensity ; Conversions ; ... Jordan 0 0 0 0 0 ...

336

International Energy Statistics - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Total Primary Energy Consumption ; Indicators. CO2 Emissions ; Carbon Intensity ; Energy Intensity ; ... Jordan 0 0 0 Kuwait 0 0 ...

337

External (SON) - Primary Standards Laboratory (PSL) Website  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Home Fact Sheets Links Contacts Primary Standards Laboratory Enter keyword below to search the PSL site: Search! The Primary Standards Laboratory (PSL) develops and maintains primary standards traceable to national standards and calibrates and certifies customer reference standards. The PSL provides technical guidance, support, and consultation; develops precision measurement techniques; provides oversight, including technical surveys and measurement audits; and anticipates future measurement needs of the nuclear weapons complex and other Department of Energy programs. The PSL also helps industry, universities, and government agencies establish or verify new capabilities and products and improve measurement technology. NVLAP Accreditation NVLAP Accreditation

338

International Energy Statistics - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Total Primary Energy Consumption ; Indicators. ... North America 23,893.0 ... United States 19,498 ...

339

POFGEC: growing neural network of classifying potential function generators  

Science Conference Proceedings (OSTI)

In this paper, we propose an architecture and learning algorithm for a growing neural network. Drawing inspiration from the idea of electrical potentials, we develop a classifier based on a set of synthesised potential fields over the domain of input ... Keywords: classification rules, electrical potentials, kernels, neural networks, potential function generators, potential functions

Natacha Gueorguieva; Iren Valova; Georgi Georgiev

2010-08-01T23:59:59.000Z

340

Temperature Dependence of Static Charging in Ice Growing by Riming  

Science Conference Proceedings (OSTI)

Charge transfer between colliding ice particles is measured using a wind tunnel inside a cold room. A cylinder growing by riming in a wind tunnel was used as a target for collisions between 5 and 6 m s?1 with ice spheres of 100-µm diameter. The ...

Eldo E. Avila; Guillermo G. Aguirre Varela; Giorgio M. Caranti

1995-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "growing primary energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

(Assessment of the potential of Yunnan Province, China to grow and convert biomass to electricity)  

DOE Green Energy (OSTI)

The purpose of the trip was to conduct a preliminary evaluation of biomass energy development in Yunnan Province, China. The evaluation included an assessment of the potential to grow and convert biomass to electricity, and an evaluation of the institutional relationships, which would be critical to the establishment of a collaborative biomass energy development project. This site visit was undertaken to evaluate the potential of an integrated biomass energy project, including the growing and handling of biomass feedstocks and its conversion to electricity. Based on this site visit, it was concluded that biomass production risks are real and further research on species screening and experiments is necessary before proceeding to the conversion phase of this project. The location of potential sites inspected and the logistics required for handling and transporting biomass may also be a concern. The commitment of support (labor and land) and leadership to this project by the Chinese is overwhelming exceeding all pre-site visit expectations. In sum, there is a definite opportunity in Yunnan for an integrated biomass energy project and a potential market for US technology.

Perlack, R.D.

1990-10-15T23:59:59.000Z

342

International Energy Outlook 2006 - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Natural Gas International Energy Outlook 2006 Chapter 4: Natural Gas Natural gas trails coal as the fastest growing primary energy source in IEO2006. The natural gas share of total world energy consumption increases from 24 percent in 2003 to 26 percent in 2030. Figure 34. World Natural Gas Consumption by Region, 1990-2030 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 35. World Natural Gas Consumption by End-Use Sector, 2003-2030 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Consumption of natural gas worldwide increases from 95 trillion cubic feet in 2003 to 182 trillion cubic feet in 2030 in the IEO2006 reference case

343

Energy Efficiency | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

growing clean energy economy industry and creates green jobs. July 20, 2010 A LED light bulb is installed in one of Glendale, Ariz.'s traffic signals. | Photo courtesy of...

344

Net Primary Production  

NLE Websites -- All DOE Office Websites (Extended Search)

8 study sites, plus a worldwide data set, have been added to the global terrestrial Net Primary Production (NPP) reference database. The NPP database has been compiled by Dick...

345

U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... Oil shipments through the Strait of Malacca supply China and Indonesia, two of the world's fastest growing ...

346

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial Mkt trends Market Trends Industrial and commercial sectors lead U.S. growth in primary energy use.... Read full section Manufacturing heat and power energy consumption increases modestly.... Read full section Reliance on natural gas and natural gas liquids rises as industrial energy use grows.... Read full section Iron and Steel and Cement industries are most sensitive to economic growth rate.... Read full section Energy use reflects output and efficiency trends in energy-intensive industries.... Read full section Transportation equipment shows strongest growth in non-energy-intensive shipments.... Read full section Nonmanufacturing and transportation equipment lead energy efficiency gains.... Read full section Transportation uses lead growth in consumption of petroleum and

347

Residential Energy Consumption Survey (RECS) - Analysis & Projections -  

Gasoline and Diesel Fuel Update (EIA)

Share of energy used by appliances and consumer electronics increases in Share of energy used by appliances and consumer electronics increases in U.S. homes RECS 2009 - Release date: March 28, 2011 Over the past three decades, the share of residential electricity used by appliances and electronics in U.S. homes has nearly doubled from 17 percent to 31 percent, growing from 1.77 quadrillion Btu (quads) to 3.25 quads. This rise has occurred while Federal energy efficiency standards were enacted on every major appliance, overall household energy consumption actually decreased from 10.58 quads to 10.55 quads, and energy use per household fell 31 percent. Federal energy efficiency standards have greatly reduced consumption for home heating Total energy use in all U.S. homes occupied as primary residences decreased slightly from 10.58 quads in 1978 to 10.55 quads in 2005 as reported by the

348

India Energy Outlook: End Use Demand in India to 2020  

E-Print Network (OSTI)

and equity”, 2005, the Energy and Resources Institute (Tables Figures Figure 1. India Primary Energy Supply by fuel7 Figure 2. Final and Primary Energy (including biomass) by

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

349

Energy Use in China: Sectoral Trends and Future Outlook  

E-Print Network (OSTI)

RMB) hydro & nuclear Historical Primary Energy Consumptionhouseholds. Primary Energy Consumption (EJ) hydro nuclearfuels and hydro can be easily compared Energy Use in China

2008-01-01T23:59:59.000Z

350

Virginia Energy Plan (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

assesses the state's energy picture through an examination of the state's primary energy sources: electricity, coal, nuclear, natural gas, renewables, and petroleum. The plan...

351

International Energy Statistics - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Total Energy. Total Primary Energy ... Total Renewable Electricity Net Generation (Billion Kilowatthours) ... Bosnia and Herzegovina 3.961 4.818 6 ...

352

International Energy Statistics - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Total Energy. Total Primary Energy ... Solar, Tide and Wave Electricity Net Generation (Billion Kilowatthours) ... Puerto Rico 0 0 0 0 NA ...

353

International Energy Statistics - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Total Energy. Total Primary Energy ... Solar, Tide and Wave Electricity Net Generation (Billion Kilowatthours) ... Puerto Rico 0 0 0 0 0 ...

354

International Energy Statistics - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Total Energy. Total Primary Energy ... 2013 JAN FEB MAR APR MAY JUN ... Germany 2,417 2,645 2,786 2,507 ...

355

International Energy Statistics - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Total Primary Energy Consumption ; Indicators. CO2 Emissions ; Carbon Intensity ; Energy Intensity ; Conversions ; ... Puerto Rico 0.482 0.520 0 ...

356

International Energy Statistics - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Energy Intensity - Total Primary Energy Consumption per Dollar of GDP (Btu per Year 2005 U.S. Dollars (Purchasing Power Parities)) Loading...

357

Electricity systems adjust operations to growing wind power output ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA - Official Energy Statistics from the U.S. Government ... solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium.

358

SAR Imagery Segmentation by Statistical Region Growing and Hierarchical Merging  

SciTech Connect

This paper presents an approach to accomplish synthetic aperture radar (SAR) image segmentation, which are corrupted by speckle noise. Some ordinary segmentation techniques may require speckle filtering previously. Our approach performs radar image segmentation using the original noisy pixels as input data, eliminating preprocessing steps, an advantage over most of the current methods. The algorithm comprises a statistical region growing procedure combined with hierarchical region merging to extract regions of interest from SAR images. The region growing step over-segments the input image to enable region aggregation by employing a combination of the Kolmogorov-Smirnov (KS) test with a hierarchical stepwise optimization (HSWO) algorithm for the process coordination. We have tested and assessed the proposed technique on artificially speckled image and real SAR data containing different types of targets.

Ushizima, Daniela Mayumi; Carvalho, E.A.; Medeiros, F.N.S.; Martins, C.I.O.; Marques, R.C.P.; Oliveira, I.N.S.

2010-05-22T23:59:59.000Z

359

Process for growing silicon carbide whiskers by undercooling  

SciTech Connect

A method of growing silicon carbide whiskers, especially in the .beta. form, using a heating schedule wherein the temperature of the atmosphere in the growth zone of a furnace is first heated to or beyond the growth temperature and then is cooled to or below the growth temperature to induce nucleation of whiskers at catalyst sites at a desired point in time which results in the selection.

