Weak Interaction and Cosmology
P. R. Silva
2008-04-16T23:59:59.000Z
In this paper we examine the connection among the themes: the cosmological constant, the weak interaction and the neutrino mass. Our main propose is to review and modify the ideas first proposed by Hayakawa [ Prog. Theor. Phys.Suppl.,532(1965).], in the light of the new-fashioned features of contemporary physics. Assuming the pressure of a Fermi gas of neutrinos should be balanced by its gravitational attraction, we evaluate the mass of the background neutrino and its number.The neutrino mass here evaluated is compatible with the known value for the cosmological constant (or dark energy).Taking in account the role played by the weak forces experimented by the neutrinos, we also determined a value for the electroweak mixing angle. For sake of comparison, an alternative evaluation of the neutrino mass is also done.
A Universe Without Weak Interactions
Harnik, Roni; Kribs, Graham D.; Perez, Gilad
2006-01-01T23:59:59.000Z
stars in the Weakless Universe begin fusion by the fastof obtaining a habitable universe. Acknowledgments We11795, hep-ph/0604027 A Universe Without Weak Interactions
Weak Interaction | Jefferson Lab
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5(Million Cubic Feet) Oregon (Including Vehicle Fuel) (MillionStructural Basis of5, 2014 |andWater Water EERE plays a keythe Geeks: Celebrating BlackWeak
Weak Interaction Studies with 6He
A. Knecht; Z. T. Alexander; Y. Bagdasarova; T. M. Cope; B. G. Delbridge; X. Flechard; A. Garcia; R. Hong; E. Lienard; P. Mueller; O. Naviliat-Cuncic; A. S. C. Palmer; R. G. H. Robertson; D. W. Storm; H. E. Swanson; S. Utsuno; F. Wauters; W. Williams; C. Wrede; D. W. Zumwalt
2012-10-19T23:59:59.000Z
The 6He nucleus is an ideal candidate to study the weak interaction. To this end we have built a high-intensity source of 6He delivering ~10^10 atoms/s to experiments. Taking full advantage of that available intensity we have performed a high-precision measurement of the 6He half-life that directly probes the axial part of the nuclear Hamiltonian. Currently, we are preparing a measurement of the beta-neutrino angular correlation in 6He beta decay that will allow to search for new physics beyond the Standard Model in the form of tensor currents.
Study atom-vacuum interaction by the weak measurement technique
M. Zhang; S. Y. Zhu
2014-10-27T23:59:59.000Z
Quantum weak measurement attracts much interests recently [Rev. Mod. Phys. 86, 307 (2014)], as it could amplify some weak signals and provide a technique to observe the nonclassical phenomenons. Here, we apply this technique to study the interaction between the free atoms and the vacuum in a cavity. Due to the gradient field in the vacuum cavity, the external orbital motions and the internal electronic states of the atoms can be weakly coupled via the atom-field electric-dipole interaction. We show an interesting phenomenon that, within the properly post-selected internal states, the weak atom-vacuum interaction could generate a large change to the external motions of atoms.
POSTDOCTORAL RESEARCH ASSOCIATE Weak Interactions Group
Devoret, Michel H.
double beta decay experiment under construction at Gran Sasso National&D for a future South Pole deployment. CUORE is a cryogenic bolometer-based neutrinoless
129A Lecture Notes Weak Interactions II
Murayama, Hitoshi
-by-three unitarity rotations, given by the group SU(3) (after removing the overall phase part). There are eight generators for this group, given by Gell-Mann's lambda matrices (with a factor of 1/2). There are eight, the SU(2) group, there are three generators given by the three Pauli matrices 1, 2, 3 (with a factor of 1
Nuclear Constraints on the Weak Nucleon-Nucleon Interaction
W. C. Haxton
2008-02-21T23:59:59.000Z
I discuss the current status of efforts to constrain the strangeness-conserving weak hadronic interaction, which can be isolated in nuclear systems because of the associated parity violation.
Interaction of vortices in weakly viscous planar flows Thierry Gallay
Gallay, Thierry
Interaction of vortices in weakly viscous planar flows Thierry Gallay UniversitÂ´e de Grenoble I Institut Fourier, UMR CNRS 5582 B.P. 74 F-38402 Saint-Martin-d'H`eres, France Thierry.Gallay
Interaction of vortices in weakly viscous planar flows Thierry Gallay
Gallay, Thierry
Interaction of vortices in weakly viscous planar flows Thierry Gallay Universitâ??e de Grenoble I Institut Fourier, UMR CNRS 5582 B.P. 74 FÂ38402 SaintÂMartinÂd'Hâ??eres, France Thierry.Gallay
A comparison of weak-turbulence and PIC simulations of weak electron-beam plasma interaction
Ratcliffe, Heather; Rozenan, Mohammed B Che; Nakariakov, Valery
2014-01-01T23:59:59.000Z
Quasilinear theory has long been used to treat the problem of a weak electron beam interacting with plasma and generating Langmuir waves. Its extension to weak-turbulence theory treats resonant interactions of these Langmuir waves with other plasma wave modes, in particular ion-sound waves. These are strongly damped in plasma of equal ion and electron temperatures, as sometimes seen in, for example, the solar corona and wind. Weak turbulence theory is derived in the weak damping limit, with a term describing ion-sound wave damping then added. In this paper we use the EPOCH particle-in-cell code to numerically test weak turbulence theory for a range of electron-ion temperature ratios. We find that in the cold ion limit the results agree well, but increasing ion temperature the three-wave resonance becomes broadened in proportion to the ion-sound wave damping rate. This may be important in, for example, the theory of solar radio bursts, where the spectrum of Langmuir waves is critical. Additionally we establish...
Gravitational Interaction of Higgs Boson and Weak Boson Scattering
Zhong-Zhi Xianyu; Jing Ren; Hong-Jian He
2013-11-04T23:59:59.000Z
With the LHC discovery of a 125 GeV Higgs-like boson, we study gravitational interaction of the Higgs boson via the unique dimension-4 operator involving Higgs doublet and scalar curvature, $\\,\\xi H^\\dag H R\\,$, with nonminimal coupling $\\,\\xi\\,$. This Higgs portal term can be transformed away in Einstein frame and induces gauge-invariant effective interactions in the Higgs sector. We study the weak boson scattering in Einstein frame, and explicitly demonstrate the longitudinal-Goldstone boson equivalence theorem in the presence of $\\,\\xi\\,$ coupling. With these, we derive unitarity bound on the Higgs gravitational coupling $\\,\\xi\\,$ in Einstein frame, which is stronger than that inferred from the current LHC Higgs measurements. We further study $\\xi$-dependent weak boson scattering cross sections at TeV scale, and propose a new LHC probe of the Higgs-gravity coupling $\\,\\xi\\,$ via weak boson scattering experiments.
Weak interactions of quarks and leptons: experimental status
Wojcicki, S.
1984-09-01T23:59:59.000Z
The present experimental status of weak interactions is discussed with emphasis on the problems and questions and on the possible lines of future investigations. Major topics include; (1) the quark mixing matrix, (2) CP violation, (3) rare decays, (4) the lepton sector, and (5) right handed currents. 118 references. (WHK)
Collective transport of weakly interacting molecular motors with Langmuir kinetics
Sameep Chandel; Abhishek Chaudhuri; Sudipto Muhuri
2015-01-09T23:59:59.000Z
Filament based intracellular transport involves the collective action of molecular motor proteins. Experimental evidences suggest that microtubule (MT) filament bound motor proteins such as {\\it kinesins} weakly interact among themselves during transport and with the surrounding cellular environment. Motivated by these observations we study a driven lattice gas model for collective unidirectional transport of molecular motors on open filament, which incorporates the short-range interactions between the motors on filaments and couples the transport process on filament with surrounding cellular environment through adsorption-desorption Langmuir (LK) kinetics of the motors. We analyse this model within the framework of a Mean Field (MF) theory in the limit of {\\it weak} interactions between the motors. We point to the mapping of this model with the non-conserved version of Katz-Lebowitz-Spohn (KLS) model. The system exhibits rich phase behavior with variety of inhomogeneous phases including localized shocks in the bulk of the filament. We obtain the steady state density and current profiles and analyse their variation as function of the strength of interaction. We compare these MF results with Monte Carlo simulations and find that the MF analysis shows reasonably good agreement as long as the motors are weakly interacting. We also construct the non-equilibrium MF phase diagram.
Zhao, Xiaopeng, E-mail: xpzhao@nwpu.edu.cn; Song, Kun [Smart Materials Laboratory, Department of Applied Physics, Northwestern Polytechnical University, Xi’an, 710129 (China)
2014-10-15T23:59:59.000Z
Metamaterials are artificial media designed to control electromagnetic wave propagation. Due to resonance, most present-day metamaterials inevitably suffer from narrow bandwidth, extremely limiting their practical applications. On the basis of tailored properties, a metamaterial within which each distinct unit cell resonates at its inherent frequency and has almost no coupling effect with the other ones, termed as weak interaction system, can be formulated. The total response of a weak interaction system can be treated as an overlap of the single resonance spectrum of each type of different unit cells. This intriguing feature therefore makes it possible to accomplish multiband or broadband metamaterials in a simple way. By introducing defects into metamaterials to form a weak interaction system, multiband and broadband electromagnetic metamaterials have first been experimentally demonstrated by our group. The similar concept can also be readily extended to acoustic and seismic metamaterials.
Hasinoff, M D; Azuelos, Georges; Bertl, W; Blecher, M; Chen, C Q; Depommier, P; Doyle, B; Von Egidy, T; Gorringe, T P; Gumplinger, P; Henderson, R; Jonkmans, G; Larabee, A J; MacDonald, J A; McDonald, S C; Munro, M H; Poutissou, J M; Poutissou, R; Robertson, B C; Sample, D G; Schott, W; Taylor, G N; Veillette, S; Wright, D H
1992-01-01T23:59:59.000Z
Determination of the semi-leptonic weak interaction pseudoscalar coupling constant , g$_{P}$, using the reaction $\\mu^{-}$p --> $\
Exploring the Environmental Preference of Weak Interactions in ( / )8 Barrel Proteins
Babu, M. Madan
Exploring the Environmental Preference of Weak Interactions in ( / )8 Barrel Proteins S of Biotechnology and Chemical Engineering, Vellore Institute of Technology, Vellore, India 2 MRC Laboratory of Molecular Biology, Cambridge, United Kingdom 3 National Center for Biotechnology Information, National
Search for Low-Mass Weakly Interacting Massive Particles with SuperCDMS
Agnese, R.
We report a first search for weakly interacting massive particles (WIMPs) using the background rejection capabilities of SuperCDMS. An exposure of 577 kg days was analyzed for WIMPs with mass < 30??GeV/c[superscript 2], ...
HISTORY OF WEAK INTERACTIONS. (Technical Report) | SciTech Connect
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article)41clothThe Bonneville Power AdministrationHawaiiEnergyFloridaOutlook MaryVehicles and7Energy6-000 CASLHILO:HISTORY OF WEAK
Tsung-Dao Lee, Weak Interactions, and Nonconservation of Parity
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) |govInstrumentsmfrirtA Journey InsideMicroBooNE LArTPC Sarah Lockwitz, FNALTransparency:HINDATsung-Dao Lee, Weak
DYNAMIC INTERACTION FACTORS FOR FLOATING PILE GROUPS
Entekhabi, Dara
DYNAMIC INTERACTION FACTORS FOR FLOATING PILE GROUPS By George Gazetas,1 Ke Fan,2 Amir Kaynia,3 at the head of each pile. These readily applicable graphs have been developed with a rigorous analytical- portional to depth) and three pile separation distances (3,5, and 10 pile-diamctcrs). A wide range of values
Neutrinos, Weak Interactions, and r-process Nucleosynthesis
A. B. Balantekin
2006-08-18T23:59:59.000Z
Two of the key issues in understanding the neutron-to-proton ratio in a core-collapse supernova are discussed. One of these is the behavior of the neutrino-nucleon cross sections as supernova energies. The other issue is the many-body properties of the neutrino gas near the core when both one- and two-body interaction terms are included.
Weak interaction processes in nuclei involving neutrinos and CDM candidates
Kosmas, T. S.; Tsakstara, V. [Theoretical Physics Section, University of Ioannina, GR 45110 Ioannina (Greece); Divari, P. C. [Department of Physical Sciences, Hellenic Army Academy, Vari 16673, Attica (Greece); Sinatkas, J. [Department of Informatics and Computer Technology, TEI of Western Macedonia, GR-52100 Kastoria (Greece)
2009-11-09T23:59:59.000Z
In this work, we concentrate on the nuclear physics aspects of low-energy neutrinos and in particular on problems related to neutrino detection by terrestrial experiments, neutrino astrophysics and neutrino-nucleus interactions. The detection of low-flux neutrinos, feasible by measuring the energy recoil of the recoiling nucleus with gaseous-detectors having very-low threshold-energy, is carried out in conjunction with direct-detection of cold dark matter events and nonstandard physics searches like the neutrinoless double beta decay.
Gromov, N. A., E-mail: gromov@dm.komisc.ru [Komi Science Center UrD RAS, Department of Mahematics (Russian Federation)
2013-09-15T23:59:59.000Z
The very weak neutrino-matter interactions are explained with the help of the gauge group contraction of the standard Electroweak Model. The mathematical contraction procedure is connected with the energy dependence of the interaction cross section for neutrinos and corresponds to the limiting case of the Electroweak Model at low energies. Contraction parameter is connected with the universal Fermi constant of weak interactions and neutrino energy as j{sup 2}(s) = {radical}(G{sub F} s)
Hemmerle, Arnaud; Charitat, Thierry; Lecuyer, Sigolčne; Fragneto, Giovanna; Daillant, Jean; 10.1073/pnas.1211669109
2013-01-01T23:59:59.000Z
Understanding interactions between membranes requires measurements on well-controlled systems close to natural conditions, in which fluctuations play an important role. We have determined, by grazing incidence X-ray scattering, the interaction potential between two lipid bilayers, one adsorbed on a solid surface and the other floating close by. We find that interactions in this highly hydrated model system are two orders of magnitude softer than in previously reported work on multilayer stacks. This is attributed to the weak electrostatic repulsion due to the small fraction of ionized lipids in supported bilayers with a lower number of defects. Our data are consistent with the Poisson-Boltzmann theory, in the regime where repulsion is dominated by the entropy of counter ions. We also have unique access to very weak entropic repulsion potentials, which allowed us to discriminate between the various models proposed in the literature. We further demonstrate that the interaction potential between supported bilaye...
Weak lensing study of low mass galaxy groups: implications for Omega_m
H. Hoekstra; M. Franx; K. Kuijken; R. G. Carlberg; H. K. C. Yee; H. Lin; S. L. Morris; P. B. Hall; D. R. Patton; M. Sawicki; G. D. Wirth
2000-12-07T23:59:59.000Z
We report on the first measurement of the average mass and mass-to-light ratio of galaxy groups by analysing the weak lensing signal induced by these systems. The groups, which have velocity dispersions of 50-400 km/s, have been selected from the Canadian Network for Observational Cosmology Field Galaxy Redshift Survey (CNOC2). This survey allows the identification of a large number of groups with redshifts ranging from z=0.12-0.55, ideal for a weak lensing analysis of their mass distribution. For our analysis we use a sample of 50 groups which are selected on the basis of a careful dynamical analysis of group candidates. We detect a signal at the 99% confidence limit. The best fit singular isothermal sphere model yields an Einstein radius of 0.72+-0.29". This corresponds to a velocity dispersion of 274^{+48}_{-59} km/s (using photometric redshift distributions for the source galaxies), which is in good agreement with the dynamical estimate. Under the assumption that the light traces the mass, we find an average mass-to-light ratio of 191+-83 h Msun/Lsun in the restframe B band. Unlike dynamical estimates, this result is insensitive to problems associated with determining group membership. After correction of the observed mass-to-light ratio for luminosity evolution to z=0, we find 254+-110 h Msun/Lsun, lower than what is found for rich clusters. We use the observed mass-to-light ratio to estimate the matter density of the universe, for which we find Omega_m=0.19+-0.10 (Omega_Lambda=0), in good agreement with other recent estimates. For a closed universe, we obtain Omega_m=0.13+-0.07.
APS 2013 W.K.H Panofsky Prize 1 The Search for Weakly Interacting
California at Berkeley, University of
for physics beyond standard model! Tev scale or totally different origin? #12;B.Sadoulet APS 2013 WB.Sadoulet APS 2013 W.K.H Panofsky Prize 1 The Search for Weakly Interacting Massive Particle Dark Matter Science motivations and strategies Is dark matter made of particles? What physics? Complementarity
Gravitational ultrarelativistic spin-orbit interaction and the weak equivalence principle
Roman Plyatsko
2005-07-07T23:59:59.000Z
It is shown that the gravitational ultrarelativistic spin-orbit interaction violates the weak equivalence principle in the traditional sense. This fact is a direct consequence of the Mathisson-Papapetrou equations in the frame of reference comoving with a spinning test particle. The widely held assumption that the deviation of a spinning test body from a geodesic trajectory is caused by tidal forces is not correct
Modeling nuclear weak-interaction processes with relativistic energy density functionals
Paar, N; Vale, D; Vretenar, D
2015-01-01T23:59:59.000Z
Relativistic energy density functionals have become a standard framework for nuclear structure studies of ground-state properties and collective excitations over the entire nuclide chart. We review recent developments in modeling nuclear weak-interaction processes: charge-exchange excitations and the role of isoscalar proton-neutron pairing, charged-current neutrino-nucleus reactions relevant for supernova evolution and neutrino detectors, and calculation of beta-decay rates for r-process nucleosynthesis.
Aquatic Ecology Aquatic ecology group studies ecological interactions
Aquatic Ecology Aquatic ecology group studies ecological interactions between biota and their environment in freshwater and marine ecosystems. The group focuses particularly on the ecological interactions and their underlying ecological processes necessary to sustain ecosystem structure and function in their natural state
Search for Low-Mass Weakly Interacting Massive Particles with SuperCDMS
Agnese, R.; Anderson, Alan J.; Asai, M.; balakishiyeva, D.; Basu Thakur, R.; Bauer, D. A.; Beaty, John; Billard, J.; Borgland, A.; Bowles, M. A.; Brandt, D.; Brink, P. L.; Bunker, R.; Cabrera, B.; Caldwell, D. O.; Cerdeno, D. G.; Chagani, H.; Chen, Y.; Cherry, M.; Cooley, J.; Cornell, B.; Crewdson, C. H.; Cushman, Priscilla B.; Daal, M.; DeVaney, D.; DeStefano, PC F.; Do Couto E Silva, E.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Godfrey, G. L.; Golwala, S. R.; Hall, Jeter C.; Hansen, S.; Harris, Harold R.; Hertel, S. A.; Hines, B. A.; Hofer, T.; Holmgren, D.; Hsu, L.; Huber, M. E.; Jastram, A.; Kamaev, O.; Kara, B.; Kelsey, M. H.; Kenany, S.; Kennedy, A.; Kiveni, M.; Koch, K.; Leder, A.; Loer, B.; Lopez Asamar, E.; Mahapatra, R.; Mandic, V.; Martinez, C.; McCarthy, K. A.; Mirabolfathi, M.; Moffatt, R. A.; Nelson, R. H.; Novak, L.; Page, K.; Partridge, R.; Pepin, M.; Phipps, A.; Platt, M.; Prasad, K.; Pyle, M.; Qiu, H.; Rau, W.; Redl, P.; Reisetter, A.; Resch, R. W.; Ricci, Y.; Ruschman, M.; Saab, T.; Sadoulet, B.; Sander, J.; Schmitt, R.; Schneck, K.; Schnee, Richard; Scorza, A.; Seitz, D.; Serfass, B.; Shank, B.; Speller, D.; Tomada, A.; Upadhyayula, S.; Villano, A. N.; Welliver, B.; Wright, D. H.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, J.
2014-06-01T23:59:59.000Z
We report a first search for weakly interacting massive particles (WIMPs) using the background rejection capabilities of SuperCDMS. An exposure of 577 kg-days was analyzed for WIMPs with mass < 30 GeV/c2, with the signal region blinded. Eleven events were observed after unblinding. We set an upper limit on the spin-independent WIMP-nucleon cross section of 1:2 10-42cm2 at 8 GeV/c2. This result is in tension with WIMP interpretations of recent experiments and probes new parameter space for WIMP-nucleon scattering for WIMP masses < 6 GeV/c2.
Polynomial-time algorithm for simulation of weakly interacting quantum spin systems
Sergey Bravyi; David DiVincenzo; Daniel Loss
2007-07-12T23:59:59.000Z
We describe an algorithm that computes the ground state energy and correlation functions for 2-local Hamiltonians in which interactions between qubits are weak compared to single-qubit terms. The running time of the algorithm is polynomial in the number of qubits and the required precision. Specifically, we consider Hamiltonians of the form $H=H_0+\\epsilon V$, where H_0 describes non-interacting qubits, V is a perturbation that involves arbitrary two-qubit interactions on a graph of bounded degree, and $\\epsilon$ is a small parameter. The algorithm works if $|\\epsilon|$ is below a certain threshold value that depends only upon the spectral gap of H_0, the maximal degree of the graph, and the maximal norm of the two-qubit interactions. The main technical ingredient of the algorithm is a generalized Kirkwood-Thomas ansatz for the ground state. The parameters of the ansatz are computed using perturbative expansions in powers of $\\epsilon$. Our algorithm is closely related to the coupled cluster method used in quantum chemistry.
Lian-Ao Wu; Claire X. Yu; Dvira Segal
2012-07-30T23:59:59.000Z
We demonstrate an exact mapping of a class of models of two interacting qubits in thermal reservoirs to two separate spin-bath problems. Based on this mapping, exact numerical simulations of the qubits dynamics can be performed, beyond the weak system-bath coupling limit. Given the time evolution of the system, we study, in a numerically exact way, the dynamics of entanglement between pair of qubits immersed in boson thermal baths, showing a rich phenomenology, including an intermediate oscillatory behavior, the entanglement sudden birth, sudden death, and revival. We find that stationary entanglement develops between the qubits due to their coupling to a thermal environment, unlike the isolated qubits case in which the entanglement oscillates. We also show that the occurrence of entanglement sudden death in this model depends on the portion of the zero and double excitation states in the subsystem initial state. In the long-time limit, analytic expressions are presented at weak system-bath coupling, for a range of relevant qubit parameters.
Weak Interaction Rates of Nuclei Near the R-Process Paths
Borzov, I. N.; Cuenca-Garcia, J. J.; Langanke, K.; Martinez-Pinedo, G.; Kelic, A. [Gesellschaft fuer Schwerionenforschung, Darmstadt, D-64291 (Germany); Zinner, N. T. [Institute for Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C (Denmark)
2007-05-22T23:59:59.000Z
Systematic calculations of the beta- and neutrino-induced rates are performed for the nuclei at Z=92-96 approaching the possible r-process paths in vicinity of the spherical neutron shell at N=184. The nuclear ground states are treated self-consistently in the framework of the local energy-density functional (DF) theory. The beta-strength-functions of the Gamow-Teller and first-forbidden decays are calculated within the continuum QRPA approach of the finite Fermi system theory. The beta-decay half-lives and beta-delayed neutron emission probabilities are analyzed simultaneously. Within the same approach the weak interaction rates are calculated for the fission products around Z{approx_equal}50, N=82 forming the A=130 peak in the r-process isotopic abundance. A shell-model study of selected Pd isotopes is performed. An analysis of available experimental data and theoretical predictions from the FRDM is also presented.
Long, Mingsheng; Gong, Youpin; Wei, Xiangfei; Zhu, Chao; Xu, Jianbao; Liu, Ping; Guo, Yufen; Li, Weiwei; Liu, Liwei, E-mail: lwliu2007@sinano.ac.cn [Key Laboratory of Nanodevices and Applications-CAS and Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 (China); Liu, Guangtong [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)
2014-04-14T23:59:59.000Z
We fabricated a vertical structure device, in which graphene is sandwiched between two asymmetric ferromagnetic electrodes. The measurements of electron and spin transport were performed across the combined channels containing the vertical and horizontal components. The presence of electron-electron interaction (EEI) was found not only at low temperatures but also at moderate temperatures up to ?120?K, and EEI dominates over weak localization (WL) with and without applying magnetic fields perpendicular to the sample plane. Moreover, spin valve effect was observed when magnetic filed is swept at the direction parallel to the sample surface. We attribute the EEI and WL surviving at a relatively high temperature to the effective suppress of phonon scattering in the vertical device structure. The findings open a way for studying quantum correlation at relatively high temperature.
Anne M Green
2001-10-04T23:59:59.000Z
Competitive limits on the weakly interacting massive particle (WIMP) spin-independent scattering cross section are currently being produced by 76Ge detectors originally designed to search for neutrinoless double beta decay, such as the Heidelberg-Moscow and IGEX experiments. In the absence of background subtraction, limits on the WIMP interaction cross section are set by calculating the upper confidence limit on the theoretical event rate, given the observed event rate. The standard analysis technique involves calculating the 90% upper confidence limit on the number of events in each bin, and excluding any set of parameters (WIMP mass and cross-section) which produces a theoretical event rate for any bin which exceeds the 90% upper confidence limit on the event rate for that bin. We show that, if there is more than one energy bin, this produces exclusion limits that are actually at a lower degree of confidence than 90%, and are hence erroneously tight. We formulate criteria which produce true 90% confidence exclusion limits in these circumstances, including calculating the individual bin confidence limit for which the overall probability that no bins exceeds this confidence limit is 90% and calculating the 90% minimum confidence limit on the number of bins which exceed their individual bin 90% confidence limits. We then compare the limits on the WIMP cross-section produced by these criteria with those found using the standard technique, using data from the Heidelberg-Moscow and IGEX experiments.
Washington at Seattle, University of - Department of Physics, Electroweak Interaction Research Group
Chapter 3 Thermal Distributions, Saha Equation, Weak Interactions This chapter deals with some · the Saha equation · low-energy weak interactions 3.1 Thermal distributions The thermal distributions to be considered: the Saha equation discussion will il- lustrate this.) The parameter µ, the chemical potential
parameter mismatch when cooling down the sample from the graphene preparation temperature to the measurement to the preparation conditions. All these effects are consistent with initial growth and subsequent pining of grapheneLocal deformations and incommensurability of high quality epitaxial graphene on a weakly
Gunasekara, Nirosha [Department of Laboratory Medicine and Pathology, University of Alberta, 5B4.21 WCM Health Science Centre, 8440-112th Street, Edmonton, Alberta, Canada T6G 2R7 (Canada)] [Department of Laboratory Medicine and Pathology, University of Alberta, 5B4.21 WCM Health Science Centre, 8440-112th Street, Edmonton, Alberta, Canada T6G 2R7 (Canada); Sykes, Brian, E-mail: brian.sykes@ualberta.ca [Department of Biochemistry, 4-19B Medical Sciences Bldg., University of Alberta Edmonton, Alberta, Canada T6G 2H7 (Canada)] [Department of Biochemistry, 4-19B Medical Sciences Bldg., University of Alberta Edmonton, Alberta, Canada T6G 2H7 (Canada); Hugh, Judith, E-mail: judithh@ualberta.ca [Department of Laboratory Medicine and Pathology, University of Alberta, 5B4.21 WCM Health Science Centre, 8440-112th Street, Edmonton, Alberta, Canada T6G 2R7 (Canada)] [Department of Laboratory Medicine and Pathology, University of Alberta, 5B4.21 WCM Health Science Centre, 8440-112th Street, Edmonton, Alberta, Canada T6G 2R7 (Canada)
2012-05-18T23:59:59.000Z
Highlights: Black-Right-Pointing-Pointer MUC1 binds the Src-SH3 domain potentially triggering Src dependent cell migration. Black-Right-Pointing-Pointer NMR Spectroscopy was used to monitor MUC1-CD and Src SH3 domain titrations. Black-Right-Pointing-Pointer MUC1-CD peptides bind with a low affinity (K{sub d} of 2-3 mM) to a non-canonical site. Black-Right-Pointing-Pointer Weak interactions may mediate dynamic processes like migration. Black-Right-Pointing-Pointer The MUC1-CD and Src-SH3 interaction may be a prime target to inhibit cell migration. -- Abstract: Breast cancer causes death through cancer cell migration and subsequent metastasis to distant organs. In vitro, the MUC1 mucin can mediate breast cancer cell migration by binding to intercellular adhesion molecule-1 (ICAM-1). This migration is dependent on MUC1 cytoplasmic domain (MUC1-CD) activation of the non-receptor tyrosine kinase, Src, possibly through competitive displacement of an inhibitory Src intramolecular SH3 binding. Therefore, we characterized the binding site and affinity of the MUC1-CD for Src-SH3 using multidimensional nuclear magnetic resonance (NMR) spectroscopy to monitor the titration of the {sup 15}N labeled Src-SH3 domain with synthetic native and mutant peptides of MUC1-CD. The results revealed that the dissociation constant (K{sub d}) for the interaction of the native MUC1-CD peptides and Src-SH3 domain was weak with a K{sub d} of 2-3 mM. Notably, the SH3 residues most perturbed upon peptide binding were located outside the usual hydrophobic binding cleft in a previously described alternate binding site on the Src-SH3, suggesting that MUC1-CD binds to a non-canonical site. The binding characteristics outlined here suggest that the interaction between Src-SH3 and MUC1-CD represents a novel weak electrostatic interaction of the type which is increasingly recognized as important in transient and dynamic protein complexes required for cell migration and signal transduction. As such, this study forms the foundation for the design of specific inhibitors of this interaction which may target breast cancer metastases with exquisite specificity.
Resonance reactions and enhancement of weak interactions in collisions of cold molecules
Flambaum, V. V.; Ginges, J. S. M. [School of Physics, University of New South Wales, Sydney 2052 (Australia)
2006-08-15T23:59:59.000Z
With the creation of ultracold atoms and molecules, a new type of chemistry - 'resonance' chemistry - emerges: chemical reactions can occur when the energy of colliding atoms and molecules matches a bound state of the combined molecule (Feshbach resonance). This chemistry is rather similar to reactions that take place in nuclei at low energies. In this paper we suggest some problems for future experimental and theoretical work related to the resonance chemistry of ultracold molecules. Molecular Bose-Einstein condensates are particularly interesting because in this system collisions and chemical reactions are extremely sensitive to weak fields; also, a preferred reaction channel may be enhanced due to a finite number of final states. The sensitivity to weak fields arises due to the high density of narrow compound resonances and the macroscopic number of molecules with kinetic energy E=0 (in the ground state of a mean-field potential). The high sensitivity to the magnetic field may be used to measure the distribution of energy intervals, widths, and magnetic moments of compound resonances and study the onset of quantum chaos. A difference in the production rate of right-handed and left-handed chiral molecules may be produced by external electric E and magnetic B fields and the finite width {gamma} of the resonance (correlation {gamma}E{center_dot}B). The same effect may be produced by the parity-violating energy difference in chiral molecules.
G. Soti; F. Wauters; M. Breitenfeldt; P. Finlay; P. Herzog; A. Knecht; U. Köster; I. S. Kraev; T. Porobic; P. N. Prashanth; I. S. Towner; C. Tramm; D. Zákoucký; N. Severijns
2014-09-05T23:59:59.000Z
Precision measurements at low energy search for physics beyond the Standard Model in a way complementary to searches for new particles at colliders. In the weak sector the most general $\\beta$ decay Hamiltonian contains, besides vector and axial-vector terms, also scalar, tensor and pseudoscalar terms. Current limits on the scalar and tensor coupling constants from neutron and nuclear $\\beta$ decay are on the level of several percent. The goal of this paper is extracting new information on tensor coupling constants by measuring the $\\beta$-asymmetry parameter in the pure Gamow-Teller decay of $^{67}$Cu, thereby testing the V-A structure of the weak interaction. An iron sample foil into which the radioactive nuclei were implanted was cooled down to milliKelvin temperatures in a $^3$He-$^4$He dilution refrigerator. An external magnetic field of 0.1 T, in combination with the internal hyperfine magnetic field, oriented the nuclei. The anisotropic $\\beta$ radiation was observed with planar high purity germanium detectors operating at a temperature of about 10\\,K. An on-line measurement of the $\\beta$ asymmetry of $^{68}$Cu was performed as well for normalization purposes. Systematic effects were investigated using Geant4 simulations. The experimental value, $\\tilde{A}$ = 0.587(14), is in agreement with the Standard Model value of 0.5991(2) and is interpreted in terms of physics beyond the Standard Model. The limits obtained on possible tensor type charged currents in the weak interaction hamiltonian are -0.045 $< (C_T+C'_T)/C_A <$ 0.159 (90\\% C.L.). The obtained limits are comparable to limits from other correlation measurements in nuclear $\\beta$ decay and contribute to further constraining tensor coupling constants.
Emergent AdS3 and BTZ Black Hole from Weakly Interacting Hot 2d CFT
Soo-Jong Rey; Yasuaki Hikida
2006-05-02T23:59:59.000Z
We investigate emergent holography of weakly coupled two-dimensional hyperK\\"ahler sigma model on cotangent bundle of (N-1)-dimensional complex projective space at zero and finite temperature. The sigma model is motivated by the spacetime conformal field theory dual to the near-horizon geometry of Q1 D1-brane bound to Q5 D5-brane wrapped on four-torus times circle, where N = Q1*Q5. The sigma model admits nontrivial instanton for all N greater than or equal to 2, which serves as a local probe of emergent holographic spacetime. We define emergent geometry of the spacetime as that of instanton moduli space via Hitchin's information metric. At zero temperature, we find that emergent geometry is AdS3. At finite temperature, time-periodic instanton is mappable to zero temperature instanton via conformal transformation. Utilizing the transformation, we show that emergent geometry is precisely that of the non-extremal, non-rotating BTZ black hole.
Changing small group interaction through visual reflections of social behavior
DiMicco, Joan Morris
2005-01-01T23:59:59.000Z
People collaborating in groups have potential to produce higher-quality output than individuals working alone, due to the pooling of resources, information, and skills. Yet social psychologists have determined that groups ...
Ning Wu
2007-03-21T23:59:59.000Z
For a long time, it is generally believed that spin-spin interactions can only exist in a theory where Lorentz symmetry is gauged, and a theory with spin-spin interactions is not perturbatively renormalizable. But this is not true. By studying the motion of a spinning particle in gravitational field, it is found that there exist spin-spin interactions in gauge theory of gravity. Its mechanism is that a spinning particle will generate gravitomagnetic field in space-time, and this gravitomagnetic field will interact with the spin of another particle, which will cause spin-spin interactions. So, spin-spin interactions are transmitted by gravitational field. The form of spin-spin interactions in post Newtonian approximations is deduced. This result can also be deduced from the Papapetrou equation. This kind of interactions will not affect the renormalizability of the theory. The spin-spin interactions will violate the weak equivalence principle, and the violation effects are detectable. An experiment is proposed to detect the effects of the violation of the weak equivalence principle.
Assessing group interaction with social language network analysis.
Pennebaker, James (UT Austin); Scholand, Andrew Joseph; Tausczik, Yla R. (UT Austin)
2010-04-01T23:59:59.000Z
In this paper we discuss a new methodology, social language network analysis (SLNA), that combines tools from social language processing and network analysis to assess socially situated working relationships within a group. Specifically, SLNA aims to identify and characterize the nature of working relationships by processing artifacts generated with computer-mediated communication systems, such as instant message texts or emails. Because social language processing is able to identify psychological, social, and emotional processes that individuals are not able to fully mask, social language network analysis can clarify and highlight complex interdependencies between group members, even when these relationships are latent or unrecognized.
CH-{\\pi} interaction-induced deep orbital deformation in a benzene-methane weak binding system
Li, Jianfu
2015-01-01T23:59:59.000Z
The nonbonding interaction between benzene and methane, called CH-{\\pi} interaction, plays an important role in physical, chemical, and biological fields. CH-{\\pi} interaction can decrease the system total energy and promote the formation of special geometric configurations. This work investigates systemically the orbital distribution and composition of the benzene-methane complex for the first time using ab initio calculation based on different methods and basis sets. Surprisingly, we find strong deformation in HOMO-4 and LUMO+2 induced by CH-{\\pi} interaction, extending the general view that nonbonding interaction does not cause orbital change of molecules.
Ratcliff, Robert R.
1989-01-01T23:59:59.000Z
as weak or nonexistent shock waves, a slowly increasing adverse pressure gradient to limit boundary layer separation, a center of pressure loca, tion giving a desirable pitch- ing moment, or an efficient spanwise loa. ding. The designer may also use wind...-tunnel tests of successful airfoils as an aid in picking a desirable pressure distribution. The direct-inverse technique has been successfully used in stretched and sheared Carte- sian coordinate systems' ' '' and most recently by Gaily ' in a curvilinear...
Schweitzer, M. [Oak Ridge National Lab., TN (United States); English, M.; Schexnayder, S.; Altman, J. [Univ. of Tennessee, Knoxville, TN (United States). Energy, Environment, and Resources Center
1994-03-01T23:59:59.000Z
Non-utility groups participate in a myriad of activities--initiated by themselves and others--aimed at influencing the policies and actions of utilities and their regulators related to Integrated Resource Planning (IRP) and Demand-Side Management (DSM). Some of these activities are not directed toward a particular regulatory body or utility but are designed to influence public knowledge and acceptance of IRP and DSM. Other activities involve interaction with a particular utility or regulatory body. The traditional forum for this interaction is an adversarial debate (i.e., litigation or regulatory intervention) over the merits of a utility`s plan or proposed action. However, an increasingly common forum is one in which non-utility groups and utilities cooperatively develop plans, policies, and/or programs. Arrangements of this type are referred to in this report as ``interactive efforts``. This report presents the findings derived from ten case studies of energy efficiency advocacy groups (EEAG) activities to influence the use of cost-effective DSM and to promote IRP; nine of these ten cases involve some form of interactive effort and all of them also include other EEAG activities. The goal of this research is not to measure the success of individual activities of the various groups, but to glean from a collective examination of their activities an understanding of the efficacy of various types of interactive efforts and other EEAG activities and of the contextual and procedural factors that influence their outcomes.
Gao, Hongjun
. Deng, W. Ji, X. Lin, Z. H. Cheng, X. B. He, D. X. Shi, and H.-J. Gao* Institute of Physics, ChineseUnderstanding and controlling the weakly interacting interface in perylene/Ag,,110... L. Gao, Z. T
Hilbert, L.B. Jr. [Univ. of California, Berkeley, CA (United States); Fredrich, J.T. [Sandia National Labs., Albuquerque, NM (United States); Bruno, M.S. [Terralog Technologies USA, Inc., Arcadia, CA (United States); Deitrick, G.L.; Rouffignac, E.P. de [Shell Exploration and Production Co., Houston, TX (United States)
1996-05-01T23:59:59.000Z
In this paper the authors present the results of a coupled nonlinear finite element geomechanics model for reservoir compaction and well-to-well interactions for the high-porosity, low strength diatomite reservoirs of the Belridge field near Bakersfield, California. They show that well damage and failures can occur under the action of two distinct mechanisms: shear deformations induced by pore compaction, and subsidence, and shear deformations due to well-to-well interactions during production or water injection. They show such casting damage or failure can be localized to weak layers that slide or slip under shear due to subsidence. The magnitude of shear displacements and surface subsidence agree with field observations.
Furusawa, Shun; Yamada, Shoichi [Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555 (Japan); Nagakura, Hiroki [Yukawa Institute for Theoretical Physics, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502 (Japan); Sumiyoshi, Kohsuke [Numazu College of Technology, Ooka 3600, Numazu, Shizuoka 410-8501 (Japan); Suzuki, Hideyuki [Faculty of Science and Technology, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278-8510 (Japan)
2014-05-02T23:59:59.000Z
We perform numerical experiments to investigate the influence of inelastic neutrino reactions with light nuclei on the standing accretion shock instability. The time evolutions of shock waves are calculated with a simple light-bulb approximation for the neutrino transport and a multi-nuclei equation of state. The neutrino absorptions and inelastic interactions with deuterons, tritons, helions and alpha particles are taken into account in the hydrodynamical simulations in addition to the ordinary charged-current interactions with nucleons. Axial symmetry is assumed but no equatorial symmetry is imposed. We show that the heating rates of deuterons reach as high as ? 10% of those of nucleons around the bottom of the gain region. On the other hands, alpha particles heat the matter near the shock wave, which is important when the shock wave expands and density and temperature of matter become low. It is also found that the models with heating by light nuclei have different evolutions from those without it in non-linear evolution phase. The matter in the gain region has various densities and temperatures and there appear regions that are locally rich in deuterons and alpha particles. These results indicate that the inelastic reactions of light nuclei, especially deuterons, should be incorporated in the simulations of core-collapse supernovae.
Dismantlability of weakly systolic complexes and applications
Chepoi, Victor
2009-01-01T23:59:59.000Z
In this paper, we investigate the structural properties of weakly systolic complexes introduced recently by the second author and of their 1-skeletons, the weakly bridged graphs. We present several characterizations of weakly systolic complexes and weakly bridged graphs. Then we prove that weakly bridged graphs are dismantlable. Using this, we establish the fixed point theorem for weakly systolic complexes. As a consequence, we get results about conjugacy classes of finite subgroups and classifying spaces for finite subgroups of weakly systolic groups. As immediate corollaries, we obtain new results on systolic complexes and systolic groups.
Aad G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Addy, T. N.; Adelman, J.; Aderholz, M.; Adomeit, S.; et al.
