Sample records for groups radiative processes

  1. Radiative Processes Working Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Radiation Protection Regulations: The

  2. Radiation Processing -an overview

    E-Print Network [OSTI]

    of radiation · Facilities ­ Gamma ­ electrons ­ X-ray ­ Safety · Sterilisation of medical devices · Food irradiation · Material modification #12;3 Content ­ Part 2 · Environmental applications · Other applications Radiation · Energy in the form of waves or moving subatomic particles Irradiation · Exposure to radiation

  3. Slow group velocity and Cherenkov radiation

    E-Print Network [OSTI]

    I. Carusotto; M. Artoni; G. C. La Rocca; F. Bassani

    2001-03-12T23:59:59.000Z

    We theoretically study the effect of ultraslow group velocities on the emission of Vavilov-Cherenkov radiation in a coherently driven medium. We show that in this case the aperture of the group cone on which the intensity of the radiation peaks is much smaller than that of the usual wave cone associated with the Cherenkov coherence condition. We show that such a singular behaviour may be observed in a coherently driven ultracold atomic gas.

  4. Radiation Protection Group Annual Report 2003

    E-Print Network [OSTI]

    Silari, M

    2004-01-01T23:59:59.000Z

    The RP Annual Report summarises the activities carried out by CERNs Radiation Protection Group in the year 2003. It includes contribution from the EN section of the TIS/IE Group on environmental monitoring. Chapter 1 reports on the measurements and estimations of the impact on the environment and public exposure due to the Organisations activities. Chapter 2 provides the results of the monitoring of CERNs staff, users and contractors to occupational exposure. Chapter 3 deals with operational radiation protection around the accelerators and in the experimental areas. Chapter 4 reports on RP design studies for the LHC and CNGS projects. Chapter 5 addresses the various services provided by the RP Group to other Groups and Divisions at CERN, which include managing radioactive waste, high-level dosimetry, lending radioactive test sources and shipping radioactive materials. Chapter 6 describes activities other than the routine and service tasks, i.e. development work in the field of instrumentation and res...

  5. QER- Comment of Process Gas Consumer Group

    Broader source: Energy.gov [DOE]

    Hello, Attached are comments offered by the Process Gas Consumers Group in response to the August 25, 2014 Federal Register Notice soliciting comments on issues related to the Quadrennial Energy Review. Please let us know if you have any questions or would like any additional information.

  6. Diffusion processes in general relativistic radiating spheres

    SciTech Connect (OSTI)

    Barreto, W.; Herrera, L.; Santos, N.O. (Oriente Universidad, Cumana (Venezuela); Universidad Central de Venezuela, Caracas; Observatorio Nacional do Brasil, Rio de Janeiro (Brazil))

    1989-09-01T23:59:59.000Z

    The influence of diffusion processes on the dynamics of general relativistic radiating spheres is systematically studied by means of two examples. Differences between the streaming-out limit and the diffusion limit are exhibited, for both models, through the evolution curves of dynamical variables. In particular it is shown the Bondi mass decreases, for both models, in the diffusion limit as compared with its value at the streaming-out regime. 15 refs.

  7. 2 OVERVIEW OF THE RADIATION SURVEY AND SITE INVESTIGATION PROCESS

    E-Print Network [OSTI]

    2 OVERVIEW OF THE RADIATION SURVEY AND SITE INVESTIGATION PROCESS 2.1 Introduction This chapter provides a brief overview of the Radiation Survey and Site Investigation (RSSI) Process, several important aspects of this Process, and its underlying principles. The concepts introduced here are discussed

  8. Pelvic Normal Tissue Contouring Guidelines for Radiation Therapy: A Radiation Therapy Oncology Group Consensus Panel Atlas

    SciTech Connect (OSTI)

    Gay, Hiram A., E-mail: hgay@radonc.wustl.edu [Washington University School of Medicine, St Louis, MO (United States); Barthold, H. Joseph [Commonwealth Hematology and Oncology, Weymouth, MA (United States); Beth Israel Deaconess Medical Center, Boston, MA (Israel); O'Meara, Elizabeth [Radiation Therapy Oncology Group, Philadelphia, PA (United States); Bosch, Walter R. [Washington University School of Medicine, St Louis, MO (United States); El Naqa, Issam [Department of Radiation Oncology, McGill University Health Center, Montreal, Quebec (Canada); Al-Lozi, Rawan [Washington University School of Medicine, St Louis, MO (United States); Rosenthal, Seth A. [Radiation Oncology Centers, Radiological Associates of Sacramento, Sacramento, CA (United States); Lawton, Colleen [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI (United States); Lee, W. Robert [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Sandler, Howard [Cedars-Sinai Medical Center, Los Angeles, CA (United States); Zietman, Anthony [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Myerson, Robert [Washington University School of Medicine, St Louis, MO (United States); Dawson, Laura A. [Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario (Canada); Willett, Christopher [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Kachnic, Lisa A. [Department of Radiation Oncology, Boston Medical Center, Boston University School of Medicine, Boston, MA (United States); Jhingran, Anuja [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Portelance, Lorraine [University of Miami, Miami, FL (United States); Ryu, Janice [Radiation Oncology Centers, Radiological Associates of Sacramento, Sacramento, CA (United States); and others

    2012-07-01T23:59:59.000Z

    Purpose: To define a male and female pelvic normal tissue contouring atlas for Radiation Therapy Oncology Group (RTOG) trials. Methods and Materials: One male pelvis computed tomography (CT) data set and one female pelvis CT data set were shared via the Image-Guided Therapy QA Center. A total of 16 radiation oncologists participated. The following organs at risk were contoured in both CT sets: anus, anorectum, rectum (gastrointestinal and genitourinary definitions), bowel NOS (not otherwise specified), small bowel, large bowel, and proximal femurs. The following were contoured in the male set only: bladder, prostate, seminal vesicles, and penile bulb. The following were contoured in the female set only: uterus, cervix, and ovaries. A computer program used the binomial distribution to generate 95% group consensus contours. These contours and definitions were then reviewed by the group and modified. Results: The panel achieved consensus definitions for pelvic normal tissue contouring in RTOG trials with these standardized names: Rectum, AnoRectum, SmallBowel, Colon, BowelBag, Bladder, UteroCervix, Adnexa{sub R}, Adnexa{sub L}, Prostate, SeminalVesc, PenileBulb, Femur{sub R}, and Femur{sub L}. Two additional normal structures whose purpose is to serve as targets in anal and rectal cancer were defined: AnoRectumSig and Mesorectum. Detailed target volume contouring guidelines and images are discussed. Conclusions: Consensus guidelines for pelvic normal tissue contouring were reached and are available as a CT image atlas on the RTOG Web site. This will allow uniformity in defining normal tissues for clinical trials delivering pelvic radiation and will facilitate future normal tissue complication research.

  9. Electrical Analogs of Atomic Radiative Decay Processes

    E-Print Network [OSTI]

    Fontana, Peter R.; Srivastava, Rajendra P.

    1977-03-01T23:59:59.000Z

    Simple electrical circuits are analyzed, and the results show that for high frequencies they have frequency and time responses identical to the spontaneous radiative decays of atoms. As an illustration of the analogy a two-circuit electrical system...

  10. Evolution of the radiation processing industry

    SciTech Connect (OSTI)

    Cleland, Marshall R. [IBA Industrial, Inc., 151 Heartland Boulevard, Edgewood, NY 11717 (United States)

    2013-04-19T23:59:59.000Z

    Early investigations of the effects of treating materials with ionizing radiations began in 1894 with the irradiation of gases at atmospheric pressure using cathode rays from a Crookes gas-discharge tube, in 1895 with the discovery of X-rays emitted from a Crookes tube, and in 1896 with the discovery of radioactivity in uranium. In 1897, small electrically charged particles were detected and identified in the gas discharges inside Crookes tubes. These particles were then named electrons. During the next three decades, it was found that these novel forms of energy could produce ions to initiate chemical reactions in some gases and liquids. By 1921, it had also been shown that insects, parasites and bacteria could be killed by treatment with ionizing radiation. In 1925, a high-vacuum tube with a thermionic cathode and a thin metallic anode was developed to produce electron beams in air by using accelerating potentials up to 250 kilovolts. That unique apparatus was the precursor of the many types of electron accelerators that have been developed since then for a variety of industrial applications. In 1929, the vulcanization of natural rubber without using any chemical additives was achieved by irradiation with electrons from a 250 kilovolt accelerator. In 1939, several liquid monomers were polymerized by treatment with gamma rays from radioactive nuclides. These early results were not exploited before the end of World War II because intense sources of ionizing radiation were not available then. Shortly after that war, there was increased interest in developing the peaceful uses of atomic energy, which included the chemical and biological effects of radiation exposures. Many uses that have been developed since then are described briefly in this paper. These industrial applications are now producing billions of US dollars in revenue every year.

  11. Radiation zeros in weak boson production processes at hadron colliders

    E-Print Network [OSTI]

    F. Mamedov

    2001-07-31T23:59:59.000Z

    The Standard Model amplitudes for processes where one or more gauge bosons are emitted exhibit zeros in the angular distributions. The theoretical and experimental aspects of these radiation amplitude zeros are reviewed and some recent results are discussed. In particular, the zeros of the $WZ\\gamma$ and $WZZ$ production amplitudes are analyzed. It is briefly explained how radiation zeros can be used to test the SM.

  12. Process for making solid-state radiation-emitting composition

    DOE Patents [OSTI]

    Ashley, C.S.; Brinker, C.J.; Reed, S.; Walko, R.J.

    1993-08-31T23:59:59.000Z

    The invention provides a process for loading an aerogel substrate with tritium and the resultant compositions. According to the process, an aerogel substrate is hydrolyzed so that surface OH groups are formed. The hydrolyzed aerogel is then subjected to tritium exchange employing, for example, a tritium-containing gas, whereby tritium atoms replace H atoms of surface OH groups. OH and/or CH groups of residual alcohol present in the aerogel may also undergo tritium exchange.

  13. Process for making solid-state radiation-emitting composition

    DOE Patents [OSTI]

    Ashley, Carol S. (14316 Bauer Rd., N.E., Albuquerque, NM 87123); Brinker, C. Jeffrey (14 Eagle Nest Dr., N.E., Albuquerque, NM 87122); Reed, Scott (10308 Leymon Court, N.W., Albuquerque, NM 87114); Walko, Robert J. (3215 Blume, N.E., Albuquerque, NM 87111)

    1993-01-01T23:59:59.000Z

    The invention provides a process for loading an aerogel substrate with tritium and the resultant compositions. According to the process, an aerogel substrate is hydrolyzed so that surface OH groups are formed. The hydrolyzed aerogel is then subjected to tritium exchange employing, for example, a tritium-containing gas, whereby tritium atoms replace H atoms of surface OH groups. OH and/or CH groups of residual alcohol present in the aerogel may also undergo tritium exchange.

  14. Doppler effect in the oscillator radiation process in the medium

    E-Print Network [OSTI]

    Lekdar Gevorgian; Valeri Vardanyan

    2011-10-15T23:59:59.000Z

    The purpose of this paper is to investigate the radiation process of the charged particle passing through an external periodic field in a dispersive medium. In the optical range of spectrum we will consider two cases: first, the source has not eigenfrequency, and second, the source has eigenfrequency. In the first case, when the Cherenkov radiation occurs, the non-zero eigenfrequency produces a paradox for Doppler effect. It is shown that the absence of the eigenfrequency solves the paradox known in the literature. The question whether the process is normal (i.e. hard photons are being radiated under the small angles) or anomalous depends on the law of the medium dispersion. When the source has an eigenfrequency the Doppler effects can be either normal or anomalous. In the X-ray range of the oscillator radiation spectrum we have two photons radiated under the same angle- soft and hard. In this case the radiation obeys to so-called complicated Doppler effect, i.e. in the soft photon region we have anomalous Doppler effect and in the hard photon region we have normal Doppler effect.

  15. http://gpi.sagepub.com/ Group Processes & Intergroup

    E-Print Network [OSTI]

    Cooper, Brenton G.

    .htmlCitations: What is This? - Feb 15, 2011OnlineFirst Version of Record - Jun 14, 2011Version of Record>> at TEXAS to successful real (Marx & Roman, 2002) or fictitious role models (McIntyre, Paulson, & Lord, 2003). When Barack Obama's Article 382680GPIXXX10.1177/1368430210382680Taylor et al.Group Processes & Intergroup Relations

  16. Environment/Health/Safety (EHS): Radiation Protection Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000ConsumptionInnovationEnvironment, Safety andBerkeleyRadiation

  17. One Hair Postulate for Hawking Radiation as Tunneling Process

    E-Print Network [OSTI]

    H. Dong; Qing-yu Cai; X. F. Liu; C. P. Sun

    2009-07-13T23:59:59.000Z

    For Hawking radiation, treated as a tunneling process, the no-hair theorem of black hole together with the law of energy conservation is utilized to postulate that the tunneling rate only depends on the external qualities (e.g., the mass for the Schwarzschild black hole) and the energy of the radiated particle. This postulate is justified by the WKB approximation for calculating the tunneling probability. Based on this postulate, a general formula for the tunneling probability is derived without referring to the concrete form of black hole metric. This formula implies an intrinsic correlation between the successive processes of the black hole radiation of two or more particles. It also suggests a kind of entropy conservation and thus resolves the puzzle of black hole information loss in some sense.

  18. Inferring Group Processes from Computer-Mediated Affective Text Analysis

    SciTech Connect (OSTI)

    Schryver, Jack C [ORNL; Begoli, Edmon [ORNL; Jose, Ajith [Missouri University of Science and Technology; Griffin, Christopher [Pennsylvania State University

    2011-02-01T23:59:59.000Z

    Political communications in the form of unstructured text convey rich connotative meaning that can reveal underlying group social processes. Previous research has focused on sentiment analysis at the document level, but we extend this analysis to sub-document levels through a detailed analysis of affective relationships between entities extracted from a document. Instead of pure sentiment analysis, which is just positive or negative, we explore nuances of affective meaning in 22 affect categories. Our affect propagation algorithm automatically calculates and displays extracted affective relationships among entities in graphical form in our prototype (TEAMSTER), starting with seed lists of affect terms. Several useful metrics are defined to infer underlying group processes by aggregating affective relationships discovered in a text. Our approach has been validated with annotated documents from the MPQA corpus, achieving a performance gain of 74% over comparable random guessers.

  19. Stereotactic body radiation therapy: The report of AAPM Task Group 101

    SciTech Connect (OSTI)

    Benedict, Stanley H.; Yenice, Kamil M.; Followill, David [University of Virginia Health System, Charlottesville, Virginia 22908 (United States); and others

    2010-08-15T23:59:59.000Z

    Task Group 101 of the AAPM has prepared this report for medical physicists, clinicians, and therapists in order to outline the best practice guidelines for the external-beam radiation therapy technique referred to as stereotactic body radiation therapy (SBRT). The task group report includes a review of the literature to identify reported clinical findings and expected outcomes for this treatment modality. Information is provided for establishing a SBRT program, including protocols, equipment, resources, and QA procedures. Additionally, suggestions for developing consistent documentation for prescribing, reporting, and recording SBRT treatment delivery is provided.

  20. The diversity and radiation of the largest monophyletic animal group on New Caledonia (Trichoptera: Ecnomidae: Agmina)

    E-Print Network [OSTI]

    Espeland, Marianne

    The diversity and radiation of the largest monophyletic animal group on New Caledonia (Trichoptera and in the protection of the species (Monaghan et al., 2009). Furthermore, for most taxa, the distribution)], which is of serious hindrance when, e.g. planning which areas to protect (Polasky et al., 2000; Gaston

  1. Intraoperative radiation therapy using mobile electron linear accelerators: Report of AAPM Radiation Therapy Committee Task Group No. 72

    SciTech Connect (OSTI)

    Sam Beddar, A.; Biggs, Peter J.; Chang Sha; Ezzell, Gary A.; Faddegon, Bruce A.; Hensley, Frank W.; Mills, Michael D. [Department of Radiation Physics, Division of Radiation Oncology, Unit 94, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030 (United States); Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States); Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599 (United States); Department of Radiation Oncology, Mayo Clinic Scottsdale, Scottsdale, Arizona 85259 (United States); Department of Radiation Oncology, University of California San Francisco, San Francisco, California 94143 (United States); Department of Radiation Oncology, University of Heidelberg, 69120 Heidelberg (Germany); Department of Radiation Oncology, James Graham Brown Cancer Center, Louisville, Kentucky 40202 (United States)

    2006-05-15T23:59:59.000Z

    Intraoperative radiation therapy (IORT) has been customarily performed either in a shielded operating suite located in the operating room (OR) or in a shielded treatment room located within the Department of Radiation Oncology. In both cases, this cancer treatment modality uses stationary linear accelerators. With the development of new technology, mobile linear accelerators have recently become available for IORT. Mobility offers flexibility in treatment location and is leading to a renewed interest in IORT. These mobile accelerator units, which can be transported any day of use to almost any location within a hospital setting, are assembled in a nondedicated environment and used to deliver IORT. Numerous aspects of the design of these new units differ from that of conventional linear accelerators. The scope of this Task Group (TG-72) will focus on items that particularly apply to mobile IORT electron systems. More specifically, the charges to this Task Group are to (i) identify the key differences between stationary and mobile electron linear accelerators used for IORT (ii) describe and recommend the implementation of an IORT program within the OR environment, (iii) present and discuss radiation protection issues and consequences of working within a nondedicated radiotherapy environment, (iv) describe and recommend the acceptance and machine commissioning of items that are specific to mobile electron linear accelerators, and (v) design and recommend an efficient quality assurance program for mobile systems.

  2. Does Quality of Radiation Therapy Predict Outcomes of Multicenter Cooperative Group Trials? A Literature Review

    SciTech Connect (OSTI)

    Fairchild, Alysa, E-mail: alysa.fairchild@albertahealthservices.ca [Department of Radiation Oncology, Cross Cancer Institute, Edmonton, Alberta (Canada); Straube, William [Advanced Technology Consortium, Imaged-Guided Therapy QA Center, St. Louis, Missouri (United States); Laurie, Fran [Quality Assurance Review Center, Lincoln, Rhode Island (United States); Followill, David [Radiological Physics Center, University of Texas MD Anderson Cancer Centre, Houston, Texas (United States)

    2013-10-01T23:59:59.000Z

    Central review of radiation therapy (RT) delivery within multicenter clinical trials was initiated in the early 1970s in the United States. Early quality assurance publications often focused on metrics related to process, logistics, and timing. Our objective was to review the available evidence supporting correlation of RT quality with clinical outcomes within cooperative group trials. A MEDLINE search was performed to identify multicenter studies that described central subjective assessment of RT protocol compliance (quality). Data abstracted included method of central review, definition of deviations, and clinical outcomes. Seventeen multicenter studies (1980-2012) were identified, plus one Patterns of Care Study. Disease sites were hematologic, head and neck, lung, breast, and pancreas. Between 0 and 97% of treatment plans received an overall grade of acceptable. In 7 trials, failure rates were significantly higher after inadequate versus adequate RT. Five of 9 and 2 of 5 trials reported significantly worse overall and progression-free survival after poor-quality RT, respectively. One reported a significant correlation, and 2 reported nonsignificant trends toward increased toxicity with noncompliant RT. Although more data are required, protocol-compliant RT may decrease failure rates and increase overall survival and likely contributes to the ability of collected data to answer the central trial question.

  3. A new code for radiation processes in high energy plasmas

    E-Print Network [OSTI]

    R. Belmont; J. Malzac; A. Marcowith

    2008-02-19T23:59:59.000Z

    Extreme objects such as X-ray binaries, AGN, or $\\gamma$-ray bursters harbor high energy plasmas whose properties are not well understood yet. Not only are they responsible of the hard X- and $\\gamma$-ray emission we observe but also they have a strong influence on the main dynamics and energetics of these objects themselves. Here we present a new kinetic code that solves the evolution equations for particles and photons around compact objects. It produces spectra that will be compared with observations from Simbol-X to constrain the radiation and acceleration processes in these objects.

  4. Process for alkane group dehydrogenation with organometallic catalyst

    DOE Patents [OSTI]

    Kaska, W.C.; Jensen, C.M.

    1998-07-14T23:59:59.000Z

    An improved process is described for the catalytic dehydrogenation of organic molecules having a ##STR1## group to produce a ##STR2## group. The organic molecules are: ##STR3## wherein: A.sup.1, A.sup.2, A.sup.3, and A.sup.4 are each independently P, As or N: E.sup.2 is independently C or N; E.sup.3 is independently C, Si or Ge; E.sup.4 is independently C, Si, or Ge; and E.sup.5 is independently C, Si or Ge; M.sup.1, M.sup.2, M.sup.3, and M.sup.4 each is a metal atom independently selected from the group consisting of ruthenium, rhodium, palladium, osmium, iridium and platinum; Q.sup.1, Q.sup.2, Q.sup.3, and Q.sup.4 are each independently a direct bond, --CH.sub.2 --, --CH.sub.2 CH.sub.2 --, or CH.dbd.CH--; in structure I, structure II or structure IV, R.sup.1, R.sup.2, R.sup.3, and R.sup.4 are each independently selected from alkyl, alkenyl, cycloalkyl, and aryl, or R.sup.1 and R.sup.2 together and R.sup.3 and R.sup.4 together form a ring structure having from 4 to 10 carbon atoms, or in structure III, R.sup.5, R.sup.6, R.sup.7, and R.sup.8 are each independently selected from alkyl, alkenyl, cycloalkyl, and aryl, or R.sup.5 and R.sup.6 together and R.sup.7 and R.sup.8 together form a ring structure having from 4 to 10 carbon atoms, at a temperature of between about 100.degree. and 250.degree. C. for between about 1 hr and 300 days in the absence of N.sub.2. The surprisingly stable catalyst is a complex of an organic ligand comprising H, C, Si, N, P atoms, and a platinum group metal. The dehydrogenation is performed between about 100 to 200.degree. C., and has increased turnover.

  5. Process for alkane group dehydrogenation with organometallic catalyst

    DOE Patents [OSTI]

    Kaska, William C. (Goleta, CA); Jensen, Craig M. (Kailua, HI)

    1998-01-01T23:59:59.000Z

    An improved process is described for the catalytic dehydrogenation of organic molecules having a ##STR1## group to produce a ##STR2## group. The organic molecules are: ##STR3## wherein: A.sup.1, A.sup.2, A.sup.3, and A.sup.4 are each independently P, As or N: E.sup.2 is independently C or N; E.sup.3 is independently C, Si or Ge; E.sup.4 is independently C, Si, or Ge; and E.sup.5 is independently C, Si or Ge; M.sup.1, M.sup.2, M.sup.3, and M.sup.4 each is a metal atom independently selected from the group consisting of ruthenium, rhodium, palladium, osmium, iridium and platinum; Q.sup.1, Q.sup.2, Q.sup.3, and Q.sup.4 are each independently a direct bond, --CH.sub.2 --, --CH.sub.2 CH.sub.2 --, or CH.dbd.CH--; in structure I, structure II or structure IV, R.sup.1, R.sup.2, R.sup.3, and R.sup.4 are each independently selected from alkyl, alkenyl, cycloalkyl, and aryl, or R.sup.1 and R.sup.2 together and R.sup.3 and R.sup.4 together form a ring structure having from 4 to 10 carbon atoms, or in structure III, R.sup.5, R.sup.6, R.sup.7, and R.sup.8 are each independently selected from alkyl, alkenyl, cycloalkyl, and aryl, or R.sup.5 and R.sup.6 together and R.sup.7 and R.sup.8 together form a ring structure having from 4 to 10 carbon atoms, at a temperature of between about 100.degree. and 250.degree. C. for between about 1 hr and 300 days in the absence of N.sub.2. The surprisingly stable catalyst is a complex of an organic ligand comprising H, C, Si, N, P atoms, and a platinum group metal. The dehydrogenation is performed between about 100 to 200.degree. C., and has increased turnover.

  6. 12010-10-21 ESDSWG -Technolgy Infusion Working Group Technology Infusion Process

    E-Print Network [OSTI]

    Christian, Eric

    12010-10-21 ESDSWG - Technolgy Infusion Working Group Technology Infusion Process Steve Olding 9th Infusion Working Group Technology Infusion Process 2009 Stakeholder needs identification Science needs End technologies Candidate technologies Known infusion barriers Infusion planning Technology matching Identified

  7. Process for forming shaped group III-V semiconductor nanocrystals, and product formed using process

    DOE Patents [OSTI]

    Alivisatos, A. Paul (Oakland, CA); Peng, Xiaogang (Fayetteville, AR); Manna, Liberato (Palo del Colle, IT)

    2001-01-01T23:59:59.000Z

    A process for the formation of shaped Group III-V semiconductor nanocrystals comprises contacting the semiconductor nanocrystal precursors with a liquid media comprising a binary mixture of phosphorus-containing organic surfactants capable of promoting the growth of either spherical semiconductor nanocrystals or rod-like semiconductor nanocrystals, whereby the shape of the semiconductor nanocrystals formed in said binary mixture of surfactants is controlled by adjusting the ratio of the surfactants in the binary mixture.

  8. Process for forming shaped group II-VI semiconductor nanocrystals, and product formed using process

    DOE Patents [OSTI]

    Alivisatos, A. Paul (Oakland, CA); Peng, Xiaogang (Fayetteville, AR); Manna, Liberato (Palo del Colle, IT)

    2001-01-01T23:59:59.000Z

    A process for the formation of shaped Group II-VI semiconductor nanocrystals comprises contacting the semiconductor nanocrystal precursors with a liquid media comprising a binary mixture of phosphorus-containing organic surfactants capable of promoting the growth of either spherical semiconductor nanocrystals or rod-like semiconductor nanocrystals, whereby the shape of the semiconductor nanocrystals formed in said binary mixture of surfactants is controlled by adjusting the ratio of the surfactants in the binary mixture.

  9. Process for preparing group Ib-IIIa-VIa semiconducting films

    DOE Patents [OSTI]

    Birkmire, R.W.; Schultz, J.M.; Marudachalam, M.; Hichri, H.

    1997-10-07T23:59:59.000Z

    Methods are provided for the production of supported monophasic group I-III-VI semiconductor films. In the subject methods, a substrate is coated with group I and III elements and then contacted with a reactive group VI element containing atmosphere under conditions sufficient to produce a substrate coated with a composite of at least two different group I-III-IV alloys. The resultant composite coated substrate is then annealed in an inert atmosphere under conditions sufficient to convert the composite coating to a monophasic group I-III-VI semiconductor film. The resultant supported semiconductor films find use in photovoltaic applications, particularly as absorber layers in solar cells. 4 figs.

  10. Process for preparing group Ib-IIIa-VIa semiconducting films

    DOE Patents [OSTI]

    Birkmire, Robert W. (Churchville, MD); Schultz, Jerold M. (Newark, DE); Marudachalam, Matheswaran (Newark, DE); Hichri, Habib (Newark, DE)

    1997-01-01T23:59:59.000Z

    Methods are provided for the production of supported monophasic group I-III-VI semiconductor films. In the subject methods, a substrate is coated with group I and III elements and then contacted with a reactive group VI element containing atmosphere under conditions sufficient to produce a substrate coated with a composite of at least two different group I-III-IV alloys. The resultant composite coated substrate is then annealed in an inert atmosphere under conditions sufficient to convert the composite coating to a monophasic group I-III-VI semiconductor film. The resultant supported semiconductor films find use in photovoltaic applications, particularly as absorber layers in solar cells.

  11. Using Geostationary Earth Radiation Budget dataUsing Geostationary Earth Radiation Budget data to evaluate global models and radiative processes

    E-Print Network [OSTI]

    cloud cover r.p.allan@reading.ac.uk University of Reading 20108 #12;Radiative bias: climate models estimate radiative effect of contrail cirrus:contrail cirrus: LW ~ 40 Wm-2 SW up to 80 Wm-2 rUsing Geostationary Earth Radiation Budget dataUsing Geostationary Earth Radiation Budget data

  12. accelerator radiation processing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A; Keitel, C H; Macchi, A 2010-01-01 12 Cloud Formation and Acceleration in a Radiative Environment CERN Preprints Summary: In a radiatively heated and cooled medium, the thermal...

  13. Mini-review Radiation-induced bystander effect: Early process and rapid assessment

    E-Print Network [OSTI]

    Yu, K.N.

    by the radiation protection agencies. How- ever, this dogma has been challenged by scientific findings since 1990sMini-review Radiation-induced bystander effect: Early process and rapid assessment Hongzhi Wang September 2013 Accepted 26 September 2013 Keywords: Radiation-induced bystander effect Rapid assessment

  14. Thin layer imaging process for microlithography using radiation at strongly attenuated wavelengths

    DOE Patents [OSTI]

    Wheeler, David R.

    2004-01-06T23:59:59.000Z

    A method for patterning of resist surfaces which is particularly advantageous for systems having low photon flux and highly energetic, strongly attenuated radiation. A thin imaging layer is created with uniform silicon distribution in a bilayer format. An image is formed by exposing selected regions of the silylated imaging layer to radiation. The radiation incident upon the silyliated resist material results in acid generation which either catalyzes cleavage of Si--O bonds to produce moieties that are volatile enough to be driven off in a post exposure bake step or produces a resist material where the exposed portions of the imaging layer are soluble in a basic solution, thereby desilylating the exposed areas of the imaging layer. The process is self limiting due to the limited quantity of silyl groups within each region of the pattern. Following the post exposure bake step, an etching step, generally an oxygen plasma etch, removes the resist material from the de-silylated areas of the imaging layer.

  15. Induced radiation processes in single-bubble sonoluminescence

    E-Print Network [OSTI]

    Prigara, F V

    2005-01-01T23:59:59.000Z

    According to the recent revision of the theory of thermal radiation, thermal black-body radiation has an induced origin. We show that in single-bubble sonoluminescence thermal radiation is emitted by a spherical resonator, coincident with the sonoluminescing bubble itself, instead of the ensemble of elementary resonators emitting thermal black-body radiation in the case of open gaseous media. For a given wavelength, the diameter of the resonator is fixed, and this explains the very high constancy in phase of light flashes from the sonoluminesing bubble, which is better than the constancy of period of a driving acoustic wave.

  16. What is the radiative process of the prompt phase of Gamma Ray Bursts?

    SciTech Connect (OSTI)

    Ghisellini, G. [INAF-Osservatorio Astronomico di Brera, Via Bianchi 46 I-23807 Merate (Italy)

    2010-07-15T23:59:59.000Z

    Despite the dramatic improvement of our knowledge of the phenomenology of Gamma Ray Bursts, we still do not know several fundamental aspects of their physics. One of the puzzles concerns the nature of the radiative process originating the prompt phase radiation. Although the synchrotron process qualifies itself as a natural candidate, it faces severe problems, and many efforts have been done looking for alternatives. These, however, suffer from other problems, and there is no general consensus yet on a specific radiation mechanism.

  17. Modeling ofHybrid (Heat Radiation and Microwave) High Temperature Processing ofLimestone

    E-Print Network [OSTI]

    Yakovlev, Vadim

    Modeling ofHybrid (Heat Radiation and Microwave) High Temperature Processing ofLimestone Shawn M (electromagnetic and thermal) modeling to cover practically valuable scenarios of hybrid (heat radiation is applied to the process of hybrid heating of cylindrical samples of limestone in Ceralink's MAT TM kiln

  18. Multipole and relativistic effects in radiative recombination process in hot plasmas M. B. Trzhaskovskaya,1

    E-Print Network [OSTI]

    Multipole and relativistic effects in radiative recombination process in hot plasmas M. B processes with regard to all multipoles of the radiative field, we have assessed the influence of nondipole . As is well known see, for example, Refs. 37 , and ref- erences therein , the multipole and relativistic

  19. Process Technology Group of Warwick School of Engineering | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergyInformation toPowerPrinceton Public

  20. Feasibility of Economic Analysis of Radiation Therapy Oncology Group (RTOG) 91-11 Using Medicare Data

    SciTech Connect (OSTI)

    Konski, Andre, E-mail: akonski@med.wayne.ed [Department of Radiation Oncology, Wayne State University School of Medicine, Detroit, MI (United States); Bhargavan, Mythreyi [American College of Radiology, Reston, VA (United States); Owen, Jean [Radiation Therapy Oncology Group, Philadelphia, PA (United States); Paulus, Rebecca [Department of Radiation Oncology, Maimonides Medical Center, Brooklyn, NY (United States); Cooper, Jay [Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD (United States); Forastiere, Arlene [Department of Radiation Oncology, Maimonides Medical Center, Brooklyn, NY (United States); Ang, K. Kian [Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX (United States); Watkins-Bruner, Deborah [Department of Nursing, University of Pennsylvania, Philadelphia, PA (United States)

    2011-02-01T23:59:59.000Z

    Purpose: The specific aim of this analysis was to evaluate the feasibility of performing a cost-effectiveness analysis using Medicare data from patients treated on a randomized Phase III clinical trial. Methods and Materials: Cost data included Medicare Part A and Part B costs from all providers-inpatient, outpatient, skilled nursing facility, home health, hospice, and physicians-and were obtained from the Centers for Medicare and Medicaid Services for patients eligible for Medicare, treated on Radiation Therapy Oncology Group (RTOG) 9111 between 1992 and 1996. The 47-month expected discounted (annual discount rate of 3%) cost for each arm of the trial was calculated in 1996 dollars, with Kaplan-Meier sampling average estimates of survival probabilities for each month and mean monthly costs. Overall and disease-free survival was also discounted 3%/year. The analysis was performed from a payer's perspective. Incremental cost-effectiveness ratios were calculated comparing the chemotherapy arms to the radiation alone arm. Results: Of the 547 patients entered, Medicare cost data and clinical outcomes were available for 66 patients. Reasons for exclusion included no RTOG follow-up, Medicare HMO enrollment, no Medicare claims since trial entry, and trial entry after 1996. Differences existed between groups in tumor characteristics, toxicity, and survival, all which could affect resource utilization. Conclusions: Although we were able to test the methodology of economic analysis alongside a clinical trial using Medicare data, the results may be difficult to translate to the entire trial population because of non-random missing data. Methods to improve Medicare data capture and matching to clinical trial samples are required.

  1. Non LTE radiation processes: application to the solar corona

    E-Print Network [OSTI]

    Suzy Collin

    2001-01-12T23:59:59.000Z

    These lectures are intended to present a simple but relatively complete description of the theory needed to understand the formation of lines in non-local thermodynamical equilibrium (NLTE), without appealing to any previous knowledge except a few basics of physics and spectroscopy. After recalling elementary notions of radiation transfer, the chapter is focussed on the computation of the level populations, the source function, the ionization state, and finally the line intensity. An application is made to forbidden coronal lines which were observed during eclipses since decades.

  2. Uniform bulk material processing using multimode microwave radiation

    DOE Patents [OSTI]

    Varma, Ravi (Los Alamos, NM); Vaughn, Worth E. (Madison, WI)

    2000-01-01T23:59:59.000Z

    An apparatus for generating uniform heating in material contained in a cylindrical vessel is described. TE.sub.10 -mode microwave radiation is coupled into a cylindrical microwave transition such that microwave radiation having TE.sub.11 -, TE.sub.01 - and TM.sub.01 -cylindrical modes is excited therein. By adjusting the intensities of these modes, substantially uniform heating of materials contained in a cylindrical drum which is coupled to the microwave transition through a rotatable choke can be achieved. The use of a poor microwave absorbing insulating cylindrical insert, such as aluminum oxide, for separating the material in the container from the container walls and for providing a volume through which air is circulated is expected to maintain the container walls at room temperature. The use of layer of highly microwave absorbing material, such as SiC, inside of the insulating insert and facing the material to be heated is calculated to improve the heating pattern of the present apparatus.

  3. Plasma Chemistry and Plasma Processing, Vol. 12, No.4, 1992 Infrared Radiation from an Arc Plasma and Its

    E-Print Network [OSTI]

    Eagar, Thomas W.

    in the electric field of a charged particle, radiation is emitted. In terms of radiation intensity, electronB ) Plasma Chemistry and Plasma Processing, Vol. 12, No.4, 1992 Infrared Radiation from an Arc ifinfraredradiation from an arc plasma can fie used for diagnostic purposes. Tire properties of IR radiation

  4. Process for producing radiation-induced self-terminating protective coatings on a substrate

    DOE Patents [OSTI]

    Klebanoff, Leonard E. (Dublin, CA)

    2001-01-01T23:59:59.000Z

    A gas and radiation are used to produce a protective coating that is substantially void-free on the molecular scale, self-terminating, and degradation resistant. The process can be used to deposit very thin (.apprxeq.5-20 .ANG.) coatings on critical surfaces needing protection from degradative processes including, corrosion and contamination.

  5. DISSERTATION THE EFFECTS OF RADIATIVE AND MICROPHYSICAL PROCESSES ON

    E-Print Network [OSTI]

    Harrington, Jerry Y.

    model is coupled in a consistent fashion to the bulk microphysical parameterization of Walko et al. (1995), an explicit liquid bin microphysical model (e.g. Feingold et al. 1996a) and a mixed­phase that boundary layer stability is strongly dependent upon ice processes, illustrating that the rapid reduction

  6. Radiative Processes of the DeWitt-Takagi Detector

    E-Print Network [OSTI]

    D. E. Diaz; J. Stephany

    2002-01-30T23:59:59.000Z

    We examine the excitation of a uniformly accelerated DeWitt-Takagi detector coupled quadratically to a Majorana-Dirac field. We obtain the transition probability from the ground state of the detector and the vacuum state of the field to an excited state with the emission of a Minkowski pair of quanta, in terms of elementary processes of absorption and scattering of Rindler quanta from the Fulling-Davies-Unruh thermal bath in the co-accelerated frame.

  7. Revisiting the interplay between ablation, collisional, and radiative processes during ns-laser ablation

    SciTech Connect (OSTI)

    Autrique, D. [Department of Physics and OPTIMAS Research Center, TU Kaiserslautern, 67653 Kaiserslautern (Germany) [Department of Physics and OPTIMAS Research Center, TU Kaiserslautern, 67653 Kaiserslautern (Germany); Department of Chemistry, University of Antwerp, 2610 Wilrijk (Belgium); Gornushkin, I. [Federal Institute for Materials Research and Testing - BAM, 12489 Berlin (Germany)] [Federal Institute for Materials Research and Testing - BAM, 12489 Berlin (Germany); Alexiades, V. [Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37996-1320 (United States)] [Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37996-1320 (United States); Chen, Z.; Bogaerts, A. [Department of Chemistry, University of Antwerp, 2610 Wilrijk (Belgium)] [Department of Chemistry, University of Antwerp, 2610 Wilrijk (Belgium); Rethfeld, B. [Department of Physics and OPTIMAS Research Center, TU Kaiserslautern, 67653 Kaiserslautern (Germany)] [Department of Physics and OPTIMAS Research Center, TU Kaiserslautern, 67653 Kaiserslautern (Germany)

    2013-10-21T23:59:59.000Z

    A study of ns-laser ablation is presented, which focuses on the transient behavior of the physical processes that act in and above a copper sample. A dimensionless multiphase collisional radiative model describes the interplay between the ablation, collisional, and radiative mechanisms. Calculations are done for a 6 ns-Nd:YAG laser pulse operating at 532 nm and fluences up to 15 J/cm{sup 2}. Temporal intensity profiles as well as transmissivities are in good agreement with experimental results. It is found that volumetric ablation mechanisms and photo-processes both play an essential role in the onset of ns-laser induced breakdown.

  8. Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2003-01-01T23:59:59.000Z

    1.1 This document provides guidance in determining absorbed-dose distributions in products, materials or substances irradiated in gamma, X-ray (bremsstrahlung) and electron beam facilities. Note 1For irradiation of food and the radiation sterilization of health care products, other specific ISO and ISO/ASTM standards containing dose mapping requirements exist. For food irradiation, see ISO/ASTM 51204, Practice for Dosimetry in Gamma Irradiation Facilities for Food Processing and ISO/ASTM 51431, Practice for Dosimetry in Electron and Bremsstrahlung Irradiation Facilities for Food Processing. For the radiation sterilization of health care products, see ISO 11137: 1995, Sterilization of Health Care Products Requirements for Validation and Routine Control Radiation Sterilization. In those areas covered by ISO 11137, that standard takes precedence. ISO/ASTM Practice 51608, ISO/ASTM Practice 51649, and ISO/ASTM Practice 51702 also contain dose mapping requirements. 1.2 Methods of analyzing the dose map data ar...

  9. Zi-Wei Lin Oct 5, 2004 UAH / NASA Space Radiation Shielding Program, MS Determine Important Nuclear Fragmentation Processes

    E-Print Network [OSTI]

    Lin, Zi-wei

    Zi-Wei Lin Oct 5, 2004 UAH / NASA Space Radiation Shielding Program, MS Determine Important Nuclear Fragmentation Processes for Space Radiation Protection in Human Space Explorations Why do we need to study? Conclusions Zi-Wei Lin University of Alabama in Huntsville/ NASA Space Radiation Shielding Program, MSFC #12

  10. Climatic Impact of Global-Scale Deforestation: Radiative versus Nonradiative Processes

    E-Print Network [OSTI]

    Haak, Hein

    Climatic Impact of Global-Scale Deforestation: Radiative versus Nonradiative Processes EDOUARD L­ocean­atmosphere GCM is used to explore the biogeophysical impact of large-scale deforestation on surface climate that the surface albedo increase owing to deforestation has a cooling effect of 21.36 K globally. On the other hand

  11. Irreversible Processes in a Universe modelled as a mixture of a Chaplygin gas and radiation

    E-Print Network [OSTI]

    G. M. Kremer

    2003-03-26T23:59:59.000Z

    The evolution of a Universe modelled as a mixture of a Chaplygin gas and radiation is determined by taking into account irreversible processes. This mixture could interpolate periods of a radiation dominated, a matter dominated and a cosmological constant dominated Universe. The results of a Universe modelled by this mixture are compared with the results of a mixture whose constituents are radiation and quintessence. Among other results it is shown that: (a) for both models there exists a period of a past deceleration with a present acceleration; (b) the slope of the acceleration of the Universe modelled as a mixture of a Chaplygin gas with radiation is more pronounced than that modelled as a mixture of quintessence and radiation; (c) the energy density of the Chaplygin gas tends to a constant value at earlier times than the energy density of quintessence does; (d) the energy density of radiation for both mixtures coincide and decay more rapidly than the energy densities of the Chaplygin gas and of quintessence.

  12. On the process-dependence of coherent medium-induced gluon radiation

    E-Print Network [OSTI]

    Stphane Peign; Rodion Kolevatov

    2014-05-16T23:59:59.000Z

    Considering forward dijet production in the $q\\to qg$ partonic process, we derive the spectrum of accompanying soft gluon radiation induced by rescatterings in a nuclear target. The spectrum is obtained to logarithmic accuracy for an arbitrary energy sharing between the final quark and gluon, and for final transverse momenta as well as momentum imbalance being large as compared to transverse momentum nuclear broadening. In the case of equal energy sharing and for approximately back-to-back quark and gluon transverse momenta, we reproduce a previous result of Liou and Mueller. Interpreting our result, we conjecture a simple formula for the medium-induced radiation spectrum associated to hard forward $1 \\to n$ processes, which we explicitly check in the case of the $g \\to gg$ process.

  13. The B and W Owners Group program for microstructural characterization and radiation embrittlement modelling of Linde 80 reactor vessel welds

    SciTech Connect (OSTI)

    Pavinich, W.A. [Grove Engineering, Knoxville, TN (United States); Harbison, L.S. [B and W Nuclear Technologies, Lynchburg, VA (United States)

    1996-12-31T23:59:59.000Z

    The Babcock and Wilcox Owners Group (B and WOG) is embrittlement of Linde 80 reactor vessel welds from a micro-mechanical viewpoint. Previous work that focused on characterizing the large microstructural features indicated that a large portion of the bulk copper content is in precipitate/inclusion/carbide form. This result indicates that copper in solid solution is considerably less than the bulk composition. Field-ion microscope atom probe investigations on unirradiated weld metals with bulk copper contents ranging from 0.22 to 0.38 wt%, also indicate significant amount of copper are tied up in precipitate/inclusion/carbide form. This results is significant since the bulk copper content (which includes both copper in solid solution and copper contained in precipitates, inclusions, and carbides) is used in Regulatory Guide 1.99, Revision 2 to determine radiation damage. This paper reviews these results. Existing radiation embrittlement models superpose the changes in yield strength due to defect clusters and copper-rich precipitates induced by neutron irradiation. Low-copper Linde 80 welds display little or no increase in the 41 joule (30 ft-lb) transition temperature as a result of neutron irradiation which indicates that precipitation is the dominant component of radiation embrittlement for Linde 80 welds. Future work will include further microstructural characterizations of Linde 80 reactor vessel welds and applying the existing radiation embrittlement models to Linde 80 welds. This paper describes the detailed plans for future work.