Shalek, Peter D. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

360

Optimal Management of Renewable Resources with Growing Demand and Stock Externalities  

E-Print Network (OSTI)

MAi\\IAGEMEJ. 'n' OF RENEWABLE RESOURCES WIlli GROWING DEMANDapproximation, the problem of a renewable resource is: -f" (MA. ? \\IAGEMENl' OF RENEWABLE RESOURCES WIlli GROWING

Berck, Peter

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "growing primary energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Natural Gas Natural gas is the fastest growing primary energy source in the IEO2005 forecast. Consumption of natural gas is projected to increase by nearly 70 percent between 2002 and 2025, with the most robust growth in demand expected among the emerging economies. Figure 34. World Natural Gas Consumption, 1980-2025 (Trillion Cubic Feet). Need help, contact the National Energy Information Center on 202-586-8800. Figure Data Figure 35. Natural Gas Consumption by Region, 1980-2025 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 36. Increase in Natural Gas Consumption by Region and Country, 2002-2025. Need help, contact the National Energy Information Center at 202-586-8800. Figure Data

362

Alternative Energy Development and China's Energy Future  

SciTech Connect

In addition to promoting energy efficiency, China has actively pursued alternative energy development as a strategy to reduce its energy demand and carbon emissions. One area of particular focus has been to raise the share of alternative energy in China’s rapidly growing electricity generation with a 2020 target of 15% share of total primary energy. Over the last ten years, China has established several major renewable energy regulations along with programs and subsidies to encourage the growth of non-fossil alternative energy including solar, wind, nuclear, hydro, geothermal and biomass power as well as biofuels and coal alternatives. This study thus seeks to examine China’s alternative energy in terms of what has and will continue to drive alternative energy development in China as well as analyze in depth the growth potential and challenges facing each specific technology. This study found that despite recent policies enabling extraordinary capacity and investment growth, alternative energy technologies face constraints and barriers to growth. For relatively new technologies that have not achieved commercialization such as concentrated solar thermal, geothermal and biomass power, China faces technological limitations to expanding the scale of installed capacity. While some alternative technologies such as hydropower and coal alternatives have been slowed by uneven and often changing market and policy support, others such as wind and solar PV have encountered physical and institutional barriers to grid integration. Lastly, all alternative energy technologies face constraints in human resources and raw material resources including land and water, with some facing supply limitations in critical elements such as uranium for nuclear, neodymium for wind and rare earth metals for advanced solar PV. In light of China’s potential for and barriers to growth, the resource and energy requirement for alternative energy technologies were modeled and scenario analysis used to evaluate the energy and emission impact of two pathways of alternative energy development. The results show that China can only meets its 2015 and 2020 targets for non-fossil penetration if it successfully achieves all of its capacity targets for 2020 with continued expansion through 2030. To achieve this level of alternative generation, significant amounts of raw materials including 235 Mt of concrete, 54 Mt of steel, 5 Mt of copper along with 3 billion tons of water and 64 thousand square kilometers of land are needed. China’s alternative energy supply will likely have relatively high average energy output to fossil fuel input ratio of 42 declining to 26 over time, but this ratio is largely skewed by nuclear and hydropower capacity. With successful alternative energy development, 32% of China’s electricity and 21% of its total primary energy will be supplied by alternative energy by 2030. Compared to the counterfactual baseline in which alternative energy development stumbles and China does not meet its capacity targets until 2030, alternative energy development can displace 175 Mtce of coal inputs per year and 2080 Mtce cumulatively from power generation by 2030. In carbon terms, this translates into 5520 Mt of displaced CO{sub 2} emissions over the twenty year period, with more than half coming from expanded nuclear and wind power generation. These results illustrate the critical role that alternative energy development can play alongside energy efficiency in reducing China’s energy-related carbon emissions.

Zheng, Nina; Fridley, David

2011-06-15T23:59:59.000Z

363

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Commercial from Market Trends Commercial from Market Trends Industrial and commercial sectors lead U.S. growth in primary energy use figure data Total primary energy consumption, including fuels used for electricity generation, grows by 0.3 percent per year from 2011 to 2040, to 107.6 quadrillion Btu in 2040 in the AEO2013 Reference case (Figure 53). The largest growth, 5.1 quadrillion Btu from 2011 to 2040, is in the industrial sector, attributable to increased use of natural gas in some industries (bulk chemicals, for example) as a result of an extended period of relatively low prices coinciding with rising shipments in those industries. The industrial sector was more severely affected than the other end-use sectors by the 2007-2009 economic downturn; the increase in industrial energy consumption from 2008 through 2040 is 3.9 quadrillion Btu.

364

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Commercial from Market Trends Commercial from Market Trends Industrial and commercial sectors lead U.S. growth in primary energy use figure data Total primary energy consumption, including fuels used for electricity generation, grows by 0.3 percent per year from 2011 to 2040, to 107.6 quadrillion Btu in 2040 in the AEO2013 Reference case (Figure 53). The largest growth, 5.1 quadrillion Btu from 2011 to 2040, is in the industrial sector, attributable to increased use of natural gas in some industries (bulk chemicals, for example) as a result of an extended period of relatively low prices coinciding with rising shipments in those industries. The industrial sector was more severely affected than the other end-use sectors by the 2007-2009 economic downturn; the increase in industrial energy consumption from 2008 through 2040 is 3.9 quadrillion Btu.

365

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Residential from Market Trends Residential from Market Trends Industrial and commercial sectors lead U.S. growth in primary energy use figure data Total primary energy consumption, including fuels used for electricity generation, grows by 0.3 percent per year from 2011 to 2040, to 107.6 quadrillion Btu in 2040 in the AEO2013 Reference case (Figure 53). The largest growth, 5.1 quadrillion Btu from 2011 to 2040, is in the industrial sector, attributable to increased use of natural gas in some industries (bulk chemicals, for example) as a result of an extended period of relatively low prices coinciding with rising shipments in those industries. The industrial sector was more severely affected than the other end-use sectors by the 2007-2009 economic downturn; the increase in industrial energy consumption from 2008 through 2040 is 3.9 quadrillion Btu.

366

The energy situation in five Central American countries  

DOE Green Energy (OSTI)

This study describes the energy resources and the changes that have taken place in energy supply and demand in five Central American countries between 1970 and 1984. Economic changes are also reviewed because they influence and are affected by changes in the energy sector. The work was performed under the auspices of the US Agency for International Development. The Central American countries of Costa Rica, El Salvador, Guatemala, Honduras, and Panama are highly dependent on fuel wood as a source of energy, particularly in the residential sector. They also rely upon imported oil products to supply a growing modern sector. Most countries have significant hydroelectric and geothermal resources, and most countries produce a large portion of their electricity from hydroelectric projects. Demand for electricity has grown rapidly. Relative shares of primary versus secondary energy in the five countries vary significantly and strongly correlate with average per capita income. Consumption of secondary energy has declined during the recent economic recession suffered by the region.

Trocki, L.; Booth, S.R.; Umana Q, A.

1987-06-01T23:59:59.000Z

367

Key China Energy Statistics 2011  

E-Print Network (OSTI)

Natural Gas Hydro Nuclear Fuel Total Primary EnergyPetroleum Natural Gas Hydro Nuclear Fuel Total Final EnergyFuel Oil Total Primary Energy Supply Indigenous Production Indigenous Production - Hydro Power Indigenous Production - Nuclear

Levine, Mark

2013-01-01T23:59:59.000Z

368

Key China Energy Statistics 2012  

E-Print Network (OSTI)

a nuclear power plant. Hydro shows the energy content of theGas Nuclear Hydro Wind Other Renewables Total Primary EnergyGas Hydro Nuclear Fuel Wind Total Primary Energy Consumption

Levine, Mark

2013-01-01T23:59:59.000Z

369

Table CT1. Energy Consumption Estimates for Major Energy ...  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration State Energy Data 2011: Consumption 365 Table CT2. Primary Energy Consumption Estimates, Selected Years, 1960-2011, North ...

370

Total Energy - Analysis & Projections - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Financial market analysis and financial data for major energy companies. ... is the U.S. Energy Information Administration's primary report of recent energy statistics.

371

International Energy Outlook 1998  

Gasoline and Diesel Fuel Update (EIA)

Electricity Electricity Between 1995 and 2020, the worldÂ’s annual consumption of electricity is projected to rise from 12 trillion kilowatthours to 23 trillion kilowatthours. The greatest increases are expected in developing Asia and in Central and South America. Primary Fuel Use The Financing of Electric Power Expansion Public Policy Reform in the Electricity Industry Regional Highlights Throughout the world, electricity is and will continue to be the fastest growing component of energy demand. Between 1995 and 2020, total world electricity demand is expected to rise from 12 trillion kilowatthours to 23 trillion kilowatthours (Table 25). Demand growth will be slowest in the industrialized countries; but even in the advanced economies, which currently account for about 60 percent of world electricity use, absolute

372

Feasibility for p+/p- flow-ratio evaluation in the 0.5 - 1.5 TeV primary energy range, based on Moon-shadow muon measurements, to be carried out in the Pyramid of the Sun, Teotihuacan, Experiment  

E-Print Network (OSTI)

Calculations are presented to demonstrate the feasibility of Moon shadow observations for mean primary energies in the region 0.5-1.5 TeV using a muon detector operating under the Pyramid of the Sun at Teotihuacan, Mexico. Due to the small height of that monument (65 m), the experiment is capable of providing considerably high statistics, although with reduced angular accuracy for primary particle direction reconstruction. Our estimates are based on simulations of muon production and transport in the atmosphere by CORSIKA and along the body of the pyramid by GEANT4. The deflection of primaries in the earth magnetic field is calculated using the IGRF model. The statistics for the Moon shadow observations, which depends on different factors affecting the accuracy of the primary particle direction reconstruction, are analyzed in detail.

Grabskii, V; Reche, R; Orozco, O

2007-01-01T23:59:59.000Z

373

Evaluating Interventions in the U.S. Electricity System: Assessments of Energy Efficiency, Renewable Energy, and Small-­?Scale Cogeneration.  

