National Library of Energy BETA

Sample records for group stanford university

  1. STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY

    Office of Scientific and Technical Information (OSTI)

    Engineering Stanford University, Stanford, California, January 22-24, 1985 SCP-TR-84 OB 5 COlJDITIOBS OF WATER BND ... and its confinement to the permeable deep fracturing zone. ...

  2. PULSE at Stanford University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photon Science @ SLAC - LCLS - LUSI - SSRL - PULSE - Stanford University Go Search Home Publications Atomic & Molecular Physics Condensed Matter Physics Single Molecule Imaging Single-Shot Nanoscale Imaging Ultrafast Chemical Processes Ultrafast Magnetic Switching Contact Us Office of Science/U.S. DOE Ultrafast Center PULSE (Photon Ultrafast Laser Science and Engineering) is based on a remarkable new venture at SLAC/Stanford – the construction of the world’s first x-ray free electron

  3. Stanford Nitrogen Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stanford Nitrogen Group National Clean Energy Business Plan Competition Stanford Nitrogen Group Stanford University The Stanford Nitrogen Group developed a new wastewater treatment process for the removal and recovery of energy from waste nitrogen (i.e. ammonia). This process improves the efficiency and lowers the cost of nitrogen treatment. The process is termed the Coupled Aerobic-anoxic Nitrous Decomposition Operation (CANDO) and consists of 2 principal steps: biological conversion of ammonia

  4. EERE Days at Stanford University

    Broader source: Energy.gov [DOE]

    The Department of Energy hosts the Office of Energy Efficiency and Renewable Energy (EERE) Days at Stanford University to engage students and faculty on key energy issues aligned with EERE’s...

  5. Stanford University | OSTI, US Dept of Energy, Office of Scientific...

    Office of Scientific and Technical Information (OSTI)

    Social Media Stanford University's YouTube Channel Connect with Stanford University on Facebook Stay in touch with Stanford University on Twitter Standford University research news ...

  6. DOE - Office of Legacy Management -- Leland Stanford University - CA 0-04

    Office of Legacy Management (LM)

    Leland Stanford University - CA 0-04 FUSRAP Considered Sites Site: Leland Stanford University (CA.0-04 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see http://www.stanford.edu/group/ginzton/ Documents Related to Leland Stanford University

  7. Workplace Charging Challenge Partner: Stanford University | Department...

    Broader source: Energy.gov (indexed) [DOE]

    As part of its emission-reduction efforts, Stanford University Parking & Transportation Services (P&TS) has increased the number of Level 2 electric vehicle charging stations on ...

  8. DOE Cites Stanford University and Two Subcontractors for Worker...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stanford University and Two Subcontractors for Worker Safety and Health Violations DOE Cites Stanford University and Two Subcontractors for Worker Safety and Health Violations April ...

  9. YingYing Lu > Postdoc - Stanford University > Center Alumni > The Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Center at Cornell YingYing Lu Postdoc - Stanford University yl854@stanford.edu Formerly a graduate student with the Archer Group, she received her PhD in 2014. She is now a postdoc in Materials Science and Engineering at Stanford

  10. Department of Energy Cites Stanford University for Worker Safety and Health

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Violations | Department of Energy Stanford University for Worker Safety and Health Violations Department of Energy Cites Stanford University for Worker Safety and Health Violations November 21, 2014 - 11:25am Addthis News Media Contact 202-586-4940 Department of Energy Cites Stanford University for Worker Safety and Health Violations WASHINGTON - The U.S. Department of Energy has issued a Preliminary Notice of Violation (PNOV) to Stanford University (Stanford) for four violations of the

  11. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stanford Nitrogen Group National Clean Energy Business Plan Competition Stanford Nitrogen Group Stanford University The Stanford Nitrogen Group developed a new wastewater treatment process for the removal and recovery of energy from waste nitrogen (i.e. ammonia). This process improves the efficiency and lowers the cost of nitrogen treatment. The process is termed the Coupled Aerobic-anoxic Nitrous Decomposition Operation (CANDO) and consists of 2 principal steps: biological conversion of ammonia

  12. Computer Networking Group | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computer Networking Group Do you need help? For assistance please submit a CNG Help Request ticket. CNG Logo Chris Ramirez SSRL Computer and Networking Group (650) 926-2901 | email ...

  13. DEPARTMENT OF ENERGY CITES STANFORD UNIVERSITY FOR WORKER SAFETY AND HEALTH

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    STANFORD UNIVERSITY FOR WORKER SAFETY AND HEALTH VIOLATIONS November 21, 2014 - 11:25am Share on emailShare on facebook NEWS MEDIA CONTACT * 202-586-4940 Department of Energy Cites Stanford University for Worker Safety and Health Violations WASHINGTON - The U.S. Department of Energy has issued a Preliminary Notice of Violation (PNOV) to Stanford University (Stanford) for four violations of the Department's worker safety and health regulations. Worker safety is a priority for the Department, and

  14. Stanford University | OSTI, US Dept of Energy Office of Scientific...

    Office of Scientific and Technical Information (OSTI)

    Rip Kim Stanford Team Devises a Better Solar-powered Water Splitter Astrophysicist ... of certain cancer therapies Stanford's Solar Car Project New method reveals parts of ...

  15. Stanford University | OSTI, US Dept of Energy Office of Scientific...

    Office of Scientific and Technical Information (OSTI)

    ... DOE awards 25 million to UC Berkeley, Stanford to lower cost of solar power Stanford's 2010 Department of Energy Office of Science Graduate Fellows Nanopillars yield more precise ...

  16. DOE Cites Stanford University and Two Subcontractors for Worker Safety and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Health Violations | Department of Energy Stanford University and Two Subcontractors for Worker Safety and Health Violations DOE Cites Stanford University and Two Subcontractors for Worker Safety and Health Violations April 3, 2009 - 12:00am Addthis The U.S. Department of Energy (DOE) today issued Preliminary Notices of Violation (PNOVs) to three contractors - Stanford University, Pacific Underground Construction, Inc., and Western Allied Mechanical, Inc. - for violations in September 2007 of

  17. Scientists Pass Solid Particles Through Rock in DOE-Sponsored Research at Stanford University

    Broader source: Energy.gov [DOE]

    DOE-sponsored research at Stanford University under the direction of Dr. Roland Horne is advancing the application of nanotechnology in determining fluid flow through enhanced geothermal system reservoirs at depth.