  14. Composition, apparatus, and process, for sorption of gaseous compounds of group II-VII elements

    DOE Patents [OSTI]

    Tom, Glenn M. (New Milford, CT); McManus, James V. (Danbury, CT); Luxon, Bruce A. (Stamford, CT)

    1991-08-06T23:59:59.000Z

    Scavenger compositions are disclosed, which have utility for effecting the sorptive removal of hazardous gases containing Group II-VII elements of the Periodic Table, such as are widely encountered in the manufacture of semiconducting materials and semiconductor devices. Gas sorption processes including the contacting of Group II-VII gaseous compounds with such scavenger compositions are likewise disclosed, together with critical space velocity contacting conditions pertaining thereto. Further described are gas contacting apparatus, including mesh structures which may be deployed in gas contacting vessels containing such scavenger compositions, to prevent solids from being introduced to or discharged from the contacting vessel in the gas stream undergoing treatment. A reticulate heat transfer structure also is disclosed, for dampening localized exothermic reaction fronts when gas mixtures comprising Group II-VII constituents are contacted with the scavenger compositions in bulk sorption contacting vessels according to the invention.

  15. Generic process for preparing a crystalline oxide upon a group IV semiconductor substrate

    DOE Patents [OSTI]

    McKee, Rodney A. (Kingston, TN); Walker, Frederick J. (Oak Ridge, TN); Chisholm, Matthew F. (Oak Ridge, TN)

    2000-01-01T23:59:59.000Z

    A process for growing a crystalline oxide epitaxially upon the surface of a Group IV semiconductor, as well as a structure constructed by the process, is described. The semiconductor can be germanium or silicon, and the crystalline oxide can generally be represented by the formula (AO).sub.n (A'BO.sub.3).sub.m in which "n" and "m" are non-negative integer repeats of planes of the alkaline earth oxides or the alkaline earth-containing perovskite oxides. With atomic level control of interfacial thermodynamics in a multicomponent semiconductor/oxide system, a highly perfect interface between a semiconductor and a crystalline oxide can be obtained.

  16. A Coordinated Effort to Improve Parameterization of High-Latitude Cloud and Radiation Processes

    SciTech Connect (OSTI)

    J. O. Pinto, A.H. Lynch

    2005-12-14T23:59:59.000Z

    The goal of this project is the development and evaluation of improved parameterization of arctic cloud and radiation processes and implementation of the parameterizations into a climate model. Our research focuses specifically on the following issues: (1) continued development and evaluation of cloud microphysical parameterizations, focusing on issues of particular relevance for mixed phase clouds; and (2) evaluation of the mesoscale simulation of arctic cloud system life cycles.

  17. Light-assisted ion-neutral reactive processes in the cold regime: radiative molecule formation vs. charge exchange

    E-Print Network [OSTI]

    Hall, Felix H J; Bouloufa, Nadia; Dulieu, Olivier; Willitsch, Stefan

    2011-01-01T23:59:59.000Z

    We present a combined experimental and theoretical study of cold reactive collisions between laser-cooled Ca+ ions and Rb atoms in an ion-atom hybrid trap. We observe rich chemical dynamics consisting of a complex interplay between non-adiabatic and radiative charge exchange as well as radiative molecule formation which are interpreted using high-level electronic structure calculations. We study the role of light-assisted processes and show that the efficiency of the dominant chemical pathways is considerably enhanced in excited reaction channels. Our results point to a general framework of radiative and non-radiative processes dominating the cold chemistry in ion-atom hybrid traps.

  18. The use of radiation processing to prepare biomaterials for applications in medicine

    E-Print Network [OSTI]

    Kaetsu, I

    1996-01-01T23:59:59.000Z

    Research and development of biofunctional materials by radiation techniques for biomedical uses by the group during Research Coordination Program was reviewed. New injectable drug delivery systems(DDS) were developed using poly (ethylene glycol) and sol-gel transition polymers for prolonged anesthesia. New medical applications of DDS such as the efficient preparation of sick model animals and the durable nutrient supply for post-operation patients were developed. Sol-gel transition polymer solution and stimuli-responsive polyelectrolyte hydrogel were studied basically. Then, intelligent release and permeation devices were constructed using radiation prepared micro-porous films and chips, and stimuli-responsive gels for the intelligent channel gates. The intelligent functions of the prepared biomembranes and biochips were successfully proved. Integration systems of intelligent devices were also constructed and proved the signal transfer releases. The programmed control of intelligent system was studied and pro...

  19. POTENTIAL AND FUTURE TRENDS ON INDUSTRIAL RADIATION PROCESSING TECHNOLOGY APPLICATION IN EMERGING COUNTRY - BRAZIL

    SciTech Connect (OSTI)

    Sampa, M.H.O.; Omi, N.M.; Rela, C.S.; Tsai, D.

    2004-10-06T23:59:59.000Z

    Brazil started the use of radiation technology in the seventies on crosslinking polyethylene for insulation of wire and electronic cables and sterilization of medical care devices. The present status of industrial applications of radiation shows that the use of this technology is increasing according to the economical development and the necessity to become the products manufactured in the local industries competitive in quality and price for internal and external market. The on going development activities in this area are concentrated on polymers processing (materials modification), foodstuff treatment and environmental protection. The development, the promotion and the technical support to consolidate this technology to the local industries is the main attribution of Institute for Energetic and Nuclear Research-IPEN, a governmental Institution.

  20. Impact of Ultrahigh Baseline PSA Levels on Biochemical and Clinical Outcomes in Two Radiation Therapy Oncology Group Prostate Clinical Trials

    SciTech Connect (OSTI)

    Rodrigues, George, E-mail: george.rodrigues@lhsc.on.c [Department of Oncology, University of Western Ontario, London, Ontario (Canada); Bae, Kyounghwa [Department of Statistics, Radiation Therapy Oncology Group, Philadelphia, Pennsylvania (United States); Roach, Mack [Department of Radiation Oncology, University of California San Francisco, San Francisco, California (United States); Lawton, Colleen [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Donnelly, Bryan [Department of Surgical Oncology, University of Calgary, Calgary, Alberta (Canada); Grignon, David [Department of Pathology, Indiana Pathology Institute, Indianapolis, Indiana (United States); Hanks, Gerald [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania (United States); Porter, Arthur [Department of Oncology, McGill University Health Centre, Montreal, Quebec (Canada); Lepor, Herbert [Department of Urology, NY University Langone Medical Center, New York, New York (United States); Sandler, Howard [Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California (United States)

    2011-06-01T23:59:59.000Z

    Purpose: To assess ultrahigh (UH; prostate-specific antigen [PSA]levels {>=}50 ng/ml) patient outcomes by comparison to other high-risk patient outcomes and to identify outcome predictors. Methods and Materials: Prostate cancer patients (PCP) from two Phase III Radiation Therapy Oncology Group clinical trials (studies 9202 and 9413) were divided into two groups: high-risk patients with and without UH baseline PSA levels. Predictive variables included age, Gleason score, clinical T stage, Karnofsky performance score, and treatment arm. Outcomes included overall survival (OS), distant metastasis (DM), and biochemical failure (BF). Unadjusted and adjusted hazard ratios (HRs) were calculated using either the Cox or Fine and Gray's regression model with associated 95% confidence intervals (CI) and p values. Results: There were 401 patients in the UH PSA group and 1,792 patients in the non-UH PSA PCP group of a total of 2,193 high-risk PCP. PCP with UH PSA were found to have inferior OS (HR, 1.19; 95% CI, 1.02-1.39, p = 0.02), DM (HR, 1.51; 95% CI, 1.19-1.92; p = 0.0006), and BF (HR, 1.50; 95% CI, 1.29-1.73; p < 0.0001) compared to other high-risk PCP. In the UH cohort, PSA level was found to be a significant factor for the risk of DM (HR, 1.01; 95% CI, 1.001-1.02) but not OS and BF. Gleason grades of 8 to 10 were found to consistently predict for poor OS, DM, and BF outcomes (with HR estimates ranging from 1.41-2.36) in both the high-risk cohort and the UH cohort multivariable analyses. Conclusions: UH PSA levels at diagnosis are related to detrimental changes in OS, DM, and BF. All three outcomes can be modeled by various combinations of all predictive variables tested.

  1. The 60-micron extragalactic background radiation intensity, dust-enshrouded AGNs and the assembly of groups and clusters of galaxies

    E-Print Network [OSTI]

    Andrew W. Blain; Tom Phillips

    2002-04-19T23:59:59.000Z

    Submillimetre observations reveal a cosmologically significant population of high-redshift dust-enshrouded galaxies. The form of evolution inferred for this population can be reconciled easily with COBE FIRAS and DIRBE measurements of the cosmic background radiation (CBR) at wavelengths >100 microns. At shorter wavelengths, however, the 60-micron CBR intensity reported by Finkbeiner et al. is less easily accounted for. Lagache et al. have proposed that this excess CBR emission is a warm Galactic component, and the detection of the highest-energy gamma-rays from blazars limits the CBR intensity at these wavelengths, but here we investigate sources of this excess CBR emission, assuming that it has a genuine extragalactic origin. We propose and test three explanations, each involving additional populations not readily detected in existing submm-wave surveys. First, dust-enshrouded galaxies with hot dust temperatures, perhaps dust-enshrouded, Compton-thick AGN as suggested by recent deep Chandra surveys. Secondly, a population of relatively low-redshift dusty galaxies with SEDs more typical of the existing submm-selected galaxies, which could plausibly be associated with the assembly of groups and clusters of galaxies. Thirdly, a population of low-luminosity, cool, quiescent spiral galaxies. Hot AGN and the assembly of groups can account for the excess 60-micron background. There are significant problems with the cluster assembly scenario, in which too many bright IRAS sources are predicted. Spiral galaxies have the wrong SEDs to account for the excess. Future wide-field far-IR surveys using SIRTF and Herschel will sample representative volumes of the distant Universe, allowing any hot population of dusty AGNs and forming groups to be detected.

  2. Older Age Predicts Decreased Metastasis and Prostate Cancer-Specific Death for Men Treated With Radiation Therapy: Meta-Analysis of Radiation Therapy Oncology Group Trials

    SciTech Connect (OSTI)

    Hamstra, Daniel A., E-mail: dhamm@umich.edu [University of Michigan, Ann Arbor, Michigan (United States); Bae, Kyounghwa [Radiation Therapy Oncology Group, Philadelphia, Pennsylvania (United States); Pilepich, Miljenko V. [UCLA Medical Center, Los Angeles, California (United States); Hanks, Gerald E. [Fox Chase Cancer Center, Philadelphia, Pennsylvania (United States); Grignon, David J. [Indiana University-Purdue University Indianapolis, Indiana (United States); McGowan, David G. [Cross Cancer Institute, Edmonton, Alberta (Canada); Roach, Mack [UCSF, San Francisco, California (United States); Lawton, Colleen [Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Lee, R. Jeffrey [Intermountain Medical Center, Salt Lake City, Utah (United States); Sandler, Howard [Cedars-Sinai Medical Center, Los Angeles, California (United States)

    2011-12-01T23:59:59.000Z

    Purpose: The impact of age on prostate cancer (PCa) outcome has been controversial; therefore, we analyzed the effect of age on overall survival (OS), distant metastasis, prostate cancer-specific death (PCSD), and nonprostate cancer death (NPCD) on patients with locally advanced PCa. Methods and Materials: Patients who participated in four Radiation Therapy Oncology Group (RTOG) phase III trials, 8531, 8610, 9202, and 9413, were studied. Cox proportional hazards regression was used for OS analysis, and cumulative events analysis with Fine and Gray's regression was used for analyses of metastasis, PCSD, and NPCD. Results: Median follow-up of 4,128 patients with median age of 70 (range, 43-88 years) was 7.3 years. Most patients had high-risk disease: cT3 to cT4 (54%) and Gleason scores (GS) of 7 (45%) and 8 to 10 (27%). Older age ({<=}70 vs. >70 years) predicted for decreased OS (10-year rate, 55% vs. 41%, respectively; p < 0.0001) and increased NPCD (10-year rate, 28% vs. 46%, respectively; p < 0.0001) but decreased metastasis (10-year rate, 27% vs. 20%, respectively; p < 0.0001) and PCSD (10-year rate, 18% vs. 14%, respectively; p < 0.0001). To account for competing risks, outcomes were analyzed in 2-year intervals, and age-dependent differences in metastasis and PCSD persisted, even in the earliest time periods. When adjusted for other covariates, an age of >70 years remained associated with decreased OS (hazard ratio [HR], 1.56 [95% confidence interval [CI], 1.43-1.70] p < 0.0001) but with decreased metastasis (HR, 0.72 [95% CI, 0.63-0.83] p < 0.0001) and PCSD (HR, 0.78 [95% CI, 0.66-0.92] p < 0.0001). Finally, the impact of the duration of androgen deprivation therapy as a function of age was evaluated. Conclusions: These data support less aggressive PCa in older men, independent of other clinical features. While the biological underpinning of this finding remains unknown, stratification by age in future trials appears to be warranted.

  3. QED radiative effects in the processes of exclusive photon electroproduction from polarized protons with the next-to-leading accuracy

    SciTech Connect (OSTI)

    Akushevich, Igor V. [Duke University, JLAB; Ilyichev, Alexander [Byelorussian State University; Shumeiko, Nikolai M [Byelorussian State University

    2014-08-01T23:59:59.000Z

    Radiative effects in the electroproduction of photons in polarized ep-scattering are calculated with the next-to-leading (NLO) accuracy. The contributions of loops and two photon emission were presented in analytical form. The covariant approach of Bardin and Shumeiko was used to extract the infrared divergence. All contributions to the radiative correction were presented in the form of the correction to the leptonic tensor thus allowing for further applications in other experiments, e.g., deep inelastic scattering. The radiative corrections (RC) to the cross sections and polarization asymmetries were analyzed numerically for kinematical conditions of the current measurement at Jefferson Lab. Specific attention was paid on analyzing kinematical conditions for the process with large radiative effect when momenta of two photons in the final state are collinear to momenta of initial and final electrons, respectively.

  4. Mesoscale X-Ray Fluorescence (XRF) Mapping Reveals Growth Processes for Stromatolites from the Nsuze Group

    E-Print Network [OSTI]

    Quezergue, Kimbra Rose

    2014-12-05T23:59:59.000Z

    Stromatolites are formed by physical, biological, and chemical processes, and combinations of specific processes produced the great variety of textures and morphologies in the geologic record. I here introduce a new technique for mesoscale chemical...

  5. Mesoscale X-Ray Fluorescence (XRF) Mapping Reveals Growth Processes for Stromatolites from the Nsuze Group

    E-Print Network [OSTI]

    Quezergue, Kimbra Rose

    2014-12-05T23:59:59.000Z

    Stromatolites are formed by physical, biological, and chemical processes, and combinations of specific processes produced the great variety of textures and morphologies in the geologic record. I here introduce a new technique for mesoscale chemical...

  6. Neutron and gamma radiation shielding material, structure, and process of making structure

    DOE Patents [OSTI]

    Hondorp, Hugh L. (Princeton Junction, NJ)

    1984-01-01T23:59:59.000Z

    The present invention is directed to a novel neutron and gamma radiation elding material consisting of 95 to 97 percent by weight SiO.sub.2 and 5 to 3 percent by weight sodium silicate. In addition, the method of using this composition to provide a continuous neutron and gamma radiation shielding structure is disclosed.

  7. A fuzzy analytic hierarchy process for group decision making: application for embedding information on communicating materials

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    to use intelligent products for ensuring an information continuum all along the product lifecycle, group decision making, Intelligent product; Product Lifecycle Management; Data Dissemination I lifecycle (PLC). However, most of the time, products only provide a network pointer to a linked database (e

  8. Limited Chemotherapy and Shrinking Field Radiotherapy for Osteolymphoma (Primary Bone Lymphoma): Results From the Trans-Tasman Radiation Oncology Group 99.04 and Australasian Leukaemia and Lymphoma Group LY02 Prospective Trial;Bone; Lymphoma; Radiotherapy; Chemotherapy; Clinical trial

    SciTech Connect (OSTI)

    Christie, David, E-mail: david.christie@premion.com.au [Premion and Bond University, Gold Coast, Queensland (Australia); Dear, Keith [Department of Epidemiology and Population Studies, Australian National University, Canberra, New South Wales (Australia); Le, Thai [BHB, Premion, Brisbane, Queensland (Australia); Barton, Michael [Collaboration for Cancer Outcomes and Research (CCORE) and University of NSW, Sydney, New South Wales (Australia); Wirth, Andrew [Peter MacCallum Cancer Institute, Melbourne, Victoria (Australia); Porter, David [Auckland Hospital, Auckland (New Zealand); Roos, Daniel [Royal Adelaide Hospital, Adelaide, South Australia (Australia); Pratt, Gary [Royal Brisbane Hospital, Brisbane, Queensland (Australia)

    2011-07-15T23:59:59.000Z

    Purpose: To establish benchmark outcomes for combined modality treatment to be used in future prospective studies of osteolymphoma (primary bone lymphoma). Methods and Materials: In 1999, the Trans-Tasman Radiation Oncology Group (TROG) invited the Australasian Leukemia and Lymphoma Group (ALLG) to collaborate on a prospective study of limited chemotherapy and radiotherapy for osteolymphoma. The treatment was designed to maintain efficacy but limit the risk of subsequent pathological fractures. Patient assessment included both functional imaging and isotope bone scanning. Treatment included three cycles of CHOP chemotherapy and radiation to a dose of 45 Gy in 25 fractions using a shrinking field technique. Results: The trial closed because of slow accrual after 33 patients had been entered. Accrual was noted to slow down after Rituximab became readily available in Australia. After a median follow-up of 4.3 years, the five-year overall survival and local control rates are estimated at 90% and 72% respectively. Three patients had fractures at presentation that persisted after treatment, one with recurrent lymphoma. Conclusions: Relatively high rates of survival were achieved but the number of local failures suggests that the dose of radiotherapy should remain higher than it is for other types of lymphoma. Disability after treatment due to pathological fracture was not seen.

  9. The impact of detailed urbanscale processing on the composition, distribution, and radiative forcing of anthropogenic aerosols

    E-Print Network [OSTI]

    forcing of anthropogenic aerosols Jason Blake Cohen,1,2 Ronald G. Prinn,1 and Chien Wang1 Received 11 model to simulate the effects of cities around the world on aerosol chemistry, physics, and radiative values of total aerosol surface concentration, the total aerosol column abundance, the aerosol optical

  10. Materials and Processes for Direct Sun-to-Fuel Chemical Transformations Solar radiation can be used to drive heterogeneous electrochemical reactions at the

    E-Print Network [OSTI]

    Li, Mo

    Materials and Processes for Direct Sun-to-Fuel Chemical Transformations Solar radiation can be used and an efficient means for solar radiation delivery and trapping, poses a major challenge to the commercialization material with superior intrinsic properties, but a synergetic and intimately coupled combination of solar

  11. KL Energy Corp Formerly KL Process Design Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa: Energy ResourcesKACO Geraetetechnik GmbH JumpKEMKGRAKL

  12. Process for producing an aggregate suitable for inclusion into a radiation shielding product

    DOE Patents [OSTI]

    Lessing, Paul A. (Idaho Falls, ID); Kong, Peter C. (Idaho Falls, ID)

    2000-01-01T23:59:59.000Z

    The present invention is directed to methods for converting depleted uranium hexafluoride to a stable depleted uranium silicide in a one-step reaction. Uranium silicide provides a stable aggregate material that can be added to concrete to increase the density of the concrete and, consequently, shield gamma radiation. As used herein, the term "uranium silicide" is defined as a compound generically having the formula U.sub.x Si.sub.y, wherein the x represents the molecules of uranium and the y represent the molecules of silicon. In accordance with the present invention, uranium hexafluoride is converted to a uranium silicide by contacting the uranium hexafluoride with a silicon-containing material at a temperature in a range between about 1450.degree. C. and about 1750.degree. C. The stable depleted uranium silicide is included as an aggregate in a radiation shielding product, such as a concrete product.

  13. The effective spectral irradiance of ultra-violet radiations from inert-gas-shielded welding processes in relation to the ARC current density

    E-Print Network [OSTI]

    DeVore, Robin Kent

    1973-01-01T23:59:59.000Z

    THE EFFECTIVE SPECTRAL IRRADIANCE OF ULTRAVIOLET RADIATIONS FROM INERT-GAS-SHIELDED MELDING PROCESSES IN RELATION TO THE ARC CURRENT DENSITY A Thesis by ROBIN KENT DEVORE Submitted to the Graduate College of Texas A&M University in partial... fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1973 Major Subject: Industrial Hygiene THE EFFECTIVE SPECTRAL IRRADIANCE OF ULTRAVIOLET RADIATIONS FROM INERT-GAS-SHIELDED WELDING PROCESSES IN RELATION TO THE ARC CURRENT...

  14. Radiation Therapy Oncology Group Consensus Panel Guidelines for the Delineation of the Clinical Target Volume in the Postoperative Treatment of Pancreatic Head Cancer

    SciTech Connect (OSTI)

    Goodman, Karyn A., E-mail: goodmank@mskcc.org [Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Regine, William F. [University of Maryland School of Medicine, Baltimore, Maryland (United States); Dawson, Laura A. [Princess Margaret Hospital, University of Toronto, Toronto, Ontario (Canada); Ben-Josef, Edgar [University of Michigan Medical School, Ann Arbor, Michigan (United States); Haustermans, Karin [University Hospital Leuven, Leuven (Belgium); Bosch, Walter R. [Image-Guided Therapy QA Center, Washington University, St. Louis, Missouri (United States); Turian, Julius; Abrams, Ross A. [Rush University Medical College, Chicago, Illinois (United States)

    2012-07-01T23:59:59.000Z

    Purpose: To develop contouring guidelines to be used in the Radiation Therapy Oncology Group protocol 0848, a Phase III randomized trial evaluating the benefit of adjuvant chemoradiation in patients with resected head of pancreas cancer. Methods and Materials: A consensus committee of six radiation oncologists with expertise in gastrointestinal radiotherapy developed stepwise contouring guidelines and an atlas for the delineation of the clinical target volume (CTV) in the postoperative treatment of pancreas cancer, based on identifiable regions of interest and margin expansions. Areas at risk for subclinical disease to be included in the CTV were defined, including nodal regions, anastomoses, and the preoperative primary tumor location. Regions of interest that could be reproducibly contoured on postoperative imaging after a pancreaticoduodenectomy were identified. Standardized expansion margins to encompass areas at risk were developed after multiple iterations to determine the optimal margin expansions. Results: New contouring recommendations based on CT anatomy were established. Written guidelines for the delineation of the postoperative CTV and normal tissues, as well as a Web-based atlas, were developed. Conclusions: The postoperative abdomen has been a difficult area for effective radiotherapy. These new guidelines will help physicians create fields that better encompass areas at risk and minimize dose to normal tissues.

  15. Information visualization for in-car communication processes Michael Sedlmair, BMW Group Research and Technology, Germany, Michael.Sedlmair@bmw.de

    E-Print Network [OSTI]

    Information visualization for in-car communication processes Michael Sedlmair, BMW Group Research and Technology, Germany, Michael.Sedlmair@bmw.de Supervisor: Andreas Butz, University of Munich, Germany, Andreas

  16. Radiation Tolerant Electronics and Digital Processing for the Phase-I Trigger Readout Upgrade of the ATLAS Liquid Argon Calorimeters

    E-Print Network [OSTI]

    Milic, Adriana; The ATLAS collaboration

    2015-01-01T23:59:59.000Z

    The high luminosities of $\\mathcal{L} > 10^{34} \\mathrm{cm}^{-2} \\mathrm{s}^{-1}$at the Large Hadron Collider (LHC) at CERN produce an intense radiation environment that the detectors and their electronics must withstand. The ATLAS detector is a multi-purpose apparatus constructed to explore the new particle physics regime opened by the LHC. Of the many decay particles observed by the ATLAS detector, the energy of the created electrons and photons is measured by a sampling calorimeter technique that uses Liquid Argon (LAr) as its active medium. The Front End (FE) electronic readout of the ATLAS LAr calorimeter located on the detector itself consists of a combined analog and digital processing system. The FE electronics were qualified for radiation levels corresponding to 10 years of LHC operations. The high luminosity running of the LHC (HL-LHC), with instantaneous luminosities of $5 \\times 10^{34} \\mathrm{cm}^ {-2} \\mathrm{s}^{-1}$ and an integrated luminosity of $3000 \\ \\mathrm{fb}^{-1}$ will exceed these d...

  17. The effective spectral irradiance of ultra-violet radiations from inert-gas-shielded welding processes in relation to the ARC current density

    E-Print Network [OSTI]

    DeVore, Robin Kent

    1973-01-01T23:59:59.000Z

    fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1973 Major Subject: Industrial Hygiene THE EFFECTIVE SPECTRAL IRRADIANCE OF ULTRAVIOLET RADIATIONS FROM INERT-GAS-SHIELDED WELDING PROCESSES IN RELATION TO THE ARC CURRENT... DENSITY A Thesis by ROBIN KENT DEVORE Approved as to style and content by: C alarm n of o itte Hea o partment e er Member December 1973 ABSTRACT The Effective Spectral Irradiance of Ultraviolet Radiations from Inert-Gas-Shielded Welding...

  18. Unified study of $J/?\\to PV$, $P?^{(*)}$ and light hadron radiative processes

    E-Print Network [OSTI]

    Yun-Hua Chen; Zhi-Hui Guo; Bing-Song Zou

    2014-12-26T23:59:59.000Z

    Within the framework of the effective Lagrangian approach, we perform a thorough analysis of the $J/\\psi \\to P\\gamma(\\gamma^*)$, $J/\\psi \\to VP$, $V\\to P\\gamma(\\gamma^*)$, $P\\to V\\gamma(\\gamma^*)$ and $P\\to\\gamma\\gamma(\\gamma^*)$ processes, where $V$ stand for light vector resonances, $P$ stand for light pseudoscalar mesons, and $\\gamma^*$ subsequently decays into lepton pairs. The processes with light pseudoscalar mesons $\\eta$ and $\\eta'$ are paid special attention to and the two-mixing-angle scheme is employed to describe their mixing. The four mixing parameters both in singlet-octet and quark-flavor bases are updated in this work. We confirm that the $J/\\psi \\to \\eta(\\eta^{\\prime})\\gamma^{(*)}$ processes are predominantly dominated by the $J/\\psi\\to \\eta_c \\gamma^{*} \\to \\eta(\\eta^{\\prime})\\gamma^{(*)}$ mechanism. Predictions for the $J/\\psi \\to P \\mu^+\\mu^-$ are presented. A detailed discussion on the interplay between electromagnetic and strong transitions in the $J/\\psi \\to VP$ decays is given.

  19. Dental Budget Process: Determination Schema Industry Sponsored, Industry Supported, University to University, Co-operative Group or Foundation Supported Clinical Trials

    E-Print Network [OSTI]

    Oliver, Douglas L.

    11/5/2013 Dental Budget Process: Determination Schema Industry Sponsored, Industry Supported, University to University, Co-operative Group or Foundation Supported Clinical Trials DENTAL BUDGET PROCESS to have a Budget Workbook done by staff in the Office of Clinical & Translational Research (OCTR) before

  20. A Phase 3 Trial of Whole Brain Radiation Therapy and Stereotactic Radiosurgery Alone Versus WBRT and SRS With Temozolomide or Erlotinib for Non-Small Cell Lung Cancer and 1 to 3 Brain Metastases: Radiation Therapy Oncology Group 0320

    SciTech Connect (OSTI)

    Sperduto, Paul W., E-mail: psperduto@mropa.com [Metro MN CCOP, Minneapolis, Minnesota (United States); Wang, Meihua [RTOG Statistical Center, Philadelphia, Pennsylvania (United States)] [RTOG Statistical Center, Philadelphia, Pennsylvania (United States); Robins, H. Ian [University of Wisconsin Medical School Cancer Center, Madison, Wisconsin (United States)] [University of Wisconsin Medical School Cancer Center, Madison, Wisconsin (United States); Schell, Michael C. [Wilmot Cancer Center, University of Rochester, Rochester, New York (United States)] [Wilmot Cancer Center, University of Rochester, Rochester, New York (United States); Werner-Wasik, Maria [Thomas Jefferson University, Philadelphia, Pennsylvania (United States)] [Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Komaki, Ritsuko [University of Texas MD Anderson Cancer Center, Houston, Texas (United States)] [University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Souhami, Luis [McGill University, Montreal, Quebec (Canada)] [McGill University, Montreal, Quebec (Canada); Buyyounouski, Mark K. [Fox Chase Cancer Center, Philadelphia, Pennsylvania (United States)] [Fox Chase Cancer Center, Philadelphia, Pennsylvania (United States); Khuntia, Deepak [University of Wisconsin Hospital, Madison, Wisconsin (United States)] [University of Wisconsin Hospital, Madison, Wisconsin (United States); Demas, William [Akron City Hospital, Akron, Ohio (United States)] [Akron City Hospital, Akron, Ohio (United States); Shah, Sunjay A. [Christiana Care Health Services, Inc, CCOP, Newark, Delaware (United States)] [Christiana Care Health Services, Inc, CCOP, Newark, Delaware (United States); Nedzi, Lucien A. [University of Texas Southwestern Medical School, Dallas, Texas (United States)] [University of Texas Southwestern Medical School, Dallas, Texas (United States); Perry, Gad [The Ottawa Hospital Cancer Centre, Ottawa, Ontario (Canada)] [The Ottawa Hospital Cancer Centre, Ottawa, Ontario (Canada); Suh, John H. [Cleveland Clinic Foundation, Cleveland, Ohio (United States)] [Cleveland Clinic Foundation, Cleveland, Ohio (United States); Mehta, Minesh P. [Northwestern Memorial Hospital, Chicago, Illinois (United States)] [Northwestern Memorial Hospital, Chicago, Illinois (United States)

    2013-04-01T23:59:59.000Z

    Background: A phase 3 Radiation Therapy Oncology Group (RTOG) study subset analysis demonstrated improved overall survival (OS) with the addition of stereotactic radiosurgery (SRS) to whole brain radiation therapy (WBRT) in non-small cell lung cancer (NSCLC) patients with 1 to 3 brain metastases. Because temozolomide (TMZ) and erlotinib (ETN) cross the blood-brain barrier and have documented activity in NSCLC, a phase 3 study was designed to test whether these drugs would improve the OS associated with WBRT + SRS. Methods and Materials: NSCLC patients with 1 to 3 brain metastases were randomized to receive WBRT (2.5 Gy 15 to 37.5 Gy) and SRS alone, versus WBRT + SRS + TMZ (75 mg/m{sup 2}/day 21 days) or ETN (150 mg/day). ETN (150 mg/day) or TMZ (150-200 mg/m{sup 2}/day 5 days/month) could be continued for as long as 6 months after WBRT + SRS. The primary endpoint was OS. Results: After 126 patients were enrolled, the study closed because of accrual limitations. The median survival times (MST) for WBRT + SRS, WBRT + SRS + TMZ, and WBRT + SRS + ETN were qualitatively different (13.4, 6.3, and 6.1 months, respectively), although the differences were not statistically significant. Time to central nervous system progression and performance status at 6 months were better in the WBRT + SRS arm. Grade 3 to 5 toxicity was 11%, 41%, and 49% in arms 1, 2, and 3, respectively (P<.001). Conclusion: The addition of TMZ or ETN to WBRT + SRS in NSCLC patients with 1 to 3 brain metastases did not improve survival and possibly had a deleterious effect. Because the analysis is underpowered, these data suggest but do not prove that increased toxicity was the cause of inferior survival in the drug arms.

  1. Evolution in the H I Gas Content of Galaxy Groups: Pre-Processing and Mass Assembly in the Current Epoch

    E-Print Network [OSTI]

    Hess, Kelley M

    2013-01-01T23:59:59.000Z

    We present an analysis of the neutral hydrogen (HI) content and distribution of galaxies in groups as a function of their parent dark matter halo mass. The Arecibo Legacy Fast ALFA survey alpha.40 data release allows us, for the first time, to study the HI properties of over 740 galaxy groups in the volume of sky common to the SDSS and ALFALFA surveys. We assigned ALFALFA HI detections a group membership based on an existing magnitude/volume-limited SDSS DR7 group/cluster catalog. Additionally, we assigned group "proximity" membership to HI detected objects whose optical counterpart falls below the limiting optical magnitude--thereby not contributing substantially to the estimate of the group stellar mass, but significantly to the total group HI mass. We find that only 25% of the HI detected galaxies reside in groups or clusters, in contrast to approximately half of all optically detected galaxies. Further, we plot the relative positions of optical and HI detections in groups as a function of parent dark matt...

  2. Radiation Tolerant Electronics and Digital Processing for the Phase-1 Readout Upgrade of the ATLAS Liquid Argon Calorimeters

    E-Print Network [OSTI]

    Milic, Adriana; The ATLAS collaboration

    2015-01-01T23:59:59.000Z

    The high luminosities of $L > 10^{34} cm^{-2} s^{-1}$ at the Large Hadron Collider (LHC) at CERN produce an intense radiation environment that the detectors and their electronics must withstand. The ATLAS detector is a multi-purpose apparatus constructed to explore the new particle physics regime opened by the LHC. Of the many decay particles observed by the ATLAS detector, the energy of the created electrons and photons is measured by a sampling calorimeter technique that uses Liquid Argon (LAr) as its active medium. The front end (FE) electronic readout of the ATLAS LAr calorimeter located on the detector itself consists of a combined analog and digital processing system. In order to exploit the higher luminosity while keeping the same trigger bandwidth of 100 kHz, higher transverse granularity, higher resolution and longitudinal shower shape information will be provided from the LAr calorimeter to the Level-1 trigger processors. New trigger readout electronics have been designed for this purpose, which wil...

  3. Gender, Race, and Survival: A Study in Non-Small-Cell Lung Cancer Brain Metastases Patients Utilizing the Radiation Therapy Oncology Group Recursive Partitioning Analysis Classification

    SciTech Connect (OSTI)

    Videtic, Gregory M.M., E-mail: videtig@ccf.or [Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH (United States); Reddy, Chandana A. [Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH (United States); Chao, Samuel T. [Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH (United States); Brain Tumor and NeuroOncology Center, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH (United States); Rice, Thomas W. [Department of Thoracic and Cardiovascular Surgery, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH (United States); Adelstein, David J. [Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH (United States); Barnett, Gene H. [Brain Tumor and NeuroOncology Center, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH (United States); Department of Neurosurgery, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH (United States); Mekhail, Tarek M. [Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH (United States); Vogelbaum, Michael A. [Brain Tumor and NeuroOncology Center, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH (United States); Department of Neurosurgery, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH (United States); Suh, John H. [Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH (United States); Brain Tumor and NeuroOncology Center, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH (United States)

    2009-11-15T23:59:59.000Z

    Purpose: To explore whether gender and race influence survival in non-small-cell lung cancer (NSCLC) in patients with brain metastases, using our large single-institution brain tumor database and the Radiation Therapy Oncology Group recursive partitioning analysis (RPA) brain metastases classification. Methods and materials: A retrospective review of a single-institution brain metastasis database for the interval January 1982 to September 2004 yielded 835 NSCLC patients with brain metastases for analysis. Patient subsets based on combinations of gender, race, and RPA class were then analyzed for survival differences. Results: Median follow-up was 5.4 months (range, 0-122.9 months). There were 485 male patients (M) (58.4%) and 346 female patients (F) (41.6%). Of the 828 evaluable patients (99%), 143 (17%) were black/African American (B) and 685 (83%) were white/Caucasian (W). Median survival time (MST) from time of brain metastasis diagnosis for all patients was 5.8 months. Median survival time by gender (F vs. M) and race (W vs. B) was 6.3 months vs. 5.5 months (p = 0.013) and 6.0 months vs. 5.2 months (p = 0.08), respectively. For patients stratified by RPA class, gender, and race, MST significantly favored BFs over BMs in Class II: 11.2 months vs. 4.6 months (p = 0.021). On multivariable analysis, significant variables were gender (p = 0.041, relative risk [RR] 0.83) and RPA class (p < 0.0001, RR 0.28 for I vs. III; p < 0.0001, RR 0.51 for II vs. III) but not race. Conclusions: Gender significantly influences NSCLC brain metastasis survival. Race trended to significance in overall survival but was not significant on multivariable analysis. Multivariable analysis identified gender and RPA classification as significant variables with respect to survival.

  4. Combustion Group Group members

    E-Print Network [OSTI]

    Wang, Wei

    Combustion Group Group members: Thierry Poinsot, Emilien Courtine, Luc Vervisch, Benjamin Farcy 2014 #12;Combustion Group Combustion Physics and Modeling Pollutants, Emissions, and Soot Formation Thermoacoustics and Combustion Dynamics Research focus Examine mechanisms responsible for flame stabilization

  5. Use of the ARM Measurements of Spectral Zenith Radiance for Better Understanding of 3D Cloud-Radiation Processes & Aerosol-Cloud Interaction

    SciTech Connect (OSTI)

    Chiu, Jui-Yuan Christine [University of Reading] [University of Reading

    2014-04-10T23:59:59.000Z

    This project focuses on cloud-radiation processes in a general three-dimensional cloud situation, with particular emphasis on cloud optical depth and effective particle size. The proposal has two main parts. Part one exploits the large number of new wavelengths offered by the Atmospheric Radiation Measurement (ARM) zenith-pointing ShortWave Spectrometer (SWS), to develop better retrievals not only of cloud optical depth but also of cloud particle size. We also take advantage of the SWS high sampling resolution to study the twilight zone around clouds where strong aerosol-cloud interactions are taking place. Part two involves continuing our cloud optical depth and cloud fraction retrieval research with ARMs 2-channel narrow vield-of-view radiometer and sunphotometer instrument by, first, analyzing its data from the ARM Mobile Facility deployments, and second, making our algorithms part of ARMs operational data processing.

  6. Radiation- and Depleted Uranium-Induced Carcinogenesis Studies: Characterization of the Carcinogenic Process and Development of Medical Countermeasures

    E-Print Network [OSTI]

    A. C. Miller; D. Beltran; R. Rivas; M. Stewart; R. J. Merlot; P. B. Lison

    External or internal contamination from radioactive elements during military operations or a terrorist attack is a serious threat to military and civilian populations. External radiation exposure could result from conventional military scenarios including nuclear weapons use and low-dose exposures during radiation accidents or terrorist attacks. Alternatively, internal radiation exposure could result from depleted uranium exposure via DU shrapnel wounds or inhalation. The long-term health effects of these types of radiation exposures are not well known. Furthermore, development of pharmacological countermeasures to low-dose external and internal radiological contamination is essential to the health and safety of both military and civilian populations. The purpose of these studies is to evaluate low-dose radiation or DU-induced carcinogenesis using in vitro and in vivo models, and to test safe and efficacious medical countermeasures. A third goal of these studies is to identify biomarkers of both exposure and disease development. Initially, we used a human cell model (human osteoblast cells, HOS) to evaluate the carcinogenic potential of DU in vitro by assessing morphological transformation, genotoxicity (chromosomal aberrations), mutagenic (HPRT loci), and genomic instability. As a comparison, low-dose cobalt radiation, broad-beam alpha particles, and other military-projectile metals, i.e., tungsten mixtures, are being examined. Published data from

  7. Results of a Quality Assurance Review of External Beam Radiation Therapy in the International Society of Paediatric Oncology (Europe) Neuroblastoma Group's High-risk Neuroblastoma Trial: A SIOPEN Study

    SciTech Connect (OSTI)

    Gaze, Mark N., E-mail: mark.gaze@uclh.nhs.uk [Department of Oncology, University College London Hospitals NHS Foundation Trust, London (United Kingdom); Boterberg, Tom [Department of Radiation Oncology, Ghent University Hospital, Ghent (Belgium)] [Department of Radiation Oncology, Ghent University Hospital, Ghent (Belgium); Dieckmann, Karin; Hoermann, Marcus [General Hospital Vienna, Medical University Vienna (Austria)] [General Hospital Vienna, Medical University Vienna (Austria); Gains, Jennifer E.; Sullivan, Kevin P. [Department of Oncology, University College London Hospitals NHS Foundation Trust, London (United Kingdom)] [Department of Oncology, University College London Hospitals NHS Foundation Trust, London (United Kingdom); Ladenstein, Ruth [Children's Cancer Research Institute, St. Anna Children's Hospital, Vienna (Austria)] [Children's Cancer Research Institute, St. Anna Children's Hospital, Vienna (Austria)

    2013-01-01T23:59:59.000Z

    Purpose: Radiation therapy is important for local control in neuroblastoma. This study reviewed the compliance of plans with the radiation therapy guidelines of the International Society of Paediatric Oncology (Europe) Neuroblastoma Group (SIOPEN) High-Risk Trial protocol. Methods and Materials: The SIOPEN trial central electronic database has sections to record diagnostic imaging and radiation therapy planning data. Individual centers may upload data remotely, but not all centers involved in the trial chose to use this system. A quality scoring system was devised based on how well the radiation therapy plan matched the protocol guidelines, to what extent deviations were justified, and whether adverse effects may result. Central review of radiation therapy planning was undertaken retrospectively in 100 patients for whom complete diagnostic and treatment sets were available. Data were reviewed and compared against protocol guidelines by an international team of radiation oncologists and radiologists. For each patient in the sample, the central review team assigned a quality assurance score. Results: It was found that in 48% of patients there was full compliance with protocol requirements. In 29%, there were deviations for justifiable reasons with no likely long-term adverse effects resulting. In 5%, deviations had occurred for justifiable reasons, but that might result in adverse effects. In 1%, there was a deviation with no discernible justification, which would not lead to long-term adverse events. In 17%, unjustified deviations were noted, with a risk of an adverse outcome resulting. Conclusions: Owing to concern over the proportion of patients in whom unjustified deviations were observed, a protocol amendment has been issued. This offers the opportunity for central review of radiation therapy plans before the start of treatment and the treating clinician a chance to modify plans.

  8. Fundamental Processes of Coupled Radiation Damage and Mechanical Behavior in Nuclear Fuel Materials for High Temperature Reactors

    SciTech Connect (OSTI)

    Phillpot, Simon; Tulenko, James

    2011-09-08T23:59:59.000Z

    The objective of this work has been to elucidate the relationship among microstructure, radiation damage and mechanical properties for nuclear fuel materials. As representative nuclear materials, we have taken an hcp metal (Mg as a generic metal, and Ti alloys for fast reactors) and UO2 (representing fuel). The degradation of the thermo-mechanical behavior of nuclear fuels under irradiation, both the fissionable material itself and its cladding, is a longstanding issue of critical importance to the nuclear industry. There are experimental indications that nanocrystalline metals and ceramics may be more resistant to radiation damage than their coarse-grained counterparts. The objective of this project look at the effect of microstructure on radiation damage and mechanical behavior in these materials. The approach to be taken was state-of-the-art, large-scale atomic-level simulation. This systematic simulation program of the effects of irradiation on the structure and mechanical properties of polycrystalline Ti and UO2 identified radiation damage mechanisms. Moreover, it will provided important insights into behavior that can be expected in nanocrystalline microstructures and, by extension, nanocomposites. The fundamental insights from this work can be expected to help in the design microstructures that are less susceptible to radiation damage and thermomechanical degradation.

  9. High-Temperature Processing of Solids Through Solar Nebular Bow Shocks: 3D Radiation Hydrodynamics Simulations with Particles

    E-Print Network [OSTI]

    Boley, A C; Desch, S J

    2013-01-01T23:59:59.000Z

    A fundamental, unsolved problem in Solar System formation is explaining the melting and crystallization of chondrules found in chondritic meteorites. Theoretical models of chondrule melting in nebular shocks has been shown to be consistent with many aspects of thermal histories inferred for chondrules from laboratory experiments; but, the mechanism driving these shocks is unknown. Planetesimals and planetary embryos on eccentric orbits can produce bow shocks as they move supersonically through the disk gas, and are one possible source of chondrule-melting shocks. We investigate chondrule formation in bow shocks around planetoids through 3D radiation hydrodynamics simulations. A new radiation transport algorithm that combines elements of flux-limited diffusion and Monte Carlo methods is used to capture the complexity of radiative transport around bow shocks. An equation of state that includes the rotational, vibrational, and dissociation modes of H$_2$ is also used. Solids are followed directly in the simulati...