2012-06-19T23:59:59.000Z
A search for the decay of a light Higgs boson (120-140 GeV) to a pair of weakly interacting, long-lived particles in 1.94 fb{sup -1} of proton-proton collisions at {radical}s = 7 TeV recorded in 2011 by the ATLAS detector is presented. The search strategy requires that both long-lived particles decay inside the muon spectrometer. No excess of events is observed above the expected background and limits on the Higgs boson production times branching ratio to weakly interacting, long-lived particles are derived as a function of the particle proper decay length.
Nam, Chang Woo
2010-01-14T23:59:59.000Z
The purpose of this study was to investigate the relative effectiveness of positive interdependence and group processing on student achievement, interaction, and attitude in online cooperative learning. All of the participants, ...
Steven Weinberg, Weak Interactions, and Electromagnetic Interactions
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5(Million Cubic Feet) Oregon (Including Vehicle Fuel) (MillionStructural Basis of Wnt Recognition by Frizzled SSRLDr.Arakawa and Jung (2003)Steven
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasmaP a g eWorks -09-0018-CX Jump to:DasaValleyEnergyFuels Ltd JumpGrenada:GridLab PowerGroupSat Solar
$D^+ \\to K^- ?^+ ?^+$ - the weak vector current
P. C. Magalhăes; M. R. Robilotta
2015-04-23T23:59:59.000Z
Studies of D and B mesons decays into hadrons have been used to test the standard model in the last fifteen years. A heavy meson decay involves the combined effects of a primary weak vertex and subsequent hadronic final state interactions, which determine the shapes of Dalitz plots. The fact that final products involve light mesons indicates that the QCD vacuum is an active part of the problem. This makes the description of these processes rather involved and, in spite of its importance, phenomenological analyses tend to rely on crude models. Our group produced, some time ago, a schematic calculation of the decay $D^+ \\to K^- \\pi^+ \\pi^+$, which provided a reasonable description of data. Its main assumption was the dominance of the weak vector-current, which yields a non-factorizable interaction. Here we refine that calculation by including the correct momentum dependence of the weak vertex and extending the energy ranges of $\\pi\\pi$ and $K\\pi$ subamplitudes present into the problem. These new features make the present treatment more realistic and bring theory closer to data.
Weak Deeply Virtual Compton Scattering
Ales Psaker; Wolodymyr Melnitchouk; Anatoly Radyushkin
2007-03-01T23:59:59.000Z
We extend the analysis of the deeply virtual Compton scattering process to the weak interaction sector in the generalized Bjorken limit. The virtual Compton scattering amplitudes for the weak neutral and charged currents are calculated at the leading twist within the framework of the nonlocal light-cone expansion via coordinate space QCD string operators. Using a simple model, we estimate cross sections for neutrino scattering off the nucleon, relevant for future high intensity neutrino beam facilities.
Functional renormalization-group approach to interacting bosons at zero temperature
Sinner, Andreas [Institut fuer Physik, Theorie II, Universitaet Augsburg, Universitaetsstrasse 1, D-86159 Augsburg (Germany); Hasselmann, Nils [International Institute of Physics, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, Rio Grande do Norte (Brazil); Max-Planck-Institute for Solid State Research, Heisenbergstr. 1, D-70569 Stuttgart (Germany); Kopietz, Peter [Institut fuer Theoretische Physik, Universitaet Frankfurt, Max-von-Laue-Strasse 1, D-60438 Frankfurt (Germany)
2010-12-15T23:59:59.000Z
We investigate the single-particle spectral density of interacting bosons within the nonperturbative functional renormalization group technique. The flow equations for a Bose gas are derived in a scheme which treats the two-particle density-density correlations exactly but neglects irreducible correlations among three and more particles. These flow equations are solved within a truncation which allows to extract the complete frequency and momentum structure of the normal and anomalous self-energies. Both the asymptotic small momentum regime, where the perturbation regime fails, as well as the perturbative regime at larger momenta are well described within a single unified approach. The self-energies do not exhibit any infrared divergences, satisfy the U(1) symmetry constraints, and are in accordance with the Nepomnyashchy relation, which states that the anomalous self-energy vanishes at zero momentum and zero frequency. From the self-energies we extract the single-particle spectral density of the two-dimensional Bose gas. The dispersion is found to be of the Bogoliubov form and shows the crossover from linear Goldstone modes to the quadratic behavior of quasifree bosons. The damping of the quasiparticles is found to be in accordance with the standard Beliaev damping. We furthermore recover the exact asymptotic limit of the propagators derived by Gavoret and Nozieres and discuss the nature of the nonanalyticities of the self-energies in the very small momentum regime.
English, M.; Schexnayder, S.; Altman, J. [Tennessee Univ., Knoxville, TN (United States). Energy, Environment and Resources Center; Schweitzer, M. [Oak Ridge National Lab., TN (United States)
1994-03-01T23:59:59.000Z
This report discusses the activities of organizations that seek to promote integrated resource planning and aggressive, cost-effective demand-side management by utilities. The activities of such groups -- here called energy efficiency advocacy groups (EEAGs) -- are examined in ten detailed am studies. Nine of the cases involve some form of interactive effort between investor-owned electric utilities and non-utility to develop policies, plans, or programs cooperatively. Many but not all of the interactive efforts examined are formal collaboratives. In addition, all ten cases include discussion of other EEAG activities, such as coalition-building, research, participation in statewide energy planning, and intervention in regulatory proceedings.
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
,
The Collider Detector at Fermilab (CDF) is a Tevatron experiment at Fermilab. The Tevatron, a powerful particle accelerator, accelerates protons and antiprotons close to the speed of light, and then makes them collide head-on inside the CDF detector. The CDF detector is used to study the products of such collisions. The CDF Physics Group at Fermilab is organized into six working groups, each with a specific focus. The QCD group studies the properties of the strong interaction. Their public web page makes data and numerous figures available from both CDF Runs I and II.
Sóbester, András
as in the case of atmospheric flows over wind farms or marine turbines in tidal channels. Certainly, with respect and the Environment Related website When wind or water meets an obstacle it is surprising how little is known about the interaction they have. When building a city or planning on positioning wind or tidal turbines it would
Giveaway Wireless Sensors for Large-Group Interaction Mark Feldmeier, Joseph A. Paradiso
, featherweight wireless sensor, low-power wireless sensor. ACM Classification Keywords H.5.3 Group heartbeats [3]. Wireless multiplayer gaming is also growing very popular on cellphones [4] and PDA's [5 can be slow and nondeterministic, PDA's and cellphones are complex, slow and expensive. Figure 1
Liu, Xin
2012-10-19T23:59:59.000Z
We study the spin dynamics in a high-mobility two dimensional electron gas (2DEG) system with generic spin-orbit interactions (SOIs). We derive a set of spin dynamic equations which capture the purely exponential to the damped oscillatory spin...
Weakly sufficient quantum statistics
Katarzyna Lubnauer; Andrzej ?uczak; Hanna Pods?dkowska
2009-11-23T23:59:59.000Z
Some aspects of weak sufficiency of quantum statistics are investigated. In particular, we give necessary and sufficient conditions for the existence of a weakly sufficient statistic for a given family of vector states, investigate the problem of its minimality, and find the relation between weak sufficiency and other notions of sufficiency employed so far.
Wave turbulent statistics in non-weak wave turbulence
Naoto Yokoyama
2011-05-08T23:59:59.000Z
In wave turbulence, it has been believed that statistical properties are well described by the weak turbulence theory, in which nonlinear interactions among wavenumbers are assumed to be small. In the weak turbulence theory, separation of linear and nonlinear time scales derived from the weak nonlinearity is also assumed. However, the separation of the time scales is often violated even in weak turbulent systems where the nonlinear interactions are actually weak. To get rid of this inconsistency, closed equations are derived without assuming the separation of the time scales in accordance with Direct-Interaction Approximation (DIA), which has been successfully applied to Navier--Stokes turbulence. The kinetic equation of the weak turbulence theory is recovered from the DIA equations if the weak nonlinearity is assumed as an additional assumption. It suggests that the DIA equations is a natural extension of the conventional kinetic equation to not-necessarily-weak wave turbulence.
GEOCHEMICAL INVESTIGATIONS OF CO?-BRINE-ROCK INTERACTIONS OF THE KNOX GROUP IN THE ILLINOIS BASIN
Yoksoulian, Lois; Berger, Peter; Freiburg, Jared; Butler, Shane; Leetaru, Hannes
2014-09-30T23:59:59.000Z
Increased output of greenhouse gases, particularly carbon dioxide (CO?), into the atmosphere from anthropogenic sources is of great concern. A potential technology to reduce CO? emissions is geologic carbon sequestration. This technology is currently being evaluated in the United States and throughout the world. The geology of the Illinois Basin exhibits outstanding potential as a carbon sequestration target, as demonstrated by the ongoing Illinois Basin – Decatur Project that is using the Mt. Simon Sandstone reservoir and Eau Claire Shale seal system to store and contain 1 million tonnes of CO?. The Knox Group-Maquoketa Shale reservoir and seal system, located stratigraphically above the Mt. Simon Sandstone-Eau Claire Shale reservoir and seal system, has little economic value as a resource for fossil fuels or as a potable water source, making it ideal as a potential carbon sequestration target. In order for a reservoir-seal system to be effective, it must be able to contain the injected CO? without the potential for the release of harmful contaminants liberated by the reaction between CO?-formation fluids and reservoir and seal rocks. This study examines portions of the Knox Group (Potosi Dolomite, Gunter Sandstone, New Richmond Sandstone) and St. Peter Sandstone, and Maquoketa Shale from various locations around the Illinois Basin. A total of 14 rock and fluid samples were exposed to simulated sequestration conditions (9101–9860 kPa [1320–1430 psi] and 32°–42°C [90°– 108°F]) for varying amounts of time (6 hours to 4 months). Knox Group reservoir rocks exhibited dissolution of dolomite in the presence of CO? as indicated by petrographic examination, X-ray diffraction analysis, and fluid chemistry analysis. These reactions equilibrated rapidly, and geochemical modeling confirmed that these reactions reached equilibrium within the time frames of the experiments. Pre-reaction sample mineralogy and postreaction fluid geochemistry from this study suggests only limited potential for the release of United States Environmental Protection Agency regulated inorganic contaminants into potable water sources. Short-term core flood experiments further verify that the carbonate reactions occurring in Knox Group reservoir samples reach equilibrium rapidly. The core flood experiments also lend insight to pressure changes that may occur during CO? injection. The Maquoketa Shale experiments reveal that this rock is initially chemically reactive when in contact with CO? and brine. However, due to the conservative nature of silicate and clay reaction kinetics and the rapid equilibration of carbonate reactions that occur in the shale, these reactions would not present a significant risk to the competency of the shale as an effective seal rock.
Gao, Lei; Li, Yujia
2015-01-01T23:59:59.000Z
We propose a Watt-level, all-fiber, ultrafast Er/Yb-codoped double-clad fiber laser passively mode-locked by reduced graphene oxide (rGO) interacting with a weak evanescent field of photonic crystal fiber (PCF). The rGO solution is filled into the cladding holes of the PCF based on total reflection, and after evaporation, the rGO flakes bear only 1/107 of the total energy in laser system, which enhances the thermal damage threshold and decreases the accumulated nonlinearity. By incorporating the saturable absorber into an Er/Yb-codoped fiber ring cavity, stable conventional soliton with a duration of 573 fs is generated, and a average output power up to 1.14 W is obtained.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O.?S.; Abramowicz, H.; Abreu, H.; Abreu, R.; et al
2015-07-01T23:59:59.000Z
A search for the decay of neutral, weakly interacting, long-lived particles using data collected by the ATLAS detector at the LHC is presented. This analysis uses the full data set recorded in 2012: 20.3 fb-1 of proton-proton collision data at ?s = 8 TeV. The search employs techniques for reconstructing decay vertices of long-lived particles decaying to jets in the inner tracking detector and muon spectrometer. Signal events require at least two reconstructed vertices. No significant excess of events over the expected background is found, and limits as a function of proper lifetime are reported for the decay of themore »Higgs boson and other scalar bosons to long-lived particles and for Hidden Valley Z' and Stealth SUSY benchmark models. The first search results for displaced decays in Z' and Stealth SUSY models are presented. The upper bounds of the excluded proper lifetimes are the most stringent to date.« less
Galer, Meghan; Heiner, Jason
2014-01-01T23:59:59.000Z
Figure. Appearance of the patient’s affected right arm andnormal left arm. Volume XV, NO . 4 : July 2014 WesternI n E mergency M edicine Arm Weakness and Deformity Meghan
129A Lecture Notes Weak Interactions I
Murayama, Hitoshi
stone: this statistics puzzle and the apparent energy non-conservation. He proposed that the 14 N of anxiety among physicists. Both - and -rays are emitted with discrete spectra, simply because of the energy conservation. The energy of the emitted particle is the same as the difference between the initial and final
Wilson, K.L. (ed.)
1985-10-01T23:59:59.000Z
This report of the Joint Meeting of the Division of Development and Technology Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups contains contributing papers in the following areas: Plasma/Materials Interaction Program and Technical Assessment, High Heat Flux Materials and Components Program and Technical Assessment, Pumped Limiters, Ignition Devices, Program Planning Activities, Compact High Power Density Reactor Requirements, Steady State Tokamaks, and Tritium Plasma Experiments. All these areas involve the consideration of High Heat Flux on Materials and the Interaction of the Plasma with the First Wall. Many of the Test Facilities are described as well. (LSP)
Dirk, Shawn M. (Albuquerque, NM); Johnson, Ross S. (Albuquerque, NM); Wheeler, David R. (Albuquerque, NM); Bogart, Gregory R. (Corrales, NM)
2011-06-07T23:59:59.000Z
A process for making a dielectric material where a precursor polymer selected from poly(phenylene vinylene) polyacetylene, poly(p-phenylene), poly(thienylene vinylene), poly(1,4-naphthylene vinylene), and poly(p-pyridine vinylene) is energized said by exposure by radiation or increase in temperature to a level sufficient to eliminate said leaving groups contained within the precursor polymer, thereby transforming the dielectric material into a conductive polymer. The leaving group in the precursor polymer can be a chloride, a bromide, an iodide, a fluoride, an ester, an xanthate, a nitrile, an amine, a nitro group, a carbonate, a dithiocarbamate, a sulfonium group, an oxonium group, an iodonium group, a pyridinium group, an ammonium group, a borate group, a borane group, a sulphinyl group, or a sulfonyl group.
Dirk, Shawn M.; Johnson, Ross S.; Wheeler, David R.; Bogart, Gregory R.
2013-04-23T23:59:59.000Z
A process for making a dielectric material where a precursor polymer selected from poly(phenylene vinylene)polyacetylene, poly(p-phenylene), poly(thienylene vinylene), poly(1,4-naphthylene vinylene), and poly(p-pyridine vinylene) is energized said by exposure by radiation or increase in temperature to a level sufficient to eliminate said leaving groups contained within the precursor polymer, thereby transforming the dielectric material into a conductive polymer. The leaving group in the precursor polymer can be a chloride, a bromide, an iodide, a fluoride, an ester, an xanthate, a nitrile, an amine, a nitro group, a carbonate, a dithiocarbamate, a sulfonium group, an oxonium group, an iodonium group, a pyridinium group, an ammonium group, a borate group, a borane group, a sulphinyl group, or a sulfonyl group.
Nabben, Reinhard
Phonon plasmon interaction in ternary group-III-nitrides Ronny Kirste, Stefan Mohn, Markus R investigated by electron energy-loss spectroscopy J. Chem. Phys. 137, 114508 (2012) Plasmon resonances and electron transport in linear sodium atomic chains J. Appl. Phys. 112, 053707 (2012) Plasmon coupling
Miles, Will
Marketing Close interaction between students and faculty and between students in working groups is a hallmark of the Marketing program at Stetson. Small classes and sophisticated team projects using business Program The Marketing Career Development Experience is a unique course offering for our Marketing majors
Sanyal, Devashish [Department of Theoretical Physics, Indian Association for the Cultivation of Science, Jadavpur, Calcutta 700032 (India)]. E-mail: tpds@mahendra.iacs.res.in; Sen, Siddhartha [School of Mathematics, Trinity College, Dublin 2 (Ireland)]. E-mail: sen@maths.tcd.ie
2006-06-15T23:59:59.000Z
The present manuscript dealing with large occupation of states of a quantum system, extends the study to the case of quantum weak turbulence. The quasiparticle spectrum, calculated for such a system, using a Green's function approach, establishes the dissipative and inertial regimes, hence a Kolmogorov type of picture.
N. Padmanabhan; U. Seljak; U. L. Pen
2002-10-21T23:59:59.000Z
We present a survey of the cosmological applications of the next generation of weak lensing surveys, paying special attention to the computational challenges presented by the number of galaxies, $N_{gal} ~$ 10$^{5}$. We focus on optimal methods with no pixelization and derive a multigrid $P^3M$ algorithm that performs the relevant computations in $O(N_{gal} \\log N_{gal})$ time. We test the algorithm by studying three applications of weak lensing surveys - convergence map reconstruction, cluster detection and $E$ and $B$ power spectrum estimation using realistic 1 deg^{2} simulations derived from N-body simulations. The map reconstruction is able to reconstruct large scale features without artifacts. Detecting clusters using only weak lensing is difficult because of line of sight contamination and noise, with low completeness if one desires low contamination of the sample. A power spectrum analysis of the convergence field is more promising and we are able to reconstruct the convergence spectrum with no loss of information down to the smallest scales. The numerical methods used here can be applied to other data sets with same $O(N\\log N)$ scaling and can be generalised to a sphere.
The COS Stream Ciphers are Extremely Weak Steve Babbage
International Association for Cryptologic Research (IACR)
The COS Stream Ciphers are Extremely Weak Steve Babbage Vodafone Group R&D, Newbury, UK steve.babbage@vodafone.com Abstract: A new family of very fast stream ciphers called COS (for "crossing over system") has been. In this note we show that the COS ciphers are very weak indeed -- it requires negligible effort to reconstruct
The COS Stream Ciphers are Extremely Weak Steve Babbage
International Association for Cryptologic Research (IACR)
The COS Stream Ciphers are Extremely Weak Steve Babbage Vodafone Group R&D, Newbury, UK steve.babbage@vodafone.com Abstract: A new family of very fast stream ciphers called COS (for ``crossing over system'') has been. In this note we show that the COS ciphers are very weak indeed --- it requires negligible effort to reconstruct
Quantum logic with weakly coupled qubits
Michael R. Geller; Emily J. Pritchett; Andrei Galiautdinov; John M. Martinis
2009-06-29T23:59:59.000Z
There are well-known protocols for performing CNOT quantum logic with qubits coupled by particular high-symmetry (Ising or Heisenberg) interactions. However, many architectures being considered for quantum computation involve qubits or qubits and resonators coupled by more complicated and less symmetric interactions. Here we consider a widely applicable model of weakly but otherwise arbitrarily coupled two-level systems, and use quantum gate design techniques to derive a simple and intuitive CNOT construction. Useful variations and extensions of the solution are given for common special cases.
Quantum logic with weakly coupled qubits
Geller, Michael R; Galiautdinov, Andrei; Martinis, John M
2009-01-01T23:59:59.000Z
There are well-known protocols for performing CNOT quantum logic with qubits coupled by particular high-symmetry (Ising or Heisenberg) interactions. However, many architectures being considered for quantum computation involve qubits or qubits and resonators coupled by more complicated and less symmetric interactions. Here we consider a widely applicable model of weakly but otherwise arbitrarily coupled two-level systems, and use quantum gate design techniques to derive a simple and intuitive CNOT construction. Useful variations and extensions of the solution are given for common special cases.
Dismantlability of weakly systolic complexes and applications Victor Chepoi1 and Damian Osajda2
Osajda, Damian
Dismantlability of weakly systolic complexes and applications Victor Chepoi1 and Damian Osajda2 1 and groups. The fixed point theorem is proved by using a graph-theoretical tool -- dismantlability. In particular we show that 1skeleta of weakly systolic complexes, i.e. weakly bridged graphs, are dismantlable
Packard, Richard E.
from the response of the cell to a step in the chemical potential difference across the array. When present a "Chemical potential battery" for superfluid 4He weak link cells, whereby a constant heater power in this dissertation represent a breakthrough in super- fluid 4He weak link research, and provide a big step
Logistic regression Weakly informative priors
Gelman, Andrew
Logistic regression Weakly informative priors Conclusions Bayesian generalized linear models default p #12;Logistic regression Weakly informative priors Conclusions Classical logistic regression The problem of separation Bayesian solution Logistic regression -6 -4 -2 0 2 4 6 0.00.20.40.60.81.0 y = logit
D Bohle; E Dodd; A Kosar; L Sharma; P Stephens; L Suarez; D Tazoo
2011-12-31T23:59:59.000Z
Changing the vinyl groups of hematin anhydride to either ethyl or hydrogen groups results in increased solubility (Por=porphyrin). Determination of the weak binding constants of the antimalarial drug chloroquine to dimers of these hematin anhydride analogues suggests that solution-phase heme/drug interactions alone are unlikely to be the origin of the action of the drug.
Geometry of Weak Stability Boundaries
Edward Belbruno; Marian Gidea; Francesco Topputo
2012-04-06T23:59:59.000Z
The notion of a weak stability boundary has been successfully used to design low energy trajectories from the Earth to the Moon. The structure of this boundary has been investigated in a number of studies, where partial results have been obtained. We propose a generalization of the weak stability boundary. We prove analytically that, in the context of the planar circular restricted three-body problem, under certain conditions on the mass ratio of the primaries and on the energy, the weak stability boundary about the heavier primary coincides with a branch of the global stable manifold of the Lyapunov orbit about one of the Lagrange points.
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Whalley, M. R.
A comprehensive compilation of experimental data on total hadronic cross sections, and R ratios, in e+e- interactions is presented. Published data from the Novosibirsk, Orsay, Frascati, SLAC, CORNELL, DESY, KEK and CERN e+e- colliders on both exclusive and inclusive final particle states are included from threshold energies to the highest LEP energies. The data are presented in tabular form supplemented by compilation plots of different exclusive final particle states and of different energy regions. (Taken from abstract of paper, A Compilation of Data on Hadronic Total Cross Sections in E+E- Interactions, M.R. Whalley, Journal of Physics G (Nuclear and Particle Physics), Volume 29, Number 12A, 2003). The Durham High Energy Physics (HEP) Database Group makes these data, extracted from papers and data reviews, available in one place in an easy-to-access format. The data are also included in the Durham HEP Reaction Data Database, which can be searched at http://hepdata.cedar.ac.uk/reaction
Metrization in weakly sequential spaces
Emerson, Dominique Margaret
1975-01-01T23:59:59.000Z
METRIZATION IN WEAXLY SEQUENTIAL SPACES A Thesis by DOMINIQUE MARGARET EMERSON Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1975 Ma)or Sub...]ect: Mathematics METRIZATION IN WEAKLY SEQUENTIAL SPACES A Thesis by DOMINIQUE MARGARET EMERSON Approved as to style and content by: (Chairman of Committee) c-0 (Head of Department) ember) (Member) May 1975 ABSTRACT Metrization in Weakly Sequential...
Combustion Group Group members
Wang, Wei
Combustion Group Group members: Thierry Poinsot, Emilien Courtine, Luc Vervisch, Benjamin Farcy 2014 #12;Combustion Group Combustion Physics and Modeling Pollutants, Emissions, and Soot Formation Thermoacoustics and Combustion Dynamics Research focus § Examine mechanisms responsible for flame stabilization
Heating Cooling Flows with Weak Shock Waves
W. G. Mathews; A. Faltenbacher; F. Brighenti
2005-11-05T23:59:59.000Z
The discovery of extended, approximately spherical weak shock waves in the hot intercluster gas in Perseus and Virgo has precipitated the notion that these waves may be the primary heating process that explains why so little gas cools to low temperatures. This type of heating has received additional support from recent gasdynamical models. We show here that outward propagating, dissipating waves deposit most of their energy near the center of the cluster atmosphere. Consequently, if the gas is heated by (intermittent) weak shocks for several Gyrs, the gas within 30-50 kpc is heated to temperatures that far exceed observed values. This heating can be avoided if dissipating shocks are sufficiently infrequent or weak so as not to be the primary source of global heating. Local PV and viscous heating associated with newly formed X-ray cavities are likely to be small, which is consistent with the low gas temperatures generally observed near the centers of groups and clusters where the cavities are located.
State tomography via weak measurements
Shengjun Wu
2013-02-01T23:59:59.000Z
Recent work has revealed that the wave function of a pure state can be measured directly and that complementary knowledge of a quantum system can be obtained simultaneously by weak measurements. However, the original scheme applies only to pure states, and it is not efficient because most of the data are discarded by post-selection. Here, we propose tomography schemes for pure states and for mixed states via weak measurements, and our schemes are more efficient because we do not discard any data. Furthermore, we demonstrate that any matrix element of a general state can be directly read from an appropriate weak measurement. The density matrix (with all of its elements) represents all that is directly accessible from a general measurement.
Weak-Chaos Ratchet Accelerator
Itzhack Dana; Vladislav B. Roitberg
2012-05-28T23:59:59.000Z
Classical Hamiltonian systems with a mixed phase space and some asymmetry may exhibit chaotic ratchet effects. The most significant such effect is a directed momentum current or acceleration. In known model systems, this effect may arise only for sufficiently strong chaos. In this paper, a Hamiltonian ratchet accelerator is introduced, featuring a momentum current for arbitrarily weak chaos. The system is a realistic, generalized kicked rotor and is exactly solvable to some extent, leading to analytical expressions for the momentum current. While this current arises also for relatively strong chaos, the maximal current is shown to occur, at least in one case, precisely in a limit of arbitrarily weak chaos.
Combustion Group Group members
Wang, Wei
Combustion Group Group members: Thierry Poinsot, Emilien Courtine, Luc Vervisch, Benjamin Farcy § New combustion and energy-conversion concepts #12;Introduction Combustion research thrusts Combustion Dynamics and Flame-Stabilization Research objectives § Obtain fundamental understanding of combustion
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Lafferty, G. D.; Reeves, P. I.; Whalley, M. R.
A comprehensive compilation of experimental data on inclusive particle production in e+e- interactions is presented. Data are given in both tabular and graphical form for multiplicities and inclusive differential cross sections from experiments at all of the world`s high energy e+e- colliders. To facilitate comparison between the data sets, curves are also shown from the JETSET 7.4 Monte Carlo program. (Taken from the abstract of A Compilation of Inclusive Particle Production Data in E+E- Annihilation, G.D. Lafferty, P.I. Reeves, and M.R. Whalley, Journal of Physics G (Nuclear and Particle Physics), Volume 21, Number 12A, 1995.) The Durham High Energy Physics (HEP) Database Group makes these data, extracted from papers and data reviews, available in one place in an easy-to-access format. These data are also included in the Durham HEP Reaction Data Database which can be searched at http://hepdata.cedar.ac.uk/reaction
Weak Values and Relational Generalisations
Thomas Marlow
2006-04-20T23:59:59.000Z
We justify generalisations of weak values from a tentatively relational perspective by deriving them from a generalisation of Bayes' rule. We also argue that these generalisations have implications of quantum nonlocality and may form a novel approach to quantum gravity and cosmology.
Quantum weak chaos in a degenerate system
V. Ya. Demikhovskii; D. I. Kamenev; G. A. Luna-Acosta
1998-09-27T23:59:59.000Z
Quantum weak chaos is studied in a perturbed degenerate system --- a charged particle interacting with a monochromatic wave in a transverse magnetic field. The evolution operator for an arbitrary number of periods of the external field is built and its structure is explored in terms of the QE (quasienergy eigenstates) under resonance condition (wave frequency $=$ cyclotron frequency) in the regime of weak classical chaos. The new phenomenon of diffusion via the quantum separatrices and the influence of chaos on diffusion are investigated and, in the quasi classical limit, compared with its classical dynamics. We determine the crossover from purely quantum diffusion to a diffusion which is the quantum manifestation of classical diffusion along the stochastic web. This crossover results from the non-monotonic dependence of the characteristic localization length of the QE states on the wave amplitude. The width of the quantum separatrices was computed and compared with the width of the classical stochastic web. We give the physical parameters which can be realized experimentally to show the manifestation of quantum chaos in nonlinear acoustic resonance.
Nonlocal resonances in weak turbulence of gravity-capillary waves
Quentin Aubourg; Nicolas Mordant
2015-03-13T23:59:59.000Z
We report a laboratory investigation of weak turbulence of water surface waves in the gravity-capillary crossover. By using time-space resolved profilometry and a bicoherence analysis, we observe that the nonlinear processes involve 3-wave resonant interactions. By studying the solutions of the resonance conditions we show that the nonlinear interaction is dominantly 1D and involves collinear wave vectors. Furthermore taking into account the spectral widening due to weak nonlinearity explains that nonlocal interactions are possible between a gravity wave and high frequency capillary ones. We observe also that nonlinear 3-wave coupling is possible among gravity waves and we raise the question of the relevance of this mechanism for oceanic waves.
Equivalence Principle Violation in Weakly Vainshtein-Screened Systems Alexander V. Belikov1
Hu, Wayne
Equivalence Principle Violation in Weakly Vainshtein-Screened Systems Alexander V. Belikov1-dependent interactions cause apparent equivalence principle vi- olations. In the weakly-screened regime violations can [1723]. In these models, all bodies accelerate equivalently in the total field of the fifth force
Weak values and weak coupling maximizing the output of weak measurements
Di Lorenzo, Antonio, E-mail: dilorenzo.antonio@gmail.com
2014-06-15T23:59:59.000Z
In a weak measurement, the average output ?o? of a probe that measures an observable A{sup -hat} of a quantum system undergoing both a preparation in a state ?{sub i} and a postselection in a state E{sub f} is, to a good approximation, a function of the weak value A{sub w}=Tr[E{sub f}A{sup -hat} ?{sub i}]/Tr[E{sub f}?{sub i}], a complex number. For a fixed coupling ?, when the overlap Tr[E{sub f}?{sub i}] is very small, A{sub w} diverges, but ?o? stays finite, often tending to zero for symmetry reasons. This paper answers the questions: what is the weak value that maximizes the output for a fixed coupling? What is the coupling that maximizes the output for a fixed weak value? We derive equations for the optimal values of A{sub w} and ?, and provide the solutions. The results are independent of the dimensionality of the system, and they apply to a probe having a Hilbert space of arbitrary dimension. Using the Schrödinger–Robertson uncertainty relation, we demonstrate that, in an important case, the amplification ?o? cannot exceed the initial uncertainty ?{sub o} in the observable o{sup -hat}, we provide an upper limit for the more general case, and a strategy to obtain ?o???{sub o}. - Highlights: •We have provided a general framework to find the extremal values of a weak measurement. •We have derived the location of the extremal values in terms of preparation and postselection. •We have devised a maximization strategy going beyond the limit of the Schrödinger–Robertson relation.
Global Superdiffusion of Weak Chaos
Itzhack Dana
2003-10-20T23:59:59.000Z
A class of kicked rotors is introduced, exhibiting accelerator-mode islands (AIs) and {\\em global} superdiffusion for {\\em arbitrarily weak} chaos. The corresponding standard maps are shown to be exactly related to generalized web maps taken modulo an ``oblique cylinder''. Then, in a case that the web-map orbit structure is periodic in the phase plane, the AIs are essentially {\\em normal} web islands folded back into the cylinder. As a consequence, chaotic orbits sticking around the AI boundary are accelerated {\\em only} when they traverse tiny {\\em ``acceleration spots''}. This leads to chaotic flights having a quasiregular {\\em steplike} structure. The global weak-chaos superdiffusion is thus basically different in nature from the strong-chaos one in the usual standard and web maps.
Kirby, James T.
@udel.edu, giorgio.bellotti@uniroma3.it 1. Objective Enhancement of Tsunami Early Warning Systems (TEWS) Hydro-acoustic wave detection as precursor component of tsunamis traveling at the speed of sound in water (1500 m]. Improving the accuracy of model by taking into account damping behavior of two layered system Introducing
Physics Division, LANL: Neutron Science and Technology Group
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
including supernova remnants, pulsar wind nebulae, active galactic nuclei, and gamma-ray bursts. The Weak Interactions team develops experiments to answer questions about the...
Metrization in weakly sequential spaces
Emerson, Dominique Margaret
1975-01-01T23:59:59.000Z
* dt f th ~ A t N h tf 1 ~Sit. of weakly sequential spaces along with that of cs-hereditarily closure-preserving families, the author has characterized metri- zability in spaces where sequences suffice. Chapter II contains the definitions of locally... Dugund]i [5]. One deviation from this convention is the use of the symbol "clX(A)" to denote the closure in the space X of a set A. The subscript "X" will be deleted when no confusion will arise. The letters Z and N will denote the set of integers...
Observation of Weak C-H...O Hydrogen Bonding by Unactivated Alkanes...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
structures at low temperatures due to weak C-H…O hydrogen bonding between the terminal CH3 and CO2- groups for n?5. Temperature-dependent studies showed that the folding...
Non-representative quantum mechanical weak values
B. E. Y. Svensson
2015-03-06T23:59:59.000Z
The operational definition of a weak value for a quantum mechanical system involves the limit of the weak measurement strength tending to zero. I study how this limit compares to the situation for the undisturbed (no weak measurement) system. Under certain conditions, which I investigate, this limit is discontinuous in the sense that it does not merge smoothly to the Hilbert space description of the undisturbed system. Hence, in these discontinuous cases, the weak value does not represent the undisturbed system. As a result, conclusions drawn from such weak values regarding the properties of the studied system cannot be upheld. Examples are given.
Chen Ning Yang, Weak Interactions, and Parity Violation
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article)41cloth Documentation DataDepartment of EnergyOn-Farm1Characterization of SelectiveChemicalChemistry ofChemistryNanChen
Interactions destroy dynamical localization with strong and weak chaos
Flach, Sergej
Compilation Index Visit the EPL website to read the latest articles published in cutting-edge fields-review process, from selection of the referees to making all final acceptance decisions Impact Factor Â The 2010 Impact Factor is 2.753; your work will be in the right place to be cited by your peers Speed
Weakly interacting Bose gas in a random environment
Falco, G. M.; Nattermann, T.; Pokrovsky, Valery L.
2009-01-01T23:59:59.000Z
is added to the system. BEC in a random environment was observed in the superfluid phase of 4He in Vycor glass or aerogels,17 in 3He in aerogels,18 and in ultracold alkali atoms in disordered traps.19?26 Most of the papers concentrate on the possibility...
Weakly interacting Bose gas in a random environment
Falco, G. M.; Nattermann, T.; Pokrovsky, Valery L.
2009-01-01T23:59:59.000Z
is added to the system. BEC in a random environment was observed in the superfluid phase of 4He in Vycor glass or aerogels,17 in 3He in aerogels,18 and in ultracold alkali atoms in disordered traps.19?26 Most of the papers concentrate on the possibility...
Linear and nonlinear wave propagation in weakly relativistic quantum plasmas
Stefan, Martin; Brodin, Gert [Department of Physics, Umea University, SE-901 87 Umea (Sweden)
2013-01-15T23:59:59.000Z
We consider a recently derived kinetic model for weakly relativistic quantum plasmas. We find that that the effects of spin-orbit interaction and Thomas precession may alter the linear dispersion relation for a magnetized plasma in case of high plasma densities and/or strong magnetic fields. Furthermore, the ponderomotive force induced by an electromagnetic pulse is studied for an unmagnetized plasma. It turns out that for this case the spin-orbit interaction always gives a significant contribution to the quantum part of the ponderomotive force.
Weak Boson Emission in Hadron Collider Processes
U. Baur
2006-11-17T23:59:59.000Z
The O(alpha) virtual weak radiative corrections to many hadron collider processes are known to become large and negative at high energies, due to the appearance of Sudakov-like logarithms. At the same order in perturbation theory, weak boson emission diagrams contribute. Since the W and Z bosons are massive, the O(alpha) virtual weak radiative corrections and the contributions from weak boson emission are separately finite. Thus, unlike in QED or QCD calculations, there is no technical reason for including gauge boson emission diagrams in calculations of electroweak radiative corrections. In most calculations of the O(alpha) electroweak radiative corrections, weak boson emission diagrams are therefore not taken into account. Another reason for not including these diagrams is that they lead to final states which differ from that of the original process. However, in experiment, one usually considers partially inclusive final states. Weak boson emission diagrams thus should be included in calculations of electroweak radiative corrections. In this paper, I examine the role of weak boson emission in those processes at the Fermilab Tevatron and the CERN LHC for which the one-loop electroweak radiative corrections are known to become large at high energies (inclusive jet, isolated photon, Z+1 jet, Drell-Yan, di-boson, t-bar t, and single top production). In general, I find that the cross section for weak boson emission is substantial at high energies and that weak boson emission and the O(alpha) virtual weak radiative corrections partially cancel.
Maximal Holevo quantity based on weak measurements
Yao-Kun Wang; Shao-Ming Fei; Zhi-Xi Wang; Jun-Peng Cao; Heng Fan
2015-01-13T23:59:59.000Z
The Holevo bound is a keystone in many applications of quantum information theory. We propose "weak maximal Holevo quantity" with weak measurements as the generalization of the standard Holevo quantity which is defined as the optimal projective measurements. The scenarios that weak measurements is necessary are that only the weak measurements can be performed because for example the system is macroscopic or that one intentionally tries to do so such that the disturbance on the measured system can be controlled for example in quantum key distribution protocols. We evaluate systematically the weak maximal Holevo quantity for Bell-diagonal states and find a series of results. Furthermore, we find that weak measurements can be realized by noise and project measurements.
Weak measurement and control of entanglement generation
Charles D. Hill; J. F. Ralph
2008-01-28T23:59:59.000Z
In this paper we show how weak joint measurement and local feedback can be used to control entanglement generation between two qubits. To do this, we make use of a decoherence free subspace (DFS). Weak measurement and feedback can be used to drive the system into this subspace rapidly. Once within the subspace, feedback can generate entanglement rapidly, or turn off entanglement generation dynamically. We also consider, in the context of weak measurement, some of differences between purification and generating entanglement.
"Weak Quantum Chaos" and its resistor network modeling
Alexander Stotland; Louis M. Pecora; Doron Cohen
2011-04-29T23:59:59.000Z
Weakly chaotic or weakly interacting systems have a wide regime where the common random matrix theory modeling does not apply. As an example we consider cold atoms in a nearly integrable optical billiard with displaceable wall ("piston"). The motion is completely chaotic but with small Lyapunov exponent. The Hamiltonian matrix does not look like one taken from a Gaussian ensemble, but rather it is very sparse and textured. This can be characterized by parameters $s$ and $g$ that reflect the percentage of large elements, and their connectivity, respectively. For $g$ we use a resistor network calculation that has a direct relation to the semi-linear response characteristics of the system, hence leading to a novel prediction regarding the rate of heating of cold atoms in optical billiards with vibrating walls.
Q-weak Experiment Determines Proton's Weak Charge | U.S. DOE...
Office of Science (SC) Website
determination of the weak charge of the proton and extract the weak charges of the neutron and up and down quarks. Print Text Size: A A A Subscribe FeedbackShare Page Click...
Borisov, A. V.; Kerimov, B. K.; Sizin, P. E., E-mail: borisov@phys.msu.ru [Moscow State University (Russian Federation)
2012-11-15T23:59:59.000Z
Expressions for the power of neutrino radiation from a degenerate electron gas in a strong magnetic field are derived for the case of neutrino-pair photoproduction via the weak and electromagnetic interaction mechanisms (it is assumed that the neutrino possesses electromagnetic form factors). It is shown that the neutrino luminosity of a medium in the electromagnetic reaction channel may exceed substantially the luminosity in the weak channel. Relative upper bounds on the effective neutrino magnetic moment are obtained.
SEEING AND COMMUNICATING THROUGH WEAK ELECTRIC
Inside JEB i SEEING AND COMMUNICATING THROUGH WEAK ELECTRIC FIELDS Weakly electric fish spend frequency electric `chirps'. Rüdiger Krahe, from McGill University, Canada, says, `These fish are very electric fish: one in Africa (Mormyriformes) and the other in South America (Gymnotiformes). With them
Weak measurement based on thermal noise effect
Gang Li; Tao Wang; Shuang Xu; He-Shan Song
2015-07-03T23:59:59.000Z
Weak measurement with thermal state pointer can give rise to an amplification effect, and we give the generalization of the mechanism behind the amplification with pure Gaussion state pointer. We find that the maximal value of this effect can reach thermal fluctuations, and propose two schemes to implement room temperature weak measurement with thermal state pointer in optomechanical system.
A Tale of Two Levels: Diversification of Business Groups
Huh, Dong Wook
2014-07-30T23:59:59.000Z
Typical business groups are widely diversified into unrelated industries. Scholars have explained this as a consequence of institutional weaknesses and predicted that business groups would lose their effectiveness and increasingly refocus...
The Theorem of Busemann-Feller-Alexandrov in Carnot Groups
2004-07-27T23:59:59.000Z
communications in analysis ... orem for the class of weakly H-convex functions in Carnot groups introduced ... Let G be a Carnot group of step r = 2, with a system.