  18. SSRL- Stanford Synchrotron Radiation Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the fund description (pdf) and to send contributions to (make checks payable to "Stanford University"): Stanford University co Cathy Knotts Manager, User Research...

  19. Universal Charge Order in the High-Tc Superconductors | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation Lightsource Universal Charge Order in the High-Tc Superconductors Wednesday, May 4, 2016 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Speaker: Eduardo H. da Silva Neto - UBC Eduardo H. da Silva Neto was born in Recife, Brazil. He obtained his B.A. in Physics and Mathematics (2008) from Amherst College, and his Ph. D. (2013) in Physics from Princeton University. Since 2013 he has been a Max-Planck-UBC postdoctoral research fellow at the Quantum Matter Institute at

  20. Organization of the 16th Advanced Accelerator Concepts (AAC) Workshop by Stanford University

    SciTech Connect (OSTI)

    Huang, Zhirong; Hogan, Mark

    2015-09-30

    Essentially all we know today and will learn in the future about the fundamental nature of matter is derived from probing it with directed beams of particles such as electrons, protons, neutrons, heavy ions, and photons. The resulting ability to “see” the building blocks of matter has had an immense impact on society and our standard of living. Over the last century, particle accelerators have changed the way we look at nature and the universe we live in and have become an integral part of the Nation’s technical infrastructure. Today, particle accelerators are essential tools of modern science and technology. The cost and capabilities of accelerators would be greatly enhanced by breakthroughs in acceleration methods and technology. For the last 32 years, the Advanced Accelerator Concepts (AAC) Workshop has acted as the focal point for discussion and development of the most promising acceleration physics and technology. It is a particularly effective forum where the discussion is leveraged and promoted by the unique and demanding feature of the AAC Workshop: the working group structure, in which participants are asked to consider their contributions in terms of even larger problems to be solved. The 16th Advanced Accelerator Concepts (AAC2014) Workshop was organized by Stanford University from July 13 - 18, 2014 at the Dolce Hays Mansion in San Jose, California. The conference had a record 282 attendees including 62 students. Attendees came from 11 countries representing 66 different institutions. The workshop format consisted of plenary sessions in the morning with topical leaders from around the world presenting the latest breakthroughs to the entire workshop. In the late morning and afternoons attendees broke out into eight different working groups for more detailed presentations and discussions that were summarized on the final day of the workshop. In addition, there were student tutorial presentations on two afternoons to provide in depth education and

  1. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Sheep Cortical Bone Using Synchrotron Radiation Transmission X-ray Microscopy", PLoS ONE ... Garry R. Brock, Cornell University Joy C. Andrews, Stanford Synchrotron Radiation ...

  2. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory SLAC National Accelerator Laboratory, Menlo Park, CA Operated by Stanford University for the U.S. Department of Energy Office of Science Content Owner: Cathy...

  3. 33rd International Symposium on Combustion Hottel Lecture Applications of Quantitative Laser Sensors to Kinetics, Propulsion and Practical Combustion Systems Ronald K. Hanson Department of Mechanical Engineering Stanford University, Stanford CA, 94305

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Combustion Science Stanford University Contribution R. K. Hanson and D. F. Davidson Department of Mechanical Engineering Stanford University 1 * Butanol Studies * Ignition Delay Times * Species Time-Histories * Reaction Rate Constants * Methyl Ester Studies * Ignition Delay Times Long-Term Objectives * Generate high-quality fundamental kinetics database using shock tube/laser absorption methods Leading to: * Improved detailed mechanisms for next-generation fuels First Targets: * Isomers of

  4. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Now the Synchrotron Medical Imaging Team, a group of Canadian, US, and European scientists (including scientists from the Stanford Synchrotron Radiation Lightsource) are using ...

  5. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jorge L. Gardea-Torresdey, University of Texas at El Paso Joy C. Andrews, Stanford Synchrotron Radiation Lightsource Jose A. Hernandez-Viezcas, University of Texas at El Paso 2575 ...

  6. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contacts Hirohito Ogasawara, Stanford Synchrotron Radiation Lightsource Dennis Nordlund, Stanford Synchrotron Radiation Lightsource Anders Nilsson, Stanford Synchrotron ...

  7. About the Stanford Synchrotron Radiation Lightsource | Stanford Synchrotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Lightsource About the Stanford Synchrotron Radiation Lightsource SSRL is a forefront lightsource providing bright X-rays and oustanding user support. The Stanford Synchrotron Radiation Lightsource (SSRL), a directorate of the SLAC National Accelerator Laboratory (SLAC), is an Office of Science User Facility operated for the U.S. Department of Energy (DOE) by Stanford University. Located in Menlo Park, California, SLAC is a multi-program national laboratory exploring frontier

  8. STANFORD SYNCHROTRON RADIATION LIGHTSOURCE The Stanford Synchrotron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    STANFORD SYNCHROTRON RADIATION LIGHTSOURCE The Stanford Synchrotron Radiation Lightsource at SLAC National Accelerator Laboratory produces extremely bright X-rays used to study our ...

  9. Celebrating Artie Bienenstock | Stanford Synchrotron Radiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brief informal contributions* 12:30 Lunch Influence beyond Stanford Chair: to be determined 1:30 Martha Krebs, Pennsylvania State University, Energy Efficient Buildings Hub ...

  10. SPEAR History | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SPEAR History Experimental Facilities : The SPEAR Storage Ring Stanford University has a long history of involvement in the development and use of colliding-beam storage rings for particle physics research. The first such machine at Stanford was a small electron-electron collider, shaped like a figure eight, located on the main campus. A collaborative effort between physicists from Princeton and Stanford Universities, this project produced the first physics results ever obtained with the

  11. The Role of Research Universities in Helping Solve our Energy Challenges: A Case Study at Stanford and SLAC (2011 EFRC Summit)

    ScienceCinema (OSTI)

    Hennessey, John (President, Stanford University)

    2012-03-14

    The first speaker in the 2011 EFRC Summit session titled "Leading Perspectives in Energy Research" was John Hennessey, President of Stanford University. He discussed the important role that the academic world plays as a partner in innovative energy research by presenting a case study involving Stanford and SLAC. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several ?grand challenges? and use-inspired ?basic research needs? recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  12. Stanford's input to the Commission to Review the Effectiveness...