  10. Combustion Group Group members

    E-Print Network [OSTI]

    Wang, Wei

    Combustion Group Group members: Thierry Poinsot, Emilien Courtine, Luc Vervisch, Benjamin Farcy New combustion and energy-conversion concepts #12;Introduction Combustion research thrusts Combustion Dynamics and Flame-Stabilization Research objectives Obtain fundamental understanding of combustion

  11. HIGH-TEMPERATURE PROCESSING OF SOLIDS THROUGH SOLAR NEBULAR BOW SHOCKS: 3D RADIATION HYDRODYNAMICS SIMULATIONS WITH PARTICLES

    SciTech Connect (OSTI)

    Boley, A. C. [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611 (United States); Morris, M. A. [Center for Meteorite Studies, Arizona State University, P.O. Box 876004, Tempe, AZ 88287-6004 (United States); Desch, S. J. [School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287-1404 (United States)

    2013-10-20T23:59:59.000Z

    A fundamental, unsolved problem in solar system formation is explaining the melting and crystallization of chondrules found in chondritic meteorites. Theoretical models of chondrule melting in nebular shocks have been shown to be consistent with many aspects of thermal histories inferred for chondrules from laboratory experiments; but, the mechanism driving these shocks is unknown. Planetesimals and planetary embryos on eccentric orbits can produce bow shocks as they move supersonically through the disk gas, and are one possible source of chondrule-melting shocks. We investigate chondrule formation in bow shocks around planetoids through three-dimensional radiation hydrodynamics simulations. A new radiation transport algorithm that combines elements of flux-limited diffusion and Monte Carlo methods is used to capture the complexity of radiative transport around bow shocks. An equation of state that includes the rotational, vibrational, and dissociation modes of H{sub 2} is also used. Solids are followed directly in the simulations and their thermal histories are recorded. Adiabatic expansion creates rapid cooling of the gas, and tail shocks behind the embryo can cause secondary heating events. Radiative transport is efficient, and bow shocks around planetoids can have luminosities ?few 10{sup 8} L{sub ?}. While barred and radial chondrule textures could be produced in the radiative shocks explored here, porphyritic chondrules may only be possible in the adiabatic limit. We present a series of predicted cooling curves that merit investigation in laboratory experiments to determine whether the solids produced by bow shocks are represented in the meteoritic record by chondrules or other solids.

  12. Motexafin-Gadolinium and Involved Field Radiation Therapy for Intrinsic Pontine Glioma of Childhood: A Children's Oncology Group Phase 2 Study

    SciTech Connect (OSTI)

    Bradley, Kristin A., E-mail: bradley@humonc.wisc.edu [Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin (United States); Zhou Tianni [Department of Preventive Medicine, University of Southern California, Los Angeles, California (United States)] [Department of Preventive Medicine, University of Southern California, Los Angeles, California (United States); McNall-Knapp, Rene Y. [Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (United States)] [Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (United States); Jakacki, Regina I. [Division of Pediatric Hematology/Oncology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (United States)] [Division of Pediatric Hematology/Oncology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania (United States); Levy, Adam S. [Division of Pediatric Hematology/Oncology, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York (United States)] [Division of Pediatric Hematology/Oncology, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York (United States); Vezina, Gilbert [Department of Radiology, Children's National Medical Center, George Washington University School of Medicine, Washington, DC (United States)] [Department of Radiology, Children's National Medical Center, George Washington University School of Medicine, Washington, DC (United States); Pollack, Ian F. [Department of Neurosurgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (United States)] [Department of Neurosurgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (United States)

    2013-01-01T23:59:59.000Z

    Purpose: To evaluate the effects on 1-year event-free survival (EFS) and overall survival (OS) of combining motexafin and gadolinium (MGd), a potent radiosensitizer, with daily fractionated radiation therapy in children with newly diagnosed intrinsic pontine gliomas. Methods and Materials: Patients with newly diagnosed intrinsic pontine glioma were treated with MGd daily for 5 consecutive days each week, for a total of 30 doses. Patients received a 5- to 10-min intravenous bolus of MGd, 4.4 mg/kg/day, given 2 to 5 h prior to standard dose irradiation. Radiation therapy was administered at a daily dose of 1.8 Gy for 30 treatments over 6 weeks. The total dose was 54 Gy. Results: Sixty eligible children received MGd daily, concurrent with 6 weeks of radiation therapy. The estimated 1-year EFS was 18% {+-} 5%, and the estimated 1-year OS was 53% {+-} 6.5%. The most common grade 3 to 4 toxicities were lymphopenia, transient elevation of liver transaminases, and hypertension. Conclusions: Compared to historical controls, the addition of MGd to a standard 6-week course of radiation did not improve the survival of pediatric patients with newly diagnosed intrinsic pontine gliomas.

  13. The impact of detailed urban-scale processing on the composition, distribution, and radiative forcing of anthropogenic aerosols

    E-Print Network [OSTI]

    Cohen, Jason Blake

    Detailed urban-scale processing has not been included in global 3D chemical transport models due to its large computational demands. Here we present a metamodel for including this processing, and compare it with the use ...

  14. Synthesis of MOF having hydroxyl functional side groups and optimization of activation process for the maximization of its BET surface area

    SciTech Connect (OSTI)

    Kim, Jongsik [Hanwha Chemical Research and Development Center, 6, Shinseong-dong, Yuseong-gu, Daejeon 305-804 (Korea, Republic of); Kim, Dong Ok, E-mail: gmjong37@gmail.com [Hanwha Chemical Research and Development Center, 6, Shinseong-dong, Yuseong-gu, Daejeon 305-804 (Korea, Republic of); Kim, Dong Wook; Sagong, Kil [Hanwha Chemical Research and Development Center, 6, Shinseong-dong, Yuseong-gu, Daejeon 305-804 (Korea, Republic of)

    2013-01-15T23:59:59.000Z

    To accomplish the postsynthetic modification of MOF with organic-metal precursors (OMPs) described in our previous researches more efficiently, synthesis of MOF (HCC-2) possessing relatively larger pore size as well as higher number of hydroxyl functional side groups per its base unit than those of HCC-1 has been successfully conducted via adopting 1,4-di-(4-carboxy-2,6-dihydroxyphenyl)benzene as an organic ligand and Zn(NO{sub 3}){sub 2}{center_dot}6H{sub 2}O as a metal source, respectively. Also, optimization about the Activation process of HCC-2 was performed to maximize its BET (Brunauer-Emmett-Teller) surface area which was proved to be proportional to the number of exposed active sites on which its postsynthetic modification occurred. However, Activation process having been validated to be so effective with the acquirement of highly-purified HCC-1 (CO{sub 2} supercritical drying step followed by vacuum drying step) was less satisfactory with the case of HCC-2. This might be attributed to relatively higher hydrophilicity and bulkier molecular structure of organic ligand of HCC-2. However, it was readily settled by simple modification of above Activation process. Moreover, indispensable residues composed of both DMF and its thermally degraded derivatives which were chemically attached via coordination bond with hydroxyl functionalities even after Activation process III might enable their H{sub 2} adsorption properties to be seriously debased compared to that of IRMOF-16 having no hydroxyl functionalities. - Graphical abstract: Synthesis of new-structured MOF (HCC-2) simultaneously possessing relatively larger pore size as well as higher number of hydroxyl functional side groups per its base unit at the same time than those of HCC-1 has been performed via adopting 1,4-di-(4-carboxy-2,6-dihydroxyphenyl)benzene as an organic ligand and Zn(NO{sub 3}){sub 2}{center_dot}6H{sub 2}O as a metal source, respectively. Also, the optimization of activation process for HCC-2 was conducted to maximize its BET surface area while the suitability of this activation process was proved via SEM, TGA, EA, XRF, and PSD. Being compared with the crystal structures of IRMOF-16 and HCC-1 via XRD and FT-IR analysis, the crystal structure of HCC-2 having an identical chemical structure except the introduction of four hydroxyl functional side groups on the backbone of its organic ligand showed no noticeable change. Specifically, HCC-2 was established as a cubic structure with each axis of about 21.5 A. Moreover, H{sub 2} adsorption isotherms for these HCCs were attained to ultimately examine that hydroxyl functionalities inside their pores have any influence on their H{sub 2} adsorption properties. Highlights: Black-Right-Pointing-Pointer HCC-2 having higher number of hydroxyl groups than that of HCC-1 was prepared. Black-Right-Pointing-Pointer The optimization of activation process for HCC-2 was studied. Black-Right-Pointing-Pointer The crystal structure of HCC-2 was a cubic-shaped structure with each axis of 21.5 A. Black-Right-Pointing-Pointer -OH functionalities on HCCs had negative influence on their H{sub 2} adsorption abilities. Black-Right-Pointing-Pointer This might be due to impurities rigidly attached to their functional side groups.

  15. Kinetics and radiative processes in Xe/I{sub 2} inductively coupled rf discharges at low pressure

    SciTech Connect (OSTI)

    Barnes, P.N.; Verdeyen, J.T.; Kushner, M.J. [Univ. of Illinois, Urbana, IL (United States). Dept. of Electrical and Computer Engineering

    1996-12-31T23:59:59.000Z

    The environmental concern over the presence of mercury in conventional fluorescent lamps has motivated research into alternative electrically efficient near UV plasma lighting sources. One such candidate is multi-wavelength UV emission from Xe/I{sub 2} mixtures, including excimer radiation from XeI at 253 nm. Previous studies of the XeI system were performed at high pressures and were intended for laser applications. Practical Xe/I{sub 2} lamps will likely operate in the 0.5--10 torr regime and use electrodeless excitation to avoid issues related to electrode erosion by the halogen. In this paper, the authors report on an experimental investigation of low pressure, inductively coupled plasmas sustained in Xe/I{sub 2} mixtures. The goals of this work are to characterize the UV emission and determine excitation mechanisms in a parameter space of interest to lighting applications.

  16. Adaptive multigroup radiation diffusion

    E-Print Network [OSTI]

    Williams, Richard B., Sc. D. Massachusetts Institute of Technology

    2005-01-01T23:59:59.000Z

    This thesis describes the development and implementation of an algorithm for dramatically increasing the accuracy and reliability of multigroup radiation diffusion simulations at low group counts. This is achieved by ...

  17. RADIATION SENSITIVITY & PROCESSING OF DNA DAMAGE FOLLOWING LOW DOSES OF GAMMA-RAY ALPHA PARTICLES & HZE IRRADIATION OF NORMAL DSB REPAIR DEFICIENT CELLS

    SciTech Connect (OSTI)

    O'Neil, Peter

    2009-05-15T23:59:59.000Z

    Non-homologous end joining (NHEJ) predominates in the repair of DNA double strand breaks (DSB) over homologous recombination (HR). NHEJ occurs throughout the cell cycle whereas HR occurs in late S/G2 due to the requirement of a sister chromatid (Rothkamm et al, Mol Cell Biol 23 5706-15 [2003]). To date evidence obtained with DSB repair deficient cells using pulsed-field gel electrophoresis has revealed the major pathway throughout all phases of the cell cycle for processing high dose induced DSBs is NHEJ (Wang et al, Oncogene 20 2212-24 (2001); Pluth et al, Cancer Res. 61 2649-55 [2001]). These findings however were obtained at high doses when on average >> 20-30 DSBs are formed per cell. The contribution of the repair pathways (NHEJ and HR) induced in response to DNA damage during the various phases of the cell cycle may depend upon the dose (the level of initial DSBs) especially since low levels of DSBs are induced at low dose. To date, low dose studies using NHEJ and HR deficient mutants have not been carried out to address this important question with radiations of different quality. The work presented here leads us to suggest that HR plays a relatively minor role in the repair of radiation-induced prompt DSBs. SSBs lead to the induction of DSBs which are associated specifically with S-phase cells consistent with the idea that they are formed at stalled replication forks in which HR plays a major role in repair. That DNA-PKcs is in some way involved in the repair of the precursors to replication-induced DSB remains an open question. Persistent non-DSB oxidative damage also leads to an increase in RAD51 positive DSBs. Both simple and complex non-DSB DNA damage may therefore contribute to indirect DSBs induced by ionising radiation at replication forks.

  18. Radiation analysis devices, radiation analysis methods, and articles of manufacture

    DOE Patents [OSTI]

    Roybal, Lyle Gene

    2010-06-08T23:59:59.000Z

    Radiation analysis devices include circuitry configured to determine respective radiation count data for a plurality of sections of an area of interest and combine the radiation count data of individual of sections to determine whether a selected radioactive material is present in the area of interest. An amount of the radiation count data for an individual section is insufficient to determine whether the selected radioactive material is present in the individual section. An article of manufacture includes media comprising programming configured to cause processing circuitry to perform processing comprising determining one or more correction factors based on a calibration of a radiation analysis device, measuring radiation received by the radiation analysis device using the one or more correction factors, and presenting information relating to an amount of radiation measured by the radiation analysis device having one of a plurality of specified radiation energy levels of a range of interest.

  19. Use of the ARM Measurement of Spectral Zenith Radiance For Better Understanding Of 3D Cloud-Radiation Processes and Aerosol-Cloud Interaction

    SciTech Connect (OSTI)

    D. Jui-Yuan Chiu

    2010-10-19T23:59:59.000Z

    Our proposal focuses on cloud-radiation processes in a general 3D cloud situation, with particular emphasis on cloud optical depth and effective particle size. We also focus on zenith radiance measurements, both active and passive. The proposal has three main parts. Part One exploits the ?¢????solar-background?¢??? mode of ARM lidars to allow them to retrieve cloud optical depth not just for thin clouds but for all clouds. This also enables the study of aerosol cloud interactions with a single instrument. Part Two exploits the large number of new wavelengths offered by ARM?¢????s zenith-pointing ShortWave Spectrometer (SWS), especially during CLASIC, to develop better retrievals not only of cloud optical depth but also of cloud particle size. We also propose to take advantage of the SWS?¢???? 1 Hz sampling to study the ?¢????twilight zone?¢??? around clouds where strong aerosol-cloud interactions are taking place. Part Three involves continuing our cloud optical depth and cloud fraction retrieval research with ARM?¢????s 2NFOV instrument by, first, analyzing its data from the AMF-COPS/CLOWD deployment, and second, making our algorithms part of ARM?¢????s operational data processing.

  20. Plutonium working group report on environmental, safety and health vulnerabilities associated with the Department`s plutonium storage. Volume 2, Appendix A: Process and protocol

    SciTech Connect (OSTI)

    NONE

    1994-09-01T23:59:59.000Z

    This appendix contains documentation prepared by the Plutonium ES and H Vulnerability Working Group for conducting the Plutonium ES and H Vulnerability Assessment and training the assessment teams. It has the following five parts. (1) The Project Plan describes the genesis of the project, sets forth the goals, objectives and scope, provides definitions, the projected schedule, and elements of protocol. (2) The Assessment Plan provides a detailed methodology necessary to guide the many professionals who have been recruited to conduct the DOE-wide assessment. It provides guidance on which types and forms of plutonium are to be considered within the scope of the assessment, and lays out the assessment methodology to be used. (3) The memorandum from the Project to Operations Office Managers provides the protocol and direction for participation in the assessment by external stakeholders and members of the public; and the guidance for the physical inspection of plutonium materials in storage. (4) The memorandum from the Project to the assessment teams provides guidance for vulnerability screening criteria, vulnerability evaluation and prioritization process, and vulnerability quantification for prioritization. (5) The Team Training manual was used at the training session held in Colorado Springs on April 19--21, 1994 for all members of the Working Group Assessment Teams and for the leaders of the Site Assessment Teams. The goal was to provide the same training to all of the individuals who would be conducting the assessments, and thereby provide consistency in the conduct of the assessments and uniformity in reporting of the results. The training manual in Section A.5 includes supplemental material provided to the attendees after the meeting.

  1. Radiation: Radiation Control (Indiana)

    Broader source: Energy.gov [DOE]

    It is the policy of the state to encourage the constructive uses of radiation and to control its harmful effects. This section contains regulations pertaining to the manufacture, use,...

  2. Immobilization technology down-selection radiation barrier approach

    SciTech Connect (OSTI)

    Gray, L.W.; Gould, T.H.

    1997-05-23T23:59:59.000Z

    Six immobilization technology projects variants, previously selected for evaluation during the PEIS/ROD process, have been evaluated with respect to the nine basic criteria for fissile materials disposition. Metrics for the criteria were developed to facilitate a comparative analysis of the technology variants. The six technology variants are grouped according to their radiation barrier approach. Information and data for the technology options were provided by limited experimental studies, definitions of process flowsheets, and preliminary evaluations of facility concepts and costs.

  3. THE CHEMICAL AND RADIATION RESISTANCE OF POLYPHENYLENE SULFIIDE AS ENCOUNTERED IN THE MODULAR CAUSTIC SIDE SOLVENT EXTRACTION PROCESSES

    SciTech Connect (OSTI)

    Fondeur, F.; Herman, D.; Poirier, M.; Fink, S.

    2011-06-30T23:59:59.000Z

    Polyphenylene sulfide (PPS) is a semicrystalline polymer with excellent engineering plastic properties and suitable processing temperatures. PPS can also be made containing branches (using a trifunctional monomer) and with crosslinked microstructure (when curing the monomer at high temperature in the presence of oxygen). PPS is made from the condensation reaction between para-dichlorobenzene and sodium sulfide with the assistance of a catalyst (to lower the activation barrier). The synthesis conditions for making PPS has evolved since its invention in the 1960's to the optimal conditions developed by the Philips Corporation in the 1970's. The resulting polymer consists of chemically stable molecular moieties such as benzene rings and ether like sulfur linkages between the aromatic rings. Polyphenylene sulfide (PPS) is extremely resistant to gamma irradiation, caustic solution, and dilute nitric acid. PPS is the material of construction for the coalescers used in the Modular Caustic-Side Solvent Extraction Unit (MCU). After applying the equivalent of 3.3 E8 rad (330 Mrad), or the equivalent of 11 years of gamma irradiation (assuming a stripping solution concentration of 7.5 Ci/gal), and several months of exposures to 3M caustic solution and caustic salt simulant, no dimensional changes nor chemical changes were detected in PPS whether the PPS was in fiber form or in a composite with E-glass fibers. However, PPS acts as a media for heterogeneous nucleation. In particular, PPS appears to favor aluminosilicate formation in saturated solutions of aluminum and silicon in caustic environments. Parallel testing, in progress, is examining the stability of PPS when exposed to the new solvent formulation under development for MCU. Preliminary data, after two months of exposure, demonstrates PPS is stable to the new solvent.

  4. Water-soluble organometallic compounds. 3. Kinetic investigations of dissociative phosphine substitution processes involving water-soluble group 6 metal derivatives in miscible aqueous/organic media

    SciTech Connect (OSTI)

    Darensbourg, D.J.; Bischoff, C.J. (Texas A M Univ., College Station (United States))

    1993-01-06T23:59:59.000Z

    Mechanistic aspects of ligand substitution reactions of group 6 metal carbonyl derivatives containing the trisulfonated phosphine P(m-C[sub 6]H[sub 4]SO[sub 3]Na)[sub 3] (hereafter referred to as TPPTS) in pure water and water/THF media have been investigated by examination of the reactions of these derivatives with carbon monoxide as an incoming ligand. The reactions, which were carried out under 500 psi of CO in the temperature range 110-160[degrees]C, were monitored in situ by infrared spectroscopy employing a cylindrical internal reflectance reactor. Kinetic measurements show the reactions are first-order in metal complex concentration and independent of CO pressure at high CO pressures, and the rates are retarded by added TPPTS. The activation parameters for TPPTS dissociation from M(CO)[sub 5]TPPTS derivatives (M = Mo, W), e.g., in 1:1 THF/H[sub 2]O, [Delta]H[double dagger] = 28.8 [plus minus] 1.4 kcal/mol and [Delta]S[double dagger] = [minus]4.2 [plus minus] 3.5 eu and [Delta]H[double dagger] = 31.8 [plus minus] 1.5 kcal/mol and [Delta]S[double dagger] = [minus]0.73 [plus minus] 3.6 eu, respectively were shown to be quite similar to those determined for the analogous processes involving the nonsulfonated PPh[sub 3] ligand in the same solvent systems. In addition only small solvent effects were noted in going from aqueous to organic solvents for these dissociative processes. For the cis-Mo(CO)[sub 4][TPPTS][sub 2] derivative, in which the sodium ions are encapsulated by a cryptand, kryptofix-221, a steric acceleration of TPPTS dissociation is noted relative to its PPh[sub 3] analog. 27 refs., 5 figs., 6 tabs.

  5. Galaxy formation with radiative and chemical feedback

    E-Print Network [OSTI]

    Graziani, L; Schneider, R; Kawata, D; de Bennassuti, M; Maselli, A

    2015-01-01T23:59:59.000Z

    Here we introduce GAMESH, a novel pipeline which implements self-consistent radiative and chemical feedback in a computational model of galaxy formation. By combining the cosmological chemical-evolution model GAMETE with the radiative transfer code CRASH, GAMESH can post process realistic outputs of a N-body simulation describing the redshift evolution of the forming galaxy. After introducing the GAMESH implementation and its features, we apply the code to a low-resolution N-body simulation of the Milky Way formation and we investigate the combined effects of self-consistent radiative and chemical feedback. Many physical properties, which can be directly compared with observations in the Galaxy and its surrounding satellites, are predicted by the code along the merger-tree assembly. The resulting redshift evolution of the Local Group star formation rates, reionisation and metal enrichment along with the predicted Metallicity Distribution Function of halo stars are critically compared with observations. We dis...

  6. Whole-pelvis, 'mini-pelvis,' or prostate-only external beam radiotherapy after neoadjuvant and concurrent hormonal therapy in patients treated in Radiation Therapy Oncology Group 9413 trial

    SciTech Connect (OSTI)

    Roach, Mack [University of California San Francisco, San Francisco, CA (United States)]. E-mail: roach@radonc17.ucsf.edu; De Silvio, Michelle [RTOG Statistical Headquarters, Philadelphia, PA (United States); Valicenti, Richard [Thomas Jefferson University, Philadelphia, PA (United States); Grignon, David [Wayne State University, Detroit, MI (United States); Asbell, Sucha O. [Albert Einstein Medical Center, Philadelphia, PA (United States); Lawton, Colleen [Medical College of Wisconsin, Milwaukee, WI (United States); Thomas, Charles R. [Oregon Health and Sciences University, Portland OR (United States); Shipley, William U. [Massachusetts General Hospital, Boston, MA (United States)

    2006-11-01T23:59:59.000Z

    Purpose: Radiation Therapy Oncology Group (RTOG) 9413 trial demonstrated a better progression-free survival (PFS) with whole-pelvis (WP) radiotherapy (RT) compared with prostate-only (PO) RT. This secondary analysis was undertaken to determine whether 'mini-pelvis' (MP; defined as {>=}10 x 11 cm but <11 x 11 cm) RT resulted in progression-free survival (PFS) comparable to that of WP RT. To avoid a timing bias, this analysis was limited to patients receiving neoadjuvant and concurrent hormonal therapy (N and CHT) in Arms 1 and 2 of the study. Methods and Materials: Eligible patients had a risk of lymph node (LN) involvement >15%. Neoadjuvant and concurrent hormonal therapy (N and CHT) was administered 2 months before and during RT for 4 months. From April 1, 1995, to June 1, 1999, a group of 325 patients were randomized to WP RT + N and CHT and another group of 324 patients were randomized to receive PO RT + N and CHT. Patients randomized to PO RT were dichotomized by median field size (10 x 11 cm), with the larger field considered an 'MP' field and the smaller a PO field. Results: The median PFS was 5.2, 3.7, and 2.9 years for WP, MP, and PO fields, respectively (p = 0.02). The 7-year PFS was 40%, 35%, and 27% for patients treated to WP, MP, and PO fields, respectively. There was no association between field size and late Grade 3+ genitourinary toxicity but late Grade 3+ gastrointestinal RT complications correlated with increasing field size. Conclusions: This subset analysis demonstrates that RT field size has a major impact on PFS, and the findings support comprehensive nodal treatment in patients with a risk of LN involvement of >15%.

  7. Radiation detection system

    DOE Patents [OSTI]

    Franks, Larry A. (Santa Barbara, CA); Lutz, Stephen S. (Santa Barbara, CA); Lyons, Peter B. (Los Alamos, NM)

    1981-01-01T23:59:59.000Z

    A radiation detection system including a radiation-to-light converter and fiber optic wave guides to transmit the light to a remote location for processing. The system utilizes fluors particularly developed for use with optical fibers emitting at wavelengths greater than about 500 nm and having decay times less than about 10 ns.

  8. Process for Transition of Uranium Mill Tailings Radiation Control Act Title II Disposal Sites to the U.S. Department of Energy Office of Legacy Management for Long-Term Surveillance and Maintenance

    SciTech Connect (OSTI)

    none,

    2012-03-01T23:59:59.000Z

    This document presents guidance for implementing the process that the U.S. Department of Energy (DOE) Office of Legacy Management (LM) will use for assuming perpetual responsibility for a closed uranium mill tailings site. The transition process specifically addresses sites regulated under Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA) but is applicable in principle to the transition of sites under other regulatory structures, such as the Formerly Utilized Sites Remedial Action Program.

  9. TEC Working Group Topic Groups Rail Key Documents Radiation Monitoring

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE'sSummaryDepartment ofSecurity03Subgroup |Department

  10. Abdominal radiation causes bacterial translocation

    SciTech Connect (OSTI)

    Guzman-Stein, G.; Bonsack, M.; Liberty, J.; Delaney, J.P.

    1989-02-01T23:59:59.000Z

    The purpose of this study was to determine if a single dose of radiation to the rat abdomen leads to bacterial translocation into the mesenteric lymph nodes (MLN). A second issue addressed was whether translocation correlates with anatomic damage to the mucosa. The radiated group (1100 cGy) which received anesthesia also was compared with a control group and a third group which received anesthesia alone but no abdominal radiation. Abdominal radiation lead to 100% positive cultures of MLN between 12 hr and 4 days postradiation. Bacterial translocation was almost nonexistent in the control and anesthesia group. Signs of inflammation and ulceration of the intestinal mucosa were not seen until Day 3 postradiation. Mucosal damage was maximal by Day 4. Bacterial translocation onto the MLN after a single dose of abdominal radiation was not apparently dependent on anatomical, histologic damage of the mucosa.

  11. Computer Networking Group | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting theCommercialization and Innovation2010CompositionalChemistryComputer

  12. SSRL Imaging Group | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesIn theTreatmentSRS Economic0 - June 2015

  13. Environment/Health/Safety (EHS): Radiation Protection Group: Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000ConsumptionInnovationEnvironment, Safety

  14. Environment/Health/Safety (EHS): Radiation Protection Group: Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000ConsumptionInnovationEnvironment, SafetySafety Committee

  15. Group X

    SciTech Connect (OSTI)

    Fields, Susannah

    2007-08-16T23:59:59.000Z

    This project is currently under contract for research through the Department of Homeland Security until 2011. The group I was responsible for studying has to remain confidential so as not to affect the current project. All dates, reference links and authors, and other distinguishing characteristics of the original group have been removed from this report. All references to the name of this group or the individual splinter groups has been changed to 'Group X'. I have been collecting texts from a variety of sources intended for the use of recruiting and radicalizing members for Group X splinter groups for the purpose of researching the motivation and intent of leaders of those groups and their influence over the likelihood of group radicalization. This work included visiting many Group X websites to find information on splinter group leaders and finding their statements to new and old members. This proved difficult because the splinter groups of Group X are united in beliefs, but differ in public opinion. They are eager to tear each other down, prove their superiority, and yet remain anonymous. After a few weeks of intense searching, a list of eight recruiting texts and eight radicalizing texts from a variety of Group X leaders were compiled.

  16. Data Management Group Annual Report

    E-Print Network [OSTI]

    Toronto, University of

    Data Management Group Annual Report 1999 prepared by: Data Management Group Joint Program................................................................. 1 INFORMATION PROCESSING ............................................. 2 Text Based Data Retrieval System `drs' ........................ 2 Internet Browser Data Retrieval System (iDRS) ............ 3

  17. Start | Grid View | Browse by Day OR Group/Topical | Author Index | Keyword Index | Personal Scheduler Optimal Design of Energy-Efficient Integrated Distillation Processes for

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Scheduler Optimal Design of Energy-Efficient Integrated Distillation Processes for Multicomponent Ideal Optimal design of energy-efficient integrated distillation processes for multicomponent ideal and non, The Netherlands The dividing wall distillation columns (DWC) find increased use in industrial practice

  18. Danger radiations

    ScienceCinema (OSTI)

    None

    2011-04-25T23:59:59.000Z

    Le confrencier Mons.Hofert parle des dangers et risques des radiations, le contrle des zones et les prcautions prendre ( p.ex. film badge), comment mesurer les radiations etc.

  19. Byers Auto Group: A Case Study Into The Economics, Zoning, and Overall Process of Installing Small Wind Turbines at Two Automotive Dealerships in Ohio (Presentation)

    SciTech Connect (OSTI)

    Sinclair, K.; Oteri, F.

    2011-05-01T23:59:59.000Z

    This presentation provides the talking points about a case study on the installation of a $600,000 small wind project, the installation process, estimated annual energy production and percentage of energy needs met by the turbines.

  20. Byers Auto Group: A Case Study Into The Economics, Zoning, and Overall Process of Installing Small Wind Turbines at Two Automotive Dealerships in Ohio

    SciTech Connect (OSTI)

    Oteri, F.; Sinclair, K.

    2011-11-01T23:59:59.000Z

    This paper provides the talking points about a case study on the installation of a $600,000 small wind project, the installation process, estimated annual energy production and percentage of energy needs met by the turbines.

  1. Chemical applications of synchrotron radiation: Workshop report

    SciTech Connect (OSTI)

    Not Available

    1989-04-01T23:59:59.000Z

    The most recent in a series of topical meetings for Advanced Photon Source user subgroups, the Workshop on Chemical Applications of Synchrotron Radiation (held at Argonne National Laboratory, October 3-4, 1988) dealt with surfaces and kinetics, spectroscopy, small-angle scattering, diffraction, and topography and imaging. The primary objectives were to provide an educational resource for the chemistry community on the scientific research being conducted at existing synchrotron sources and to indicate some of the unique opportunities that will be made available with the Advanced Photon Source. The workshop organizers were also interested in gauging the interest of chemists in the field of synchrotron radiation. Interest expressed at the meeting has led to initial steps toward formation of a Chemistry Users Group at the APS. Individual projects are processed separately for the data bases.

  2. Enhanced radiation resistant fiber optics

    DOE Patents [OSTI]

    Lyons, P.B.; Looney, L.D.

    1993-11-30T23:59:59.000Z

    A process for producing an optical fiber having enhanced radiation resistance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation. 4 figures.

  3. Enhanced radiation resistant fiber optics

    DOE Patents [OSTI]

    Lyons, Peter B. (Los Alamos, NM); Looney, Larry D. (Los Alamos, NM)

    1993-01-01T23:59:59.000Z

    A process for producing an optical fiber having enhanced radiation resitance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation.

  4. Mechanisms of radiation interaction with DNA: Potential implications for radiation protection

    SciTech Connect (OSTI)

    Not Available

    1988-01-01T23:59:59.000Z

    The Office of Health and Environmental Research (OHER) of the US Department of Energy conducts a broad multidisciplinary research program which includes basic biophysics, biophysical chemistry, molecular and cellular biology as well as experimental animal studies and opportunistic human studies. This research is directed at understanding how low levels of radiation of various qualities produce the spectrum of biological effects that are seen for such exposures. This workshop was entitled ''Mechanisms of Radiation Interaction with DNA: Potential Implications for Radiation Protection.'' It ws jointly sponsored by the Department of Energy and the Commission of European Communities. The aim of the workshop was to review the base of knowledge in the area of mechanisms of radiation action at the DNA level, and to explore ways in which this information can be applied to the development of scientifically sound concepts and procedures for use in the field of radiation protection. The overview of research provided by this multidisciplinary group will be helpful to the Office in program planning. This report includes a summary of the presentations, extended abstracts, the meeting agenda, research recommendations, and a list of participants. Individual papers are processed separately for the data base.

  5. Radiation and Health Thormod Henriksen

    E-Print Network [OSTI]

    Johansen, Tom Henning

    of radioactivity from reactor accidents and fallout from nuclear explosions in the atmosphere. These subjects wereRadiation and Health by Thormod Henriksen and Biophysics group at UiO #12;Preface The present book is an update and extension of three previous books from groups of scientists at the University of Oslo

  6. Radiation detector

    DOE Patents [OSTI]

    Fultz, Brent T. (Berkeley, CA)

    1983-01-01T23:59:59.000Z

    Apparatus is provided for detecting radiation such as gamma rays and X-rays generated in backscatter Mossbauer effect spectroscopy and X-ray spectrometry, which has a large "window" for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  7. Radiation detector

    DOE Patents [OSTI]

    Fultz, B.T.

    1980-12-05T23:59:59.000Z

    Apparatus is provided for detecting radiation such as gamma rays and x-rays generated in backscatter Moessbauer effect spectroscopy and x-ray spectrometry, which has a large window for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  8. Automata groups

    E-Print Network [OSTI]

    Muntyan, Yevgen

    2010-01-16T23:59:59.000Z

    automata over the alphabet of 2 letters and 2-state automata over the 3-letter alphabet. We continue the classification work started by the research group at Texas A&M University ([BGK+07a, BGK+07b]) and further reduce the number of pairwise nonisomorphic...

  9. Gravitational Tunneling Radiation

    E-Print Network [OSTI]

    Mario Rabinowitz

    2002-12-11T23:59:59.000Z

    The isolated black hole radiation of both Hawking and Zel'dovich are idealized abstractions as there is always another body to distort the potential. This is considered with respect to both gravitational tunneling, and black hole "no-hair" theorems. The effects of a second body are to lower the gravitational barrier of a black hole and to give the barrier a finite rather than infinite width so tha a particle can escape by tunneling (as in field emission) or over the top of the lowered barrier (as in Schottky emission). Thus radiation may be emitted from black holes in a process differing from that of Hawking radiation, P SH, which has been undetected for over 24 years. The radiated power from a black hole derived here is PR e ^2__ PSH, where e ^2__ is he ransmission probability for radiation through the barrier. This is similar to electric field emission of electrons from a metal in that the emission can in principle be modulated and beamed. The temperature and entropy of black holes are reexamined. Miniscule black holes herein may help explain the missing mass of the universe, accelerated expansion of the universe, and anomalous rotation of spiral galaxies. A gravitational interference effect for black hole radiation similar to the Aharonov-Bohm effect is also examined.

  10. TEC Working Group Topic Groups Archives Route Identification Process |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE'sSummaryDepartment ofSecurity03 -SummariesDepartment of

  11. RADIATION SAFETY TRAINING MANUAL Radiation Safety Office

    E-Print Network [OSTI]

    Sibille, Etienne

    protection and the potential risks of ionizing radiation. Radiation Safety Office personnel provide.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 II. OVERVIEW OF REGULATIONS, PROTECTION STANDARDS, AND RADIATION SAFETY ORGANIZATION.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 V. BASIC RADIATION PROTECTION PRINCIPLES

  12. Thermal radiation from an accretion disk

    E-Print Network [OSTI]

    F. V. Prigara

    2004-01-20T23:59:59.000Z

    An effect of stimulated radiation processes on thermal radiation from an accretion disk is considered. The radial density waves triggering flare emission and producing quasi-periodic oscillations in radiation from an accretion disk are discussed. It is argued that the observational data suggest the existence of the weak laser sources in a two-temperature plasma of an accretion disk.

  13. Radiation Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Radiation Protection Regulations: The Federal Regulation

  14. The Local Group as an Astrophysical Laboratory for Massive Star Feedback

    E-Print Network [OSTI]

    M. S. Oey

    2003-07-07T23:59:59.000Z

    The feedback effects of massive stars on their galactic and intergalactic environments can dominate evolutionary processes in galaxies and affect cosmic structure in the Universe. Only the Local Group offers the spatial resolution to quantitatively study feedback processes on a variety of scales. Lyman continuum radiation from hot, luminous stars ionizes HII regions and is believed to dominate production of the warm component of the interstellar medium (ISM). Some of this radiation apparently escapes from galaxies into the intergalactic environment. Supernovae and strong stellar winds generate shell structures such as supernova remnants, stellar wind bubbles, and superbubbles around OB associations. Hot (10^6 K) gas is generated within these shells, and is believed to be the origin of the hot component of the ISM. Superbubble activity thus is likely to dominate the ISM structure, kinematics, and phase balance in star-forming galaxies. Galactic superwinds in starburst galaxies enable the escape of mass, ionizing radiation, and heavy elements. Although many important issues remain to be resolved, there is little doubt that feedback processes plays a fundamental role in energy cycles on scales ranging from individual stars to cosmic structure. This contribution reviews studies of radiative and mechanical feedback in the Local Group.

  15. Upgraded Coal Interest Group

    SciTech Connect (OSTI)

    Evan Hughes

    2009-01-08T23:59:59.000Z

    The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

  16. Radiation issues for the nuclear industry

    SciTech Connect (OSTI)

    Harward, E.D. (ed.)

    1983-01-01T23:59:59.000Z

    These proceedings are organized under the following categories: Radiation Control: New Issues; Exploring the Use of a De Minimus Concept in Radiation Protection; Evolving Radiation Protection Standards; Occupational Radiation Protection: Are We Doing Enough; and Emergency Planning: the Potassium Iodide Issue. A separate abstract was prepared for each of 22 papers for the Energy Data Base (EDB) and for Energy Abstracts for Policy Analysis (EAPA); 6 of the papers are included in Energy Research Abstracts (ERA). Three papers were processed earlier.

  17. RADIATION RESEARCH 160, 174185 (2003) 0033-7587/03 $5.00

    E-Print Network [OSTI]

    Simons, Jack

    2003-01-01T23:59:59.000Z

    174 RADIATION RESEARCH 160, 174185 (2003) 0033-7587/03 $5.00 2003 by Radiation Research Society Backbone Radicals. Radiat. Res. 160, 174185 (2003). In this study, the effects of high-LET radiation inherent in the two radiations. 2003 by Radiation Research Society INTRODUCTION The processes of energy

  18. Illinois Wind Workers Group

    SciTech Connect (OSTI)

    David G. Loomis

    2012-05-28T23:59:59.000Z

    The Illinois Wind Working Group (IWWG) was founded in 2006 with about 15 members. It has grown to over 200 members today representing all aspects of the wind industry across the State of Illinois. In 2008, the IWWG developed a strategic plan to give direction to the group and its activities. The strategic plan identifies ways to address critical market barriers to the further penetration of wind. The key to addressing these market barriers is public education and outreach. Since Illinois has a restructured electricity market, utilities no longer have a strong control over the addition of new capacity within the state. Instead, market acceptance depends on willing landowners to lease land and willing county officials to site wind farms. Many times these groups are uninformed about the benefits of wind energy and unfamiliar with the process. Therefore, many of the project objectives focus on conferences, forum, databases and research that will allow these stakeholders to make well-educated decisions.

  19. Radiation receiver

    DOE Patents [OSTI]

    Hunt, A.J.

    1983-09-13T23:59:59.000Z

    The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles. 5 figs.

  20. Radiation receiver

    DOE Patents [OSTI]

    Hunt, Arlon J. (Oakland, CA)

    1983-01-01T23:59:59.000Z

    The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles.

  1. Gravitational Radiation

    E-Print Network [OSTI]

    Bernard F Schutz

    2000-03-16T23:59:59.000Z

    Gravity is one of the fundamental forces of Nature, and it is the dominant force in most astronomical systems. In common with all other phenomena, gravity must obey the principles of special relativity. In particular, gravitational forces must not be transmitted or communicated faster than light. This means that when the gravitational field of an object changes, the changes ripple outwards through space and take a finite time to reach other objects. These ripples are called gravitational radiation or gravitational waves. This article gives a brief introduction to the physics of gravitational radiation, including technical material suitable for non-specialist scientists.

  2. Working Group Report: Sensors

    SciTech Connect (OSTI)

    Artuso, M.; et al.,

    2013-10-18T23:59:59.000Z

    Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In addition the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.

  3. Cataractogenic effects of proton radiation

    E-Print Network [OSTI]

    Kyzar, James Ronald

    1972-01-01T23:59:59.000Z

    vulnerable organs, created an urgent need for investigation of proton radiation cataracto- genesis. In a statistical analysis of collected data on solar proton events taking into consideration possible shield- ing and mission duration, an investigator... energy group to a high of 74 for the 20 Mev proton energy group. As previously stated, the maximum possible numerical value was 400. The mean values for degree of lens opacities for the controls and the five dosage subgroups within the 10 Mev, 20 Mev...

  4. alamos dynamic radiation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of radiation, its energy. Ultimately, the energy carried Massey, Thomas N. 2 The Dynamics of Tectonic Tremor Throughout the Seismic Cycle 1. Geophysics Group, Los Alamos...

  5. Radiation Protection Act (Pennsylvania)

    Broader source: Energy.gov [DOE]

    This Act combines the radiation safety provisions of The Atomic Energy Development and Radiation Control Act and the Environmental Radiation Protection Act, and empowers the Department of...

  6. Survivable pulse power space radiator

    DOE Patents [OSTI]

    Mims, J.; Buden, D.; Williams, K.

    1988-03-11T23:59:59.000Z

    A thermal radiator system is described for use on an outer space vehicle, which must survive a long period of nonuse and then radiate large amounts of heat for a limited period of time. The radiator includes groups of radiator panels that are pivotally connected in tandem, so that they can be moved to deployed configuration wherein the panels lie largely coplanar, and to a stowed configuration wherein the panels lie in a stack to resist micrometerorite damage. The panels are mounted on a boom which separates a hot power source from a payload. While the panels are stowed, warm fluid passes through their arteries to keep them warm enough to maintain the coolant in a liquid state and avoid embrittlement of material. The panels can be stored in a largely cylindrical shell, with panels progressively further from the boom being of progressively shorter length. 5 figs.

  7. Radiation from SU(3) monopole scattering

    E-Print Network [OSTI]

    Patrick Irwin

    2000-04-07T23:59:59.000Z

    The energy radiated during the scattering of SU(3) monopoles is estimated as a function of their asymptotic velocity v. In a typical scattering process the total energy radiated is of order v^3 as opposed to v^5 for SU(2) monopoles. For charge (1,1) monopoles the dipole radiation produced is estimated for all geodesics on the moduli space. For charge (2,1) monopoles the dipole radiation is estimated for the axially symmetric geodesic. The power radiated appears to diverge in the massless limit. The implications of this for the case of non-Abelian unbroken symmetry are discussed.

  8. Microsystems and Nanotechnology Group

    E-Print Network [OSTI]

    Pulfrey, David L.

    Microsystems and Nanotechnology Group Microsystems and Nanotechnology Group 1 Microsystems and Nanotechnology Research Group The University of British Columbia Microsystems and Nanotechnology Research Group The University of British Columbia Annual Report 2007 Microsystems and Nanotechnology Research Group 1 About

  9. Microsystems and Nanotechnology Group

    E-Print Network [OSTI]

    Pulfrey, David L.

    Microsystems and Nanotechnology Group Microsystems and Nanotechnology Group 1 Microsystems and Nanotechnology Research Group The University of British Columbia Microsystems and Nanotechnology Research Group The University of British Columbia Annual Report 2008 Microsystems and Nanotechnology Research Group 1 About

  10. New type of amidoxime-group-containing adsorbent for the recovery of uranium from seawater

    SciTech Connect (OSTI)

    Omichi, H.; Katakai, A.; Sugo, T.; Okamoto, J.