E-Print Network (OSTI)

??There is growing interest in reducing the environmental and human-­?health impacts resulting from electricity generation. Renewable energy, energy efficiency, and energy conservation are all commonly… (more)

Siler-Evans, Kyle

2012-01-01T23:59:59.000Z

374

Annual Energy Outlook 2011 Reference Case  

U.S. Energy Information Administration (EIA)

Half of the increase is attributed to China and India. Renewable energy and nuclear power are the world’s fastest-growing energy sources, ...

375

Distributed Sensor Coordination for Advanced Energy Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Sensor Coordination for Advanced Energy Systems Background As advanced energy systems grow in size, they require an increasing number of pressure, temperature, and...

376

China's growing CO{sub 2} emissions - a race between increasing consumption and efficiency gains  

SciTech Connect

China's rapidly growing economy and energy consumption are creating serious environmental problems on both local and global scales. Understanding the key drivers behind China's growing energy consumption and the associated CO{sub 2} emissions is critical for the development of global climate policies and provides insight into how other emerging economies may develop a low emissions future. Using recently released Chinese economic input-output data and structural decomposition analysis we analyze how changes in China's technology, economic structure, urbanization, and lifestyles affect CO{sub 2} emissions. We find that infrastructure construction and urban household consumption, both in turn driven by urbanization and lifestyle changes, have outpaced efficiency improvements in the growth of CO{sub 2} emissions. Net trade had a small effect on total emissions due to equal, but significant, growth in emissions from the production of exports and emissions avoided by imports. Technology and efficiency improvements have only partially offset consumption growth, but there remains considerable untapped potential to reduce emissions by improving both production and consumption systems. As China continues to rapidly develop there is an opportunity to further implement and extend policies, such as the Circular Economy, that will help China avoid the high emissions path taken by today's developed countries. 65 refs., 3 figs., 1 tab.

Glen P. Peters; Christopher L. Weber; Dabo Guan; Klaus Hubacek [Norwegian University of Science and Technology, Trondheim (Norway)

2007-09-15T23:59:59.000Z

377

Key China Energy Statistics 2011  

E-Print Network (OSTI)

Gas Hydro Nuclear Fuel Total Primary Energy Consumption byGas Hydro Nuclear Fuel Total Final Energy Consumption byProduction - Nuclear Power Recovery of Energy Import Chinese

Levine, Mark

2013-01-01T23:59:59.000Z

378

Monthly Energy review - July 2009  

Annual Energy Outlook 2012 (EIA)

9 July 2009 DOEEIA-0035(200907) Monthly Energy Review The Monthly Energy Review (MER) is the Energy Information Administration's (EIA) primary report of recent and historical...

379

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Tables 28 Energy Information AdministrationManufacturing Consumption of Energy 1994 1. In previous MECS, the term "primary energy" was used to denote the "first use" of...

380

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

3. Energy Consumption in the Manufacturing Sector, 1991 In 1991, the amount of energy consumed in the manufacturing sector was as follows: * Primary Consumption of Energy for All...

Note: This page contains sample records for the topic "growing primary energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

NREL: Energy Analysis - Travis Lowder  

NLE Websites -- All DOE Office Websites (Extended Search)

finance PV risk management Renewable energy financial policy Primary research interests Solar securitization Renewable energy capital market finance Energy and human development...

382

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

market trends icon Renewables market trends icon Renewables exec summary Executive Summary Renewable fuel use grows at a faster rate than fossil fuel use...Read full section Mkt trends Market Trends Production of liquid fuels from biomass, coal, and natural gas increases.... Read full section Renewables and natural gas lead rise in primary energy consumption.... Read full section Reliance on natural gas, natural gas liquids, and renewables rises as industrial energy use grows.... Read full section Sales of alternative fuel, fuel flexible, and hybrid vehicles rise.... Read full section Coal-fired plants continue to be the largest source of U.S. electricity generation.... Read full section Most new capacity additions use natural gas and renewables.... Read full section Additions to power plant capacity slow after 2012 but accelerate

383

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

market trends icon Renewables market trends icon Renewables exec summary Executive Summary Renewable fuel use grows at a faster rate than fossil fuel use...Read full section Mkt trends Market Trends Production of liquid fuels from biomass, coal, and natural gas increases.... Read full section Renewables and natural gas lead rise in primary energy consumption.... Read full section Reliance on natural gas, natural gas liquids, and renewables rises as industrial energy use grows.... Read full section Sales of alternative fuel, fuel flexible, and hybrid vehicles rise.... Read full section Coal-fired plants continue to be the largest source of U.S. electricity generation.... Read full section Most new capacity additions use natural gas and renewables.... Read full section Additions to power plant capacity slow after 2012 but accelerate

384

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Transportation Transportation exec summary Executive Summary With more efficient light-duty vehicles, motor gasoline consumption.... Read full section Natural gas consumption grows in industrial and electric power sectors.... Read full section Mkt trends Market Trends Energy-intensive industries show strong early growth in output.... Read full section Industrial and commercial sectors lead U.S. growth in primary enerby use.... Read full section Growth in transportation energy consumption flat across projection.... Read full section CAFE and greenhouse gas emissions standards boost light-duty vehicle fuel economy.... Read full section Travel demand for personal vehicles continues to grow, but more slowly than in the past.... Read full section Sales of alternative fuel, fuel flexible, and hybrid vehicles sales

385

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

market trends icon Renewables market trends icon Renewables exec summary Executive Summary Power generation from renewables and natural gas continues to increase ...Read full section Mkt trends Market Trends Wind power leads rise in world renewable generation, solar power also grows rapidly.... Read full section Renewable energy sources lead rise in primary energy consumption.... Read full section Sales of alternative fuel, fuel flexible, and hybrid vehicles rise.... Read full section Coal-fired plants continue to be the largest source of U.S. electricity generation.... Read full section Most new capacity additions use natural gas and renewables.... Read full section Wind dominates renewable capacity grow, but solar and biomass gain market share.... Read full section Nonhydropower renewable generation surpasses hydropower by 2020....

386

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Transportation Transportation exec summary Executive Summary With more efficient light-duty vehicles, motor gasoline consumption.... Read full section Natural gas consumption grows in industrial and electric power sectors.... Read full section Mkt trends Market Trends Energy-intensive industries show strong early growth in output.... Read full section Industrial and commercial sectors lead U.S. growth in primary enerby use.... Read full section Growth in transportation energy consumption flat across projection.... Read full section CAFE and greenhouse gas emissions standards boost light-duty vehicle fuel economy.... Read full section Travel demand for personal vehicles continues to grow, but more slowly than in the past.... Read full section Sales of alternative fuel, fuel flexible, and hybrid vehicles sales

387

China's Energy and Carbon Emissions Outlook to 2050  

E-Print Network (OSTI)

Municipalities GDP, Energy Consumption and Other IndicatorsEnergy Consumption 31 Figure 33 Primary Energy Consumption in Different

Zhou, Nan

2011-01-01T23:59:59.000Z

388

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

assesses the state's energy picture through an examination of the state's primary energy sources: electricity, coal, nuclear, natural gas, renewables, and petroleum. October 16,...

389

International Energy Statistics  

U.S. Energy Information Administration (EIA)

Energy Intensity - Total Primary Energy Consumption per Dollar of GDP ... Jordan 14,329.544 13,433.919 14,116.659 13,602.945 ...

390

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plan assesses the state's energy picture through an examination of the state's primary energy sources: electricity, coal, nuclear, natural gas, renewables, and petroleum. July...

391

Participation Form | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

application. Select the ENERGY STAR program you intend to participate in, and choose your primary contacts. Return this form to ENERGY STAR for consideration as a partner....

392

International Energy Outlook 1998  

Gasoline and Diesel Fuel Update (EIA)

In 1995, coal accounted for 25 percent of the worlds primary energy consumption and 36 percent of the energy consumed worldwide for electricity generation. Those shares are not...

393

UN Alcohol Energy Data: Consumption for Non-Energy Uses The Energy  

Open Energy Info (EERE)

for Non-Energy Uses The Energy Statistics Database contains comprehensive energy statistics on the production, trade, conversion and final consumption of primary and secondary;...

394

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Plan assesses the state's energy picture through an examination of the state's primary energy... http:energy.govsavingsvirginia-energy-plan-virginia Rebate Alliant...

395

"U.S. Energy Information Administration"  

Gasoline and Diesel Fuel Update (EIA)

U.S. Energy Information Administration" U.S. Energy Information Administration" "November 2013 Monthly Energy Review" 0 "Release Date: November 25, 2013" "Next Update: December 24, 2013" "Table 1.1 Primary Energy Overview" "Month","Total Fossil Fuels Production","Nuclear Electric Power Production","Total Renewable Energy Production","Total Primary Energy Production","Primary Energy Imports","Primary Energy Exports","Primary Energy Net Imports","Primary Energy Stock Change and Other","Total Fossil Fuels Consumption","Nuclear Electric Power Consumption","Total Renewable Energy Consumption","Total Primary Energy Consumption"

396

Far East LPG sales will grow faster than in West  

SciTech Connect

LPG sales through 2010 in regions east of the Suez Canal (East of Suez) will grow at more than twice those in regions west of the canal. East-of-Suez sales will grow at more than 4.0%/year, compared to slightly less than 2.0%/year growth in sales West of Suez. East-of-Suez sales will reach 92 million tons/year (tpy) by 2010, accounting for 39% of the worldwide total. This share was 31% in1995 and only 27% in 1990. LPG sales worldwide will reach 192 million tons in 2000 and 243 million tpy by 2010. In 1995, they were 163 million tons. These are some of the major conclusions of a recent study by Frank R. Spadine, Christine Kozar, and Rudy Clark of New York City-based consultant Poten and Partners Inc. Details of the study are in the fall report ``World Trade in LPG 1990--2010``. This paper discusses demand segments, seaborne balance, Western sources, largest trading region, North American supplies, and other supplies.