    Energy Savers [EERE]

    President of SLAC National Acceleratory Laboratory and Chair, Board of Overseers, Stanford University. PDF icon Governance and Contracting Models More Documents & Publications...

  13. China Solar Energy Ltd Tianpu Xianxing Group aka Beijing Universal...

    Open Energy Info (EERE)

    Xianxing Group aka Beijing Universal Antecedence Jump to: navigation, search Name: China Solar Energy Ltd (Tianpu Xianxing Group, aka Beijing Universal Antecedence) Place:...

  14. Stanford Geothermal Workshop

    Broader source: Energy.gov [DOE]

    Now in its 40th year, the Stanford Geothermal Workshop is one of the world's longest running technical meetings on geothermal energy. The conference brings together engineers, scientists and...

  15. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    If you have any questions regarding the completion of this process please contact Matt Padilla (mpadilla@slac.stanford.edu, 1-650-926-3861 or Radiation Protection Field Operations ...

  16. Stanford Synchrotron Radiation Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stanford Synchrotron Radiation Lightsource Format for Proposal Extension Request Proposals are eligible for a one-time extension request. Submit extension requests by Email as a Word or PDF attachment to: Michelle Steger (steger@slac.stanford.edu) Proposal Number: Date of Extension Request: Spokesperson: 1. PROGRESS: Provide a progress report describing work accomplished at SSRL on this proposal to date (1-2 pages) 2. NEW ELEMENTS: Describe any new elements that may add interest to extending the

  17. Universal Scientific Industrial USI Group | Open Energy Information

    Open Energy Info (EERE)

    Group is a design and manufacturing services company that is venturing into polysilicon production. References: Universal Scientific Industrial (USI Group)1 This article is a...

  18. Berkeley-Stanford Summer School

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Berkeley-Stanford Summer School in Synchrotron Radiation July 8-14, 2001 The first Berkeley-Stanford summer school will provide basic lectures on the synchrotron radiation process,...

  19. Stanford Geothermal Workshop - Geothermal Technologies Office...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Geothermal Technologies Office Stanford Geothermal Workshop - Geothermal Technologies Office Presentation by Geothermal Technologies Director Doug Hollett at the Stanford ...

  20. Geothermal Technologies Program Overview Presentation at Stanford...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview Presentation at Stanford Geothermal Workshop Geothermal Technologies Program Overview Presentation at Stanford Geothermal Workshop General overview of Geothermal ...

  1. SSRLUO 2015 Executive Committee Members | Stanford Synchrotron Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lightsource 2015 Executive Committee Members REGISTER TO ATTEND & GIVE A POSTER PRESENTATION AT THE ANNUAL SSRL/LCLS Users' Conference and Workshops, October 5-7, 2016 The SSRL Users Executive Committee (UEC) encourages users to participate in SSRL events and contact UEC members to share feedback or suggestions: Edward Snell , Hauptman Woodward Institute, Buffalo, NY (SSRL UEC Chair) David Bushnell, Stanford University, Stanford, CA Kelly Chacón, Oregon Health & Science University,

  2. Stanford Synchrotron Radiation Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extension Application for Macromolecular Crystallography Proposals Please submit via email attachment to Lisa Dunn (lisa@slac.stanford.edu) Proposal Number: Date of Extension Request: Spokesperson: 1. PROGRESS: Provide a progress report describing work accomplished at SSRL on this proposal to date (1-2 pages) 2. NEW ELEMENTS: Describe any new elements that may add interest to extending the proposal, if applicable (1-2 paragraphs) 3. FUTURE PLANS: Describe future plans or the next steps that you

  3. Edinburgh University aka Wave Power Group | Open Energy Information

    Open Energy Info (EERE)

    Name: Edinburgh University aka Wave Power Group Address: School of Engineering and Electronics The King s Buildings Mayfield Road Place: Edinburgh Zip: EH9 3JL Region: United...

  4. University Partnerships | National Nuclear Security Administration...

    National Nuclear Security Administration (NNSA)

    ... of Illinois-Urbana-Champaign, Champaign, Ill., "Center for Exascale Simulation of Plasma-Coupled Combustion," an MSC Stanford University, Stanford, Calif., "Predictive ...

  5. SSRL Users' Organization | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Users' Organization Charter | Committee Members | Committee Meetings | SSRLUO Activism SNUG Group Synchrotron and Neutron User's Group (SNUG) visit to Washington DC, April 2009. Left to right: Ryan Toomey, U. South Florida; Mark Dadmun, U. Tennessee; Christopher Kim, Chapman U. (SNUG Chair); Hendrik Ohldag, Stanford U. The SSRL Users' Organization (SSRLUO) is broadly concerned with representing the interests of the SSRL users (see Charter). Users elect members to serve on the Users' Executive

  6. Welcome to Stanford Synchrotron Radiation Lightsource | Stanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SSRL Science in SLAC Today Q&A: Biologist Describes Milestone toward a Universal Flu Vaccine SSRL Upgrades, Adds Equipment for Next Round of Experiments X-ray Microscope Reveals...

  7. Hampton University professor to become group leader at Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Virginia Business) | Jefferson Lab Hampton University professor to become group leader at Jefferson Lab (Virginia Business) External Link: http://www.virginiabusiness.com/index.php/companies/article/hampton-university-p... By jlab_admin on Wed, 2012-05-09

  8. Stanford's input to the Commission to Review the Effectiveness of the

    Broader source: Energy.gov (indexed) [DOE]

    National Energy Laboratories | Department of Energy Stanford's input was presented to the Commission to Review the Effectiveness of the National Energy Laboratories by Bill Madia, Vice President of SLAC National Acceleratory Laboratory and Chair, Board of Overseers, Stanford University. Governance and Contracting Models (971.8 KB) More Documents & Publications October 6, 2014 Lab Commission Meeting Minutes WC_1996_001_CLASS_WAIVER_FOR_LELAND_STANFORD_JUNIOR_UNIVERSI.pdf Department of

  9. History of the Stanford Synchrotron Radiation Lightsource | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation Lightsource History of the Stanford Synchrotron Radiation Lightsource SPEAR Based on new applications of synchrotron radiation, SSRL began in 1973 as the Stanford Synchrotron Radiation Project (SSRP). The first synchrotron scientific user activities were originally attached to the SPEAR ring and were operated in "parasitic mode" on the SPEAR high-energy physics program. SSRL/SSRP was the first multi-GeV storage ring based synchrotron radiation source in the

  10. Team | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    low-temperature geochemistry, redox processes, and synchrotron techniques. shbone@slac.stanford.edu Richard Bush. (DOE-LM): UMTRCA Project Manager at DOE-LM, Grand Junction Office. ...