    1985-01-01T23:59:59.000Z

    A new type of adsorbent containing amidoxime groups for the recovery of uranium from seawater was synthesized by the radiation-induced graft polymerization of acrylonitrile onto polymeric fiber followed by amidoximation with hydroxylamine. When amidoxime groups were introduced superficially on the fiber, the amount of uranium adsorbed by the amidoxime groups was higher than that with the amidoxime groups introduced homogeneously in the fiber. The introduction of the poly(acrylic acid) chain and the increase in temperature and flow rate in the adsorption process were effective in increasing the amount of adsorbed uranium. Although alkali metals and alkaline earth metals were found in the adsorbent, the concentration factors for these metals were less than 1/10/sup 3/ of that for uranium. The present adsorbent had a high stability to various treatments such as contact with alkali and seawater. 24 references, 9 figures, 3 tables.

  11. HYDROLOGICAL PROCESSES Hydrol. Process. 23, 29022914 (2009)

    E-Print Network [OSTI]

    Kienzle, Stefan W.

    2009-01-01T23:59:59.000Z

    modelling effort indicate that hyporheic and dead zone heat fluxes are important, whereas solar radiationHYDROLOGICAL PROCESSES Hydrol. Process. 23, 29022914 (2009) Published online 24 July 2009 in Wiley the significance of individual heat fluxes within streams with an emphasis on testing (i.e. identification

  12. Advanced Polymer Processing Facility

    SciTech Connect (OSTI)

    Muenchausen, Ross E. [Los Alamos National Laboratory

    2012-07-25T23:59:59.000Z

    Some conclusions of this presentation are: (1) Radiation-assisted nanotechnology applications will continue to grow; (2) The APPF will provide a unique focus for radiolytic processing of nanomaterials in support of DOE-DP, other DOE and advanced manufacturing initiatives; (3) {gamma}, X-ray, e-beam and ion beam processing will increasingly be applied for 'green' manufacturing of nanomaterials and nanocomposites; and (4) Biomedical science and engineering may ultimately be the biggest application area for radiation-assisted nanotechnology development.

  13. 2006 Nature Publishing Group A climatologically significant aerosol longwave

    E-Print Network [OSTI]

    reinforcements including icealbedo and cloudradiation feedbacks6 . The importance of cloudradiation (refs 7, 8). These studies have established that clouds, via the dominance of longwave radiation, exert clouds, in a process known as the `first indirect' effect11,12 . Under frequently occurring cloud types

  14. Enforcement Letter, Parsons Infrastructure & Technology Group...

    Broader source: Energy.gov (indexed) [DOE]

    and Technology Group, Inc. related to a form wood timber fire caused by nearby propane heaters during construction of the Salt Waste Processing Facility at DOE's Savannah...

  15. Annual Report: Hydrodynamics and Radiative Hydrodynamics with Astrophysical Applications

    SciTech Connect (OSTI)

    R. Paul Drake

    2005-12-01T23:59:59.000Z

    We report the ongoing work of our group in hydrodynamics and radiative hydrodynamics with astrophysical applications. During the period of the existing grant, we have carried out two types of experiments at the Omega laser. One set of experiments has studied radiatively collapsing shocks, obtaining high-quality scaling data using a backlit pinhole and obtaining the first (ever, anywhere) Thomson-scattering data from a radiative shock. Other experiments have studied the deeply nonlinear development of the Rayleigh-Taylor (RT) instability from complex initial conditions, obtaining the first (ever, anywhere) dual-axis radiographic data using backlit pinholes and ungated detectors. All these experiments have applications to astrophysics, discussed in the corresponding papers either in print or in preparation. We also have obtained preliminary radiographs of experimental targets using our x-ray source. The targets for the experiments have been assembled at Michigan, where we also prepare many of the simple components. The above activities, in addition to a variety of data analysis and design projects, provide good experience for graduate and undergraduates students. In the process of doing this research we have built a research group that uses such work to train junior scientists.

  16. assessing radiation feedbacks: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pressure, from both direct opticalUV radiation and multi-scattered, re-processed infrared (IR) radiation. Photo-heating smooths and thickens the disks and suppresses star...

  17. astrophysical radiation hydrodynamics: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pressure, from both direct opticalUV radiation and multi-scattered, re-processed infrared (IR) radiation. Photo-heating smooths and thickens the disks and suppresses star...

  18. North Central Cancer Treatment Group Phase I Trial N057K of Everolimus (RAD001) and Temozolomide in Combination With Radiation Therapy in Patients With Newly Diagnosed Glioblastoma Multiforme

    SciTech Connect (OSTI)

    Sarkaria, Jann N., E-mail: sarkaria.jann@mayo.edu [Mayo Clinic Rochester, Rochester, MN (United States); Galanis, Evanthia; Wu Wenting; Peller, Patrick J.; Giannini, Caterina; Brown, Paul D.; Uhm, Joon H. [Mayo Clinic Rochester, Rochester, MN (United States); McGraw, Steven [Sioux Community Cancer Consortium, Sioux Falls, SD (United States); Jaeckle, Kurt A. [Mayo Clinic Florida, Jacksonville, FL (United States); Buckner, Jan C. [Mayo Clinic Rochester, Rochester, MN (United States)

    2011-10-01T23:59:59.000Z

    Background: The mammalian target of rapamycin (mTOR) functions within the PI3K/Akt signaling pathway as a critical modulator of cell survival. On the basis of promising preclinical data, the safety and tolerability of therapy with the mTOR inhibitor RAD001 in combination with radiation (RT) and temozolomide (TMZ) was evaluated in this Phase I study. Methods and Materials: All patients received weekly oral RAD001 in combination with standard chemoradiotherapy, followed by RAD001 in combination with standard adjuvant temozolomide. RAD001 was dose escalated in cohorts of 6 patients. Dose-limiting toxicities were defined during RAD001 combination therapy with TMZ/RT. Results: Eighteen patients were enrolled, with a median follow-up of 8.4 months. Combined therapy was well tolerated at all dose levels, with 1 patient on each dose level experiencing a dose-limiting toxicity: Grade 3 fatigue, Grade 4 hematologic toxicity, and Grade 4 liver dysfunction. Throughout therapy, there were no Grade 5 events, 3 patients experienced Grade 4 toxicities, and 6 patients had Grade 3 toxicities attributable to treatment. On the basis of these results, the recommended Phase II dosage currently being tested is RAD001 70 mg/week in combination with standard chemoradiotherapy. Fluorodeoxyglucose (FDG) positron emission tomography scans also were obtained at baseline and after the second RAD001 dose before the initiation of TMZ/RT; the change in FDG uptake between scans was calculated for each patient. Fourteen patients had stable metabolic disease, and 4 patients had a partial metabolic response. Conclusions: RAD001 in combination with RT/TMZ and adjuvant TMZ was reasonably well tolerated. Changes in tumor metabolism can be detected by FDG positron emission tomography in a subset of patients within days of initiating RAD001 therapy.

  19. Radiation imaging apparatus

    DOE Patents [OSTI]

    Anger, Hal O. (Berkeley, CA); Martin, Donn C. (Berkeley, CA); Lampton, Michael L. (Berkeley, CA)

    1983-01-01T23:59:59.000Z

    A radiation imaging system using a charge multiplier and a position sensitive anode in the form of periodically arranged sets of interconnected anode regions for detecting the position of the centroid of a charge cloud arriving thereat from the charge multiplier. Various forms of improved position sensitive anodes having single plane electrode connections are disclosed. Various analog and digital signal processing systems are disclosed, including systems which use the fast response of microchannel plates, anodes and preamps to perform scintillation pulse height analysis digitally.

  20. Radiation imaging apparatus

    DOE Patents [OSTI]

    Anger, H.O.; Martin, D.C.; Lampton, M.L.

    1983-07-26T23:59:59.000Z

    A radiation imaging system using a charge multiplier and a position sensitive anode in the form of periodically arranged sets of interconnected anode regions for detecting the position of the centroid of a charge cloud arriving thereat from the charge multiplier. Various forms of improved position sensitive anodes having single plane electrode connections are disclosed. Various analog and digital signal processing systems are disclosed, including systems which use the fast response of microchannel plates, anodes and preamps to perform scintillation pulse height analysis digitally. 15 figs.

  1. Ultraviolet-radiation-curable paints

    SciTech Connect (OSTI)

    Grosset, A M; Su, W F.A.; Vanderglas, E

    1981-09-30T23:59:59.000Z

    In product finishing lines, ultraviolet radiation curing of paints on prefabricated structures could be more energy efficient than curing by natural gas fired ovens, and could eliminate solvent emission. Diffuse ultraviolet light can cure paints on three dimensional metal parts. In the uv curing process, the spectral output of radiation sources must complement the absorption spectra of pigments and photoactive agents. Photosensitive compounds, such as thioxanthones, can photoinitiate unsaturated resins, such as acrylated polyurethanes, by a free radical mechanism. Newly developed cationic photoinitiators, such as sulfonium or iodonium salts (the so-called onium salts) of complex metal halide anions, can be used in polymerization of epoxy paints by ultraviolet light radiation. One-coat enamels, topcoats, and primers have been developed which can be photoinitiated to produce hard, adherent films. This process has been tested in a laboratory scale unit by spray coating these materials on three-dimensional objects and passing them through a tunnel containing uv lamps.

  2. Properties of Group Five and Group Seven transactinium elements

    E-Print Network [OSTI]

    Wilk, Philip A.

    2001-01-01T23:59:59.000Z

    of Group Five and Group Seven Transactinium Elementsof Group Five and Group Seven Transactinium Elements byof Group Five and Group Seven Transactinium Elements by

  3. A Research Agenda for Radiation Oncology: Results of the Radiation Oncology Institute's Comprehensive Research Needs Assessment

    SciTech Connect (OSTI)

    Jagsi, Reshma, E-mail: rjagsi@med.umich.edu [Department of Radiation Oncology, University of Michigan, Ann Arbor, MI (United States)] [Department of Radiation Oncology, University of Michigan, Ann Arbor, MI (United States); Bekelman, Justin E. [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States)] [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States); Brawley, Otis W. [Department of Hematology and Oncology, Emory University, and American Cancer Society, Atlanta, Georgia (United States)] [Department of Hematology and Oncology, Emory University, and American Cancer Society, Atlanta, Georgia (United States); Deasy, Joseph O. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States)] [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Le, Quynh-Thu [Department of Radiation Oncology, Stanford University, Stanford, CA (United States)] [Department of Radiation Oncology, Stanford University, Stanford, CA (United States); Michalski, Jeff M. [Department of Radiation Oncology, Washington University, St. Louis, MO (United States)] [Department of Radiation Oncology, Washington University, St. Louis, MO (United States); Movsas, Benjamin [Department of Radiation Oncology, Henry Ford Health System, Detroit, MI (United States)] [Department of Radiation Oncology, Henry Ford Health System, Detroit, MI (United States); Thomas, Charles R. [Department of Radiation Oncology, Oregon Health and Sciences University, Portland, OR (United States)] [Department of Radiation Oncology, Oregon Health and Sciences University, Portland, OR (United States); Lawton, Colleen A. [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI (United States)] [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI (United States); Lawrence, Theodore S. [Department of Radiation Oncology, University of Michigan, Ann Arbor, MI (United States)] [Department of Radiation Oncology, University of Michigan, Ann Arbor, MI (United States); Hahn, Stephen M. [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States)] [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States)

    2012-10-01T23:59:59.000Z

    Purpose: To promote the rational use of scarce research funding, scholars have developed methods for the systematic identification and prioritization of health research needs. The Radiation Oncology Institute commissioned an independent, comprehensive assessment of research needs for the advancement of radiation oncology care. Methods and Materials: The research needs assessment used a mixed-method, qualitative and quantitative social scientific approach, including structured interviews with diverse stakeholders, focus groups, surveys of American Society for Radiation Oncology (ASTRO) members, and a prioritization exercise using a modified Delphi technique. Results: Six co-equal priorities were identified: (1) Identify and develop communication strategies to help patients and others better understand radiation therapy; (2) Establish a set of quality indicators for major radiation oncology procedures and evaluate their use in radiation oncology delivery; (3) Identify best practices for the management of radiation toxicity and issues in cancer survivorship; (4) Conduct comparative effectiveness studies related to radiation therapy that consider clinical benefit, toxicity (including quality of life), and other outcomes; (5) Assess the value of radiation therapy; and (6) Develop a radiation oncology registry. Conclusions: To our knowledge, this prioritization exercise is the only comprehensive and methodologically rigorous assessment of research needs in the field of radiation oncology. Broad dissemination of these findings is critical to maximally leverage the impact of this work, particularly because grant funding decisions are often made by committees on which highly specialized disciplines such as radiation oncology are not well represented.

  4. Adaptors for radiation detectors

    DOE Patents [OSTI]

    Livesay, Ronald Jason

    2014-04-22T23:59:59.000Z

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  5. Radiation dosimeters

    DOE Patents [OSTI]

    Hoelsher, James W. (Pullman, WA); Hegland, Joel E. (Pullman, WA); Braunlich, Peter F. (Pullman, WA); Tetzlaff, Wolfgang (Pullman, WA)

    1992-01-01T23:59:59.000Z

    Radiation dosimeters and dosimeter badges. The dosimeter badges include first and second parts which are connected to join using a securement to produce a sealed area in which at least one dosimeter is held and protected. The badge parts are separated to expose the dosimeters to a stimulating laser beam used to read dose exposure information therefrom. The badge is constructed to allow automated disassembly and reassembly in a uniquely fitting relationship. An electronic memory is included to provide calibration and identification information used during reading of the dosimeter. Dosimeter mounts which reduce thermal heating requirements are shown. Dosimeter constructions and production methods using thin substrates and phosphor binder-layers applied thereto are also taught.

  6. QCD Radiation off Heavy Particles

    E-Print Network [OSTI]

    Torbjrn Sjstrand

    2000-12-15T23:59:59.000Z

    An algorithm for an improved description of final-state QCD radiation is introduced. It is matched to the first-order matrix elements for gluon emission in a host of decays, for processes within the Standard Model and the Minimal Supersymmetric extension thereof.

  7. Preferences, Information, and Group Decision Making

    E-Print Network [OSTI]

    Espinoza, Alejandro

    2009-05-15T23:59:59.000Z

    This study will examine how the structure of preferences of group members in a decision-making group, as well as the information they have, affects the collection and the processing of information by individual members of a decision making group...

  8. Preferences, Information, and Group Decision Making

    E-Print Network [OSTI]

    Espinoza, Alejandro

    2009-05-15T23:59:59.000Z

    This study will examine how the structure of preferences of group members in a decision-making group, as well as the information they have, affects the collection and the processing of information by individual members of a decision making group...

  9. Reforming process

    SciTech Connect (OSTI)

    Buss, W.C.

    1987-02-24T23:59:59.000Z

    A reforming process is described comprising: (a) contacting a hydrocarbon feed with a first reforming catalyst at conditions which favor reforming to form a product stream. The first reforming catalyst is bifunctional and comprises a metallic oxide support which contains acidic sites having disposed therein a Group VIII metal; and (b) contacting the product stream with a second reforming catalyst at conditions which favor reforming. The second reforming catalyst is a monofunctional, non-acidic catalyst comprising a large-pore zeolite containing at least one Group VIII metal.

  10. environmental management radiation protection

    E-Print Network [OSTI]

    Entekhabi, Dara

    EHS environmental management biosafety radiation protection industrial hygiene safety Working: Biosafety, Environmental Management, Industrial Hygiene, Radiation Protection and Safety. Each specialized Management Program, Industrial Hygiene, Radiation Protection Program, and the Safety Program. (http

  11. DETECTORS FOR RADIATION DOSIMETRY

    E-Print Network [OSTI]

    Perez-Mendez, V.

    2010-01-01T23:59:59.000Z

    J. Price, "Nuclear Radiation Detection" (2nd ed. , New York:4) G. F. Knoll, "Radiation Detection and Measurement" (NewSons, Inc. from "Radiation Detection and Measurement," G. F.

  12. Hadronic Radiation Patterns in Vector Boson Fusion Higgs Production

    E-Print Network [OSTI]

    V. A. Khoze; W. J. Stirling; P. H. Williams

    2003-07-23T23:59:59.000Z

    We consider the hadronic radiation patterns for the generic process of bb + 2 forward jet production at the LHC, where the (centrally produced) bb originate either from a Higgs, a Z or from standard QCD production processes. A numerical technique for evaluating the radiation patterns for non-trivial final states is introduced and shown to agree with the standard analytic results for more simple processes. Significant differences between the radiation patterns for the Higgs signal and the background processes are observed and quantified. This suggests that hadronic radiation patterns could be used as an additional diagnostic tool in Higgs searches in this channel at the LHC.

  13. Courses on Synchrotron Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation The following is an incomplete list of courses on Synchrotron Radiation. For additional courses, check lightsources.org. XAFS School The APS XAFS School...

  14. Solar radiation resource assessment

    SciTech Connect (OSTI)

    Not Available

    1990-11-01T23:59:59.000Z

    The bulletin discusses the following: introduction; Why is solar radiation resource assessment important Understanding the basics; the solar radiation resource assessment project; and future activities.

  15. Radiation Control (Virginia)

    Broader source: Energy.gov [DOE]

    The Department of Health is responsible for regulating radiation and radioactive materials in the Commonwealth of Virginia. Although the Department's Radiation Control Program primarily focuses on...

  16. Program Building Committee's Central Planning Group.

    E-Print Network [OSTI]

    Richardson, Burl B.; Marshall, Mary G.

    1982-01-01T23:59:59.000Z

    Tooe ZTA245.7 8873 Y)O./3~ The Texas A&M (stem r ultural ~ion ~ervrce Damet C Plannstlel. Director College Stallon Program Building Committee's CENTRAL PLANNING GROUP 8-1344 Authors: Burl B. Richardson , Extension Program Specialist... and Mary G. Marshall, Extension Program Specialist Program -Building Committee's CENTRAL PLANNING GROUP This leaflet describes the role of the central planning group in the program development process_ The central planning group is the highest...

  17. Radiation Shielding for Fusion Reactors

    SciTech Connect (OSTI)

    Santoro, R.T.

    1999-10-01T23:59:59.000Z

    Radiation shielding requirements for fusion reactors present different problems than those for fission reactors and accelerators. Fusion devices, particularly tokamak reactors, are complicated by geometry constraints that complicate disposition of fully effective shielding. This paper reviews some of these shielding issues and suggested solutions for optimizing the machine and biological shielding. Radiation transport calculations are essential for predicting and confirming the nuclear performance of the reactor and, as such, must be an essential part of the reactor design process. Development and optimization of reactor components from the first wall and primary shielding to the penetrations and containment shielding must be carried out in a sensible progression. Initial results from one-dimensional transport calculations are used for scoping studies and are followed by detailed two- and three-dimensional analyses to effectively characterize the overall radiation environment. These detail model calculations are essential for accounting for the radiation leakage through ports and other penetrations in the bulk shield. Careful analysis of component activation and radiation damage is cardinal for defining remote handling requirements, in-situ replacement of components, and personnel access at specific locations inside the reactor containment vessel. Radiation shielding requirements for fusion reactors present different problems than those for fission reactors and accelerators. Fusion devices, particularly tokamak reactors, are complicated by geometry constraints that complicate disposition of fully effective shielding. This paper reviews some of these shielding issues and suggested solutions for optimizing the machine and biological shielding. Radiation transport calculations are essential for predicting and confirming the nuclear performance of the reactor and, as such, must be an essential part of the reactor design process. Development and optimization of reactor components from the first wall and primary shielding to the penetrations and containment shielding must be carried out in a sensible progression. Initial results from one-dimensional transport calculations are used for scoping studies and are followed by detailed two- and three-dimensional analyses to effectively characterize the overall radiation environment. These detail model calculations are essential for accounting for the radiation leakage through ports and other penetrations in the bulk shield. Careful analysis of component activation and radiation damage is cardinal for defining remote handling requirements, in-situ replacement of components, and personnel access at specific locations inside the reactor containment vessel.

  18. Phosphors containing boron and metals of Group IIIA and IIIB

    DOE Patents [OSTI]

    Setlur, Anant Achyut; Srivastava, Alok Mani; Comanzo, Holly Ann; Manivannan, Venkatesan

    2006-10-31T23:59:59.000Z

    A phosphor comprises: (a) at least a first metal selected from the group consisting of yttrium and elements of lanthanide series other than europium; (b) at least a second metal selected from the group consisting of aluminum, gallium, indium, and scandium; (c) boron; and (d) europium. The phosphor is used in light source that comprises a UV radiation source to convert UV radiation to visible light.

  19. GROUP THERAPY Syracuse University

    E-Print Network [OSTI]

    McConnell, Terry

    your individual needs. In a group, up to eight students meet with one or two group therapists. MostGROUP THERAPY Syracuse University Counseling Center 200 Walnut Place Phone: 315-443-4715 Fax: 315-443-4276 counselingcenter.syr.edu WHAT STUDENTS SAY ABOUT GROUP THERAPY I was really anxious about joining a group

  20. Discussion on spin-flip synchrotron radiation

    E-Print Network [OSTI]

    V. A. Bordovitsyn; V. S. Gushchina; A. N. Myagkii

    2001-02-12T23:59:59.000Z

    Quantum spin-flip transitions are of great importance in the synchrotron radiation theory. For better understanding of the nature of this phenomenon, it is necessary to except the effects connected with the electric charge radiation from observation. This fact explains the suggested choice of the spin-flip radiation model in the form of radiation of the electric neutral Dirac-Pauli particle moving in the homogeneous magnetic field. It is known that in this case, the total radiation in the quantum theory is conditioned by spin-flip transitions. The idea is that spin-flip radiation is represented as a nonstationary process connected with spin precession. We shall shown how to construct a solution of the classical equation of the spin precession in the BMT theory having the exact solution of the Dirac-Pauli equation.Thus, one will find the connection of the quantum spin-flip transitions with classical spin precession.

  1. Apparatus and method for detecting gamma radiation

    DOE Patents [OSTI]

    Sigg, R.A.

    1994-12-13T23:59:59.000Z

    A high efficiency radiation detector is disclosed for measuring X-ray and gamma radiation from small-volume, low-activity liquid samples with an overall uncertainty better than 0.7% (one sigma SD). The radiation detector includes a hyperpure germanium well detector, a collimator, and a reference source. The well detector monitors gamma radiation emitted by the reference source and a radioactive isotope or isotopes in a sample source. The radiation from the reference source is collimated to avoid attenuation of reference source gamma radiation by the sample. Signals from the well detector are processed and stored, and the stored data is analyzed to determine the radioactive isotope(s) content of the sample. Minor self-attenuation corrections are calculated from chemical composition data. 4 figures.

  2. Apparatus and method for detecting gamma radiation

    DOE Patents [OSTI]

    Sigg, Raymond A. (Martinez, GA)

    1994-01-01T23:59:59.000Z

    A high efficiency radiation detector for measuring X-ray and gamma radiation from small-volume, low-activity liquid samples with an overall uncertainty better than 0.7% (one sigma SD). The radiation detector includes a hyperpure germanium well detector, a collimator, and a reference source. The well detector monitors gamma radiation emitted by the reference source and a radioactive isotope or isotopes in a sample source. The radiation from the reference source is collimated to avoid attenuation of reference source gamma radiation by the sample. Signals from the well detector are processed and stored, and the stored data is analyzed to determine the radioactive isotope(s) content of the sample. Minor self-attenuation corrections are calculated from chemical composition data.

  3. Living olefin polymerization processes

    DOE Patents [OSTI]

    Schrock, Richard R.; Bauman, Robert

    2006-11-14T23:59:59.000Z

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  4. Specific Group Hardware

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Group Hardware Specific Group Hardware ALICE palicevo1 The Virtual Organization (VO) server. Serves as gatekeeper for ALICE jobs. It's duties include getting assignments from...

  5. National group honors Sandia radiation effects expert | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica Treaty Organization NCTSecuritySecurity

  6. QEP WORKING GROUP CHARGES Assessment Working Group

    E-Print Network [OSTI]

    Liu, Paul

    and a framework that details timelines, leadership, resource allocation, and an assessment plan that is clearlyQEP WORKING GROUP CHARGES Assessment Working Group The topic of the QEP should fit should be supported by a thorough understanding of the institutional context and by assessment data

  7. Selmer groups as flat cohomology groups

    E-Print Network [OSTI]

    ?esnavi?ius, K?stutis

    2014-01-01T23:59:59.000Z

    Given a prime number p, Bloch and Kato showed how the p Selmer group of an abelian variety A over a number field K is determined by the p-adic Tate module. In general, the pm1-Selmer group Selpmn A need not be determined ...

  8. 1. Tsubono Group 1 1 Tsubono Group

    E-Print Network [OSTI]

    Ejiri, Shinji

    optical fiber Test of the law of gravitation at extremely small distance references [1] Y. Aso, M. Ando1. Tsubono Group 1 1 Tsubono Group Research Subjects: Experimental Relativity, Gravitational Wave Physics, Laser Inter- ferometer Member: Kimio TSUBONO and Masaki ANDO The detection of gravitational waves

  9. Radiation in molecular dynamic simulations

    SciTech Connect (OSTI)

    Glosli, J; Graziani, F; More, R; Murillo, M; Streitz, F; Surh, M

    2008-10-13T23:59:59.000Z

    Hot dense radiative (HDR) plasmas common to Inertial Confinement Fusion (ICF) and stellar interiors have high temperature (a few hundred eV to tens of keV), high density (tens to hundreds of g/cc) and high pressure (hundreds of Megabars to thousands of Gigabars). Typically, such plasmas undergo collisional, radiative, atomic and possibly thermonuclear processes. In order to describe HDR plasmas, computational physicists in ICF and astrophysics use atomic-scale microphysical models implemented in various simulation codes. Experimental validation of the models used to describe HDR plasmas are difficult to perform. Direct Numerical Simulation (DNS) of the many-body interactions of plasmas is a promising approach to model validation but, previous work either relies on the collisionless approximation or ignores radiation. We present a new numerical simulation technique to address a currently unsolved problem: the extension of molecular dynamics to collisional plasmas including emission and absorption of radiation. The new technique passes a key test: it relaxes to a blackbody spectrum for a plasma in local thermodynamic equilibrium. This new tool also provides a method for assessing the accuracy of energy and momentum exchange models in hot dense plasmas. As an example, we simulate the evolution of non-equilibrium electron, ion, and radiation temperatures for a hydrogen plasma using the new molecular dynamics simulation capability.

  10. Impurity radiation from a tokamak plasma

    SciTech Connect (OSTI)

    Morozov, D. Kh.; Baronova, E. O. [Russian Research Centre Kurchatov Institute, Nuclear Fusion Institute (Russian Federation); Senichenkov, I. Yu. [St. Petersburg State Polytechnical University (Russian Federation)

    2007-11-15T23:59:59.000Z

    In tokamak operating modes, energy balance is often governed by impurity radiation. This is the case near the divertor plates, during impurity pellet injection, during controlled discharge disruptions, etc. The calculation of impurity radiation is a fairly involved task (it is sometimes the most difficult part of the general problem) because the radiation power is determined by the distribution of ions over the excited states and by the rate constants of elementary processes of radiation and absorption. The objective of this paper is to summarize in one place all the approximate formulas that would help investigators to describe radiation from the most often encountered impurities in a fairly simple way in their calculations accounting for plasma radiation, without reference to special literature. Simple approximating formulas describing ionization, recombination, and charge-exchange processes, as well as radiative losses from ions with a given charge, are presented for five impurity species: beryllium, carbon, oxygen, neon, and argon. Estimating formulas that allow one to take into account plasma opacity for resonant photons in line impurity radiation are also presented.

  11. Coupled Deterministic-Monte Carlo Transport for Radiation Portal Modeling

    SciTech Connect (OSTI)

    Smith, Leon E.; Miller, Erin A.; Wittman, Richard S.; Shaver, Mark W.

    2008-01-14T23:59:59.000Z

    Radiation portal monitors are being deployed, both domestically and internationally, to detect illicit movement of radiological materials concealed in cargo. Evaluation of the current and next generations of these radiation portal monitor (RPM) technologies is an ongoing process. 'Injection studies' that superimpose, computationally, the signature from threat materials onto empirical vehicle profiles collected at ports of entry, are often a component of the RPM evaluation process. However, measurement of realistic threat devices can be both expensive and time-consuming. Radiation transport methods that can predict the response of radiation detection sensors with high fidelity, and do so rapidly enough to allow the modeling of many different threat-source configurations, are a cornerstone of reliable evaluation results. Monte Carlo methods have been the primary tool of the detection community for these kinds of calculations, in no small part because they are particularly effective for calculating pulse-height spectra in gamma-ray spectrometers. However, computational times for problems with a high degree of scattering and absorption can be extremely long. Deterministic codes that discretize the transport in space, angle, and energy offer potential advantages in computational efficiency for these same kinds of problems, but the pulse-height calculations needed to predict gamma-ray spectrometer response are not readily accessible. These complementary strengths for radiation detection scenarios suggest that coupling Monte Carlo and deterministic methods could be beneficial in terms of computational efficiency. Pacific Northwest National Laboratory and its collaborators are developing a RAdiation Detection Scenario Analysis Toolbox (RADSAT) founded on this coupling approach. The deterministic core of RADSAT is Attila, a three-dimensional, tetrahedral-mesh code originally developed by Los Alamos National Laboratory, and since expanded and refined by Transpire, Inc. [1]. MCNP5 is used to calculate sensor pulse-height tallies. RADSAT methods, including adaptive, problem-specific energy-group creation, ray-effect mitigation strategies and the porting of deterministic angular flux to MCNP for individual particle creation are described in [2][3][4]. This paper discusses the application of RADSAT to the modeling of gamma-ray spectrometers in RPMs.

  12. Review Article: The Effects of Radiation Chemistry on Solvent Extraction 3: A Review of Actinide and Lanthanide Extraction

    SciTech Connect (OSTI)

    Bruce J. Mincher; Giuseppe Modolo; Stephen P. Mezyk

    2009-12-01T23:59:59.000Z

    The partitioning of the long-lived ?-emitters and the high-yield fission products from dissolved nuclear fuel is a key component of processes envisioned for the safe recycling of nuclear fuel and the disposition of high-level waste. These future processes will likely be based on aqueous solvent extraction technologies for light water reactor fuel and consist of four main components for the sequential separation of uranium, fission products, group trivalent actinides and lanthanides, and then trivalent actinides from lanthanides. Since the solvent systems will be in contact with highly radioactive solutions, they must be robust toward radiolytic degradation in an irradiated mixed organic, aqueous acidic environment. Therefore, an understanding of their radiation chemistry is important to the design of a practical system. In the first paper in this series we reviewed the radiation chemistry of irradiated aqueous nitric acid and the tributyl phosphate ligand for uranium extraction in the first step of these extractions. In the second, we reviewed the radiation chemistry of the ligands proposed for use in the extraction of cesium and strontium fission products. Here, we review the radiation chemistry of the ligands that might be used in the third step in the series of separations, for the group extraction of the lanthanides and actinides. This includes traditional organophosphorous reagents such as CMPO and HDEHP, as well as novel reagents such as the amides and diamides currently being investigated.

  13. Has Hawking radiation been measured?

    E-Print Network [OSTI]

    W. G. Unruh

    2014-01-26T23:59:59.000Z

    It is argued that Hawking radiation has indeed been measured and shown to posses a thermal spectrum, as predicted. This contention is based on three separate legs. The first is that the essential physics of the Hawking process for black holes can be modelled in other physical systems. The second is the white hole horizons are the time inverse of black hole horizons, and thus the physics of both is the same. The third is that the quantum emission, which is the Hawking process, is completely determined by measurements of the classical parameters of a linear physical system. The experiment conducted in 2010 fulfills all of these requirements, and is thus a true measurement of Hawking radiation.

  14. Plutonium radiation surrogate

    DOE Patents [OSTI]

    Frank, Michael I. (Dublin, CA)

    2010-02-02T23:59:59.000Z

    A self-contained source of gamma-ray and neutron radiation suitable for use as a radiation surrogate for weapons-grade plutonium is described. The source generates a radiation spectrum similar to that of weapons-grade plutonium at 5% energy resolution between 59 and 2614 keV, but contains no special nuclear material and emits little .alpha.-particle radiation. The weapons-grade plutonium radiation surrogate also emits neutrons having fluxes commensurate with the gamma-radiation intensities employed.

  15. JLF User Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    systems, such as, the hydrodynamics instabilities that may develop in core-collapse supernovae or a radiative shocks in a supernova remnants. She has lead experiments at the Omega...

  16. TEC Working Group Topic Groups Archives Communications Meeting...

    Office of Environmental Management (EM)

    TEC Working Group Topic Groups Archives Communications Conference Call Summaries TEC Meeting Summaries - January 1997 TEC Working Group Topic Groups Tribal Conference Call...

  17. AT 722: Spring 2005 Course Objectives: This class focuses on the role of radiative

    E-Print Network [OSTI]

    .atmos.colostate.edu, review papers on web site #12;1. The Earth's Radiation Budget ERBE, CERES & GERB Cloud-Radiation-Forcing The Greenhouse Effect Aerosol Direct Effects Atmospheric radiative cooling ERB trends and otherAT 722: Spring 2005 Course Objectives: This class focuses on the role of radiative processes

  18. Pollutant Assessments Group Procedures Manual

    SciTech Connect (OSTI)

    Chavarria, D.E.; Davidson, J.R.; Espegren, M.L.; Kearl, P.M.; Knott, R.R.; Pierce, G.A.; Retolaza, C.D.; Smuin, D.R.; Wilson, M.J.; Witt, D.A. (Oak Ridge National Lab., TN (USA)); Conklin, N.G.; Egidi, P.V.; Ertel, D.B.; Foster, D.S.; Krall, B.J.; Meredith, R.L.; Rice, J.A.; Roemer, E.K. (Oak Ridge Associated Universities, Inc., TN (USA))

    1991-02-01T23:59:59.000Z

    This procedures manual combines the existing procedures for radiological and chemical assessment of hazardous wastes used by the Pollutant Assessments Group at the time of manuscript completion (October 1, 1990). These procedures will be revised in an ongoing process to incorporate new developments in hazardous waste assessment technology and changes in administrative policy and support procedures. Format inconsistencies will be corrected in subsequent revisions of individual procedures.

  19. Radiation Protection Guidance Hospital Staff

    E-Print Network [OSTI]

    Kay, Mark A.

    Page 1 Radiation Protection Guidance For Hospital Staff Prepared for Stanford ..................................................................................................................... 17 The Basic Principles of Radiation Protection........................................................... 17 Protection against Radiation Exposure

  20. Long Term by Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Running Jobs by Group Running Jobs by Group Daily Graph: Weekly Graph: Monthly Graph: Yearly Graph: 2 Year Graph: Last edited: 2011-04-05 13:59:48...

  1. Mechanical Engineering & Thermal Group

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Mechanical Engineering & Thermal Group The Mechanical Engineering (ME) & Thermal Group at LASP has STOP (Structural, Thermal, and Optical Performance) analyses of optical systems Thermal engineers lead evolved with the complexity of instrument design demands, LASP mechanical engineers develop advanced

  2. Maryland Radiation Act (Maryland)

    Broader source: Energy.gov [DOE]

    The policy of the state is to provide for the constructive use of radiation and control radiation emissions. This legislation authorizes the Department of the Environment to develop comprehensive...

  3. WI Radiation Protection

    Broader source: Energy.gov [DOE]

    This statute seeks to regulate radioactive materials, to encourage the constructive uses of radiation, and to prohibit and prevent exposure to radiation in amounts which are or may be detrimental...

  4. Measurement of Radiation Damage on Silica Aerogel Cerenkov Radiator

    E-Print Network [OSTI]

    Belle Preprint; Sahu Wang; M. Z. Wang; R. Suda; R. Enomoto; K. C. Peng; C. H. Wang; I. Adachi; M. Amami

    We measured the radiation damage on silica aerogel Cerenkov radiators originally developed for the B-factory experiment at KEK. Refractive index of the aerogel samples ranged from 1.012 to 1.028. The samples were irradiated up to 9.8 MRad of equivalent dose. Measurements of transmittance and refractive index were carried out and these samples were found to be radiation hard. Deteriorations in transparency and changes of refractive index were observed to be less than 1.3% and 0.001 at 90% confidence level, respectively. Prospects of using aerogels under high-radiation environment are discussed. 1 Introduction Silica aerogels(aerogels) are a colloidal form of glass, in which globules of silica are connected in three dimensional networks with siloxan bonds. They are solid, very light, transparent and their refractive index can be controlled in the production process. Many high energy and nuclear physics experiments have used aerogels instead of pressurized gas for their Cerenkov coun...

  5. Interagency Sustainability Working Group

    Broader source: Energy.gov [DOE]

    The Interagency Sustainability Working Group (ISWG) is the coordinating body for sustainable buildings in the federal government.

  6. Hydrogen Analysis Group

    SciTech Connect (OSTI)

    Not Available

    2008-03-01T23:59:59.000Z

    NREL factsheet that describes the general activites of the Hydrogen Analysis Group within NREL's Hydrogen Technologies and Systems Center.

  7. Galaxies that Shine: radiation-hydrodynamical simulations of disk galaxies

    E-Print Network [OSTI]

    Rosdahl, Joakim; Teyssier, Romain; Agertz, Oscar

    2015-01-01T23:59:59.000Z

    Radiation feedback is typically implemented using subgrid recipes in hydrodynamical simulations of galaxies. Very little work has so far been performed using radiation-hydrodynamics (RHD), and there is no consensus on the importance of radiation feedback in galaxy evolution. We present RHD simulations of isolated galaxy disks of different masses with a resolution of 18 pc. Besides accounting for supernova feedback, our simulations are the first galaxy-scale simulations to include RHD treatments of photo-ionisation heating and radiation pressure, from both direct optical/UV radiation and multi-scattered, re-processed infrared (IR) radiation. Photo-heating smooths and thickens the disks and suppresses star formation about as much as the inclusion of ("thermal dump") supernova feedback does. These effects decrease with galaxy mass and are mainly due to the prevention of the formation of dense clouds, as opposed to their destruction. Radiation pressure, whether from direct or IR radiation, has little effect, but ...

  8. Science Education Group | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearch BriefsTenney, Office ofScience Education Group View

  9. Radiation protection at CERN

    E-Print Network [OSTI]

    Forkel-Wirth, Doris; Silari, Marco; Streit-Bianchi, Marilena; Theis, Christian; Vincke, Heinz; Vincke, Helmut

    2013-01-01T23:59:59.000Z

    This paper gives a brief overview of the general principles of radiation protection legislation; explains radiological quantities and units, including some basic facts about radioactivity and the biological effects of radiation; and gives an overview of the classification of radiological areas at CERN, radiation fields at high-energy accelerators, and the radiation monitoring system used at CERN. A short section addresses the ALARA approach used at CERN.

  10. RADIONUCLIDE RADIATION PROTECTION

    E-Print Network [OSTI]

    Healy, Kevin Edward

    RADIONUCLIDE AND RADIATION PROTECTION DATA HANDBOOK 2002 D. Delacroix* J. P. Guerre** P. Leblanc'Energie Atomique, CEA/Saclay, France ISBN 1 870965 87 6 RADIATION PROTECTION DOSIMETRY Vol. 98 No 1, 2002 Published by Nuclear Technology Publishing #12;RADIONUCLIDE AND RADIATION PROTECTION DATA HANDBOOK 2nd Edition (2002

  11. Radiation detection system

    DOE Patents [OSTI]

    Riedel, Richard A. (Knoxville, TN); Wintenberg, Alan L. (Knoxville, TN); Clonts, Lloyd G. (Knoxville, TN); Cooper, Ronald G. (Oak Ridge, TN)

    2012-02-14T23:59:59.000Z

    A preamplifier circuit for processing a signal provided by a radiation detector includes a transimpedance amplifier coupled to receive a current signal from a detector and generate a voltage signal at its output. A second amplification stage has an input coupled to an output of the transimpedance amplifier for providing an amplified voltage signal. Detector electronics include a preamplifier circuit having a first and second transimpedance amplifier coupled to receive a current signal from a first and second location on a detector, respectively, and generate a first and second voltage signal at respective outputs. A second amplification stage has an input coupled to an output of the transimpedance amplifiers for amplifying the first and said second voltage signals to provide first and second amplified voltage signals. A differential output stage is coupled to the second amplification stage for receiving the first and second amplified voltage signals and providing a pair of outputs from each of the first and second amplified voltage signals. Read out circuitry has an input coupled to receive both of the pair of outputs, the read out circuitry having structure for processing each of the pair of outputs, and providing a single digital output having a time-stamp therefrom.

  12. Grouped exposed metal heaters

    DOE Patents [OSTI]

    Vinegar, Harold J. (Bellaire, TX); Coit, William George (Bellaire, TX); Griffin, Peter Terry (Brixham, GB); Hamilton, Paul Taylor (Houston, TX); Hsu, Chia-Fu (Granada Hills, CA); Mason, Stanley Leroy (Allen, TX); Samuel, Allan James (Kular Lumpar, MY); Watkins, Ronnie Wade (Cypress, TX)

    2010-11-09T23:59:59.000Z

    A system for treating a hydrocarbon containing formation is described. The system includes two or more groups of elongated heaters. The group includes two or more heaters placed in two or more openings in the formation. The heaters in the group are electrically coupled below the surface of the formation. The openings include at least partially uncased wellbores in a hydrocarbon layer of the formation. The groups are electrically configured such that current flow through the formation between at least two groups is inhibited. The heaters are configured to provide heat to the formation.

  13. Grouped exposed metal heaters

    DOE Patents [OSTI]

    Vinegar, Harold J. (Bellaire, TX); Coit, William George (Bellaire, TX); Griffin, Peter Terry (Brixham, GB); Hamilton, Paul Taylor (Houston, TX); Hsu, Chia-Fu (Granada Hills, CA); Mason, Stanley Leroy (Allen, TX); Samuel, Allan James (Kular Lumpar, ML); Watkins, Ronnie Wade (Cypress, TX)

    2012-07-31T23:59:59.000Z

    A system for treating a hydrocarbon containing formation is described. The system includes two or more groups of elongated heaters. The group includes two or more heaters placed in two or more openings in the formation. The heaters in the group are electrically coupled below the surface of the formation. The openings include at least partially uncased wellbores in a hydrocarbon layer of the formation. The groups are electrically configured such that current flow through the formation between at least two groups is inhibited. The heaters are configured to provide heat to the formation.

  14. at the DTIC Research groups (I/II)

    E-Print Network [OSTI]

    -production algorithms, etc) Website: http://www.gpi.upf.edu/ #12;Image Processing Group (GPI) #12;Music Technology: http://www.mtg.upf.edu/?lang=en #12;Music Technology Group (MTG) #12;Interactive Technologies Group, videogames) Website: http://gti.upf.edu/gti/english #12;Interactive Technologies Group (GTI) #12

  15. GROUP 1 GROUP 2 GROUP 3 GROUP 4 GROUP 5 GROUP 6 ANDERSON, JENNIFER AYENI, MARY ABATE BESSOMO, ANNA BARRETT, CIAN ADAMS, NICOLE BARTON, MICHAEL

    E-Print Network [OSTI]

    O'Mahony, Donal E.

    GROUP 1 GROUP 2 GROUP 3 GROUP 4 GROUP 5 GROUP 6 ANDERSON, JENNIFER AYENI, MARY ABATE BESSOMO, ANNA ANDERSON FITZSIMONS, DENISEBINCHY, SUSAN CARLEY, JESSE CONWAY, AILBHE BROOKE, HENRY CONLAN, DEIRDRE, CAOIMHE HESKIN, CLODAGH MC GOVERN, MARIE-CLAIREMURRAY, AINE GROGAN, CLARE GERARD, ALLISON MC QUAID, RACHEL

  16. Synchrotron Radiation in Polymer Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation in Polymer Science Synchrotron Radiation in Polymer Science March 30-April 2, 2012; San Francisco...

  17. TERSat: Trapped Energetic Radiation Satellite

    E-Print Network [OSTI]

    Clements, Emily B.

    2012-01-01T23:59:59.000Z

    Radiation damage caused by interactions with high-energy particles in the Van Allen Radiation Belts is a leading

  18. Sources of information utilized by California agricultural interest groups

    E-Print Network [OSTI]

    Noble, Elisa Lynn

    2006-10-30T23:59:59.000Z

    Existing interest group theory describes legislative decision-making as a communication process whereby interest groups research information on issues, combine this information with constituent opinions, and present the resulting information...

  19. The effects of space radiation on flight film

    SciTech Connect (OSTI)

    Holly, M.H.