1996-12-30T23:59:59.000Z

397

Net Primary Productivity Methods  

NLE Websites -- All DOE Office Websites (Extended Search)

some scientists still tend to confuse productivity with standing biomass or standing crop. NPP is a fundamental ecological variable, not only because it measures the energy...

398

Department of Energy Seeks Public Comment on Designation of Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

States. "As our nation grows, so do our energy needs. So we must be forward looking as we map out energy transmission corridors in order to get energy to places that need it,"...

399

Energy  

Site Map; Printable Version; Share this resource. Send a link to Full Size Image - Energy Innovation Portalto someone by E-mail; Share Full Size Image - Energy ...

400

Global Look at Energy Education and Training  

Science Conference Proceedings (OSTI)

Symposium, Energy Technologies and Carbon Dioxide Management ... A Suggestion for Establishing Energy Management Policy in Primary Aluminum Industry ...

Note: This page contains sample records for the topic "growing primary energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Economical Energy Responsive Housing with the Lowest ...  

Science Conference Proceedings (OSTI)

Symposium, Energy Technologies and Carbon Dioxide Management ... A Suggestion for Establishing Energy Management Policy in Primary Aluminum Industry ...

402

Overview of Industrial Energy Training and Software  

Science Conference Proceedings (OSTI)

Symposium, Energy Technologies and Carbon Dioxide Management ... A Suggestion for Establishing Energy Management Policy in Primary Aluminum Industry ...

403

Potential impacts of energy efficiency policies in the U.S. industry: Results from the clean energy futures study  

Science Conference Proceedings (OSTI)

Scenarios for a Clean Energy Future (CEF) studied the role that efficient clean energy technologies can play in meeting the economic and environmental challenges for our future energy supply. The study describes a portfolio of policies that would motivate energy users and businesses to invest in innovative energy efficient technologies. On the basis of the portfolios, two policy scenarios have been developed, i.e. a moderate scenario and an advanced scenario. We focus on the industrial part of the CEF-study. The studied policies include a wide scope of activities, which are organized under the umbrella of voluntary industrial sector agreements. The policies for the policy scenarios have been modeled using the National Energy Modeling System (CEF-NEMS). Under the reference scenario industrial energy use would grow to 41 Quads in 2020, compared to 34.8 Quads in 1997, with an average improvement of the energy intensity by 1.1% per year. In the Moderate scenario the annual improvement is a bout 1.5%/year, leading to primary energy use of 37.8 Quads in 2020, resulting in 10% lower CO2 emissions by 2020 compared to the reference scenario. In the Advanced scenario the annual improvement increases to 1.8% per year, leading to primary energy use of 34.3 Quads in 2020, and 29% lower CO2 emissions. We report on the policies, assumptions and results for industry.

Worrell, Ernst; Price, Lynn

2001-07-24T23:59:59.000Z

404

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... Oil and gas industry employment growing much faster than total private ... Technology drives natural gas production growth from ...

405

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... Oil and gas industry employment growing much faster than total private ... Geology and technology drive estimates of technically ...

406

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Financial market analysis and financial data for major energy companies. Environment. Greenhouse gas data, ... Carbon dioxide emissions grow in the residential sector.

407

Energy Department Announces Launch of Energy Innovation Hub for...  

NLE Websites -- All DOE Office Websites (Extended Search)

catalytic and luminescent properties, that are important for a growing number of energy technologies. These critical materials are also at risk for supply disruptions. The...

408

ENERGY STAR Success Story: HEI Hotels & Resorts | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Story: HEI Hotels & Resorts HEI Hotels & Resorts is a growing hospitality company with 30 hotel properties in 13 states. Since launching its partnership with ENERGY STAR in 2006,...

409

COLLOQUIUM: Are Mushrooms the Next Polymers?: Growing Plastic Replacements  

NLE Websites -- All DOE Office Websites (Extended Search)

March 20, 2013, 4:15pm to 6:30pm March 20, 2013, 4:15pm to 6:30pm Colloquia MBG Auditorium COLLOQUIUM: Are Mushrooms the Next Polymers?: Growing Plastic Replacements with Fungi Mr. Gavin McIntyre Ecovative Design LLC Colloquium Committee: The Princeton Plasma Physics Laboratory 2013-2014 Colloquium Committee is comprised of the following people. Please feel free to contact them by e-mail regarding any possible speakers or topics for future colloquia. Carol Ann Austin caustin@pppl.gov John Greenwald, Chair jgreenwa@pppl.gov Charles H. Skinner cskinner@pppl.gov Daren Stotler dstotler@pppl.gov Carol Ann Austin 609-243-2484 Contact Information Coordinator(s): Ms. Carol Ann Austin caustin@pppl.gov Host(s): Ms. Kelsey Tresemer ktreseme@pppl.gov PPPL Entrance Procedures Visitor Information, Directions, Security at PPPL

410

Fast-growing willow shrub named `Tully Champion`  

DOE Patents (OSTI)

A distinct female cultivar of Salix viminalis.times.S. miyabeana named `Tully Champion`, characterized by rapid stem growth producing greater than 25% more woody biomass than two current production clones (Salix dasyclados `SV1` and Salix miyabeana `SX64`), more than 2.5-fold greater biomass than one of its parents (Salix miyabeana `SX67`), and nearly 3-fold more biomass than another production clone (Salix sacchalinensis, `SX61`) when grown in the same field for the same length of time (two growing seasons after coppice) in Tully, N.Y. `Tully Champion` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested repeatedly after two to four years of growth. `Tully Champion` displays a low incidence of rust disease and is not damaged by potato leafhoppers.

Abrahamson, Lawrence P. (Marcellus, NY); Kopp, Richard F. (Marietta, NY); Smart, Lawrence B. (Geneva, NY); Volk, Timothy A. (Syracuse, NY)

2007-08-28T23:59:59.000Z

411

Vehicle Technologies Office: Fact #567: April 20, 2009 Cars are Growing  

NLE Websites -- All DOE Office Websites (Extended Search)

7: April 20, 7: April 20, 2009 Cars are Growing Older to someone by E-mail Share Vehicle Technologies Office: Fact #567: April 20, 2009 Cars are Growing Older on Facebook Tweet about Vehicle Technologies Office: Fact #567: April 20, 2009 Cars are Growing Older on Twitter Bookmark Vehicle Technologies Office: Fact #567: April 20, 2009 Cars are Growing Older on Google Bookmark Vehicle Technologies Office: Fact #567: April 20, 2009 Cars are Growing Older on Delicious Rank Vehicle Technologies Office: Fact #567: April 20, 2009 Cars are Growing Older on Digg Find More places to share Vehicle Technologies Office: Fact #567: April 20, 2009 Cars are Growing Older on AddThis.com... Fact #567: April 20, 2009 Cars are Growing Older The median age of cars continues to grow in 2008 while the median age of

412

World Energy Consumption by Fuel Type, 1970-2020  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption by Fuel Type, 1970-2020 Energy Consumption by Fuel Type, 1970-2020 Source: EIA, International Energy Outlook 2000 Previous slide Next slide Back to first slide View graphic version Notes: Natural gas is projected to be the fastest-growing component of primary world energy consumption, more than doubling between 1997 and 2020. Gas accounts for the largest increment in electricity generation (41 percent of the total increment of energy used for electricity generation). Combined-cycle gas turbine power plants offer some of the highest commercially available plant efficiencies, and natural gas is environmentally attractive because it emits less sulfur dioxide, carbon dioxide, and particulate matter than does oil or coal. In the IEO2000 projection, world natural gas consumption reaches the level of coal by

413

Energy Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

23, 2012 23, 2012 Breaking down the latest Clean Energy Roundup from the Environmental Entrepreneurs. More details here. | Infographic by Sarah Gerrity. INFOGRAPHIC | Made in America: Clean Energy Jobs As the clean energy economy grows -- thousands of clean energy job opportunities are being created all across the country. August 23, 2012 New Report Highlights Growth of America's Clean Energy Job Sector Taking a moment to break-down key findings from the latest Clean Energy Jobs Roundup. August 21, 2012 Solar Energy for All: How-To Guides Encourage Growth of Solar Communities How to join forces with your neighbors to start a community shared solar project. August 20, 2012

414

,"Energy","Water","Renewable","Petroleum","Alt. Fuel",,"On-Line Data Collection System",,"Report Period","Due In",,,"Primary","Secondary","Secondary"  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy","Water","Renewable","Petroleum","Alt. Fuel",,"On-Line Data Collection System",,"Report Period","Due In",,,"Primary","Secondary","Secondary" Energy","Water","Renewable","Petroleum","Alt. Fuel",,"On-Line Data Collection System",,"Report Period","Due In",,,"Primary","Secondary","Secondary" 2003,,,,,,,"EMS4","Environmental Management System","Fiscal Year (Oct 1 - Sept 30)","November 15",,"Fiscal Year",2009 2004,,,,,,,"FAST","Federal Automotive Statistical Tool","Fiscal Year (Oct 1 - Sept 30)","October 31",,"Department","Department of Energy" 2005,-2.775557562e-17,,,0,0,,"FIMS","Facilities Information Management System","Fiscal Year (Oct 1 - Sept 30)","November 15",,"Program","Office of Legacy Management"

415

North Carolina | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

County Community Action N.C. Agency Growing, Helping Citizens Save Money MCCA runs a hybrid program in the state that has expanded energy efficiency services to municipalities...