  11. The Stanford Linear Collider

    SciTech Connect (OSTI)

    Emma, P.

    1995-06-01

    The Stanford Linear Collider (SLC) is the first and only high-energy e{sup +}e{sup {minus}} linear collider in the world. Its most remarkable features are high intensity, submicron sized, polarized (e{sup {minus}}) beams at a single interaction point. The main challenges posed by these unique characteristics include machine-wide emittance preservation, consistent high intensity operation, polarized electron production and transport, and the achievement of a high degree of beam stability on all time scales. In addition to serving as an important machine for the study of Z{sup 0} boson production and decay using polarized beams, the SLC is also an indispensable source of hands-on experience for future linear colliders. Each new year of operation has been highlighted with a marked improvement in performance. The most significant improvements for the 1994-95 run include new low impedance vacuum chambers for the damping rings, an upgrade to the optics and diagnostics of the final focus systems, and a higher degree of polarization from the electron source. As a result, the average luminosity has nearly doubled over the previous year with peaks approaching 10{sup 30} cm{sup {minus}2}s{sup {minus}1} and an 80% electron polarization at the interaction point. These developments as well as the remaining identifiable performance limitations will be discussed.

  12. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 2021-08-11 SHANGHAI INST OF APPLIED PHYSICS CHINA 2020-10-23 SHANGHAI SYNCHROTRON RADIATION FACILITY 2020-10-23 SHANGHAI TECH UNIVERSITY 2019-01-23 SIMON FRASER UNIVERSITY ...

  13. Stanford - Woods Institute for the Environment | Open Energy...

    Open Energy Info (EERE)

    Stanford - Woods Institute for the Environment Jump to: navigation, search Logo: Stanford- Woods Institute for the Environment Name: Stanford- Woods Institute for the Environment...

  14. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Polymers Earth Sciences Environmental Sciences Optics Engineering Instrumentation ... University for the U.S. Department of Energy Office of Science Content Owner: Cathy Knotts ...

  15. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Polymers Earth Sciences Environmental Sciences Optics Engineering Instrumentation ... University for the U.S. Department of Energy Office of Science Content Owner: Cathy Knotts ...

  16. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This limited understanding of the molecular mechanism and the scope of drug design for these enzymes. A team of researchers from SSRL and the University of Iowa used SSRL's Beam ...

  17. SSRLUO 1999 Executive Committee Members | Stanford Synchrotron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stanford CA 94305 Work: 650-723-7513 Fax: Email: trainor@pangea.stanford.edu Joe Wong Dept of Chem & Mat Science PO Box 808, L-356 Livermore CA 94551 Work:(510) 423-6385...

  18. Stanford Geothermal Workshop- Geothermal Technologies Office

    Broader source: Energy.gov [DOE]

    Presentation by Geothermal Technologies Director Doug Hollett at the Stanford Geothermal Workshop on February 11-13, 2013.

  19. Stanford Geothermal Workshop 2012 Annual Meeting

    Broader source: Energy.gov [DOE]

    Presentation slides for the Stanford Geothermal Workshop Annual Meeting presentation by Doug Hollett, Geothermal Technologies Program Manager

  20. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water-Rock Reactions Produce Hydrogen Gas at Temperatures within the Limits of Life June 2013 SSRL Science Summary by Manuel Gnida, SLAC Office of Communications and Lisa E. Mayhew, University of Colorado - Boulder Figure Hydrogen gas is produced in chemical reactions between anoxic water and iron-rich rocks at temperatures above 200°C - conditions too hot to support life. However, at hydrothermal vents or hot springs, where hydrogen-rich fluids mix with cooler waters and temperatures have

  1. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systematic Expansion of Porous Crystals to Include Large Molecules February 2013 SSRL Science Summary by Lori Ann White, SLAC Office of Communications Figure Recently, scientists at the University of California, Berkeley and Lawrence Berkeley National Laboratory and their collaborators synthesized a series of metal-organic frameworks (MOFs) with pores up to 98 Å in diameter-large enough to house protein molecules. For the first time the researchers were able to design strategies to overcome

  2. Stanford Nitrogen Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ammonia to water bodies causes dead zones, but many wastewater treatment facilities do not have the current capability to economically meet the increasingly stringent standards. ...

  3. SSRL Imaging Group | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Beam line 14-3 is a bending magnet side station dedicated to X-ray imaging and micro X-ray absorption spectroscopy of biological, biomedical, materials, and geological samples. BL ...

  4. Preliminary Notice of Violation, Stanford University - November...

    Broader source: Energy.gov (indexed) [DOE]

    worker safety and health program requirements (10 C.F.R. 851) relating to a series of laser and energetic beam events that occurred at DOE's SLAC National Accelerator Laboratory....

  5. Preliminary Notice of Violation, Stanford University - November...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    worker safety and health program requirements (10 C.F.R. 851) relating to a series of laser and energetic beam events that occurred at DOE's SLAC National Accelerator Laboratory. ...

  6. STANFORD SYNCHROTRON RADIATION LIGHTSOURCE LINAC COHERENT LIGHT SOURCE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    STANFORD SYNCHROTRON RADIATION LIGHTSOURCE LINAC COHERENT LIGHT SOURCE INTERNATIONAL USER GROUP FOREIGN PRINCIPAL PARTY IN INTEREST (FPPI) / U.S. AGENT I, _______________________________on behalf of ___________________________________, (Name, Authorized Representative for Int'l User Group) (Name of Int'l User Group Organization) the Foreign Principal Party in Interest, that is subject to the jurisdiction of __________________________________ and having an office and place of business at (Name of

  7. M.; Weaver, J.N.; Wiedemann, H. (Stanford Univ., CA (USA). Stanford

    Office of Scientific and Technical Information (OSTI)

    the 2 MeV microwave gun for the SSRL 150 MeV linac Borland, M.; Weaver, J.N.; Wiedemann, H. (Stanford Univ., CA (USA). Stanford Synchrotron Radiation Lab.); Green, M.C.; Nelson,...