    1995-09-01T23:59:59.000Z

    The Shuttle and its cargo are occasionally exposed to an amount of radiation large enough to create non-image forming exposures (fog) on photographic flight film. The television/photography working group proposed a test plan to quantify the sensitivity of photographic films to space radiation. This plan was flown on STS-37 and was later incorporated into a detailed supplementary objective (DSO) which was flown on STS48. This DSO addressed the effects of significant space radiation on representative samples of six highly sensitive flight films. In addition, a lead-lined bag was evaluated as a potential shield for flight film against space radiation.

  20. Radiation Detection Computational Benchmark Scenarios

    SciTech Connect (OSTI)

    Shaver, Mark W.; Casella, Andrew M.; Wittman, Richard S.; McDonald, Ben S.

    2013-09-24T23:59:59.000Z

    Modeling forms an important component of radiation detection development, allowing for testing of new detector designs, evaluation of existing equipment against a wide variety of potential threat sources, and assessing operation performance of radiation detection systems. This can, however, result in large and complex scenarios which are time consuming to model. A variety of approaches to radiation transport modeling exist with complementary strengths and weaknesses for different problems. This variety of approaches, and the development of promising new tools (such as ORNLs ADVANTG) which combine benefits of multiple approaches, illustrates the need for a means of evaluating or comparing different techniques for radiation detection problems. This report presents a set of 9 benchmark problems for comparing different types of radiation transport calculations, identifying appropriate tools for classes of problems, and testing and guiding the development of new methods. The benchmarks were drawn primarily from existing or previous calculations with a preference for scenarios which include experimental data, or otherwise have results with a high level of confidence, are non-sensitive, and represent problem sets of interest to NA-22. From a technical perspective, the benchmarks were chosen to span a range of difficulty and to include gamma transport, neutron transport, or both and represent different important physical processes and a range of sensitivity to angular or energy fidelity. Following benchmark identification, existing information about geometry, measurements, and previous calculations were assembled. Monte Carlo results (MCNP decks) were reviewed or created and re-run in order to attain accurate computational times and to verify agreement with experimental data, when present. Benchmark information was then conveyed to ORNL in order to guide testing and development of hybrid calculations. The results of those ADVANTG calculations were then sent to PNNL for compilation. This is a report describing the details of the selected Benchmarks and results from various transport codes.

  1. The effects of diet and ionizing radiation on azoxymethane induced colon carcinogenesis

    E-Print Network [OSTI]

    Mann, John Clifford

    2006-10-30T23:59:59.000Z

    The ability of ionizing radiation to enhance colon carcinogenesis and the role of diet in this process has not been documented. We hypothesized that radiation would enhance the formation of aberrant crypt foci, ACF, known precursor lesions to colon...

  2. SPPR Group Proposal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    members will execute in August 2011. Facilities Use Charge agreements are drafted: In review stage by customer group; Proposal specifies annual update of charge amount...

  3. Hydrogen Technologies Group

    SciTech Connect (OSTI)

    Not Available

    2008-03-01T23:59:59.000Z

    The Hydrogen Technologies Group at the National Renewable Energy Laboratory advances the Hydrogen Technologies and Systems Center's mission by researching a variety of hydrogen technologies.

  4. Radiation physics, biophysics, and radiation biology

    SciTech Connect (OSTI)

    Hall, E.J.; Zaider, M.

    1993-05-01T23:59:59.000Z

    Research at the Center for Radiological Research is a multidisciplenary blend of physics, chemistry and biology aimed at understanding the mechanisms involved in the health problems resulting from human exposure to ionizing radiations. The focus is increased on biochemistry and the application of the techniques of molecular biology to the problems of radiation biology. Research highlights of the program from the past year are described. A mathematical model describing the production of single-strand and double-strand breaks in DNA as a function radiation quality has been completed. For the first time Monte Carlo techniques have been used to obtain directly the spatial distribution of DNA moieties altered by radiation. This information was obtained by including the transport codes a realistic description of the electronic structure of DNA. We have investigated structure activity relationships for the potential oncogenicity of a new generation of bioreductive drugs that function as hypoxic cytotoxins. Experimental and theoretical investigation of the inverse dose rate effect, whereby medium LET radiations actually produce an c effect when the dose is protracted, is now at a point where the basic mechanisms are reasonably understood and the complex interplay between dose, dose rate and radiation quality which is necessary for the effect to be present can now be predicted at least in vitro. In terms of early radiobiological damage, a quantitative link has been established between basic energy deposition and locally multiply damaged sites, the radiochemical precursor of DNA double strand breaks; specifically, the spatial and energy deposition requirements necessary to form LMDs have been evaluated. For the first time, a mechanically understood biological fingerprint'' of high-LET radiation has been established. Specifically measurement of the ratio of inter-to intra-chromosomal aberrations produces a unique signature from alpha-particles or neutrons.

  5. Cloud Formation and Acceleration in a Radiative Environment

    E-Print Network [OSTI]

    Proga, Daniel

    2015-01-01T23:59:59.000Z

    In a radiatively heated and cooled medium, the thermal instability is a plausible mechanism for forming clouds, while the radiation force provides a natural acceleration, especially when ions recombine and opacity increases. Here we extend Field's theory to self-consistently account for a radiation force resulting from bound-free and bound-bound transitions in the optically thin limit. We present physical arguments for clouds to be significantly accelerated by a radiation force due to lines during a nonlinear phase of the instability. To qualitatively illustrate our main points, we perform both one and two-dimensional (1-D/2-D) hydrodynamical simulations that allow us to study the nonlinear outcome of the evolution of thermally unstable gas subjected to this radiation force. Our 1-D simulations demonstrate that the thermal instability can produce long-lived clouds that reach a thermal equilibrium between radiative processes and thermal conduction, while the radiation force can indeed accelerate the clouds to ...

  6. US Department of Energy standardized radiation safety training

    SciTech Connect (OSTI)

    Trinoskey, P.A.

    1997-02-01T23:59:59.000Z

    The following working groups were formed under the direction of a radiological training coordinator: managers, supervisors, DOE auditors, ALARA engineers/schedulers/planners, radiological control personnel, radiation-generating device operators, emergency responders, visitors, Pu facilities, U facilities, tritium facilities, accelerator facilities, biomedical researchers. General courses for these groups are available, now or soon, in the form of handbooks.

  7. Solar radiation intensity calculations

    E-Print Network [OSTI]

    Levine, Randolph Steven

    1978-01-01T23:59:59.000Z

    SOLAR RADIATION INTENSITY CALCULATIONS A Thesis by RANDOLPH STEVEN LEVINE Submitted to the Graduate College of Texas A&M University in partia'l fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1978 Major Subject...: Physics SOLAR RADIATION INTENSITY CALCULATIONS A Thesis by RANDOLPH STEVEN LEVINE Approved as to style and content by: (Chairman of Committee) (Member) (Member) ( member) (Head of Department) December 1978 f219 037 ABSTRACT Solar Radiation...

  8. Hawking Radiation as Tunnelling in Static Black Holes

    E-Print Network [OSTI]

    Wenbiao Liu

    2005-12-16T23:59:59.000Z

    Hawking radiation can usefully be viewed as a semi-classical tunnelling process that originates at the black hole horizon. The conservation of energy implies the effect of self-gravitation. For a static black hole, a generalized Painleve coordinate system is introduced, and Hawking radiation as tunnelling under the effect of self-gravitation is investigated. The corrected radiation is consistent with the underlying unitary theory.

  9. Hawking Radiation as Tunnelling in Static Black Holes

    E-Print Network [OSTI]

    Liu, W

    2005-01-01T23:59:59.000Z

    Hawking radiation can usefully be viewed as a semi-classical tunnelling process that originates at the black hole horizon. The conservation of energy implies the effect of self-gravitation. For a static black hole, a generalized Painleve coordinate system is introduced, and Hawking radiation as tunnelling under the effect of self-gravitation is investigated. The corrected radiation is consistent with the underlying unitary theory.

  10. Fermilab | Employee Advisory Group | Focus Group Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb. 13, 2013Focus Group Report A random sampling of

  11. Coherent Synchrotron Radiation Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Upton, NY 11973, USA Abstract Coherent Synchrotron Radiation (CSR) effects in bunch compressors are analyzed. Schemes for reducing the CSR effects are presented. 1 INTRODUCTION...

  12. Atomic Radiation (Illinois)

    Broader source: Energy.gov [DOE]

    This article states permissible levels of radiation in unrestricted areas, environmental standards for uranium fuel cycle and information about notification of incidents.

  13. Radiation Hazards Program (Minnesota)

    Broader source: Energy.gov [DOE]

    These regulations, promulgated by the Department of Health, set allowable radiation standards and mitigation practices, as well as procedures for the transportation of hazardous material.

  14. Rotating bubble membrane radiator

    DOE Patents [OSTI]

    Webb, Brent J. (West Richland, WA); Coomes, Edmund P. (West Richland, WA)

    1988-12-06T23:59:59.000Z

    A heat radiator useful for expelling waste heat from a power generating system aboard a space vehicle is disclosed. Liquid to be cooled is passed to the interior of a rotating bubble membrane radiator, where it is sprayed into the interior of the bubble. Liquid impacting upon the interior surface of the bubble is cooled and the heat radiated from the outer surface of the membrane. Cooled liquid is collected by the action of centrifical force about the equator of the rotating membrane and returned to the power system. Details regarding a complete space power system employing the radiator are given.

  15. RADIATION TRANSPORT FOR EXPLOSIVE OUTFLOWS: OPACITY REGROUPING

    SciTech Connect (OSTI)

    Wollaeger, Ryan T. [Department of Nuclear Engineering and Engineering Physics, University of Wisconsin, Madison 1500 Engineering Drive, 410 ERB, Madison, WI 53706 (United States); Van Rossum, Daniel R., E-mail: wollaeger@wisc.edu, E-mail: daan@flash.uchicago.edu [Flash Center for Computational Science, Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States)

    2014-10-01T23:59:59.000Z

    Implicit Monte Carlo (IMC) and Discrete Diffusion Monte Carlo (DDMC) are methods used to stochastically solve the radiative transport and diffusion equations, respectively. These methods combine into a hybrid transport-diffusion method we refer to as IMC-DDMC. We explore a multigroup IMC-DDMC scheme that in DDMC, combines frequency groups with sufficient optical thickness. We term this procedure ''opacity regrouping''. Opacity regrouping has previously been applied to IMC-DDMC calculations for problems in which the dependence of the opacity on frequency is monotonic. We generalize opacity regrouping to non-contiguous groups and implement this in SuperNu, a code designed to do radiation transport in high-velocity outflows with non-monotonic opacities. We find that regrouping of non-contiguous opacity groups generally improves the speed of IMC-DDMC radiation transport. We present an asymptotic analysis that informs the nature of the Doppler shift in DDMC groups and summarize the derivation of the Gentile-Fleck factor for modified IMC-DDMC. We test SuperNu using numerical experiments including a quasi-manufactured analytic solution, a simple 10 group problem, and the W7 problem for Type Ia supernovae. We find that opacity regrouping is necessary to make our IMC-DDMC implementation feasible for the W7 problem and possibly Type Ia supernova simulations in general. We compare the bolometric light curves and spectra produced by the SuperNu and PHOENIX radiation transport codes for the W7 problem. The overall shape of the bolometric light curves are in good agreement, as are the spectra and their evolution with time. However, for the numerical specifications we considered, we find that the peak luminosity of the light curve calculated using SuperNu is ?10% less than that calculated using PHOENIX.

  16. Radiation physics, biophysics, and radiation biology

    SciTech Connect (OSTI)

    Hall, E.J.

    1992-05-01T23:59:59.000Z

    The following research programs from the Center for Radiological Research of Columbia University are described: Design and development of a new wall-less ultra miniature proportional counter for nanodosimetry; some recent measurements of ionization distributions for heavy ions at nanometer site sizes with a wall-less proportional counter; a calculation of exciton energies in periodic systems with helical symmetry: application to a hydrogen fluoride chain; electron energy-loss function in polynucleotide and the question of plasmon excitation; a non-parametric, microdosimetric-based approach to the evaluation of the biological effects of low doses of ionizing radiation; high-LET radiation risk assessment at medium doses; high-LET radiobiological effects: increased lesion severity or increased lesion proximity; photoneutrons generated by high energy medical linacs; the biological effectiveness of neutrons; implications for radiation protection; molecular characterization of oncogenes induced by neutrons; and the inverse dose-rate effect for oncogenic transformation by charged particles is LET dependent.

  17. Radiative feedback from ionized gas

    E-Print Network [OSTI]

    S. C. O. Glover

    2007-03-28T23:59:59.000Z

    H2 formation in metal-free gas occurs via the intermediate H- or H2+ ions. Destruction of these ions by photodissociation therefore serves to suppress H2 formation. In this paper, I highlight the fact that several processes that occur in ionized primordial gas produce photons energetic enough to photodissociate H- or H2+ and outline how to compute the photodissociation rates produced by a particular distribution of ionized gas. I also show that there are circumstances of interest, such as during the growth of HII regions around the first stars, in which this previously overlooked form of radiative feedback is of considerable importance.

  18. Working group report: Neutrino physics

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    Working group report: Neutrino physics Acknowledgements TheWorking group report: Neutrino physics Coordinators: SANDHYAthe report of the neutrino physics working group at WHEPP-X.

  19. Power Systems Group Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    General Information ASD Groups ESHQA Operations Argonne Home > Advanced Photon Source > Power Systems Group This page is currently under construction. Old PS Group Site (visible...

  20. Dissecting Soft Radiation with Factorization

    E-Print Network [OSTI]

    Iain W. Stewart; Frank J. Tackmann; Wouter J. Waalewijn

    2015-02-10T23:59:59.000Z

    An essential part of high-energy hadronic collisions is the soft hadronic activity that underlies the primary hard interaction. It includes soft radiation from the primary hard partons, secondary multiple parton interactions (MPI), and factorization-violating effects. The invariant mass spectrum of the leading jet in $Z$+jet and $H$+jet events is directly sensitive to these effects, and we use a QCD factorization theorem to predict its dependence on the jet radius $R$, jet $p_T$, jet rapidity, and partonic process for both the perturbative and nonperturbative components of primary soft radiation. We prove that the nonperturbative contributions involve only odd powers of $R$, and the linear $R$ term is universal for quark and gluon jets. The hadronization model in PYTHIA8 agrees well with these properties. The perturbative soft initial state radiation (ISR) has a contribution that depends on the jet area in the same way as the underlying event, but this degeneracy is broken by dependence on the jet $p_T$. The size of this soft ISR contribution is proportional to the color state of the initial partons, yielding the same positive contribution for $gg\\to Hg$ and $gq\\to Zq$, but a negative interference contribution for $q\\bar q\\to Z g$. Hence, measuring these dependencies allows one to separate hadronization, soft ISR, and MPI contributions in the data.

  1. SCM Working Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited Release PrintedDEVIATIONS F O R NEUTRINO

  2. SCM Working Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited Release PrintedDEVIATIONS F O R NEUTRINOcloud

  3. COLUMBIA UNIVERSITY Radiation Safety Program

    E-Print Network [OSTI]

    Jia, Songtao

    for increased protection from ionizing radiation for declared pregnant radiation workers. The radiation doseCOLUMBIA UNIVERSITY Radiation Safety Program Medical Center - T: 212-305-0303 F: 212 regulations of the Rules of the City of New York, Article 175, Radiation Control, there is a requirement

  4. Radiation-resistant microorganism

    DOE Patents [OSTI]

    Fliermans, Carl B.

    2010-06-15T23:59:59.000Z

    An isolated and purified bacterium is provided which was isolated from a high-level radioactive waste site of mixed waste. The isolate has the ability to degrade a wide variety of organic contaminants while demonstrating high tolerance to ionizing radiation. The organism is uniquely suited to bioremediation of a variety or organic contaminants while in the presence of ionizing radiation.

  5. Nonclassicality of Thermal Radiation

    E-Print Network [OSTI]

    Lars M. Johansen

    2004-02-16T23:59:59.000Z

    It is demonstrated that thermal radiation of small occupation number is strongly nonclassical. This includes most forms of naturally occurring radiation. Nonclassicality can be observed as a negative weak value of a positive observable. It is related to negative values of the Margenau-Hill quasi-probability distribution.

  6. Radiative Flux Analysis

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Long, Chuck [NOAA

    The Radiative Flux Analysis is a technique for using surface broadband radiation measurements for detecting periods of clear (i.e. cloudless) skies, and using the detected clear-sky data to fit functions which are then used to produce continuous clear-sky estimates. The clear-sky estimates and measurements are then used in various ways to infer cloud macrophysical properties.

  7. Radiation-resistant microorganism

    DOE Patents [OSTI]

    Fliermans, Carl B.

    2007-01-09T23:59:59.000Z

    An isolated and purified bacterium is provided which was isolated from a high-level radioactive waste site of mixed waste. The isolate has the ability to degrade a wide variety of organic contaminants while demonstrating high tolerance to ionizing radiation. The organism is uniquely suited to bioremediation of a variety or organic contaminants while in the presence of ionizing radiation.

  8. Radiation Damage in Polarized Ammonia Solids

    E-Print Network [OSTI]

    K. Slifer

    2007-11-28T23:59:59.000Z

    Solid NH3 and ND3 provide a highly polarizable, radiation resistant source of polarized protons and deuterons and have been used extensively in high luminosity experiments investigating the spin structure of the nucleon. Over the past twenty years, the UVA polarized target group has been instrumental in producing and polarizing much of the material used in these studies, and many practical considerations have been learned in this time. In this discussion, we analyze the polarization performance of the solid ammonia targets used during the recent JLab Eg4 run. Topics include the rate of polarization decay with accumulated charge, the annealing procedure for radiation damaged targets to recover polarization, and the radiation induced change in optimum microwave frequency used to polarize the sample. We also discuss the success we have had in implementing frequency modulation of the polarizing microwave frequency.

  9. Nuclear radiation actuated valve

    DOE Patents [OSTI]

    Christiansen, David W. (Kennewick, WA); Schively, Dixon P. (Richland, WA)

    1985-01-01T23:59:59.000Z

    A nuclear radiation actuated valve for a nuclear reactor. The valve has a valve first part (such as a valve rod with piston) and a valve second part (such as a valve tube surrounding the valve rod, with the valve tube having side slots surrounding the piston). Both valve parts have known nuclear radiation swelling characteristics. The valve's first part is positioned to receive nuclear radiation from the nuclear reactor's fuel region. The valve's second part is positioned so that its nuclear radiation induced swelling is different from that of the valve's first part. The valve's second part also is positioned so that the valve's first and second parts create a valve orifice which changes in size due to the different nuclear radiation caused swelling of the valve's first part compared to the valve's second part. The valve may be used in a nuclear reactor's core coolant system.

  10. RADIATION SAFETY MANUAL POLICIES AND PROCEDURES

    E-Print Network [OSTI]

    Zhang, Yuanlin

    RADIATION SAFETY MANUAL POLICIES AND PROCEDURES FOR RADIATION PROTECTION AT TEXAS TECH UNIVERSITY................................................................................................................I-1 B. Radiation Protection Program...............................................................................I-3 D. Radiation Safety Management

  11. Radiative and climate impacts of absorbing aerosols

    E-Print Network [OSTI]

    Zhu, Aihua

    2010-01-01T23:59:59.000Z

    V. Ramanathan (2008), Solar radiation budget and radiativeV. Ramanathan (2008), Solar radiation budget and radiativeapproximation for solar radiation in the NCAR Community

  12. National Solar Radiation Database 1991-2010 Update: User's Manual

    SciTech Connect (OSTI)

    Wilcox, S. M.

    2012-08-01T23:59:59.000Z

    This user's manual provides information on the updated 1991-2010 National Solar Radiation Database. Included are data format descriptions, data sources, production processes, and information about data uncertainty.

  13. Studsvik Processing Facility Update

    SciTech Connect (OSTI)

    Mason, J. B.; Oliver, T. W.; Hill, G. M.; Davin, P. F.; Ping, M. R.

    2003-02-25T23:59:59.000Z

    Studsvik has completed over four years of operation at its Erwin, TN facility. During this time period Studsvik processed over 3.3 million pounds (1.5 million kgs) of radioactive ion exchange bead resin, powdered filter media, and activated carbon, which comprised a cumulative total activity of 18,852.5 Ci (6.98E+08 MBq). To date, the highest radiation level for an incoming resin container has been 395 R/hr (3.95 Sv/h). The Studsvik Processing Facility (SPF) has the capability to safely and efficiently receive and process a wide variety of solid and liquid Low Level Radioactive Waste (LLRW) streams including: Ion Exchange Resins (IER), activated carbon (charcoal), graphite, oils, solvents, and cleaning solutions with contact radiation levels of up to 400 R/hr (4.0 Sv/h). The licensed and heavily shielded SPF can receive and process liquid and solid LLRWs with high water and/or organic content. This paper provides an overview of the last four years of commercial operations processing radioactive LLRW from commercial nuclear power plants. Process improvements and lessons learned will be discussed.

  14. COLUMBIA UNIVERSITY Radiation Safety Program

    E-Print Network [OSTI]

    Jia, Songtao

    COLUMBIA UNIVERSITY Radiation Safety Program Medical Center - T: 212-305-0303 F: 212 Psychiatric Institute Radiation Safety Office (Please complete this form within 24 hours and send a copy to your supervisor and The Radiation Safety Office) Your Name

  15. COLUMBIA UNIVERSITY Radiation Safety Program

    E-Print Network [OSTI]

    Jia, Songtao

    COLUMBIA UNIVERSITY Radiation Safety Program Medical Center - T: 212-305-0303 F: 212: _______________ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Radiation Safety Office Approval: ______________________ Date: ________________________ Waste containers in place: Yes ___ No ___ Radiation signage on door: Yes ___ No ___ Room monitoring: Dates

  16. Radiation Safety (Revised March 2010)

    E-Print Network [OSTI]

    Kay, Mark A.

    to Workers; Inspections 27 10 CFR Part 20Standards for Protection Against Radiation 28 10 CFR Part 35Radiation Safety Manual (Revised March 2010) Updated December 2012 Stanford University, Stanford California #12; #12; Radiation Safety Manual (Revised March 2010) Updated

  17. Radiative heat transfer in a parallelogram shaped cavity

    E-Print Network [OSTI]

    Dez, V Le

    2015-01-01T23:59:59.000Z

    An exact analytical description of the internal radiative field inside an emitting-absorbing gray semi-transparent medium enclosed in a two-dimensional parallelogram cavity is proposed. The expressions of the incident radiation and the radiative flux field are angularly and spatially discretized with a double Gauss quadrature, and the temperature field is obtained by using an iterative process. Some numerical solutions are tabulated and graphically presented as the benchmark solutions. Temperature and two components of the radiative flux are finally sketched on the whole domain. It is shown that the proposed method gives perfectly smooth results.

  18. Strangulation in Galaxy Groups

    E-Print Network [OSTI]

    Kawata, Daisuke

    2007-01-01T23:59:59.000Z

    We use a cosmological chemodynamical simulation to study how the group environment impacts the star formation properties of disk galaxies. The simulated group has a total mass of M~8x10^12 Msun and a total X-ray luminosity of L_X~10^41 erg s^-1. Our simulation suggests that ram pressure is not sufficient in this group to remove the cold disk gas from a V_rot~150 km s^-1 galaxy. However, the majority of the hot gas in the galaxy is stripped over a timescale of approximately 1 Gyr. Since the cooling of the hot gas component provides a source for new cold gas, the stripping of the hot component effectively cuts off the supply of cold gas. This in turn leads to a quenching of star formation. The galaxy maintains the disk component after the cold gas is consumed leading to a galaxy with S0 properties. Our self-consistent simulation suggests that this strangulation mechanism works even in low mass groups, providing an explanation for the lower star formation rates in group galaxies relative to galaxies in the field...

  19. Strangulation in Galaxy Groups

    E-Print Network [OSTI]

    Daisuke Kawata; John S. Mulchaey

    2007-11-20T23:59:59.000Z

    We use a cosmological chemodynamical simulation to study how the group environment impacts the star formation properties of disk galaxies. The simulated group has a total mass of M~8x10^12 Msun and a total X-ray luminosity of L_X~10^41 erg s^-1. Our simulation suggests that ram pressure is not sufficient in this group to remove the cold disk gas from a V_rot~150 km s^-1 galaxy. However, the majority of the hot gas in the galaxy is stripped over a timescale of approximately 1 Gyr. Since the cooling of the hot gas component provides a source for new cold gas, the stripping of the hot component effectively cuts off the supply of cold gas. This in turn leads to a quenching of star formation. The galaxy maintains the disk component after the cold gas is consumed, which may lead to a galaxy similar to an S0. Our self-consistent simulation suggests that this strangulation mechanism works even in low mass groups, providing an explanation for the lower star formation rates in group galaxies relative to galaxies in the field.

  20. Finite group symmetry breaking

    E-Print Network [OSTI]

    G. Gaeta

    2005-10-02T23:59:59.000Z

    Finite group symmetry is commonplace in Physics, in particular through crystallographic groups occurring in condensed matter physics -- but also through the inversions (C,P,T and their combinations) occurring in high energy physics and field theory. The breaking of finite groups symmetry has thus been thoroughly studied, and general approaches exist to investigate it. In Landau theory, the state of a system is described by a finite dimensional variable (the {\\it order parameter}), and physical states correspond to minima of a potential, invariant under a group. In this article we describe the basics of symmetry breaking analysis for systems described by a symmetric polynomial; in particular we discuss generic symmetry breakings, i.e. those determined by the symmetry properties themselves and independent on the details of the polynomial describing a concrete system. We also discuss how the plethora of invariant polynomials can be to some extent reduced by means of changes of coordinates, i.e. how one can reduce to consider certain types of polynomials with no loss of generality. Finally, we will give some indications on extension of this theory, i.e. on how one deals with symmetry breakings for more general groups and/or more general physical systems.

  1. Florida Radiation Protection Act (Florida)

    Broader source: Energy.gov [DOE]

    The Department of Public Health is responsible for administering a statewide radiation protection program. The program is designed to permit development and utilization of sources of radiation for...

  2. SYNCHROTRON RADIATION SOURCES

    SciTech Connect (OSTI)

    HULBERT,S.L.; WILLIAMS,G.P.

    1998-07-01T23:59:59.000Z

    Synchrotron radiation is a very bright, broadband, polarized, pulsed source of light extending from the infrared to the x-ray region. It is an extremely important source of Vacuum Ultraviolet radiation. Brightness is defined as flux per unit area per unit solid angle and is normally a more important quantity than flux alone particularly in throughput limited applications which include those in which monochromators are used. It is well known from classical theory of electricity and magnetism that accelerating charges emit electromagnetic radiation. In the case of synchrotron radiation, relativistic electrons are accelerated in a circular orbit and emit electromagnetic radiation in a broad spectral range. The visible portion of this spectrum was first observed on April 24, 1947 at General Electric's Schenectady facility by Floyd Haber, a machinist working with the synchrotron team, although the first theoretical predictions were by Lienard in the latter part of the 1800's. An excellent early history with references was presented by Blewett and a history covering the development of the utilization of synchrotron radiation was presented by Hartman. Synchrotron radiation covers the entire electromagnetic spectrum from the infrared region through the visible, ultraviolet, and into the x-ray region up to energies of many 10's of kilovolts. If the charged particles are of low mass, such as electrons, and if they are traveling relativistically, the emitted radiation is very intense and highly collimated, with opening angles of the order of 1 milliradian. In electron storage rings there are three possible sources of synchrotron radiation; dipole (bending) magnets; wigglers, which act like a sequence of bending magnets with alternating polarities; and undulators, which are also multi-period alternating magnet systems but in which the beam deflections are small resulting in coherent interference of the emitted light.

  3. Research priorities for occupational radiation protection

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    The Subpanel on Occupational Radiation Protection Research concludes that the most urgently needed research is that leading to the resolution of the potential effects of low-level ionizing radiation. This is the primary driving force in setting appropriate radiation protection standards and in directing the emphasis of radiation protection efforts. Much has already been done in collecting data that represents a compendium of knowledge that should be fully reviewed and understood. It is imperative that health physics researchers more effectively use that data and apply the findings to enhance understanding of the potential health effects of low-level ionizing radiation and improve the risk estimates upon which current occupational radiation protection procedures and requirements depend. Research must be focused to best serve needs in the immediate years ahead. Only then will we get the most out of what is accomplished. Beyond the above fundamental need, a number of applied research areas also have been identified as national priority issues. If effective governmental focus is achieved on several of the most important national priority issues, important occupational radiation protection research will be enhanced, more effectively coordinated, and more quickly applied to the work environment. Response in the near term will be enhanced and costs will be reduced by: developing microprocessor-aided {open_quotes}smart{close_quotes} instruments to simplify the use and processing of radiation data; developing more sensitive, energy-independent, and tissue-equivalent dosimeters to more accurately quantify personnel dose; and developing an improved risk assessment technology base. This can lead to savings of millions of dollars in current efforts needed to ensure personnel safety and to meet new, more stringent occupational guidelines.

  4. SSRL ETS Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton n u aOct. 29, 2012 Nov.1-4

  5. SCM Working Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited Release PrintedDEVIATIONS F O R NEUTRINOcloudHow Do the

  6. Schuck Group - Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearch Briefs TheSanketPlease contact the beamlineAug 14

  7. Quantum vacuum radiation in optical glass

    E-Print Network [OSTI]

    Stefano Liberati; Angus Prain; Matt Visser

    2011-11-01T23:59:59.000Z

    A recent experimental claim of the detection of analogue Hawking radiation in an optical system [PRL 105 (2010) 203901] has led to some controversy [PRL 107 (2011) 149401, 149402]. While this experiment strongly suggests some form of particle creation from the quantum vacuum (and hence it is per se very interesting), it is also true that it seems difficult to completely explain all features of the observations by adopting the perspective of a Hawking-like mechanism for the radiation. For instance, the observed photons are emitted parallel to the optical horizon, and the relevant optical horizon is itself defined in an unusual manner by combining group and phase velocities. This raises the question: Is this really Hawking radiation, or some other form of quantum vacuum radiation? Naive estimates of the amount of quantum vacuum radiation generated due to the rapidly changing refractive index --- sometimes called the dynamical Casimir effect --- are not encouraging. However we feel that naive estimates could be misleading depending on the quantitative magnitude of two specific physical effects: "pulse steepening" and "pulse cresting". Plausible bounds on the maximum size of these two effects results in estimates much closer to the experimental observations, and we argue that the dynamical Casimir effect is now worth additional investigation.

  8. Acute radiation syndrones and their management

    SciTech Connect (OSTI)

    Cronkite, E.P.

    1988-01-01T23:59:59.000Z

    Radiation syndromes produced by large doses of ionizing radiation are divided into three general groups depending on dose of radiation and time after exposure. The CNS syndrome requires many thousands of rad, appears in minutes to hours, and kills within hours to days. The GIS appears after doses of a few hundred to 2000 rad. It is characterized by nausea, vomiting, diarrhea, and disturbances of water and electrolyte metabolism. It has a high mortality in the first week after exposure. Survivors will then experience the HS as a result of marrow aplasia. Depending on dose, survival is possible with antibiotic and transfusion therapy. The relationship of granulocyte depression to mortality in dogs and human beings is illustrated. The role of depth dose pattern of mortality of radiation exposure is described and used as an indication of why air exposure doses may be misleading. The therapy of radiation injury is described based on antibiotics, transfusion therapy, and use of molecular regulators. The limited role of matched allogenic bone marrow transplants is discussed. 52 refs., 13 figs.

  9. The Intense Radiation Gas

    E-Print Network [OSTI]

    M. Marklund; P. K. Shukla; B. Eliasson

    2005-03-08T23:59:59.000Z

    We present a new dispersion relation for photons that are nonlinearly interacting with a radiation gas of arbitrary intensity due to photon-photon scattering. It is found that the photon phase velocity decreases with increasing radiation intensity, it and attains a minimum value in the limit of super-intense fields. By using Hamilton's ray equations, a self-consistent kinetic theory for interacting photons is formulated. The interaction between an electromagnetic pulse and the radiation gas is shown to produce pulse self-compression and nonlinear saturation. Implications of our new results are discussed.

  10. Composition for radiation shielding

    DOE Patents [OSTI]

    Kronberg, James W. (Aiken, SC)

    1994-01-01T23:59:59.000Z

    A composition for use as a radiation shield. The shield has a depleted urum core for absorbing gamma rays and a bismuth coating for preventing chemical corrosion and absorbing gamma rays. Alternatively, a sheet of gadolinium may be positioned between the uranium core and the bismuth coating for absorbing neutrons. The composition is preferably in the form of a container for storing materials that emit radiation such as gamma rays and neutrons. The container is preferably formed by casting bismuth around a pre-formed uranium container having a gadolinium sheeting, and allowing the bismuth to cool. The resulting container is a structurally sound, corrosion-resistant, radiation-absorbing container.

  11. Miniaturized radiation chirper

    DOE Patents [OSTI]

    Umbarger, C. John (Los Alamos, NM); Wolf, Michael A. (Los Alamos, NM)

    1980-01-01T23:59:59.000Z

    The disclosure relates to a miniaturized radiation chirper for use with a small battery supplying on the order of 5 volts. A poor quality CdTe crystal which is not necessarily suitable for high resolution gamma ray spectroscopy is incorporated with appropriate electronics so that the chirper emits an audible noise at a rate that is proportional to radiation exposure level. The chirper is intended to serve as a personnel radiation warning device that utilizes new and novel electronics with a novel detector, a CdTe crystal. The resultant device is much smaller and has much longer battery life than existing chirpers.

  12. Bell, group and tangle

    SciTech Connect (OSTI)

    Solomon, A. I., E-mail: a.i.solomon@open.ac.u [Open University, Department of Physics (United Kingdom)

    2010-03-15T23:59:59.000Z

    The 'Bell' of the title refers to bipartite Bell states, and their extensions to, for example, tripartite systems. The 'Group' of the title is the Braid Group in its various representations; while 'Tangle' refers to the property of entanglement which is present in both of these scenarios. The objective of this note is to explore the relation between Quantum Entanglement and Topological Links, and to show that the use of the language of entanglement in both cases is more than one of linguistic analogy.

  13. Magnetism Theory Group / POSTECH Magnetism Theory Group / POSTECH

    E-Print Network [OSTI]

    Min, Byung Il

    Magnetism Theory Group / POSTECH #12;Magnetism Theory Group / POSTECH #12;Magnetism Theory Group / POSTECH #12;Magnetism Theory Group / POSTECH #12;Magnetism Theory Group / POSTECH J.H . Park et al. #12;'s of FeinCsm e tal The chargeandorbitalordering geom etryin YB a C o 2 O 5 S. K. Kwon etal .Magnetism Theory

  14. Apparatus for generating partially coherent radiation

    DOE Patents [OSTI]

    Naulleau, Patrick P.

    2004-09-28T23:59:59.000Z

    The effective coherence of an undulator beamline can be tailored to projection lithography requirements by using a simple single moving element and a simple stationary low-cost spherical mirror. The invention is particularly suited for use in an illuminator device for an optical image processing system requiring partially coherent illumination. The illuminator includes: (i) source of coherent or partially coherent radiation which has an intrinsic coherence that is higher than the desired coherence; (ii) a reflective surface that receives incident radiation from said source; (iii) means for moving the reflective surface through a desired range of angles in two dimensions wherein the rate of the motion is fast relative to integration time of said image processing system; and (iv) a condenser optic that re-images the moving reflective surface to the entrance plane of said image processing system, thereby, making the illumination spot in said entrance plane essentially stationary.

  15. Bremsstrahlung Radiation as Coherent State in Thermal QED

    E-Print Network [OSTI]

    Enke Wang; Jun Xiao; Hanzhong Zhang

    2001-10-23T23:59:59.000Z

    Based on fully finite temperature field theory we investigate the radiation probability in the bremsstrahlung process in thermal QED. It turns out that the infrared divergences resulting from the emission and absorption of the real photons are canceled by the virtual photon exchange processes at finite temperature. The full quantum calculation results for soft photons radiation coincide completely with that obtained in the semi-classical approximation. In the framework of Thermofield Dynamics it is shown that the bremsstrahlung radiation in thermal QED is a coherent state, the quasiclassical behavior of the coherent state leads to above coincidence.

  16. Preliminary Notice of Violation, CH2M-Washington Group Idaho...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LLC - EA-2007-03 June 14, 2007 Issued to CH2M-Washington Group Idaho, LLC, related to Radiation Protection Program Deficiencies at the Radioactive Waste Management Complex -...

  17. Portal radiation monitor

    DOE Patents [OSTI]

    Kruse, Lyle W. (Albuquerque, NM)

    1985-01-01T23:59:59.000Z

    A portal radiation monitor combines 0.1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.

  18. The Gravitational Cherenkov Radiation

    E-Print Network [OSTI]

    A. M. Ignatov

    2001-10-26T23:59:59.000Z

    An example of discontinuity of the energy-momentum tensor moving at superluminal velocity is discussed. It is shown that the gravitational Mach cone is formed. The power spectrum of the corresponding Cherenkov radiation is evaluated.

  19. Radiation from Accelerated Branes

    E-Print Network [OSTI]

    Mohab Abou-Zeid; Miguel S. Costa

    2000-01-29T23:59:59.000Z

    The radiation emitted by accelerated fundamental strings and D-branes is studied within the linear approximation to the supergravity limit of string theory. We show that scalar, gauge field and gravitational radiation is generically emitted by such branes. In the case where an external scalar field accelerates the branes, we derive a Larmor-type formula for the emitted scalar radiation and study the angular distribution of the outgoing energy flux. The classical radii of the branes are calculated by means of the corresponding Thompson scattering cross sections. Within the linear approximation, the interaction of the external scalar field with the velocity fields of the branes gives a contribution to the observed gauge field and gravitational radiation.

  20. Ionizing radiation detector

    DOE Patents [OSTI]

    Thacker, Louis H. (Knoxville, TN)

    1990-01-01T23:59:59.000Z

    An ionizing radiation detector is provided which is based on the principle of analog electronic integration of radiation sensor currents in the sub-pico to nano ampere range between fixed voltage switching thresholds with automatic voltage reversal each time the appropriate threshold is reached. The thresholds are provided by a first NAND gate Schmitt trigger which is coupled with a second NAND gate Schmitt trigger operating in an alternate switching state from the first gate to turn either a visible or audible indicating device on and off in response to the gate switching rate which is indicative of the level of radiation being sensed. The detector can be configured as a small, personal radiation dosimeter which is simple to operate and responsive over a dynamic range of at least 0.01 to 1000 R/hr.

  1. Amorphous silicon radiation detectors

    DOE Patents [OSTI]

    Street, Robert A. (Palo Alto, CA); Perez-Mendez, Victor (Berkeley, CA); Kaplan, Selig N. (El Cerrito, CA)

    1992-01-01T23:59:59.000Z

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  2. Amorphous silicon radiation detectors

    DOE Patents [OSTI]

    Street, R.A.; Perez-Mendez, V.; Kaplan, S.N.

    1992-11-17T23:59:59.000Z

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification. 13 figs.

  3. Radiation Safety Training Basic Radiation Safety Training for

    E-Print Network [OSTI]

    Dai, Pengcheng

    Radiation Safety Training Basic Radiation Safety Training for X-ray Users for Physics 461 & 462 Protocol Title: Basic Radiation Safety Training for X-ray Users Drafted By: Chris Millsaps, RSS Reviewers: ZB, TU, GS Purpose: To provide basic radiation safety training to the users of x-ray producing

  4. Radiation Safety Manual Dec 2012 Page 1 RADIATION SAFETY

    E-Print Network [OSTI]

    Grishok, Alla

    of External and Internal Doses E. Reports and Notices to Workers Chapter VII: Radiation ProtectionRadiation Safety Manual Dec 2012 Page 1 RADIATION SAFETY MANUAL For Columbia University NewYork-Presbyterian Hospital New York State Psychiatric Institute Barnard College December 2012 #12;Radiation Safety Manual

  5. Method of enhancing radiation response of radiation detection materials

    DOE Patents [OSTI]

    Miller, Steven D. (Richland, WA)

    1997-01-01T23:59:59.000Z

    The present invention is a method of increasing radiation response of a radiation detection material for a given radiation signal by first pressurizing the radiation detection material. Pressurization may be accomplished by any means including mechanical and/or hydraulic. In this application, the term "pressure" includes fluid pressure and/or mechanical stress.

  6. RADIATION CHEMISTRY 2010 GORDON RESEARCH CONFERENCE JULY 18-23

    SciTech Connect (OSTI)

    Thomas Orlando

    2010-07-23T23:59:59.000Z

    The 2010 Gordon Conference on Radiation Chemistry will present cutting edge research regarding the study of radiation-induced chemical transformations. Radiation Chemistry or 'high energy' chemistry is primarily initiated by ionizing radiation: i.e. photons or particles with energy sufficient to create conduction band electrons and 'holes', excitons, ionic and neutral free radicals, highly excited states, and solvated electrons. These transients often interact or 'react' to form products vastly different than those produced under thermal equilibrium conditions. The non-equilibrium, non-thermal conditions driving radiation chemistry exist in plasmas, star-forming regions, the outer solar system, nuclear reactors, nuclear waste repositories, radiation-based medical/clinical treatment centers and in radiation/materials processing facilities. The 2010 conference has a strong interdisciplinary flavor with focus areas spanning (1) the fundamental physics and chemistry involved in ultrafast (atto/femtosecond) energy deposition events, (2) radiation-induced processes in biology (particularly spatially resolved studies), (3) radiation-induced modification of materials at the nanoscale and cosmic ray/x-ray mediated processes in planetary science/astrochemistry. While the conference concentrates on fundamental science, topical applied areas covered will also include nuclear power, materials/polymer processing, and clinical/radiation treatment in medicine. The Conference will bring together investigators at the forefront of their field, and will provide opportunities for junior scientists and graduate students to present work in poster format or as contributors to the Young Investigator session. The program and format provides excellent avenues to promote cross-disciplinary collaborations.

  7. GROUPED'ANALYSEETDETHORIECONOMIQUELYONSTTIENNE Stabilitcroissanceetperformanceconomique

    E-Print Network [OSTI]

    Boyer, Edmond

    GROUPED'ANALYSEETDETHORIECONOMIQUELYONSTTIENNE WP1026 conomique, stabilit, canal d'investissement. Classification JEL : B22, E32, O42 1 Dr. Zied Ftiti. Universit de Lyon, Universit Lyon 2, F - 69007, Lyon, France. CNRS, GATE Lyon-St Etienne, UMR n 5824

  8. GROUPED'ANALYSEETDETHORIECONOMIQUELYONSTTIENNE Sectorbasedexplanationofverticalintegrationin

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    GROUPED'ANALYSEETDETHORIECONOMIQUELYONSTTIENNE WP1136, France CNRS, GATE Lyon-St Etienne, UMR n 5824, 69130, Ecully, France Universit de Saint-Etienne, Jean. Reif, G. Solard, 2009 ; B. Mura, 2010). A network relates to a network of downstream firms using

  9. GROUPED'ANALYSEETDETHORIECONOMIQUELYONSTTIENNE Dynamicmodelsofresidentialsgrgation

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    GROUPED'ANALYSEETDETHORIECONOMIQUELYONSTTIENNE WP1017 #12;DYNAMIC MODELS OF RESIDENTIAL SEGREGATION: AN ANALYTICAL SOLUTION Sebastian GRAUWINa,b,c , Florence GOFFETTE-NAGOTa,d, , Pablo JENSENa,b,c,e aUniversite de Lyon, Lyon, F-69007, France bInstitut rh

  10. Group Analysis Jean Daunizeau

    E-Print Network [OSTI]

    Daunizeau, Jean

    ) is measurement error True response magnitude is fixed 111 Xy Fixed effect #12;Random effects-sphericity modelling Examples Power and efficiency: summary Overview #12;Group analysis: fixed versus random effects Two RFX methods: Holmes & Friston (HF) approach non-sphericity modelling Examples Power

  11. TKN Telecommunication Networks Group

    E-Print Network [OSTI]

    Wichmann, Felix

    consumption. Quite some effort has already been undertaken to address this issue, striving for low-energy trends in the power consumption, the NICs and APs are classified according to the following aspects Group Power consumption of WLAN network elements Salvatore Chiaravalloti, Filip Idzikowski, Lukasz

  12. Environmental assessment for the Atmospheric Radiation Measurement (ARM) Program: Southern Great Plains Cloud and Radiation Testbed (CART) site

    SciTech Connect (OSTI)

    Policastro, A.J.; Pfingston, J.M.; Maloney, D.M.; Wasmer, F.; Pentecost, E.D.