416

External (SON) - Primary Standards Laboratory (PSL) Website  

NLE Websites -- All DOE Office Websites (Extended Search)

Enter keyword below to search the PSL site: Search! The Primary Standards Laboratory (PSL) develops and maintains primary standards traceable to national standards and calibrates and certifies customer reference standards. The PSL provides technical guidance, support, and consultation; develops precision measurement techniques; provides oversight, including technical surveys and measurement audits; and anticipates future measurement needs of the nuclear weapons complex and other Department of Energy programs. The PSL also helps industry, universities, and government agencies establish or verify new capabilities and products and improve measurement technology. NVLAP Accreditation NVLAP Accreditation The Primary Standards Laboratory is accredited over a broad range of parameters by the National Institute of Standards and Technology (NIST) National Voluntary Laboratory Accreditation Program (NVLAP) as a calibration laboratory (Lab Code 105002). This accreditation validates the high level of technical competence achieved by the laboratory and its staff.

417

The Primary Standards Laboratory (PSL) maintains a wide variety...  

NLE Websites -- All DOE Office Websites (Extended Search)

for the US Department of Energy under contract DE-ACO4-94AL85000. The Primary Standards Laboratory (PSL) and Sandia's Radiation Protection organization maintain a variety...

418

California Is the Primary U.S. Stop for LHC's ALICE Data - NERSC...  

NLE Websites -- All DOE Office Websites (Extended Search)

Is the Primary U.S. Stop for LHC's ALICE Data California Is the Primary U.S. Stop for LHC's ALICE Data July 30, 2010 | Tags: Fusion Energy Contact: Linda Vu, lvu@lbl.gov, +1 510...

419

Role of non-fossil energy in meeting China's energy and climate target for 2020  

SciTech Connect

China is the largest energy consumer and CO2 emitter in the world. The Chinese government faces growing challenges of ensuring energy security and reducing greenhouse gas emissions. To address these two issues, the Chinese government has announced two ambitious domestic indicative autonomous mitigation targets for 2020: increasing the ratio of non-fossil energy to 15% and reducing carbon dioxide emissions per unit of GDP by 40-45% from 2005 levels. To explore the role of non-fossil energy in achieving these two targets, this paper first provides an overview of current status of non-fossil energy development in China; then gives a brief review of GDP and primary energy consumption; next assesses in detail the role of the non fossil energy in 2020, including the installed capacity and electricity generation of non-fossil energy sources, the share and role of non-fossil energy in the electricity structure, emissions reduction resulting from the shift to non-fossil energy, and challenges for accomplishing the mitigation targets in 2020 ; finally, conclusions and policy measures for non-fossil energy development are proposed.

Zhou, Sheng; Tong, Qing; Yu, Sha; Wang, Yu; Chai, Qimin; Zhang, Xiliang

2012-12-01T23:59:59.000Z

420

How much of the world's energy does the United States use? - FAQ ...  

U.S. Energy Information Administration (EIA)

How much of the world's energy does the United States use? In 2010, world total primary energy consumption was 511 quadrillion Btu. The United States' primary energy ...

Note: This page contains sample records for the topic "growing primary energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Will China's Vehicle Population Grow Even Faster than Forecasted?  

E-Print Network (OSTI)

Daniel Sperling. 2011. “China’s Soaring Vehicle Population:the longer version, “China’s Soaring Vehicle Population:Vehicle Sales and Stock in China,” Energy Policy, 43: 17–29.

Wang, Yunshi; Teter, Jacob; Sperling, Daniel

2012-01-01T23:59:59.000Z

422

Sharing local energy infrastructure : organizational models for implementing microgrids and district energy systems in urban commercial districts; Organizational models for implementing microgrids and district energy systems in urban commercial districts.  

E-Print Network (OSTI)

??There is a growing trend in cities toward establishing localized, shared energy infrastructure. As existing energy infrastructure ages and demand increases, cities face rising energy… (more)

Sherman, Genevieve Rose

2012-01-01T23:59:59.000Z

423

GROW1: a crop growth model for assessing impacts of gaseous pollutants from geothermal technologies  

DOE Green Energy (OSTI)

A preliminary model of photosynthesis and growth of field crops was developed to assess the effects of gaseous pollutants, particularly airborne sulfur compounds, resulting from energy production from geothermal resources. The model simulates photosynthesis as a function of such variables as irradiance, CO/sub 2/ diffusion resistances, and internal biochemical processes. The model allocates the products of photosynthesis to structural (leaf, stem, root, and fruit) and storage compartments of the plant. The simulations encompass the entire growing season from germination to senescence. The model is described conceptually and mathematically and examples of model output are provided for various levels of pollutant stress. Also, future developments that would improve this preliminary model are outlined and its applications are discussed.

Kercher, J.R.

1977-03-17T23:59:59.000Z

424

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

equipment, electronics, and machinery industries. Industrial and commercial sectors lead U.S. growth in primary energy use Figure 72. Primary energy use by end-use sector,...

425

Impacts of Climate Change on the Growing Season in the United States  

Science Conference Proceedings (OSTI)

Understanding the effects of climate change on the vegetative growing season is key to quantifying future hydrologic water budget conditions. The U.S. Geological Survey modeled changes in future growing season length at 14 basins across 11 states. ...

Daniel E. Christiansen; Steven L. Markstrom; Lauren E. Hay

2011-12-01T23:59:59.000Z

426

Human Contribution to the Lengthening of the Growing Season during 1950–99  

Science Conference Proceedings (OSTI)

Increasing surface temperatures are expected to result in longer growing seasons. An optimal detection analysis is carried out to assess the significance of increases in the growing season length during 1950–99, and to measure the anthropogenic ...

Nikolaos Christidis; Peter A. Stott; Simon Brown; David J. Karoly; John Caesar

2007-11-01T23:59:59.000Z

427

Neustar White Paper: When Smart Grids Grow Smart Enough to Solve...  

NLE Websites -- All DOE Office Websites (Extended Search)

to Solve Crimes Neustar White Paper: When Smart Grids Grow Smart Enough to Solve Crimes Smart Grid data access Neustar White Paper: When Smart Grids Grow Smart Enough to Solve...

428

Biotechnology and genetic optimization of fast-growing hardwoods  

DOE Green Energy (OSTI)

A biotechnology research program was initiated to develop new clones of fast-growing Populus clones resistant to the herbicide glyphosate and resistant to the leaf-spot and canker disease caused by the fungus Septoria musiva. Glyphosate-resistant callus was selected from stem segments cultured in vitro on media supplemented with the herbicide. Plants were regenerated from the glyphosate-resistant callus tissue. A portion of plants reverted to a glyphosate susceptible phenotype during organogenesis. A biologically active filtrate was prepared from S. musiva and influenced fresh weight of Populus callus tissue. Disease-resistant plants were produced through somaclonal variation when shoots developed on stem internodes cultured in vitro. Plantlets were screened for disease symptoms after spraying with a suspension of fungal spores. A frequency of 0.83 percent variant production was observed. Genetically engineered plants were produced after treatment of plant tissue with Agrobacterium tumefasciens strains carrying plasmid genes for antibiotic resistance. Transformers were selected on media enriched with the antibiotic, kanamycin. Presence of foreign DNA was confirmed by Southern blot analysis. Protoplasts of popular were produced but did not regenerate into plant organs. 145 refs., 12 figs., 36 tabs.

Garton, S.; Syrkin-Wurtele, E.; Griffiths, H.; Schell, J.; Van Camp, L.; Bulka, K. (NPI, Salt Lake City, UT (United States))

1991-02-01T23:59:59.000Z

429

Soviet Union oil sector outlook grows bleaker still  

SciTech Connect

This paper reports on the outlook for the U.S.S.R's oil sector which grows increasingly bleak and with it prospects for the Soviet economy. Plunging Soviet oil production and exports have analysts revising near term oil price outlooks, referring to the Soviet oil sector's self-destructing and Soviet oil production in a freefall. County NatWest, Washington, citing likely drops in Soviet oil production and exports (OGJ, Aug. 5, p. 16), has jumped its projected second half spot price for West Texas intermediate crude by about $2 to $22-23/bbl. Smith Barney, New York, forecasts WTI postings at $24-25/bbl this winter, largely because of seasonally strong world oil demand and the continued collapse in Soviet oil production. It estimates the call on oil from the Organization of Petroleum Exporting Countries at more than 25 million b/d in first quarter 1992. That would be the highest level of demand for OPEC oil since 1980, Smith Barney noted.