  8. Geothermal Technologies Program Overview Presentation at Stanford

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Workshop | Department of Energy Overview Presentation at Stanford Geothermal Workshop Geothermal Technologies Program Overview Presentation at Stanford Geothermal Workshop General overview of Geothermal Technologies Program that includes information about subprograms and where each focuses. gtp_overview_stanford_final.pdf (1.31 MB) More Documents & Publications Fiscal Year 2013 Budget Request Briefing Geothermal Technologies Program GRC Presentation, 10/1/2012 Geothermal

  9. Data Collection & Analysis Software | Stanford Synchrotron Radiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collection & Analysis Software Techniques Data Collection Packages Data Analysis Packages Macromolecular Crystallography See http:smb.slac.stanford.edufacilities See http:...

  10. THE STANFORD SYNCHROTRON RADIATION LIGHTSOURCE STRATEGIC...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... users annually, and the demand for access to the unique ... waves in ReTe 3 (Re rare earth), as well as the ... including supported metal STANFORD SYNCHROTRON ...

  11. Independent Oversight Inspection, Stanford Linear Accelerator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety, and Health Programs at the Stanford Linear Accelerator Center This report provides the results of an inspection of the environment, safety, and health programs at the ...

  12. Seeking New Approaches to Investigate Domestication Events | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation Lightsource Seeking New Approaches to Investigate Domestication Events Monday, October 29, 2012 - 3:30am SSRL Bldg. 137, Rm. 322 Krish Seetah, Stanford University, Department of Anthropology and Zooarcheology Laboratory The domestication of wild animal species has underpinned some of the most fundamental developments in human history. The inclusion of a range of fauna into the human menagerie has altered the way we feed and transport ourselves, not to mention how we

  13. WC_1996_001_CLASS_WAIVER_FOR_LELAND_STANFORD_JUNIOR_UNIVERSI.pdf |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 6_001_CLASS_WAIVER_FOR_LELAND_STANFORD_JUNIOR_UNIVERSI.pdf WC_1996_001_CLASS_WAIVER_FOR_LELAND_STANFORD_JUNIOR_UNIVERSI.pdf (744.83 KB) More Documents & Publications WC_1993_002_CRADA_CLASS_WAIVER_SOUTHERN_UNIVERSITY_RESEARCH_.pdf WC_1993_008_CLASS_WAIVER_ROCKETDYNE_DIVISION_ROCKWELL_INTERN.pdf WC_1990_012_CLASS_WAIVER_of_Patent_Rights_in_Inventions_Made

  14. OSTIblog Articles in the Stanford Topic | OSTI, US Dept of Energy Office of

    Office of Scientific and Technical Information (OSTI)

    Scientific and Technical Information Stanford Topic Congratulations to SLAC National Accelerator Laboratory on its Golden Anniversary by Kate Bannan 27 Aug, 2012 in Science Communications 4270 main-image.jpg Congratulations to SLAC National Accelerator Laboratory on its Golden Anniversary Read more about 4270 SLAC was established in1962 at Stanford University. The SLAC National Accelerator Laboratory is a Department of Energy Office of Science national laboratory and home to a two-mile

  15. Environmental Survey preliminary report, Stanford Linear Accelerator Center, Stanford, California

    SciTech Connect (OSTI)

    Not Available

    1988-07-01

    This report presents the preliminary findings from the first phase of the Survey of the US Department of Energy (DOE) Stanford Linear Accelerator Center (SLAC) at Stanford, California, conducted February 29 through March 4, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the SLAC. The Survey covers all environmental media and all areas of environmental regulation and is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations at the SLAC, and interviews with site personnel. The Survey team is developing a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory or a support contractor. When completed, the results will be incorporated into the Environmental Survey Interim Report for the SLAC facility. The Interim Report will reflect the final determinations of the SLAC Survey. 95 refs., 25 figs., 25 tabs.

  16. Stanford- Precourt Energy Efficiency Center | Open Energy Information

    Open Energy Info (EERE)

    Precourt Energy Efficiency Center Jump to: navigation, search Logo: Stanford- Precourt Energy Efficiency Center Name: Stanford- Precourt Energy Efficiency Center Address: 473 Via...

  17. Doug Hollett Gives Keynote Presentation at Stanford Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Doug Hollett Gives Keynote Presentation at Stanford Geothermal Workshop Doug Hollett Gives Keynote Presentation at Stanford Geothermal Workshop January 30, 2012 - 3:55pm Addthis ...

  18. Doug Hollett Gives Keynote Presentation at Stanford Geothermal Workshop

    Broader source: Energy.gov [DOE]

    The Program Manager of the Geothermal Technologies Program, Doug Hollett gave a keynote address at the 37th Stanford Geothermal Workshop in Stanford, California.

  19. The Research Program | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ssrl.slac.stanford.educontentsciencehighlight2013-03-31b.... A large fraction of sediment-bound uranium at the Rifle site occurs within organic-rich lenses of sediment. Slow...

  20. Status of the SLC (Stanford Linear Collider)

    SciTech Connect (OSTI)

    Coupal, D.P.

    1989-07-01

    This report presents a brief review of the status of the Stanford Linear Collider. Topics covered are: Beam luminosity, Detectors and backgrounds; and Future prospects. 3 refs., 8 figs., 1 tab. (LSP)

  1. SSRL Site Map | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Map Global Menu DOE Stanford SLAC SSRL LCLS AD PPA SUNCAT PULSE SIMES Main menu Home About SSRL What is SSRL? Director's Office Organization Advisory Panels History SSRL News...