Utilizing weak pump depletion to stabilize squeezed vacuum states
Timo Denker; Dirk Schütte; Maximilian H. Wimmer; Trevor A. Wheatley; Elanor H. Huntington; Michčle Heurs
2015-03-10T23:59:59.000Z
We propose and demonstrate a pump-phase locking technique that makes use of weak pump depletion (WPD) - an unavoidable effect that is usually neglected - in a sub-threshold optical parametric oscillator (OPO). We show that the phase difference between seed and pump beam is imprinted on both light fields by the non-linear interaction in the crystal and can be read out without disturbing the squeezed output. Our new locking technique allows for the first experimental realization of a pump-phase lock by reading out the pre-existing phase information in the pump field. There is no degradation of the detected squeezed states required to implement this scheme.
Quantum correlation cost of the weak measurement
Jun Zhang; Shao-xiong Wu; Chang-shui Yu
2014-09-14T23:59:59.000Z
Quantum correlation cost (QCC) characterizing how much quantum correlation is used in a weak-measurement process is presented based on the trace norm. It is shown that the QCC is related to the trace-norm-based quantum discord (TQD) by only a factor that is determined by the strength of the weak measurement, so it only catches partial quantumness of a quantum system compared with the TQD. We also find that the residual quantumness can be `extracted' not only by the further von Neumann measurement, but also by a sequence of infinitesimal weak measurements. As an example, we demonstrate our outcomes by the Bell-diagonal state.
Fields, Susannah
2007-08-16T23:59:59.000Z
This project is currently under contract for research through the Department of Homeland Security until 2011. The group I was responsible for studying has to remain confidential so as not to affect the current project. All dates, reference links and authors, and other distinguishing characteristics of the original group have been removed from this report. All references to the name of this group or the individual splinter groups has been changed to 'Group X'. I have been collecting texts from a variety of sources intended for the use of recruiting and radicalizing members for Group X splinter groups for the purpose of researching the motivation and intent of leaders of those groups and their influence over the likelihood of group radicalization. This work included visiting many Group X websites to find information on splinter group leaders and finding their statements to new and old members. This proved difficult because the splinter groups of Group X are united in beliefs, but differ in public opinion. They are eager to tear each other down, prove their superiority, and yet remain anonymous. After a few weeks of intense searching, a list of eight recruiting texts and eight radicalizing texts from a variety of Group X leaders were compiled.
Can the trace formula describe weak localisation?
Robert S. Whitney; Igor V. Lerner; Robert A. Smith
1999-02-24T23:59:59.000Z
We attempt to systematically derive perturbative quantum corrections to the Berry diagonal approximation of the two-level correlation function (TLCF) for chaotic systems. To this end, we develop a ``weak diagonal approximation'' based on a recent description of the first weak localisation correction to conductance in terms of the Gutzwiller trace formula. This semiclassical method is tested by using it to derive the weak localisation corrections to the TLCF for a semiclassically disordered system. Unfortunately the method is unable to correctly reproduce the ``Hikami boxes'' (the relatively small regions where classical paths are glued together by quantum processes). This results in the method failing to reproduce the well known weak localisation expansion. It so happens that for the first order correction it merely produces the wrong prefactor. However for the second order correction, it is unable to reproduce certain contributions, and leads to a result which is of a different form to the standard one.
WEAK APPROXIMATION OF FRACTIONAL SDES: THE DONSKER ...
2010-07-23T23:59:59.000Z
Jun 6, 2010 ... introduction. Indeed, in the latter reference, the .... Electronic Communications in Probability .... structure of weakly controlled process introduced in [10]. ...... [13] T. Lyons and Z. Qian (2002): System control and rough paths.
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Vogelsang and Whalley in their 1997 paper, ôA Compilation of Data on Single and Double Prompt Photon Production in Hadron-Hadron Interactionsö published in volume 23 of Journal of Physics G (Nuclear and Particle Physics) present the compilation as well as ôan interpretation of these data in terms of the ćstate-of-the-art NLO theory with specific emphasis on the uncertainties involved.ö They also say, ôComparisons of this theory with the individual data sets are made in order to indicate to the reader the scope and general status of the available data. For completeness, data on two-prompt-photon production are also included in a separate small section.ö The data gathered from the relevant collaborations at DOEĆs Fermilab are available, and so are data from related collaborations based at CERN. The Durham High Energy Physics (HEP) Database Group makes these data, extracted from papers and data reviews, available in one place in an easy-to-access format. These data are also included in the Durham HEP Reaction Data Database which can be searched at http://hepdata.cedar.ac.uk/reaction
Uncertainty and Complementarity Relations in Weak Measurement
Arun Kumar Pati; Junde Wu
2014-11-26T23:59:59.000Z
We prove uncertainty relations that quantitatively express the impossibility of jointly sharp preparation of pre- and post-selected quantum states for measuring incompatible observables during the weak measurement. By defining a suitable operator whose average in the pre-selected quantum state gives the weak value, we show that one can have new uncertainty relations for variances of two such operators corresponding to two non-commuting observables. These generalize the recent stronger uncertainty relations that give non-trivial lower bounds for the sum of variances of two observables which fully capture the concept of incompatible observables. Furthermore, we show that weak values for two non-commuting projection operators obey a complementarity relation. Specifically, we show that for a pre-selected state if we measure a projector corresponding to an observable $A$ weakly followed by the strong measurement of another observable $B$ (for the post-selection) and, for the same pre-selected state we measure a projector corresponding to an observable $B$ weakly followed by the strong measurement of the observable $A$ (for the post-selection), then the product of these two weak values is always less than one. This shows that even though individually they are complex and can be large, their product is always bounded.
Measurement of the Effective Weak Mixing Angle inppŻ?Z/?*?e+e-Events
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Abazov, V.? M.; Abbott, B.; Acharya, B.? S.; Adams, M.; Adams, T.; Agnew, J.? P.; Alexeev, G.? D.; Alkhazov, G.; Alton, A.; Askew, A.; et al
2015-07-22T23:59:59.000Z
We present a measurement of the fundamental parameter of the standard model, the weak mixing angle sin2??eff which determines the relative strength of weak and electromagnetic interactions, in ppŻ?Z/?*?e+e- events at a center of mass energy of 1.96 TeV, using data corresponding to 9.7 fb-1 of integrated luminosity collected by the D0 detector at the Fermilab Tevatron. The effective weak mixing angle is extracted from the forward-backward charge asymmetry as a function of the invariant mass around the Z boson pole. The measured value of sin2??eff=0.23147±0.00047 is the most precise measurement from light quark interactions to date, with a precisionmore »close to the best LEP and SLD results.« less
Theory and Modeling of Weakly Bound/Physisorbed Materials for...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Theory and Modeling of Weakly BoundPhysisorbed Materials for Hydrogen Storage Theory and Modeling of Weakly BoundPhysisorbed Materials for Hydrogen Storage Presentation on the...
On Facebook, Most Ties are Weak The emergence of pervasive socio-technical networks brings new
Ferrara, Emilio
On Facebook, Most Ties are Weak Abstract The emergence of pervasive socio-technical networks brings's theory can be extended to online social networks like Facebook, suggesting to use interaction data requires knowledge of the topology of the social network, e.g., who is friend with whom on Facebook. Our
Band, Yehuda B.
T-shaped quantum wires in magnetic fields: Weakly confined magnetoexcitons beyond the diamagnetic at vanishing magnetic field26 to B 0. Exciton states for interacting electron-hole pairs confined to a T-particle states confined to the T intersection in a magnetic field and then using these single- particle states
Strong effects in weak nonleptonic decays
Wise, M.B.
1980-04-01T23:59:59.000Z
In this report the weak nonleptonic decays of kaons and hyperons are examined with the hope of gaining insight into a recently proposed mechanism for the ..delta..I = 1/2 rule. The effective Hamiltonian for ..delta..S = 1 weak nonleptonic decays and that for K/sup 0/-anti K/sup 0/ mixing are calculated in the six-quark model using the leading logarithmic approximation. These are used to examine the CP violation parameters of the kaon system. It is found that if Penguin-type diagrams make important contributions to K ..-->.. ..pi pi.. decay amplitudes then upcoming experiments may be able to distinguish the six-quark model for CP violation from the superweak model. The weak radiative decays of hyperons are discussed with an emphasis on what they can teach us about hyperon nonleptonic decays and the ..delta..I = 1/2 rule.
Weak Gravity Conjecture for Noncommutative Field Theory
Qing-Guo Huang; Jian-Huang She
2006-11-20T23:59:59.000Z
We investigate the weak gravity bounds on the U(1) gauge theory and scalar field theories in various dimensional noncommutative space. Many results are obtained, such as the upper bound on the noncommutative scale $g_{YM}M_p$ for four dimensional noncommutative U(1) gauge theory. We also discuss the weak gravity bounds on their commutative counterparts. For example, our result on 4 dimensional noncommutative U(1) gauge theory reduces in certain limit to its commutative counterpart suggested by Arkani-Hamed et.al at least at tree-level.
Weak Lensing: Dark Matter, Dark Energy
Jain, Bhuvnesh (University of Pennsylvania) [University of Pennsylvania
2006-02-27T23:59:59.000Z
The light rays from distant galaxies are deflected by massive structures along the line of sight, causing the galaxy images to be distorted. Measurements of these distortions, known as weak lensing, provide a way of measuring the distribution of dark matter as well as the spatial geometry of the universe. I will describe the ideas underlying this approach to cosmology. With planned large imaging surveys, weak lensing is a powerful probe of dark energy. I will discuss the observational challenges ahead and recent progress in developing multiple, complementary approaches to lensing measurements.
Muntyan, Yevgen
2010-01-16T23:59:59.000Z
)/B?B ?= ?(a,c),(c,a)??= D4 (regardless of whether the group ??? is the group ? or ??). Therefore ?(H)?= (B?B)?D4. Let us find the representation of the group B. We have two possibilities. First, ?? = 222... and ??? = ?? =?a,b,c|a2 = b2 = c2 = (bc)2 = (ac)4 = 1... is ?(H) = angbracketleftBigg ??1, ??1,x,y vextendsinglevextendsingle vextendsinglevextendsingle vextendsinglevextendsingle vextendsingle ??21 = ??21 = x2 = y2 = (xy)4 = 1, [??p1, ??q1] = 1,p,q??x,y? angbracketrightBigg (2.32) (II) ?? = 222.... 37...
Multiphase weakly nonlinear geometric optics for Schrodinger equations
Rémi Carles; Eric Dumas; Christof Sparber
2009-02-17T23:59:59.000Z
We describe and rigorously justify the nonlinear interaction of highly oscillatory waves in nonlinear Schrodinger equations, posed on Euclidean space or on the torus. Our scaling corresponds to a weakly nonlinear regime where the nonlinearity affects the leading order amplitude of the solution, but does not alter the rapid oscillations. We consider initial states which are superpositions of slowly modulated plane waves, and use the framework of Wiener algebras. A detailed analysis of the corresponding nonlinear wave mixing phenomena is given, including a geometric interpretation on the resonance structure for cubic nonlinearities. As an application, we recover and extend some instability results for the nonlinear Schrodinger equation on the torus in negative order Sobolev spaces.
Linear Boltzmann equation as the long time dynamics of an electron weakly coupled to a phonon field
Laszlo Erdos
2001-08-29T23:59:59.000Z
We consider the long time evolution of a quantum particle weakly interacting with a phonon field. We show that in the weak coupling limit the Wigner distribution of the electron density matrix converges to the solution of the linear Boltzmann equation globally in time. The collision kernel is identified as the sum of an emission and an absorption term that depend on the equilibrium distribution of the free phonon modes.
dynamic simulations of Hamiltonian systems of particles (Ĺ¸ 10 6 ) interacting via simple pair potentials distribution f(v; t) in a weakly ionized spatially homogeneous plasma in an external electric field E. f recognizable, model of a weakly ionized plasma in the presence of an external electric field. A more realistic
Generalized interaction in multigravity
Duplij, Steven
2013-01-01T23:59:59.000Z
A general approach to description of multigravity models in D-dimensional space-time is presented. Different possibilities of generalization of the invariant volume are given. Then a most general form of the interaction potential is constructed, which for bigravity coincides with the Pauli-Fierz model. A thorough analysis of the model along the 3+1 expansion formalism is done. It is shown that the absence of ghosts the considered bigravity model is equivalent in the weak field limit to the massive gravity (the Pauli-Fierz model). Thus, on the concrete example it is shown, that the interaction between metrics leads to nonvanishing mass of graviton.
From weak discontinuities to nondissipative shock waves
Garifullin, R. N., E-mail: rustem@matem.anrb.ru; Suleimanov, B. I., E-mail: bisul@mail.r [Ufa Scientific Center, Russian Academy of Sciences, Institute of Mathematics with Computing Center (Russian Federation)
2010-01-15T23:59:59.000Z
An analysis is presented of the effect of weak dispersion on transitions from weak to strong discontinuities in inviscid fluid dynamics. In the neighborhoods of transition points, this effect is described by simultaneous solutions to the Korteweg-de Vries equation u{sub t}'+ uu{sub x}' + u{sub xxx}' = 0 and fifth-order nonautonomous ordinary differential equations. As x{sup 2} + t{sup 2} {yields}{infinity}, the asymptotic behavior of these simultaneous solutions in the zone of undamped oscillations is given by quasi-simple wave solutions to Whitham equations of the form r{sub i}(t, x) = tl{sub i} x/t{sup 2}.
The strict-weak lattice polymer
Ivan Corwin; Timo Seppäläinen; Hao Shen
2014-09-05T23:59:59.000Z
We introduce the strict-weak polymer model, and show the KPZ universality of the free energy fluctuation of this model for a certain range of parameters. Our proof relies on the observation that the discrete time geometric q-TASEP model, studied earlier by A. Borodin and I. Corwin, scales to this polymer model in the limit q->1. This allows us to exploit the exact results for geometric q-TASEP to derive a Fredholm determinant formula for the strict-weak polymer, and in turn perform rigorous asymptotic analysis to show KPZ scaling and GUE Tracy-Widom limit for the free energy fluctuations. We also derive moments formulae for the polymer partition function directly by Bethe ansatz, and identify the limit of the free energy using a stationary version of the polymer model.
The strict-weak lattice polymer
Ivan Corwin; Timo Seppäläinen; Hao Shen
2015-07-06T23:59:59.000Z
We introduce the strict-weak polymer model, and show the KPZ universality of the free energy fluctuation of this model for a certain range of parameters. Our proof relies on the observation that the discrete time geometric q-TASEP model, studied earlier by A. Borodin and I. Corwin, scales to this polymer model in the limit q->1. This allows us to exploit the exact results for geometric q-TASEP to derive a Fredholm determinant formula for the strict-weak polymer, and in turn perform rigorous asymptotic analysis to show KPZ scaling and GUE Tracy-Widom limit for the free energy fluctuations. We also derive moments formulae for the polymer partition function directly by Bethe ansatz, and identify the limit of the free energy using a stationary version of the polymer model.
Spectral statistics for weakly correlated random potentials
Frédéric Klopp
2012-10-29T23:59:59.000Z
We study localization and derive stochastic estimates (in particular, Wegner and Minami estimates) for the eigenvalues of weakly correlated random discrete Schr\\"odinger operators in the localized phase. We apply these results to obtain spectral statistics for general discrete alloy type models where the single site perturbation is neither of finite rank nor of fixed sign. In particular, for the models under study, the random potential exhibits correlations at any range.
Quantal Definition of the Weak Equivalence Principle
Abel Camacho; Arturo Camacho-Guardian
2008-11-03T23:59:59.000Z
The present work analyzes the meaning of the Weak Equivalence Principle in the context of quantum mechanics. A quantal definition for this principle is introduced. This definition does not require the concept of trajectory and relies upon the phase shift induced by a gravitational field in the context of a quantum interference experiment of two coherent beams of particles. In other words, it resorts to wave properties of the system and not to classical concepts as the idea of trajectory.
Weakly nonlocal fluid mechanics - the Schrodinger equation
P. Van; T. Fulop
2004-06-09T23:59:59.000Z
A weakly nonlocal extension of ideal fluid dynamics is derived from the Second Law of thermodynamics. It is proved that in the reversible limit the additional pressure term can be derived from a potential. The requirement of the additivity of the specific entropy function determines the quantum potential uniquely. The relation to other known derivations of Schr\\"odinger equation (stochastic, Fisher information, exact uncertainty) is clarified.
Chaotic Weak Chimeras and their Persistence in Coupled Populations of Phase Oscillators
Christian Bick; Peter Ashwin
2015-09-29T23:59:59.000Z
Nontrivial collective behavior may emerge from the interactive dynamics of many oscillatory units. Chimera states are chaotic patterns of spatially localized coherent and incoherent oscillations. The recently-introduced notion of a weak chimera gives a rigorously testable characterization of chimera states for finite-dimensional phase oscillator networks. In this paper we give some persistence results for dynamically invariant sets under perturbations and apply them to coupled populations of phase oscillators with generalized coupling. In contrast to the weak chimeras with nonpositive maximal Lyapunov exponents constructed so far, we show that weak chimeras that are chaotic can exist in the limit of vanishing coupling between coupled populations of phase oscillators. We present numerical evidence that positive Lyapunov exponents can persist for a positive measure set of this inter-population coupling strength.
Muntyan, Yevgen
2010-01-16T23:59:59.000Z
automata over the alphabet of 2 letters and 2-state automata over the 3-letter alphabet. We continue the classification work started by the research group at Texas A&M University ([BGK+07a, BGK+07b]) and further reduce the number of pairwise nonisomorphic...
Cooperative, Multicentered CH/ Interaction-Controlled Supramolecular Self-Assembly Processes
Li, Qing [ORNL; Han, Chengbo [North Carolina State University; Horton, Scott R [ORNL; Fuentes-Cabrera, Miguel A [ORNL; Sumpter, Bobby G [ORNL; Lu, Wenchang [North Carolina State University; Bernholc, J. [North Carolina State University; Maksymovych, Petro [ORNL; Pan, Minghu [ORNL
2012-01-01T23:59:59.000Z
Supramolecular self-assembly on well-defined surfaces provides access to a multitude of nanoscale architectures, including clusters of distinct symmetry and size. The driving forces underlying supramolecular structures generally involve both graphoepitaxy and weak directional nonconvalent interactions. Here we show that functionalizing a benzene molecule with an ethyne group introduces attractive interactions in a 2D geometry, which would otherwise be dominated by intermolecular repulsion. Furthermore, the attractive interactions enable supramolecular self-assembly, wherein a subtle balance between very weak CH/{pi} bonding and molecule-surface interactions produces a well-defined 'magic' dimension and chirality of supramolecular clusters. The nature of the process is corroborated by extensive scanning tunneling microscopy/spectroscopy (STM/S) measurements and ab initio calculations, which emphasize the cooperative, multicenter characters of the CH/{pi} interaction. This work points out new possibilities for chemical functionalization of {pi}-conjugated hydrocarbon molecules that may allow for the rational design of supramolecular clusters with a desired shape and size.
Interactive Multimedia Presentation Capabilities
Boll, Susanne
Interactive Multimedia Presentation Capabilities for an Object-Oriented DBMS Susanne Boll, Michael and Mathematics (ERCIM) Workshop Reports, 9th ERCIM Database Research Group Workshop on Multimedia Database Sys, FRANCE, 1996. #12;Interactive Multimedia Presentation Capabilities for an Object-Oriented DBMS Susanne
Magnetic Catalysis and Quantum Hall Ferromagnetism in Weakly Coupled Graphene
Gordon W. Semenoff; Fei Zhou
2011-04-25T23:59:59.000Z
We study the realization in a model of graphene of the phenomenon whereby the tendency of gauge-field mediated interactions to break chiral symmetry spontaneously is greatly enhanced in an external magnetic field. We prove that, in the weak coupling limit, and where the electron-electron interaction satisfies certain mild conditions, the ground state of charge neutral graphene in an external magnetic field is a quantum Hall ferromagnet which spontaneously breaks the emergent U(4) symmetry to U(2)XU(2). We argue that, due to a residual CP symmetry, the quantum Hall ferromagnet order parameter is given exactly by the leading order in perturbation theory. On the other hand, the chiral condensate which is the order parameter for chiral symmetry breaking generically obtains contributions at all orders. We compute the leading correction to the chiral condensate. We argue that the ensuing fermion spectrum resembles that of massive fermions with a vanishing U(4)-valued chemical potential. We discuss the realization of parity and charge conjugation symmetries and argue that, in the context of our model, the charge neutral quantum Hall state in graphene is a bulk insulator, with vanishing longitudinal conductivity due to a charge gap and Hall conductivity vanishing due to a residual discrete particle-hole symmetry.
Natural Limits of Electroweak Model as Contraction of its Gauge Group
Nikolay A. Gromov
2014-10-31T23:59:59.000Z
The low and higher energy limits of the Electroweak Model are obtained from first principles of gauge theory. Both limits are given by the same contraction of the gauge group, but for the different consistent rescalings of the field space. Mathematical contraction parameter in both cases is interpreted as energy. The very weak neutrino-matter interactions is explained by zero tending contraction parameter, which depend on neutrino energy. The second consistent rescaling corresponds to the higher energy limit of the Electroweak Model. At the infinite energy all particles lose masses, electroweak interactions become long-range and are mediated by the neutral currents. The limit model represents the development of the early Universe from the Big Bang up to the end of the first second.
Shoring up Infrastructure Weaknesses with Hybrid Cloud Storage
Chaudhuri, Surajit
Shoring up Infrastructure Weaknesses with Hybrid Cloud Storage #12;2StorSimple White Pages: Shoring Up Infrastructure Weaknesses with Hybrid Cloud Storage Table of Contents The Hybrid Cloud Context for IT Managers ............................................................. 3 The Bottleneck of Managing Storage
Contradiction and grammar : the case of weak islands
Abrusán, Márta
2007-01-01T23:59:59.000Z
This thesis is about weak islands. Weak islands are contexts that are transparent to some but not all operator-variable dependencies. For this reason, they are also sometimes called selective islands. Some paradigmatic ...
Lossy compression of weak lensing data
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Vanderveld, R Ali; Bernstein, Gary M; Stoughton, Chris; Rhodes, Jason; Massey, Richard; Dobke, Benjamin M
2011-06-01T23:59:59.000Z
Future orbiting observatories will survey large areas of sky in order to constrain the physics of dark matter and dark energy using weak gravitational lensing and other methods. Lossy compression of the resultant data will improve the cost and feasibility of transmitting the images through the space communication network. We evaluate the consequences of the lossy compression algorithm of Bernstein et al. (2010) for the high-precision measurement of weak-lensing galaxy ellipticities. This square-root algorithm compresses each pixel independently, and the information discarded is by construction less than the Poisson error from photon shot noise. For simulated space-based images (without cosmicmore »rays) digitized to the typical 16 bits per pixel, application of the lossy compression followed by image-wise lossless compression yields images with only 2.4 bits per pixel, a factor of 6.7 compression. We demonstrate that this compression introduces no bias in the sky background. The compression introduces a small amount of additional digitization noise to the images, and we demonstrate a corresponding small increase in ellipticity measurement noise. The ellipticity measurement method is biased by the addition of noise, so the additional digitization noise is expected to induce a multiplicative bias on the galaxies measured ellipticities. After correcting for this known noise-induced bias, we find a residual multiplicative ellipticity bias of m {approx} -4 x 10{sup -4}. This bias is small when compared to the many other issues that precision weak lensing surveys must confront, and furthermore we expect it to be reduced further with better calibration of ellipticity measurement methods.« less
Lossy compression of weak lensing data
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Vanderveld, R Ali [Chicago U., EFI; Caltech /Caltech, JPL; Bernstein, Gary M [Pennsylvania U.; Stoughton, Chris [Fermilab; Rhodes, Jason [Caltech; Caltech, JPL; Massey, Richard [Royal Observ., Edinburgh; Dobke, Benjamin M [Caltech; Caltech, JPL
2011-06-01T23:59:59.000Z
Future orbiting observatories will survey large areas of sky in order to constrain the physics of dark matter and dark energy using weak gravitational lensing and other methods. Lossy compression of the resultant data will improve the cost and feasibility of transmitting the images through the space communication network. We evaluate the consequences of the lossy compression algorithm of Bernstein et al. (2010) for the high-precision measurement of weak-lensing galaxy ellipticities. This square-root algorithm compresses each pixel independently, and the information discarded is by construction less than the Poisson error from photon shot noise. For simulated space-based images (without cosmic rays) digitized to the typical 16 bits per pixel, application of the lossy compression followed by image-wise lossless compression yields images with only 2.4 bits per pixel, a factor of 6.7 compression. We demonstrate that this compression introduces no bias in the sky background. The compression introduces a small amount of additional digitization noise to the images, and we demonstrate a corresponding small increase in ellipticity measurement noise. The ellipticity measurement method is biased by the addition of noise, so the additional digitization noise is expected to induce a multiplicative bias on the galaxies measured ellipticities. After correcting for this known noise-induced bias, we find a residual multiplicative ellipticity bias of m {approx} -4 x 10{sup -4}. This bias is small when compared to the many other issues that precision weak lensing surveys must confront, and furthermore we expect it to be reduced further with better calibration of ellipticity measurement methods.
Thermodynamics of weakly measured quantum systems
Jose Joaquin Alonso; Eric Lutz; Alessandro Romito
2015-08-03T23:59:59.000Z
We consider continuously monitored quantum systems and introduce definitions of work and heat along individual quantum trajectories that are valid for coherent superpositions of energy eigenstates. We use these quantities to extend the first and second laws of stochastic thermodynamics to the quantum domain. We illustrate our results with the case of a weakly measured driven two-level system and show how to distinguish between quantum work and heat contributions. We finally employ quantum feedback control to suppress detector backaction and determine the work statistics.
PLASMA EMISSION BY WEAK TURBULENCE PROCESSES
Ziebell, L. F.; Gaelzer, R. [Instituto de Física, UFRGS, Porto Alegre, RS (Brazil); Yoon, P. H. [Institute for Physical Science and Technology, University of Maryland, College Park, MD (United States); Pavan, J., E-mail: luiz.ziebell@ufrgs.br, E-mail: rudi.gaelzer@ufrgs.br, E-mail: yoonp@umd.edu, E-mail: joel.pavan@ufpel.edu.br [Instituto de Física e Matemática, UFPel, Pelotas, RS (Brazil)
2014-11-10T23:59:59.000Z
The plasma emission is the radiation mechanism responsible for solar type II and type III radio bursts. The first theory of plasma emission was put forth in the 1950s, but the rigorous demonstration of the process based upon first principles had been lacking. The present Letter reports the first complete numerical solution of electromagnetic weak turbulence equations. It is shown that the fundamental emission is dominant and unless the beam speed is substantially higher than the electron thermal speed, the harmonic emission is not likely to be generated. The present findings may be useful for validating reduced models and for interpreting particle-in-cell simulations.
Supersymmetric Higgs Bosons in Weak Boson Fusion
W. Hollik; T. Plehn; M. Rauch; H. Rzehak
2008-04-17T23:59:59.000Z
We compute the complete supersymmetric next-to-leading order corrections to the production of a light Higgs boson in weak boson fusion. The size of the electroweak corrections is of similar order as the next-to-leading order corrections in the Standard Model. The supersymmetric QCD corrections turn out to be significantly smaller than their electroweak counterparts. These higher--order corrections are an important ingredient to a precision analysis of the (supersymmetric) Higgs sector at the LHC, either as a known correction factor or as a contribution to the theory error.
Geometric control theory, closing lemma, and weak KAM theory
Rifford, Ludovic
Geometric control theory, closing lemma, and weak KAM theory Ludovic Rifford UniversitÂ´e de Nice - Sophia Antipolis Ludovic Rifford Weak KAM Theory in Italy #12;Outline Lecture 1: Geometric control) Lecture 4: Closing Aubry sets Ludovic Rifford Weak KAM Theory in Italy #12;Lecture 1 Geometric control
A Primer for Electro-Weak Induced Low Energy Nuclear Reactions
Y. N. Srivastava; A. Widom; L. Larsen
2008-10-01T23:59:59.000Z
In a series of papers, cited in the main body of the paper below, detailed calculations have been presented which show that electromagnetic and weak interactions can induce low energy nuclear reactions to occur with observable rates for a variety of processes. A common element in all these applications is that the electromagnetic energy stored in many relatively slow moving electrons can -under appropriate circumstances- be collectively transferred into fewer, much faster electrons with energies sufficient for the latter to combine with protons (or deuterons, if present) to produce neutrons via weak interactions. The produced neutrons can then initiate low energy nuclear reactions through further nuclear transmutations. The aim of this paper is to extend and enlarge upon various examples analyzed previously, present simplified order of magnitude estimates for each and to illuminate a common unifying theme amongst all of them.
Testing Bell inequalities with weak measurements
Shmuel Marcovitch; Benni Reznik
2011-01-18T23:59:59.000Z
Quantum theory is inconsistent with any local hidden variable model as was first shown by Bell. To test Bell inequalities two separated observers extract correlations from a common ensemble of identical systems. Since quantum theory does not allow simultaneous measurements of noncommuting observables, on each system every party measures a single randomly chosen observable out of a given set. Here we suggest a different approach for testing Bell inequalities that is experimentally realizable by current methods. We show that Bell inequalities can be maximally violated even when all observables are measured on each member of the ensemble. This is possible by using weak measurements that produce small disturbance, at the expense of accuracy. However, our approach does not constitute an independent test of quantum nonlocality since the local hidden variables may correlate the noise of the measurement instruments. Nevertheless, by adding a randomly chosen precise measurement at the end of every cycle of weak measurements, the parties can verify that the hidden variables were not interfering with the noise, and thus validate the suggested test.
at the DTIC Research groups (I/II)
-production algorithms, etc) · Website: http://www.gpi.upf.edu/ #12;Image Processing Group (GPI) #12;Music Technology: http://www.mtg.upf.edu/?lang=en #12;Music Technology Group (MTG) #12;Interactive Technologies Group, videogames) · Website: http://gti.upf.edu/gti/english #12;Interactive Technologies Group (GTI) #12
Frequency response of an atomic resonance driven by weak free-electron-laser fluctuating pulses
G M Nikolopoulos; P Lambropoulos
2014-01-20T23:59:59.000Z
Motivated by recent experiments pertaining to the interaction of weak SASE-FEL pulses with atoms and molecules, we investigate the conditions under which such interactions can be described in the framework of a simple phase-diffusion model with decorrelated atom-field dynamics. The nature of the fluctuations that are inevitably present in SASE-FEL pulses is shown to play a pivotal role in the success of the decorrelation. Our analysis is performed in connection with specific recent experimental results from FLASH in the soft X-ray regime.
Stefanos D. Anogiannakis; Christos Tzoumanekas; Doros N. Theodorou
2013-01-30T23:59:59.000Z
We present atomistic molecular dynamics simulations of two Polyethylene systems where all entanglements are trapped: a perfect network, and a melt with grafted chain ends. We examine microscopically at what level topological constraints can be considered as a collective entanglement effect, as in tube model theories, or as certain pairwise uncrossability interactions, as in slip-link models. A pairwise parameter, which varies between these limiting cases, shows that, for the systems studied, the character of the entanglement environment is more pairwise than collective. We employ a novel methodology, which analyzes entanglement constraints into a complete set of pairwise interactions, similar to slip links. Entanglement confinement is assembled by a plethora of links, with a spectrum of confinement strengths, from strong to weak. The strength of interactions is quantified through a link `persistence', which is the fraction of time for which the links are active. By weighting links according to their strength, we show that confinement is imposed mainly by the strong ones, and that the weak, trapped, uncrossability interactions cannot contribute to the low frequency modulus of an elastomer, or the plateau modulus of a melt. A self-consistent scheme for mapping topological constraints to specific, strong binary links, according to a given entanglement density, is proposed and validated. Our results demonstrate that slip links can be viewed as the strongest pairwise interactions of a collective entanglement environment. The methodology developed provides a basis for bridging the gap between atomistic simulations and mesoscopic slip link models.
Thermal machines beyond the weak coupling regime
R. Gallego; A. Riera; J. Eisert
2014-11-13T23:59:59.000Z
How much work can be extracted from a heat bath using a thermal machine? The study of this question has a very long tradition in statistical physics in the weak-coupling limit, applied to macroscopic systems. However, the assumption that thermal heat baths remain uncorrelated with physical systems at hand is less reasonable on the nano-scale and in the quantum setting. In this work, we establish a framework of work extraction in the presence of quantum correlations. We show in a mathematically rigorous and quantitative fashion that quantum correlations and entanglement emerge as a limitation to work extraction compared to what would be allowed by the second law of thermodynamics. At the heart of the approach are operations that capture naturally non-equilibrium dynamics encountered when putting physical systems into contact with each other. We discuss various limits that relate to known results and put our work into context of approaches to finite-time quantum thermodynamics.
Energy Transport in Weakly Anharmonic Chains
Kenichiro Aoki; Jani Lukkarinen; Herbert Spohn
2006-02-05T23:59:59.000Z
We investigate the energy transport in a one-dimensional lattice of oscillators with a harmonic nearest neighbor coupling and a harmonic plus quartic on-site potential. As numerically observed for particular coupling parameters before, and confirmed by our study, such chains satisfy Fourier's law: a chain of length N coupled to thermal reservoirs at both ends has an average steady state energy current proportional to 1/N. On the theoretical level we employ the Peierls transport equation for phonons and note that beyond a mere exchange of labels it admits nondegenerate phonon collisions. These collisions are responsible for a finite heat conductivity. The predictions of kinetic theory are compared with molecular dynamics simulations. In the range of weak anharmonicity, respectively low temperatures, reasonable agreement is observed.
The Q_weak Experimental Apparatus
Qweak Collaboration; T. Allison; M. Anderson; D. Androic; D. S. Armstrong; A. Asaturyan; T. D. Averett; R. Averill; J. Balewski; J. Beaufait; R. S. Beminiwattha; J. Benesch; F. Benmokhtar; J. Bessuille; J. Birchall; E. Bonnell; J. Bowman; P. Brindza; D. B. Brown; R. D. Carlini; G. D. Cates; B. Cavness; G. Clark; J. C. Cornejo; S. Covrig Dusa; M. M. Dalton; C. A. Davis; D. C. Dean; W. Deconinck; J. Diefenbach; K. Dow; J. F. Dowd; J. A. Dunne; D. Dutta; W. S. Duvall; J. R. Echols; M. Elaasar; W. R. Falk; K. D. Finelli; J. M. Finn; D. Gaskell; M. T. W. Gericke; J. Grames; V. M. Gray; K. Grimm; F. Guo; J. Hansknecht; D. J. Harrison; E. Henderson; J. R. Hoskins; E. Ihloff; K. Johnston; D. Jones; M. Jones; R. Jones; M. Kargiantoulakis; J. Kelsey; N. Khan; P. M. King; E. Korkmaz; S. Kowalski; A. Kubera; J. Leacock; J. P. Leckey; A. R. Lee; J. H. Lee; L. Lee; Y. Liang; S. MacEwan; D. Mack; J. A. Magee; R. Mahurin; J. Mammei; J. W. Martin; A. McCreary; M. H. McDonald; M. J. McHugh; P. Medeiros; D. Meekins; J. Mei; R. Michaels; A. Micherdzinska; A. Mkrtchyan; H. Mkrtchyan; N. Morgan; J. Musson; K. E. Mesick; A. Narayan; L. Z. Ndukum; V. Nelyubin; Nuruzzaman; W. T. H. van Oers; A. K. Opper; S. A. Page; J. Pan; K. D. Paschke; S. K. Phillips; M. L. Pitt; M. Poelker; J. F. Rajotte; W. D. Ramsay; W. R. Roberts; J. Roche; P. W. Rose; B. Sawatzky; T. Seva; M. H. Shabestari; R. Silwal; N. Simicevic; G. R. Smith; S. Sobczynski; P. Solvignon; D. T. Spayde; B. Stokes; D. W. Storey; A. Subedi; R. Subedi; R. Suleiman; V. Tadevosyan; W. A. Tobias; V. Tvaskis; E. Urban; B. Waidyawansa; P. Wang; S. P. Wells; S. A. Wood; S. Yang; S. Zhamkochyan; R. B. Zielinski
2015-01-06T23:59:59.000Z
The Jefferson Lab Q_weak experiment determined the weak charge of the proton by measuring the parity-violating elastic scattering asymmetry of longitudinally polarized electrons from an unpolarized liquid hydrogen target at small momentum transfer. A custom apparatus was designed for this experiment to meet the technical challenges presented by the smallest and most precise ${\\vec{e}}$p asymmetry ever measured. Technical milestones were achieved at Jefferson Lab in target power, beam current, beam helicity reversal rate, polarimetry, detected rates, and control of helicity-correlated beam properties. The experiment employed 180 microA of 89% longitudinally polarized electrons whose helicity was reversed 960 times per second. The electrons were accelerated to 1.16 GeV and directed to a beamline with extensive instrumentation to measure helicity-correlated beam properties that can induce false asymmetries. Moller and Compton polarimetry were used to measure the electron beam polarization to better than 1%. The electron beam was incident on a 34.4 cm liquid hydrogen target. After passing through a triple collimator system, scattered electrons between 5.8 degrees and 11.6 degrees were bent in the toroidal magnetic field of a resistive copper-coil magnet. The electrons inside this acceptance were focused onto eight fused silica Cerenkov detectors arrayed symmetrically around the beam axis. A total scattered electron rate of about 7 GHz was incident on the detector array. The detectors were read out in integrating mode by custom-built low-noise pre-amplifiers and 18-bit sampling ADC modules. The momentum transfer Q^2 = 0.025 GeV^2 was determined using dedicated low-current (~100 pA) measurements with a set of drift chambers before (and a set of drift chambers and trigger scintillation counters after) the toroidal magnet.
Magnified Weak Lensing Cross Correlation Tomography
Ulmer, Melville P., Clowe, Douglas I.
2010-11-30T23:59:59.000Z
This project carried out a weak lensing tomography (WLT) measurement around rich clusters of galaxies. This project used ground based photometric redshift data combined with HST archived cluster images that provide the WLT and cluster mass modeling. The technique has already produced interesting results (Guennou et al, 2010,Astronomy & Astrophysics Vol 523, page 21, and Clowe et al, 2011 to be submitted). Guennou et al have validated that the necessary accuracy can be achieved with photometric redshifts for our purposes. Clowe et al titled "The DAFT/FADA survey. II. Tomographic weak lensing signal from 10 high redshift clusters," have shown that for the **first time** via this purely geometrical technique, which does not assume a standard rod or candle, that a cosmological constant is **required** for flat cosmologies. The intent of this project is not to produce the best constraint on the value of the dark energy equation of state, w. Rather, this project is to carry out a sustained effort of weak lensing tomography that will naturally feed into the near term Dark Energy Survey (DES) and to provide invaluable mass calibration for that project. These results will greatly advance a key cosmological method which will be applied to the top-rated ground-based project in the Astro2020 decadal survey, LSST. Weak lensing tomography is one of the key science drivers behind LSST. CO-I Clowe is on the weak lensing LSST committee, and senior scientist on this project, at FNAL James Annis, plays a leading role in the DES. This project has built on successful proposals to obtain ground-based imaging for the cluster sample. By 1 Jan, it is anticipated the project will have accumulated complete 5-color photometry on 30 (or about 1/3) of the targeted cluster sample (public webpage for the survey is available at http://cencos.oamp.fr/DAFT/ and has a current summary of the observational status of various clusters). In all, the project has now been awarded the equivalent of over 60 nights on 4-m class telescopes, which gives concrete evidence of strong community support for this project. The WLT technique is based on the dependence of the gravitational shear signal on the angular diameter distances between the observer, the lens, and the lensed galaxy to measure cosmological parameters. By taking the ratio of measured shears of galaxies with different redshifts around the same lens, one obtains a measurement of the ratios of the angular diameter distances involved. Making these observations over a large range of lenses and background galaxy redshifts will measure the history of the expansion rate of the universe. Because this is a purely geometric measurement, it is insensitive to any form of evolution of objects or the necessity to understand the physics in the early universe. Thus, WLT was identified by the Dark Energy Task Force as perhaps the best method to measure the evolution of DE. To date, however, the conjecture of the DETF has not been experimentally verified, but will be by the proposed project. The primary reason for the lack of tomography measurements is that one must have an exceptional data-set to attempt the measurement. One needs both extremely good seeing (or space observations) in order to minimize the point spread function smearing corrections on weak lensing shear measurements and deep, multi-color data, from B to z, to measure reliable photometric redshifts of the background galaxies being lensed (which are typically too faint to obtain spectroscopic redshifts). Because the entire process from multi-drizzling the HST images, and then creating shear maps, to gathering the necessary ground based observations, to generating photo-zs and then carrying out the tomography is a complicated task, until the creation of our team, nobody has taken the time to connect all the levels of expertise necessary to carry out this project based on HST archival data. Our data are being used in 2 Ph.D. theses. Kellen Murphy, at Ohio University, is using the tomography data along with simulations in a thesis expected to be completed in Jun
Perturbative gadgets without strong interactions
Yudong Cao; Daniel Nagaj
2014-08-25T23:59:59.000Z
Perturbative gadgets are used to construct a quantum Hamiltonian whose low-energy subspace approximates a given quantum $k$-body Hamiltonian up to an absolute error $\\epsilon$. Typically, gadget constructions involve terms with large interaction strengths of order $\\text{poly}(\\epsilon^{-1})$. Here we present a 2-body gadget construction and prove that it approximates a target many-body Hamiltonian of interaction strength $\\gamma = O(1)$ up to absolute error $\\epsilon\\ll\\gamma$ using interactions of strength $O(\\epsilon)$ instead of the usual inverse polynomial in $\\epsilon$. A key component in our proof is a new condition for the convergence of the perturbation series, allowing our gadget construction to be applied in parallel on multiple many-body terms. We also show how to apply this gadget construction for approximating 3- and $k$-body Hamiltonians. The price we pay for using much weaker interactions is a large overhead in the number of ancillary qubits, and the number of interaction terms per particle, both of which scale as $O(\\text{poly}(\\epsilon^{-1}))$. Our strong-from-weak gadgets have their primary application in complexity theory (QMA hardness of restricted Hamiltonians, a generalized area law counterexample, gap amplification), but could also motivate practical implementations with many weak interactions simulating a much stronger quantum many-body interaction.