Not Available

1991-08-12T23:59:59.000Z

430

Emerging Energy-Efficient Technologies in Buildings Technology Characterizations for Energy Modeling  

Science Conference Proceedings (OSTI)

The energy use in America's commercial and residential building sectors is large and growing. Over 38 quadrillion Btus (Quads) of primary energy were consumed in 2002, representing 39% of total U.S. energy consumption. While the energy use in buildings is expected to grow to 52 Quads by 2025, a large number of energy-related technologies exist that could curtail this increase. In recent years, improvements in such items as high efficiency refrigerators, compact fluorescent lights, high-SEER air conditioners, and improved building shells have all contributed to reducing energy use. Hundreds of other technology improvements have and will continue to improve the energy use in buildings. While many technologies are well understood and are gradually penetrating the market, more advanced technologies will be introduced in the future. The pace and extent of these advances can be improved through state and federal R&D. This report focuses on the long-term potential for energy-efficiency improvement in buildings. Five promising technologies have been selected for description to give an idea of the wide range of possibilities. They address the major areas of energy use in buildings: space conditioning (33% of building use), water heating (9%), and lighting (16%). Besides describing energy-using technologies (solid-state lighting and geothermal heat pumps), the report also discusses energy-saving building shell improvements (smart roofs) and the integration of multiple energy service technologies (CHP packaged systems and triple function heat pumps) to create synergistic savings. Finally, information technologies that can improve the efficiency of building operations are discussed. The report demonstrates that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The five technology areas alone can potentially result in total primary energy savings of between 2 and 4.2 Quads by 2025, or 3.8% to 8.1% of the total commercial and residential energy use by 2025 (52 Quads). Many other technologies will contribute to additional potential for energy-efficiency improvement, while the technical potential of these five technologies on the long term is even larger.

Hadley, SW

2004-10-11T23:59:59.000Z

431

Energy  

Science Conference Proceedings (OSTI)

Energy. Summary: Key metrologies/systems: Scanning tunneling microscopy and one- and two-photon photoemission/Model ...

2012-10-02T23:59:59.000Z

432

Energy  

Home. Site Map; Printable Version; Share this resource. About; Search; Categories (15) Advanced Materials; Biomass and Biofuels; Building Energy Efficiency ...

433

Surveillance and human-computer interaction applications of self-growing models  

Science Conference Proceedings (OSTI)

The aim of the work is to build self-growing based architectures to support visual surveillance and human-computer interaction systems. The objectives include: identifying and tracking persons or objects in the scene or the interpretation of user gestures ... Keywords: Growing Neural Gas, Human-computer interaction, Self-growing models, Surveillance systems, Topology preservation

José García-Rodríguez; Juan Manuel García-Chamizo

2011-10-01T23:59:59.000Z

434

Energy Information Administration / Annual Energy Outlook 2011  

Gasoline and Diesel Fuel Update (EIA)

4 Table A17. Renewable Energy, Consumption by Sector and Source 1 (Quadrillion Btu per Year) Sector and Source Reference Case Annual Grow th 2009-2035 (percent) 2008 2009 2015 2020...

435

World Energy Consumption by Fuel Type, 1970-2020  

Gasoline and Diesel Fuel Update (EIA)

0 0 Notes: Natural gas is projected to be the fastest-growing component of primary world energy consumption, more than doubling between 1997 and 2020. Gas accounts for the largest increment in electricity generation (41 percent of the total increment of energy used for electricity generation). Combined-cycle gas turbine power plants offer some of the highest commercially available plant efficiencies, and natural gas is environmentally attractive because it emits less sulfur dioxide, carbon dioxide, and particulate matter than does oil or coal. In the IEO2000 projection, world natural gas consumption reaches the level of coal by 2005, and by 2020 gas use exceeds coal by 29 percent. Oil currently provides a larger share of world energy consumption than any other energy source and is expected to remain in that position

436

Renewables for Energy Conservation  

E-Print Network (OSTI)

) Massflowrate(kg/h) Hot Water Usage Patterns Selected #12;Monthly variation in energy requirement for electricalRenewables for Energy Conservation Rangan Banerjee Energy Systems Engineering IIT Bombay National Conference on "Energy Efficiency", Pune , 28th June2005 #12;ENERGY FLOW DIAGRAM PRIMARY ENERGY ENERGY

Banerjee, Rangan

437

Impact of Solar Resource and Atmospheric Constituents on Energy Yield Models for Concentrated Photovoltaic Systems .  

E-Print Network (OSTI)

??Global economic trends suggest that there is a need to generate sustainable renewable energy to meet growing global energy demands. Solar energy harnessed by concentrated… (more)

Mohammed, Jafaru

2013-01-01T23:59:59.000Z

438

The Greening of the Middle Kingdom: The Story of Energy Efficiency in China  

E-Print Network (OSTI)

senior leaders perceived the energy problem to be extremelytheir attention to the problem of growing energy demand, theincrease in energy demand presented serious problems and was

Zhou, Nan

2010-01-01T23:59:59.000Z

439

External (SON) - Primary Standards Laboratory (PSL) Website ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Primary Standards Laboratory Eric Detlefs Manager (505) 845-8961 Primary Physical Standards Dept Roger Burton Manager (505) 284-9901 Primary Electrical Standards Dept Project...

440

Net Primary Production (NPP) Project Page  

NLE Websites -- All DOE Office Websites (Extended Search)

RegionalGlobal > Net Primary Production (NPP) Net Primary Production (NPP) Project Overview The ORNL DAAC Net Primary Production (NPP) data set collection contains field...

Note: This page contains sample records for the topic "growing primary energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

International Energy Statistics - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Total Primary Energy Consumption per Capita (Million Btu per Person) ... 2009 North America 279.119 275.325 277.356 268.452 253 ...

442

Primary Metals - Compressor Motors Failing  

Science Conference Proceedings (OSTI)

This power quality (PQ) case study presents the investigation of four failures of compressor motors for a two stage chiller at a primary metals manufacturing facility.

2003-12-31T23:59:59.000Z

443

Announcements | OSTI, US Dept of Energy, Office of Scientific...  

Office of Scientific and Technical Information (OSTI)

National Library of Energy (Beta), New Search Engine Facilitating Access to Department of Energy Information 2012 120512 Science.gov: Still Strong, Growing in 10th Anniversary...

444

The 22 - National Renewable Energy Laboratory (NREL) Home Page  

clean energy markets over the next two decades. "Just as the renewable energy industry was growing for the first time, we fell off a cliff," said Jeffery

445

NREL: News - NREL Releases Renewable Energy Data Book Detailing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Release NR-6113 NREL Releases Renewable Energy Data Book Detailing Growing Industry in 2012 November 21, 2013 The National Renewable Energy Laboratory (NREL) has released the 2012...

446

EIA projects world energy consumption will increase 56% by ...  

U.S. Energy Information Administration (EIA)

EIA's recently released International Energy Outlook 2013 (IEO2013) projects that world energy consumption will grow by 56% between 2010 and 2040, ...

447

Energy  

Science Conference Proceedings (OSTI)

There has been a significant progress in converting solar energy using silicon technology to replace fossil fuels. However, its high cost of production has led ...

448

Energy  

Efficient, Low-cost Microchannel Heat Exchanger. Return to Marketing Summary. Skip footer navigation to end of page. ... Energy Innovation Portal on Facebook;

449

Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Energy Energy Express Licensing Accelerator-Driven Transmutation Of Spent Fuel Elements Express Licensing Acid-catalyzed dehydrogenation of amine-boranes Express Licensing Air Breathing Direct Methanol Fuel Cell Express Licensing Aligned Crystalline Semiconducting Film On A Glass Substrate And Method Of Making Express Licensing Anion-Conducting Polymer, Composition, And Membrane Express Licensing Apparatus for Producing Voltage and Current Pulses Express Licensing Biaxially oriented film on flexible polymeric substrate Express Licensing Corrosion Test Cell For Bipolar Plates Express Licensing Device for hydrogen separation and method Negotiable Licensing Durable Fuel Cell Membrane Electrode Assembly (MEA) Express Licensing Energy Efficient Synthesis Of Boranes Express Licensing

450

Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

energy, including Fundamental advances in nuclear fuels Nonproliferation safeguards Reactor concepts Reactor waste disposition Animation of new reactor concept for deep space...

451

UN Alcohol Energy Data: Consumption by Other Consumers The Energy  

Open Energy Info (EERE)

Other Consumers The Energy Statistics Database contains comprehensive energy statistics on the production, trade, conversion and final consumption of primary and secondary;...

452

International Energy Statistics - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Total Primary Energy Consumption ; Indicators. CO2 Emissions ; Carbon Intensity ; Energy Intensity ; ... Jordan 7.190 7.190 7.190 7.190 ...

453

International Energy Statistics - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Total Primary Energy Consumption ; Indicators. CO2 Emissions ; Carbon Intensity ; Energy Intensity ; ... Jordan 0.003 0.003 0.003 0.003 ...

454

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

state's primary energy... http:energy.govsavingsvirginia-energy-plan-virginia Page MACCS2 Current Central Registry Toolbox Version(s): 1.13.1Code Owner: Sandia National...

455

Home > Households, Buildings & Industry > Energy Efficiency Page ...  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency Page > Energy Intensities >Table 7b Glossary U.S. Residential Housing Primary Energy Intensity

456

Home > Households, Buildings & Industry > Energy Efficiency Page ...  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency Page > Energy Intensities > Table 8b Glossary U.S. Residential Buildings Primary Energy Intensity

457

Regulatory risks paralyzing power industry while demand grows  

SciTech Connect

2008 will be the year the US generation industry grapples with CO{sub 2} emission. Project developers are suddenly coal-shy, mostly flirting with new nuclear plants waiting impatiently in line for equipment manufacturers to catch up with the demand for wind turbines, and finding gas more attractive again. With no proven greenhouse gas sequestration technology on the horizon, utilities will be playing it safe with energy-efficiency ploys rather than rushing to contract for much-needed new generation.

Maize, K.; Peltier, R.

2008-01-15T23:59:59.000Z

458

Non-utility power generation continues to grow  

SciTech Connect

This article examines why the number of non-utility power plants is increasing. The topics include the impact of the changes to the Public Utility Holding Company Act, and bidding for capacity. It includes a look at Texaco's Puget Sound oil refinery and how its efficiency problems were solved using cogeneration including the need to improve energy balance and engineering of the plant. Grayling generating station (wood waste) and Kalaeloa cogeneration power plant (low sulfur fuel oil) are also discussed.