  2. SSRL ETS Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    STANFORD SYNCHROTRON RADIATION LABORATORY Stanford Linear Accelerator Center Engineering & Technical Services Groups: Mechanical Services Group Mechanical Services Group Sharepoint ASD: Schedule Priorites Accelerator tech support - Call List Documentation: Engineering Notes, Drawings, and Accelerator Safety Documents Mechanical Systems: Accelerator Drawings Accelerator Pictures Accelerator Vacuum Systems (SSRL) LCW Vacuum Projects: Last Updated: February 8, 2007 Ben Scott

  3. Probing Fullerenes from Within using LCLS | Stanford Synchrotron Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lightsource Probing Fullerenes from Within using LCLS Wednesday, June 15, 2016 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Speaker: Nora Berrah, University of Connecticut Program Description Short x-ray pulses from free electron lasers (FEL) open a new regime for all scientific research. The first x-ray FEL, the Linac Coherent Light Source (LCLS) at the SLAC National Laboratory on the Stanford campus, provides intense short pulses that allow the investigation of ultrafast non-linear and

  4. Theses | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... of Trace Element Pollutants during Coal Combustion Product Disposal", Duke University, ... Madhumitha Raghav, "Long-term Stabilization of Arsenic-bearing Solid Residuals under ...

  5. SSRL- Stanford Synchrotron Radiation Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organization established the W.E. Spicer Young Investigator ... (2006, joint award) David Fritz, University of Michigan (2006, joint award) Stephane Richard, Salk Institute (2005) ...

  6. Stanford- Global Climate and Energy Project | Open Energy Information

    Open Energy Info (EERE)

    :"","visitedicon":"" Hide Map References: Stanford- Global Climate and Energy Project Web Site1 This article is a stub. You can help OpenEI by expanding it. Stanford- Global...

  7. Stanford Precourt Institute for Energy Joins U.S. Department of Energy and MIT Energy Initiative Program to Advance Women’s Leadership in Clean Energy

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) has announced that the Precourt Institute for Energy at Stanford University is joining the Massachusetts Institute of Technology Energy Initiative (MITEI) to...

  8. SSRL- Stanford Synchrotron Radiation Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    this award, but only nominations for individuals will be considered (no group awards). Letters of nominations summarizing the individual's contributions and why they should be...

  9. Stanford Geothermal Workshop 2012 Annual Meeting

    Broader source: Energy.gov (indexed) [DOE]

    Technologies Program Stanford Geothermal Workshop 2012 Annual Meeting Jan 30-Feb 1, 2012 Doug Hollett, Program Manager Glass Buttes, OR (DOE) Energy Efficiency & Renewable Energy eere.energy.gov Accelerate Near Term Hydrothermal Growth * Lower hydrothermal exploration risks and costs. * Lower hydrothermal cost of electricity to 6 cents/kWh by 2020. * Accelerate the development of 30 GWe of undiscovered hydrothermal resources. Secure the Future with Enhanced Geothermal Systems (EGS) *

  10. Director's Office | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Director's Office Kelly Gaffney, SSRL Director Kelly Gaffney, Laboratory Director Kelly Gaffney, SSRL Director Email: Kelly Gaffney, SLAC Associate Laboratory Director for the Stanford Synchrotron Radiation Lightsource, came to SLAC in 2003. After a brief postdoctoral appointment working with Jerry Hastings and Keith Hodgson, Dr. Gaffney started his independent research career as an Assistant Professor of Photon Science. He initiated a chemical dynamics research effort at SLAC designed to

  11. Photon Science Seminar Series | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photon Science Seminar Series SLAC's Photon Science Seminar Series brings together scientists from SLAC's Linac Coherent Light Source, Stanford Synchrotron Radiation Lightsource, Photon Science and Accelerator directorates, including researchers from the Center for Sustainable Energy through Catalysis and two joint SLAC-Stanford institutes: the Stanford Institute for Materials and Energy Sciences and the Pulse Institute for Ultrafast Energy Science. The seminar series' main goals are to

  12. DOE - Office of Legacy Management -- Stanford Linear Accelerator Center -

    Office of Legacy Management (LM)

    005 Stanford Linear Accelerator Center - 005 FUSRAP Considered Sites Site: Stanford Linear Accelerator Center (005) More information at www.slac.stanford.edu Designated Name: Not Designated under FUSRAP Alternate Name: SLAC Location: Palo Alto, California Evaluation Year: Not considered for FUSRAP - in another program Site Operations: Research Site Disposition: Remediation completed by DOE Office of Environmental Management in 2014. DOE Office of Science is responsible for long-term

  13. DOE - Office of Legacy Management -- Stanford Linear Accelerator...

    Office of Legacy Management (LM)

    The Stanford Linear Accelerator Center was established in 1962 as a research facility for high energy particle physics. The Environmental Management mission at this site is to ...

  14. SLAC, Stanford Gadget Grabs More Solar Energy to Disinfect Water...

    Office of Environmental Management (EM)

    SLAC, Stanford Gadget Grabs More Solar Energy to Disinfect Water Faster: Plopped Into water, a tiny device triggers the formation of chemicals that kill microbes in minutes SLAC, ...

  15. Experimental Station 11-1 | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    controlled UV-Vis microspectrophotometer. For aditional information about the experimental capabilities, see http:smb.slac.stanford.eduindex.shtml. Status Open Supported...

  16. SPEAR3 Accelerator | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SPEAR3 Accelerator SPEAR3 SSRL utilizes x-rays produced by its accelerator, the Stanford Positron Electron Asymmetric Ring (SPEAR3). Based on a 2004 upgrade funded by the Department of Energy and the National Institutes of Health, SPEAR3 is a 3-GeV, high-brightness third generation storage ring operating with high reliability and low emittance. SSRL runs in top-off mode, during which the beam current is kept constant with the frequent injection of electrons into the ring. SSRL plans to increase

  17. Contact Us | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory 2575 Sand Hill Road, MS 69 Menlo Park, CA 94025 Tel: 650-926-4000 Fax: 650-926-4100 SSRL Director Kelly Gaffney, SSRL Director Tel. 650-926-2382 Piero Pianetta, SSRL Deputy Director Tel: 650-926-3484 Britt Hedman, SSRL Science Director Tel: 650-926-3052 Stephanie Carlson, SSRL Business Manager Tel: 650-926-2033 Beam Line Systems Division Tom Rabedeau Tel: 650-926-3009 SR Materials Sciences Division Heads

  18. Type A Investigation of the Electrical Arc Injury at the Stanford...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stanford Linear Accelerator Complex on October 11, 2004 Type A Investigation of the Electrical Arc Injury at the Stanford Linear Accelerator Complex on October 11, 2004 November ...