Estimation of temporal separation of slow light pulses in atomic vapors by weak measurement
Pardeep Kumar; Shubhrangshu Dasgupta
2015-03-16T23:59:59.000Z
We show how two circular polarization components of a linearly polarized pulse, propagating through a coherently driven dilute atomic vapor, can be well resolved in time domain by weak measurement. Slower group velocity of one of the components due to electromagnetically induced transparency leads to a differential group delay between the two components. For low number density, this delay may not be large enough to temporally resolve the two components. We show how this can be enhanced in terms of mean time of arrival of the output pulse through a post-selected polarizer. We demonstrate the idea with all the analytical and numerical results, with a specific example of alkali atoms.
Kadanoff, Leo P.
to influence colloidal crystals' properties. Experimental evidence collected over 20 years (1) suggests are implicated in the cohesion of metastable superheated colloidal crystals (2); (3) even though isolated pairs in a colloidal crystal. More generally, it models the crowding or geometric confinement characteristic
Weak gravitational lensing with the Square Kilometre Array
Brown, M L; Camera, S; Harrison, I; Joachimi, B; Metcalf, R B; Pourtsidou, A; Takahashi, K; Zuntz, J A; Abdalla, F B; Bridle, S; Jarvis, M; Kitching, T D; Miller, L; Patel, P
2015-01-01T23:59:59.000Z
We investigate the capabilities of various stages of the SKA to perform world-leading weak gravitational lensing surveys. We outline a way forward to develop the tools needed for pursuing weak lensing in the radio band. We identify the key analysis challenges and the key pathfinder experiments that will allow us to address them in the run up to the SKA. We identify and summarize the unique and potentially very powerful aspects of radio weak lensing surveys, facilitated by the SKA, that can solve major challenges in the field of weak lensing. These include the use of polarization and rotational velocity information to control intrinsic alignments, and the new area of weak lensing using intensity mapping experiments. We show how the SKA lensing surveys will both complement and enhance corresponding efforts in the optical wavebands through cross-correlation techniques and by way of extending the reach of weak lensing to high redshift.
Weak nuclear forces cause the strong nuclear force
E. L. Koschmieder
2007-12-11T23:59:59.000Z
We determine the strength of the weak nuclear force which holds the lattices of the elementary particles together. We also determine the strength of the strong nuclear force which emanates from the sides of the nuclear lattices. The strong force is the sum of the unsaturated weak forces at the surface of the nuclear lattices. The strong force is then about ten to the power of 6 times stronger than the weak force between two lattice points.
Graphene transparency in weak magnetic fields
David Valenzuela; Saúl Hernández-Ortiz; Marcelo Loewe; Alfredo Raya
2014-10-20T23:59:59.000Z
We carry out an explicit calculation of the vacuum polarization tensor for an effective low-energy model of monolayer graphene in the presence of a weak magnetic field of intensity $B$ perpendicularly aligned to the membrane. By expanding the quasiparticle propagator in the Schwinger proper time representation up to order $(eB)^2$, where $e$ is the unit charge, we find an explicitly transverse tensor, consistent with gauge invariance. Furthermore, assuming that graphene is radiated with monochromatic light of frequency $\\omega$ along the external field direction, from the modified Maxwell's equations we derive the intensity of transmitted light and the angle of polarization rotation in terms of the longitudinal ($\\sigma_{xx}$) and transverse ($\\sigma_{xy}$) conductivities. Corrections to these quantities, both calculated and measured, are of order $(eB)^2/\\omega^4$. Our findings generalize and complement previously known results reported in literature regarding the light absorption problem in graphene from the experimental and theoretical points of view, with and without external magnetic fields.
Mean and covariance matrix adaptive estimation for a weakly ...
2011-01-25T23:59:59.000Z
AMS 2000 subject classification: Primary: 62G05, 62M10; Secondary: 90C15. Key words and phrases: Adaptive estimation, weakly stationary process, stochastic ...
Experimental Investigation of Weak Non-Mesonic Decay of 10Be(Lambda)Hypernuclei at CEBAF
S. Majewski; L. Majling; A. Margaryan; L. Tang
2005-08-05T23:59:59.000Z
Hypernuclei are convenient laboratory to study the baryon-baryon weak interaction and associated effective Hamiltonian. The strangeness changing process, in which a Lambda hyperon converts to a neutron with a release up to 176 MeV, provides a clear signal for a conversion of an s-quark to a d-quark. We propose to perform a non-mesonic weak decay study of 10Be(Lambda)hypernuclei using the (e,eK) reaction. These investigations will fully utilize the unique parameters of the CEBAF CW electron beam and RF system and are enabled by (1) the use of new detector for alpha particles based on the recently developed RF timing technique with picosecond resolution and (2) the small angle and large acceptance kaon spectrometer-HKS in Hall C.
Kyriienko, Oleksandr
2014-01-01T23:59:59.000Z
We introduce a scheme of single photon emission based on four-wave mixing in a three mode system with weak Kerr-type nonlinearity. A highly populated lower energy mode results in strong stimulated scattering of particle pairs out of the central mode, which consequently limits the central mode occupation. Thus, the system can be reduced to a $\\chi^{(2)}$ nonlinear medium with greatly enhanced interaction constant. As a model setup we consider dipolaritons in semiconductor microcavities. Using the master equation approach we show strong antibunching under continuous wave pump, which largely exceeds the conventional blockade mechanism. Finally, using a pulsed excitation we demonstrate theoretically an on-demand single photon emitter in a weakly nonlinear system.
Microsystems and Nanotechnology Group
Pulfrey, David L.
Microsystems and Nanotechnology Group Microsystems and Nanotechnology Group 1 Microsystems and Nanotechnology Research Group The University of British Columbia Microsystems and Nanotechnology Research Group The University of British Columbia Annual Report 2007 Microsystems and Nanotechnology Research Group 1 About
Microsystems and Nanotechnology Group
Pulfrey, David L.
Microsystems and Nanotechnology Group Microsystems and Nanotechnology Group 1 Microsystems and Nanotechnology Research Group The University of British Columbia Microsystems and Nanotechnology Research Group The University of British Columbia Annual Report 2008 Microsystems and Nanotechnology Research Group 1 About
Anogiannakis, Stefanos D; Theodorou, Doros N
2012-01-01T23:59:59.000Z
We present atomistic molecular dynamics simulations of two Polyethylene systems where all entanglements are trapped: a perfect network, and a melt with grafted chain ends. We examine microscopically at what level topological constraints can be considered as a collective entanglement effect, as in tube model theories, or as certain pairwise uncrossability interactions, as in slip-link models. A pairwise parameter, which varies between these limiting cases, shows that, for the systems studied, the character of the entanglement environment is more pairwise than collective. We employ a novel methodology, which analyzes entanglement constraints into a complete set of pairwise interactions, similar to slip links. Entanglement confinement is assembled by a plethora of links, with a spectrum of confinement strengths, from strong to weak. The strength of interactions is quantified through a link `persistence', which is the fraction of time for which the links are active. By weighting links according to their strength,...
PLM OPPORTUNITIES AND WEAKNESSES TO SUPPORT COLLABORATIVE ENGINEERING
Paris-Sud XI, Université de
PLM OPPORTUNITIES AND WEAKNESSES TO SUPPORT COLLABORATIVE ENGINEERING VALERY MERMINOD CERAM is to discuss the opportunities and the weaknesses of Product Lifecycle Management (PLM) technology to support is based on a 3 years analysis of a PLM system project in a large French company, int the sector of small
Europhysics Letters PREPRINT Weak longranged Casimir attraction in colloidal crystals
Grier, David
Europhysics Letters PREPRINT Weak longranged Casimir attraction in colloidal crystals Ajayranged, it is too weak to influence colloidal crystals' properties. Experimental evidence collected over 20 years [1charge attractions are implicated in the cohesion of metastable superheated colloidal crystals [2, 3] even though
Higgs Production via Gluon-Induced Weak Boson Fusion
Jens Vollinga
2008-09-22T23:59:59.000Z
We present a calculation that allows for an estimation of the NNLO contributions to the Higgs production in the weak boson fusion channel. A possible deterioration of this important channel for the Higgs discoveries at the LHC can be ruled out by this calculation due to the small remaining cross section after the weak boson cuts.
Weakly Terminal Objects in Quasicategories of SET Endofunctors
Barto, Libor
Weakly Terminal Objects in Quasicategories of SET Endofunctors Libor Barto # Mathematical Institute and mappings) and all natural transformations has a terminal object -- the constant functor C1 . We construct here the terminal (or at least the smallest weakly terminal object, which is rigid) in some important
Weakly Terminal Objects in Quasicategories of SET Endofunctors
Barto, Libor
Weakly Terminal Objects in Quasicategories of SET Endofunctors Libor Barto Mathematical Institute and mappings) and all natural transformations has a terminal object the constant functor C1. We construct here the terminal (or at least the smallest weakly terminal object, which is rigid) in some important
Geographic Constraints on Social Network Groups
Onnela, Jukka-Pekka
Social groups are fundamental building blocks of human societies. While our social interactions have always been constrained by geography, it has been impossible, due to practical difficulties, to evaluate the nature of ...
International Association for Cryptologic Research (IACR)
Statistical weaknesses in 20 RC4-like algorithms and (probably) the simplest algorithm free from statistical weaknesses in 20 RC4-like algorithms including the original RC4, RC4A, PC-RC4 and others. This is achieved using a simple statistical test. We found only one algorithm which was able to pass the test
GROUP STUDY ROOMS GROUP STUDY ROOMS
Young, R. Michael
STAFF AREA LEVEL 2 LOBBY bookBot GROUP STUDY ROOMS GROUP STUDY ROOMS GROUPSTUDYROOMS RAIN GARDEN LIBRARY TECHNOLOGY AND MEDIA SPACES GROUP STUDY EVENT AND MEETING SPACES STAFF ONLY STAIRS INSTITUTES AND UNIVERSITY CENTERS #12;GROUP STUDY ROOMS MAKER SPACE LEARNING COMMONS LOCKERS LOCKERS LOCKERS TEACHING
Nonmesonic Weak Decay Dynamics from proton spectra of $?$-Hypernuclei
Franjo Krmpotic; Cláudio De Conti
2015-03-06T23:59:59.000Z
A novel comparison between the data and the theory is proposed for the nonmesonic (NM) weak decay of hypernuclei. Instead of confronting the primary decay rates, as is usually done, we focus attention on the effective decay rates that are straightforwardly related with the number of emitted particles. Proton kinetic energy spectra of $^5_\\Lambda$He, $^7_\\Lambda$Li, $^9_\\Lambda$Be, $^{11}_\\Lambda$B, $^{12}_{\\Lambda}$C, $^{13}_\\Lambda$C, $^{15}_{\\Lambda}$N and $^{16}_{\\Lambda}$O, measured by FINUDA, are evaluated theoretically. The Independent Particle Shell Model (IPSM) is used as the nuclear structure framework, while the dynamics is described by the One-Meson-Exchange (OME) potential. Only for the $^{5}_{\\Lambda}$He, $^{7}_{\\Lambda}$Li, and $^{12}_{\\Lambda}$C hypernuclei is it possible to make a comparison with the data, since for the rest there is no published experimental information on number of produced hypernuclei. Considering solely the one-nucleon-induced ($1N$-NM) decay channel, the theory reproduces correctly the shapes of all three spectra at medium and high energies ($E_p \\geq 40 $ MeV). Yet, it greatly overestimates their magnitudes, as well as the corresponding transition rates when the full OME ($\\pi+K+ \\eta+\\rho+\\omega+K^*$) model is used. The agreement is much improved when only the $\\pi+K$ mesons with soft dipole cutoff parameters participate in the decay process. We find that the IPSM is a fair first order approximation to disentangle the dynamics of the $1N$-NM decay, the knowledge of which is indispensable to inquire about the baryon-baryon strangeness-flipping interaction. It is shown that the IPSM provides very useful insights regarding the determination the $2N$-NM decay rate. In a new analysis of the FINUDA data, we derive two results for this quantity with one of them close to that obtained previously.
Challenge Kick-Off Breakout Group Instructions June 21, 2012 Hyatt Regency, Dearborn, Michigan Rich Scheer Lead Facilitator Breakout Groups Group Room FacilitatorNote Taker...
MemTable : contextual memory in group workspaces
Hunter, Seth E
2009-01-01T23:59:59.000Z
This thesis presents the design and implementation of MemTable, an interactive touch table that supports co-located group meetings by capturing both digital and physical interactions in its memory. The goal of the project ...
Sundar, Sita; Das, Amita; Kaw, Predhiman [Institute for Plasma Research, Bhat, Gandhinagar-382428 (India)
2012-05-15T23:59:59.000Z
In the interaction of intense lasers with matter/plasma, energetic electrons having relativistic energies get created. These energetic electrons can often have sheared flow profiles as they propagate through the plasma medium. In an earlier study [Phys. Plasmas 17, 022101 (2010)], it was shown that a relativistic sheared electron flow modifies the growth rate and threshold condition of the conventional Kelvin-Helmholtz instability. A perturbative analytic treatment for the case of weakly relativistic regime has been provided here. It provides good agreement with the numerical results obtained earlier.
Testing the Standard Model by precision measurement of the weak charges of quarks
Ross Young; Roger Carlini; Anthony Thomas; Julie Roche
2007-05-01T23:59:59.000Z
In a global analysis of the latest parity-violating electron scattering measurements on nuclear targets, we demonstrate a significant improvement in the experimental knowledge of the weak neutral-current lepton-quark interactions at low-energy. The precision of this new result, combined with earlier atomic parity-violation measurements, limits the magnitude of possible contributions from physics beyond the Standard Model - setting a model-independent, lower-bound on the scale of new physics at ~1 TeV.
S. A. Seyyedi; H. Golnarkar
2015-01-19T23:59:59.000Z
Fusion reactions with a weakly bound projectile are studied using the double-folding model along with a repulsive interaction modifying term. Using this modified potential, including nuclear matter incompressibility effects, the fusion reaction cross sections and suppression parameters are calculated for 9Be +209Bi,208Pb,29Si and 27Al reactions. The results show that applying these effects at energies near the Coulomb barrier improves the agreement between the calculated and experimental cross sections, and modifies the mean values of the suppression parameter.
Seyyedi, S A
2015-01-01T23:59:59.000Z
Fusion reactions with a weakly bound projectile are studied using the double-folding model along with a repulsive interaction modifying term. Using this modified potential, including nuclear matter incompressibility effects, the fusion reaction cross sections and suppression parameters are calculated for 9Be +209Bi,208Pb,29Si and 27Al reactions. The results show that applying these effects at energies near the Coulomb barrier improves the agreement between the calculated and experimental cross sections, and modifies the mean values of the suppression parameter.
Why do we observe a weak force? The hierarchy problem in the multiverse
Oram Gedalia; Alejandro Jenkins; Gilad Perez
2011-06-27T23:59:59.000Z
Unless the scale of electroweak symmetry breaking is stabilized dynamically, most of the universes in a multiverse theory will lack an observable weak nuclear interaction. Such "weakless universes" could support intelligent life based on organic chemistry, as long as other parameters are properly adjusted. By taking into account the seemingly-unrelated flavor dynamics that address the hierarchy of quark masses and mixings, we show that such weakless (but hospitable) universes can be far more common than universes like ours. The gauge hierarchy problem therefore calls for a dynamical (rather than anthropic) solution.
Strong and weak gravitational field in $R+?^4/R$ gravity
Kh. Saaidi; A. Vajdi; S. W. Rabiei; A. Aghamohammadi; H. Sheikhahmadi
2012-01-18T23:59:59.000Z
We introduce a new approach for investigating the weak field limit of vacuum field equations in $f(R)$ gravity and we find the weak field limit of $f(R)=R+\\mu ^4/R$ gravity. Furthermore, we study the strong gravity regime in $R+\\mu^{4}/R$ model of $f(R)$ gravity. We show the existence of strong gravitational field in vacuum for such model. We find out in the limit $\\mu\\rightarrow 0$, the weak field limit and the strong gravitational field can be regarded as a perturbed Schwarzschild metric.
Basu, S. [Nuclear Regulatory Commission, Washington, DC (United States); Ginsberg, T. [Brookhaven National Lab., Upton, NY (United States)
1996-08-01T23:59:59.000Z
This report summarizes the review and evaluation by experts of the current understanding of the molten fuel-coolant interaction (FCI) issues covering the complete spectrum of interactions, i.e., from mild quenching to very energetic interactions including those that could lead to the alpha-mode containment failure. Of the eleven experts polled, all but two concluded that the alpha-mode failure issue was resolved from a risk perspective, meaning that this mode of failure is of very low probability, that it is of little or no significance to the overall risk from a nuclear power plant, and that any further reduction in residual uncertainties is not likely to change the probability in an appreciable manner. To a lesser degree, discussions also took place on the broader FCI issues such as mild quenching of core melt during non-explosive FCI, and shock loading of lower head and ex-vessel support structures arising from explosive localized FCIs. These latter issues are relevant with regard to determining the efficacy of certain accident management strategies for operating reactors as well as for advanced light water reactors. The experts reviewed the status of understanding of the FCI phenomena in the context of these broader issues, identified residual uncertainties in the understanding, and recommended future research (both experimental and analytical) to reduce the uncertainties.
Properties of Group Five and Group Seven transactinium elements
Wilk, Philip A.
2001-01-01T23:59:59.000Z
of Group Five and Group Seven Transactinium Elementsof Group Five and Group Seven Transactinium Elements byof Group Five and Group Seven Transactinium Elements by
Data Management Group Joint Program in Transportation
Toronto, University of
Data Management Group Joint Program in Transportation University of Toronto access@jpint.utoronto.ca iDRS Interactive Data Retrieval System Access Request Form Name: Surname Given NameDRS on the computer system at the Data Man- agement Group only for the purpose of data extraction and retrieval. I
Planck Scale Physics, Gravi-Weak Unification and the Higgs Inflation
L. V. Laperashvili; H. B. Nielsen; B. G. Sidharth
2015-04-24T23:59:59.000Z
Starting with a theory of the discrete space-time at the Planck scale, we developed a Gravi-Weak Unification (GWU) - a $Spin(4,4)$-invariant model unified gravity with weak $SU(2)$ gauge and Higgs fields in the visible and invisible sectors of the Universe. Considering the Gravi-Weak symmetry breaking, we showed that the obtained sub-algebras contain the self-dual left-handed gravity in the OW, and the anti-self-dual right-handed gravity in the MW. Finally, at the low energy limit, we have only the Standard Model (SM) and the Einstein-Hilbert's gravity. The Froggatt-Nielsen's prediction of the top-quark and Higgs masses was given in the assumption that there exist two degenerate vacua in the SM. This prediction was improved by the next order calculations. We have developed a model of the Higgs Inflation using the GWU action. According to this inflationary model, a scalar field (inflaton) starts trapped from the "false vacuum" of the Universe at the Higgs field's VEV $v_2 \\sim 10^{18}$ GeV. The interaction between the ordinary and mirror Higgs fields $\\phi$ and $\\widetilde{\\phi}$ generates a Hybrid model by A.~Linde of the Higgs Inflation in our Universe.
Planck Scale Physics, Gravi-Weak Unification and the Higgs Inflation
Laperashvili, L V; Sidharth, B G
2015-01-01T23:59:59.000Z
Starting with a theory of the discrete space-time at the Planck scale, we developed a Gravi-Weak Unification (GWU) - a $Spin(4,4)$-invariant model unified gravity with weak $SU(2)$ gauge and Higgs fields in the visible and invisible sectors of the Universe. Considering the Gravi-Weak symmetry breaking, we showed that the obtained sub-algebras contain the self-dual left-handed gravity in the OW, and the anti-self-dual right-handed gravity in the MW. Finally, at the low energy limit, we have only the Standard Model (SM) and the Einstein-Hilbert's gravity. The Froggatt-Nielsen's prediction of the top-quark and Higgs masses was given in the assumption that there exist two degenerate vacua in the SM. This prediction was improved by the next order calculations. We have developed a model of the Higgs Inflation using the GWU action. According to this inflationary model, a scalar field (inflaton) starts trapped from the "false vacuum" of the Universe at the Higgs field's VEV $v_2 \\sim 10^{18}$ GeV. The interaction bet...
Ultra-weak sector, Higgs boson mass, and the dilaton
Allison, Kyle [University of Oxford; Hill, Christopher T. [FNAL; Ross, Graham G. [University of Oxford
2014-11-01T23:59:59.000Z
The Higgs boson mass may arise from a portal coupling to a singlet field $\\sigma$ which has a very large VEV $f \\gg m_\\text{Higgs}$. This requires a sector of "ultra-weak" couplings $\\zeta_i$, where $\\zeta_i \\lesssim m_\\text{Higgs}^2 / f^2$. Ultra-weak couplings are technically naturally small due to a custodial shift symmetry of $\\sigma$ in the $\\zeta_i \\rightarrow 0$ limit. The singlet field $\\sigma$ has properties similar to a pseudo-dilaton. We engineer explicit breaking of scale invariance in the ultra-weak sector via a Coleman-Weinberg potential, which requires hierarchies amongst the ultra-weak couplings.
Earth's Core Reveals an Inner Weakness | Advanced Photon Source
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
their results to core conditions and found that the strength of iron deep within the Earth is lower than previously thought. This weakness may explain how the crystal structure...
T-728: Apache Tomcat HTTP DIGEST Authentication Weaknesses Let...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
were not checked qop values were not checked realm values were not checked the server secret was hard-coded to a known string The result of these weaknesses is that DIGEST...
Supplementary Information for Simulating weak localization in superconducting quantum circuit
Martinis, John M.
Supplementary Information for Simulating weak localization in superconducting quantum circuit Yu-type entangled state in superconducting quantum circuits.[2, 3] We rst generated a photon in the readout qubit
Violation of the Weak Equivalence Principle in Bekenstein's theory
L. Kraiselburd; H. Vucetich
2009-02-24T23:59:59.000Z
Bekenstein has shown that violation of Weak Equivalence Principle is strongly supressed in his model of charge variation. In this paper, it is shown that nuclear magnetic energy is large enough to produce observable effects in Eotvos experiments.
Weak Quenched Limiting Distributions for One-dimensional RWRE
Jonathon Peterson
2010-09-12T23:59:59.000Z
Sep 13, 2010 ... Ladder locations {?n} defined by ?0 = 0, ?n := inf{i > ?n?1 : V(i) < V(?n?1)} .... Weak quenched limits. Proofs. Heuristics of Quenched Limit Laws.
Power-recycled weak-value-based metrology
Lyons, Kevin; Jordan, Andrew N; Howell, John C; Kwiat, Paul G
2015-01-01T23:59:59.000Z
We improve the precision of the interferometric weak-value-based beam deflection measurement by introducing a power recycling mirror, creating a resonant cavity. This results in \\emph{all} the light exiting to the detector with a large deflection, thus eliminating the inefficiency of the rare postselection. The signal-to-noise ratio of the deflection is itself magnified by the weak value. We discuss ways to realize this proposal, using a transverse beam filter and different cavity designs.
Power-recycled weak-value-based metrology
Kevin Lyons; Justin Dressel; Andrew N. Jordan; John C. Howell; Paul G. Kwiat
2015-04-30T23:59:59.000Z
We improve the precision of the interferometric weak-value-based beam deflection measurement by introducing a power recycling mirror, creating a resonant cavity. This results in \\emph{all} the light exiting to the detector with a large deflection, thus eliminating the inefficiency of the rare postselection. The signal-to-noise ratio of the deflection is itself magnified by the weak value. We discuss ways to realize this proposal, using a transverse beam filter and different cavity designs.
Effective Field Theory for Top and Weak Boson Physics
Scott Willenbrock
2012-05-21T23:59:59.000Z
Effective field theory is the ideal framework for discussing top and weak boson properties. We discuss the application of this framework to top physics at both tree level and one loop. We consider weak boson pair production within an effective field theory framework, and argue that one need not be concerned with the violation of unitarity bounds at energies beyond the region where there are data.
The Formation and Structure of a Strongly Magnetized Corona above Weakly Magnetized Accretion Disks
K. A. Miller; J. M. Stone
1999-12-07T23:59:59.000Z
We use three-dimensional magnetohydrodynamical (MHD) simulations to study the formation of a corona above an initially weakly magnetized, isothermal accretion disk. We also describe a modification to time-explicit numerical algorithms for MHD which enables us to evolve highly stratified disks for many orbital times. We find that MHD turbulence driven by the magnetorotational instability (MRI) produces strong amplification of weak fields within two scale heights of the disk midplane in a few orbital times. About 25 % of the magnetic energy generated by the MRI within two scale heights escapes due to buoyancy, producing a strongly magnetized corona above the disk. Most of the buoyantly rising magnetic energy is dissipated between 3 and 5 scale heights, suggesting the corona will also be hot. The average vertical disk structure consists of a weakly magnetized turbulent core below a strongly magnetized corona which is stable to the MRI. The largescale field structure in both the disk and corona is toroidal. The functional form of the stress is flat within two scale heights, but proportional to the density above two scale heights. For initially weak uniform vertical fields, we find the exponential growth of magnetic field via axisymmetric vertical modes of the MRI produces strongly buoyant sheets of magnetic energy which break the disk apart into horizontal channels. These channels rise several scale heights vertically before the onset of the Parker instability distorts the sheets and allows matter to flow back towards the midplane and reform a disk. We suggest this evolution may be relevant to the dynamical processes which disrupt the inner regions of a disk when it interacts with a strongly magnetized central object.
Thompson, Michael
36/72 36/7236/72 36/72 36/72 Silent Study Room 108C Group Study Room 108J Office Room 108A Office Room 108B Staff Room Room 108K Group Study Room 108I Group Study Room 108H Group Study Room 108G Group Study Room 108F Group Study Room 108E Group Study Room 108D Service Area Research Help / Circulation
GROUP THERAPY Syracuse University
McConnell, Terry
your individual needs. In a group, up to eight students meet with one or two group therapists. MostGROUP THERAPY Syracuse University Counseling Center 200 Walnut Place Phone: 315-443-4715 Fax: 315-443-4276 counselingcenter.syr.edu WHAT STUDENTS SAY ABOUT GROUP THERAPY I was really anxious about joining a group
Searching for massive clusters in weak lensing surveys
Takashi Hamana; Masahiro Takada; Naoki Yoshida
2004-02-02T23:59:59.000Z
We explore the ability of weak lensing surveys to locate massive clusters. We use both analytic models of dark matter halos and mock weak lensing surveys generated from a large cosmological N-body simulation. The analytic models describe average properties of weak lensing halos and predict the number counts, enabling us to compute an effective survey selection function. We test the model prediction for the peak number counts in weak lensing mass maps against the mock numerical data, and find that the noise due to intrinsic galaxy ellipticities causes a systematic effect which increases the peak counts. We develop a correction scheme for the systematic effect in an empirical manner, and show that, after the correction, the model prediction agrees well with the mock data. The mock data is also used to examine the completeness and efficiency of the weak lensing halo search with fully taking into account the noise and the projection effect by large-scale structures. We show that the detection threshold of S/N=4-5 gives an optimal balance between completeness and efficiency. Our results suggest that, for a weak lensing survey with a galaxy number density of ng=30/arcmin^2 with a mean redshift z=1, the mean number of peaks in the 10sq deg area is N_peak=62 for a detection threshold S/N=4. The contamination rate is 42%, and thus, on average, 36 out of 62 peaks (at least) are signals from real halos. Weak lensing surveys thus provide a reasonably efficient way to searching for massive clusters.
MEASUREMENT OF THE PARITY NON-CONSERVING NEUTRAL WEAK INTERACTION IN ATOMIC THALLIUM
Bucksbaum, Philip Howard
2010-01-01T23:59:59.000Z
Phys. Rev. 96_, 191. Yariv, A. , 1975, Quantum Electronics,amplification is discussed by Yariv (1975) and Harris Ans O ^ A D A ) . generator (Yariv 1975). The ADA is a second
Paris-Sud XI, Université de
the sample from the graphene preparation temperature to the mea- surement temperature. Although graphene-standing graphene. The structure of graphene and its variations are very sensitive to the preparation conditions. INTRODUCTION Graphene preparation at the surface of low-carbon solubility metals like Ir,1 Cu,2 or Pt3
MEASUREMENT OF THE PARITY NON-CONSERVING NEUTRAL WEAK INTERACTION IN ATOMIC THALLIUM
Bucksbaum, Philip Howard
2010-01-01T23:59:59.000Z
Siraner start c i r c u i t . Simmer power supply. S.S. : ima current-regulated dc simmer. This reduces both the induring discharge. The simmer is responsible for giving n us
SN 2013ej - A type IIL supernova with weak signs of interaction
Bose, Subhash; Kumar, Brijesh; Duggal, Chetna; Misra, Kuntal; Brown, Peter J; Singh, Mridweeka; Dwarkadas, Vikram; York, Donald G; Chakraborti, Sayan; Chandola, H C; Dahlstrom, Julie; Ray, Alak; Safonova, Margarita
2015-01-01T23:59:59.000Z
We present optical photometric and spectroscopic observations of supernova 2013ej. It is one of the brightest type II supernovae exploded in a nearby ($\\sim 10$ Mpc) galaxy NGC 628. The light curve characteristics are similar to type II SNe, but with a relatively shorter ($ \\sim85 $ day) and steeper ($ \\sim1.7 $ mag (100 d)$^{-1} $ in V) plateau phase. The SN shows a large drop of 2.4 mag in V band brightness during plateau to nebular transition. The absolute ultraviolet (UV) light curves are identical to SN 2012aw, showing a similar UV plateau trend extending up to 85 days. The radioactive $^{56}$Ni mass estimated from the tail luminosity is $ 0.02 $M$_{\\odot}$ which is significantly lower than typical type IIP SNe. The characteristics of spectral features and evolution of line velocities indicate that SN 2013ej is a type II event. However, light curve characteristics and some spectroscopic features provide strong support in classifying it as a type IIL event. A detailed SYNOW modelling of spectra indicates ...
Weak Protein-Protein Interactions in Lectins: The Crystal Structure of a Vegetative Lectin from the
Hamelryck, Thomas
of a previously unobserved type, in addition to a tetramer consisting of two such dimers. This tetramer resembles DBL-like tetramer in solution, but does not prohibit its formation in suit- able conditions, which
Neutron Beta Decay as a Probe of Weak Interactions (Conference) | SciTech
Office of Scientific and Technical Information (OSTI)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports to3,1,50022,3,,0,,6,1,SeparationConnect Journal Article:UsingMeson tomaterials : final LDRDNeural Interface forNeutrinos from
Neutron Beta Decay as a Probe of Weak Interactions (Conference) | SciTech
Office of Scientific and Technical Information (OSTI)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports to3,1,50022,3,,0,,6,1,SeparationConnect Journal Article:UsingMeson tomaterials : final LDRDNeural Interface forNeutrinos
Spectromicroscopy of single and multilayer graphene supported by a weakly interacting substrate
Kim, Philip
4 Laboratorio TASC, INFM, Basovizza, Trieste 34012, Italy 5Department of Physics, Trieste University, Trieste 34127, Italy 6 Faculty for Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia 7 ElettraSincrotrone Trieste S.C.p.A., Basovizza, Trieste 34012, Italy Received 14 October 2008; published
Possible Evidence of Time Variation of Weak Interaction Constant from Double Beta Decay Experiments
A. S. Barabash
2002-10-09T23:59:59.000Z
A comparison is made of the probability of the process of two neutrino double beta decay for $^{82}$Se in direct (counter) and geochemical experiments. It is shown that the probability is systematically lower in geochemical experiments, which characterize the probability of $\\beta\\beta(2\
Wu, Shin-Tson
and GRAYSTONE GROUP ADVERTISING Partnership The University Central Florida has partnered with the Graystone Group for the purposes of facilitating recruitment advertising services. Benefits of partnering evaluations. Placing Recruitment Advertising: · Graystone Group is available to support all your recruitment
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Specific Group Hardware Specific Group Hardware ALICE palicevo1 The Virtual Organization (VO) server. Serves as gatekeeper for ALICE jobs. It's duties include getting assignments...
Separating weak lensing and intrinsic alignments using radio observations
Whittaker, Lee; Battye, Richard A
2015-01-01T23:59:59.000Z
We discuss methods for performing weak lensing using radio observations to recover information about the intrinsic structural properties of the source galaxies. Radio surveys provide unique information that can benefit weak lensing studies, such as HI emission, which may be used to construct galaxy velocity maps, and polarized synchrotron radiation; both of which provide information about the unlensed galaxy and can be used to reduce galaxy shape noise and the contribution of intrinsic alignments. Using a proxy for the intrinsic position angle of an observed galaxy, we develop techniques for cleanly separating weak gravitational lensing signals from intrinsic alignment contamination in forthcoming radio surveys. Random errors on the intrinsic orientation estimates introduce biases into the shear and intrinsic alignment estimates. However, we show that these biases can be corrected for if the error distribution is accurately known. We demonstrate our methods using simulations, where we reconstruct the shear an...
Designing Weak Lensing Surveys: A Generalised Eigenmode Analysis
Martin Kilbinger; Dipak Munshi
2005-11-17T23:59:59.000Z
We study the estimators of various second-order weak lensing statistics such as the shear correlation functions xi_\\pm and the aperture mass dispersion which can directly be constructed from weak lensing shear maps. We compare the efficiency with which these estimators can be used to constrain cosmological parameters. To this end we introduce the Karhunen-Loeve (KL) eigenmode analysis techniques for weak lensing surveys. These tools are shown to be very effective as a diagnostics for optimising survey strategies. The usefulness of these tools to study the effect of angular binning, the depth and width of the survey and noise contributions due to intrinsic ellipticities and number density of source galaxies on the estimation of cosmological parameters is demonstrated. Results from independent analysis of various parameters and joint estimations are compared. We also study how degeneracies among various cosmological and survey parameters affect the eigenmodes associated with these parameters.
Resurgence and Holomorphy: From Weak to Strong Coupling
Aleksey Cherman; Peter Koroteev; Mithat Ünsal
2014-12-18T23:59:59.000Z
We analyze the resurgence properties of finite-dimensional exponential integrals which are prototypes for partition functions in quantum field theories. In these simple examples, we demonstrate that perturbation theory, even at arbitrarily weak coupling, fails as the argument of the coupling constant is varied. It is well-known that perturbation theory also fails at stronger coupling. We show that these two failures are actually intimately related. The formalism of resurgent transseries, which takes into account global analytic continuation properties, fixes both problems, and provides an arbitrarily accurate description of exact result for any value of coupling. This means that strong coupling results can be deduced by using merely weak coupling data. Finally, we give another perspective on resurgence theory by showing that the monodromy properties of the weak coupling results are in precise agreement with the monodromy properties of the strong-coupling expansions, obtained using analysis of the holomorphy structure of Picard-Fuchs equations.
ELEMENTARY PARTICLE INTERACTIONS
EFREMENKO, YURI; HANDLER, THOMAS; KAMYSHKOV, YURI; SIOPSIS, GEORGE; SPANIER, STEFAN
2013-07-30T23:59:59.000Z
The High-Energy Elementary Particle Interactions group at UT during the last three years worked on the following directions and projects: Collider-based Particle Physics; Neutrino Physics, particularly participation in “NO?A”, “Double Chooz”, and “KamLAND” neutrino experiments; and Theory, including Scattering amplitudes, Quark-gluon plasma; Holographic cosmology; Holographic superconductors; Charge density waves; Striped superconductors; and Holographic FFLO states.
1. Tsubono Group 1 1 Tsubono Group
Ejiri, Shinji
optical fiber Test of the law of gravitation at extremely small distance references [1] Y. Aso, M. Ando1. Tsubono Group 1 1 Tsubono Group Research Subjects: Experimental Relativity, Gravitational Wave Physics, Laser Inter- ferometer Member: Kimio TSUBONO and Masaki ANDO The detection of gravitational waves
Emergent Soft Monopole Modes in Weakly-Bound Deformed Nuclei
J. C. Pei; M. Kortelainen; Y. N. Zhang; F. R. Xu
2014-11-13T23:59:59.000Z
Based on the Hartree-Fock-Bogoliubov solutions in large deformed coordinate spaces, the finite amplitude method for quasiparticle random phase approximation (FAM-QRPA) has been implemented, providing a suitable approach to probe collective excitations of weakly-bound nuclei embedded in the continuum. The monopole excitation modes in Magnesium isotopes up to the neutron drip line have been studied with the FAM-QRPA framework on both the coordinate-space and harmonic oscillator basis methods. Enhanced soft monopole strengths and collectivity as a result of weak-binding effects have been unambiguously demonstrated.
The cosmology dependence of weak lensing cluster counts
Laura Marian; Robert E. Smith; Gary M. Bernstein
2009-06-30T23:59:59.000Z
We present the main results of a numerical study of weak lensing cluster counting. We examine the scaling with cosmology of the projected-density-peak mass function. Our main conclusion is that the projected-peak and the three-dimensional mass functions scale with cosmology in an astonishingly close way. This means that, despite being derived from a two-dimensional field, the weak lensing cluster abundance can be used to constrain cosmology in the same way as the three-dimensional mass function probed by other types of surveys.
Weak Measurement and Feedback in Superconducting Quantum Circuits
K. W. Murch; R. Vijay; I. Siddiqi
2015-07-16T23:59:59.000Z
We describe the implementation of weak quantum measurements in superconducting qubits, focusing specifically on transmon type devices in the circuit quantum electrodynamics architecture. To access this regime, the readout cavity is probed with on average a single microwave photon. Such low-level signals are detected using near quantum-noise-limited superconducting parametric amplifiers. Weak measurements yield partial information about the quantum state, and correspondingly do not completely project the qubit into an eigenstate. As such, we use the measurement record to either sequentially reconstruct the quantum state at a given time, yielding a quantum trajectory, or to close a direct quantum feedback loop, stabilizing Rabi oscillations indefinitely.
Weak Measurement and Feedback in Superconducting Quantum Circuits
K. W. Murch; R. Vijay; I. Siddiqi
2015-07-28T23:59:59.000Z
We describe the implementation of weak quantum measurements in superconducting qubits, focusing specifically on transmon type devices in the circuit quantum electrodynamics architecture. To access this regime, the readout cavity is probed with on average a single microwave photon. Such low-level signals are detected using near quantum-noise-limited superconducting parametric amplifiers. Weak measurements yield partial information about the quantum state, and correspondingly do not completely project the qubit into an eigenstate. As such, we use the measurement record to either sequentially reconstruct the quantum state at a given time, yielding a quantum trajectory, or to close a direct quantum feedback loop, stabilizing Rabi oscillations indefinitely.
Renormalization group aspects of graphene
Maria A. H. Vozmediano
2010-10-25T23:59:59.000Z
Graphene is a two dimensional crystal of carbon atoms with fascinating electronic and morphological properties. The low energy excitations of the neutral, clean system are described by a massless Dirac Hamiltonian in (2+1) dimensions which also captures the main electronic and transport properties. A renormalization group analysis sheds light on the success of the free model: due to the special form of the Fermi surface which reduces to two single points in momentum space, short range interactions are irrelevant and only gauge interactions like long range Coulomb or effective disorder can play a role in the low energy physics. We review these features and discuss briefly other aspects related to disorder and to the bilayer material along the same lines.
Show No Weakness: Sequentially Consistent Specifications of TSO Libraries
Gotsman, Alexey
Show No Weakness: Sequentially Consistent Specifications of TSO Libraries Alexey Gotsman1.g., for those that are data-race free (DRF). However, performance-critical libraries often violate, it is important for these libraries to protect their otherwise well-behaved clients from the weaker memory model
Perturbations of Weakly Resonant Power System Electromechanical Modes
instability. Index Terms-- power system dynamic stability, oscillations, resonance, root loci, eigenvalues of the system linearization and its associated eigenvector. Since the modes determine the power system stability1 Perturbations of Weakly Resonant Power System Electromechanical Modes Ian Dobson, Senior Member
Early Results from the Q{sub weak} Experiment
Androic, D.; Armstrong, D.S.; Asaturyan, A.; Averett, T.; Balewski, J.; Beaufait, J.; Beminiwattha, R.S.; Benesch, J.; Benmokhtar, F.; Birchall, J.; Carlini, R.D.; Cates, G.D.; Cornejo, J.C.; Covrig, S.; Dalton, M.M.; Davis, C.A.; Deconinck, W.; Diefenbach, J.; Dowd, J.F.; Dunne, J.A.; Dutta, D.; Duvall, W.S.; Elaasar, M.; Falk, W.R.; Finn, J.M.; Forest, T.; Gaskel, D.; Gericke, M.T.W.; Grames, J.; Gray, V.M.; Grimm, K.; Guo, F.; Hoskins, J.R.; Johnston, K.; Jones, D.; Jones, M.; Jones, R.; Kargiantoulakis, M.; King, P.M.; Korkmaz, E.; Kowalski, S.; Leacock, J.; Leckey, J.; Lee, A.R.; Lee, J.H.; Lee, L.; MacEwan, S.; Mack, D.; Magee, J.A.; Mahurin, R.; Mammei, J.; Martin, J.; McHugh, M.J.; Meekins, D.; Mei, J.; Michaels, R.; Micherdzinska, A.; Mkrtchyan, A.; Mkrtchyan, H.; Morgan, N.; Myers, K.E.; Narayan, A.; Ndukum, L.Z.; Nelyubin, V.; W T H, Nuruzzaman; Oers, van; Opper, A.K.; Page, S.A.; Pan, J.; Paschke, K.; Phillips, S.K.; Pitt, M.L.; Poelker, M.; Rajotte, J.F.; Ramsay, W.D.; Roche, J.; Sawatzky, B.; Seva, T.; Shabestari, M.H.; Silwal, R.; Simicevic, N.; Smith, G.R.; Solvignon, P.; Spayde, D.T.; Subedi, A.; Subedi, R.; Suleiman, R.; Tadevosyan, V.; Tobias, W.A.; Tvaskis, V.; Waidyawansa, B.; Wang, P.; Wells, S.P.; Wood, S.A.; Yang, S.; Young, R.D.; Zhamkochyan, S.