    1992-03-01T23:59:59.000Z

    The Atmospheric Radiation Measurement (ARM) Program is aimed at supplying improved predictive capability of climate change, particularly the prediction of cloud-climate feedback. The objective will be achieved by measuring the atmospheric radiation and physical and meteorological quantities that control solar radiation in the earth`s atmosphere and using this information to test global climate and related models. The proposed action is to construct and operate a Cloud and Radiation Testbed (CART) research site in the southern Great Plains as part of the Department of Energy`s Atmospheric Radiation Measurement Program whose objective is to develop an improved predictive capability of global climate change. The purpose of this CART research site in southern Kansas and northern Oklahoma would be to collect meteorological and other scientific information to better characterize the processes controlling radiation transfer on a global scale. Impacts which could result from this facility are described.

  13. Radiative Transitions in Charmonium

    SciTech Connect (OSTI)

    Jozef Dudek; Robert Edwards; David Richards

    2005-10-01T23:59:59.000Z

    The form factors for the radiative transitions between charmonium mesons are investigated. We employ an anisotropic lattice using a Wilson gauge action, and domain-wall fermion action. We extrapolate the form factors to Q{sup 2} = 0, corresponding to a real photon, using quark-model-inspired functions. Finally, comparison is made with photocouplings extracted from the measured radiative widths, where known. Our preliminary results find photocouplings commensurate with these experimentally extracted values.

  14. Packet personal radiation monitor

    DOE Patents [OSTI]

    Phelps, James E. (Knoxville, TN)

    1989-01-01T23:59:59.000Z

    A personal radiation monitor of the chirper type is provided for detecting ionizing radiation. A battery powered high voltage power supply is used to generate and apply a high voltage bias to a G-M tube radiation sensor. The high voltage is monitored by a low-loss sensing network which generates a feedback signal to control the high voltage power supply such that the high voltage bias is recharged to +500 VDC when the current pulses of the sensor, generated by the detection of ionizing radiation events, discharges the high voltage bias to +450 VDC. During the high voltage recharge period an audio transducer is activated to produce an audible "chirp". The rate of the "chirps" is controlled by the rate at which the high voltage bias is recharged, which is proportional to the radiation field intensity to which the sensor is exposed. The chirp rate sensitivity is set to be approximately 1.5 (chirps/min/MR/hr.). The G-M tube sensor is used in a current sensing mode so that the device does not paralyze in a high radiation field.

  15. Information Security Group IY5512 Computer Security

    E-Print Network [OSTI]

    Mitchell, Chris

    for process that controls interactions between users and resources. · Access control system implements Information Security Group Agenda · Access control basics · ACLs and capabilities · Information flow policies· Information flow policies · Bell-LaPadula Model · Role-Based Access Control · Resources 3 Information Security

  16. CFN | Thin Films Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Synthesis and Characterization Facility Thin-Film Processing Facility Online Manager (FOM) website FOM manual ESR for lab 1L32 (High-Resolution SEM and x-ray...

  17. Representing Small Group Evolution

    E-Print Network [OSTI]

    Wormald, Nicholas

    2009-03-30T23:59:59.000Z

    Understanding the dynamics of network evolution rests in part on the representation chosen to characterize the evolutionary process. We offer a simple, three-parameter representation based on subgraphs that capture three ...

  18. QED radiative corrections to virtual Compton scattering

    E-Print Network [OSTI]

    M. Vanderhaeghen; J. M. Friedrich; D. Lhuillier; D. Marchand; L. Van Hoorebeke; J. Van de Wiele

    2000-01-12T23:59:59.000Z

    The QED radiative corrections to virtual Compton scattering (reaction $e p \\to e p \\gamma$) are calculated to first order in $\\alpha_{em} \\equiv e^2 / 4 \\pi$. A detailed study is presented for the one-loop virtual corrections and for the first order soft-photon emission contributions. Furthermore, a full numerical calculation is given for the radiative tail, corresponding with photon emission processes, where the photon energy is not very small compared with the lepton momenta. We compare our results with existing works on elastic electron-proton scattering, and show for the $e p \\to e p \\gamma$ reaction how the observables are modified due to these first order QED radiative corrections. We show results for both unpolarized and polarized observables of the virtual Compton scattering in the low energy region (where one is sensitive to the generalized polarizabilities of the nucleon), as well as for the deeply virtual Compton scattering.

  19. Working With Radiation For Research

    E-Print Network [OSTI]

    Jia, Songtao

    working with radiation The radiation badge is not a protective device It cannot shield you from Negative Exponential Protection From Radiation #12;18 Time Distance Shielding Basic Principles #121 Working With Radiation For Research Thomas Cummings Junior Physicist Environmental Health

  20. Radiation Safety Annual Refresher Training

    E-Print Network [OSTI]

    Thomas, David D.

    Radiation Safety Annual Refresher Training Radiation Protection Division Department of Environmental Health & Safety #12;Topics in Radiation Safety (applicable RPD Manual sections indicated) User;Topics in Radiation Safety (applicable RPD Manual sections indicated) User and Non-user topics Types

  1. Solar thermal aerosol flow reaction process

    DOE Patents [OSTI]

    Weimer, Alan W.; Dahl, Jaimee K.; Pitts, J. Roland; Lewandowski, Allan A.; Bingham, Carl; Tamburini, Joseph R.

    2005-03-29T23:59:59.000Z

    The present invention provides an environmentally beneficial process using concentrated sunlight to heat radiation absorbing particles to carry out highly endothermic gas phase chemical reactions ultimately resulting in the production of hydrogen or hydrogen synthesis gases.

  2. Chemical Kinetics and Properties from the Radiation Chemistry Data Center (RCDC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Radiation Chemistry Data Center (RCDC) is a focal point for the compilation and evaluation of kinetic, spectroscopic and thermodynamic data for processes in solution involving reactive intermediates, including free radicals and excited states. These data are primarily derived from the published literature on radiation chemistry and quantitative aspects of photochemistry. The compilations are presented as individual groups of pages corresponding to each published work. Each compilation consists of an introductory article, describing the scope of the compilation, with the considerations and criteria for data evaluation discussed. Nomenclature for the compilation is also described here. For several compilations the introduction is followed by one or more pages of links organized as an index or table of contents to the individual pages of the compilation. These links allow the browsing of the data by species name. Each page tabulates the reaction of a transient species with a particular reactant. RCDC was established at the Notre Dame Radiation Laboratory in 1965, as part of the National Standard Reference Data System.

  3. Hydrocarbon conversion process

    SciTech Connect (OSTI)

    Buss, W.C.; Field, L.A.; Robinson, R.C.

    1984-06-26T23:59:59.000Z

    A hydrocarbon conversion process is disclosed having a very high selectivity for dehydrocyclization. In one aspect of this process, a hydrocarbon feed is subjected to hydrotreating, then the hydrocarbon feed is passed through a sulfur removal system which reduces the sulfur concentration of the hydrocarbon feed to below 500 ppb, and then the hydrocarbon feed is reformed over a dehydrocyclization catalyst comprising a large pore zeolite containing at least one Group VIII metal to produce aromatics and hydrogen.

  4. KKG Group Paraffin Removal

    SciTech Connect (OSTI)

    Schulte, Ralph

    2001-12-01T23:59:59.000Z

    The Rocky Mountain Oilfield Testing Center (RMOTC) has recently completed a test of a paraffin removal system developed by the KKG Group utilizing the technology of two Russian scientists, Gennady Katzyn and Boris Koggi. The system consisting of chemical ''sticks'' that generate heat in-situ to melt the paraffin deposits in oilfield tubing. The melted paraffin is then brought to the surface utilizing the naturally flowing energy of the well.

  5. Radiation delivery system and method

    DOE Patents [OSTI]

    Sorensen, Scott A. (Overland Park, KS); Robison, Thomas W. (Los Alamos, NM); Taylor, Craig M. V. (Jemez Springs, NM)

    2002-01-01T23:59:59.000Z

    A radiation delivery system and method are described. The system includes a treatment configuration such as a stent, balloon catheter, wire, ribbon, or the like, a portion of which is covered with a gold layer. Chemisorbed to the gold layer is a radiation-emitting self-assembled monolayer or a radiation-emitting polymer. The radiation delivery system is compatible with medical catheter-based technologies to provide a therapeutic dose of radiation to a lesion following an angioplasty procedure.

  6. Integrating grouped and ungrouped data: the point process case

    E-Print Network [OSTI]

    Hernandez Magallanes, Irma del Consuelo

    2010-01-01T23:59:59.000Z

    ogico Autonomo de Mexico (ITAM). Tapen has been a mentorindebted to my professors at ITAM who encouraged and supportMarianita, Enrique and Fer. ITAM: Marisol and Juan Pablo.

  7. Integrating grouped and ungrouped data: the point process case

    E-Print Network [OSTI]

    Hernandez Magallanes, Irma del Consuelo

    2010-01-01T23:59:59.000Z

    and Probability, edited by Lucien Lecam and Jerzy Neyman. ,1973. [29] J. L. Hodges J.R. and Lucien Le Cam. The poisson

  8. Woods Hole Oceanographic Institution Upper Ocean Processes Group

    E-Print Network [OSTI]

    Wind -1400 Meters of 300 lbs Spectra Line -Davit and Block -Mounting Pedestal -Power Supply -UCTD while underway between the SHOA DART buoy and the STRATUS IMET buoy. The probe was deployed every half buoys. Figure 6. Individual cast from SHOA DART and WHOI ORS buoys. Conclusion With proper training

  9. Improving Educational Multimedia Selection Process Using Group Decision Support Systems

    E-Print Network [OSTI]

    Ottawa, University of

    to the adoption of new educational technologies to expand their markets and improve the flexibility and Technology United Arab Emirates staff.mohamed.a@alainuniversity.ac.ae Shervin Shirmohammadi Distributed of their offerings. These technologies include the Internet and Multimedia, used in an educational context

  10. Radiation Protection and Safety Training | Environmental Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnicalPurchase, Delivery, andSmartRadiation EffectsProtection

  11. Composition and apparatus for detecting gamma radiation

    DOE Patents [OSTI]

    Hofstetter, K.J.

    1994-08-09T23:59:59.000Z

    A gamma radiation detector and a radioluminescent composition for use therein. The detector includes a radioluminescent composition that emits light in a characteristic wavelength region when exposed to gamma radiation, and means for detecting said radiation. The composition contains a scintillant such as anglesite (PbSO[sub 4]) or cerussite (PbCO[sub 3]) incorporated into an inert, porous glass matrix via a sol-gel process. Particles of radiation-sensitive scintillant are added to, a sol solution. The mixture is polymerized to form a gel, then dried under conditions that preserve the structural integrity and radiation sensitivity of the scintillant. The final product is a composition containing the uniformly-dispersed scintillant in an inert, optically transparent and highly porous matrix. The composition is chemically inert and substantially impervious to environmental conditions including changes in temperature, air pressure, and so forth. It can be fabricated in cylinders, blocks with holes therethrough for flow of fluid, sheets, surface coatings, pellets or other convenient shapes. 3 figs.

  12. Annual Report 2006 for Hydrodynamics and Radiation Hydrodynamics with Astrophysical Applications

    SciTech Connect (OSTI)

    R. Paul Drake

    2007-04-05T23:59:59.000Z

    We report the ongoing work of our group in hydrodynamics and radiation hydrodynamics with astrophysical applications. During the period of the existing grant, we have carried out two types of experiments at the Omega laser. One set of experiments has studied radiatively collapsing shocks, obtaining data using a backlit pinhole with a 100 ps backlighter and beginning to develop the ability to look into the shock tube with optical or x-ray diagnostics. Other experiments have studied the deeply nonlinear development of the Rayleigh-Taylor (RT) instability from complex initial conditions, using dual-axis radiographic data with backlit pinholes and ungated detectors to complete the data set for a Ph.D. student. We lead a team that is developing a proposal for experiments at the National Ignition Facility and are involved in experiments at NIKE and LIL. All these experiments have applications to astrophysics, discussed in the corresponding papers. We assemble the targets for the experiments at Michigan, where we also prepare many of the simple components. We also have several projects underway in our laboratory involving our x-ray source. The above activities, in addition to a variety of data analysis and design projects, provide good experience for graduate and undergraduates students. In the process of doing this research we have built a research group that uses such work to train junior scientists.

  13. Remote radiation dosimetry

    DOE Patents [OSTI]

    Braunlich, P.F.; Tetzlaff, W.; Hegland, J.E.; Jones, S.C.

    1991-03-12T23:59:59.000Z

    Disclosed are methods and apparatus for remotely measuring radiation levels. Such are particularly useful for measuring relatively high levels or dosages of radiation being administered in radiation therapy. They are also useful for more general radiation level measurements where remote sensing from the remaining portions of the apparatus is desirable. The apparatus uses a beam generator, such as a laser beam, to provide a stimulating beam. The stimulating beam is preferably of wavelengths shorter than 6 microns, or more advantageously less than 2 microns. The stimulating beam is used to stimulate a remote luminescent sensor mounted in a probe which emits stored luminescent energy resulting from exposure of the sensor to ionizing radiation. The stimulating beam is communicated to the remote luminescent sensor via a transmissive fiber which also preferably serves to return the emission from the luminescent sensor. The stimulating beam is advantageously split by a beam splitter to create a detector beam which is measured for power during a reading period during which the luminescent phosphor is read. The detected power is preferably used to control the beam generator to thus produce desired beam power during the reading period. The luminescent emission from the remote sensor is communicated to a suitable emission detector, preferably after filtering or other selective treatment to better isolate the luminescent emission. 8 figures.

  14. Packet personal radiation monitor

    DOE Patents [OSTI]

    Phelps, J.E.

    1988-03-31T23:59:59.000Z

    A personal radiation monitor of the chirper type is provided for detecting ionizing radiation. A battery powered high voltage power supply is used to generate and apply a high voltage bias to a G-M tube radiation sensor. The high voltage is monitored by a low-loss sensing network which generates a feedback signal to control the high voltage power supply such that the high voltage bias is recharged to +500 VDC when the current pulses of the sensor, generated by the detection of ionizing radiatonevents, discharges the high voltage bias to +450 VDC. During the high voltage recharge period an audio transducer is activated to produce an audible ''chirp''. The rate of the ''chirps'' is controlled by the rate at which the high voltage bias is recharged, which is proportional to the radiation field intensity to which the sensor is exposed. The chirp rate sensitivity is set to be approximately 1.5 (chirps/min/MR/hr.). The G-M tube sensor is used in a current sensing mode so that the device does not paralyze in a high radiation field. 2 figs.

  15. Metrology of reflection optics for synchrotron radiation

    SciTech Connect (OSTI)

    Takacs, P.Z.

    1985-09-01T23:59:59.000Z

    Recent years have seen an almost explosive growth in the number of beam lines on new and existing synchrotron radiation facilities throughout the world. The need for optical components to utilize the unique characteristics of synchrotron radiation has increased accordingly. Unfortunately, the technology to manufacture and measure the large, smooth, exotic optical surfaces required to focus and steer the synchrotron radiation beam has not progressed as rapidly as the operational demands on these components. Most companies do not wish to become involved with a project that requires producing a single, very expensive, aspheric optic with surface roughness and figure tolerances that are beyond their capabilities to measure. This paper will review some of the experiences of the National Synchrotron Light Source in procuring grazing incidence optical components over the past several years. We will review the specification process - how it is related to the function of the optic, and how it relates to the metrology available during the manufacturing process and after delivery to the user's laboratory. We will also discuss practical aspects of our experience with new technologies, such as single point diamond turning of metal mirrors and the use of SiC as a mirror material. Recent advances in metrology instrumentation have the potential to move the measurement of surface figure and finish from the research laboratory into the optical shop, which should stimulate growth and interest in the manufacturing of optics to meet the needs of the synchrotron radiation user community.

  16. American Society for Radiation Oncology (ASTRO) 2012 Workforce Study: The Radiation Oncologists' and Residents' Perspectives

    SciTech Connect (OSTI)

    Pohar, Surjeet, E-mail: spohar@iuhealth.org [Indiana University Health East, Indianapolis, Indiana (United States); Fung, Claire Y. [Commonwealth Newburyport Cancer Center, Newburyport, Massachusetts (United States); Hopkins, Shane [William R. Bliss Cancer Center, Ames, Iowa (United States); Miller, Robert [Mayo Clinic, Rochester, Minnesota (United States); Azawi, Samar [VA Veteran Hospital/University of California Irvine, Newport Beach, California (United States); Arnone, Anna; Patton, Caroline [ASTRO, Fairfax, Virginia (United States); Olsen, Christine [Massachusetts General Hospital, Boston, Massachusetts (United States)

    2013-12-01T23:59:59.000Z

    Purpose: The American Society for Radiation Oncology (ASTRO) conducted the 2012 Radiation Oncology Workforce Survey to obtain an up-to-date picture of the workforce, assess its needs and concerns, and identify quality and safety improvement opportunities. The results pertaining to radiation oncologists (ROs) and residents (RORs) are presented here. Methods: The ASTRO Workforce Subcommittee, in collaboration with allied radiation oncology professional societies, conducted a survey study in early 2012. An online survey questionnaire was sent to all segments of the radiation oncology workforce. Respondents who were actively working were included in the analysis. This manuscript describes the data for ROs and RORs. Results: A total of 3618 ROs and 568 RORs were surveyed. The response rate for both groups was 29%, with 1047 RO and 165 ROR responses. Among ROs, the 2 most common racial groups were white (80%) and Asian (15%), and the male-to-female ratio was 2.85 (74% male). The median age of ROs was 51. ROs averaged 253.4 new patient consults in a year and 22.9 on-treatment patients. More than 86% of ROs reported being satisfied or very satisfied overall with their career. Close to half of ROs reported having burnout feelings. There was a trend toward more frequent burnout feelings with increasing numbers of new patient consults. ROs' top concerns were related to documentation, reimbursement, and patients' health insurance coverage. Ninety-five percent of ROs felt confident when implementing new technology. Fifty-one percent of ROs thought that the supply of ROs was balanced with demand, and 33% perceived an oversupply. Conclusions: This study provides a current snapshot of the 2012 radiation oncology physician workforce. There was a predominance of whites and men. Job satisfaction level was high. However a substantial fraction of ROs reported burnout feelings. Perceptions about supply and demand balance were mixed. ROs top concerns reflect areas of attention for the healthcare sector as a whole.

  17. Coherent Nuclear Radiation

    E-Print Network [OSTI]

    V. I. Yukalov; E. P. Yukalova

    2004-06-22T23:59:59.000Z

    The main part of this review is devoted to the comprehensive description of coherent radiation by nuclear spins. The theory of nuclear spin superradiance is developed and the experimental observations of this phenomenon are considered. The intriguing problem of how coherence develops from initially incoherent quantum fluctuations is analysed. All main types of coherent radiation by nuclear spins are discussed, which are: free nuclear induction, collective induction, maser generation, pure superradiance, triggered superradiance, pulsing superradiance, punctuated superradiance, and induced emission. The influence of electron-nuclear hyperfine interactions and the role of magnetic anisotropy are studied. Conditions for realizing spin superradiance by magnetic molecules are investigated. The possibility of nuclear matter lasing, accompanied by pion or dibaryon radiation, is briefly touched.

  18. Pediatric radiation oncology

    SciTech Connect (OSTI)

    Halperin, E.C.; Kun, L.E.; Constine, L.S.; Tarbell, N.J.

    1989-01-01T23:59:59.000Z

    This text covers all aspects of radiation therapy for treatment of pediatric cancer. The book describes the proper use of irradiation in each of the malignancies of childhood, including tumors that are rarely encountered in adult practice. These include acute leukemia; supratentorial brain tumors; tumors of the posterior fossa of the brain and spinal canal; retinoblastoma and optic nerve glioma; neuroblastoma; Hodgkin's disease; malignant lymphoma; Ewing's sarcoma; osteosarcoma; rhabdomyosarcoma; Desmoid tumor; Wilms' tumor; liver and biliary tumors; germ cell and stromal cell tumors of the gonads; endocrine, aerodigestive tract, and breast tumors; Langerhans' cell histiocytosis; and skin cancer and hemangiomas. For each type of malignancy, the authors describe the epidemiology, common presenting signs and symptoms, staging, and proper diagnostic workup. Particular attention is given to the indications for radiation therapy and the planning of a course of radiotherapy, including the optimal radiation dose, field size, and technique.

  19. Composition for radiation shielding

    DOE Patents [OSTI]

    Kronberg, J.W.

    1994-08-02T23:59:59.000Z

    A composition for use as a radiation shield is disclosed. The shield has a depleted uranium core for absorbing gamma rays and a bismuth coating for preventing chemical corrosion and absorbing gamma rays. Alternatively, a sheet of gadolinium may be positioned between the uranium core and the bismuth coating for absorbing neutrons. The composition is preferably in the form of a container for storing materials that emit radiation such as gamma rays and neutrons. The container is preferably formed by casting bismuth around a pre-formed uranium container having a gadolinium sheeting, and allowing the bismuth to cool. The resulting container is a structurally sound, corrosion-resistant, radiation-absorbing container. 2 figs.

  20. Research Groups - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently ApprovedReliabilityPrincipalResearch Finds VitaminResearch Groups

  1. ALS Communications Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartmentNeutrino-Induced1ALS Communications Group Print

  2. # Energy Measuremenfs Group

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -KWatertown Arsenal -Center05Sites »ri

  3. Environmental/Interest Groups

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNew 1325.8.Enaineer;/:4,4 (; ...)369s ..T

  4. Specific Group Hardware

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarship Fund3Biology|SolarSpeakers BureauSpecialSpecific Group

  5. Process for manufacturing multilayer capacitors

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN)

    1996-01-01T23:59:59.000Z

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation.

  6. Macromolecules in the Bayer Process

    E-Print Network [OSTI]

    Whelan, Thelma J.; Ellis, Amanda; Kannangara, G. S. Kamali; Marshall, Craig P.; Smeulders, Damian; Wilson, Michael A.

    2003-10-01T23:59:59.000Z

    in this fraction, alkali soluble organic degradation products remain in the process liquor and accumulate on recycling 15-71. For a Bayer process plant to operate cost-effectively, different temperatures and molarities of sodium hydroxide are used due... of host-guest complexes is expected to be less demanding than the destruction of covalent bonds. Indeed it has been demonstrated that humic substances under go facile degradation with UV radiation rather than polymerisation 123-26/. It can...

  7. Processing Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Processing Science Related to the Electron Beam Melting Additive Manufacturing Process October 14 th , 2014 Ryan Dehoff Metal Additive Manufacturing Thrust Lead Manufacturing...

  8. Selection Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Selection Process Selection Process Fellowships will be awarded based on academic excellence, relevance of candidate's research to the laboratory mission in fundamental nuclear...

  9. Proposal Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proposal Process Network R&D Overview Experimental Network Testbeds 100G SDN Testbed Testbed Description Testbed Results Current Testbed Research Proposal Process Terms and...

  10. Radiation interactions in high-pressure gases

    SciTech Connect (OSTI)

    Christophorou, L.G. (Oak Ridge National Lab., TN (USA) Tennessee Univ., Knoxville, TN (USA))

    1990-01-01T23:59:59.000Z

    This article is on basic radiation interaction processes in dense fluids and on interphase studies aiming at the interfacing of knowledge on radiation interaction processes in the gaseous and the liquid state of matter. It is specifically focused on the effect of the density and nature of the medium on electron production in irradiated fluids and on the state, energy, transport, and attachment of slow excess electrons in dense fluids especially dielectric liquids which possess excess-electron conduction bands (V{sub 0} < 0 eV). Studies over the past two decades have shown that the interactions of low-energy electrons with molecules embedded in dense media depend not only on the molecules themselves and their internal state of excitation, but also on the electron state and energy in -- and the nature and density of -- the medium in which the interactions occur.

  11. Radiation monitor for liquids

    DOE Patents [OSTI]

    Koster, J.E.; Bolton, R.D.

    1999-03-02T23:59:59.000Z

    A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans. 4 figs.

  12. Radiation monitor for liquids

    DOE Patents [OSTI]

    Koster, James E. (Los Alamos, NM); Bolton, Richard D. (Los Alamos, NM)

    1999-01-01T23:59:59.000Z

    A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans.

  13. Wireless passive radiation sensor

    DOE Patents [OSTI]

    Pfeifer, Kent B; Rumpf, Arthur N; Yelton, William G; Limmer, Steven J

    2013-12-03T23:59:59.000Z

    A novel measurement technique is employed using surface acoustic wave (SAW) devices, passive RF, and radiation-sensitive films to provide a wireless passive radiation sensor that requires no batteries, outside wiring, or regular maintenance. The sensor is small (<1 cm.sup.2), physically robust, and will operate unattended for decades. In addition, the sensor can be insensitive to measurement position and read distance due to a novel self-referencing technique eliminating the need to measure absolute responses that are dependent on RF transmitter location and power.

  14. Radiation.cdr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnicalPurchase, Delivery, andSmartRadiationRadiation Safety Work

  15. Application of Improved Radiation Modeling to General Circulation Models

    SciTech Connect (OSTI)

    Michael J Iacono

    2011-04-07T23:59:59.000Z

    This research has accomplished its primary objectives of developing accurate and efficient radiation codes, validating them with measurements and higher resolution models, and providing these advancements to the global modeling community to enhance the treatment of cloud and radiative processes in weather and climate prediction models. A critical component of this research has been the development of the longwave and shortwave broadband radiative transfer code for general circulation model (GCM) applications, RRTMG, which is based on the single-column reference code, RRTM, also developed at AER. RRTMG is a rigorously tested radiation model that retains a considerable level of accuracy relative to higher resolution models and measurements despite the performance enhancements that have made it possible to apply this radiation code successfully to global dynamical models. This model includes the radiative effects of all significant atmospheric gases, and it treats the absorption and scattering from liquid and ice clouds and aerosols. RRTMG also includes a statistical technique for representing small-scale cloud variability, such as cloud fraction and the vertical overlap of clouds, which has been shown to improve cloud radiative forcing in global models. This development approach has provided a direct link from observations to the enhanced radiative transfer provided by RRTMG for application to GCMs. Recent comparison of existing climate model radiation codes with high resolution models has documented the improved radiative forcing capability provided by RRTMG, especially at the surface, relative to other GCM radiation models. Due to its high accuracy, its connection to observations, and its computational efficiency, RRTMG has been implemented operationally in many national and international dynamical models to provide validated radiative transfer for improving weather forecasts and enhancing the prediction of global climate change.

  16. Digital Technology Group Computer Laboratory

    E-Print Network [OSTI]

    Cambridge, University of

    Digital Technology Group 1/20 Computer Laboratory Digital Technology Group Computer Laboratory William R Carson Building on the presentation by Francisco Monteiro Matlab #12;Digital Technology Group 2/20 Computer Laboratory Digital Technology Group Computer Laboratory The product: MATLAB - The Language

  17. High Temperature Membrane Working Group

    Broader source: Energy.gov [DOE]

    This presentation provides an overview of the High Temperature Membrane Working Group Meeting in May 2007.

  18. Vortex flow in the technology of radiation wave cracking (RWC)

    E-Print Network [OSTI]

    L. A. Tsoy; V. N. Kolushov; A. G. Komarov; A. N. Tsoy

    2012-09-16T23:59:59.000Z

    This article examines the theory of vortex flows in relation to the processes occurring in the radiation-wave cracking of crude oil, when the crude oil is sprayed into the gas stream in the form of a mist and then is fed into the reactor, where it is treated by the accelerated electrons and the UHF radiation. The output of this process are the products with the specified parameters (high-octane petroleum products). This process operates at the ambient pressure and temperature, which makes the process safer for industrial purposes. Besides the process itself, the authors described the equipment used in this process, as well as the parameters of the optimal process.

  19. Radiation hardness of the storage phosphor europium doped potassium chloride for radiation therapy dosimetry

    SciTech Connect (OSTI)

    Driewer, Joseph P.; Chen, Haijian; Osvet, Andres; Low, Daniel A.; Li, H. Harold [Department of Radiation Oncology, Washington University School of Medicine, 4921 Parkview Place, Campus Box 8224, St. Louis, Missouri 63110 and Nuclear Science and Engineering Institute, University of Missouri, E4431 Lafferre Hall, Columbia, Missouri 65211 (United States); Department of Radiation Oncology, Washington University School of Medicine, 4921 Parkview Place, Campus Box 8224, St. Louis, Missouri 63110 (United States); Department of Materials Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Martensstrasse 7, Erlangen 91058 (Germany); Department of Radiation Oncology, Washington University School of Medicine, 4921 Parkview Place, Campus Box 8224, St. Louis, Missouri 63110 (United States)

    2011-08-15T23:59:59.000Z

    Purpose: An important property of a reusable dosimeter is its radiation hardness, that is, its ability to retain its dosimetric merits after irradiation. The radiation hardness of europium doped potassium chloride (KCl:Eu{sup 2+}), a storage phosphor material recently proposed for radiation therapy dosimetry, is examined in this study. Methods: Pellet-style KCl:Eu{sup 2+} dosimeters, 6 mm in diameter, and 1 mm thick, were fabricated in-house for this study. The pellets were exposed by a 6 MV photon beam or in a high dose rate {sup 137}Cs irradiator. Macroscopic properties, such as radiation sensitivity, dose response linearity, and signal stability, were studied with a laboratory photostimulated luminescence (PSL) readout system. Since phosphor performance is related to the state of the storage centers and the activator, Eu{sup 2+}, in the host lattice, spectroscopic and temporal measurements were carried out in order to explore radiation-induced changes at the microscopic level. Results: KCl:Eu{sup 2+} dosimeters retained approximately 90% of their initial signal strength after a 5000 Gy dose history. Dose response was initially supralinear over the dose range of 100-700 cGy but became linear after 60 Gy. Linearity did not change significantly in the 0-5000 Gy dose history spanned in this study. Annealing high dose history chips resulted in a return of supralinearity and a recovery of sensitivity. There were no significant changes in the PSL stimulation spectra, PSL emission spectra, photoluminescence spectra, or luminescence lifetime, indicating that the PSL signal process remains intact after irradiation but at a reduced efficiency due to reparable radiation-induced perturbations in the crystal lattice. Conclusions: Systematic studies of KCl:Eu{sup 2+} material are important for understanding how the material can be optimized for radiation therapy dosimetry purposes. The data presented here indicate that KCl:Eu{sup 2+} exhibits strong radiation hardness and lends support for further investigations of this novel material.

  20. Winter 2015 Positive Parenting Group

    E-Print Network [OSTI]

    Winter 2015 Positive Parenting Group This is an eight-week parent group series starting Monday, January 12, 2015 Future parent group sessions to be held: January 26 (no group 19th ) February 2, 9 and 23 (no group 16th ) and March 2, 9 and 16 6:00 p.m. to 8:00 p.m. Room 145 of the Clinical Services

  1. Cantilever epitaxial process

    DOE Patents [OSTI]

    Ashby, Carol I.; Follstaedt, David M.; Mitchell, Christine C.; Han, Jung

    2003-07-29T23:59:59.000Z

    A process of growing a material on a substrate, particularly growing a Group II-VI or Group III-V material, by a vapor-phase growth technique where the growth process eliminates the need for utilization of a mask or removal of the substrate from the reactor at any time during the processing. A nucleation layer is first grown upon which a middle layer is grown to provide surfaces for subsequent lateral cantilever growth. The lateral growth rate is controlled by altering the reactor temperature, pressure, reactant concentrations or reactant flow rates. Semiconductor materials, such as GaN, can be produced with dislocation densities less than 10.sup.7 /cm.sup.2.

  2. ACC115 High Volume Processing of Composites

    Broader source: Energy.gov (indexed) [DOE]

    of newadvanced composite processing technologies Direct support of the Materials, Joining, and Carbon Fiber SMC Working Groups Direct collaboration Focal Project...

  3. A project management focused framework for assuring quality work processes

    SciTech Connect (OSTI)

    Gamsby, S.O.; Mize, J.D. [Allied Signal, Inc., Albuquerque, NM (United States). Federal Mfg. and Technologies; Reid, R.A. [New Mexico Univ., Albuquerque, NM (United States)

    1996-10-01T23:59:59.000Z

    Federal Manufacturing & Technologies/New Mexico (FM&T/NM) of AlliedSignal is an organization of approximately 300 associates providing operations support, engineering, and other technical services for DOE, New Mexico`s National Laboratories, etc. Work performed is primarily project-oriented and ranges from executing a major long-term contract for retrofitting and maintaining a large fleet of escort vehicles to creating a single, small, prototype electronic device for measuring radiation in a unique environment. FM&T/NM is functionally organized and operates in a classic matrix format with functional departments providing personnel with technical expertise, necessary physical resources, and administrative support to several project-based groups. Like most matrix-based organizations that provide support to diverse customers, FM&T/NM has encountered problems that occur when a group of project managers is expected to work together in using and scheduling a shared set of limited resources for the good of the organization as a whole. The framework for managing projects that we present focuses on developing, understanding, and managing the relationships between the functional organization structure, the system of work processes, and the management of projects. FM&T/NM retains its functional structure which primarily assigns personnel to work processes. The evolving role of the process leader focuses primarily on designing, managing, and improving the process, and the interactions among the subprocesses. The project manager is responsible for (1) translating customer requirements into product specifications, (2) determining the sequence of activities needed to meet project goals, (3) scheduling the required work processes, (4) monitoring project progress, (5) providing liaison between the customer and process leaders, and (6) having the desired product and/or service delivered to a satisfied customer in a timely manner.

  4. Local microwave background radiation

    E-Print Network [OSTI]

    Domingos Soares

    2014-11-13T23:59:59.000Z

    An inquiry on a possible local origin for the Microwave Background Radiation is made. Thermal MBR photons are contained in a system called {\\it magnetic bottle} which is due to Earth magnetic field and solar wind particles, mostly electrons. Observational tests are anticipated.

  5. Radiation Source Replacement Workshop

    SciTech Connect (OSTI)

    Griffin, Jeffrey W.; Moran, Traci L.; Bond, Leonard J.

    2010-12-01T23:59:59.000Z

    This report summarizes a Radiation Source Replacement Workshop in Houston Texas on October 27-28, 2010, which provided a forum for industry and researchers to exchange information and to discuss the issues relating to replacement of AmBe, and potentially other isotope sources used in well logging.

  6. Thermostatic Radiator Valve Evaluation

    SciTech Connect (OSTI)

    Dentz, Jordan [Advanced Residential Integrated Energy Solutions Collaborative, New York, NY (United States); Ansanelli, Eric [Advanced Residential Integrated Energy Solutions Collaborative, New York, NY (United States)

    2015-01-01T23:59:59.000Z

    A large stock of multifamily buildings in the Northeast and Midwest are heated by steam distribution systems. Losses from these systems are typically high and a significant number of apartments are overheated much of the time. Thermostatically controlled radiator valves (TRVs) are one potential strategy to combat this problem, but have not been widely accepted by the residential retrofit market.

  7. Three Dimensional Radiative Transfer

    E-Print Network [OSTI]

    Tom Abel

    2000-05-09T23:59:59.000Z

    Radiative Transfer (RT) effects play a crucial role in the thermal history of the intergalactic medium. Here I discuss recent advances in the development of numerical methods that introduce RT to cosmological hydrodynamics. These methods can also readily be applied to time dependent problems on interstellar and galactic scales.

  8. Radiation detector spectrum simulator

    DOE Patents [OSTI]

    Wolf, M.A.; Crowell, J.M.

    1985-04-09T23:59:59.000Z

    A small battery operated nuclear spectrum simulator having a noise source generates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith to generate several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.

  9. Photovoltaic radiation detector element

    DOE Patents [OSTI]

    Agouridis, D.C.

    1980-12-17T23:59:59.000Z

    A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein in the edge of which closely approaches but is spaced from the current collector strips.

  10. Federal Radiological Monitoring and Assessment Center Monitoring Manual Volume 2, Radiation Monitoring and Sampling

    SciTech Connect (OSTI)

    NSTec Aerial Measurement Systems

    2012-07-31T23:59:59.000Z

    The FRMAC Monitoring and Sampling Manual, Volume 2 provides standard operating procedures (SOPs) for field radiation monitoring and sample collection activities that are performed by the Monitoring group during a FRMAC response to a radiological emergency.

  11. LET dependence of radiation-induced bystander effects using human prostate tumor cells

    E-Print Network [OSTI]

    Anzenberg, Vered

    2008-01-01T23:59:59.000Z

    In the past fifteen years, evidence provided by many independent research groups have indicated higher numbers of cells exhibiting damage than expected based on the number of cells traversed by the radiation. This phenomenon ...

  12. Radiation Characteristics of Glass Containing Gas Bubbles

    E-Print Network [OSTI]

    Pilon, Laurent; Viskanta, Raymond

    2003-01-01T23:59:59.000Z

    B. L. Drolen, Thermal radiation in particulate media withRadiation Characteristics of Glass Containing Gas Bubblesthermophysical properties and radiation characteristics of

  13. Radiation damage evolution in ceramics. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation damage evolution in ceramics. Radiation damage evolution in ceramics. Abstract: A review is presented of recent results on radiation damage production, defect...

  14. Preliminary radiation shielding design for BOOMERANG

    E-Print Network [OSTI]

    Donahue, Richard J.

    2002-01-01T23:59:59.000Z

    Preliminary Radiation Shielding Design for BOOMERANG R. J.2003 Abstract Preliminary radiation shielding speci?cationsElectron Photon Stray Radiation from a High Energy Electron

  15. Terahertz radiation from laser accelerated electron bunches

    E-Print Network [OSTI]

    2004-01-01T23:59:59.000Z

    NUMBER 5 MAY 2004 Terahertz radiation from laser acceleratedand millimeter wave radiation from laser acceleratedNo. 5, May 2004 Terahertz radiation from laser accelerated

  16. Meeting Report--NASA Radiation Biomarker Workshop

    E-Print Network [OSTI]

    Straume, Tore

    2008-01-01T23:59:59.000Z

    ionizing radiation. In: Advances in Medical Physics (A. B.for medical management of radiation casualties. ADVANCES INMedical Center presented the radiation oncology perspective on biomarkers. Advances

  17. Nanoscale Engineering Of Radiation Tolerant Silicon Carbide....

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Of Radiation Tolerant Silicon Carbide. Nanoscale Engineering Of Radiation Tolerant Silicon Carbide. Abstract: Radiation tolerance is determined by how effectively the...

  18. Radiation Safety Training Basic Radiation Safety Training for

    E-Print Network [OSTI]

    Dai, Pengcheng

    Radiation Safety Training Basic Radiation Safety Training for Sealed Source Users for Physics 461 Protocol Title: Training for Sealed Source Users Drafted By: Chris Millsaps, RSS Reviewers: ZB, TU, GS Purpose: To provide basic radiation safety training to the users of sealed sources located

  19. Radiation-Hard Quartz Cerenkov Calorimeters U. Akgun and Y. Onel (for CMS Collaboration)

    E-Print Network [OSTI]

    Akgun, Ugur

    collection efficiencies. RADIATION DAMAGE STUDIES ON QUARTZ FIBERS The simulations show that the CMS HF) Attenuation for seven groups of fibers. Initial radiation damage studies on quartz fibers were performed irradiation seems to have generated a similar type of optical damage as neutron irradiation at fluence of 1015

  20. Mask fabrication process

    DOE Patents [OSTI]

    Cardinale, Gregory F. (Oakland, CA)

    2000-01-01T23:59:59.000Z

    A method for fabricating masks and reticles useful for projection lithography systems. An absorber layer is conventionally patterned using a pattern and etch process. Following the step of patterning, the entire surface of the remaining top patterning photoresist layer as well as that portion of an underlying protective photoresist layer where absorber material has been etched away is exposed to UV radiation. The UV-exposed regions of the protective photoresist layer and the top patterning photoresist layer are then removed by solution development, thereby eliminating the need for an oxygen plasma etch and strip and chances for damaging the surface of the substrate or coatings.

  1. Pacific Northwest Solar Radiation Data

    E-Print Network [OSTI]

    Oregon, University of

    Pacific Northwest Solar Radiation Data UO SOLAR MONITORING LAB Physics Department -- Solar Energy Center 1274 University of Oregon Eugene, Oregon 97403-1274 April 1, 1999 #12;Hourly solar radiation data

  2. RADIATION DAMAGE OF GERMANIUM DETECTORS

    E-Print Network [OSTI]

    Pehl, Richard H.

    2011-01-01T23:59:59.000Z

    the high-energy proton damage than was the planar detector.as far as radiation damage is concerned. Unfortunately, some28-29, 1978 LBL-7967 RADIATION DAMAGE OF GERMANIUM DETECTORS

  3. Filling of a cavity with zero-point electromagnetic radiation

    E-Print Network [OSTI]

    Jiri J. Mares; V. Spicka; J. Kristofik; P. Hubik

    2003-11-11T23:59:59.000Z

    In the present contribution we analyse a simple thought process at T = 0 in an idealized heat engine having partitions made of a material with an upper frequency cut-off and bathed in zero-point (ZP) electromagnetic radiation. As a result, a possible mechanism of filling real cavities with ZP radiation based on Doppler's effect has been suggested and corresponding entropy changes are discussed.

  4. On the origin of Gamma Ray Burst radiation

    E-Print Network [OSTI]

    G. Ghisellini

    2001-01-17T23:59:59.000Z

    In the standard internal shock model, the observed X and gamma-ray radiation is assumed to be produced by synchrotron emission. I will show that there are serious problems with this interpretation, calling for other radiation mechanisms, such as quasi-thermal Comptonization and/or Compton drag processes, or both. These new ideas can have important consequences on the more general internal shock scenario, and can be tested by future observations.

  5. Measurement and analysis of near ultraviolet solar radiation

    SciTech Connect (OSTI)

    Mehos, M.S.; Pacheco, K.A.; Link, H.F.

    1991-12-01T23:59:59.000Z

    The photocatalytic detoxification of organic contaminants is currently being investigated by a number of laboratories, universities, and institutions throughout the world. The photocatalytic oxidation process requires that contaminants come in contact with a photocatalyst such as titanium dioxide, under illumination of ultraviolet (UV) radiation in order for the decomposition reaction to take place. Researches from the National Renewable Energy Laboratory (NREL) and Sandia National Laboratories are currently investigating the use of solar energy as a means of driving this photocatalytic process. Measurements of direct-normal and global-horizontal ultraviolet (280--385 nm) and full-spectrum (280--4000 nm) solar radiation taken in Golden, Colorado over a one-year period are analyzed, and comparisons are made with data generated from a clear-sky solar radiation model (BRITE) currently in use for predicting the performance of solar detoxification processes. Analysis of the data indicates a ratio of global-horizontal ultraviolet to full-spectrum radiation of 4%--6% that is weakly dependent on air mass. Conversely, data for direct-normal ultraviolet radiation indicate a much large dependence on air mass, with a ratio of approximately 5% at low air mass to 1% at higher at masses. Results show excellent agreement between the measured data and clear-sky predictions for both the ultraviolet and the full-spectrum global-horizontal radiation. For the direct-normal components, however, the tendency is for the clear-sky model to underpredict the measured that. Averaged monthly ultraviolet radiation available for the detoxification process indicates that the global-horizontal component of the radiation exceeds the direct-normal component throughout the year. 9 refs., 7 figs.

  6. Zitterbewegung and its significance for the Hawking radiation

    E-Print Network [OSTI]

    Zhi-Yong Wang; Cai-Dong Xiong; Qi Qiu

    2011-08-02T23:59:59.000Z

    The Hawking radiation can be viewed from very different perspectives, not all of which can be proved to be rigorously equivalent to one another. On the other hand, an old interest in the zitterbewegung (ZB) of the Dirac electron has recently been rekindled by the investigations on spintronics and graphene, etc. In this letter, we show that, if particles emitted by black holes are electrons or positrons, one can also regard the Hawking radiation as a ZB process.

  7. Influences of atmospheric conditions and air mass on the ratio of ultraviolet to total solar radiation

    SciTech Connect (OSTI)

    Riordan, C.J.; Hulstrom, R.L.; Myers, D.R.