Smith, D.J.

1993-05-01T23:59:59.000Z

459

As the world economy grows - OPEC holds the line  

SciTech Connect

As economic indicators reflect the growth throughout the world following several years of stagnation, energy demand, particularly petroleum, is picking up as well. After enduring historically low oil prices, oil producers welcome the higher demand, but seek higher prices. To accomplish this, OPEC has adopted a long term fundamental strategy in contrast to reacting to short term market volatility in the past. This issue details regional oil demand and output around the world.

Not Available

1994-11-28T23:59:59.000Z

460

Iowa's Clean Energy Economy is Working | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

this great country, Americans are finding new opportunities in a growing clean energy industry. In Iowa, wind energy provides roughly 20 percent of electricity and more than 5,000...

Note: This page contains sample records for the topic "growing primary energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Realized and prospective impacts of U.S. energy efficiency standards for residential appliances: 2004 update  

E-Print Network (OSTI)

Energy Consumption . . . . . . . . . . . . . . . . . . . .residential primary energy consumption and CO 2 emissions inenergy efficiency and energy consumption of a given product

Meyers, Stephen; McMahon, James; McNeil, Michael

2005-01-01T23:59:59.000Z

462

Table ET1. Primary Energy, Electricity, and Total Energy Price ...  

U.S. Energy Information Administration (EIA)

2010 r 115.5 r 3,633.6 r 4,471.2 1,704.1 561.3 r 12,406.3 r 648.4 r 703.3 r 20,494.6 r 426.0 r 24,669.7 12,409.5 r 37,079.2

463

Increasing primary energy and electricity demand. Persistent energy deficit situation.  

E-Print Network (OSTI)

March 12 ~ 15, 2012 Westmark Hotel, Fairbanks, Alaska "50 Years... Honor the Past; Embrace the Present Meeting ~ Westmark Hotel Page 2 3/6/2012~ 11:23:30 AM If you need any assistance logging on, please of Directors Meeting ~ Westmark Hotel Page 3 3/6/2012~ 11:23:30 AM MONDAY, MARCH 12, 2012 ~ TRIBAL OVERVIEW

464

NREL: Energy Analysis - Aaron Townsend  

NLE Websites -- All DOE Office Websites (Extended Search)

and conventional energy technologies Electrical energy storage Primary research interests Electricity and natural gas market design and implementation Impact of market structure...

465

NREL: Energy Analysis - Jim Leyshon  

NLE Websites -- All DOE Office Websites (Extended Search)

jim.leyshon@nrel.gov Areas of expertise Data visualization Green power markets Renewable energy financial opportunities Primary research interests State renewable energy policy...

466

NREL: Energy Analysis - Lori Bird  

NLE Websites -- All DOE Office Websites (Extended Search)

E-mail: lori.bird@nrel.gov Areas of expertise Market analysis Policy analysis Primary research interests Renewable energy and carbon markets Renewable energy policy...

467

UK Energy and Emissions Projections (2010 Update) | OpenEI  

Open Energy Info (EERE)

- 2025); energy generation by source (2006 - 2025); primary energy demand (2006 - 2025); final energy demand (2000 - 2025); and energy capacity (2010 - 2025). Also available:...

468

UK Energy and Emissions Projections (2010 Update) The UK Department...  

Open Energy Info (EERE)

- 2025); energy generation by source (2006 - 2025); primary energy demand (2006 - 2025); final energy demand (2000 - 2025); and energy capacity (2010 - 2025). Also available:...

469

Zipping mechanism for force-generation by growing filament bundles  

E-Print Network (OSTI)

We investigate the force generation by polymerizing bundles of filaments, which form because of short-range attractive filament interactions. We show that bundles can generate forces by a zipping mechanism, which is not limited by buckling and operates in the fully buckled state. The critical zipping force, i.e. the maximal force that a bundle can generate, is given by the adhesive energy gained during bundle formation. For opposing forces larger than the critical zipping force, bundles undergo a force-induced unbinding transition. For larger bundles, the critical zipping force depends on the initial configuration of the bundles. Our results are corroborated by Monte Carlo simulations.

Torsten Kuehne; Reinhard Lipowsky; Jan Kierfeld

2011-03-02T23:59:59.000Z

470

Zipping mechanism for force-generation by growing filament bundles  

E-Print Network (OSTI)

We investigate the force generation by polymerizing bundles of filaments, which form because of short-range attractive filament interactions. We show that bundles can generate forces by a zipping mechanism, which is not limited by buckling and operates in the fully buckled state. The critical zipping force, i.e. the maximal force that a bundle can generate, is given by the adhesive energy gained during bundle formation. For opposing forces larger than the critical zipping force, bundles undergo a force-induced unbinding transition. For larger bundles, the critical zipping force depends on the initial configuration of the bundles. Our results are corroborated by Monte Carlo simulations.

Kuehne, Torsten; Kierfeld, Jan

2011-01-01T23:59:59.000Z

471

XI. Index of Primary Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

XI Index of Primary Contacts XI Index of Primary Contacts A Aaron, Tim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 Aceves, Salvador M. . . . . . . . . . . . . . . . . . . . . . .186 Adams, Stephen. . . . . . . . . . . . . . . . . . . . . . . . . .713 Adzic, Radoslav. . . . . . . . . . . . . . . . . . . . . . . . . .384 Ahluwalia, Rajesh K.. . . . . . . . . . . . . . . . . . . . . .511 Ahmed, S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .451 Ahn, Channing. . . . . . . . . . . . . . . . . . . . . . .262, 267 Alam, Mohammad S.. . . . . . . . . . . . . . . . . . . . . .509 Andersen, Cindi. . . . . . . . . . . . . . . . . . . . . . . . . .811 Anton, Donald L.. . . . . . . . . . . . . . . . . . . . .230, 243 Arduengo III, Anthony J. . . . . . . . . . . . . . . . . . .274

472

Advantages and Challenges of Wind Energy  

Energy.gov (U.S. Department of Energy (DOE))

Wind energy offers many advantages, which explains why it's the fastest-growing energy source in the world. Research efforts are aimed at addressing the challenges to greater use of wind energy.

473

Future United States Energy Security Concerns  

E-Print Network (OSTI)

Without energy, the economy can neither function nor grow. However, for at least the next half-century, the U.S. will not have an inexhaustible supply of inexpensive, clean energy. Dependence on energy imports, vulnerability ...

Deutch, John M.

474

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

The State of the Art Home performance contractor A small but growing cadre of "Home Performance Professionals" is rising to the challenge of putting america back on the energy...

475

Energy Use per Worker-Hour: Evaluating the Contribution of Labor to Manufacturing Energy Use  

E-Print Network (OSTI)

to primary energy supply for industry is representative ofenergy supply, which includes all primary energy except that supplied to industry,energy supply for the country. Countries with industries

Zhang, Teresa; Dornfeld, David

2007-01-01T23:59:59.000Z

476

Photo of the Week: How to Grow Superconducting Crystals | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How to Grow Superconducting Crystals How to Grow Superconducting Crystals Photo of the Week: How to Grow Superconducting Crystals September 13, 2013 - 11:29am Addthis Many of the materials that scientists work with at Brookhaven National Laboratory are too small and too precise for traditional tools. In cases like these, the labs grow materials instead of building them. Brookhaven physicist Genda Gu pioneered techniques that grow some of the largest single-crystal high-temperature superconductors in the world. The glowing chamber in this photo grows superconducting crystals. To do so, the furnace focuses infrared light onto a rod, melting it around 4,000 degrees Fahrenheit. Under just the right conditions, the liquefied material recrystallizes as a single uniform structure, which is highly sensitive and takes about one month to form. | Photo courtesy of Brookhaven National Laboratory.

477

Gander Energy | Open Energy Information  

Open Energy Info (EERE)

Gander Energy Gander Energy Jump to: navigation, search Name Gander Energy Place Ontario, Canada Zip M1R 2T6 Sector Solar Product Ontario based solar power project developer. References Gander Energy[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Gander Energy is a company located in Ontario, Canada . References ↑ "Gander Energy" Retrieved from "http://en.openei.org/w/index.php?title=Gander_Energy&oldid=345654" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services OpenEI partners with a broad range of international organizations to grow

478

Fast-growing willow shrub named `Fish Creek`  

DOE Patents (OSTI)

A distinct male cultivar of Salix purpurea named `Fish Creek`, characterized by rapid stem growth producing greater than 30% more woody biomass than either of its parents (`94001` and `94006`) and 20% more biomass than a current production cultivar (`SV1`). `Fish Creek` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. The stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Fish Creek` displays a low incidence of rust disease or damage by beetles or sawflies.

Abrahamson, Lawrence P. (Marcellus, NY); Kopp, Richard F. (Marietta, NY); Smart, Lawrence B. (Geneva, NY); Volk, Timothy A. (Syracuse, NY)

2007-05-08T23:59:59.000Z

479

U.S. Energy Information Administration - EIA - Independent ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... active petrochemical industry, ... and the widespread use of electricity as the primary energy source for home ...

480

Buildings and Energy in the 80's -- Overview  

U.S. Energy Information Administration (EIA)

Overview Total Residential and Commercial Primary Consumption by Type of Building Sources: Energy Information Administration, Office of Energy Markets and ...

Note: This page contains sample records for the topic "growing primary energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Thailand - Analysis - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Thailand's primary energy consumption is mostly from fossil fuels, accounting for over 80 percent of the country's total energy consumption.