2014-03-01T23:59:59.000Z
A subset of results from the recently completed Jefferson Lab Q{sub weak} experiment are reported. This experiment, sensitive to physics beyond the Standard Model, exploits the small parity-violating asymmetry in elastic {vector e}p scattering to provide the first determination of the protons weak charge Q{sub w}{sup p}. The experiment employed a 180 {micro}A longitudinally polarized 1.16 GeV electron beam on a 35 cm long liquid hydrogen target. Scattered electrons corresponding to Q{sup 2} of 0.025 GeV{sup 2} were detected in eight Cerenkov detectors arrayed symmetrically around the beam axis. The goals of the experiment were to provide a measure of Q{sub w}{sup p} to 4.2 percent (combined statistical and systematic error), which implies a measure of sin2(thetaw) at the level of 0.3 percent, and to help constrain the vector weak quark charges C{sub 1u} and C{sub 1d}. The experimental method is described, with particular focus on the challenges associated with the worlds highest power LH{sub 2} target. The new constraints on C{sub 1u} and C{sub 1d} provided by the subset of the experiments data analyzed to date will also be shown, together with the extracted weak charge of the neutron.
Swelling Dynamics of Multilayer Films of Weak Polyelectrolytes
Barrett, Christopher
Swelling Dynamics of Multilayer Films of Weak Polyelectrolytes Oleh M. Tanchak and Christopher J humidity. Introduction Polymer multilayers can be prepared by the sequen- tial electrostatic adsorption of oppositely charged poly- electrolytes onto a substrate. Through control of various assembly parameters one
Periodic Orbits in Triaxial Galaxies with Weak Cusps
Tema Fridman; David Merritt
1997-05-19T23:59:59.000Z
The orbital structure of triaxial models with weak central density cusps, $\\rho\\propto r^{-\\gamma}, gamma fish boxlets in the $x-z$ (long axis-short axis) plane are stable over a wide range of model parameters. The boxlets in the $x-y$ and $y-z$ planes are generally vertically unstable.
Software Verification for Weak Memory via Program Transformation
Kröning, Daniel
on a PowerPC cluster, due to the memory model. We study this bug in detail in Sec. 5. This observation handle the write atomicity relaxation of Power/ARM: generality remains a challenge. Since we want verification w.r.t. weak memory. We present experi- ments for a broad variety of models (from x86-TSO to Power
Corrigendum and addendum. Modeling weakly nonlinear acoustic wave propagation
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Christov, Ivan; Christov, C. I.; Jordan, P. M.
2014-12-18T23:59:59.000Z
This article presents errors, corrections, and additions to the research outlined in the following citation: Christov, I., Christov, C. I., & Jordan, P. M. (2007). Modeling weakly nonlinear acoustic wave propagation. The Quarterly Journal of Mechanics and Applied Mathematics, 60(4), 473-495.
Weakly-Private Secret Sharing Schemes Amos Beimel1
Beimel, Amos
Weakly-Private Secret Sharing Schemes Amos Beimel1 and Matthew Franklin2 1 Department of Computer. Abstract. Secret-sharing schemes are an important tool in cryptogra- phy that is used in the construction of many secure protocols. However, the shares' size in the best known secret-sharing schemes realizing gen
First Determination of the Weak Charge of the Proton
Balewski, Jan T.
The Q[subscript weak] experiment has measured the parity-violating asymmetry in e? p elastic scattering at Q[superscript 2] = 0.025?(GeV/c)[superscript 2], employing 145???A of 89% longitudinally polarized electrons on a ...
Weakly dispersive hydraulic flows in a contraction --Nonlinear stability analysis
Ee, Bernard Kuowei
Weakly dispersive hydraulic flows in a contraction -- Nonlinear stability analysis Bernard K. Ee hydraulic solutions of the forced Korteweg de-Vries equation is investigated here. For numerical convenience is destabilized by a hydraulic instability in which superexponential growth occurs prior to satura- tion
Lyapunov Exponents and Uniform Weak Normally Repelling Invariant Sets
Smith, Hal
Lyapunov Exponents and Uniform Weak Normally Repelling Invariant Sets Paul Leonard Salceanu and Hal repelling in directions normal to the boundary in which M resides provided all normal Lyapunov exponents that Lyapunov exponents can be used to establish the requisite repelling properties for both discrete
Weak Order Equivalence for Logic Programs with Preferences
Schaub, Torsten
Weak Order Equivalence for Logic Programs with Preferences Kathrin Konczak Institut fÂ¨ur Informatik, notions of equivalence for Answer Set Programming have been stud- ied intensively and were shown to be beneficial for modular programming and automated optimization. In [9], the novel notion of strong equivalence
Higgs Production by Gluon initiated Weak Boson Fusion
M. M. Weber
2007-09-17T23:59:59.000Z
The gluon-gluon induced terms for Higgs production through weak-boson fusion are calculated. They form a finite and gauge-invariant subset of the NNLO corrections in the strong coupling constant. This is also the lowest order with sizeable t-channel colour exchange contributions, leading to additional hadronic activity between the outgoing jets.
ION BEAM MACHINING OF NIOBIUM WEAKLY SUPERCONDUCTING MICROBRIDGES
Boyer, Edmond
179 ION BEAM MACHINING OF NIOBIUM WEAKLY SUPERCONDUCTING MICROBRIDGES R. ADDE, P. CROZAT, S réduite représentant la structure ŕ usiner. Les propriétés de microponts Josephson en niobium sont ensuite to be machin- ed. We describe and discuss the superconducting properties of niobium Josephson microbridges
RVS Bielefeld White Paper 2 IEC 61508 Weaknesses and Anomalies
Ladkin, Peter B.
RVS Bielefeld White Paper 2 IEC 61508 Weaknesses and Anomalies Peter Bernard Ladkin RVS Bielefeld of such systems is regulated, as far as this goes, by the standard IEC 61508 for functional safety of systems is not governed by IEC 61508. Nevertheless, for the foreseeable future (say, 20 years or more), E/E/PE systems
Tachyon warm inflationary universe model in the weak dissipative regime
Sergio del Campo; Ramon Herrera; Joel Saavedra
2008-12-05T23:59:59.000Z
Warm inflationary universe model in a tachyon field theory is studied in the weak dissipative regime. We develop our model for an exponential potential and the dissipation parameter $\\Gamma=\\Gamma_0$=constant. We describe scalar and tensor perturbations for this scenario.
Formation of slot-shaped borehole breakout within weakly cemented sandstones
Nakagawa, Seiji; Tomutsa, Liviu; Myer, Larry R.
2008-01-01T23:59:59.000Z
within weakly cemented sandstones Seiji Nakagawa, Liviusynthetic high-porosity sandstone with controlled porosity
Everett, William Neil
2009-05-15T23:59:59.000Z
Spatial and temporal tracking of passively diffusing functionalized colloids continues to be an improving and auspicious approach to measuring weak specific and non-specific biomolecular interactions. Evidence of this is given by the recent increase...
Everett, William Neil
2009-05-15T23:59:59.000Z
Spatial and temporal tracking of passively diffusing functionalized colloids continues to be an improving and auspicious approach to measuring weak specific and non-specific biomolecular interactions. Evidence of this is given by the recent increase...
X-ray Emission from the Weak-lined T Tauri Binary System KH 15D
William Herbst; Edward C. Moran
2005-06-08T23:59:59.000Z
The unique eclipsing, weak-lined T Tauri star KH 15D has been detected as an X-ray source in a 95.7 ks exposure from the Chandra X-ray Observatory archives. A maximum X-ray luminosity of 1.5 x 10^{29} erg s$^{-1}$ is derived in the 0.5--8 keV band, corresponding to L_{X}/L_bol = 7.5 x 10^{-5}. Comparison with samples of stars of similar effective temperature in NGC 2264 and in the Orion Nebula Cluster shows that this is about an order of magnitude low for a typical star of its mass and age. We argue that the relatively low luminosity cannot be attributed to absorption along the line of sight but implies a real deficiency in X-ray production. Possible causes for this are considered in the context of a recently proposed eccentric binary model for KH 15D. In particular, we note that the visible component rotates rather slowly for a weak-lined T Tauri star and has possibly been pseudosynchronized by tidal interaction with the primary near periastron.
Mechanical Engineering & Thermal Group
Mojzsis, Stephen J.
Mechanical Engineering & Thermal Group The Mechanical Engineering (ME) & Thermal Group at LASP has · STOP (Structural, Thermal, and Optical Performance) analyses of optical systems Thermal engineers lead evolved with the complexity of instrument design demands, LASP mechanical engineers develop advanced
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Running Jobs by Group Running Jobs by Group Daily Graph: Weekly Graph: Monthly Graph: Yearly Graph: 2 Year Graph: Last edited: 2011-04-05 13:59:48...
Vinegar, Harold J. (Bellaire, TX); Coit, William George (Bellaire, TX); Griffin, Peter Terry (Brixham, GB); Hamilton, Paul Taylor (Houston, TX); Hsu, Chia-Fu (Granada Hills, CA); Mason, Stanley Leroy (Allen, TX); Samuel, Allan James (Kular Lumpar, ML); Watkins, Ronnie Wade (Cypress, TX)
2012-07-31T23:59:59.000Z
A system for treating a hydrocarbon containing formation is described. The system includes two or more groups of elongated heaters. The group includes two or more heaters placed in two or more openings in the formation. The heaters in the group are electrically coupled below the surface of the formation. The openings include at least partially uncased wellbores in a hydrocarbon layer of the formation. The groups are electrically configured such that current flow through the formation between at least two groups is inhibited. The heaters are configured to provide heat to the formation.
Vinegar, Harold J. (Bellaire, TX); Coit, William George (Bellaire, TX); Griffin, Peter Terry (Brixham, GB); Hamilton, Paul Taylor (Houston, TX); Hsu, Chia-Fu (Granada Hills, CA); Mason, Stanley Leroy (Allen, TX); Samuel, Allan James (Kular Lumpar, MY); Watkins, Ronnie Wade (Cypress, TX)
2010-11-09T23:59:59.000Z
A system for treating a hydrocarbon containing formation is described. The system includes two or more groups of elongated heaters. The group includes two or more heaters placed in two or more openings in the formation. The heaters in the group are electrically coupled below the surface of the formation. The openings include at least partially uncased wellbores in a hydrocarbon layer of the formation. The groups are electrically configured such that current flow through the formation between at least two groups is inhibited. The heaters are configured to provide heat to the formation.
Weak and strong wave turbulence spectra for elastic thin plate
Naoto Yokoyama; Masanori Takaoka
2013-02-15T23:59:59.000Z
Variety of statistically steady energy spectra in elastic wave turbulence have been reported in numerical simulations, experiments, and theoretical studies. Focusing on the energy levels of the system, we have performed direct numerical simulations according to the F\\"{o}ppl--von K\\'{a}rm\\'{a}n equation, and successfully reproduced the variability of the energy spectra by changing the magnitude of external force systematically. When the total energies in wave fields are small, the energy spectra are close to a statistically steady solution of the kinetic equation in the weak turbulence theory. On the other hand, in large-energy wave fields, another self-similar spectrum is found. Coexistence of the weakly nonlinear spectrum in large wavenumbers and the strongly nonlinear spectrum in small wavenumbers are also found in moderate energy wave fields.
Anomalous skin effects in a weakly magnetized degenerate electron plasma
Abbas, G., E-mail: gohar.abbas@gcu.edu.pk; Sarfraz, M. [Department of Physics, GC University Lahore, Katchery Road, Lahore 54000 (Pakistan); Shah, H. A. [Forman Christian College University, Farozpur Road, Lahore 54600 (Pakistan)
2014-09-15T23:59:59.000Z
Fully relativistic analysis of anomalous skin effects for parallel propagating waves in a weakly magnetized degenerate electron plasma is presented and a graphical comparison is made with the results obtained using relativistic Maxwellian distribution function [G. Abbas, M. F. Bashir, and G. Murtaza, Phys. Plasmas 18, 102115 (2011)]. It is found that the penetration depth for R- and L-waves for degenerate case is qualitatively small in comparison with the Maxwellian plasma case. The quantitative reduction due to weak magnetic field in the skin depth in R-wave for degenerate plasma is large as compared to the non-degenerate one. By ignoring the ambient magnetic field, previous results for degenerate field free case are salvaged [A. F. Alexandrov, A. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics (Springer-Verlag, Berlin/Heidelberg, 1984), p. 90].
The cause of the weak solar cycle 24
Jiang, Jie; Schuessler, Manfred
2015-01-01T23:59:59.000Z
The ongoing 11-year cycle of solar activity is considerably less vigorous than the three cycles before. It was preceded by a very deep activity minimum with a low polar magnetic flux, the source of the toroidal field responsible for solar magnetic activity in the subsequent cycle. Simulation of the evolution of the solar surface field shows that the weak polar fields and thus the weakness of the present cycle 24 are mainly caused by a number of bigger bipolar regions emerging at low latitudes with a `wrong' (i.e., opposite to the majority for this cycle) orientation of their magnetic polarities in the North-South direction, which impaired the growth of the polar field. These regions had a particularly strong effect since they emerged within $\\pm10^\\circ$ latitude from the solar equator.
Sensitivity studies for the weak r process: neutron capture rates
Surman, R., E-mail: surmanr@union.edu [Department of Physics and Astronomy, Union College, Schenectady, NY 12308 (United States); Mumpower, M. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)] [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Sinclair, R.; Jones, K. L. [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States)] [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States); Hix, W. R. [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States) [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States); Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); McLaughlin, G. C. [Department of Physics, North Carolina State University, Raleigh, NC 27695 (United States)] [Department of Physics, North Carolina State University, Raleigh, NC 27695 (United States)
2014-04-15T23:59:59.000Z
Rapid neutron capture nucleosynthesis involves thousands of nuclear species far from stability, whose nuclear properties need to be understood in order to accurately predict nucleosynthetic outcomes. Recently sensitivity studies have provided a deeper understanding of how the r process proceeds and have identified pieces of nuclear data of interest for further experimental or theoretical study. A key result of these studies has been to point out the importance of individual neutron capture rates in setting the final r-process abundance pattern for a ‘main’ (A ? 130 peak and above) r process. Here we examine neutron capture in the context of a ‘weak’ r process that forms primarily the A ? 80 r-process abundance peak. We identify the astrophysical conditions required to produce this peak region through weak r-processing and point out the neutron capture rates that most strongly influence the final abundance pattern.
Homotopy Theory of Strong and Weak Topological Insulators
Ricardo Kennedy; Charles Guggenheim
2014-09-08T23:59:59.000Z
We use homotopy theory to extend the notion of strong and weak topological insulators to the non-stable regime (low numbers of occupied/empty energy bands). We show that for strong topological insulators in d spatial dimensions to be "truly d-dimensional", i.e. not realizable by stacking lower-dimensional insulators, a more restrictive definition of "strong" is required. However, this does not exclude weak topological insulators from being "truly d-dimensional", which we demonstrate by an example. Additionally, we prove some useful technical results, including the homotopy theoretic derivation of the factorization of invariants over the torus into invariants over spheres in the stable regime, as well as the rigorous justification of replacing $T^d$ by $S^d$ and $T^{d_k}\\times S^{d_x}$ by $S^{d_k+d_x}$ as is common in the current literature.
Weak Gravity Strongly Constrains Large-Field Axion Inflation
Ben Heidenreich; Matthew Reece; Tom Rudelius
2015-06-10T23:59:59.000Z
Models of large-field inflation based on axion-like fields with shift symmetries can be simple and natural, and make a promising prediction of detectable primordial gravitational waves. The Weak Gravity Conjecture is known to constrain the simplest case in which a single axion descends from a gauge field in an extra dimension. By supplementing the Weak Gravity Conjecture with considerations of how the mass spectrum of the theory varies across the axion moduli space, we obtain more powerful constraints that apply to a variety of multi-axion theories including N-flation and alignment models. In every case that we consider, plausible assumptions lead to field ranges that cannot be parametrically larger than the Planck scale. Our results are strongly suggestive of a general inconsistency in models of large-field inflation based on axions, and possibly of a more general principle forbidding super-Planckian field ranges.
Constraints on Axion Inflation from the Weak Gravity Conjecture
Rudelius, Tom
2015-01-01T23:59:59.000Z
We derive constraints facing models of axion inflation based on decay constant alignment from a string-theoretic and quantum gravitational perspective. In particular, we investigate the prospects for alignment and `anti-alignment' of $C_4$ axion decay constants in type IIB string theory, deriving a strict no-go result in the latter case. We discuss the relationship of axion decay constants to the weak gravity conjecture and demonstrate agreement between our string-theoretic constraints and those coming from the `generalized' weak gravity conjecture. Finally, we consider a particular model of decay constant alignment in which the potential of $C_4$ axions in type IIB compactifications on a Calabi-Yau three-fold is dominated by contributions from $D7$-branes, pointing out that this model evades some of the challenges derived earlier in our paper but is highly constrained by other geometric considerations.
Weak Gravity Strongly Constrains Large-Field Axion Inflation
Heidenreich, Ben; Rudelius, Tom
2015-01-01T23:59:59.000Z
Models of large-field inflation based on axion-like fields with shift symmetries can be simple and natural, and make a promising prediction of detectable primordial gravitational waves. The Weak Gravity Conjecture is known to constrain the simplest case in which a single axion descends from a gauge field in an extra dimension. By supplementing the Weak Gravity Conjecture with considerations of how the mass spectrum of the theory varies across the axion moduli space, we obtain more powerful constraints that apply to a variety of multi-axion theories including N-flation and alignment models. In every case that we consider, plausible assumptions lead to field ranges that cannot be parametrically larger than the Planck scale. Our results are strongly suggestive of a general inconsistency in models of large-field inflation based on axions, and possibly of a more general principle forbidding super-Planckian field ranges.
Effective Supergravity from the Weakly Coupled HeteroticString
Gaillard, Mary K.
2005-05-01T23:59:59.000Z
The motivation for Calabi-Yau-like compactifications of the weakly coupled E{sub 8} {circle_times} E{sub 8} heterotic string theory, its particle spectrum and the issue of dilaton stabilization are briefly reviewed. Modular invariant models for hidden sector condensation and supersymmetry breaking are described at the quantum level of the effective field theory. Their phenomenological and cosmological implications, including a possible origin for R-parity, are discussed.
Subsets of superstable structures are weakly benign Bektur Baizhanov
Baldwin, John T.
! x! and R denote {0, 1}. Define E(x, y, 0) to hold if the first coordinates of* * x and y are the same and E(x, y, 1) to hold if the second coordinates of x and y are the same. * *Let A consist Th (M) is stable, fails to be weakly benign. Fix (M, A), a ~+ -saturated of a s* *table theory
Weakly screened thermonuclear reactions in astrophysical plasmas: Improving Salpeter's model
Theodore E. Liolios
2003-06-23T23:59:59.000Z
This paper presents a detailed study of the electron degeneracy and nonlinear screening effects which play a crucial role in the validity of Salpeter's weak-screening model. The limitations of that model are investigated and an improved one is proposed which can take into account nonlinear screening effects. Its application to the solar pp reaction derives an accurate screening enhancement factor and provides a very reliable estimation of the associated neutrino flux uncertanties.
Torsion-balance tests of the weak equivalence principle
T. A. Wagner; S. Schlamminger; J. H. Gundlach; E. G. Adelberger
2012-07-10T23:59:59.000Z
We briefly summarize motivations for testing the weak equivalence principle and then review recent torsion-balance results that compare the differential accelerations of beryllium-aluminum and beryllium-titanium test body pairs with precisions at the part in $10^{13}$ level. We discuss some implications of these results for the gravitational properties of antimatter and dark matter, and speculate about the prospects for further improvements in experimental sensitivity.
Entrainment of Weakly Coupled Oscillators by External Driving
Anlage, Steven
Entrainment of Weakly Coupled Oscillators by External Driving Rose Faghih and John Platig Advisers entrainment? Entrainment: The response of the oscillator system varies periodically at the period of the drive is a threshold for entrainment. Our Result 0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3 M Entrainment Threshold in M
Constructive Dimension and Weak Truth-Table Degrees
Doty, David
dimension dimH(S) and constructive packing dimension dimP(S) is weak truth-table equivalent to a sequence R with dimH(R) dimH(S)/dimP(S) - , for arbitrary > 0. Furthermore, if dimP(S) > 0, then dimP(R) 1H(S) = dimP(S)) such that dimH(S) > 0, the wtt degree of S has constructive Hausdorff and packing dimension
Hands, Tables, and Groups Make Rehabilitation Awesome!
Alberta, University of
Hands, Tables, and Groups Make Rehabilitation Awesome! Michelle ANNETT1 , Fraser ANDERSON, Walter F rehabilitation programs by providing patients with engaging alternatives to otherwise monotonous and repetitive patient rehabilitation programs. So far, the focus has mainly been on single-user interaction, largely
Efficient Topological Compilation for Weakly-Integral Anyon Model
Alex Bocharov; Xingshan Cui; Vadym Kliuchnikov; Zhenghan Wang
2015-04-13T23:59:59.000Z
In a recent series of two research papers Cui, Wang and Hong proposed a class of anyonic models for universal quantum computation based on weakly-integral anyons. While universal set of gates cannot be obtained in this context by anyon braiding alone, designing a certain type of sector charge measurement provides universality. From the mathematical standpoint the underlying unitary bases arising in various versions of the weakly-integral anyonic models are defined over a certain ring of Eisenstein rationals, that has useful number-theoretic properties. In this paper we develop a compilation algorithm to approximate arbitrary $n$-qutrit unitaries with asymptotically efficient circuits over the metaplectic anyon model, the most recent instance of the weakly-integral anyonic class. One flavor of our algorithm produces efficient circuits with upper complexity bound asymptotically in $O(3^{2\\,n} \\, \\log{1/\\varepsilon})$ and entanglement cost that is exponential in $n$. Another flavor of the algorithm produces efficient circuits with upper complexity bound in $O(n\\,3^{2\\,n} \\, \\log{1/\\varepsilon})$ and no additional entanglement cost.
First Determination of the Weak Charge of the Proton
Androic, D; Armstrong, D S; Asaturyan, A; Averett, T; Balewski, J; Beaufait, J; Beminiwattha, R S; Benesch, J; Benmokhtar, F; Birchall, J; Carlini, R D [JLAB; Cates, G D; Cornejo, J C; Covrig, S; Dalton, M M; Davis, C A; Deconinck, W; Diefenbach, J; Dowd, J F; Dunne, J A; Dutta, D; Duvall, W S; Elaasar, M; Falk, W R; Finn, J M; Forest, T; Gaskell, D; Gericke, M T. W.; Grames, J; Gray, V M; Grimm, K; Guo, F; Hoskins, J R; Johnston, K; Jones, D; Jones, M; Jones, R; Kargiantoulakis, M; King, P M; Korkmaz, E; Kowalski, S; Leacock, J; Leckey, J; Lee, A R; Lee, J H; Lee, L; MacEwan, S; Mack, D; Magee, J A; Mahurin, R; Mammei, J; Martin, J W; McHugh, M J; Meekins, D; Mei, J; Michaels, R; Micherdzinska, A; Mkrtchyan, A; Mkrtchyan, H; Morgan, N; Myers, K E; Narayan, A; Ndukum, L Z; Nelyubin, V; van Oers, W T H; Nuruzzaman,; Opper, A K; Page, S A; Pan, J; Paschke, K D; Phillips, S K; Pitt, M L; Poelker, M; Rajotte, J F; Ramsay, W D; Roche, J; Sawatzky, B; Seva, T; Shabestari, M H; Silwal, R; Simicevic, N; Smith, G R; Solvignon, P; Spayde, D T; Subedi, A; Subedi, R; Suleiman, R; Tadevosyan, V; Tobias, W A; Tvaskis, V; Waidyawansa, B; Wang, P; Wells, S P; Wood, S A; Yang, S; Young, R D; Zhamkochyan, S
2013-10-01T23:59:59.000Z
The Qweak experiment has measured the parity-violating asymmetry in polarized e-p elastic scattering at Q^2 = 0.025(GeV/c)^2, employing 145 microamps of 89% longitudinally polarized electrons on a 34.4cm long liquid hydrogen target at Jefferson Lab. The results of the experiment's commissioning run are reported here, constituting approximately 4% of the data collected in the experiment. From these initial results the measured asymmetry is A_e_p = -279 +- 35 (statistics) +- 31 (systematics) ppb, which is the smallest and most precise asymmetry ever measured in polarized e-p scattering. The small Q^2 of this experiment has made possible the first determination of the weak charge of the proton, Q^p_W, by incorporating earlier parity-violating electron scattering (PVES) data at higher Q^2 to constrain hadronic corrections. The value of Q^p_W obtained in this way is Q^p_W(PVES) = 0.064 +- 0.012, in good agreement with the Standard Model prediction of Q^p_W(SM) = 0.0710 +- 0.0007. When this result is further combined with the Cs atomic parity violation (APV) measurement, significant constraints on the weak charges of the up and down quarks can also be extracted. That PVES+APV analysis reveals the neutron's weak charge to be Q^n_W(PVES+APV) = -0.975 +- 0.010.
Measuring primordial non-Gaussianity through weak lensing peak counts
Laura Marian; Stefan Hilbert; Robert E. Smith; Peter Schneider; Vincent Desjacques
2012-04-18T23:59:59.000Z
We explore the possibility of detecting primordial non-Gaussianity of the local type using weak lensing peak counts. We measure the peak abundance in sets of simulated weak lensing maps corresponding to three models f_NL={0, +100, -100}. Using survey specifications similar to those of Euclid and without assuming any knowledge of the lens and source redshifts, we find the peak functions of the non-Gaussian models with f_NL=+-100 to differ by up to 15% from the Gaussian peak function at the high-mass end. For the assumed survey parameters, the probability of fitting an f_NL=0 peak function to the f_NL=+-100 peak functions is less than 0.1%. Assuming the other cosmological parameters known, f_NL can be measured with an error \\Delta f_NL ~ 13. It is therefore possible that future weak lensing surveys like Euclid and LSST may detect primordial non-Gaussianity from the abundance of peak counts, and provide complementary information to that obtained from the cosmic microwave background.
Turbulent Angular Momentum Transport in Weakly-Ionized Accretion Disks
Bryan Mark Johnson
2005-09-13T23:59:59.000Z
Understanding the mechanism that drives accretion has been the primary challenge in accretion disk theory. Turbulence provides a natural means of dissipation and the removal of angular momentum, but firmly establishing its presence in disks proved for many years to be difficult. The realization in the 1990s that a weak magnetic field will destabilize a disk and result in a vigorous turbulent transport of angular momentum has revolutionized the field. Much of accretion disk research now focuses on understanding the implications of this mechanism for astrophysical observations. At the same time, the success of this mechanism depends upon a sufficient ionization level in the disk for the flow to be well-coupled to the magnetic field. Many disks, such as disks around young stars and disks in binary systems that are in quiescence, are too cold to be sufficiently ionized, and so efforts to establish the presence of turbulence in these disks continues. This dissertation focuses on several possible mechanisms for the turbulent transport of angular momentum in weakly-ionized accretion disks: gravitational instability, radial convection and vortices driving compressive motions. It appears that none of these mechanisms are very robust in driving accretion. A discussion is given, based on these results, as to the most promising directions to take in the search for a turbulent transport mechanism that does not require magnetic fields. Also discussed are the implications of assuming that no turbulent transport mechanism exists for weakly-ionized disks.
Group formation: The interaction of increasing returns and preferences'
Paris-Sud XI, UniversitĂ© de
argue that the perfect freedom of entry and exit in the industry introduces a very strong competitive entry coalition structures . . . . . . . . . . . . . . . . . . . 25 3.5 Free mobility, free entry, and increasing returns . . . . . . . . . 26 3.6 Restrictions on free entry or on preferences
Research Goals at a Glance Human-Computer Interaction Group
Reiterer, Harald
with different Filters and Visualisations BEST.BUSINESS EXCELLENCE IN SOFTWARE USABILITY AND DESIGN #12; improve value for the users. » Take advantage of human cognition in interface design » Design usable searches and baskets (tile scales are mapped to elapsed time). Key Aspects: ZUIs - natural way
Probing Spin-Relaxation Anisotropy in 1D InSb Wires by Weak Anti-Localization
Jayathilaka, P. A. R. D.; Cairns, S.; Keay, J.; Murphy, S. Q.; Gaspe, C. K.; Mishima, T. D.; Santos, M. B. [Homer L. Dodge Department of Physics and Astronomy, Center for Semiconductor Physics in Nanostructures (C-SPIN), University of Oklahoma, Norman, OK (United States)
2011-12-26T23:59:59.000Z
Arrays of quasi-one-dimensional wires were fabricated in symmetrically doped AlInSb/InSb heterostructures to investigate the dimensional suppression of electron spin relaxation. Using weak localization analysis, it was discovered that the spin relaxation length in 300nm wide wires was enhanced by 40% relative to the two-dimensional value. Moreover, wires aligned along the <100> direction showed spin relaxation lengths {approx}30% longer than for wires aligned along <110>. This anisotropy is consistent with the additional influence of the cubic Dresselhaus interaction along the <110> direction which is predicted to be unaffected by dimensional confinement.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
members will execute in August 2011. Facilities Use Charge agreements are drafted: In review stage by customer group; Proposal specifies annual update of charge amount...
Ab initio coupled-cluster approach to nuclear structure with modern nucleon-nucleon interactions
G. Hagen; T. Papenbrock; D. J. Dean; M. Hjorth-Jensen
2010-05-14T23:59:59.000Z
We perform coupled-cluster calculations for the doubly magic nuclei 4He, 16O, 40Ca and 48Ca, for neutron-rich isotopes of oxygen and fluorine, and employ "bare" and secondary renormalized nucleon-nucleon interactions. For the nucleon-nucleon interaction from chiral effective field theory at order next-to-next-to-next-to leading order, we find that the coupled-cluster approximation including triples corrections binds nuclei within 0.4 MeV per nucleon compared to data. We employ interactions from a resolution-scale dependent similarity renormalization group transformations and assess the validity of power counting estimates in medium-mass nuclei. We find that the missing contributions due to three-nucleon forces are consistent with these estimates. For the unitary correlator model potential, we find a slow convergence with respect to increasing the size of the model space. For the G-matrix approach, we find a weak dependence of ground-state energies on the starting energy combined with a rather slow convergence with respect to increasing model spaces. We also analyze the center-of-mass problem and present a practical and efficient solution.
Chaoticity threshold in magnetized plasmas: Numerical results in the weak coupling regime
Carati, A., E-mail: andrea.carati@unimi.it; Benfenati, F.; Maiocchi, A.; Galgani, L. [Universitŕ degli Studi di Milano, Milano (Italy)] [Universitŕ degli Studi di Milano, Milano (Italy); Zuin, M., E-mail: matteo.zuin@igi.cnr.it [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Padova (Italy)
2014-03-15T23:59:59.000Z
The present paper is a numerical counterpart to the theoretical work [Carati et al., Chaos 22, 033124 (2012)]. We are concerned with the transition from order to chaos in a one-component plasma (a system of point electrons with mutual Coulomb interactions, in a uniform neutralizing background), the plasma being immersed in a uniform stationary magnetic field. In the paper [Carati et al., Chaos 22, 033124 (2012)], it was predicted that a transition should take place when the electron density is increased or the field decreased in such a way that the ratio ?{sub p}/?{sub c} between plasma and cyclotron frequencies becomes of order 1, irrespective of the value of the so-called Coulomb coupling parameter ?. Here, we perform numerical computations for a first principles model of N point electrons in a periodic box, with mutual Coulomb interactions, using as a probe for chaoticity the time-autocorrelation function of magnetization. We consider two values of ? (0.04 and 0.016) in the weak coupling regime ????1, with N up to 512. A transition is found to occur for ?{sub p}/?{sub c} in the range between 0.25 and 2, in fairly good agreement with the theoretical prediction. These results might be of interest for the problem of the breakdown of plasma confinement in fusion machines.
Efficient weakly-radiative wireless energy transfer: An EIT-like approach
Efficient weakly-radiative wireless energy transfer: An EIT-like approach Rafif E. Hamam 2009 Keywords: Wireless energy transfer Coupling Electromagnetically induced transparency (EIT induced trans- parency (EIT), we propose an efficient weakly radiative wireless energy transfer scheme
Ferrate(VI) oxidation of weak-acid dissociable cyanides
Ria A. Yngard; Virender K. Sharma; Jan Filip; Radek Zboril [Florida Institute of Technology, Melbourne, FL (United States). Chemistry Department, Florida Institute of Technology
2008-04-15T23:59:59.000Z
Cyanide is commonly found in electroplating, mining, coal gasification, and petroleum refining effluents, which require treatment before being discharged. Cyanide in effluents exists either as free cyanide or as a metal complex. The kinetics of the oxidation of weak-acid dissociable cyanides by an environmentally friendly oxidant, ferrate, were studied as a function of pH (9.1-10.5) and temperature (15-45{sup o}C) using a stopped-flow technique. The weak-acid dissociable cyanides were Cd(CN){sub 4}{sup 2-} and Ni(CN){sub 4}{sup 2-}, and the rate-laws for the oxidation may be -d(Fe(VI))/dt = k (Fe(VI))(M(CN){sub 4}{sup 2-}){sup n} where n = 0.5 and 1 for Cd(CN){sub 4}{sup 2-} and Ni(CN){sub 4}{sup 2-}, respectively. The rates decreased with increasing pH and were mostly related to a decrease in concentration of the reactive protonated Fe(VI) species, HFeO{sub 4}{sup -}. The stoichiometries with Fe(VI) were determined to be: 4HFeO{sub 4}{sup -} + M(CN){sub 4}{sup 2-} + 6H{sub 2}O {yields} 4Fe(OH){sub 3} + M{sup 2+} + 4NCO{sup -} + O{sub 2} + 4OH{sup -}. Mechanisms are proposed that agree with the observed reaction rate-laws and stoichiometries of the oxidation of weak-acid dissociable cyanides by Fe(VI). Results indicate that Fe(VI) is effective in removing cyanide in coke oven plant effluent, where organics are also present. 27 refs., 3 figs., 2 tabs.
Summary of the TeV33 working group
Bagley, P.P.; Bieniosek, F.M.; Colestock, P. [and others
1996-10-01T23:59:59.000Z
This summary of the TeV33 working group at Snowmass reports on work in the areas of Tevatron store parameters, the beam-beam interaction, Main Injector intensity (slip stacking), antiproton production, and electron cooling.
Semiclassical suppression of weak anisotropies of a generic Universe
Marco Valerio Battisti; Riccardo Belvedere; Giovanni Montani
2009-06-11T23:59:59.000Z
A semiclassical mechanism which suppresses the weak anisotropies of an inhomogeneous cosmological model is developed. In particular, a wave function of this Universe having a meaningful probabilistic interpretation is obtained that is in agreement with the Copenhagen School. It describes the evolution of the anisotropies with respect to the isotropic scale factor which is regarded as a semiclassical variable playing an observer-like role. Near the cosmological singularity the solution spreads over all values of the anisotropies while, when the Universe expands sufficiently, the closed Friedmann-Robertson-Walker model appears to be the favorite state.
Optimal waveform for the entrainment of a weakly forced oscillator
Takahiro Harada; Hisa-Aki Tanaka; Michael J. Hankins; István Z. Kiss
2010-07-24T23:59:59.000Z
A theory for obtaining waveform for the effective entrainment of a weakly forced oscillator is presented. Phase model analysis is combined with calculus of variation to derive a waveform with which entrainment of an oscillator is achieved with minimum power forcing signal. Optimal waveforms are calculated from the phase response curve and a solution to a balancing condition. The theory is tested in chemical entrainment experiments in which oscillations close to and further away from a Hopf bifurcation exhibited sinusoidal and higher harmonic nontrivial optimal waveforms, respectively.
Proton's Weak Charge Determined for First Time | Jefferson Lab
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5(Million Cubic Feet) Oregon (Including Vehicle Fuel) (Million Cubic Feet)setsManagementProton Channel Orientation inWeak Charge Determined for First
Evidence for a Weak Iron Core at Earth's Center
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article)41clothThe Bonneville Power AdministrationHawaiiEnergy StorageDepartment of EnergyNorth SlopeEventsEvidence for a Weak
Axions, strong and weak CP, and KNP inflation
Kim, Jihn E
2015-01-01T23:59:59.000Z
I review the ideas leading to the QCD axion and also comment on the Jarlskog determinant describing the observed weak CP violation, and the axion-related Kim-Nilles-Peloso inflation. All of these use pseudoscalars, and the underlying principle is the discrete gauge symmetry either in the bottom-up or top-down approaches. Here, the effects of gravity are required to be unimportant in the low energy effective theory. String compactification is safe from the gravity spoil of global symmetries and some examples from string compactification are commented.
Fermilab | Employee Advisory Group | Focus Group Report
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article)41clothThe Bonneville Power AdministrationHawaiiEnergyFlorida July 9, 2009 NAME:Internal Audit ServicesOfficesGroup
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) |govInstrumentsmfrirtA Journey Inside the Complex and Powerful World ofIntegrated DiversityScience andInteractive Jobs
ON THE SUSTAINABILITY AND ARREST OF WEAK LAYER FRACTURE IN WHUMPFS AND Dave Gauthier*1
Jamieson, Bruce
ON THE SUSTAINABILITY AND ARREST OF WEAK LAYER FRACTURE IN WHUMPFS AND AVALANCHES Dave Gauthier*1, Alberta, Canada ABSTRACT: Recent theoretical and practical descriptions of weak layer fracture have-sustaining. Arrest of weak layer fracture has been addressed for shear-based models, but has often been overlooked
Weakly Uniformly Rotund Banach spaces A. Molto, V. Montesinos, J. Orihuela and S. Troyanski
Montesinos Santalucía, Vicente
are equivalent: 1. C(K) is weakly K-analytic. 2. There is an increasing mapping S from ININ (endowed, such that {S : ININ } separates points of K. Remark 1 In [1] the validity of the previous theorem that (W, weak) is K-analytic if and only if W = {S : ININ } and every S is weakly compact
Recap Weak Normal EC Strong Normal EC Robustness Combined with WCT Equivalence Class Testing
Mousavi, Mohammad
Recap Weak Normal EC Strong Normal EC Robustness Combined with WCT Equivalence Class Testing: Equivalence Class Testing #12;Recap Weak Normal EC Strong Normal EC Robustness Combined with WCT Outline Recap Weak Normal EC Strong Normal EC Robustness Combined with WCT Mousavi: Equivalence Class Testing #12
Renormalization group flow for noncommutative Fermi liquids
Estrada-Jimenez, Sendic [Centro de Estudios en Fisica y Matematicas Basicas y Aplicadas, Universidad Autonoma de Chiapas, Calle 4a Oriente Norte 1428 Tuxtla Gutierrez, Chiapas (Mexico); Garcia-Compean, Hugo [Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados del IPN P.O. Box 14-740, 07000 Mexico D.F. (Mexico); Wu Yongshi [Department of Physics and Astronomy, University of Utah Salt Lake City, Utah 84112 (United States); Department of Physics, Fudan University, Shanghai 200433 (China)
2011-06-15T23:59:59.000Z
Some recent studies of the AdS/CFT correspondence for condensed matter systems involve the Fermi liquid theory as a boundary field theory. Adding B-flux to the boundary D-branes leads in a certain limit to the noncommutative Fermi liquid, which calls for a field theory description of its critical behavior. As a preliminary step to more general consideration, the modification of the Landau's Fermi liquid theory due to noncommutativity of spatial coordinates is studied in this paper. We carry out the renormalization of interactions at tree level and one loop in a weakly coupled fermion system in two spatial dimensions. Channels ZS, ZS' and BCS are discussed in detail. It is shown that while the Gaussian fixed-point remains unchanged, the BCS instability is modified due to the space noncommutativity.
Identifying Differences in Cultural Behavior in Online Groups
Gregory, Michelle L.; Engel, David W.; Bell, Eric B.; Mcgrath, Liam R.