    1990-08-01T23:59:59.000Z

    The technology to detoxify hazardous wastes using ultraviolet (UV) solar radiation is being investigated by the DOE/SERI Solar Thermal Technology Program. One of the elements of the technology evaluation is the assessment and characterization of UV solar radiation resources available for detoxification processes. This report describes the major atmospheric variables that determine the amount of UV solar radiation at the earth's surface, and how the ratio of UV-to-total solar radiation varies with atmospheric conditions. These ratios are calculated from broadband and spectral solar radiation measurements acquired at SERI, and obtained from the literature on modeled and measured UV solar radiation. The following sections discuss the atmospheric effects on UV solar radiation and provide UV-to-total solar radiation ratios from published studies, as well as measured values from SERI's data. A summary and conclusions are also given.

  8. Proceedings: Radiation Protection Technology Conference: Providence, RI, November 2001

    SciTech Connect (OSTI)

    None

    2002-02-01T23:59:59.000Z

    Health physics (HP) professionals within the nuclear industry are continually upgrading their respective programs with new methods and technologies. The move to shorter outages combined with a diminishing group of contract HP technicians and demanding emergent work makes such changes even more important. The EPRI Radiation Protection Technology Conference focused on a number of key health physics issues and developments.

  9. Proceedings: 2002 Radiation Protection Technology Conference: Baltimore, MD, October 2002

    SciTech Connect (OSTI)

    None

    2003-04-01T23:59:59.000Z

    In response to program pressures resulting from shorter outages, combined with a diminishing group of contract health physics (HP) technicians, HP professionals must continuously upgrade their programs. Demanding emergent work also requires HP technicians in the nuclear industry to use new methods and technologies. The EPRI Radiation Protection Technology Conference was directed at highlighting a number of key health physics issues and developments.

  10. DOE Radiation Records Contacts List

    Broader source: Energy.gov [DOE]

    DOE radiation records contact list for individuals to obtain records of occupational exposure directly from a DOE site.

  11. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, L.H.

    1994-08-16T23:59:59.000Z

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  12. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, Louis H. (Knoxville, TN)

    1995-01-01T23:59:59.000Z

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  13. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, L.H.

    1995-10-17T23:59:59.000Z

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  14. Gamma radiation field intensity meter

    DOE Patents [OSTI]

    Thacker, Louis H. (Knoxville, TN)

    1994-01-01T23:59:59.000Z

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  15. Process Modeling for Process Improvement A Process Conformance Approach

    E-Print Network [OSTI]

    Process Modeling for Process Improvement - A Process Conformance Approach Sigurd Thunem September processes. In order to improve these processes, knowledge about them is necessary. To support process improve- ment the organization should collect process data, transform process data into knowledge

  16. Weak Boson Emission in Hadron Collider Processes

    E-Print Network [OSTI]

    U. Baur

    2006-11-17T23:59:59.000Z

    The O(alpha) virtual weak radiative corrections to many hadron collider processes are known to become large and negative at high energies, due to the appearance of Sudakov-like logarithms. At the same order in perturbation theory, weak boson emission diagrams contribute. Since the W and Z bosons are massive, the O(alpha) virtual weak radiative corrections and the contributions from weak boson emission are separately finite. Thus, unlike in QED or QCD calculations, there is no technical reason for including gauge boson emission diagrams in calculations of electroweak radiative corrections. In most calculations of the O(alpha) electroweak radiative corrections, weak boson emission diagrams are therefore not taken into account. Another reason for not including these diagrams is that they lead to final states which differ from that of the original process. However, in experiment, one usually considers partially inclusive final states. Weak boson emission diagrams thus should be included in calculations of electroweak radiative corrections. In this paper, I examine the role of weak boson emission in those processes at the Fermilab Tevatron and the CERN LHC for which the one-loop electroweak radiative corrections are known to become large at high energies (inclusive jet, isolated photon, Z+1 jet, Drell-Yan, di-boson, t-bar t, and single top production). In general, I find that the cross section for weak boson emission is substantial at high energies and that weak boson emission and the O(alpha) virtual weak radiative corrections partially cancel.

  17. Awesome Eyeballs? ? an amazing group of students visit Y...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a group of four 10-12 year old students who are experimenting with a process to produce fish food that will remove mercury from fish. The rest of the report follows: ... Very few...

  18. Assessing group interaction with social language network analysis.

    SciTech Connect (OSTI)

    Pennebaker, James (UT Austin); Scholand, Andrew Joseph; Tausczik, Yla R. (UT Austin)

    2010-04-01T23:59:59.000Z

    In this paper we discuss a new methodology, social language network analysis (SLNA), that combines tools from social language processing and network analysis to assess socially situated working relationships within a group. Specifically, SLNA aims to identify and characterize the nature of working relationships by processing artifacts generated with computer-mediated communication systems, such as instant message texts or emails. Because social language processing is able to identify psychological, social, and emotional processes that individuals are not able to fully mask, social language network analysis can clarify and highlight complex interdependencies between group members, even when these relationships are latent or unrecognized.

  19. NCSRNCSR ""DEMOKRITOSDEMOKRITOS"" INSTITUTE OF NUCLEAR TECHNOLOGY & RADIATION PROTECTIONINSTITUTE OF NUCLEAR TECHNOLOGY & RADIATION PROTECTION

    E-Print Network [OSTI]

    PROTECTIONINSTITUTE OF NUCLEAR TECHNOLOGY & RADIATION PROTECTION ENVIRONMENTAL RESEARCH LABORATORYENVIRONMENTAL NCSRNCSR ""DEMOKRITOSDEMOKRITOS"" INSTITUTE OF NUCLEAR TECHNOLOGY & RADIATION

  20. COLUMBIA UNIVERSITY Radiation Safety Program

    E-Print Network [OSTI]

    Jia, Songtao

    COLUMBIA UNIVERSITY Radiation Safety Program Medical Center - T: 212-305-0303 F: 212-305-0318 rso-clinical@columbia by more than 50 percent. #12;COLUMBIA UNIVERSITY Radiation Safety Program Medical Center - T: 212 ________________________________________________________ ________________________________________________________ #12;COLUMBIA UNIVERSITY Radiation Safety Program Medical Center - T: 212-305-0303 F: 212-305-0318 rso-clinical@columbia

  1. 6, 52315250, 2006 Radiative properties

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    the short- wave (SW) and longwave (LW) cloud radiative effects (CRE), but the impact is small: 0.02 W m-2 tests are conducted to evaluate the impact that5 such an over-layer would have on the radiative effects, terrestrial) radiation. The SW "albedo" effect brings about cooling and the LW "greenhouse" effect warming

  2. Energy Management Working Group: Accelerating Energy Management

    E-Print Network [OSTI]

    Scheihing, P.

    2014-01-01T23:59:59.000Z

    for Standardization (ISO) published the ISO 50001 energy management standard in 2011. ISO 50001 provides industrial companies with guidelines for integrating energy efficiency into their management practices including fine-tuning production processes... efficiency. GSEPs Energy Management Working Group (EMWG) advocates the increased adoption of EnMS or ISO 50001 in industry and commercial buildings. It goal is to accelerate the adoption and use of energy management systems in industrial facilities...

  3. Military Munitions Waste Working Group report

    SciTech Connect (OSTI)

    Not Available

    1993-11-30T23:59:59.000Z

    This report presents the findings of the Military Munitions Waste Working Group in its effort to achieve the goals directed under the Federal Advisory Committee to Develop On-Site Innovative Technologies (DOIT Committee) for environmental restoration and waste management. The Military Munitions Waste Working Group identified the following seven areas of concern associated with the ordnance (energetics) waste stream: unexploded ordnance; stockpiled; disposed -- at known locations, i.e., disposal pits; discharged -- impact areas, unknown disposal sites; contaminated media; chemical sureties/weapons; biological weapons; munitions production; depleted uranium; and rocket motor and fuel disposal (open burn/open detonation). Because of time constraints, the Military Munitions Waste Working Group has focused on unexploded ordnance and contaminated media with the understanding that remaining waste streams will be considered as time permits. Contents of this report are as follows: executive summary; introduction; Military Munitions Waste Working Group charter; description of priority waste stream problems; shortcomings of existing approaches, processes and technologies; innovative approaches, processes and technologies, work force planning, training, and education issues relative to technology development and cleanup; criteria used to identify and screen potential demonstration projects; list of potential candidate demonstration projects for the DOIT committee decision/recommendation and appendices.

  4. Office of radiation and indoor air: Program description

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    The goal of the Environmental Protection Agency`s (EPA) Office of Radiation and Indoor Air is to protect the public and the environment from exposures to radiation and indoor air pollutants. The Office develops protection criteria, standards, and policies and works with other programs within EPA and other agencies to control radiation and indoor air pollution exposures; provides technical assistance to states through EPA`s regional offices and other agencies having radiation and indoor air protection programs; directs an environmental radiation monitoring program; responds to radiological emergencies; and evaluates and assesses the overall risk and impact of radiation and indoor air pollution. The Office is EPA`s lead office for intra- and interagency activities coordinated through the Committee for Indoor Air Quality. It coordinates with and assists the Office of Enforcement in enforcement activities where EPA has jurisdiction. The Office disseminates information and works with state and local governments, industry and professional groups, and citizens to promote actions to reduce exposures to harmful levels of radiation and indoor air pollutants.

  5. BREAKOUT GROUP 3: HIGH TEMP (SOFC) SYSTEM AND BOP PARTICIPANTS

    E-Print Network [OSTI]

    BREAKOUT GROUP 3: HIGH TEMP (SOFC) SYSTEM AND BOP PARTICIPANTS NAME ORGANIZATION Dan Birmingham (SOFC) AND BOP KEY TECHNICAL BARRIERS SEALS DURABILITY/RELIABILITY/DEGRADATION CONTAMINANTS Seals processes FC Solicitation Workshop 2 March 2010 #12;BREAKOUT GROUP 3: HIGH TEMP (SOFC) AND BOP CRITICAL R

  6. Aquatic Ecology Aquatic ecology group studies ecological interactions

    E-Print Network [OSTI]

    Aquatic Ecology Aquatic ecology group studies ecological interactions between biota and their environment in freshwater and marine ecosystems. The group focuses particularly on the ecological interactions and their underlying ecological processes necessary to sustain ecosystem structure and function in their natural state

  7. Classical Helium Atom with Radiation Reaction

    E-Print Network [OSTI]

    G. Camelio; A. Carati; L. Galgani

    2011-11-24T23:59:59.000Z

    We study a classical model of Helium atom in which, in addition to the Coulomb forces, the radiation reaction forces are taken into account. This modification brings in the model a new qualitative feature of a global character. Indeed, as pointed out by Dirac, in any model of classical electrodynamics of point particles involving radiation reaction one has to eliminate, from the a priori conceivable solutions of the problem, those corresponding to the emission of an infinite amount of energy. We show that the Dirac prescription solves a problem of inconsistency plaguing all available models which neglect radiation reaction, namely, the fact that in all such models most initial data lead to a spontaneous breakdown of the atom. A further modification is that the system thus acquires a peculiar form of dissipation. In particular, this makes attractive an invariant manifold of special physical interest, the zero--dipole manifold, that corresponds to motions in which no energy is radiated away (in the dipole approximation). We finally study numerically the invariant measure naturally induced by the time--evolution on such a manifold, and this corresponds to studying the formation process of the atom. Indications are given that such a measure may be singular with respect to that of Lebesgue.

  8. Transition radiation in turbulent astrophysical medium. Application to solar radio bursts

    E-Print Network [OSTI]

    Gregory D. Fleishman; Dale E. Gary; Gelu M. Nita

    2007-10-01T23:59:59.000Z

    Modern observations and models of various astrophysical objects suggest that many of their physical parameters fluctuate substantially at different spatial scales. The rich variety of the emission processes, including Transition Radiation but not limited to it, arising in such turbulent media constitutes the scope of Stochastic Theory of Radiation. We review general approaches applied in the stochastic theory of radiation and specific methods used to calculate the transition radiation produced by fast particles in the magnetized randomly inhomogeneous plasma. The importance of the theory of transition radiation for astrophysics is illustrated by one example of its detailed application to a solar radio burst, including specially designed algorithms of the spectral forward fitting.

  9. Data Management Group Annual Report

    E-Print Network [OSTI]

    Toronto, University of

    Data Management Group Annual Report 2001 prepared by: Data Management Group Joint Program..............................................................................2 Text Based Data Retrieval System `drs' ..........................................................2 Internet Browser Data Retrieval System (iDRS)..............................................3 Complex Data

  10. Data Management Group Annual Report

    E-Print Network [OSTI]

    Toronto, University of

    iv Data Management Group Annual Report 2003 City of Hamilton City of Toronto GO Transit Regional of York Toronto Transit Commission The Data Management Group is a research program located ........................................................................................................ 3 Text-based Data Retrieval System `drs

  11. Weighter Long Term by Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weighted Running Jobs by Group Weighted Running Jobs by Group Daily Graph: Weekly Graph: Monthly Graph: Yearly Graph: 2 Year Graph: Last edited: 2011-04-05 14:00:02...

  12. INTERNATIONAL SPACE EXPLORATION COORDINATION GROUP

    E-Print Network [OSTI]

    space exploration infrastructure standards facilitating interoperability through an international with relevant existing international working groups/ organisations. · Preparation and Organization of a WS1 INTERNATIONAL SPACE EXPLORATION COORDINATION GROUP WORKPLAN Update following 3rd ISECG Meeting

  13. Thermal Processes

    Broader source: Energy.gov [DOE]

    Some thermal processes use the energy in various resources, such as natural gas, coal, or biomass, to release hydrogen, which is part of their molecular structure. In other processes, heat, in...

  14. Photolytic Processes

    Broader source: Energy.gov [DOE]

    Photolytic processes use the energy in sunlight to separate water into hydrogen and oxygen. These processes are in the very early stages of research but offer long-term potential for sustainable...

  15. ASD Groups | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ASD Groups Accelerator Operations and Physics Applies integrated expertise in accelerator physics, operations techniques, safety systems, software development, and numerical...

  16. Terahertz radiation mixer

    DOE Patents [OSTI]

    Wanke, Michael C. (Albuquerque, NM); Allen, S. James (Santa Barbara, CA); Lee, Mark (Albuquerque, NM)

    2008-05-20T23:59:59.000Z

    A terahertz radiation mixer comprises a heterodyned field-effect transistor (FET) having a high electron mobility heterostructure that provides a gatable two-dimensional electron gas in the channel region of the FET. The mixer can operate in either a broadband pinch-off mode or a narrowband resonant plasmon mode by changing a grating gate bias of the FET. The mixer can beat an RF signal frequency against a local oscillator frequency to generate an intermediate frequency difference signal in the microwave region. The mixer can have a low local oscillator power requirement and a large intermediate frequency bandwidth. The terahertz radiation mixer is particularly useful for terahertz applications requiring high resolution.

  17. National Ambient Radiation Database

    SciTech Connect (OSTI)

    Dziuban, J.; Sears, R.

    2003-02-25T23:59:59.000Z

    The U.S. Environmental Protection Agency (EPA) recently developed a searchable database and website for the Environmental Radiation Ambient Monitoring System (ERAMS) data. This site contains nationwide radiation monitoring data for air particulates, precipitation, drinking water, surface water and pasteurized milk. This site provides location-specific as well as national information on environmental radioactivity across several media. It provides high quality data for assessing public exposure and environmental impacts resulting from nuclear emergencies and provides baseline data during routine conditions. The database and website are accessible at www.epa.gov/enviro/. This site contains (1) a query for the general public which is easy to use--limits the amount of information provided, but includes the ability to graph the data with risk benchmarks and (2) a query for a more technical user which allows access to all of the data in the database, (3) background information on ER AMS.

  18. Time encoded radiation imaging

    DOE Patents [OSTI]

    Marleau, Peter; Brubaker, Erik; Kiff, Scott

    2014-10-21T23:59:59.000Z

    The various technologies presented herein relate to detecting nuclear material at a large stand-off distance. An imaging system is presented which can detect nuclear material by utilizing time encoded imaging relating to maximum and minimum radiation particle counts rates. The imaging system is integrated with a data acquisition system that can utilize variations in photon pulse shape to discriminate between neutron and gamma-ray interactions. Modulation in the detected neutron count rates as a function of the angular orientation of the detector due to attenuation of neighboring detectors is utilized to reconstruct the neutron source distribution over 360 degrees around the imaging system. Neutrons (e.g., fast neutrons) and/or gamma-rays are incident upon scintillation material in the imager, the photons generated by the scintillation material are converted to electrical energy from which the respective neutrons/gamma rays can be determined and, accordingly, a direction to, and the location of, a radiation source identified.

  19. Radiation shielding composition

    DOE Patents [OSTI]

    Quapp, William J. (Idaho Falls, ID); Lessing, Paul A. (Idaho Falls, ID)

    2000-12-26T23:59:59.000Z

    A composition for use as a radiation shield. The shield is a concrete product containing a stable uranium aggregate for attenuating gamma rays and a neutron absorbing component, the uranium aggregate and neutron absorbing component being present in the concrete product in sufficient amounts to provide a concrete having a density between about 4 and about 15 grams/cm.sup.3 and which will at a predetermined thickness, attenuate gamma rays and absorb neutrons from a radioactive material of projected gamma ray and neutron emissions over a determined time period. The composition is preferably in the form of a container for storing radioactive materials that emit gamma rays and neutrons. The concrete container preferably comprises a metal liner and/or a metal outer shell. The resulting radiation shielding container has the potential of being structurally sound, stable over a long period of time, and, if desired, readily mobile.

  20. Semiconductor radiation detector

    DOE Patents [OSTI]

    Patt, Bradley E. (Sherman Oaks, CA); Iwanczyk, Jan S. (Los Angeles, CA); Tull, Carolyn R. (Orinda, CA); Vilkelis, Gintas (Westlake Village, CA)

    2002-01-01T23:59:59.000Z

    A semiconductor radiation detector is provided to detect x-ray and light photons. The entrance electrode is segmented by using variable doping concentrations. Further, the entrance electrode is physically segmented by inserting n+ regions between p+ regions. The p+ regions and the n+ regions are individually biased. The detector elements can be used in an array, and the p+ regions and the n+ regions can be biased by applying potential at a single point. The back side of the semiconductor radiation detector has an n+ anode for collecting created charges and a number of p+ cathodes. Biased n+ inserts can be placed between the p+ cathodes, and an internal resistor divider can be used to bias the n+ inserts as well as the p+ cathodes. A polysilicon spiral guard can be implemented surrounding the active area of the entrance electrode or surrounding an array of entrance electrodes.

  1. General Relativistic Radiative Transfer

    E-Print Network [OSTI]

    S. Knop; P. H. Hauschildt; E. Baron

    2006-11-30T23:59:59.000Z

    We present a general method to calculate radiative transfer including scattering in the continuum as well as in lines in spherically symmetric systems that are influenced by the effects of general relativity (GR). We utilize a comoving wavelength ansatz that allows to resolve spectral lines throughout the atmosphere. The used numerical solution is an operator splitting (OS) technique that uses a characteristic formal solution. The bending of photon paths and the wavelength shifts due to the effects of GR are fully taken into account, as is the treatment of image generation in a curved spacetime. We describe the algorithm we use and demonstrate the effects of GR on the radiative transport of a two level atom line in a neutron star like atmosphere for various combinations of continuous and line scattering coefficients. In addition, we present grey continuum models and discuss the effects of different scattering albedos on the emergent spectra and the determination of effective temperatures and radii of neutron star atmospheres.

  2. Radiation shielding composition

    DOE Patents [OSTI]

    Quapp, William J. (Idaho Falls, ID); Lessing, Paul A. (Idaho Falls, ID)

    1998-01-01T23:59:59.000Z

    A composition for use as a radiation shield. The shield is a concrete product containing a stable uranium aggregate for attenuating gamma rays and a neutron absorbing component, the uranium aggregate and neutron absorbing component being present in the concrete product in sufficient amounts to provide a concrete having a density between about 4 and about 15 grams/cm.sup.3 and which will at a predetermined thickness, attenuate gamma rays and absorb neutrons from a radioactive material of projected gamma ray and neutron emissions over a determined time period. The composition is preferably in the form of a container for storing radioactive materials that emit gamma rays and neutrons. The concrete container preferably comprises a metal liner and/or a metal outer shell. The resulting radiation shielding container has the potential of being structurally sound, stable over a long period of time, and, if desired, readily mobile.

  3. Radiation shielding composition

    DOE Patents [OSTI]

    Quapp, W.J.; Lessing, P.A.

    1998-07-28T23:59:59.000Z

    A composition is disclosed for use as a radiation shield. The shield is a concrete product containing a stable uranium aggregate for attenuating gamma rays and a neutron absorbing component, the uranium aggregate and neutron absorbing component being present in the concrete product in sufficient amounts to provide a concrete having a density between about 4 and about 15 grams/cm{sup 3} and which will at a predetermined thickness, attenuate gamma rays and absorb neutrons from a radioactive material of projected gamma ray and neutron emissions over a determined time period. The composition is preferably in the form of a container for storing radioactive materials that emit gamma rays and neutrons. The concrete container preferably comprises a metal liner and/or a metal outer shell. The resulting radiation shielding container has the potential of being structurally sound, stable over a long period of time, and, if desired, readily mobile. 5 figs.

  4. Multilayer radiation shield

    DOE Patents [OSTI]

    Urbahn, John Arthur (Saratoga Springs, NY); Laskaris, Evangelos Trifon (Niskayuna, NY)

    2009-06-16T23:59:59.000Z

    A power generation system including: a generator including a rotor including a superconductive rotor coil coupled to a rotatable shaft; a first prime mover drivingly coupled to the rotatable shaft; and a thermal radiation shield, partially surrounding the rotor coil, including at least a first sheet and a second sheet spaced apart from the first sheet by centripetal force produced by the rotatable shaft. A thermal radiation shield for a generator including a rotor including a super-conductive rotor coil including: a first sheet having at least one surface formed from a low emissivity material; and at least one additional sheet having at least one surface formed from a low emissivity material spaced apart from the first sheet by centripetal force produced by the rotatable shaft, wherein each successive sheet is an incrementally greater circumferential arc length and wherein the centripetal force shapes the sheets into a substantially catenary shape.

  5. Handheld CZT radiation detector

    DOE Patents [OSTI]

    Murray, William S.; Butterfield, Kenneth B.; Baird, William

    2004-08-24T23:59:59.000Z

    A handheld CZT radiation detector having a CZT gamma-ray sensor, a multichannel analyzer, a fuzzy-logic component, and a display component is disclosed. The CZT gamma-ray sensor may be a coplanar grid CZT gamma-ray sensor, which provides high-quality gamma-ray analysis at a wide range of operating temperatures. The multichannel analyzer categorizes pulses produce by the CZT gamma-ray sensor into channels (discrete energy levels), resulting in pulse height data. The fuzzy-logic component analyzes the pulse height data and produces a ranked listing of radioisotopes. The fuzzy-logic component is flexible and well-suited to in-field analysis of radioisotopes. The display component may be a personal data assistant, which provides a user-friendly method of interacting with the detector. In addition, the radiation detector may be equipped with a neutron sensor to provide an enhanced mechanism of sensing radioactive materials.

  6. DOE 2012 Occupational Radiation Exposure October 2013

    SciTech Connect (OSTI)

    none,

    2012-02-02T23:59:59.000Z

    The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2012 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. Over the past 5-year period, the occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site. As an indicator of the overall amount of radiation dose received during the conduct of operations at DOE, the report includes information on collective total effective dose (TED). The TED is comprised of the effective dose (ED) from external sources, which includes neutron and photon radiation, and the internal committed effective dose (CED), which results from the intake of radioactive material into the body. The collective ED from photon exposure decreased by 23% between 2011 and 2012, while the neutron dose increased by 5%. The internal dose components of the collective TED decreased by 7%. Over the past 5-year period, 99.99% of the individuals receiving measurable TED have received doses below the 2 roentgen equivalent in man (rems) (20 millisievert [mSv]) TED administrative control level (ACL), which is well below the DOE regulatory limit of 5 rems (50 mSv) TED annually. The occupational radiation exposure records show that in 2012, DOE facilities continued to comply with DOE dose limits and ACLs and worked to minimize exposure to individuals. The DOE collective TED decreased 17.1% from 2011 to 2012. The collective TED decreased at three of the five sites with the largest collective TED. u Idaho Site Collective dose reductions were achieved as a result of continuing improvements at the Advanced Mixed Waste Treatment Project (AMWTP) through the planning of drum movements that reduced the number of times a container is handled; placement of waste containers that created highradiation areas in a centralized location; and increased worker awareness of high-dose rate areas. In addition, Idaho had the largest decrease in the total number of workers with measurable TED (1,143 fewer workers). u Hanford Site (Hanford) An overall reduction of decontamination and decommissioning (D&D) activities at the Plutonium Finishing Plant (PFP) and Transuranic (TRU) retrieval activities resulted in collective dose reductions. u Savannah River Site (SRS) Reductions were achieved through ALARA initiatives employed site wide. The Solid Waste Management Facility used extended specialty tools, cameras and lead shield walls to facilitate removal of drums. These tools and techniques reduce exposure time through improved efficiency, increase distance from the source of radiation by remote monitoring, shield the workers to lower the dose rate, and reduce the potential for contamination and release of material through repacking of waste. Overall, from 2011 to 2012, there was a 19% decrease in the number of workers with measurable dose. Furthermore, due to a slight decrease in both the DOE workforce (7%) and monitored workers (10%), the ratio of workers with measurable doses to monitored workers decreased to 13%. Another primary indicator of the level of radiation exposure covered in this report is the average measurable dose, which normalizes the collective dose over the population of workers who actually received a measurable dose. The average measurable TED in

  7. Data Management Group Annual Report

    E-Print Network [OSTI]

    Toronto, University of

    Data Management Group Annual Report 2000 prepared by: Data Management Group Joint Program the operation of the EMME/2 simu- lation package on the Data Management Group's computer system. During the year computing resource at the DMG. A major challenge in 2000 was to maintain this service while operating out

  8. Data Management Group Annual Report

    E-Print Network [OSTI]

    Toronto, University of

    Data Management Group Annual Report 2004 City of Hamilton City of Toronto GO Transit Regional of York Toronto Transit Commission The Data Management Group is a research program located of the funding partners: Ministry of Transportation, Ontario #12;SUMMARY The Data Management Group (DMG

  9. Data Management Group Annual Report

    E-Print Network [OSTI]

    Toronto, University of

    Data Management Group Annual Report 1997 #12;Data Management Group Annual Report 1997 A co-operative project that is jointly funded by members of the Toronto Area Transportation Planning Data Collection: (416) 978-3941 #12;Data Management Group 1997 Annual Report Table of Contents 1 INTRODUCTION

  10. Water Resources Working Group Report

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Water Resources Working Group Report This report provided content for the Wisconsin Initiative in February 2011. #12;Water Resources Working Group Wisconsin Initiative on Climate Change Impacts October 2010 #12;Water Resources Working Group Members WICCI Tim Asplund (Co-Chair) - Wisconsin Department

  11. Fermilab Steering Group Report

    SciTech Connect (OSTI)

    Beier, Eugene; /Pennsylvania U.; Butler, Joel; /Fermilab; Dawson, Sally; /Brookhaven; Edwards, Helen; /Fermilab; Himel, Thomas; /SLAC; Holmes, Stephen; /Fermilab; Kim, Young-Kee; /Fermilab /Chicago U.; Lankford, Andrew; /UC, Irvine; McGinnis, David; /Fermilab; Nagaitsev, Sergei; /Fermilab; Raubenheimer, Tor; /SLAC /Fermilab

    2007-01-01T23:59:59.000Z

    The Fermilab Steering Group has developed a plan to keep U.S. accelerator-based particle physics on the pathway to discovery, both at the Terascale with the LHC and the ILC and in the domain of neutrinos and precision physics with a high-intensity accelerator. The plan puts discovering Terascale physics with the LHC and the ILC as Fermilab's highest priority. While supporting ILC development, the plan creates opportunities for exciting science at the intensity frontier. If the ILC remains near the Global Design Effort's technically driven timeline, Fermilab would continue neutrino science with the NOVA experiment, using the NuMI (Neutrinos at the Main Injector) proton plan, scheduled to begin operating in 2011. If ILC construction must wait somewhat longer, Fermilab's plan proposes SNuMI, an upgrade of NuMI to create a more powerful neutrino beam. If the ILC start is postponed significantly, a central feature of the proposed Fermilab plan calls for building an intense proton facility, Project X, consisting of a linear accelerator with the currently planned characteristics of the ILC combined with Fermilab's existing Recycler Ring and the Main Injector accelerator. The major component of Project X is the linac. Cryomodules, radio-frequency distribution, cryogenics and instrumentation for the linac are the same as or similar to those used in the ILC at a scale of about one percent of a full ILC linac. Project X's intense proton beams would open a path to discovery in neutrino science and in precision physics with charged leptons and quarks. World-leading experiments would allow physicists to address key questions of the Quantum Universe: How did the universe come to be? Are there undiscovered principles of nature: new symmetries, new physical laws? Do all the particles and forces become one? What happened to the antimatter? Building Project X's ILC-like linac would offer substantial support for ILC development by accelerating the industrialization of ILC components in the U.S. and creating an engineering opportunity for ILC cost reductions. It offers an early and tangible application for ILC R&D in superconducting technology, attracting participation from accelerator scientists worldwide and driving forward the technology for still higher-energy accelerators of the future, such as a muon collider. To prepare for a future decision, the Fermilab Steering Group recommends that the laboratory seek R&D support for Project X, in order to produce an overall design of Project X and to spur the R&D and industrialization of ILC linac components needed for Project X. Advice from the High Energy Physics Advisory Panel will guide any future decision to upgrade the Fermilab accelerator complex, taking into account developments affecting the ILC schedule and the continuing evaluation of scientific priorities for U.S. particle physics. Fermilab should also work toward increased resources for longer-term future accelerators such as a muon collider, aiming at higher energies than the ILC would provide.

  12. Ann. For. Sci. 64 (2007) 899909; DOI: 10.1051/forest:2007072 Multiscale computation of solar radiation for predictive

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . Solar radiation is a fundamental component of ecological processes, but is poorly used at this scale due to the lack of available data. Here we present a GIS program allowing to calculate solar radiation as well and cloudiness data. Solar radiation measured from 88 meteorological stations used for validation indicated a R

  13. Training For Radiation Emergencies, First Responder Operations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Training For Radiation Emergencies, First Responder Operations - Instructors Guide Training For Radiation Emergencies, First Responder Operations - Instructors Guide COURSE...

  14. POLARIZATION OF THE COSMIC BACKGROUND RADIATION

    E-Print Network [OSTI]

    Lubin, Philip Lubin

    2010-01-01T23:59:59.000Z

    a 45 angle. Radiation whose electric field (polarization)radiation field, it can be uniquely characterized by its electric

  15. Laser diffraction process and apparatus for width measurement of elongated objects

    DOE Patents [OSTI]

    Naqwi, Amir A.; Fandrey, Christopher W.

    2006-07-04T23:59:59.000Z

    Size distribution of elongated objects is measured by forward scattering radiation from the objects at a range of scatter angles. The scattered radiation is refracted to locations on a scatter detector based on the scatter angles and independent of the location of the objects along the radiation axis. The intensity of radiation is sensed at each position on the scatter detector, and signals representative of the intensities at the positions are processed and compared to masks to identify a size distribution. The scatter detector may include individual radiation detectors arranged to receive refracted radiation representing respective ranges of scatter angles to thereby compensate for lower radiation intensities scattered from smaller objects.

  16. Radiation damping and decoherence in quantum electrodynamics

    E-Print Network [OSTI]

    Heinz-Peter Breuer; Francesco Petruccione

    2002-10-02T23:59:59.000Z

    The processes of radiation damping and decoherence in Quantum Electrodynamics are studied from an open system's point of view. Employing functional techniques of field theory, the degrees of freedom of the radiation field are eliminated to obtain the influence phase functional which describes the reduced dynamics of the matter variables. The general theory is applied to the dynamics of a single electron in the radiation field. From a study of the wave packet dynamics a quantitative measure for the degree of decoherence, the decoherence function, is deduced. The latter is shown to describe the emergence of decoherence through the emission of bremsstrahlung caused by the relative motion of interfering wave packets. It is argued that this mechanism is the most fundamental process in Quantum Electrodynamics leading to the destruction of coherence, since it dominates for short times and because it is at work even in the electromagnetic field vacuum at zero temperature. It turns out that decoherence trough bremsstrahlung is very small for single electrons but extremely large for superpositions of many-particle states.

  17. Expected radiation effects in plutonium immobilization ceramic

    SciTech Connect (OSTI)

    Van Konynenburg, R.A., LLNL

    1997-09-01T23:59:59.000Z

    The current formulation of the candidate ceramic for plutonium immobilization consists primarily of pyrochlore, with smaller amounts of hafnium-zirconolite, rutile, and brannerite or perovskite. At a plutonium loading of 10.5 weight %, this ceramic would be made metamict (amorphous) by radiation damage resulting from alpha decay in a time much less than 10,000 years, the actual time depending on the repository temperature as a function of time. Based on previous experimental radiation damage work by others, it seems clear that this process would also result in a bulk volume increase (swelling) of about 6% for ceramic that was mechanically unconfined. For the candidate ceramic, which is made by cold pressing and sintering and has porosity amounting to somewhat more than this amount, it seems likely that this swelling would be accommodated by filling in the porosity, if the material were tightly confined mechanically by the waste package. Some ceramics have been observed to undergo microcracking as a result of radiation-induced anisotropic or differential swelling. It is unlikely that the candidate ceramic will microcrack extensively, for three reasons: (1) its phase composition is dominated by a single matrix mineral phase, pyrochlore, which has a cubic crystal structure and is thus not subject to anisotropic swelling; (2) the proportion of minor phases is small, minimizing potential cracking due to differential swelling; and (3) there is some flexibility in sintering process parameters that will allow limitation of the grain size, which can further limit stresses resulting from either cause.

  18. Global aspects of radiation memory

    E-Print Network [OSTI]

    J. Winicour

    2014-10-11T23:59:59.000Z

    Gravitational radiation has a memory effect represented by a net change in the relative positions of test particles. Both the linear and nonlinear sources proposed for this radiation memory are of the "electric" type, or E mode, as characterized by the even parity of the polarization pattern. Although "magnetic" type, or B mode, radiation memory is mathematically possible, no physically realistic source has been identified. There is an electromagnetic counterpart to radiation memory in which the velocity of charged particles obtain a net "kick". Again, the physically realistic sources of electromagnetic radiation memory that have been identified are of the electric type. In this paper, a global null cone description of the electromagnetic field is applied to establish the non-existence of B mode radiation memory and the non-existence of E mode radiation memory due to a bound charge distribution.

  19. Method for microbeam radiation therapy

    DOE Patents [OSTI]

    Slatkin, D.N.; Dilmanian, F.A.; Spanne, P.O.

    1994-08-16T23:59:59.000Z

    A method is disclosed of performing radiation therapy on a patient, involving exposing a target, usually a tumor, to a therapeutic dose of high energy electromagnetic radiation, preferably X-ray radiation. The dose is in the form of at least two non-overlapping microbeams of radiation, each microbeam having a width of less than about 1 millimeter. Target tissue exposed to the microbeams receives a radiation dose during the exposure that exceeds the maximum dose that such tissue can survive. Non-target tissue between the microbeams receives a dose of radiation below the threshold amount of radiation that can be survived by the tissue, and thereby permits the non-target tissue to regenerate. The microbeams may be directed at the target from one direction, or from more than one direction in which case the microbeams overlap within the target tissue enhancing the lethal effect of the irradiation while sparing the surrounding healthy tissue. No Drawings

  20. Method and apparatus for measuring spatial uniformity of radiation

    DOE Patents [OSTI]

    Field, Halden (Boulder, CO)

    2002-01-01T23:59:59.000Z

    A method and apparatus for measuring the spatial uniformity of the intensity of a radiation beam from a radiation source based on a single sampling time and/or a single pulse of radiation. The measuring apparatus includes a plurality of radiation detectors positioned on planar mounting plate to form a radiation receiving area that has a shape and size approximating the size and shape of the cross section of the radiation beam. The detectors concurrently receive portions of the radiation beam and transmit electrical signals representative of the intensity of impinging radiation to a signal processor circuit connected to each of the detectors and adapted to concurrently receive the electrical signals from the detectors and process with a central processing unit (CPU) the signals to determine intensities of the radiation impinging at each detector location. The CPU displays the determined intensities and relative intensity values corresponding to each detector location to an operator of the measuring apparatus on an included data display device. Concurrent sampling of each detector is achieved by connecting to each detector a sample and hold circuit that is configured to track the signal and store it upon receipt of a "capture" signal. A switching device then selectively retrieves the signals and transmits the signals to the CPU through a single analog to digital (A/D) converter. The "capture" signal. is then removed from the sample-and-hold circuits. Alternatively, concurrent sampling is achieved by providing an A/D converter for each detector, each of which transmits a corresponding digital signal to the CPU. The sampling or reading of the detector signals can be controlled by the CPU or level-detection and timing circuit.

  1. Correlation properties of loose groups

    SciTech Connect (OSTI)

    Maia, M.A.G.; Da Costa, L.N. (Observatorio Nacional do Brasil, Rio de Janeiro (Brazil))

    1990-02-01T23:59:59.000Z

    The two-point spatial correlation function for loose groups of galaxies is computed, using the recently compiled catalog of groups in the southern hemisphere. It is found that the correlation function for groups has a similar slope to that of galaxies but with a smaller amplitude, confirming an earlier result obtained from a similar analysis of the CfA group catalog. This implies that groups of galaxies are more randomly distributed than galaxies, which may be consistent with the predictions of Kashlinsky (1987) for a gravitational clustering scenario for the formation of large-scale structures. 21 refs.

  2. Fluorination process using catalyst

    DOE Patents [OSTI]

    Hochel, Robert C. (Aiken, SC); Saturday, Kathy A. (Aiken, SC)

    1985-01-01T23:59:59.000Z

    A process for converting an actinide compound selected from the group consisting of uranium oxides, plutonium oxides, uranium tetrafluorides, plutonium tetrafluorides and mixtures of said oxides and tetrafluorides, to the corresponding volatile actinide hexafluoride by fluorination with a stoichiometric excess of fluorine gas. The improvement involves conducting the fluorination of the plutonium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF.sub.3, AgF.sub.2 and NiF.sub.2, whereby the fluorination is significantly enhanced. The improvement also involves conducting the fluorination of one of the uranium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF.sub.3 and AgF.sub.2, whereby the fluorination is significantly enhanced.

  3. Bremsstrahlung radiation in the deuteron - proton collision

    E-Print Network [OSTI]

    J. Przerwa

    2005-01-06T23:59:59.000Z

    Despite the fact that Bremsstrahlung radiation has been observed many years ago, it is still the subject of interest of many theoretical and experimental groups. Due to the high sensitivity of the NN --> NNgamma reaction to the nucleon-nucleon potential, Bremsstrahlung radiation is used as a tool to investigate details of the nucleon-nucleon interaction. Such investigations can be performed at the cooler synchrotron COSY in the Research Centre Juelich, by dint of the COSY-11 detection system. For the first time at the COSY--11 experiment signals from gamma - quanta were observed in the time-of-flight distribution of neutral particles measured with the neutral particle detector. In this thesis the results of the identification of Bremsstrahlung radiation emitted via the dp --> dpgamma reaction in data taken with a proton target and a deuteron beam are presented and discussed. The time resolution of the neutral particle detector and its timing calibration are crucial for the identification of the dp --> dpgamma reaction. Therefore, methods of determining the relative timing between individual modules - constituting the neutron detector - and of the general time offset with respect to the other detector components are described. Furthermore the accuracy of the momentum determination of the registered neutron which defines the precision of the event reconstruction was extracted from the data.

  4. Mitigation of radiation induced surface contamination

    DOE Patents [OSTI]

    Klebanoff, Leonard E. (Dublin, CA); Stulen, Richard H. (Livermore, CA)

    2003-01-01T23:59:59.000Z

    A process for mitigating or eliminating contamination and/or degradation of surfaces having common, adventitious atmospheric contaminants adsorbed thereon and exposed to radiation. A gas or a mixture of gases is introduced into the environment of a surface(s) to be protected. The choice of the gaseous species to be introduced (typically a hydrocarbon gas, water vapor, or oxygen or mixtures thereof) is dependent upon the contaminant as well as the ability of the gaseous species to bind to the surface to be protected. When the surface and associated bound species are exposed to radiation reactive species are formed that react with surface contaminants such as carbon or oxide films to form volatile products (e.g., CO, CO.sub.2) which desorb from the surface.

  5. Diversification processes in an island radiation of shrews

    E-Print Network [OSTI]

    Esselstyn, Jacob Aaron

    2010-04-22T23:59:59.000Z

    to root al 10 trees bcause of its positon relative to Crocidura in recnt phylogenetic studies (Dubey 11 t al. 2007b; Ohdachi et al. 2006). A parsimony analysis wa conducted in PAUP* 12 4.0b10 (Swofford 1999) on the concatenatd data set. Al charactrs... in the models, and it is the 16 relative positon of fast and slow rats that wil aow us to distinguish among hypotse. 17 To evaluate stiscal power, w simulated 1000 trees using a pure birth model 18 with to rats of speiton, one fast and one slow (Python code...

  6. Density matrix of black hole radiation

    E-Print Network [OSTI]

    Lasma Alberte; Ram Brustein; Andrei Khmelnitsky; A. J. M. Medved

    2015-02-09T23:59:59.000Z

    Hawking's model of black hole evaporation is not unitary and leads to a mixed density matrix for the emitted radiation, while the Page model describes a unitary evaporation process in which the density matrix evolves from an almost thermal state to a pure state. We compare a recently proposed model of semiclassical black hole evaporation to the two established models. In particular, we study the density matrix of the outgoing radiation and determine how the magnitude of the off-diagonal corrections differs for the three frameworks. For Hawking's model, we find power-law corrections to the two-point functions that induce exponentially suppressed corrections to the off-diagonal elements of the full density matrix. This verifies that the Hawking result is correct to all orders in perturbation theory and also allows one to express the full density matrix in terms of the single-particle density matrix. We then consider the semiclassical theory for which the corrections, being non-perturbative from an effective field-theory perspective, are much less suppressed and grow monotonically in time. In this case, the R\\'enyi entropy for the outgoing radiation is shown to grow linearly at early times; but this growth slows down and the entropy eventually starts to decrease at the Page time. In addition to comparing models, we emphasize the distinction between the state of the radiation emitted from a black hole, which is highly quantum, and that of the radiation emitted from a typical classical black body at the same temperature.

  7. Radiation (North Dakota)

    Broader source: Energy.gov [DOE]

    The Department of Health is the designated agency to receive registration applications and issue certificates necessary for the production, storage, processing, and disposal of radioactive wastes....

  8. TEC Working Group Topic Groups Rail Conference Call Summaries...

    Office of Environmental Management (EM)

    September 11, 1998 Meeting June 22, 1998 Meeting May 27, 1998 Meeting November 3, 1997 Meeting September 18, 1997 Meeting More Documents & Publications TEC Working Group...

  9. Self-Reported Cognitive Outcomes in Patients With Brain Metastases Before and After Radiation Therapy

    SciTech Connect (OSTI)

    Cole, Ansa Maer [Department of Radiation Oncology, Medical School Hannover, Hannover (Germany); Scherwath, Angela [Department of Medical Psychology, University Medical Centre Hamburg-Eppendorf, Hamburg (Germany); Ernst, Gundula [Department of Medical Psychology, Medical School Hannover, Hannover (Germany); Lanfermann, Heinrich [Institute for Neuroradiology, Medical School Hannover, Hannover (Germany); Bremer, Michael [Department of Radiation Oncology, Medical School Hannover, Hannover (Germany); Steinmann, Diana, E-mail: steinmann.diana@mh-hannover.de [Department of Radiation Oncology, Medical School Hannover, Hannover (Germany)

    2013-11-15T23:59:59.000Z

    Purpose: Patients with brain metastases may experience treatment-related cognitive deficits. In this study, we prospectively assessed the self-reported cognitive abilities of patients with brain metastases from any solid primary cancer before and after irradiation of the brain. Methods and Materials: The treatment group (TG) consisted of adult patients (n=50) with brain metastases who received whole or partial irradiation of the brain without having received prior radiation therapy (RT). The control group (CG) consisted of breast cancer patients (n=27) without cranial involvement who were treated with adjuvant RT. Patients were recruited between May 2008 and December 2010. Self-reported cognitive abilities were acquired before RT and 6 weeks, 3 months, and 6 months after irradiation. The information regarding the neurocognitive status was collected by use of the German questionnaires for self-perceived deficits in attention (FEDA) and subjectively experienced everyday memory performance (FEAG). Results: The baseline data showed a high proportion of self-perceived neurocognitive deficits in both groups. A comparison between the TG and the CG regarding the course of self-reported outcomes after RT showed significant between-group differences for the FEDA scales 2 and 3: fatigue and retardation of daily living activities (P=.002) and decrease in motivation (P=.032) with an increase of attention deficits in the TG, but not in the CG. There was a trend towards significance in FEDA scale 1: distractibility and retardation of mental processes (P=.059) between the TG and the CG. The FEAG assessment presented no significant differences. An additional subgroup analysis within the TG was carried out. FEDA scale 3 showed significant differences in the time-related progress between patients with whole-brain RT and those receiving hypofractionated stereotactic RT (P=.025), with less decrease in motivation in the latter group. Conclusion: Self-reported attention declined in patients with brain metastases after RT to the brain, whereas it remained relatively stable in breast cancer patients.