  19. Closeout Report: Experimental High Energy Physics Group at the University of South Alabama

    SciTech Connect (OSTI)

    Jenkins, Charles M; Godang, Romulus

    2013-06-25

    The High Energy Physics group at the University of South Alabama has been supported by this research grant (DE-FG02-96ER40970) since 1996. One researcher, Dr. Merrill Jenkins, has been supported on this grant during this time worked on fixed target experiments at the Fermi National Accelerator Laboratory, west of Chicago, Illinois. These experiments have been E-705, E-771, E-871 (HyperCP) and E-921 (CKM) before it was canceled for budgetary reasons. After the cancellation of CKM, Dr. Jenkins joined the Compact Muon Solenoid (CMS) experiment as an associate member via the High Energy Physics Group at the Florida State University. A second, recently tenured faculty member, Dr. Romulus Godang joined the group in 2009 and has been supported by this grant since then. Dr. Godang is working on the BaBaR experiment at SLAC and has joined the Belle-II experiment located in Japan at KEK. According to the instructions sent to us by our grant monitor, we are to concentrate on the activities over the last three years in this closeout report.

  20. Universal Charge Order in the High-Tc Superconductors | Stanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    such as heavy-fermion materials and copper-oxide based superconductors, by the use ... (BCS) theory of superconductivity are obtained in some copper-oxide (cuprate) materials. ...

  1. DEPARTMENT OF ENERGY CITES STANFORD UNIVERSITY FOR WORKER SAFETY...

    Energy Savers [EERE]

    851, Worker Safety and Health Program, in the areas of hazard identification and assessment; hazard prevention and abatement; training and information; and occupational medicine. ...

  2. Department of Energy Cites Stanford University for Worker Safety...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    851, Worker Safety and Health Program, in the areas of hazard identification and assessment; hazard prevention and abatement; training and information; and occupational medicine. ...

  3. SSRLUO 2004 Executive Committee Members | Stanford Synchrotron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Joy Andrews California State University Hayward, Chemistry, 25800 Carlos Bee Blvd., Hayward, CA 94542 Associate Professor of Chemistry at California State University, Hayward, has ...

  4. SSRL Science in SLAC Today | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science in SLAC Today Subscribe to SSRL Science in SLAC Today feed URL: https://www6.slac.stanford.edu/blog-tags/stanford-synchrotron-radiation-lightsource-ssrl Updated: 13 hours 31 min ago SLAC, Stanford Team Finds a Tough New Catalyst for Use in Renewable Fuels Production Thu, 2016/09/01 - 8:23am The discovery could make water splitting, a key step in a number of clean energy technologies, cheaper and more efficient. Yijin Liu Receives 2016 Spicer Award For Substantial Research Contributions

  5. Stanford Precourt Institute for Energy Joins U.S. Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Additional information is available at energy.stanford.edu. Join the conversation. Connect with us on LinkedIn and Twitter (@C3EEnergyWomen). Use the hashtag C3EWomen to share ...

  6. Stanford Synchrotron Radiation Light Source (SSRL) | U.S. DOE...

    Office of Science (SC) Website

    for researchers to study our world at the atomic and molecular level, allowing for ... built in 1974 to make use of the intense x-ray beams from the Stanford Positron Electron ...

  7. Geothermal Technologies Program Overview Presentation at Stanford Geothermal Workshop

    Broader source: Energy.gov (indexed) [DOE]

    Energy Efficiency & Renewable Energy eere.energy.gov Program Name or Ancillary Text eere.energy.gov Geothermal Technologies Program For JoAnn Milliken Program Manager Enel Stillwater Courtesy of Enel Green Power North America Stanford Geothermal Workshop Program Manager Jay Nathwani Stanford Geothermal Workshop Jan 31, 2011 t Contractor ort: I i E l i Program Manager Seismicity & Roadmapping - John Ziagos (LLNL) Analysis & Nat'l Geothermal Data System - Arlene Anderson Systems

  8. Atmospheric Data, Images, and Animations from Lidar Instruments used by the University of Wisconsin Lidar Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Space Science and Engineering Center is a research and development center affiliated with the University of Wisconsin-Madisons Graduate School. Its primary focus is on geophysical research and technology to enhance understanding of the atmosphere of Earth, the other planets in the Solar System, and the cosmos. SSEC develops new observing tools for spacecraft, aircraft, and ground-based platforms, and models atmospheric phenomena. The Center receives, manages and distributes huge amounts of geophysical data and develops software to visualize and manipulate these data for use by researchers and operational meteorologists all over the world.[Taken from About SSEC at http://www.ssec.wisc.edu/overview/] A huge collection of data products, images, and animations comes to the SSEC from the University of Wisconsin Lidar Group. Contents of this collection include: An archive of thousands of Lidar images acquired before 2004 Arctic HSRL, MMCR, PAERI, MWR, Radiosonde, and CRAS forecast data Data after May 1, 2004 MPEG animations and Lidar Multiple Scattering Models

  9. Atmospheric Data, Images, and Animations from Lidar Instruments used by the University of Wisconsin Lidar Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Space Science and Engineering Center is a research and development center affiliated with the University of Wisconsin-Madison’s Graduate School. Its primary focus is on geophysical research and technology to enhance understanding of the atmosphere of Earth, the other planets in the Solar System, and the cosmos. SSEC develops new observing tools for spacecraft, aircraft, and ground-based platforms, and models atmospheric phenomena. The Center receives, manages and distributes huge amounts of geophysical data and develops software to visualize and manipulate these data for use by researchers and operational meteorologists all over the world.[Taken from About SSEC at http://www.ssec.wisc.edu/overview/] A huge collection of data products, images, and animations comes to the SSEC from the University of Wisconsin Lidar Group. Contents of this collection include: • An archive of thousands of Lidar images acquired before 2004 • Arctic HSRL, MMCR, PAERI, MWR, Radiosonde, and CRAS forecast data Data after May 1, 2004 • MPEG animations and Lidar Multiple Scattering Models

  10. Nuclear Astrophysics Animations from the Nuclear Astrophysics Group at Clemson University

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Meyer, Bradley; The, Lih-Sin

    The nuclear astrophysics group at Clemson University in South Carolina develops on-line tools and computer programs for astronomy, nuclear physics, and nuclear astrophysics. They have also done short animations that illustrate results from research with some of their tools. The animations are organized into three sections. The r-Process Movies demonstrate r-Process network calculations from the paper "Neutrino Capture and the R-Process" Meyer, McLaughlin, and Fuller, Phys. Rev. C, 58, 3696-3710 (1998). The Alpha-Rich Freezeout Movies are related to the reference: Standard alpha-rich freezeout calculation from The, Clayton, Jin, and Meyer 1998, Astrophysical Journal, "Reaction Rates Governing the Synthesis of 44Ti" At the current writing, the category for Low Metallicity s-Process Movies has only one item called n, p, 13C, 14N, 54Fe, and 88Sr Time evolution in convective zone.