2012-07-23T23:59:59.000Z
We have developed methods to identify online communities, or groups, using a combination of structural information variables and content information variables from weblog posts and their comments to build a characteristic footprint for groups. We have worked with both explicitly connected groups and 'abstract' groups, in which the connection between individuals is in interest (as determined by content based features) and behavior (metadata based features) as opposed to explicit links. We find that these variables do a good job at identifying groups, placing members within a group, and helping determine the appropriate granularity for group boundaries. The group footprint can then be used to identify differences between the online groups. In the work described here we are interested in determining how an individual's online behavior is influenced by their membership in more than one group. For example, individuals belong to a certain culture; they may belong as well to a demographic group, and other 'chosen' groups such as churches or clubs. There is a plethora of evidence surrounding the culturally sensitive adoption, use, and behavior on the Internet. In this work we begin to investigate how culturally defined internet behaviors may influence behaviors of subgroups. We do this through a series of experiments in which we analyze the interaction between culturally defined behaviors and the behaviors of the subgroups. Our goal is to (a) identify if our features can capture cultural distinctions in internet use, and (b) determine what kinds of interaction there are between levels and types of groups.
Working group report: Neutrino physics
2009-01-01T23:59:59.000Z
Working group report: Neutrino physics Acknowledgements TheWorking group report: Neutrino physics Coordinators: SANDHYAthe report of the neutrino physics working group at WHEPP-X.
Rhodes 801-A Rhodes 801-B Group 1: Group 1
Cahay, Marc
Marie Group 3: Group 3: Bennett, Christopher Paul Davenport, Austin Lovell Creech, Nathan Alan Colburn Worcester, Austin Thomas Group 8: Group 8: TableATableBTableCTableD TableATableBTableCTableD #12;Rhodes 801
Central extensions of Current Groups and the Jacobi Group
Docherty, Pamela Jane
2012-11-28T23:59:59.000Z
A current group GX is an infinite-dimensional Lie group of smooth maps from a smooth manifold X to a finite-dimensional Lie group G, endowed with pointwise multiplication. This thesis concerns current groups G§ for compact ...
Weak chaos, infinite ergodic theory, and anomalous dynamics
Rainer Klages
2015-07-15T23:59:59.000Z
This book chapter introduces to the concept of weak chaos, aspects of its ergodic theory description, and properties of the anomalous dynamics associated with it. In the first half of the chapter we study simple one-dimensional deterministic maps, in the second half basic stochastic models and eventually an experiment. We start by reminding the reader of fundamental chaos quantities and their relation to each other, exemplified by the paradigmatic Bernoulli shift. Using the intermittent Pomeau-Manneville map the problem of weak chaos and infinite ergodic theory is outlined, defining a very recent mathematical field of research. Considering a spatially extended version of the Pomeau-Manneville map leads us to the phenomenon of anomalous diffusion. This problem will be discussed by applying stochastic continuous time random walk theory and by deriving a fractional diffusion equation. Another important topic within modern nonequilibrium statistical physics are fluctuation relations, which we investigate for anomalous dynamics. The chapter concludes by showing the importance of anomalous dynamics for understanding experimental results on biological cell migration.
Linearly resummed hydrodynamics in a weakly curved spacetime
Yanyan Bu; Michael Lublinsky
2015-02-27T23:59:59.000Z
We extend our study of all-order linearly resummed hydrodynamics in a flat space~\\cite{1406.7222,1409.3095} to fluids in weakly curved spaces. The underlying microscopic theory is a finite temperature $\\mathcal{N}=4$ super-Yang-Mills theory at strong coupling. The AdS/CFT correspondence relates black brane solutions of the Einstein gravity in asymptotically \\emph{locally} $\\textrm{AdS}_5$ geometry to relativistic conformal fluids in a weakly curved 4D background. To linear order in the amplitude of hydrodynamic variables and metric perturbations, the fluid's energy-momentum tensor is computed with derivatives of both the fluid velocity and background metric resummed to all orders. We extensively discuss the meaning of all order hydrodynamics by expressing it in terms of the memory function formalism, which is also suitable for practical simulations. In addition to two viscosity functions discussed at length in refs.~\\cite{1406.7222,1409.3095}, we find four curvature induced structures coupled to the fluid via new transport coefficient functions. In ref.~\\cite{0905.4069}, the latter were referred to as gravitational susceptibilities of the fluid. We analytically compute these coefficients in the hydrodynamic limit, and then numerically up to large values of momenta.
Shu, Chuan-Cun; Henriksen, Niels E. [Department of Chemistry, Building 207, Technical University of Denmark, DK-2800, Kongens Lyngby (Denmark)
2012-01-28T23:59:59.000Z
We implement phase-only shaped laser pulses within quantum optimal control theory for laser-molecule interaction. This approach is applied to the indirect photofragmentation dynamics of NaI in the weak-field limit. It is shown that optimized phase-modulated pulses with a fixed frequency distribution can substantially modify transient dissociation probabilities as well as the momentum distribution associated with the relative motion of Na and I.
Joel H. Kastner; Lara Crigger; Margaret Rich; David A. Weintraub
2002-11-15T23:59:59.000Z
We present archival ROSAT data for three recently identified, nearby (DPic Moving Group. The distributions of ROSAT X-ray hardness ratios (HR1, HR2) for these three groups, whose membership is dominated by low-mass, weak-lined T Tauri stars, are tightly clustered and very similar to one another. The value of HR1 for TW Hya itself -- the only bona fide classical T Tauri star in any of the nearby groups -- is clearly anomalous among these nearby young stars. We compare the hardness ratio distributions of stars in the three nearby groups with those of T Tauri stars, the Hyades, and main sequence dwarfs in the field. This comparison demonstrates that the X-ray spectra of F through M stars soften with age, and that F and G stars evolve more rapidly in X-ray spectral hardness than do K and M stars. It is as yet unclear whether this trend can be attributed to age-dependent changes in the intrinsic X-ray spectra of stars of type F and later, to a decrease in the column density of circumstellar gas (e.g., in residual protoplanetary disks), or to the diminishing contributions of star-disk interactions to X-ray emission. Regardless, these results demonstrate that analysis of archival ROSAT X-ray spectral data can help both to identify nearby, young associations and to ascertain the X-ray emission properties of members of known associations.
Weak lensing flexion as a probe of galaxy cluster substructure
Cain, Benjamin Martin
2011-01-01T23:59:59.000Z
Measuring galaxy cluster total masses and the amount of dark matter substructure within galaxy cluster haloes is a fundamental probe of the ACDM model of structure formation, as well as the interactions between baryonic ...
WEAK LENSING MEASUREMENT OF GALAXY CLUSTERS IN THE CFHTLS-WIDE SURVEY
Shan Huanyuan; Tao Charling [Department of Physics and Tsinghua Center for Astrophysics, Tsinghua University, Beijing, 100084 (China); Kneib, Jean-Paul; Jauzac, Mathilde; Limousin, Marceau [Laboratoire d'Astrophysique de Marseille, CNRS-Universite de Provence, 38 rue Frederic Joliot-Curie, F-13388 Marseille Cedex 13 (France); Fan Zuhui [Department of Astronomy, Peking University, Beijing, 100871 (China); Massey, Richard [Institute for Astronomy, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Rhodes, Jason [California Institute of Technology, MC 350-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Thanjavur, Karun [Canada France Hawaii Telescope, 65-1238 Mamalahoa Hwy, Kamuela, HI 96743 (United States); McCracken, Henry J., E-mail: shanhuany@gmail.com [Institude d'Astrophysique de Paris, UMR 7095, 98 bis Boulevard Arago, F-75014 Paris (France)
2012-03-20T23:59:59.000Z
We present the first weak gravitational lensing analysis of the completed Canada-France-Hawaii Telescope Legacy Survey (CFHTLS). We study the 64 deg{sup 2} W1 field, the largest of the CFHTLS-Wide survey fields, and present the largest contiguous weak lensing convergence 'mass map' yet made. 2.66 million galaxy shapes are measured, using the Kaiser Squires and Broadhurst Method (KSB) pipeline verified against high-resolution Hubble Space Telescope imaging that covers part of the CFHTLS. Our i'-band measurements are also consistent with an analysis of independent r'-band imaging. The reconstructed lensing convergence map contains 301 peaks with signal-to-noise ratio {nu} > 3.5, consistent with predictions of a {Lambda}CDM model. Of these peaks, 126 lie within 3.'0 of a brightest central galaxy identified from multicolor optical imaging in an independent, red sequence survey. We also identify seven counterparts for massive clusters previously seen in X-ray emission within 6 deg{sup 2} XMM-LSS survey. With photometric redshift estimates for the source galaxies, we use a tomographic lensing method to fit the redshift and mass of each convergence peak. Matching these to the optical observations, we confirm 85 groups/clusters with {chi}{sup 2}{sub reduced} < 3.0, at a mean redshift (z{sub c} ) = 0.36 and velocity dispersion ({sigma}{sub c}) = 658.8 km s{sup -1}. Future surveys, such as DES, LSST, KDUST, and EUCLID, will be able to apply these techniques to map clusters in much larger volumes and thus tightly constrain cosmological models.
Data Management Group Annual Report
Toronto, University of
Data Management Group Annual Report 2002 prepared by: Data Management Group Joint Program TOMORROW SURVEY ..................................... 14 DMG PUBLICATIONS Management Group 2002 Annual Report i SUMMARY The Data Management Group (DMG), in cooperation
Wave Front Interaction Model of Stabilized Propagating Wave Segments Vladimir S. Zykov1
Showalter, Kenneth
Wave Front Interaction Model of Stabilized Propagating Wave Segments Vladimir S. Zykov1 and Kenneth; published 14 February 2005) A wave front interaction model is developed to describe the relationship between excitability and the size and shape of stabilized wave segments in a broad class of weakly excitable media
How the Weak Variance of Momentum Can Turn Out to be Negative
Feyereisen, M R
2015-01-01T23:59:59.000Z
Weak values are average quantities,therefore investigating their associated variance is crucial in understanding their place in quantum mechanics. We develop the concept of a position-postselected weak variance of momentum as cohesively as possible, building primarily on material from Moyal (Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge University Press, Cambridge, 1949) and Sonego (Found Phys 21(10):1135, 1991) . The weak variance is defined in terms of the Wigner function, using a standard construction from probability theory. We show this corresponds to a measurable quantity, which is not itself a weak value. It also leads naturally to a connection between the imaginary part of the weak value of momentum and the quantum potential. We study how the negativity of the Wigner function causes negative weak variances, and the implications this has on a class of `subquantum' theories. We also discuss the role of weak variances in studying determinism, deriving the classical limit from...
How the Weak Variance of Momentum Can Turn Out to be Negative
M. R. Feyereisen
2015-03-25T23:59:59.000Z
Weak values are average quantities,therefore investigating their associated variance is crucial in understanding their place in quantum mechanics. We develop the concept of a position-postselected weak variance of momentum as cohesively as possible, building primarily on material from Moyal (Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge University Press, Cambridge, 1949) and Sonego (Found Phys 21(10):1135, 1991) . The weak variance is defined in terms of the Wigner function, using a standard construction from probability theory. We show this corresponds to a measurable quantity, which is not itself a weak value. It also leads naturally to a connection between the imaginary part of the weak value of momentum and the quantum potential. We study how the negativity of the Wigner function causes negative weak variances, and the implications this has on a class of `subquantum' theories. We also discuss the role of weak variances in studying determinism, deriving the classical limit from a variational principle.
KINEMATIC SEISMIC RESPONSE OF SINGLE PILES AND PILE GROUPS
Entekhabi, Dara
KINEMATIC SEISMIC RESPONSE OF SINGLE PILES AND PILE GROUPS By Ke Fan,1 George Gazetas,2 Amir Kaynia on the kinematic response of groups of vertical floating piles connected through rigid massless caps and sub- jected to vertically propagating harmonic 5-waves. Pile-soil and pile-pile interaction effects
Traces of Singular Moduli and Moonshine for the Thompson Group
Jeffrey A. Harvey; Brandon C. Rayhaun
2015-04-30T23:59:59.000Z
We describe a relationship between the representation theory of the Thompson sporadic group and a weakly holomorphic modular form of weight one-half that appears in work of Borcherds and Zagier on Borcherds products and traces of singular moduli. We conjecture the existence of an infinite dimensional graded module for the Thompson group and provide evidence for our conjecture by constructing McKay--Thompson series for each conjugacy class of the Thompson group that coincide with weight one-half modular forms of higher level. We also observe a discriminant property in this moonshine for the Thompson group that is closely related to the discriminant property conjectured to exist in Umbral Moonshine.
An Experiment in Hierarchical Recognition of Group Activities using Wearable Sensors
Beigl, Michael
An Experiment in Hierarchical Recognition of Group Activities using Wearable Sensors Dawud Gordon1 between people and their intelligent environments instead of individual devices, inevitably leading to groups of individuals interacting with the same intelligent environment. These environments must
Absolute Dynamical Limit to Cooling Weakly-Coupled Quantum Systems
X. Wang; Sai Vinjanampathy; Frederick W. Strauch; Kurt Jacobs
2012-05-15T23:59:59.000Z
Cooling of a quantum system is limited by the size of the control forces that are available (the "speed" of control). We consider the most general cooling process, albeit restricted to the regime in which the thermodynamics of the system is preserved (weak coupling). Within this regime, we further focus on the most useful control regime, in which a large cooling factor, and good ground-state cooling can be achieved. We present a control protocol for cooling, and give clear structural arguments, as well as strong numerical evidence, that this protocol is globally optimal. From this we obtain simple expressions for the limit to cooling that is imposed by the speed of control.
Weak-strong clustering transition in renewing compressible flows
Dhanagare, Ajinkya; Vincenzi, Dario
2014-01-01T23:59:59.000Z
We investigate the statistical properties of Lagrangian tracers transported by a time-correlated compressible renewing flow. We show that the preferential sampling of the phase space performed by tracers yields significant differences between the Lagrangian statistics and its Eulerian counterpart. In particular, the effective compressibility experienced by tracers has a non-trivial dependence on the time correlation of the flow. We examine the consequence of this phenomenon on the clustering of tracers, focusing on the transition from the weak- to the strong-clustering regime. We find that the critical compressibility at which the transition occurs is minimum when the time correlation of the flow is of the order of the typical eddy turnover time. Further, we demonstrate that the clustering properties in time-correlated compressible flows are non-universal and are strongly influenced by the spatio-temporal structure of the velocity field.
Buoyancy Instabilities in a Weakly Collisional Intracluster Medium
Kunz, Matthew W; Reynolds, Christopher S; Stone, James M
2012-01-01T23:59:59.000Z
The intracluster medium of galaxy clusters is a weakly collisional, high-beta plasma in which the transport of heat and momentum occurs primarily along magnetic-field lines. Anisotropic heat conduction allows convective instabilities to be driven by temperature gradients of either sign, the magnetothermal instability (MTI) in the outskirts of non-isothermal clusters and the heat-flux buoyancy-driven instability (HBI) in their cooling cores. We employ the Athena MHD code to investigate the nonlinear evolution of these instabilities, self-consistently including the effects of anisotropic viscosity (i.e. Braginskii pressure anisotropy), anisotropic conduction, and radiative cooling. We highlight the importance of the microscale instabilities that inevitably accompany and regulate the pressure anisotropies generated by the HBI and MTI. We find that, in all but the innermost regions of cool-core clusters, anisotropic viscosity significantly impairs the ability of the HBI to reorient magnetic-field lines orthogonal...
Quasielastic electron-deuteron scattering in the weak binding approximation
Ethier, Jacob J. [William and Mary College, JLAB; Doshi, Nidhi P. [Carnegie Mellon University; Malace, Simona P. [JLAB; Melnitchouk, Wally [JLAB
2014-06-01T23:59:59.000Z
We perform a global analysis of all available electron-deuteron quasielastic scattering data using Q^2-dependent smearing functions that describe inclusive inelastic e-d scattering within the weak binding approximation. We study the dependence of the cross sections on the deuteron wave function and the off-shell extrapolation of the elastic electron-nucleon cross section, which show particular sensitivity at x >> 1. The excellent overall agreement with data over a large range of Q^2 and x suggest a limited need for effects beyond the impulse approximation, with the exception of the very high-x or very low-Q^2 regions, where short-distance effects in the deuteron become more relevant.
Autoresonance energy transfer versus localization in weakly coupled oscillators
Agnessa Kovaleva; Leonid Manevitch
2014-10-22T23:59:59.000Z
In this paper we investigate the distribution of energy between weakly coupled linear and nonlinear oscillators in a two-degree-of-freedom (2D) system. Two classes of problems are studied analytically and numerically: (1) a periodic force with constant frequency is applied to the nonlinear (Duffing) oscillator with slowly time-decreasing linear stiffness; (2) the time-independent nonlinear oscillator is excited by a force with slowly increasing frequency. In both cases, stiffness of the attached linear oscillator and linear coupling remain constant, and the system is initially engaged in resonance. This paper demonstrates that in the systems of the first type autoresonance (AR) occurs in both oscillators while in systems of the second type AR occurs only in the excited nonlinear oscillator but the coupled linear oscillator exhibits small bounded oscillations. Considering slow detuning, we obtain explicit asymptotic approximations for the amplitudes and the phases of oscillations close to exact (numerical) results.
Weak-strong clustering transition in renewing compressible flows
Ajinkya Dhanagare; Stefano Musacchio; Dario Vincenzi
2014-11-01T23:59:59.000Z
We investigate the statistical properties of Lagrangian tracers transported by a time-correlated compressible renewing flow. We show that the preferential sampling of the phase space performed by tracers yields significant differences between the Lagrangian statistics and its Eulerian counterpart. In particular, the effective compressibility experienced by tracers has a non-trivial dependence on the time correlation of the flow. We examine the consequence of this phenomenon on the clustering of tracers, focusing on the transition from the weak- to the strong-clustering regime. We find that the critical compressibility at which the transition occurs is minimum when the time correlation of the flow is of the order of the typical eddy turnover time. Further, we demonstrate that the clustering properties in time-correlated compressible flows are non-universal and are strongly influenced by the spatio-temporal structure of the velocity field.
The Weak-Coupling Limit of Simplicial Quantum Gravity
G. Thorleifsson; P. Bialas; B. Petersson
1998-12-23T23:59:59.000Z
In the weak-coupling limit, kappa_0 going to infinity, the partition function of simplicial quantum gravity is dominated by an ensemble of triangulations with the ratio N_0/N_D close to the upper kinematic limit. For a combinatorial triangulation of the D--sphere this limit is 1/D. Defining an ensemble of maximal triangulations, i.e. triangulations that have the maximal possible number of vertices for a given volume, we investigate the properties of this ensemble in three dimensions using both Monte Carlo simulations and a strong-coupling expansion of the partition function, both for pure simplicial gravity and a with a suitable modified measure. For the latter we observe a continuous phase transition to a crinkled phase and we investigate the fractal properties of this phase.
Coexistence of Weak Ferromagnetism and Polar Lattice Distortion...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
the magnetic and structural characteristics of epitaxial NiTiO3 films grown by pulsed laser deposition that are isostructural with acentric LiNbO3 (space group R3c). Optical...
Strangulation in Galaxy Groups
Kawata, Daisuke
2007-01-01T23:59:59.000Z
We use a cosmological chemodynamical simulation to study how the group environment impacts the star formation properties of disk galaxies. The simulated group has a total mass of M~8x10^12 Msun and a total X-ray luminosity of L_X~10^41 erg s^-1. Our simulation suggests that ram pressure is not sufficient in this group to remove the cold disk gas from a V_rot~150 km s^-1 galaxy. However, the majority of the hot gas in the galaxy is stripped over a timescale of approximately 1 Gyr. Since the cooling of the hot gas component provides a source for new cold gas, the stripping of the hot component effectively cuts off the supply of cold gas. This in turn leads to a quenching of star formation. The galaxy maintains the disk component after the cold gas is consumed leading to a galaxy with S0 properties. Our self-consistent simulation suggests that this strangulation mechanism works even in low mass groups, providing an explanation for the lower star formation rates in group galaxies relative to galaxies in the field...
Strangulation in Galaxy Groups
Daisuke Kawata; John S. Mulchaey
2007-11-20T23:59:59.000Z
We use a cosmological chemodynamical simulation to study how the group environment impacts the star formation properties of disk galaxies. The simulated group has a total mass of M~8x10^12 Msun and a total X-ray luminosity of L_X~10^41 erg s^-1. Our simulation suggests that ram pressure is not sufficient in this group to remove the cold disk gas from a V_rot~150 km s^-1 galaxy. However, the majority of the hot gas in the galaxy is stripped over a timescale of approximately 1 Gyr. Since the cooling of the hot gas component provides a source for new cold gas, the stripping of the hot component effectively cuts off the supply of cold gas. This in turn leads to a quenching of star formation. The galaxy maintains the disk component after the cold gas is consumed, which may lead to a galaxy similar to an S0. Our self-consistent simulation suggests that this strangulation mechanism works even in low mass groups, providing an explanation for the lower star formation rates in group galaxies relative to galaxies in the field.
David G. Loomis
2012-05-28T23:59:59.000Z
The Illinois Wind Working Group (IWWG) was founded in 2006 with about 15 members. It has grown to over 200 members today representing all aspects of the wind industry across the State of Illinois. In 2008, the IWWG developed a strategic plan to give direction to the group and its activities. The strategic plan identifies ways to address critical market barriers to the further penetration of wind. The key to addressing these market barriers is public education and outreach. Since Illinois has a restructured electricity market, utilities no longer have a strong control over the addition of new capacity within the state. Instead, market acceptance depends on willing landowners to lease land and willing county officials to site wind farms. Many times these groups are uninformed about the benefits of wind energy and unfamiliar with the process. Therefore, many of the project objectives focus on conferences, forum, databases and research that will allow these stakeholders to make well-educated decisions.
The Los Angeles Physics Teachers Alliance Group (LAPTAG) Plasma Physics Experiment
Carter, Troy
Alliance Group (LAPTAG) Nearly eight years ago the LAPTAG was created so that universities could interact1 The Los Angeles Physics Teachers Alliance Group (LAPTAG) Plasma Physics Experiment Principal a group of teachers from the Los Angeles Physics Teachers Alliance Group (LAPTAG), Prof. Walter Gekelman
The ChiCI Group This paper describes the work, the vision, and the
welcomes associate members from similar research groups around the globe. Eight of the full membersThe ChiCI Group Abstract This paper describes the work, the vision, and the approach of the Child Computer Interaction (ChiCI) group at the University of Central Lancashire in the UK. This group, formed
Solomon, A. I., E-mail: a.i.solomon@open.ac.u [Open University, Department of Physics (United Kingdom)
2010-03-15T23:59:59.000Z
The 'Bell' of the title refers to bipartite Bell states, and their extensions to, for example, tripartite systems. The 'Group' of the title is the Braid Group in its various representations; while 'Tangle' refers to the property of entanglement which is present in both of these scenarios. The objective of this note is to explore the relation between Quantum Entanglement and Topological Links, and to show that the use of the language of entanglement in both cases is more than one of linguistic analogy.
Evan Hughes
2009-01-08T23:59:59.000Z
The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.
Magnetism Theory Group / POSTECH Magnetism Theory Group / POSTECH
Min, Byung Il
Magnetism Theory Group / POSTECH #12;Magnetism Theory Group / POSTECH #12;Magnetism Theory Group / POSTECH #12;Magnetism Theory Group / POSTECH #12;Magnetism Theory Group / POSTECH J.H . Park et al. #12;'s of FeinCsm e tal The chargeandorbitalordering geom etryin YB a C o 2 O 5 S. K. Kwon etal .Magnetism Theory
Daunizeau, Jean
) is measurement error True response magnitude is fixed 111 Xy Fixed effect #12;Random effects-sphericity modelling Examples Power and efficiency: summary Overview #12;Group analysis: fixed versus random effects Two RFX methods: Holmes & Friston (HF) approach non-sphericity modelling Examples Power
Gilman, Robert
12. Automatic Groups Suppose : G is a choice of generators, and R is a rational language which, v) | w, v R and wa = v} on . G is automatic if for some choice of and R these transductions are all synchronous and rational. We will define synchronous presently. R and are called an automatic
GROUPED'ANALYSEETDETHORIECONOMIQUELYONSTTIENNE Stabilitcroissanceetperformanceconomique
Boyer, Edmond
GROUPED'ANALYSEETDETHÉORIEÉCONOMIQUELYONSTÉTIENNE WP1026 économique, stabilité, canal d'investissement. Classification JEL : B22, E32, O42 1 Dr. Zied Ftiti. Université de Lyon, Université Lyon 2, F - 69007, Lyon, France. CNRS, GATE Lyon-St Etienne, UMR n° 5824
GROUPED'ANALYSEETDETHORIECONOMIQUELYONSTTIENNE Sectorbasedexplanationofverticalintegrationin
Paris-Sud XI, Université de
GROUPED'ANALYSEETDETHÉORIEÉCONOMIQUELYONSTÉTIENNE WP1136, France CNRS, GATE Lyon-St Etienne, UMR n° 5824, 69130, Ecully, France Université de Saint-Etienne, Jean. Reif, G. Solard, 2009 ; B. Mura, 2010). A network relates to a network of downstream firms using
GROUPED'ANALYSEETDETHORIECONOMIQUELYONSTTIENNE Dynamicmodelsofresidentialsgrgation
Paris-Sud XI, Université de
GROUPED'ANALYSEETDETHÉORIEÉCONOMIQUELYONSTÉTIENNE WP1017 #12;DYNAMIC MODELS OF RESIDENTIAL SEGREGATION: AN ANALYTICAL SOLUTION S´ebastian GRAUWINa,b,c , Florence GOFFETTE-NAGOTa,d, , Pablo JENSENa,b,c,e aUniversit´e de Lyon, Lyon, F-69007, France bInstitut rh
TKN Telecommunication Networks Group
Wichmann, Felix
consumption. Quite some effort has already been undertaken to address this issue, striving for low-energy trends in the power consumption, the NICs and APs are classified according to the following aspects Group Power consumption of WLAN network elements Salvatore Chiaravalloti, Filip Idzikowski, Lukasz
Psarrakos, Panayiotis
Manufacturing / 3D Printing Informal enquiries are welcomed to Dr. Robert Kay: r.w.kay@lboro.ac.uk For more to as 3D Printing. The focus of the group is firmly placed on researching the use of these manufacturing
Theory of weak localization in ferromagnetic (Ga,Mn)As
Garate, Ion; Sinova, Jairo; Jungwirth, T.; MacDonald, A. H.
2009-01-01T23:59:59.000Z
We study quantum interference corrections to the conductivity in (Ga,Mn)As ferromagnetic semiconductors using a model with disordered valence-band holes coupled to localized Mn moments through a p-d kinetic-exchange interaction. We find that at Mn...
Revealing strengths and weaknesses of methods for gene network inference
Floreano, Dario
-performing method failed to accu- rately infer multiple regulatory inputs (combinatorial regulation) of genes MDM2, its key regulator (1). Indeed, the map- ping of biological interactions in the intracellular realm remains the bottleneck in the pipeline to produce biological knowledge from high-throughput data
Weak-triplet, color-octet scalars and the CDF dijet excess
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Dobrescu, Bogdan A.; Krnjaic, Gordan Z.
2012-04-24T23:59:59.000Z
We extend the standard model to include a weak-triplet and color-octet scalar. This 'octo-triplet' field consists of three particles, two charged and one neutral, whose masses and renormalizable interactions depend only on two new parameters. The charged octo-triplet decay into a W boson and a gluon is suppressed by a loop factor and an accidental cancellation. Thus, the main decays of the charged octo-triplet may occur through higher-dimensional operators, mediated by a heavy vectorlike fermion, into quark pairs. For an octo-triplet mass below the tb? threshold, the decay into Wb b? through an off-shell top quark has a width comparablemore »to that into cs? or cb?. Pair production with one octo-triplet decaying to two jets and the other decaying to a W and two soft b jets may explain the dijet-plus-W excess reported by the CDF Collaboration. The same higher-dimensional operators lead to CP violation in Bs-B?s mixing.« less
Weak-triplet, color-octet scalars and the CDF dijet excess
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Dobrescu, Bogdan A.; Krnjaic, Gordan Z.
2012-04-24T23:59:59.000Z
We extend the standard model to include a weak-triplet and color-octet scalar. This 'octo-triplet' field consists of three particles, two charged and one neutral, whose masses and renormalizable interactions depend only on two new parameters. The charged octo-triplet decay into a W boson and a gluon is suppressed by a loop factor and an accidental cancellation. Thus, the main decays of the charged octo-triplet may occur through higher-dimensional operators, mediated by a heavy vectorlike fermion, into quark pairs. For an octo-triplet mass below the tb? threshold, the decay into Wb b? through an off-shell top quark has a width comparable to that into cs? or cb?. Pair production with one octo-triplet decaying to two jets and the other decaying to a W and two soft b jets may explain the dijet-plus-W excess reported by the CDF Collaboration. The same higher-dimensional operators lead to CP violation in Bs-B?s mixing.
Phonons and magnetic excitation correlations in weak ferromagnetic YCrO{sub 3}
Sharma, Yogesh; Sahoo, Satyaprakash, E-mail: satya504@gmail.com, E-mail: guptaraj@iitk.ac.in, E-mail: rkatiyar@hpcf.upr.edu; Perez, William; Katiyar, Ram S., E-mail: satya504@gmail.com, E-mail: guptaraj@iitk.ac.in, E-mail: rkatiyar@hpcf.upr.edu [Department of Physics, University of Puerto Rico, Puerto Rico 00936-8377 (United States); Mukherjee, Somdutta [Department of Physics, Indian Institute of Technology, Kanpur (India); Gupta, Rajeev, E-mail: satya504@gmail.com, E-mail: guptaraj@iitk.ac.in, E-mail: rkatiyar@hpcf.upr.edu [Department of Physics, Indian Institute of Technology, Kanpur (India); Department of Materials Science Programme, Indian Institute of Technology, Kanpur (India); Garg, Ashish [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur (India); Chatterjee, Ratnamala [Department of Physics, Indian Institute of Technology, Delhi (India)
2014-05-14T23:59:59.000Z
Here, we report the temperature dependent Raman spectroscopic studies on orthorhombically distorted perovskite YCrO{sub 3} over a temperature range of 20–300?K. Temperature dependence of DC-magnetization measurements under field cooled and zero field cooled protocols confirmed a Néel transition at T{sub N}???142?K. Magnetization isotherms recorded at 125?K show a clear loop opening without any magnetization saturation up to 20?kOe, indicating a coexistence of antiferromagnetic (AFM) and weak ferromagnetic (WFM) phases. Estimation of exchange constants using mean-field approximation further confirm the presence of a complex magnetic phase below T{sub N}. Temperature evolution of Raman line-shape parameters of the selected modes (associated with the octahedral rotation and A(Y)-shift in the unit-cell) reveal an anomalous phonon shift near T{sub N}. An additional phonon anomaly was identified at T{sup *}???60?K, which could possibly be attributed to the change in the spin dynamics. Moreover, the positive and negative shifts in Raman frequencies between T{sub N} and T{sup *} suggest competing WFM and AFM interactions. A close match between the phonon frequency of B{sub 3g} (3)-octahedral rotation mode with the square of sublattice magnetization between T{sub N} and T{sup *} is indicative of the presence of spin-phonon coupling in multiferroic YCrO{sub 3}.
Weak chaos and the 'melting transition' in a confined microplasma system
Antonopoulos, Chris; Basios, Vasileios [Interdisciplinary Center for Nonlinear Phenomena and Complex Systems (CeNoLi), Service de Physique des Systemes Complexes et Mecanique Statistique, Universite Libre de Bruxelles, 1050 Brussels (Belgium); Bountis, Tassos [Center for Research and Applications of Nonlinear Systems (CRANS), Department of Mathematics, University of Patras, 26500 Patras (Greece)
2010-01-15T23:59:59.000Z
We present results demonstrating the occurrence of changes in the collective dynamics of a Hamiltonian system which describes a confined microplasma characterized by long-range Coulomb interactions. In its lower energy regime, we first detect macroscopically the transition from a 'crystallinelike' to a 'liquidlike' behavior, which we call the 'melting transition'. We then proceed to study this transition using a microscopic chaos indicator called the smaller alignment index (SALI), which utilizes two deviation vectors in the tangent dynamics of the flow and is nearly constant for ordered (quasiperiodic) orbits, while it decays exponentially to zero for chaotic orbits as exp[-(lambda{sub 1}-lambda{sub 2})t], where lambda{sub 1}>lambda{sub 2}>0 are the two largest Lyapunov exponents. During the melting phase, SALI exhibits a peculiar stairlike decay to zero, reminiscent of 'sticky' orbits of Hamiltonian systems near the boundaries of resonance islands. This alerts us to the importance of the DELTAlambda=lambda{sub 1}-lambda{sub 2} variations in that regime and helps us identify the energy range over which 'melting' occurs as a multistage diffusion process through weakly chaotic layers in the phase space of the microplasma. Additional evidence supporting further the above findings is given by examining the GALI{sub k} indices, which generalize SALI (=GALI{sub 2}) to the case of k>2 deviation vectors and depend on the complete spectrum of Lyapunov exponents of the tangent flow about the reference orbit.
Group Interaction on Interactive Multi-touch Tables by Children in India
Subramanian, Sriram
, Mark T. Marshall, Swathi Jha, Sanjay Gupta, Sriram Subramanian IMPLICATION: MULTI-FINGER MORE INFO 1
Nagy, S; Steib, I
2015-01-01T23:59:59.000Z
The observed IR and the spectator UV particles of a regulated, cutoff quantum field theory are entangled hence the IR sector alone can be described by the help of the density matrix only. The tree-level renormalized trajectory is obtained for a self interacting scalar field theory, containing the mixed state contributions. One needs a sharp cutoff in the momentum space as regulator to realize the true loss of information.
Data Mining Group VNG Corporation
Shahabi, Cyrus
Data Mining Group VNG Corporation Data Mining Group_VNG Corporation 1 #12;Data Mining Group_VNG Corporation 2 1 ·Introduction 2 ·Edge Rank 3 ·Parameter Estimate 4 ·Conclusion #12;Data Mining Group_VNG Corporation 3 #12;Data Mining Group_VNG Corporation 4 #12; User's self activity Update status Write blogs
TEC Working Group Topic Groups Archives Communications Conference...
Office of Environmental Management (EM)
Communications Conference Call Summaries TEC Working Group Topic Groups Archives Communications Conference Call Summaries Conference Call Summaries Conference Call Summary April...
TEC Working Group Topic Groups Archives Mechanics of Funding...
Office of Environmental Management (EM)
Mechanics of Funding and Techical Assistance TEC Working Group Topic Groups Archives Mechanics of Funding and Techical Assistance Mechanics of Funding and Techical Assistance Items...
Electric organ discharge patterns during group hunting by a mormyrid fish
Hopkins, Carl D.
Electric organ discharge patterns during group hunting by a mormyrid fish Matthew E. Arnegard1 Department of Biology, University of Virginia, Charlottesville, VA 22904, USA Weakly electric fish emit the first opportunity to simultaneously observe freely behaving mormyrid fish and record their EODs. We
Neutron scattering and extra short range interactions
V. V. Nesvizhevsky; G. Pignol; K. V. Protasov
2007-11-14T23:59:59.000Z
The available data on neutron scattering were analyzed to constrain a hypothetical new short-range interaction. We show that these constraints are several orders of magnitude better than those usually cited in the range between 1 pm and 5 nm. This distance range occupies an intermediate space between collider searches for strongly coupled heavy bosons and searches for new weak macroscopic forces. We emphasise the reliability of the neutron constraints in so far as they provide several independent strategies. We have identified the most promising way to improve them.
A sample of weak blazars at milli-arcsecond resolution
Mantovani, F; Mack, K -H; Alef, W; Ros, E; Zensus, J A
2015-01-01T23:59:59.000Z
We started a follow-up investigation of the Deep X-ray Radio Blazar Survey objects with declination >-10 deg. We undertook a survey with the EVN at 5GHz to make the first images of a complete sample of weak blazars, aiming at a comparison between high- and low-power samples of blazars. All of the 87 sources observed were detected. Point-like sources are found in 39 cases, and 48 show core-jet structure. According to the spectral indices previously obtained, 58 sources show a flat spectral index, and 29 sources show a steep spectrum or a spectrum peaking at a frequency around 1-2 GHz. Adding to the DXRBS objects we observed those already observed with ATCA in the southern sky, we found that 14 blazars and a SSRQ, are associated to gamma-ray emitters. We found that 56 sources can be considered blazars. We also detected 2 flat spectrum NLRGs. About 50% of the blazars associated to a gamma-ray object are BL Lacs, confirming that they are more likely detected among blazars gamma-emitters. We confirm the correlatio...
Disentangling dark sector models using weak lensing statistics
Giocoli, Carlo; Baldi, Marco; Meneghetti, Massimo; Moscardini, Lauro; Petkova, Margarita; -,; Astronomia, Dipartimento di Fisica e; di Bologna, Alma Mater Studiorum Universitŕ; di Bologna, INAF - Osservatorio Astronomico; di Bologna, INFN - Sezione; Université, Aix Marseille; CNRS,; LAM,; France,; Laboratory, Jet Propulsion; Physics, Department of; Ludwig-Maximilians-Universitaet),
2015-01-01T23:59:59.000Z
We perform multi-plane ray-tracing using the GLAMER gravitational lensing code within high-resolution light-cones extracted from the CoDECS simulations: a suite of cosmological runs featuring a coupling between Dark Energy and Cold Dark Matter. We show that the presence of the coupling is evident not only in the redshift evolution of the normalisation of the convergence power spectrum, but also in differences in non-linear structure formation with respect to {\\Lambda}CDM. Using a tomographic approach under the assumption of a {\\Lambda}CDM cosmology, we demonstrate that weak lensing measurements would result in a {\\sigma}8 value that changes with the source redshift if the true underlying cosmology is a coupled Dark Energy one. This provides a generic null test for these types of models. We also find that different models of coupled Dark Energy can show either an enhanced or a suppressed correlation between convergence maps with differing source redshifts as compared to {\\Lambda}CDM. This would provide a direc...
Probing the Goldstone equivalence theorem in Heavy Weak Doublet Decays
Dutta, Bhaskar; Sanford, David; Walker, Joel W
2015-01-01T23:59:59.000Z
This paper investigates the decays from heavy higgsino-like weak-doublets into Z, h bosons and missing particles. When pair-produced at the LHC, the subsequent Z, h to 2l, 2b decays in the doublet decay cascade can yield 4l, 2l 2b, and 4b + MET + jets final states. Mutual observation of any two of these channels would provide information on the the associated doublets' decay branching fractions into a Z or h, thereby probing the Goldstone equivalence relation, shedding additional light on the Higgs sector of beyond the Standard Model theories, and facilitating the discrimination of various contending models, in turn. We compare the Z/h decay ratio expected in the Minimal Supersymmetric model, the Next-to Minimal Supersymmetric model and a minimal singlet-doublet dark matter model. Additionally, we conduct a full Monte Carlo analysis of the prospects for detecting the targeted final states during 14 TeV running of the LHC in the context of a representative NMSSM benchmark model.
Perpendicular propagating modes for weakly magnetized relativistic degenerate plasma
Abbas, Gohar; Bashir, M. F. [Salam Chair in Physics, G. C. University Lahore, Punjab 54000 (Pakistan); Department of Physics, G. C. University Lahore, Punjab 54000 (Pakistan); Murtaza, G. [Salam Chair in Physics, G. C. University Lahore, Punjab 54000 (Pakistan)
2012-07-15T23:59:59.000Z
Using the Vlasov-Maxwell system of equations, the dispersion relations for the perpendicular propagating modes (i.e., X-mode, O-mode, and upper hybrid mode) are derived for a weakly magnetized relativistic degenerate electron plasma. By using the density (n{sub 0}=p{sub F}{sup 3}/3{pi}{sup 2} Planck-Constant-Over-Two-Pi {sup 3}) and the magnetic field values for different relativistic degenerate environments, the propagation characteristics (i.e., cutoff points, resonances, dispersions, and band widths in k-space) of these modes are examined. It is observed that the relativistic effects suppress the effect of ambient magnetic field and therefore the cutoff and resonance points shift towards the lower frequency regime resulting in enhancement of the propagation domain. The dispersion relations of these modes for the non-relativistic limit (p{sub F}{sup 2} Much-Less-Than m{sub 0}{sup 2}c{sup 2}) and the ultra-relativistic limit (p{sub F}{sup 2} Much-Greater-Than m{sub 0}{sup 2}c{sup 2}) are also presented.
Quark deconfinement and gluon condensate in a weak magnetic field
Alejandro Ayala; C. A. Dominguez; L. A. Hernandez; M. Loewe; Juan Cristobal Rojas; Cristian Villavicencio
2015-07-01T23:59:59.000Z
We study QCD finite energy sum rules (FESR) for the axial-vector current correlator in the presence of a magnetic field, in the weak field limit and at zero temperature. We find that the perturbative QCD as well as the hadronic contribution to the sum rules get explicit magnetic field-dependent corrections and that these in turn induce a magnetic field dependence on the deconfinement phenomenological parameter s_0 and on the gluon condensate. The leading corrections turn out to be quadratic in the field strength. We find from the dimension d=2 first FESR that the magnetic field dependence of s_0 is proportional to the absolute value of the light-quark condensate. Hence, it increases with increasing field strength. This implies that the parameters describing chiral symmetry restoration and deconfinement behave similarly as functions of the magnetic filed. Thus, at zero temperature the magnetic field is a catalysing agent of both chiral symmetry breaking and confinement. From the dimension d=4 second FESR we obtain the behavior of the gluon condensate in the presence of the external magnetic field. This condensate also increases with increasing field strength.