482

How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios  

E-Print Network (OSTI)

with urban commercial energy services. Primary energy demandinfrastructure, and energy services for new cities. Urbanfor a variety of energy services like energy-intensive

Aden, Nathaniel T.

2010-01-01T23:59:59.000Z

483

EIA projections show U.S. energy production growing faster than ...  

U.S. Energy Information Administration (EIA)

Have a question, comment, or suggestion for a future article? Send your feedback to todayinenergy@eia.gov

484

The environmental benefits of cellulosic energy crops at a landscape scale  

DOE Green Energy (OSTI)

The objective of this paper is to present a broad overview of the potential environmental impacts of biomass energy from energy crops--particularly the cellulosic energy crops current under development. For this discussion, the term energy crop refers to a crop grown primarily to create feedstock for either making biofuels such as ethanol or burning in a heat or electricity generation facility. Cellulosic energy crops are designed to be used in cellulose-based ethanol conversion processes (as opposed to starch or sugar-based ethanol conversion processes). As more cellulose can be produced per hectare of land than can sugar or starch, the cellulose-based ethanol conversion process is a more efficient sue of land for ethanol production. Assessing the environmental impacts of biomass energy from energy crops is complex because the environmental impact of using biomass for energy must be considered in the context of alternative energy options while the environmental impact of producing biomass from energy crops must be considered in the context of alternative land-uses. Using biomass-derived energy can reduce greenhouse gas emissions or increase them; growing biomass energy crops can enhance soil fertility or degrade it. Without knowing the context of the biomass energy, one can say little about its specific environmental impacts. The primary focus of this paper is an evaluation of the environmental impacts of growing cellulosic energy crops especially at the landscape or regional scale. However, to set the stage for this discussion, the authors begin by comparing the environmental advantages and disadvantages of biomass-derived energy relative to other energy alternatives such as coal, hydropower, nuclear power, oil/gasoline, natural gas and photovoltaics.

Graham, R.L.; Liu, W. [Oak Ridge National Lab., TN (United States); English, B.C. [Univ. of Tennessee, Knoxville, TN (United States). Inst. of Agriculture

1995-12-31T23:59:59.000Z

485

Energy Harvesting Using a Thermoelectric Generator and Generic Rule-based Energy Management.  

E-Print Network (OSTI)

??Harvesting energy from previously unemployed ambient sources can play an important role in saving energy and reducing the dependency to primary energy sources (AC power… (more)

Zhou, Yu

2008-01-01T23:59:59.000Z

486

Portfolio Manager Technical Reference: Source Energy | ENERGY...  

NLE Websites -- All DOE Office Websites (Extended Search)

from a raw fuel, such as electricity purchased from the grid or heat received from a district steam system. A unit of primary energy and a unit of secondary energy consumed at...

487

Science.gov: Still Strong, Growing in 10th Anniversary Year  

Office of Scientific and Technical Information (OSTI)

5, 2012 Science.gov: Still Strong, Growing in 10th Anniversary Year Washington, DC - Science.gov, known for its groundbreaking search and retrieval of government science...

488

Investigating the feasibility of growing algae for fuel in southern Nevada.  

E-Print Network (OSTI)

??Microalgae capable of growing in waste are adequate to be mass-cultivated for biodiesel, avoiding fertilizers and clean water, two obstacles to sustainability of the feedstock… (more)

Moazeni, Faegheh

2013-01-01T23:59:59.000Z

489

Material World: Forecasting Household Appliance Ownership in a Growing Global Economy  

E-Print Network (OSTI)

of Household Income and Appliance Ownership. ECEEE Summerof decreasing prices of appliances, if price data becomesForecasting Household Appliance Ownership in a Growing

Letschert, Virginie

2010-01-01T23:59:59.000Z

490

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

1981-1995 Chapter 4, Energy Consumption Table 4A.1.1.Primary Energy Consumption Table 4A.1.2.Primary Energy Consumption (Mtce) Table 4A.1.3. Primary

Fridley, Ed., David

2008-01-01T23:59:59.000Z

491

Electricity Monthly Update - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Renewable generation provides a growing share of California's electricity Source: U.S. Energy Information Administration based on California Independent System ...

492

NREL: Energy Analysis - News Archive 2013  

NLE Websites -- All DOE Office Websites (Extended Search)

| 2004 | 2003 | 2002 | 2001 December 2013 NREL Analysis: Making an Impact Renewable Energy Data Book Details Growing Renewables Industry in 2012 NREL Analysis and Analysts in...

493

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

are a source of auxiliary heat, they provide space to grow plants, and they are pleasant living areas. http:energy.govenergysaverarticlessunrooms-and-sunspaces Article...

494

Carbon-Free Compressed Air Energy Storage.  

E-Print Network (OSTI)

??The inherent intermittency of the two fastest growing renewable energy sources, wind and solar, presents a significant barrier to widespread penetration and replacement of fossil-fuel… (more)

Shively, Dustin Andrew

2009-01-01T23:59:59.000Z

495

Commercial Reference Building: Primary School | OpenEI  

Open Energy Info (EERE)

Primary School Primary School Dataset Summary Description Commercial reference buildings provide complete descriptions for whole building energy analysis using EnergyPlus simulation software. Included here is data pertaining to the reference building type Primary School for each of the 16 climate zones, and each of three construction categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings.The dataset includes four key components: building summary, zone summary, location summary and a picture. Building summary includes details about: form, fabric, and HVAC. Zone summary includes details such as: area, volume, lighting, and occupants for all types of zones in the building. Location summary includes key building information as it pertains to each climate zone, including: fabric and HVAC details, utility costs, energy end use, and peak energy demand.In total, DOE developed 16 reference building types that represent approximately 70% of commercial buildings in the U.S.; for each type, building models are available for the three categories. The commercial reference buildings (formerly known as commercial building benchmark models) were developed by the U.S. Department of Energy (DOE), in conjunction with three of its national laboratories.Additional data is available directly from DOE's Energy Efficiency & Renewable Energy (EERE) Website, including EnergyPlus software input files (.idf) and results of the EnergyPlus simulations (.html).

496

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Oil Icon Oil/Liquids Oil Icon Oil/Liquids exec summary Executive Summary Domestic crude oil production increases....Read full section With modest economic growth, increased efficiency, growing domestic production, and continued adoption of nonpetroleum liquids, net imports of petroleum and other liquids make up a smaller share of total U.S. energy consumption ...Read full section Market trends icon Market Trends Oil price cases depict uncertainty in world oil markets.... Read full section Trends in petroleum and other liquids markets are defined largely by the developing nations... Read full section Production from resources other than crude oil and natural gas liquids increases... Read full section Renewable energy sources lead rise in primary energy consumption... Read full section

497

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

market trends icon Nuclear market trends icon Nuclear Mkt trends Market Trends After Fukushima, prospects for nuclear power dim in Japan and Europe but not elsewhere.... Read full section Renewable energy sources lead rise in primary energy consumption.... Read full section Coal-fired plants continue to be the largest source of U.S. electricity generation.... Read full section Most new capacity additions use natural gas and renewables.... Read full section Nuclear power plant capacity grows slowly through uprates and new builds.... Read full section issues Issues in Focus Nuclear power in AEO2012.... Read full section figure data Reference Case Tables Table 1. Total Energy Supply, Disposition, and Price Summary XLS Table 9. Electricity Generating Capacity XLS Table 56. Electricity Generation by Electricity Market Module Region and Source XLS

498

Construction of a Demand Side Plant with Thermal Energy Storage  

E-Print Network (OSTI)

Utility managements have two primary responsibilities. They must supply reliable electric service to meet the needs of their customers at the most efficient price possible while at the same time generating the maximum rate of return possible for their shareholders. Regulator hostility towards the addition of generating capacity has made it difficult for utilities to simultaneously satisfy both the needs of their ratepayers and the needs of their shareholders. Recent advances in thermal energy storage may solve the utilities' paradox. Residential thermal energy storage promises to provide the ratepayers significantly lower electricity rates and greater comfort levels. Utilities benefit from improved load factors, peak capacity additions at low cost, improved shareholder value (ie. a better return on assets), improved reliability, and a means of satisfying growing demand without the regulatory and litigious nightmares associated with current supply side solutions. This paper discusses thermal energy storage and its potential impact on the electric utilities and introduces the demand side plant concept.

Michel, M.

1989-01-01T23:59:59.000Z

499

The Nuclear Alternative: Energy Production within Ulaanbaatar, Mongolia  

Science Conference Proceedings (OSTI)

Over ninety percent of Mongolia's energy load is run through the Central Energy System. This primary grid provides Mongolia's capital, Ulaanbaatar, with the power it uses to function. In the first half of 2010 the Central Energy System managed 1739.45 million kWhs, a 4.6 percent increase from 2009. If this growth rate continues, by 2015 Ulaanbaatar's three power plants will be unable to generate enough heat and electricity to meet the city's needs. Currently, plans have been proposed to rehabilitate the aging coal power plants. However, rising maintenance costs and growing emission levels make the long-term sustainability of this solution uncertain. The following paper analyzes the capital, maintenance, and decommissioning costs associated with the current rehabilitation plans and compares them with a nuclear alternative.

Liodakis, Emmanouel Georgiou [Stanford University, Palo Alto, CA 94305 (United States); MonAme Scientific Research Center, Ulaanbaatar (Mongolia)

2011-06-28T23:59:59.000Z

500

China Energy Primer  

E-Print Network (OSTI)

products Water Petroleum products Source: NDRC. Chapter 3Rate Total Petroleum Primary Electricity Source: Chinaexports Petroleum products imports Source: China Energy

Ni, Chun Chun

2010-01-01T23:59:59.000Z