  10. Time dependence of Hawking radiation entropy

    SciTech Connect (OSTI)

    Page, Don N., E-mail: profdonpage@gmail.com [Department of Physics, 4-181 CCIS, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada)

    2013-09-01T23:59:59.000Z

    If a black hole starts in a pure quantum state and evaporates completely by a unitary process, the von Neumann entropy of the Hawking radiation initially increases and then decreases back to zero when the black hole has disappeared. Here numerical results are given for an approximation to the time dependence of the radiation entropy under an assumption of fast scrambling, for large nonrotating black holes that emit essentially only photons and gravitons. The maximum of the von Neumann entropy then occurs after about 53.81% of the evaporation time, when the black hole has lost about 40.25% of its original Bekenstein-Hawking (BH) entropy (an upper bound for its von Neumann entropy) and then has a BH entropy that equals the entropy in the radiation, which is about 59.75% of the original BH entropy 4?M{sub 0}{sup 2}, or about 7.509M{sub 0}{sup 2} ? 6.268 10{sup 76}(M{sub 0}/M{sub s}un){sup 2}, using my 1976 calculations that the photon and graviton emission process into empty space gives about 1.4847 times the BH entropy loss of the black hole. Results are also given for black holes in initially impure states. If the black hole starts in a maximally mixed state, the von Neumann entropy of the Hawking radiation increases from zero up to a maximum of about 119.51% of the original BH entropy, or about 15.018M{sub 0}{sup 2} ? 1.254 10{sup 77}(M{sub 0}/M{sub s}un){sup 2}, and then decreases back down to 4?M{sub 0}{sup 2} = 1.049 10{sup 77}(M{sub 0}/M{sub s}un){sup 2}.

  11. Radiation Field on Superspace

    E-Print Network [OSTI]

    P. F. Gonzalez-Diaz

    1994-03-18T23:59:59.000Z

    We study the dynamics of multiwormhole configurations within the framework of the Euclidean Polyakov approach to string theory, incorporating a modification to the Hamiltonian which makes it impossible to interpret the Coleman Alpha parameters of the effective interactions as a quantum field on superspace, reducible to an infinite tower of fields on space-time. We obtain a Planckian probability measure for the Alphas that allows $\\frac{1}{2}\\alpha^{2}$ to be interpreted as the energy of the quanta of a radiation field on superspace whose values may still fix the coupling constants.

  12. Solar radiation intensity calculations

    E-Print Network [OSTI]

    Levine, Randolph Steven

    1978-01-01T23:59:59.000Z

    , radiation per unit area per unit time, on a flat-plate collector is given by: I = I cos B (2. 1a) where I is the solar constant. insolation received at one astro- nomical unit from the sun. Since clear sky conditions are assumed I o w i 1 1 b e a.... INSOLATION EQUATIONS TABLE OF CONTENTS Page III. RESULTS AND CONCLUSIONS REFERENCES APPENDIX VITA 25 47 48 52 Vi LIST OF TABLES TABLE I. Optimal Inclination for Ap=O, No Checks for Ip &0 and a Time Independent Solar Constant. II. Optimal...

  13. Radiative ?(1S) decays

    E-Print Network [OSTI]

    Baringer, Philip S.

    1990-03-01T23:59:59.000Z

    wW~ ii~ ~ + v~ 1''&WV'' V 0.20 0.45 0.70 ~y ~ EBFA~ 0.95 l.20 FIG. 4. Energy spectrum (normalized to beam energy) for Y~y2(h+h ) event candidates, with continuum data and ex- pected background from Y~m 2(h +h ) overplotted. 40 30 ~ 20 LLI IO hl...PHYSICAL REVIEW 0 VOLUME 41, NUMBER 5 Radiative T(lS) decays 1 MARCH 1990 R. Fulton, M. Hempstead, T. Jensen, D. R. Johnson, H. Kagan, R. Kass, F. Morrow, and J. Whitmore Ohio State University, Columbus, Ohio 43210 W.-Y. Chen, J. Dominick, R. L. Mc...

  14. Radiation Emergency Procedure Demonstrations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnicalPurchase, Delivery, andSmartRadiation Effects

  15. Radiation Safety Test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnicalPurchase, Delivery, andSmartRadiation

  16. Radiation Control Program and Radiation Control Act (Nebraska)

    Broader source: Energy.gov [DOE]

    This statute authorizes the state to implement a regulatory program for sources of radiation, and contains rules for the Department, licensing and registration, and taxation of radioactive materials.

  17. Virtual Gamma Ray Radiation Sources through Neutron Radiative Capture

    SciTech Connect (OSTI)

    Scott Wilde, Raymond Keegan

    2008-07-01T23:59:59.000Z

    The countrate response of a gamma spectrometry system from a neutron radiation source behind a plane of moderating material doped with a nuclide of a large radiative neutron capture cross-section exhibits a countrate response analogous to a gamma radiation source at the same position from the detector. Using a planar, surface area of the neutron moderating material exposed to the neutron radiation produces a larger area under the prompt gamma ray peak in the detector than a smaller area of dimensions relative to the active volume of the gamma detection system.

  18. The Radiation Reaction Effects in the BMT Model of Spinning Charge and the Radiation Polarization Phenomenon

    E-Print Network [OSTI]

    S. L. Lebedev

    2005-12-19T23:59:59.000Z

    The effect of radiation polarization attended with the motion of spinning charge in the magnetic field could be viewed through the classical theory of self-interaction. The quantum expression for the polarization time follows from the semiclassical relation $T_{QED}\\sim \\hbar c^{3}/\\mu_{B}^2\\omega_{c}^3$, and needs quantum explanation neither for the orbit nor for the spin motion. In our approach the polarization emerges as a result of natural selection in the ensenmble of elastically scattered electrons among which the group of particles that bear their spins in the 'right' directions has the smaller probability of radiation. The evidence of non-complete polarization degree is also obtained.

  19. On The Harmonic Oscillator Group

    E-Print Network [OSTI]

    Raquel M. Lopez; Sergei K. Suslov; Jose M. Vega-Guzman

    2011-12-04T23:59:59.000Z

    We discuss the maximum kinematical invariance group of the quantum harmonic oscillator from a view point of the Ermakov-type system. A six parameter family of the square integrable oscillator wave functions, which seems cannot be obtained by the standard separation of variables, is presented as an example. The invariance group of generalized driven harmonic oscillator is shown to be isomorphic to the corresponding Schroedinger group of the free particle.

  20. RADIATIVE RAYLEIGH-TAYLOR INSTABILITIES

    SciTech Connect (OSTI)

    Jacquet, Emmanuel [Laboratoire de Mineralogie et Cosmochimie de Museum (LMCM), CNRS and Museum National d'Histoire Naturelle, UMR 7202, 57 rue Cuvier, 75005 Paris (France); Krumholz, Mark R., E-mail: ejacquet@mnhn.fr, E-mail: krumholz@ucolick.org [Department of Astronomy, University of California, Santa Cruz, CA 95064 (United States)

    2011-04-01T23:59:59.000Z

    We perform analytic linear stability analyses of an interface separating two stratified media threaded by a radiation flux, a configuration relevant in several astrophysical contexts. We develop a general framework for analyzing such systems and obtain exact stability conditions in several limiting cases. In the optically thin, isothermal regime, where the discontinuity is chemical in nature (e.g., at the boundary of a radiation pressure-driven H II region), radiation acts as part of an effective gravitational field, and instability arises if the effective gravity per unit volume toward the interface overcomes that away from it. In the optically thick 'adiabatic' regime where the total (gas plus radiation) specific entropy of a Lagrangian fluid element is conserved, for example at the edge of radiation pressure-driven bubble around a young massive star, we show that radiation acts like a modified equation of state and derive a generalized version of the classical Rayleigh-Taylor stability condition.

  1. COSMOS: A Radiation-Chemo-Hydrodynamics Code for Astrophysical Problems

    E-Print Network [OSTI]

    Peter Anninos; P. Chris Fragile; Stephen D. Murray

    2003-03-10T23:59:59.000Z

    We have developed a new massively-parallel radiation-hydrodynamics code (Cosmos) for Newtonian and relativistic astrophysical problems that also includes radiative cooling, self-gravity, and non-equilibrium, multi-species chemistry. Several numerical methods are implemented for the hydrodynamics, including options for both internal and total energy conserving schemes. Radiation is treated using flux-limited diffusion. The chemistry incorporates 27 reactions, including both collisional and radiative processes for atomic hydrogen and helium gases, and molecular hydrogen chains. In this paper we discuss the equations and present results from test problems carried out to verify the robustness and accuracy of our code in the Newtonian regime. An earlier paper presented tests of the relativistic capabilities of Cosmos.

  2. COSMOS A Radiation-Chemo-Hydrodynamics Code for Astrophysical Problems

    E-Print Network [OSTI]

    Anninos, P; Murray, S D; Anninos, Peter; Murray, Stephen D.

    2003-01-01T23:59:59.000Z

    We have developed a new massively-parallel radiation-hydrodynamics code (Cosmos) for Newtonian and relativistic astrophysical problems that also includes radiative cooling, self-gravity, and non-equilibrium, multi-species chemistry. Several numerical methods are implemented for the hydrodynamics, including options for both internal and total energy conserving schemes. Radiation is treated using flux-limited diffusion. The chemistry incorporates 27 reactions, including both collisional and radiative processes for atomic hydrogen and helium gases, and molecular hydrogen chains. In this paper we discuss the equations and present results from test problems carried out to verify the robustness and accuracy of our code in the Newtonian regime. An earlier paper presented tests of the relativistic capabilities of Cosmos.

  3. The History of Galaxy Formation in Groups: An Observational Perspective

    E-Print Network [OSTI]

    Christopher J. Conselice

    2006-10-01T23:59:59.000Z

    We present a pedagogical review on the formation and evolution of galaxies in groups, utilizing observational information from the Local Group to galaxies at z~6. The majority of galaxies in the nearby universe are found in groups, and galaxies at all redshifts up to z~6 tend to cluster on the scale of nearby groups (~1 Mpc). This suggests that the group environment may play a role in the formation of most galaxies. The Local Group, and other nearby groups, display a diversity in star formation and morphological properties that puts limits on how, and when, galaxies in groups formed. Effects that depend on an intragroup medium, such as ram-pressure and strangulation, are likely not major mechanisms driving group galaxy evolution. Simple dynamical friction arguments however show that galaxy mergers should be common, and a dominant process for driving evolution. While mergers between L_* galaxies are observed to be rare at z < 1, they are much more common at earlier times. This is due to the increased density of the universe, and to the fact that high mass galaxies are highly clustered on the scale of groups. We furthermore discus why the local number density environment of galaxies strongly correlates with galaxy properties, and why the group environment may be the preferred method for establishing the relationship between properties of galaxies and their local density.

  4. Safarevic's Theorem on Solvable Groups as Galois Groups

    E-Print Network [OSTI]

    extension Kjk with Galois group G(Kjk) ¸ = G. Ÿ SafareviŸc proved this result in 1954. The intricate proof ) are embedable into G. Then there exists a Galois extension Kjk with Galois group isomorphic to G, which

  5. Neil 65 Group Picture Neil 65 Group Picture

    E-Print Network [OSTI]

    Mohar, Bojan

    Neil 65 Group Picture Neil 65 Group Picture December 14, 2003 Row 1: Tom Dowling, Nolan Mc-Marie Belcastro, Chris Stephens, Rajneesh Hegde Row 2: Paul Wollan, Bruce Richter, Mike Plummer, Xiaoya Zha, Dan Bannai, Mike Albertson, Joan Hutchinson, Matt Devos, Tom Zaslovsky, Mark Ellingham, Sandra Kingan, James

  6. Presentation SCA Group 1 SCA Group 2007-03-15

    E-Print Network [OSTI]

    -03-15 Every day, millions of people use our products We are here to develop and improve everyday lives. People SCA Group 2007-03-15 SCA is a global consumer goods and paper company We offer personal care products #12;4 SCA Group 2007-03-15 Personal Care Tissue Packaging Forest Products Business areas Operations

  7. Infrared Thermography (IRT) Working Group

    Broader source: Energy.gov (indexed) [DOE]

    Infrared Thermography (IRT) Working Group Sco McWilliams U.S. Photovoltaic Manufacturing Consor;um (PVMC) Infrared Thermography Infrared Thermography (IRT) has been demonstrated...

  8. Lorentz Group in Ray Optics

    E-Print Network [OSTI]

    S. Baskal; E. Georgieva; Y. S. Kim; M. E. Noz

    2004-01-18T23:59:59.000Z

    It has been almost one hundred years since Einstein formulated his special theory of relativity in 1905. He showed that the basic space-time symmetry is dictated by the Lorentz group. It is shown that this group of Lorentz transformations is not only applicable to special relativity, but also constitutes the scientific language for optical sciences. It is noted that coherent and squeezed states of light are representations of the Lorentz group. The Lorentz group is also the basic underlying language for classical ray optics, including polarization optics, interferometers, the Poincare\\'e sphere, one-lens optics, multi-lens optics, laser cavities, as well multilayer optics.

  9. Physics Division: Subatomic Physics Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Subatomic Physics Physics home Subatomic Physics Site Home About Us Groups Applied Modern Physics, P-21 Neutron Science and Technology, P-23 Plasma Physics, P-24 Subatomic...

  10. Request for Travel Funds for Systems Radiation Biology Workshop

    SciTech Connect (OSTI)

    Barcellos-Hoff, Mary Helen [NYU School of Medicine

    2014-03-22T23:59:59.000Z

    The 3rd International Systems Radiation Biology Workshop brought together the major European, US and Japanese research programs on radiation risk as well as selected experts representing systems biological approaches to discuss how the new methodologies could be best exploited for low dose research. A significant part of the workshop was devoted to discussions organised as breakout group sessions. To facilitate discussions number of participants was limited to 60 persons. To achieve the goals of this symposium in this international conference, support from DOE is vital. Hence, this proposal requested support in the amount of $15,000 to cover the travel expenses of international experts and radiation biology scientists from the United States. This supporting mechanism was clearly identified to the selected US participants as a conference support award from the DOE (See attached PDF). The workshop was an outstanding opportunity to strengthen interactions between leading experts in the emerging areas of radiation sciences, and will also provide opportunities for younger scientists to meet with experts and discuss their results. This workshop was designed to endorse active engagement in international collaboration. A major objective of this conference was to effectively communicate research results, in order to ensure that current thinking reflects sound science of radiation biology. Further, this international event addressed the use and success of scientific initiatives in radiation biology for policymakers, standard-setters, and the general public.

  11. Savannah River Plant/Savannah River Laboratory radiation exposure report

    SciTech Connect (OSTI)

    Rogers, C.D.; Hyman, S.D.; Keisler, L.L. (Du Pont de Nemours (E.I.) and Co., Aiken, SC (USA). Savannah River Plant); Reeder, D.F.; Jolly, L.; Spoerner, M.T.; Schramm, G.R. (Du Pont de Nemours (E.I.) and Co., Aiken, SC (USA). Savannah River Lab.)

    1989-01-01T23:59:59.000Z

    The protection of worker health and safety is of paramount concern at the Savannah River Site. Since the site is one of the largest nuclear sites in the nation, radiation safety is a key element in the protection program. This report is a compendium of the results in 1988 of the programs at the Savannah River Plant and the Savannah River Laboratory to protect the radiological health of employees. By any measure, the radiation protection performance at this site in 1988 was the best since the beginning of operations. This accomplishment was made possible by the commitment and support at all levels of the organizations to reduce radiation exposures to ALARA (As Low As Reasonably Achievable). The report provides detailed information about the radiation doses received by departments and work groups within these organizations. It also includes exposure data for recent years to allow Plant and Laboratory units to track the effectiveness of their ALARA efforts. Many of the successful practices and methods that reduced radiation exposure are described. A new goal for personnel contamination cases has been established for 1989. Only through continual and innovative efforts to minimize exposures can the goals be met. The radiation protection goals for 1989 and previous years are included in the report. 27 figs., 58 tabs.

  12. Radiation-induced gene responses

    SciTech Connect (OSTI)

    Woloschak, G.E.; Paunesku, T.; Shearin-Jones, P.; Oryhon, J.

    1996-12-31T23:59:59.000Z

    In the process of identifying genes that are differentially regulated in cells exposed to ultraviolet radiation (UV), we identified a transcript that was repressed following the exposure of cells to a combination of UV and salicylate, a known inhibitor of NF-kappaB. Sequencing this band determined that it has identify to lactate dehydrogenase, and Northern blots confirmed the initial expression pattern. Analysis of the sequence of the LDH 5` region established the presence of NF-kappaB, Sp1, and two Ap-2 elements; two partial AP- 1; one partial RE, and two halves of E-UV elements were also found. Electromobility shift assays were then performed for the AP-1, NF- kappaB, and E-UV elements. These experiments revealed that binding to NF-kappaB was induced by UV but repressed with salicylic acid; UV did not affect AP-1 binding, but salicylic acid inhibited it alone or following UV exposure; and E-UV binding was repressed by UV, and salicylic acid had little effect. Since the binding of no single element correlated with the expression pattern of LDH, it is likely that multiple elements govern UV/salicylate-mediated expression.

  13. Rindler Particles and Classical Radiation

    E-Print Network [OSTI]

    D. E. Diaz; J. Stephany

    2002-02-19T23:59:59.000Z

    We describe the quantum and classical radiation by a uniformly accelerating point source in terms of the elementary processes of absorption and emission of Rindler scalar photons of the Fulling-Davies-Unruh bath observed by a co-accelerating observer.To this end we compute the emission rate by a DeWitt detector of a Minkowski scalar particle with defined transverse momentum per unit of proper time of the source and we show that it corresponds to the induced absorption or spontaneous and induced emission of Rindler photons from the thermal bath. We then take what could be called the inert limit of the DeWitt detector by considering the limit of zero gap energy. As suggested by DeWitt, we identify in this limit the detector with a classical point source and verify the consistency of our computation with the classical result. Finally, we study the behavior of the emission rate in D space-time dimensions in connection with the so called apparent statistics inversion.

  14. Radiator Labs | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Radiation Protection Regulations: TheCompetition » Radiator Labs

  15. Split SUSY Radiates Flavor

    E-Print Network [OSTI]

    Matthew Baumgart; Daniel Stolarski; Thomas Zorawski

    2014-09-19T23:59:59.000Z

    Radiative flavor models where the hierarchies of Standard Model (SM) fermion masses and mixings are explained via loop corrections are elegant ways to solve the SM flavor puzzle. Here we build such a model in the context of Mini-Split Supersymmetry (SUSY) where both flavor and SUSY breaking occur at a scale of 1000 TeV. This model is consistent with the observed Higgs mass, unification, and WIMP dark matter. The high scale allows large flavor mixing among the sfermions, which provides part of the mechanism for radiative flavor generation. In the deep UV, all flavors are treated democratically, but at the SUSY breaking scale, the third, second, and first generation Yukawa couplings are generated at tree level, one loop, and two loops, respectively. Save for one, all the dimensionless parameters in the theory are O(1), with the exception being a modest and technically natural tuning that explains both the smallness of the bottom Yukawa coupling and the largeness of the Cabibbo angle.

  16. Radiation Embrittlement Archive Project

    SciTech Connect (OSTI)

    Klasky, Hilda B [ORNL] [ORNL; Bass, Bennett Richard [ORNL] [ORNL; Williams, Paul T [ORNL] [ORNL; Phillips, Rick [ORNL] [ORNL; Erickson, Marjorie A [ORNL] [ORNL; Kirk, Mark T [ORNL] [ORNL; Stevens, Gary L [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    The Radiation Embrittlement Archive Project (REAP), which is being conducted by the Probabilistic Integrity Safety Assessment (PISA) Program at Oak Ridge National Laboratory under funding from the U.S. Nuclear Regulatory Commission s (NRC) Office of Nuclear Regulatory Research, aims to provide an archival source of information about the effect of neutron radiation on the properties of reactor pressure vessel (RPV) steels. Specifically, this project is an effort to create an Internet-accessible RPV steel embrittlement database. The project s website, https://reap.ornl.gov, provides information in two forms: (1) a document archive with surveillance capsule(s) reports and related technical reports, in PDF format, for the 104 commercial nuclear power plants (NPPs) in the United States, with similar reports from other countries; and (2) a relational database archive with detailed information extracted from the reports. The REAP project focuses on data collected from surveillance capsule programs for light-water moderated, nuclear power reactor vessels operated in the United States, including data on Charpy V-notch energy testing results, tensile properties, composition, exposure temperatures, neutron flux (rate of irradiation damage), and fluence, (Fast Neutron Fluence a cumulative measure of irradiation for E>1 MeV). Additionally, REAP contains data from surveillance programs conducted in other countries. REAP is presently being extended to focus on embrittlement data analysis, as well. This paper summarizes the current status of the REAP database and highlights opportunities to access the data and to participate in the project.

  17. EPIDEMIOLOGICAL STUDIES ON RADIATION CARCINOGENESIS IN HUMAN POPULATIONS FOLLOWING ACUTE EXPOSURE: NUCLEAR EXPLOSIONS AND MEDICAL RADIATION

    E-Print Network [OSTI]

    Fabrikant, J.I.

    2010-01-01T23:59:59.000Z

    EXPOSURE: NUCLEAR EXPLOSIONS AND MEDICAL RADIATION . Jacobexposed to nuclear explosions and medical radiation. Sinceto nuclear explo ions or medical radiation, describes the

  18. Time dependent annealing of radiation - induced leakage currents in MOS devices

    SciTech Connect (OSTI)

    Terrell, J.M. (Booz Allen and Hamilton, Inc. Bethesda, MD (US)); Olkham, T.R.; Lelis, A.J.; Benedetto, J.M. (Harry Diamond Labs., Adelphi, MD (US))

    1989-12-01T23:59:59.000Z

    Results are presented showing the radiation response of several unhardened commercial 1.25-{mu}m bulk CMOS processes using LOCOS isolation technology. In all cases studied radiation-induced failure is caused by effects in the field oxide, and the radiation-induced {delta}V{sub T} in the channel region is usually small at the failure dose. Time dependent leakage current data for the field oxides are presented and discussed.

  19. Radiation Safety Work Control Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Safety Work Control Form (see instructions on pg-3) Rev. May 2014 Area: Form : Date: Preliminary Applicability Screen: (a) Will closing the beam line injection stoppers...

  20. Inverse problem for Bremsstrahlung radiation

    SciTech Connect (OSTI)

    Voss, K.E.; Fisch, N.J.

    1991-10-01T23:59:59.000Z

    For certain predominantly one-dimensional distribution functions, an analytic inversion has been found which yields the velocity distribution of superthermal electrons given their Bremsstrahlung radiation. 5 refs.

  1. Radiating Levi-Civita Spacetime

    E-Print Network [OSTI]

    Ozgur Delice

    2005-06-06T23:59:59.000Z

    This paper has been withdrawn by the author, See J.Krishna Rao, J. Phys. A: Gen. Phys., 4, 17 (1971) for radiating Levi-Civita metric.

  2. Scintillator Waveguide For Sensing Radiation

    DOE Patents [OSTI]

    Bliss, Mary (West Richland, WA); Craig, Richard A. (West Richland, WA); Reeder; Paul L. (Richland, WA)

    2003-04-22T23:59:59.000Z

    The present invention is an apparatus for detecting ionizing radiation, having: a waveguide having a first end and a second end, the waveguide formed of a scintillator material wherein the therapeutic ionizing radiation isotropically generates scintillation light signals within the waveguide. This apparatus provides a measure of radiation dose. The apparatus may be modified to permit making a measure of location of radiation dose. Specifically, the scintillation material is segmented into a plurality of segments; and a connecting cable for each of the plurality of segments is used for conducting scintillation signals to a scintillation detector.

  3. Quality Services: Radiation (New York)

    Broader source: Energy.gov [DOE]

    These regulations establish standards for protection against ionizing radiation resulting from the disposal and discharge of radioactive material to the environment. The regulations apply to any...

  4. Parametric analysis of radiative-convective heat transfer around a circular cylinder in a cross flow using the finite volume radiation solution method

    SciTech Connect (OSTI)

    Lee, K.H.; Lee, J.S.; Choi, M. [Seoul National Univ. (Korea, Republic of). Dept. of Mechanical Engineering

    1996-02-09T23:59:59.000Z

    In the outside vapor deposition (OVD) process, silica particles are deposited by thermophoretic force on the surface of a cylinder. This process is associated with complex physical phenomena such as heat transfer between a torch and a cylinder, chemical reaction for silica particle formation, and particle deposition. Since the OVD process is carried out in a very high temperature environment, radiative heat transfer should be taken into consideration. Here, the radiative-convective heat transfer around a circular cylinder in a cross flow of a radiating gas has been numerically analyzed using the finite volume radiation solution method in a nonorthogonal coordinate system. The cross-flow Reynolds number based on the cylinder diameter is 40, and the fluid Prandtl number is assumed to be 0.7. The radiative heat transfer coupled with convection is reasonably predicted by the finite volume radiation solution method. Distributions of the local Nusselt number are investigated according to the variation of radiation parameters such as conduction-to-radiation parameter, optical thickness, scattering albedo, and cylinder wall emissivity.

  5. Comparison of Cirrus Cloud Radiative Properties and Dynamical Processes at Two Atmospheric Radiation Measurement (ARM) Si...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would like submit the followingth Lomonosov1CompactComparison of ionCirrus

  6. Student Survey Management Group The Student Survey Management Group, which reports to the Learning and Teaching Board via the Student Learning

    E-Print Network [OSTI]

    Greenaway, Alan

    Student Survey Management Group The Student Survey Management Group, which reports to the Learning are appropriately timed and "survey fatigue" is minimised. Key Student Surveys The Student Survey Management Group manages five student surveys key to HWU: Student Survey Framework and Process In June 2014, the Learning

  7. Coherent and incoherent radiation from high-energy electron and the LPM effect in oriented single crystal

    E-Print Network [OSTI]

    V. N. Baier; V. M. Katkov

    2005-12-01T23:59:59.000Z

    The process of radiation from high-energy electron in oriented single crystal is considered using the method which permits inseparable consideration of both coherent and incoherent mechanisms of photon emission. The total intensity of radiation is calculated. The theory, where the energy loss of projectile has to be taken into account, agrees quite satisfactory with available CERN data. It is shown that the influence of multiple scattering on radiation process is suppressed due to action of crystal field.

  8. Hawking radiation on a falling lattice

    E-Print Network [OSTI]

    Ted Jacobson; David Mattingly

    2000-01-12T23:59:59.000Z

    Scalar field theory on a lattice falling freely into a 1+1 dimensional black hole is studied using both WKB and numerical approaches. The outgoing modes are shown to arise from incoming modes by a process analogous to a Bloch oscillation, with an admixture of negative frequency modes corresponding to the Hawking radiation. Numerical calculations show that the Hawking effect is reproduced to within 0.5% on a lattice whose proper spacing where the wavepacket turns around at the horizon is $\\sim0.08$ in units where the surface gravity is 1.

  9. Radiation Chemistry of Advanced TALSPEAK Flowsheet

    SciTech Connect (OSTI)

    Mincher, Bruce; Peterman, Dean; Mcdowell, Rocklan; Olson, Lonnie; Lumetta, Gregg J.

    2013-08-28T23:59:59.000Z

    This report summarizes the results of initial experiments designed to understand the radiation chemistry of an Advanced TALSPEAK process for separating trivalent lanthanides form the actinides. Biphasic aerated samples were irradiated and then analyzed for post-irradiation constituent concentrations and solvent extraction distribution ratios. The effects of irradiation on the TALSPEAK and Advanced TALSPEAK solvents were similar, with very little degradation of the organic phase extractant. Decomposition products were detected, with a major product in common for both solvents. This product may be responsible for the slight increase in distribution ratios for Eu and Am with absorbed dose, however; separation factors were not greatly affected.

  10. 2007 Radiation & Climate GRC ( July 29-August 3, 2007)

    SciTech Connect (OSTI)

    William Collins

    2008-06-01T23:59:59.000Z

    The theme of the fifth Gordon Research Conference on Radiation and Climate is 'Integrating multiscale measurements and models for key climate questions'. The meeting will feature lectures, posters, and discussion regarding these issues. The meeting will focus on insights from new types of satellite and in situ data and from new approaches to modeling processes in the climate system. The program on measurements will highlight syntheses of new satellite data on cloud, aerosols, and chemistry and syntheses of satellite and sub-orbital observations from field programs. The program on modeling will address both the evaluation of cloud-resolving and regional aerosol models using new types of measurements and the evidence for processes and physics missing from global models. The Conference will focus on two key climate questions. First, what factors govern the radiative interactions of clouds and aerosols with regional and global climate? Second, how well do we understand the interaction of radiation with land surfaces and with the cryosphere?

  11. Federal Utility Partnership Working Group

    Broader source: Energy.gov [DOE]

    The Federal Utility Partnership Working Group (FUPWG) establishes partnerships and facilitates communications among Federal agencies, utilities, and energy service companies. The group develops strategies to implement cost-effective energy efficiency and water conservation projects through utility incentive programs at Federal sites.

  12. Research documentation per participating group

    E-Print Network [OSTI]

    Franssen, Michael

    Research documentation per participating group #12;2. RESEARCH DOCUMENTATION OF THE GROUP SYSTEM Management Hybrid trucks StDy Steen, R. v.d. (PhD 3) FEM Tyre Modelling StDy 5.4 Mechanical Design Bedem, Ir

  13. Process for manufacturing tantalum capacitors

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN)

    1993-01-01T23:59:59.000Z

    A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1300.degree. to 2000.degree. C. by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO.sub.2. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.

  14. Process for manufacturing tantalum capacitors

    DOE Patents [OSTI]

    Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.

    1993-02-02T23:59:59.000Z

    A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1,300 to 2,000 C by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO[sub 2]. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.

  15. Second international conference on computer simulation of radiation effects in solids

    SciTech Connect (OSTI)

    de la Rubia, T.D.; Gilmer, G.H. [comps.

    1994-08-01T23:59:59.000Z

    A total of 102 abstracts are included, arranged under the following headings: interatomic potentials and theoretical methods, displacement cascades and radiation effects in metals, radiation effects in semiconductors, sputtering and surface processes, cluster-solid interactions, highly charged ions and inelastic effects, and posters (A and B).

  16. On the approximation of local and linear radiative damping in the middle

    E-Print Network [OSTI]

    Wirosoetisno, Djoko

    atmosphere. In general, this damping is a nonlocal process in which heat is transferred to and from remote form 13 November 2009) ABSTRACT The validity of approximating radiative heating rates in the middle'') is investigated. Using radiative heating rate and temperature output from a chemistry­climate model with realistic

  17. Cirrus cloud simulations using WRF with improved radiation parameterization and increased vertical resolution

    E-Print Network [OSTI]

    Liou, K. N.

    and aerosolcloudradiation interactions. With the newly implemented radiation scheme, the simulations of cloud cover:10.1029/2010JD014574. 1. Introduction [2] Cirrus clouds cover about 20% of the Earth's surface and showed that the effects of radiative processes and vertical transports are both significant in cirrus

  18. Optically erasable samarium-doped fluorophosphate glasses for high-dose measurements in microbeam radiation therapy

    SciTech Connect (OSTI)

    Morrell, B.; Okada, G.; Vahedi, S.; Koughia, C., E-mail: cyril.koughia@usask.ca; Kasap, S. O. [Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9 (Canada); Edgar, A.; Varoy, C. [School of Chemical and Physical Sciences and MacDiarmid Institute, Victoria University of Wellington, Wellington 6140 (New Zealand); Belev, G.; Wysokinski, T.; Chapman, D. [Canadian Light Source, Inc., University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9 (Canada); Sammynaiken, R. [Saskatchewan Structural Sciences Centre, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9 (Canada)

    2014-02-14T23:59:59.000Z

    Previous work has demonstrated that fluorophosphate (FP) glasses doped with trivalent samarium (Sm{sup 3+}) can be used as a dosimetric detector in microbeam radiation therapy (MRT) to measure high radiation doses and large dose variations with a resolution in the micrometer range. The present work addresses the use of intense optical radiation at 405?nm to erase the recorded dose information in Sm{sup 3+}-doped FP glass plates and examines the underlying physics. We have evaluated both the conversion and optical erasure of Sm{sup 3+}-doped FP glasses using synchrotron-generated high-dose x-rays at the Canadian Light Source. The Sm-ion valency conversion is accompanied by the appearance of x-ray induced optical absorbance due to the trapping of holes and electrons into phosphorus-oxygen hole (POHC) and electron (POEC) capture centers. Nearly complete Sm{sup 2+} to Sm{sup 3+} reconversion (erasure) may be achieved by intense optical illumination. Combined analysis of absorbance and electron spin resonance measurements indicates that the optical illumination causes partial disappearance of the POHC and the appearance of new POEC. The suggested model for the observed phenomena is based on the release of electrons during the Sm{sup 2+} to Sm{sup 3+} reconversion process, the capture of these electrons by POHC (and hence their disappearance), or by PO groups, with the appearance of new and/or additional POEC. Optical erasure may be used as a practical means to erase the recorded data and permits the reuse of these Sm-doped FP glasses in monitoring dose in MRT.

  19. Greenlight Energy Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG ContractingGreenOrder JumpIowa: EnergyGreenleafGreenlight Energy Group

  20. Fraunhofer Venture Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°, -86.0529604° Show Map LoadingIllinois:Frannie,Group Place:

  1. Stimulated Emission of Radiation in a Nuclear Fusion Reaction

    E-Print Network [OSTI]

    Michael Duren

    1999-04-06T23:59:59.000Z

    This letter claims that process of stimulated emission of radiation can be used to induce a fusion reaction in a HD molecule to produce Helium-3. An experimental set-up for this reaction is presented. It is proposed to study the technical potential of this reaction as an energy amplifier.

  2. Electron-Positron Radiative Annihilation : Timelike Virtual Compton Scattering

    E-Print Network [OSTI]

    Asmita Mukherjee

    2010-10-01T23:59:59.000Z

    We report on a recent work proposing measurements of the deeply virtual Compton amplitude (DVCS) $\\gamma^* \\to h \\bar h \\gamma$ in the timelike kinematic domain which is accessible at electron-positron colliders via the radiative annihilation process $e^+ e^- \\to h \\bar h \\gamma$.

  3. THE GEOSTATIONARY EARTH RADIATION BUDGET (GERB) EXPERIMENT: SCIENCE AND APPLICATIONS

    E-Print Network [OSTI]

    Allan, Richard P.

    minute coverage over much of Europe, Africa and the Atlantic ocean and parts of Asia, South America of rapidly varying climate processes (e.g. diurnal convection over Africa) to be resolved. GERB data's Radiation Budget (ERB) is the balance between the incoming energy from the sun and the outgoing reflected

  4. Canopy radiation transmission for an energy balance snowmelt model

    E-Print Network [OSTI]

    Tarboton, David

    Canopy radiation transmission for an energy balance snowmelt model Vinod Mahat1 and David G deep canopy solution. This solution enhances capability for modeling energy balance processes in a distributed energy balance snowmelt model and results compared with observations made in three different

  5. Mapping incident photosynthetically active radiation from MODIS data over China

    E-Print Network [OSTI]

    Liang, Shunlin

    of incident photosynthetically active radiation from Moderate Resolution Imaging Spectrometer data. Journal, nitrogen and energy in different natural systems. Since photosynthesis is the core process for energy as an input for modeling photosynthesis from single plant leaves to complex plant communities. For example

  6. Don Melrose Particle Acceleration and Nonthermal Radiation in

    E-Print Network [OSTI]

    Melrose, Don

    Don Melrose #12;Particle Acceleration and Nonthermal Radiation in Space Plasmas D.B. Melrose maser emission fi-om planets and stars. Key words: Acceleration of particles, plasma emission, electron mechanism is ' a process that increases the energy of nonthermal particles. Several different acceleration

  7. Hawking radiation and Quasinormal modes

    E-Print Network [OSTI]

    SangChul Yoon

    2005-10-05T23:59:59.000Z

    The spectrum of Hawking radiation by quantum fields in the curved spacetime is continuous, so the explanation of Hawking radiation using quasinormal modes can be suspected to be impossible. We find that quasinormal modes do not explain the relation between the state observed in a region far away from a black hole and the short distance behavior of the state on the horizon.

  8. Radiation trapping in coherent media

    E-Print Network [OSTI]

    A. B. Matsko; I. Novikova; M. O. Scully; G. R. Welch

    2001-01-31T23:59:59.000Z

    We show that the effective decay rate of Zeeman coherence, generated in a Rb87 vapor by linearly polarized laser light, increases significantly with the atomic density. We explain this phenomenon as the result of radiation trapping. Our study shows that radiation trapping must be taken into account to fully understand many electromagnetically induced transparency experiments with optically thick media.

  9. Review Article RADIATION SHIELDING TECHNOLOGY

    E-Print Network [OSTI]

    Shultis, J. Kenneth

    Review Article RADIATION SHIELDING TECHNOLOGY J. Kenneth Shultis and Richard E. Faw* Abstract Physics Society INTRODUCTION THIS IS a review of the technology of shielding against the effects to the review. The first treats the evolution of radiation-shielding technology from the beginning of the 20th

  10. THE HIGGS WORKING GROUP: SUMMARY REPORT.

    SciTech Connect (OSTI)

    DAWSON, S.; ET AL.

    2005-08-01T23:59:59.000Z

    This working group has investigated Higgs boson searches at the Tevatron and the LHC. Once Higgs bosons are found their properties have to be determined. The prospects of Higgs coupling measurements at the LHC and a high-energy linear e{sup +}e{sup -} collider are discussed in detail within the Standard Model and its minimal supersymmetric extension (MSSM). Recent improvements in the theoretical knowledge of the signal and background processes are presented and taken into account. The residual uncertainties are analyzed in detail. Theoretical progress is discussed in particular for the gluon-fusion processes gg {yields} H(+j), Higgs-bremsstrahlung off bottom quarks and the weak vector-boson-fusion (VBF) processes. Following the list of open questions of the last Les Houches workshop in 2001 several background processes have been calculated at next-to-leading order, resulting in a significant reduction of the theoretical uncertainties. Further improvements have been achieved for the Higgs sectors of the MSSM and NMSSM. This report summarizes our work performed before and after the workshop in Les Houches. Part A describes the theoretical developments for signal and background processes. Part B presents recent progress in Higgs boson searches at the Tevatron collider. Part C addresses the determination of Higgs boson couplings, part D the measurement of tan {beta} and part E Higgs boson searches in the VBF processes at the LHC. Part F summarizes Higgs searches in supersymmetric Higgs decays, part G photonic Higgs decays in Higgs-strahlung processes at the LHC, while part H concentrates on MSSM Higgs bosons in the intense-coupling regime at the LHC. Part I presents progress in charged Higgs studies and part J the Higgs discovery potential in the NMSSM at the LHC. The last part K describes Higgs coupling measurements at a 1 TeV linear e{sup +}e{sup -} collider.

  11. Gravitational Radiation From Cosmological Turbulence

    E-Print Network [OSTI]

    Arthur Kosowsky; Andrew Mack; Tinatin Kahniashvili

    2002-06-27T23:59:59.000Z

    An injection of energy into the early Universe on a given characteristic length scale will result in turbulent motions of the primordial plasma. We calculate the stochastic background of gravitational radiation arising from a period of cosmological turbulence, using a simple model of isotropic Kolmogoroff turbulence produced in a cosmological phase transition. We also derive the gravitational radiation generated by magnetic fields arising from a dynamo operating during the period of turbulence. The resulting gravitational radiation background has a maximum amplitude comparable to the radiation background from the collision of bubbles in a first-order phase transition, but at a lower frequency, while the radiation from the induced magnetic fields is always subdominant to that from the turbulence itself. We briefly discuss the detectability of such a signal.

  12. Transition Radiation in QCD matter

    E-Print Network [OSTI]

    Magdalena Djordjevic

    2005-12-22T23:59:59.000Z

    In ultrarelativistic heavy ion collisions a finite size QCD medium is created. In this paper we compute radiative energy loss to zeroth order in opacity by taking into account finite size effects. Transition radiation occurs on the boundary between the finite size medium and the vacuum, and we show that it lowers the difference between medium and vacuum zeroth order radiative energy loss relative to the infinite size medium case. Further, in all previous computations of light parton radiation to zeroth order in opacity, there was a divergence caused by the fact that the energy loss is infinite in the vacuum and finite in the QCD medium. We show that this infinite discontinuity is naturally regulated by including the transition radiation.

  13. Radiation Reaction in Quantum Vacuum

    E-Print Network [OSTI]

    Keita Seto

    2014-11-02T23:59:59.000Z

    From the development of the electron theory by H. A. Lorentz in 1906, many authors have tried to reformulate this model named "radiation reaction". P. A. M. Dirac derived the relativistic-classical electron model in 1938, which is now called the Lorentz-Abraham-Dirac model. But this model has the big difficulty of the run-away solution. Recently, this equation has become important for ultra-intense laser-electron (plasma) interactions. Therefore, it is desirable to stabilize this model of the radiation reaction for estimations. Via my recent research, I found a stabilized model of radiation reaction in quantum vacuum. This leads us to an updated Fletcher-Millikan's charge to mass ratio including radiation, de/dm, derived as the 4th order tensor measure. In this paper, I will discuss the latest update of the model and the ability of the equation of motion with radiation reaction in quantum vacuum via photon-photon scatterings.

  14. Marseglia Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an Group JumpNew Hampshire:Marin EnergyChoiceMarseglia Group

  15. Groups

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/ExplorationGoods | OpenInformationMagnetics

  16. Radiation events in astronomical CCD images

    E-Print Network [OSTI]

    2001-01-01T23:59:59.000Z

    268. 10. On the Rates of Radiation Events in CCDs (Excerpt23 Jan 2002 LBNL-49316 Radiation events in astronomical CCDof depleted silicon to ionizing radiation is a nuisance to

  17. High efficiency, radiation-hard solar cells

    E-Print Network [OSTI]

    Ager III, J.W.; Walukiewicz, W.

    2004-01-01T23:59:59.000Z

    J. F. Geisz, Superior radiation resistance of In 1-x Ga x Nand H. Itoh, Proton radiation analysis of multi-junction56326 High efficiency, radiation-hard solar cells Final

  18. Infra-Red Process for Colour Fixation on Fabrics

    E-Print Network [OSTI]

    Biau, D.; Raymond, D. J.

    1983-01-01T23:59:59.000Z

    Infra-red radiations find wide application in industrial processes as heating, drying, stoving and forming. The results are often far better than those from the other techniques: convection oven, gas IR etc . They come from the electric IR specific...

  19. Numerical investigation of the heating process inside an industrial furnace

    E-Print Network [OSTI]

    Wolper, Pierre

    Numerical investigation of the heating process inside an industrial furnace Proposition: Combined furnace taking into account convective, conductive and radiative heat transfer. The model: Catalysis, Energy Materials, Performance Materials and Recycling. Each business area is divided into market

  20. Infra-Red Process for Colour Fixation on Fabrics

    E-Print Network [OSTI]

    Biau, D.; Raymond, D. J.

    1983-01-01T23:59:59.000Z

    Infra-red radiations find wide application in industrial processes as heating, drying, stoving and forming. The results are often far better than those from the other techniques: convection oven, gas IR etc . They come from the electric IR specific...