An Extended Magnetohydrodynamics Model for Relativistic Weakly Collisional Plasmas
Chandra, Mani; Foucart, Francois; Quataert, Eliot
2015-01-01T23:59:59.000Z
Black holes that accrete far below the Eddington limit are believed to accrete through a geometrically thick, optically thin, rotationally supported plasma that we will refer to as a radiatively inefficient accretion flow (RIAF). RIAFs are typically collisionless in the sense that the Coulomb mean free path is large compared to $GM/c^2$, and relativistically hot near the event horizon. In this paper we develop a phenomenological model for the plasma in RIAFs, motivated by the application to sources such as Sgr A* and M87. The model is derived using Israel-Stewart theory, which considers deviations up to second order from thermal equilibrium, but modified for a magnetized plasma. This leads to thermal conduction along magnetic field lines and a difference in pressure, parallel and perpendicular to the field lines (which is equivalent to anisotrotropic viscosity). In the non-relativistic limit, our model reduces to the widely used Braginskii theory of magnetized, weakly collisional plasmas. We compare our model...
An Extended Magnetohydrodynamics Model for Relativistic Weakly Collisional Plasmas
Mani Chandra; Charles F. Gammie; Francois Foucart; Eliot Quataert
2015-08-04T23:59:59.000Z
Black holes that accrete far below the Eddington limit are believed to accrete through a geometrically thick, optically thin, rotationally supported plasma that we will refer to as a radiatively inefficient accretion flow (RIAF). RIAFs are typically collisionless in the sense that the Coulomb mean free path is large compared to $GM/c^2$, and relativistically hot near the event horizon. In this paper we develop a phenomenological model for the plasma in RIAFs, motivated by the application to sources such as Sgr A* and M87. The model is derived using Israel-Stewart theory, which considers deviations up to second order from thermal equilibrium, but modified for a magnetized plasma. This leads to thermal conduction along magnetic field lines and a difference in pressure, parallel and perpendicular to the field lines (which is equivalent to anisotrotropic viscosity). In the non-relativistic limit, our model reduces to the widely used Braginskii theory of magnetized, weakly collisional plasmas. We compare our model to the existing literature on dissipative relativistic fluids, describe the linear theory of the plasma, and elucidate the physical meaning of the free parameters in the model. We also describe limits of the model when the conduction is saturated and when the viscosity implies a large pressure anisotropy. In future work, the formalism developed in this paper will be used in numerical models of RIAFs to assess the importance of non-ideal processes for the dynamics and radiative properties of slowly accreting black holes.
Solar weak currents, neutrino oscillations, and time variations
Haxton, W.C.; Zhang, W. (Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195 (USA) Department of Physics, FM-15, University of Washington, Seattle, Washington 98195 (USA))
1991-04-15T23:59:59.000Z
The effective neutrino mass in the presence of matter depends on both the charge and three-current weak densities. The effect of solar current loops on neutrino conversion need not be small if the scale of the eddies'' is comparable to the local oscillation length. This would seem to offer a mechanism for temporal variations in the neutrino flux that requires neither neutrino magnetic moments nor large solar density fluctuations. The effect of sinusoidally varying currents (or, alternatively, density fluctuations) is explored analytically and numerically. The analytic result we develop is based on the uniform approximation, and reduces to the adiabatic and Landau-Zener results in the appropriate limits. Despite the very interesting effects that may arise, we conclude that this mechanism for temporal variations in the solar-neutrino flux, like others suggested before, appears to require somewhat contrived solar conditions. However, it is quite likely that the influence of currents on neutrino effective masses is important and natural in other astrophysical settings, such as supernovas.
The effect of weak lensing on distance estimates from supernovae
Smith, Mathew; Maartens, Roy [Department of Physics, University of the Western Cape, Cape Town 7535 (South Africa); Bacon, David J.; Nichol, Robert C.; Campbell, Heather; D'Andrea, Chris B. [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom); Clarkson, Chris [Astrophysics, Cosmology and Gravity Centre (ACGC), Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701 (South Africa); Bassett, Bruce A. [South African Astronomical Observatory, P.O. Box 9, Observatory 7935 (South Africa); Cinabro, David [Wayne State University, Department of Physics and Astronomy, Detroit, MI 48202 (United States); Finley, David A.; Frieman, Joshua A. [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Galbany, Lluis [CENTRA Centro Multidisciplinar de Astrofísica, Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisbon (Portugal); Garnavich, Peter M. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Olmstead, Matthew D. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Schneider, Donald P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Shapiro, Charles [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, La Canada Flintridge, CA 91109 (United States); Sollerman, Jesper, E-mail: matsmith2@gmail.com [The Oskar Klein Centre, Department of Astronomy, AlbaNova, SE-106 91 Stockholm (Sweden)
2014-01-01T23:59:59.000Z
Using a sample of 608 Type Ia supernovae from the SDSS-II and BOSS surveys, combined with a sample of foreground galaxies from SDSS-II, we estimate the weak lensing convergence for each supernova line of sight. We find that the correlation between this measurement and the Hubble residuals is consistent with the prediction from lensing (at a significance of 1.7?). Strong correlations are also found between the residuals and supernova nuisance parameters after a linear correction is applied. When these other correlations are taken into account, the lensing signal is detected at 1.4?. We show, for the first time, that distance estimates from supernovae can be improved when lensing is incorporated, by including a new parameter in the SALT2 methodology for determining distance moduli. The recovered value of the new parameter is consistent with the lensing prediction. Using cosmic microwave background data from WMAP7, H {sub 0} data from Hubble Space Telescope and Sloan Digital Sky Survey (SDSS) Baryon acoustic oscillations measurements, we find the best-fit value of the new lensing parameter and show that the central values and uncertainties on ? {sub m} and w are unaffected. The lensing of supernovae, while only seen at marginal significance in this low-redshift sample, will be of vital importance for the next generation of surveys, such as DES and LSST, which will be systematics-dominated.
Data Management Group Annual Report
Toronto, University of
Data Management Group Annual Report 1999 prepared by: Data Management Group Joint Program TOMORROW SURVEY ............... 10 UNIVERSITY RESEARCH ................................................. 10 APPENDIX A: DATA REQUESTS ..................................... 11 #12;Data Management Group 1999 Annual
Data Management Group Annual Report
Toronto, University of
Data Management Group Annual Report 2001 prepared by: Data Management Group Joint Program .................................................................................13 2001 TRANSPORTATION TOMORROW SURVEY................................................14 DMG SUMMARY In cooperation with the funding agencies, the Data Management Group (DMG) has defined a set
Data Management Group Annual Report
Toronto, University of
..............................................................................2 Text Based Data Retrieval System `drs' ..........................................................2 simulation package on the Data Management Group's computer system. During the year, the DMG provided supportData Management Group Annual Report 2001 prepared by: Data Management Group Joint Program
Interactive portraiture : designing intimate interactive experiences
Zuckerman, Orit
2006-01-01T23:59:59.000Z
In this thesis I present a set of interactive portrait experiences that strive to create an intimate connection between the viewer and the portrayed subject; an emotional experience, one of personal reflection. My interactive ...
Interactive Whiteboards @ Using the Interactive Whiteboards
University of Technology, Sydney
Overview The brand of interactive whiteboard (IWB) in Building 6 is the "SMART board". The IWB is connected. SMART Product Drivers then interacts with collaboration. The X800 series also features a modular pen specification sheets for specific product dimensions. Your SMART Board X800 series interactive whiteboard Use
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Three physics runs were made in 2002 and 2003 by E-158. As a result, the E-158 Collaboration announced that it had made "the first observation of Parity Violation in electron-electron (Moller) scattering). This precise Parity Violation measurement gives the best determination of the electron's weak charge at low energy (low momentum transfer between interacting particles). E158's measurement tests the predicted running (or evolution) of this weak charge with energy, and searches for new phenomena at TeV energy scales (one thousand times the proton-mass energy scale).[Copied from the experiment's public home page at http://www-project slac.stanford.edu/3158/Default.htm] See also the E158 page for collaborators at http://www.slac.stanford.edu/exp/e158/. Both websites provide data and detailed information.
Mapping the 3-D Dark Matter potential with weak shear
D. J. Bacon; A. N. Taylor
2002-12-11T23:59:59.000Z
We investigate the practical implementation of Taylor's (2002) 3-dimensional gravitational potential reconstruction method using weak gravitational lensing, together with the requisite reconstruction of the lensing potential. This methodology calculates the 3-D gravitational potential given a knowledge of shear estimates and redshifts for a set of galaxies. We analytically estimate the noise expected in the reconstructed gravitational field, taking into account the uncertainties associated with a finite survey, photometric redshift uncertainty, redshift-space distortions, and multiple scattering events. In order to implement this approach for future data analysis, we simulate the lensing distortion fields due to various mass distributions. We create catalogues of galaxies sampling this distortion in three dimensions, with realistic spatial distribution and intrinsic ellipticity for both ground-based and space-based surveys. Using the resulting catalogues of galaxy position and shear, we demonstrate that it is possible to reconstruct the lensing and gravitational potentials with our method. For example, we demonstrate that a typical ground-based shear survey with redshift limit z=1 and photometric redshifts with error Delta z=0.05 is directly able to measure the 3-D gravitational potential for mass concentrations >10^14 M_\\odot between 0.1
Measuring primordial non-Gaussianity with weak-lensing surveys
Stefan Hilbert; Laura Marian; Robert E. Smith; Vincent Desjacques
2012-11-02T23:59:59.000Z
We study the ability of future weak lensing (WL) surveys to constrain primordial non-Gaussianity of the local type. We use a large ensemble of simulated WL maps with survey specifications relevant to Euclid and LSST. The simulations assume Cold Dark Matter cosmologies that vary certain parameters around fiducial values: the non-Gaussianity parameter f_NL, the matter density parameter Omega_m, the amplitude of the matter power spectrum sigma_8, the spectral index of the primordial power spectrum n_s, and the dark-energy equation-of-state parameter w_0. We assess the sensitivity of the cosmic shear correlation functions, the third-order aperture mass statistics, and the abundance of shear peaks to these parameters. We find that each of the considered probes provides unmarginalized constraints of Delta f_NL ~ 20 on f_NL. Marginalized constraints from any individual WL probe are much weaker due to strong correlations between parameters. However, the parameter errors can be substantially reduced by combining information from different WL probes. Combining all WL probes yields the following marginal (68% confidence level) uncertainties: Delta f_NL ~ 50, Delta Omega_m ~ 0.002, Delta sigma_8 ~ 0.004, Delta n_s ~ 0.007, and Delta w_0 ~ 0.03. We examine the bias induced by neglecting f_NL on the constraints on the other parameters. We find sigma_8 and w_0 to be the most affected. Moreover, neglecting non-Gaussianity leads to a severe underestimation of the uncertainties in the other cosmological parameters.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Interactive Batch Jobs Running Interactive Batch Jobs You cannot login to the PDSF batch nodes directly but you can run an interactive session on a batch node using either qlogin...
Interactivity and Emotion Cinematography
Tomlinson, Bill
Interactivity and Emotion through Cinematography by William Michael Tomlinson, Jr. M #12;Interactivity and Emotion through Cinematography by William Michael Tomlinson, Jr. Submitted cinematography system for an interactive virtual environment. This system controls a virtual camera and several
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5(Million Cubic Feet) Oregon (Including Vehicle Fuel) (MillionStructural Basis of WntSupportB 18B()The FiveRevised - 09/25/13 TakeDepartment-|Ren Group
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousPlasma |EfficiencyCR-B-99-02 Audit Report:DepartmentReserve Site in Mississippi |Deployment |DOESTGWG Group
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:5 TablesExports(Journal Article) |govInstrumentsmfrirt DocumentationSitesWeather6Environmental1 |MAgnEt for InvEstMEnt Fermilab'sSuperlatticesGroups at NERSC
Thomas Speck; Andreas M. Menzel; Julian Bialké; Hartmut Löwen
2015-03-29T23:59:59.000Z
Recently, we have derived an effective Cahn-Hilliard equation for the phase separation dynamics of active Brownian particles by performing a weakly non-linear analysis of the effective hydrodynamic equations for density and polarization [Phys. Rev. Lett. 112, 218304 (2014)]. Here we develop and explore this strategy in more detail and show explicitly how to get to such a large-scale, mean-field description starting from the microscopic dynamics. The effective free energy emerging from this approach has the form of a conventional Ginzburg-Landau function. On the coarsest scale, our results thus agree with the mapping of active phase separation onto that of passive fluids with attractive interactions through a global effective free energy (mobility-induced phase transition). Particular attention is paid to the square-gradient term necessary for the dynamics. We finally discuss results from numerical simulations corroborating the analytical results.
High Temperature Membrane Working Group
Broader source: Energy.gov [DOE]
This presentation provides an overview of the High Temperature Membrane Working Group Meeting in May 2007.
March, 2001 Neutron Scattering Group
Johnson, Peter D.
March, 2001 Neutron Scattering Group A High Performance Hybrid Spectrometer for theA High of the instrument performance · Igor Zaliznyak · Laurence Passell OutlineOutline #12;Neutron Scattering GroupNeutron states in single crystals.single crystals. #12;Neutron Scattering GroupNeutron Scattering Group What
Theory of weak localization in ferromagnetic (Ga,Mn)As
Garate, Ion; Sinova, Jairo; Jungwirth, T.; MacDonald, A. H.
2009-01-01T23:59:59.000Z
structure, which is often4,5 but not always6,7 as- sociated with spin-orbit interactions. Heuristically, WL #1;WAL#2; is favored when the helicity of the band eigenstates is such that quasiparticle spinors at opposite momenta are parallel #1;antiparallel... metallic ferromagnetism occurs in high quality #1;Ga,Mn#2;As samples with a low density of Mn interstitials. In the M2DEG model, on the other hand, relatively large ex- change fields are necessary to convert WAL into WL. We explain in Sec. V...
PHYSICAL REVIEW E 83, 066216 (2011) "Weak quantum chaos" and its resistor network modeling
Cohen, Doron
2011-01-01T23:59:59.000Z
PHYSICAL REVIEW E 83, 066216 (2011) "Weak quantum chaos" and its resistor network modeling number(s): 05.45.Mt, 03.65.-w, 73.23.-b I. INTRODUCTION So-called quantum chaos is the study of quantized. This is the case if we have weak quantum chaos (WQC) circumstances, in which the traditional RMT modeling does
COS Ciphers are not "extremely weak" ! The Design Rationale of COS Ciphers
International Association for Cryptologic Research (IACR)
COS Ciphers are not "extremely weak" ! The Design Rationale of COS Ciphers Eric Filiol ESAT summarizes the results of Babbage's cryptanalysis of COS ciphers and shows that in fact COS ciphers are not weak as claimed. COS ciphers have been designed according a novel conception of encryption directly
Weak charge form factor and radius of 208Pb through parity violation in electron scattering
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Horowitz, C J; Jen, C -M; Rakhman, A; Souder, P A; Dalton, M M; Liyanage, N; Paschke, K D; Saenboonruang, K; Silwal, R; Franklin, G B; et al
We use distorted wave electron scattering calculations to extract the weak charge form factor FW(q?), the weak charge radius RW, and the point neutron radius Rn, of 208Pb from the PREX parity violating asymmetry measurement. The form factor is the Fourier transform of the weak charge density at the average momentum transfer q? = 0.475 fm-1. We find FW(q?) = 0.204 ± 0.028(exp) ± 0.001(model). We use the Helm model to infer the weak radius from FW(q?). We find RW = 5.826 ± 0.181(exp) ± 0.027(model) fm. Here the exp error includes PREX statistical and systematic errors, while the modelmore »error describes the uncertainty in RW from uncertainties in the surface thickness ? of the weak charge density. The weak radius is larger than the charge radius, implying a 'weak charge skin' where the surface region is relatively enriched in weak charges compared to (electromagnetic) charges. We extract the point neutron radius Rn = 5.751 ± 0.175 (exp) ± 0.026(model) ± 0.005(strange) fm, from RW. Here there is only a very small error (strange) from possible strange quark contributions. We find Rn to be slightly smaller than RW because of the nucleon's size. Finally, we find a neutron skin thickness of Rn-Rp = 0.302 ± 0.175 (exp) ± 0.026 (model) ± 0.005 (strange) fm, where Rp is the point proton radius.« less
Complete Spectrum of Kinetic Eigenmodes for Plasma Oscillations in a Weakly Collisional Plasma
Ng, Chung-Sang
Complete Spectrum of Kinetic Eigenmodes for Plasma Oscillations in a Weakly Collisional Plasma C. S. These eigenmodes, which are smooth and compose a complete discrete spectrum, play the same role for weakly and completeness theorems [2,3]. In most situations of physical interest where the initial conditions are smooth
Analysis of Biological Effects and Limits of Exposure to Weak Magnetic Fields
Halgamuge, Malka N.
to weak magnetic fields and geomagnetic field to elucidate the main points of contention. Most of the weak excitation and cardio stimulation can be caused due to the current induced in the body from high power fields [2]. The energy absorption rate of these high power magnetic fields is measured by the specific
ON THE CONVERGENCE RATE OF OPERATOR SPLITTING FOR WEAKLY COUPLED SYSTEMS OF HAMILTON-JACOBI for weakly coupled systems of Hamilton-Jacobi equations, we establish a linear L 1 convergence rate of operator splitting for scalar Hamilton-Jacobi equations with source term. 1. Introduction The purpose
Europhysics Letters PREPRINT Weak long-ranged Casimir attraction in colloidal crystals
Grier, David
Europhysics Letters PREPRINT Weak long-ranged Casimir attraction in colloidal crystals Ajay-ranged, it is too weak to influence colloidal crystals' properties. Experimental evidence collected over 20 years [1-charge attractions are implicated in the cohesion of metastable superheated colloidal crystals [2,3] even though
Weak charge form factor and radius of 208Pb through parity violation in electron scattering
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Horowitz, C J; Jen, C -M; Rakhman, A; Souder, P A; Dalton, M M; Liyanage, N; Paschke, K D; Saenboonruang, K; Silwal, R; Franklin, G B; Friend, M; Quinn, B; Kumar, K S; McNulty, D; Mercado, L; Riordan, S; Wexler, J
2012-03-01T23:59:59.000Z
We use distorted wave electron scattering calculations to extract the weak charge form factor FW(q?), the weak charge radius RW, and the point neutron radius Rn, of 208Pb from the PREX parity violating asymmetry measurement. The form factor is the Fourier transform of the weak charge density at the average momentum transfer q? = 0.475 fm-1. We find FW(q?) = 0.204 ± 0.028(exp) ± 0.001(model). We use the Helm model to infer the weak radius from FW(q?). We find RW = 5.826 ± 0.181(exp) ± 0.027(model) fm. Here the exp error includes PREX statistical and systematic errors, while the model error describes the uncertainty in RW from uncertainties in the surface thickness ? of the weak charge density. The weak radius is larger than the charge radius, implying a 'weak charge skin' where the surface region is relatively enriched in weak charges compared to (electromagnetic) charges. We extract the point neutron radius Rn = 5.751 ± 0.175 (exp) ± 0.026(model) ± 0.005(strange) fm, from RW. Here there is only a very small error (strange) from possible strange quark contributions. We find Rn to be slightly smaller than RW because of the nucleon's size. Finally, we find a neutron skin thickness of Rn-Rp = 0.302 ± 0.175 (exp) ± 0.026 (model) ± 0.005 (strange) fm, where Rp is the point proton radius.
Volume 50, Number 4 2009 361 Weakly electric fishes have been an important model system
Chacron, Maurice
Volume 50, Number 4 2009 361 Abstract Weakly electric fishes have been an important model system in behavioral neuroscience for more than 40 years. These fishes use a specialized electric organ to produce fish. Weakly electric fish have been routinely used in tightly con- trolled neurophysiological
RESTRICTING THE WEAK-GENERATIVE CAPACITY OF SYNCHRONOUS TREE-ADJOINING GRAMMARS
Shieber, Stuart
: Synchronous tree-adjoining grammars, weak-generative ca- pacity, machine translation, naturalRESTRICTING THE WEAK-GENERATIVE CAPACITY OF SYNCHRONOUS TREE-ADJOINING GRAMMARS STUART M. SHIEBER Abstract. The formalism of synchronous tree-adjoining grammars, a variant of standard tree
Freezing and orientational order in weakly anisotropic fluids Hyung-June Woo and Xueyu Song
Song, Xueyu
Freezing and orientational order in weakly anisotropic fluids Hyung-June Woo and Xueyu Song 2001 A simple theoretical method of studying the effect of weak anisotropy on the freezing of classical to the freezing of hard dumbbell fluids yields results in good agreement with simulations. DOI: 10.1103/Phys
Turner, Ray
of Weakly Electric Fish Liza Noonan,1* Brent Doiron,2* Carlo Laing,2* Andre Longtin,2 and Ray W. Turner1 1 other voltage-dependent currents (Yuste et al., 1994; Golding et al., 1999; Magee and Car- ruth, 1999 lateral line lobe (ELL) of weakly electr
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Laser Plasma Interactions Laser Plasma Interactions Understanding and controlling laser produced plasmas for fusion and basic science Contact David Montgomery (505) 665-7994 Email...
Winter 2015 Positive Parenting Group
Winter 2015 Positive Parenting Group This is an eight-week parent group series starting Monday, January 12, 2015 Future parent group sessions to be held: January 26 (no group 19th ) February 2, 9 and 23 (no group 16th ) and March 2, 9 and 16 6:00 p.m. to 8:00 p.m. Room 145 of the Clinical Services
Applications of Laminar Weak-Link Mechanisms for Ultraprecision Synchrotron Radiation Instruments
Shu, D.; Toellner, T. S.; Alp, E. E.; Maser, J.; Ilavsky, J.; Shastri, S. D.; Lee, P. L.; Narayanan, S.; Long, G. G. [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States)
2007-01-19T23:59:59.000Z
Unlike traditional kinematic flexure mechanisms, laminar overconstrained weak-link mechanisms provide much higher structure stiffness and stability. Using a laminar structure configured and manufactured by chemical etching and lithography techniques, we are able to design and build linear and rotary weak-link mechanisms with ultrahigh positioning sensitivity and stability for synchrotron radiation applications. Applications of laminar rotary weak-link mechanism include: high-energy-resolution monochromators for inelastic x-ray scattering and x-ray analyzers for ultra-small-angle scattering and powder-diffraction experiments. Applications of laminar linear weak-link mechanism include high-stiffness piezo-driven stages with subnanometer resolution for an x-ray microscope. In this paper, we summarize the recent designs and applications of the laminar weak-link mechanisms at the Advanced Photon Source.
H. Kleinert
2012-10-09T23:59:59.000Z
While free and weakly interacting particles are well described by a a second-quantized nonlinear Schr\\"odinger field, or relativistic versions of it, the fields of strongly interacting particles are governed by effective actions, whose quadratic terms are extremized by fractional wave equations. Their particle orbits perform universal L\\'evy walks rather than Gaussian random walks with perturbations.
Artuso, M.; et al.,
2013-10-18T23:59:59.000Z
Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In addition the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.
,17,18 atomic force microscopy,19 surface plasmon reso- nance,20 and functionalized gold nanoparticles dipolar couplings 1 DCH of various CiHi vectors in LeX as a function of the concentration of proteins and nucleic acids may be regarded as textual messages where individual building blocks, i
Palevski, Alexander
2012-01-01T23:59:59.000Z
November 2012) Phase-change materials can be reversibly switched between amorphous and crystalline states study electrical transport in thin metallic films of the disordered, crystalline phase-change material, which is exploited in rewritable optical data storage.1 Phase- change materials are also attractive
Ratcliff, Robert R.
1989-01-01T23:59:59.000Z
grid location (i ? ?, . j, 1) is 1 1 c7h ) u r r ? u r t ?. 25 '+r s+r '+r r+r y ooy f (2 ? 25) I, )+1/2 I I I I k? U 0+, )+I 2) I 4'(I, J) I 0+v2J+v2) X~II+1/2 JsV2) II+V2J+V2) Xy~(l+V2J+1/2) ~(i+1, J-1) Primary Cells? Secondary Cell I... into the secondary box is accounted for, Eq. (2-22) becomes p?6, u+ p, 6?v (P*s), +sr, qsr (16*v)i~sr, ? sr (4'*v)i-sr, +sr (P*s)i-sr, -rr)? -e( . . . , ? . . . , ? . . . , + . . . , =0 which is equivalent to (2 ? 28) p?6?4 + p**6?P ? e6??P = 0 (2 ? 29...
Universality and scaling limit of weakly-bound tetramers
M. R. Hadizadeh; M. T. Yamashita; Lauro Tomio; A. Delfino; T. Frederico
2011-01-02T23:59:59.000Z
The occurrence of a new limit cycle in few-body physics, expressing a universal scaling function relating the binding energies of two consecutive tetramer states, is revealed, considering a renormalized zero-range two-body interaction applied to four identical bosons. The tetramer energy spectrum is obtained when adding a boson to an Efimov bound state with energy $B_3$ in the unitary limit (for zero two-body binding, or infinite two-body scattering length). Each excited $N-$th tetramer energy $B_4^{(N)}$ is shown to slide along a scaling function as a short-range four-body scale is changed, emerging from the 3+1 threshold for a universal ratio $B_4^ {(N)}/B_3 \\simeq 4.6$, which does not depend on $N$. The new scale can also be revealed by a resonance in the atom-trimer recombination process.
Universality and scaling limit of weakly-bound tetramers
Hadizadeh, M R; Tomio, Lauro; Delfino, A; Frederico, T
2011-01-01T23:59:59.000Z
The occurrence of a new limit cycle in few-body physics, expressing a universal scaling function relating the binding energies of two consecutive tetramer states, is revealed, considering a renormalized zero-range two-body interaction applied to four identical bosons. The tetramer energy spectrum is obtained when adding a boson to an Efimov bound state with energy $B_3$ in the unitary limit (for zero two-body binding, or infinite two-body scattering length). Each excited $N-$th tetramer energy $B_4^{(N)}$ is shown to slide along a scaling function as a short-range four-body scale is changed, emerging from the 3+1 threshold for a universal ratio $B_4^ {(N)}/B_3 \\simeq 4.6$, which does not depend on $N$. The new scale can also be revealed by a resonance in the atom-trimer recombination process.
Towards an axiomatic model of fundamental interactions at Planck scale
Kiselev, Arthemy V
2014-01-01T23:59:59.000Z
By exploring possible physical sense of notions, structures, and logic in a class of noncommutative geometries, we try to unify the four fundamental interactions within an axiomatic quantum picture. We identify the objects and algebraic operations which could properly encode the formation and structure of sub-atomic particles, antimatter, annihilation, CP-symmetry violation, mass endowment mechanism, three lepton-neutrino matchings, spin, helicity and chirality, electric charge and electromagnetism, as well as the weak and strong interaction between particles, admissible transition mechanisms (e.g., muon to muon neutrino, electron, and electron antineutrino), and decays (e.g., neutron to proton, electron, and electron antineutrino).
Suspended graphene films and their Casimir interaction with ideal conductor
I. V. Fialkovsky
2009-10-10T23:59:59.000Z
We adopt the Dirac model for graphene and calculate the Casimir interaction energy between a plane suspended graphene sample and a parallel plane ideal conductor. We employ both the Quantum Field Theory (QFT) approach, and the Lifshitz formula generalizations. The first approach turns out to be the leading order in the coupling constant of the second one. The Casimir interaction for this system appears to be rather weak but experimentally measurable. It exhibits a strong dependence on the mass of the quasi-particles in graphene.
Ab initio investigation of intermolecular interactions in solid benzene
O. Bludsky; M. Rubes; P. Soldan
2008-01-04T23:59:59.000Z
A computational strategy for the evaluation of the crystal lattice constants and cohesive energy of the weakly bound molecular solids is proposed. The strategy is based on the high level ab initio coupled-cluster determination of the pairwise additive contribution to the interaction energy. The zero-point-energy correction and non-additive contributions to the interaction energy are treated using density functional methods. The experimental crystal lattice constants of the solid benzene are reproduced, and the value of 480 meV/molecule is calculated for its cohesive energy.
Three-Point Correlations in Weak Lensing Surveys: Model Predictions and Applications
Masahiro Takada; Bhuvnesh Jain
2003-07-21T23:59:59.000Z
We use the halo model of clustering to compute two- and three-point correlation functions for weak lensing, and apply them in a new statistical technique to measure properties of massive halos. We present analytical results on the eight shear three-point correlation functions constructed using combination of the two shear components at each vertex of a triangle. We compare the amplitude and configuration dependence of the functions with ray-tracing simulations and find excellent agreement for different scales and models. These results are promising, since shear statistics are easier to measure than the convergence. In addition, the symmetry properties of the shear three-point functions provide a new and precise way of disentangling the lensing E-mode from the B-mode due to possible systematic errors. We develop an approach based on correlation functions to measure the properties of galaxy-group and cluster halos from lensing surveys. Shear correlations on small scales arise from the lensing matter within halos of mass M > 10^13 solar masses. Thus the measurement of two- and three-point correlations can be used to extract information on halo density profiles, primarily the inner slope and halo concentration. We demonstrate the feasibility of such an analysis for forthcoming surveys. We include covariances in the correlation functions due to sample variance and intrinsic ellipticity noise to show that 10% accuracy on profile parameters is achievable with surveys like the CFHT Legacy survey, and significantly better with future surveys. Our statistical approach is complementary to the standard approach of identifying individual objects in survey data and measuring their properties.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Weighted Running Jobs by Group Weighted Running Jobs by Group Daily Graph: Weekly Graph: Monthly Graph: Yearly Graph: 2 Year Graph: Last edited: 2011-04-05 14:00:02...
Data Management Group Annual Report
Toronto, University of
Data Management Group Annual Report 2002 prepared by: Data Management Group Joint Program Based Data Retrieval System `drs' ............................................... 3 Internet Browser Data Retrieval System (iDRS) .................................. 4 Complex Data Requests
Data Management Group Annual Report
Toronto, University of
iv Data Management Group Annual Report 2003 City of Hamilton City of Toronto GO Transit Regional of York Toronto Transit Commission The Data Management Group is a research program located ........................................................................................................ 3 Text-based Data Retrieval System `drs
Data Management Group Annual Report
Toronto, University of
Data Management Group Annual Report 1999 prepared by: Data Management Group Joint Program................................................................. 1 INFORMATION PROCESSING ............................................. 2 Text Based Data Retrieval System `drs' ........................ 2 Internet Browser Data Retrieval System (iDRS) ............ 3
Method and apparatus for evaluating structural weakness in polymer matrix composites
Wachter, Eric A. (Oak Ridge, TN); Fisher, Walter G. (Knoxville, TN)
1996-01-01T23:59:59.000Z
A method and apparatus for evaluating structural weaknesses in polymer matrix composites is described. An object to be studied is illuminated with laser radiation and fluorescence emanating therefrom is collected and filtered. The fluorescence is then imaged and the image is studied to determine fluorescence intensity over the surface of the object being studied and the wavelength of maximum fluorescent intensity. Such images provide a map of the structural integrity of the part being studied and weaknesses, particularly weaknesses created by exposure of the object to heat, are readily visible in the image.
Method and apparatus for evaluating structural weakness in polymer matrix composites
Wachter, E.A.; Fisher, W.G.
1996-01-09T23:59:59.000Z
A method and apparatus for evaluating structural weaknesses in polymer matrix composites is described. An object to be studied is illuminated with laser radiation and fluorescence emanating therefrom is collected and filtered. The fluorescence is then imaged and the image is studied to determine fluorescence intensity over the surface of the object being studied and the wavelength of maximum fluorescent intensity. Such images provide a map of the structural integrity of the part being studied and weaknesses, particularly weaknesses created by exposure of the object to heat, are readily visible in the image. 6 figs.
Interagency Sustainability Working Group | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Program Areas Sustainable Buildings & Campuses Interagency Sustainability Working Group Interagency Sustainability Working Group The Interagency Sustainability Working Group...
Subramanian, Sriram
, UK jamil@cs.bris.ac.uk Sriram Subramanian Interaction & Graphics Group Department of Computer Science University of Bristol, UK sriram@cs.bris.ac.uk ABSTRACT Multi-touch interactive tables are vast becoming
Data Management Group Annual Report
Toronto, University of
Data Management Group Annual Report 2000 prepared by: Data Management Group Joint Program ...........................................18 #12;i SUMMARY The Data Management Group (DMG), in cooperation with the funding agencies, has. In addition, there were 26 complex requests for data that required a customized computer program. Eight
Neutron Scattering Group February, 2001
Johnson, Peter D.
Neutron Scattering Group February, 2001 A High Performance Instrument for the Single Crystal Igor Zaliznyak Outline #12;Neutron Scattering Group Neutron spectrometer for studies of the low by focusing it on the sample is very important, and should be previewed. #12;Neutron Scattering Group SNS
Data Management Group Annual Report
Toronto, University of
Data Management Group Annual Report 1997 #12;Data Management Group Annual Report 1997 A co-operative project that is jointly funded by members of the Toronto Area Transportation Planning Data Collection: (416) 978-3941 #12;Data Management Group 1997 Annual Report Table of Contents 1 INTRODUCTION
Data Management Group Annual Report
Toronto, University of
Data Management Group Annual Report 2004 City of Hamilton City of Toronto GO Transit Regional of York Toronto Transit Commission The Data Management Group is a research program located of the funding partners: Ministry of Transportation, Ontario #12;SUMMARY The Data Management Group (DMG
Data Management Group Annual Report
Toronto, University of
PROCESSING ...................................................2 Text Based Data Retrieval System `drs the operation of the EMME/2 simu- lation package on the Data Management Group's computer system. During the yearData Management Group Annual Report 2000 prepared by: Data Management Group Joint Program
Water Resources Working Group Report
Sheridan, Jennifer
Water Resources Working Group Report This report provided content for the Wisconsin Initiative in February 2011. #12;Water Resources Working Group Wisconsin Initiative on Climate Change Impacts October 2010 #12;Water Resources Working Group Members WICCI Tim Asplund (Co-Chair) - Wisconsin Department
Fermilab Steering Group Report
Beier, Eugene; /Pennsylvania U.; Butler, Joel; /Fermilab; Dawson, Sally; /Brookhaven; Edwards, Helen; /Fermilab; Himel, Thomas; /SLAC; Holmes, Stephen; /Fermilab; Kim, Young-Kee; /Fermilab /Chicago U.; Lankford, Andrew; /UC, Irvine; McGinnis, David; /Fermilab; Nagaitsev, Sergei; /Fermilab; Raubenheimer, Tor; /SLAC /Fermilab
2007-01-01T23:59:59.000Z
The Fermilab Steering Group has developed a plan to keep U.S. accelerator-based particle physics on the pathway to discovery, both at the Terascale with the LHC and the ILC and in the domain of neutrinos and precision physics with a high-intensity accelerator. The plan puts discovering Terascale physics with the LHC and the ILC as Fermilab's highest priority. While supporting ILC development, the plan creates opportunities for exciting science at the intensity frontier. If the ILC remains near the Global Design Effort's technically driven timeline, Fermilab would continue neutrino science with the NOVA experiment, using the NuMI (Neutrinos at the Main Injector) proton plan, scheduled to begin operating in 2011. If ILC construction must wait somewhat longer, Fermilab's plan proposes SNuMI, an upgrade of NuMI to create a more powerful neutrino beam. If the ILC start is postponed significantly, a central feature of the proposed Fermilab plan calls for building an intense proton facility, Project X, consisting of a linear accelerator with the currently planned characteristics of the ILC combined with Fermilab's existing Recycler Ring and the Main Injector accelerator. The major component of Project X is the linac. Cryomodules, radio-frequency distribution, cryogenics and instrumentation for the linac are the same as or similar to those used in the ILC at a scale of about one percent of a full ILC linac. Project X's intense proton beams would open a path to discovery in neutrino science and in precision physics with charged leptons and quarks. World-leading experiments would allow physicists to address key questions of the Quantum Universe: How did the universe come to be? Are there undiscovered principles of nature: new symmetries, new physical laws? Do all the particles and forces become one? What happened to the antimatter? Building Project X's ILC-like linac would offer substantial support for ILC development by accelerating the industrialization of ILC components in the U.S. and creating an engineering opportunity for ILC cost reductions. It offers an early and tangible application for ILC R&D in superconducting technology, attracting participation from accelerator scientists worldwide and driving forward the technology for still higher-energy accelerators of the future, such as a muon collider. To prepare for a future decision, the Fermilab Steering Group recommends that the laboratory seek R&D support for Project X, in order to produce an overall design of Project X and to spur the R&D and industrialization of ILC linac components needed for Project X. Advice from the High Energy Physics Advisory Panel will guide any future decision to upgrade the Fermilab accelerator complex, taking into account developments affecting the ILC schedule and the continuing evaluation of scientific priorities for U.S. particle physics. Fermilab should also work toward increased resources for longer-term future accelerators such as a muon collider, aiming at higher energies than the ILC would provide.
FOCUS REVIEW Interaction between synthetic particles and
Cai, Long
is achieved by arranging and folding polypeptides consisting of 20 amino acids. If various functional groups of nonspecific interaction and design of nanoparticles that recognize target molecules Yu Hoshino, Haejoo Lee functionalized polymer particles and proteins has been studied extensively to identify the main factor
Energy or Mass and Interaction
Gustavo R Gonzalez-Martin
2010-07-19T23:59:59.000Z
A review. Problems: 1-Many empirical parameters and large dimension number; 2-Gravitation and Electrodynamics are challenged by dark matter and energy. Energy and nonlinear electrodynamics are fundamental in a unified nonlinear interaction. Nuclear energy appears as nonlinear SU(2) magnetic energy. Gravitation and electromagnetism are unified giving Einstein's equation and a geometric energy momentum tensor. A solution energy in the newtonian limit gives the gravitational constant G. Outside of this limit G is variable. May be interpreted as dark matter or energy. In vacuum, known gravitational solutions are obtained. Electromagnetism is an SU(2) subgroup. A U(1) limit gives Maxwell's equations. Geometric fields determine a generalized Dirac equation and are the germ of quantum physics. Planck's h and of Einstein's c are given by the potential and the metric. Excitations have quanta of charge, flux and spin determining the FQHE. There are only three stable 1/2 spin fermions. Mass is a form of energy. The rest energies of the fermions give the proton/electron mass ratio. Potential excitations have energies equal to the weak boson masses allowing a geometric interpretation of Weinberg's angle. SU(2) gives the anomalous magnetic moments of proton, electron, neutron and generates nuclear range attractive potentials strong enough to produce the binding energies of the deuteron and other nuclides. Lepton and meson masses are due to topological excitations. The geometric mass spectrum is satisfactory. The proton has a triple structure. The alpha constant is a geometric number.
Haun, Phil M
2010-01-01T23:59:59.000Z
Great Powers often adopt coercive strategies, threatening or using limited force to convince weak states to comply with their demands. While coercive strategies have succeeded in just over half of asymmetric crises since ...
Weak formulations and solution multiplicity of equilibrium configurations with Coulomb friction
Bostan, Mihai
Weak formulations and solution multiplicity of equilibrium configurations with Coulomb friction configurations of elastic struc- tures in contact with Coulomb friction. We obtain a variational formulation configurations with arbitrary small friction coefficients. We illustrate the result in two space dimensions
Efficient weakly-radiative wireless energy transfer: An EIT-like approach
Hamam, Rafif E.
Inspired by a quantum interference phenomenon known in the atomic physics community as electromagnetically induced transparency (EIT), we propose an efficient weakly radiative wireless energy transfer scheme between two ...
A weak-value interpretation of the Schwinger mechanism of massless/massive pair productions
Kazuhiro Yokota; Nobuyuki Imoto
2015-04-28T23:59:59.000Z
According to the Schwinger mechanism, a uniform electric field brings about pair productions in vacuum; the relationship between the production rate and the electric field is different, depending on the dimension of the system. In this paper, we make an offer of another model for the pair productions, in which weak values are incorporated: energy fluctuations trigger the pair production, and a weak value appears as the velocity of a particle there. Although our model is only available for the approximation of the pair production rates, the weak value reveals a new aspect of the pair production. Especially, within the first order, our estimation approximately agrees with the exponential decreasing rate of the Landau-Zener tunneling through the mass energy gap. In other words, such tunneling can be associated with energy fluctuations via the weak value, when the tunneling gap can be regarded as so small due to the high electric field.
Statistical geometry of particle packings. II. ``Weak spots'' in liquids Srikanth Sastry,1,
Stillinger, Frank
at the heart of hydrodynamic flow and diffusion properties in liquids, attributes that are absent or at least- stances constitute ``weak spots'' that preferentially serve as nucleation sites for boiling or cavitation
RECTANGULAR POLYOMINO SET WEAK (1,2)-ACHIEVEMENT GAMES EDGAR FISHER AND NNDOR SIEBEN
Sieben, NĂˇndor
RECTANGULAR POLYOMINO SET WEAK (1,2)-ACHIEVEMENT GAMES EDGAR FISHER AND NĂNDOR SIEBEN Abstract Classi#28;cation. 05B50, 91A46. Key words and phrases. achievement games, polyomino. 1 #12; 2 EDGAR
Hwang, D S; Ne'eman, Yuval
1994-01-01T23:59:59.000Z
BRST quantization of SU(2/1) electro-weak theory in the superconnection approach - and the Higgs meson mass
Cluestr: Mobile Social Networking for Enhanced Group Communication
the spreading of social software in the mobile domain. Hence, future usage patterns of mobile devices will involve more group interaction. While collaboration using mobile devices is an active area of re- search success. Re- stricted input and output capabilities of mobile devices have Permission to make digital
Ecology of Puget Sound Winter 2001: All Level Group Contract
Thuesen, Erik V.
- 1 - Ecology of Puget Sound Winter 2001: All Level Group Contract Faculty: Erik Thuesen (thuesene@evergreen.edu), Lab 1 3065 This program will investigate ecological interactions of the organisms in the Puget Sound in Puget Sound for hands-on observations and field work. There will be one multi-day field trip to Friday
Harrison, Ian
2015-01-01T23:59:59.000Z
This document was submitted as supporting material to an Engineering Change Proposal (ECP) for the Square Kilometre Array (SKA). This ECP requests gridded visibilities as an extra imaging data product from the SKA, in order to enable bespoke analysis techniques to measure source morphologies to the accuracy necessary for precision cosmology with radio weak lensing. We also discuss the properties of an SKA weak lensing data set and potential overlaps with other cosmology science goals.
Weak lensing of large scale structure in the presence of screening
Tessore, Nicolas; Metcalf, R Benton; Ferreira, Pedro G
2015-01-01T23:59:59.000Z
A number of alternatives to general relativity exhibit gravitational screening in the non-linear regime of structure formation. We describe a set of algorithms that can produce weak lensing maps of large scale structure in such theories and can be used to generate mock surveys for cosmological analysis. By analysing a few basic statistics we indicate how these alternatives can be distinguished from general relativity with future weak lensing surveys.
Analytic Expression of the Genus in Weakly Non-Gaussian Field Induced by Gravity
T. Matsubara
1994-05-16T23:59:59.000Z
The gravitational evolution of the genus of the density field in large-scale structure is analytically studied in a weakly nonlinear regime using second-order perturbation theory. Weakly nonlinear evolution produces asymmetry in the symmetric genus curve for Gaussian initial density field. The effect of smoothing the density field in perturbation theory on the genus curve is also evaluated and gives the dependence of the asymmetry of the genus curve on spectra of initial fluctuations.
Interaction, protection and epidemics
Goyal, Sanjeev; Vigier, Adrien
2015-03-06T23:59:59.000Z
unique equilibrium: individuals who invest in protection choose to interact more relative to those who do not invest in protection. Changes in the contagiousness of the disease have non-monotonic effects: as a result interaction initially falls...
Fred H. Thaheld
2009-06-16T23:59:59.000Z
Over a period of several decades it has been noticed that most astronauts, either orbiting the earth or on trips to the moon, have observed phosphenes or light flashes (LF) including streaks, spots and clouds of light when their eyes are closed or they are in a darkened cabin. Scientists suspect that two separate components of cosmic rays cause these flashes due to direct interaction with the retina. This phenomenon is not noticed on the ground because of cosmic ray interaction with the atmosphere. The argument is advanced that this effect may provide us with a new method of exploring the weak equivalence principle from the standpoint of Einstein's original thought experiment involving human subjects. This can be done, utilizing the retina only, as an animate quantum mechanical measuring device or, in conjunction with the Anomalous Long Term Effects on Astronauts (ALTEA) facility.
Shih, Chih-Jen, Ph. D. Massachusetts Institute of Technology
2014-01-01T23:59:59.000Z
2D materials are defined as solids with strong in-plane chemical bonds but weak out-of-plane, van der Waals (vdW) interactions. In order to realize potential applications of 2D materials in the areas of optoelectronics, ...
Local Group dSph radio survey with ATCA (III): constraints on particle dark matter
Regis, Marco [Dipartimento di Fisica, Universitŕ di Torino, via P. Giuria 1, I-10125 Torino (Italy); Colafrancesco, Sergio [School of Physics, University of the Witwatersrand, Johannesburg (South Africa); Profumo, Stefano [Department of Physics, University of California, 1156 High St., Santa Cruz, CA 95064 (United States); De Blok, W.J.G. [Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7990 AA Dwingeloo (Netherlands); Massardi, Marcella [INAF—Istituto di Radioastronomia, Via Gobetti 101, I-40129, Bologna (Italy); Richter, Laura, E-mail: regis@to.infn.it, E-mail: sergio.colafrancesco@wits.ac.za, E-mail: profumo@ucsc.edu, E-mail: blok@astron.nl, E-mail: massardi@ira.inaf.it, E-mail: laura@ska.ac.za [SKA South Africa, 3rd Floor, The Park, Park Road, Pinelands, 7405 (South Africa)
2014-10-01T23:59:59.000Z
We performed a deep search for radio synchrotron emissions induced by weakly interacting massive particles (WIMPs) annihilation or decay in six dwarf spheroidal (dSph) galaxies of the Local Group. Observations were conducted with the Australia Telescope Compact Array (ATCA) at 16 cm wavelength, with an rms sensitivity better than 0.05 mJy/beam in each field. In this work, we first discuss the uncertainties associated with the modeling of the expected signal, such as the shape of the dark matter (DM) profile and the dSph magnetic properties. We then investigate the possibility that point-sources detected in the proximity of the dSph optical center might be due to the emission from a DM cuspy profile. No evidence for an extended emission over a size of few arcmin (which is the DM halo size) has been detected. We present the associated bounds on the WIMP parameter space for different annihilation/decay final states and for different astrophysical assumptions. If the confinement of electrons and positrons in the dSph is such that the majority of their power is radiated within the dSph region, we obtain constraints on the WIMP annihilation rate which are well below the thermal value for masses up to few TeV. On the other hand, for conservative assumptions on the dSph magnetic properties, the bounds can be dramatically relaxed. We show however that, within the next 10 years and regardless of the astrophysical assumptions, it will be possible to progressively close in on the full parameter space of WIMPs by searching for radio signals in dSphs with SKA and its precursors.
Local Group dSph radio survey with ATCA (III): Constraints on Particle Dark Matter
M. Regis; S. Colafrancesco; S. Profumo; W. J. G. de Blok; M. Massardi; L. Richter
2014-10-10T23:59:59.000Z
We performed a deep search for radio synchrotron emissions induced by weakly interacting massive particles (WIMPs) annihilation or decay in six dwarf spheroidal (dSph) galaxies of the Local Group. Observations were conducted with the Australia Telescope Compact Array (ATCA) at 16 cm wavelength, with an rms sensitivity better than 0.05 mJy/beam in each field. In this work, we first discuss the uncertainties associated with the modeling of the expected signal, such as the shape of the dark matter (DM) profile and the dSph magnetic properties. We then investigate the possibility that point-sources detected in the proximity of the dSph optical center might be due to the emission from a DM cuspy profile. No evidence for an extended emission over a size of few arcmin (which is the DM halo size) has been detected. We present the associated bounds on the WIMP parameter space for different annihilation/decay final states and for different astrophysical assumptions. If the confinement of electrons and positrons in the dSph is such that the majority of their power is radiated within the dSph region, we obtain constraints on the WIMP annihilation rate which are well below the thermal value for masses up to few TeV. On the other hand, for conservative assumptions on the dSph magnetic properties, the bounds can be dramatically relaxed. We show however that, within the next 10 years and regardless of the astrophysical assumptions, it will be possible to progressively close in on the full parameter space of WIMPs by searching for radio signals in dSphs with SKA and its precursors.
Interactive Holographic Cinema
Portales, Christopher
2012-07-16T23:59:59.000Z
INTERACTIVE HOLOGRAPHIC CINEMA A Thesis by CHRISTOPHER ALBERT PORTALES Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... May 2012 Major Subject: Visualization Interactive Holographic Cinema Copyright 2012 Christopher Albert Portales INTERACTIVE HOLOGRAPHIC CINEMA A Thesis by CHRISTOPHER ALBERT PORTALES...
Influence of Salt Purity on Na+ and Palmitic Acid Interactions
Influence of Salt Purity on Na+ and Palmitic Acid Interactions Zishuai Huang, Wei Hua, Dominique of salt purity on the interactions between Na+ ions and the carboxylate (COO- ) head group of palmitic frequency generation (VSFG) spectroscopy. Ultrapure (UP) and ACS grade NaCl salts are used for aqueous
Using Interactive Design Activity Visualizations for Supporting Collaborative Sketching Sessions
Reiterer, Harald
limiting the control such a trained professional can have over the group activity. Figure 1. Our system combines digital pen & paper and interactive design activity visualizations. In our research, we have visualizations. Therefore, our system combines digital pen & paper tools with interactive visualizations that can
Let T be a locally finite rooted tree and Iso(T) be the group of all isometries of T.
Ivanov, Aleksander
Let T be a locally finite rooted tree and Iso(T) be the group of all isometries of T. Iso(T) is profinite with respect to canonical n: Iso(T) Iso(Tn ) , n, where Tn consists of the first n levels. #12| . PGL2 (p ) fixes the vertex p x p . 3. Branch groups. A closed subgroup GIso(T) is a branch (weakly
Ad Hoc Curriculum Implementation Working Group Ad Hoc Working Group
Brown, Sally
Ad Hoc Curriculum Implementation Working Group MINUTES Ad Hoc Working Group 4 December 2002 Friedman on her visit next week. ONE CURRICULUM OR TWO? Information presented by Trudeau shows that PSE and other programs cannot be merged into a single curriculum. The Faculty Senate website states
Filling factors and Braid group
Wellington Cruz
1998-02-25T23:59:59.000Z
We extract the Braid group structure of a recently derived hierarchy scheme for the filling factors proposed by us which related the Hausdorff dimension, $h$, to statistics, $\
Physics Division: Subatomic Physics Group
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Subatomic Physics Physics home Subatomic Physics Site Home About Us Groups Applied Modern Physics, P-21 Neutron Science and Technology, P-23 Plasma Physics, P-24 Subatomic...
S. Baskal; E. Georgieva; Y. S. Kim; M. E. Noz
2004-01-18T23:59:59.000Z
It has been almost one hundred years since Einstein formulated his special theory of relativity in 1905. He showed that the basic space-time symmetry is dictated by the Lorentz group. It is shown that this group of Lorentz transformations is not only applicable to special relativity, but also constitutes the scientific language for optical sciences. It is noted that coherent and squeezed states of light are representations of the Lorentz group. The Lorentz group is also the basic underlying language for classical ray optics, including polarization optics, interferometers, the Poincare\\'e sphere, one-lens optics, multi-lens optics, laser cavities, as well multilayer optics.
COMPARING DENSE GALAXY CLUSTER REDSHIFT SURVEYS WITH WEAK-LENSING MAPS
Hwang, Ho Seong; Geller, Margaret J.; Zahid, H. Jabran [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Diaferio, Antonaldo [Dipartimento di Fisica, Universitŕ degli Studi di Torino, V. Pietro Giuria 1, I-10125 Torino (Italy); Rines, Kenneth J., E-mail: hhwang@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu, E-mail: harus.zahid@cfa.harvard.edu, E-mail: diaferio@ph.unito.it, E-mail: kenneth.rines@wwu.edu [Department of Physics and Astronomy, Western Washington University, Bellingham, WA 98225 (United States)
2014-12-20T23:59:59.000Z
We use dense redshift surveys of nine galaxy clusters at z ? 0.2 to compare the galaxy distribution in each system with the projected matter distribution from weak lensing. By combining 2087 new MMT/Hectospec redshifts and the data in the literature, we construct spectroscopic samples within the region of weak-lensing maps of high (70%-89%) and uniform completeness. With these dense redshift surveys, we construct galaxy number density maps using several galaxy subsamples. The shape of the main cluster concentration in the weak-lensing maps is similar to the global morphology of the number density maps based on cluster members alone, mainly dominated by red members. We cross-correlate the galaxy number density maps with the weak-lensing maps. The cross-correlation signal when we include foreground and background galaxies at 0.5z {sub cl} < z < 2z {sub cl} is 10%-23% larger than for cluster members alone at the cluster virial radius. The excess can be as high as 30% depending on the cluster. Cross-correlating the galaxy number density and weak-lensing maps suggests that superimposed structures close to the cluster in redshift space contribute more significantly to the excess cross-correlation signal than unrelated large-scale structure along the line of sight. Interestingly, the weak-lensing mass profiles are not well constrained for the clusters with the largest cross-correlation signal excesses (>20% for A383, A689, and A750). The fractional excess in the cross-correlation signal including foreground and background structures could be a useful proxy for assessing the reliability of weak-lensing cluster mass estimates.
FEATURE ARTICLES Group Decision Making
FEATURE ARTICLES Group Decision Making in Honey Bee Swarms When 10,000 bees go house hunting, how a neighboring colony. A striking example of decision mak- ing by an animal group is the choice of a nesting site paper on house hunting by honey bees. Lindauer was then a postdtx:toral stu- dent at the University
Potential sources of contamination to weak lensing measurements: constraints from N-body simulations
Catherine Heymans; Martin White; Alan Heavens; Chris Vale; Ludovic Van Waerbeke
2006-06-16T23:59:59.000Z
We investigate the expected correlation between the weak gravitational shear of distant galaxies and the orientation of foreground galaxies, through the use of numerical simulations. This shear-ellipticity correlation can mimic a cosmological weak lensing signal, and is potentially the limiting physical systematic effect for cosmology with future high-precision weak lensing surveys. We find that, if uncorrected, the shear-ellipticity correlation could contribute up to 10% of the weak lensing signal on scales up to 20 arcminutes, for lensing surveys with a median depth z=1. The most massive foreground galaxies are expected to cause the largest correlations, a result also seen in the Sloan Digital Sky Survey. We find that the redshift dependence of the effect is proportional to the lensing efficiency of the foreground, and this offers prospects for removal to high precision, although with some model dependence. The contamination is characterised by a weakly negative B-mode, which can be used as a diagnostic of systematic errors. We also provide more accurate predictions for a second potential source of error, the intrinsic alignment of nearby galaxies. This source of contamination is less important, however, as it can be easily removed with distance information.
Rozo, Eduardo; /U. Chicago /Chicago U., KICP; Wu, Hao-Yi; /KIPAC, Menlo Park; Schmidt, Fabian; /Caltech
2011-11-04T23:59:59.000Z
When extracting the weak lensing shear signal, one may employ either locally normalized or globally normalized shear estimators. The former is the standard approach when estimating cluster masses, while the latter is the more common method among peak finding efforts. While both approaches have identical signal-to-noise in the weak lensing limit, it is possible that higher order corrections or systematic considerations make one estimator preferable over the other. In this paper, we consider the efficacy of both estimators within the context of stacked weak lensing mass estimation in the Dark Energy Survey (DES). We find that the two estimators have nearly identical statistical precision, even after including higher order corrections, but that these corrections must be incorporated into the analysis to avoid observationally relevant biases in the recovered masses. We also demonstrate that finite bin-width effects may be significant if not properly accounted for, and that the two estimators exhibit different systematics, particularly with respect to contamination of the source catalog by foreground galaxies. Thus, the two estimators may be employed as a systematic cross-check of each other. Stacked weak lensing in the DES should allow for the mean mass of galaxy clusters to be calibrated to {approx}2% precision (statistical only), which can improve the figure of merit of the DES cluster abundance experiment by a factor of {approx}3 relative to the self-calibration expectation. A companion paper investigates how the two types of estimators considered here impact weak lensing peak finding efforts.
THE HIGGS WORKING GROUP: SUMMARY REPORT.
DAWSON, S.; ET AL.
2005-08-01T23:59:59.000Z
This working group has investigated Higgs boson searches at the Tevatron and the LHC. Once Higgs bosons are found their properties have to be determined. The prospects of Higgs coupling measurements at the LHC and a high-energy linear e{sup +}e{sup -} collider are discussed in detail within the Standard Model and its minimal supersymmetric extension (MSSM). Recent improvements in the theoretical knowledge of the signal and background processes are presented and taken into account. The residual uncertainties are analyzed in detail. Theoretical progress is discussed in particular for the gluon-fusion processes gg {yields} H(+j), Higgs-bremsstrahlung off bottom quarks and the weak vector-boson-fusion (VBF) processes. Following the list of open questions of the last Les Houches workshop in 2001 several background processes have been calculated at next-to-leading order, resulting in a significant reduction of the theoretical uncertainties. Further improvements have been achieved for the Higgs sectors of the MSSM and NMSSM. This report summarizes our work performed before and after the workshop in Les Houches. Part A describes the theoretical developments for signal and background processes. Part B presents recent progress in Higgs boson searches at the Tevatron collider. Part C addresses the determination of Higgs boson couplings, part D the measurement of tan {beta} and part E Higgs boson searches in the VBF processes at the LHC. Part F summarizes Higgs searches in supersymmetric Higgs decays, part G photonic Higgs decays in Higgs-strahlung processes at the LHC, while part H concentrates on MSSM Higgs bosons in the intense-coupling regime at the LHC. Part I presents progress in charged Higgs studies and part J the Higgs discovery potential in the NMSSM at the LHC. The last part K describes Higgs coupling measurements at a 1 TeV linear e{sup +}e{sup -} collider.
Holographic Trace Anomaly and Local Renormalization Group
Rajagopal, Srivatsan; Zhu, Yechao
2015-01-01T23:59:59.000Z
The Hamilton-Jacobi method in holography has produced important results both at a renormalization group (RG) fixed point and away from it. In this paper we use the Hamilton-Jacobi method to compute the holographic trace anomaly for four- and six-dimensional boundary conformal field theories (CFTs), assuming higher-derivative gravity and interactions of scalar fields in the bulk. The scalar field contributions to the anomaly appear in CFTs with exactly marginal operators. Moving away from the fixed point, we show that the Hamilton-Jacobi formalism provides a deep connection between the holographic and the local RG. We derive the local RG equation holographically, and verify explicitly that it satisfies Weyl consistency conditions stemming from the commutativity of Weyl scalings. We also consider massive scalar fields in the bulk corresponding to boundary relevant operators, and comment on their effects to the local RG equation.
Holographic Trace Anomaly and Local Renormalization Group
Srivatsan Rajagopal; Andreas Stergiou; Yechao Zhu
2015-08-19T23:59:59.000Z
The Hamilton-Jacobi method in holography has produced important results both at a renormalization group (RG) fixed point and away from it. In this paper we use the Hamilton-Jacobi method to compute the holographic trace anomaly for four- and six-dimensional boundary conformal field theories (CFTs), assuming higher-derivative gravity and interactions of scalar fields in the bulk. The scalar field contributions to the anomaly appear in CFTs with exactly marginal operators. Moving away from the fixed point, we show that the Hamilton-Jacobi formalism provides a deep connection between the holographic and the local RG. We derive the local RG equation holographically, and verify explicitly that it satisfies Weyl consistency conditions stemming from the commutativity of Weyl scalings. We also consider massive scalar fields in the bulk corresponding to boundary relevant operators, and comment on their effects to the local RG equation.
Dynamic chirality in the interacting boson fermion-fermion model
Brant, S. [Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb (Croatia); Tonev, D. [INFN, Laboratori Nazionali di Legnaro, I-35020 Legnaro (Italy); Institute for Nuclear Research and Nuclear Energy, BAS, 1784 Sofia (Bulgaria); De Angelis, G. [INFN, Laboratori Nazionali di Legnaro, I-35020 Legnaro (Italy); Ventura, A. [Ente per le Nuove tecnologie, l'Energia e l'Ambiente, I-40129 Bologna and Istituto Nazionale di Fisica Nucleare, Sezione di Bologna (Italy)
2008-09-15T23:59:59.000Z
The chiral interpretation of twin bands in odd-odd nuclei was investigated in the interacting boson fermion-fermion model. The analysis of the wave functions has shown that the possibility for angular momenta of the valence proton, neutron and core to find themselves in the favorable, almost orthogonal geometry is present, but not dominant. Such behavior is found to be similar in nuclei where both the level energies and the electromagnetic decay properties display the chiral pattern, as well as in those where only the level energies of the corresponding levels in the twin bands are close together. The difference in the structure of the two types of chiral candidates nuclei can be attributed to different {beta} and {gamma} fluctuations, induced by the exchange boson-fermion interaction of the interacting boson fermion-fermion model. In both cases the chirality is weak and dynamic.
Anomalous skin effects in relativistic parallel propagating weakly magnetized electron plasma waves
Abbas, Gohar; Bashir, M. F. [Salam Chair in Physics, G. C. University, Lahore 54000 (Pakistan); Department of Physics, G. C. University, Lahore 54000 (Pakistan); Murtaza, G. [Salam Chair in Physics, G. C. University, Lahore 54000 (Pakistan)
2011-10-15T23:59:59.000Z
Fully relativistic analysis of anomalous skin effects for parallel propagating waves in a weakly magnetized electron plasma is presented and general expressions for longitudinal and transverse permittivites are derived. It is found that the penetration depth for R- and L-waves increases as we move from non-relativistic to highly relativistic regime. The ambient magnetic field reduces/enhances the skin effects for R-wave/L-wave as the strength of the field is increased. In general, the weak magnetic field effects are pronounced for the weakly relativistic regime as compared with other relativistic cases. The results are also graphically illustrated. On switching off the magnetic field, previous results for field free case are retrieved [A. F. Alexandrov, A. S. Bogdankevich, and A. A. Rukhadze, Priniples of Plasma Electrodynamics (Springer-Verlag, Berlin, Heidelberg, 1984), Vol. 9, p. 106].
Interaction and Intelligent Behavior
Mataric, Maja J.
1994-08-01T23:59:59.000Z
We introduce basic behaviors as primitives for control and learning in situated, embodied agents interacting in complex domains. We propose methods for selecting, formally specifying, algorithmically implementing, ...
Interactive dynamic aircraft scheduling
Deckwitz, Thomas Anthony
1984-01-01T23:59:59.000Z
Introducing recent advances in computer technology to improve aircraft scheduling is investigated. Incorporating interactive graphics, modern database manipulation techniques, and decision support algorithms, the computer ...
Felix M. Lev
2010-05-16T23:59:59.000Z
We consider a possibility that gravity is not an interaction but a manifestation of a symmetry based on a Galois field.
Galois Groups of Schubert Problems
Martin Del Campo Sanchez, Abraham
2012-10-19T23:59:59.000Z
. Suppose that pi : W ? X is a dominant morphism of degree d between irreducible algebraic varieties of the same dimension defined over an algebraically closed field K. We will assume here and throughout that pi is generically separable... in that the corresponding extension pi?(K(X)) ?? K(W ) of function fields is separable. In this case, define the Galois group GalW?X of this map to be the Galois group of the Galois closure of the field extension K(W )/pi?(K(X)). This is a subgroup of the symmetric group...
ATMOSPHERIC COMPOSITION OF WEAK G BAND STARS: CNO AND Li ABUNDANCES
Adamczak, Jens; Lambert, David L., E-mail: adamczak@astro.as.utexas.edu [McDonald Observatory, University of Texas, Austin, TX 78712 (United States)
2013-03-10T23:59:59.000Z
We determined the chemical composition of a large sample of weak G band stars-a rare class of G and K giants of intermediate mass with unusual abundances of C, N, and Li. We have observed 24 weak G band stars with the 2.7 m Harlan J. Smith Telescope at the McDonald Observatory and derived spectroscopic abundances for C, N, O, and Li, as well as for selected elements from Na-Eu. The results show that the atmospheres of weak G band stars are highly contaminated with CN-cycle products. The C underabundance is about a factor of 20 larger than for normal giants and the {sup 12}C/{sup 13}C ratio approaches the CN-cycle equilibrium value. In addition to the striking CN-cycle signature the strong N overabundance may indicate the presence of partially ON-cycled material in the atmospheres of the weak G band stars. The exact mechanism responsible for the transport of the elements to the surface has yet to be identified but could be induced by rapid rotation of the main sequence progenitors of the stars. The unusually high Li abundances in some of the stars are an indicator for Li production by the Cameron-Fowler mechanism. A quantitative prediction of a weak G band star's Li abundance is complicated by the strong temperature sensitivity of the mechanism and its participants. In addition to the unusual abundances of CN-cycle elements and Li, we find an overabundance of Na that is in accordance with the NeNa chain running in parallel with the CN cycle. Apart from these peculiarities, the element abundances in a weak G band star's atmosphere are consistent with those of normal giants.
Quantum Electron Transport and Duality in a One-Dimensional Interacting System
Lee, Taejin
2015-01-01T23:59:59.000Z
We study the quantum electron transport in a one-dimensional interacting electron system, called Schmid model, reformulating the model in terms of the bosonic string theory on a disk. The particle-kink duality of the model is discussed in the absence of the external electric field and further extended to the model with a weak electric field. Using the linear response theory, we evaluate the electric conductance both for both weak and strong periodic potentials in the zero temperature limit. The electric conductance is invariant under the particle-kink duality.
Quantum Electron Transport and Duality in a One-Dimensional Interacting System
Taejin Lee
2015-08-03T23:59:59.000Z
We study the quantum electron transport in a one-dimensional interacting electron system, called Schmid model, reformulating the model in terms of the bosonic string theory on a disk. The particle-kink duality of the model is discussed in the absence of the external electric field and further extended to the model with a weak electric field. Using the linear response theory, we evaluate the electric conductance both for both weak and strong periodic potentials in the zero temperature limit. The electric conductance is invariant under the particle-kink duality.
Midwest Hydro Users Group Meeting
Broader source: Energy.gov [DOE]
The Midwest Hydro Users Group will be holding their annual Fall meeting on November 12th and 13th in Wausau, Wisconsin. An Owners-only meeting on the afternoon of the 12th followed by a full...
Interactive Virtual Environments Introduction
Petriu, Emil M.
sensor data or by animation scripts. Human users can interact and directly manipulate objects within Reality Interactive Virtual Reality Virtualized Reality Augmented Reality #12;HUMAN PERCEPTION OF REALITY REAL WORLD / ENVIRONMENT HUMAN (sentient living animal able of sensible reasoning) #12;Real
Policy Research Working Paper 4844, World Bank, Washington DC, April 2009 Weakly Relative Poverty
Krivobokova, Tatyana
Policy Research Working Paper 4844, World Bank, Washington DC, April 2009 Weakly Relative Poverty, 20433, USA Abstract: Prevailing measures of relative poverty are unchanged when all incomes grow that relax these assumptions. On calibrating our measures to national poverty lines and survey data, we find
On the Storage Capacity of Hopfield Models with Weakly Correlated Patterns
Bielefeld, University of
On the Storage Capacity of Hopfield Models with Weakly Correlated Patterns Matthias LÂ¨owe Universit@mathematik.uniÂbielefeld.de Keywords: Hopfield model, neural networks, storage capacity, Markov chains, large deviations AMS Subject Classification: 82C32, 82B44, 60K35 Abstract We analyze the storage capacity of different forms of the Hopfield
Weak Data Secrecy via Obfuscation in Network Coding Based Content Distribution
Battiti, Roberto
Weak Data Secrecy via Obfuscation in Network Coding Based Content Distribution Roberto G. Cascella of California Los Angeles, 3732F Boelter Hall, CA 90095 Los Angeles Email: {cascella, crispo, battiti in terms of error/loss protection and faster dissemination at the cost of exposing the data to intermediate
Hamming embedding and weak geometric consistency for large scale image search
Verbeek, Jakob
Hamming embedding and weak geometric consistency for large scale image search Herve Jegou, Matthijs improves recent methods for large scale image search. State-of-the-art methods build on the bag large datasets. Exper- iments performed on a dataset of one million of images show a signifi- cant
Voltage and Frequency Stability of Weak Power Distribution Networks with Droop-Controlled
Lemmon, Michael
Voltage and Frequency Stability of Weak Power Distribution Networks with Droop analysis, because of coupled network dynamics. Additionally, droop controlled rotational and electronic DG distribution network coupled with droop-controlled DG's, which are based on both fast inverters and SG
Carbon Lock-in Through Capital Stock Inertia Associated with Weak Near-term Climate Policies
Bertram, Christoph; Johnson, Nils; Luderer, Gunnar; Riahi, Keywan; Isaac, Morna; Eom, Jiyong
2015-01-01T23:59:59.000Z
Stringent long-term climate targets necessitate a strict limit on cumulative emissions in this century for which sufficient policy signals are so far lacking. Based on an ensemble of ten energy-economy models, we explore how long-term transformation pathways depend on policies pursued during the next two decades. We find that weak GHG emission targets for 2030 lead, in that year alone, to excess carbon dioxide emissions of nearly half of the annual emissions in 2010, mainly through coal electricity generation. Furthermore, by consuming more of the long-term cumulative emissions budget in the first two decades, weak policy increases the likelihood of overshooting the budget and the urgency of reducing GHG emissions. Therefore, to be successful under weak policies, models must prematurely retire much of the additional coal capacity post-2030 and remove large quantities of carbon dioxide from the atmosphere in the latter half of the century. While increased energy efficiency lowers mitigation costs considerably, even with weak near-term policies, it does not substantially reduce the short term reliance on coal electricity. However, increased energy efficiency does allow the energy system more flexibility in mitigating emissions and, thus, makes the post-2030 transition easier.
Structural response of nematic liquid crystals to weak transient shear flows
Mather, Patrick T.
dynamic director response of nematics to oscillatory shearand step shear strain. In oscillation, the ratioStructural response of nematic liquid crystals to weak transient shear flows P. T. Matherajpb is presentedfor director field relaxationfollowing distortion induced by a step strain. Step strainexperimentson 5
The role of strong and weak ties in Facebook: a community structure perspective
Ferrara, Emilio
The role of strong and weak ties in Facebook: a community structure perspective Emilio Ferrara of the well-known Facebook network. In particular, we discuss the quantitative assessment of the strength-scale online social network such as Facebook. Complex networks, Social network analysis, Community structure
Oguri, Masamune; Hennawi, Joseph F.; Gladders, Michael D.; Dahle, Haakon; Natarajan, Priyamvada; Dalal, Neal; Koester, Benjamin P.; Sharon, Keren; Bayliss, Matthew
2009-01-29T23:59:59.000Z
We derive radial mass profiles of four strong lensing selected clusters which show prominent giant arcs (Abell 1703, SDSS J1446+3032, SDSS J1531+3414, and SDSS J2111-0115), by combining detailed strong lens modeling with weak lensing shear measured from deep Subaru Suprime-cam images. Weak lensing signals are detected at high significance for all four clusters, whose redshifts range from z = 0.28 to 0.64. We demonstrate that adding strong lensing information with known arc redshifts significantly improves constraints on the mass density profile, compared to those obtained from weak lensing alone. While the mass profiles are well fitted by the universal form predicted in N-body simulations of the {Lambda}-dominated cold dark matter model, all four clusters appear to be slightly more centrally concentrated (the concentration parameters c{sub vir} {approx} 8) than theoretical predictions, even after accounting for the bias toward higher concentrations inherent in lensing selected samples. Our results are consistent with previous studies which similarly detected a concentration excess, and increases the total number of clusters studied with the combined strong and weak lensing technique to ten. Combining our sample with previous work, we find that clusters with larger Einstein radii are more anomalously concentrated. We also present a detailed model of the lensing cluster Abell 1703 with constraints from multiple image families, and find the dark matter inner density profile to be cuspy with the slope consistent with -1, in agreement with expectations.
Derived equivalence classi cation of weakly symmetric algebras of Euclidean type
Holm, Thorsten
is isomorphic to its top P= rad P . The classical examples of sel#12;njective algebras (respectively, symmetricDerived equivalence classi#12;cation of weakly symmetric algebras of Euclidean type Rafa l Bocian Copernicus University, Chopina 12/18, 87-100 Toru#19;n, Poland b Institut fur Algebra und Geometrie, Fakult
LEBESGUE-BOCHNER SPACES, DECOMPOSABLE SETS AND STRONG WEAKLY COMPACT GENERATION
RodrĂguez, JosĂ©
LEBESGUE-BOCHNER SPACES, DECOMPOSABLE SETS AND STRONG WEAKLY COMPACT GENERATION SEBASTIÂ´AN LAJARA is strongly reflexive (resp. super-reflexive) generated if, and only if, there exist a reflexive (resp. super Let X be a Banach space and let BX be its closed unit ball. We say that X is strongly generated
Evolving a robust signal transduction pathway from weak cross-talk
Siryaporn, Albert
We have evolved a robust two?component signal transduction pathway from a sensor kinase (SK) and non?partner response regulator (RR) that show weak cross?talk in vitro and no detectable cross?talk in vivo in wild?type ...
Evolving a robust signal transduction pathway from weak cross-talk
Siryaporn, Albert
We have evolved a robust two-component signal transduction pathway from a sensor kinase (SK) and non-partner response regulator (RR) that show weak cross-talk in vitro and no detectable cross-talk in vivo in wild-type ...
Weakly-coupled systems in quantum control Nabile Boussaid, Marco Caponigro, and Thomas Chambrion
Paris-Sud XI, Université de
, is a real function modeling a laser l, and ul,1 l p, usually called control, is a real function the existence of controls steering a given source to a given target or a neighborhood of it. B. Finite1 Weakly-coupled systems in quantum control Nabile Boussa¨id, Marco Caponigro, and Thomas Chambrion
The full weak charge density distribution of 48Ca from parity violating electron scattering
Lin, Z
2015-01-01T23:59:59.000Z
Background: The ground state neutron density of a medium mass nucleus contains fundamental nuclear structure information and is at present relatively poorly known. Purpose: We explore if parity violating elastic electron scattering can provide a feasible and model independent way to determine not just the neutron radius but the full radial shape of the neutron density $\\rho_n(r)$ and the weak charge density $\\rho_W(r)$ of a nucleus. Methods: We expand the weak charge density of $^{48}$Ca in a model independent Fourier Bessel series and calculate the statistical errors in the individual coefficients that might be obtainable in a model parity violating electron scattering experiment. Results: We find that it is feasible to determine roughly six Fourier Bessel coefficients of the weak charge density of 48Ca within a reasonable amount of beam time. However, it would likely be much harder to determine the full weak density of a significantly heavier nucleus such as 208Pb. Conclusions: Parity violating elastic elec...
Weak Temperature Dependence of the Free Energy Surface and Folding Pathways of Structured Peptides
Caflisch, Amedeo
Weak Temperature Dependence of the Free Energy Surface and Folding Pathways of Structured Peptides a thermodynamic description of minima and transi- tion states on the free energy surface, which is determined near equilibrium by counting popula- tions. The free energy surface, plotted as a function of two-order parameters
The coexistence and evolution of attractors in the web map with weak dissipation
A. V. Savin; D. V. Savin
2013-02-21T23:59:59.000Z
The dynamics of the web map with weak linear dissipation is studied. The evolution of the coexisting attractors and the structure of their basins while changing the dissipation and nonlinearity are revealed. It is shown that the structure of the basins remains the same when the dissipation and nonlinearity changes simultaneously.
Energetic, 590 keV neutral atom imaging of a weak substorm with STEREO/STE
California at Berkeley, University of
then, ENAs have been used to remotely image the ring current during geomagnetic storms and substorms [eV neutral atoms (ENA) of a weak geomagnetic substorm (Dst > -8 nT and AE ] 200 nT), made by the Suprathermal spectrum consistent with in situ proton measurements at geosynchronous orbit, and a spatial asymmetry
Global weak solutions to magnetic fluid flows with nonlinear Maxwell-Cattaneo heat transfer law
Boyer, Edmond
Global weak solutions to magnetic fluid flows with nonlinear Maxwell-Cattaneo heat transfer law F transfer in a magnetic fluid flow under the action of an applied magnetic field. Instead of the usual heat-Cattaneo law, heat transfer, magnetic field, magnetization AMS subject classifications: 76N10, 35Q35. 1
Limits on weak magnetic confinement of neutral atoms C. A. Sackett*
Sackett, Cass
Limits on weak magnetic confinement of neutral atoms C. A. Sackett* Physics Department, University It is shown that when a magnetic field is used to support neutral atoms against the gravitational force mg, the total curvature of the field magnitude B must be larger than m2 g2 / 2 2 B , where is the magnetic
Directed Polymers in Random Environment are Diffusive at Weak Francis COMETS 2
Directed Polymers in Random Environment are Diffusive at Weak Disorder 1 Francis COMETS 2 Universit8502, Japan. email: nobuo@math.kyotou.ac.jp Abstract In this paper, we consider directed polymers in random and temperature), we prove monotonicity of the phase diagram in the temperature. Les Polym`eres Dirig'es En Milieu
WeaklyPrivate Secret Sharing Schemes # Amos Beimel 1 and Matthew Franklin 2
Beimel, Amos
WeaklyÂPrivate Secret Sharing Schemes # Amos Beimel 1 and Matthew Franklin 2 1 Department. Abstract. SecretÂsharing schemes are an important tool in cryptograÂ phy that is used in the construction of many secure protocols. However, the shares' size in the best known secretÂsharing schemes realizing gen
Systematic Derivation of the Weakly Non-Linear Theory of Thermoacoustic Devices
Eindhoven, Technische Universiteit
Systematic Derivation of the Weakly Non-Linear Theory of Thermoacoustic Devices P.H.M.W. in 't Eindhoven P.O. Box 513, 5600 MB Eindhoven, The Netherlands Abstract Thermoacoustics is the field concerned of thermoacoustic devices: the ther- moacoustic prime mover and the thermoacoustic heat pump or refrigerator. Two
INTRODUCTION Weakly electric knifefish have been studied for several decades to
Curet, Oscar M.
of South American electric fish (family Gymnotidae) swim by using a ribbon fin positioned along the ventral the mechanical principles of force generation by the ribbon fin in the context of the South American weakly direction rapidly (in 100ms) (MacIver et al., 2001) is integral to several behaviors. Previous work by Mac
Precision of electro--weak couplings of scalar leptoquarks at TESLA
Johannes Blümlein
2000-11-29T23:59:59.000Z
We investigate the potential to measure the electro-weak couplings of scalar leptoquarks $\\Phi_s$ at TESLA for energies in the range of $\\sqrt{s} \\simeq 1 \\TeV$ using the pair production process $e^+e^- \\to \\Phi_s \\bar{\\Phi}_s$.
Combining the Ultra-Weak Variational Formulation and the Multilevel Fast Multipole Method
Boyer, Edmond
Combining the Ultra-Weak Variational Formulation and the Multilevel Fast Multipole Method Eric fast multipole method we obtain an efficient volume based solver with an exact auxiliary boundary Â Integral Representation Â Multilevel Fast Multipole Method 1 Introduction At progressively higher
Applied Radiation and Isotopes 64 (2006) 6062 Weak energy dependence of EBT gafchromic film dose
Yu, K.N.
2006-01-01T23:59:59.000Z
, radiation-sensi- tive, polymer between two protective layers of polyester, which allows the filmApplied Radiation and Isotopes 64 (2006) 6062 Weak energy dependence of EBT gafchromic film dose are common in radiation therapy. r 2005 Elsevier Ltd. All rights reserved. Keywords: Radiochromic film
Weakly Dispersive Hydraulic Flows in a Contraction -Parametric Solutions and Linear Stability
Ee, Bernard Kuowei
Weakly Dispersive Hydraulic Flows in a Contraction - Parametric Solutions and Linear Stability typically results is a transition of flow characteristics within the contraction yielding hydraulic flows of the contraction. As considered here, a hydraulic solution is generally one where the fluid response is a function
Focal mechanisms produced by shear faulting in weakly transversely isotropic crustal rocks
Cerveny, Vlastislav
. The formulas for percentages of the ISO and CLVD are simplified under the assumption of weak transverse mechanisms can be determined for microearthquakes in- duced in reservoirs during gas or oil production computed and inter- preted under the assumption of an isotropic medium. The geologic structures
Coating Flows of Non-Newtonian Fluids: Weakly and Strongly Elastic Limits
is on viscoelastic effects on single roll coating at low dimensionless speeds, although the analytical results weCoating Flows of Non-Newtonian Fluids: Weakly and Strongly Elastic Limits J. Ashmore(1,a), A February 2007 Abstract. We present an asymptotic analysis of the thickness of the liquid film that coats
CP Violation in Bs J/ decays at LHCb and Sensitivity to the Weak Mixing Phase s
Edinburgh, University of
both a quantitative and qualitative improvement in the precision with which s is obtained to the Weak Mixing Phase s Author: Colin David MCLEAN THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENTS of the Bs J/ decay channel at LHCb. I hereby declare that the writing of this thesis is my own work
Generation of strong mesoscale eddies by weak ocean gyres by Michael A. Spall1
Generation of strong mesoscale eddies by weak ocean gyres by Michael A. Spall1 ABSTRACT The generation of strong mesoscale variability through instability of the large-scale circulation in the interior with the scaling theory. 1. Introduction It is now well recognized that the kinetic energy of the mesoscale
Measurement of friction noise versus contact area of rough surfaces weakly loaded
Paris-Sud XI, Université de
contact area. The friction-induced vibration is generated by the sliding of two rough surfaces. The normal load is low leading to a weak contact. The normal load and the sliding velocity are maintained constant], friction noises can be classified in two types depending on the contact pressure. When the contact pressure
A dropped cellphone call is a common frustration often caused by a weak
Herr, Hugh
A dropped cellphone call is a common frustration often caused by a weak signal or a strong to smaller, lighter, less- powered platforms. In order for small-platform sensors to detect low-level RF signals effec- tively, they must have high dynamic range, be small and light, consume little power
QCD Corrections to Vector Boson Pair Production via Weak Boson Fusion
B. Jager; C. Oleari; D. Zeppenfeld
2006-08-24T23:59:59.000Z
NLO-QCD corrections to vector boson pair production via weak boson fusion have recently been calculated and implemented into flexible parton-level Monte-Carlo programs. These allow for the computation of cross sections and kinematical distributions within realistic experimental cuts. We summarize the basic elements of the calculation and review phenomenological results for the LHC.