  11. SSRLUO 2008 Executive Committee Members | Stanford Synchrotron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Joy Andrews California State University East Bay, Chemistry, 25800 Carlos Bee Blvd., Hayward, CA 94542 Professor in the Department of Chemistry and Biochemistry at California State ...

  12. SSRLUO 2003 Executive Committee Members | Stanford Synchrotron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    925-423-9719 Nicholas Pingitore UTEP, Environmental & Geosciences, El Paso, TX 79968-0555 Analytical geochemistprofessor at the University of Texas at El Paso with broad...

  13. SSRLUO 2007 Executive Committee Members | Stanford Synchrotron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Committee Members Joy Andrews (Ex-Officio) California State University East Bay, Chemistry, 25800 Carlos Bee Blvd., Hayward, CA 94542 Professor in the Department of Chemistry...

  14. User Agreements | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 2018-10-25 AUSTRALIAN SYNCHROTRON 2021-05-10 AWE Plc 2020-04-09 BAR-ILAN UNIVERSITY ISRAEL 2018-11-11 BARR ENGINEERING 2020-05-31 BEIJING COMPUTATIONAL SCI RES CTR 2020-05-21 ...

  15. SSRLUO 2002 Executive Committee Members | Stanford Synchrotron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pingitore University of Texas at El Paso Environmental & Geosciences El Paso, TX 79968-0555 Phone: 915-747-5754 Fax: 915-747-5073 E-mail: nick@geo.utep.edu MACROMOLECULAR...

  16. SSRL Events & Presentations | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Events & Presentations Subscribe to SSRL Events & Presentations feed URL: https://news.slac.stanford.edu/tags/programs-facilities/lightsources/stanford-synchrotron-radiation-lightsource-ssrl Updated: 4 hours 54 min ago SSRL Hosts 17th Annual RapiData Course in Macromolecular X-ray Diffraction Mon, 2015/05/18 - 9:30am The legacy of NSLS's practical course lives on at SSRL, which welcomed 41 scientists from around the world to learn about X-ray methods in the biosciences. From the Director

  17. User Financial Accounts | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Financial Accounts Why Have a User Financial Account? Each user group should establish a user financial account to procure gases, chemicals, supplies or services to support your ...

  18. SSRLUO 2013-2014 Executive Committee Members | Stanford Synchrotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Lightsource 2013-2014 Executive Committee Members Charter | Committee Meetings | SSRLUO Activism Jordi Cabana University of Illinois at Chicago, IL 60607 Jordi Cabana recently joined the University of Illinois in 2013. Prior to that time, Jordi was a Research Scientist at LBNL. He moved to the US in 2005 to join Prof. Clare P. Grey's group at the State University of New York at Stony Brook as a Postdoctoral Research Associate, after completing his Ph.D. in Materials Science at the

  19. Publications and Presentations at Scientific Meetings | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation Lightsource Publications and Presentations at Scientific Meetings Calendar Year 2014: †Denotes papers on which a university or other collaborator was the lead author. Alessi D.S., J.S. Lezama-Pacheco, J.E. Stubbs, M. Janousch, J.R. Bargar, P. Persson, and R. Bernier-Latmani (2014) The product of microbial uranium reduction includes multiple species with U(IV)-phosphate coordination, Geochim. Cosmochim. Acta, in press. †Qafoku, N.P., B.N. Gartman, R.K. Kukkadapu,

  20. Staff Resources | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Staff Resources General Online Time and Effort System (online form) SSRL Weekly Reports Senior Management Group (SharePoint) Beam Line Coordination Minutes Administrative Contacts SSRL General Phonelist SSRL Organizational Chart BL Ops Staff Support Website (VMS log in) SLAC Budget Office SLAC only (petty cash info) SLAC Conference Rooms SLAC Staff Resources SLAC/SSRL Tours - contact, Administration and SLAC Security. Requisitions & Property SLAC Shipper Request PeopleSoft Procurement

  1. Computer Accounts | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computer Accounts Each user group must have a computer account. Additionally, all persons using these accounts are responsible for understanding and complying with the terms outlined in the "Use of SLAC Information Resources". Links are provided below for computer account forms and the computer security agreement which must be completed and sent to the appropriate contact person. SSRL does not charge for use of its computer systems. Forms X-ray/VUV Computer Account Request Form

  2. User Facility Access Policy | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility Access Policy 1. Summary The Stanford Synchrotron Radiation Lightsource (SSRL) at SLAC National Accelerator Laboratory is a U.S. Department of Energy (DOE) Office of Science national user facility that provides synchrotron radiation to researchers in many fields of science and technology, including biology, catalysis, chemistry, energy, engineering, forensics, geoscience, materials science, medicine, molecular environmental science, and physics. With a pioneering start in 1974, the

  3. William E. and Diane M. Spicer Young Investigator Award | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation Lightsource William E. and Diane M. Spicer Young Investigator Award William E. and Diane M. Spicer Young Investigator Award William E. Spicer (1929-2004) was an esteemed member of the international scientific community as a teacher and researcher in electrical engineering, applied physics and materials science. Bill spent the past 40 years as a professor at Stanford where he pioneered the technique ofultraviolet photoemission spectroscopy and its subsequent expansion

  4. Experimental Station 7-1 | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Beamline 7-1 is a wiggler side-station beamline dedicated for monochromatic, high-throughput, high-resolution macromolecular crystallography. It is SAD and MAD capable and can be run in a full remote access mode. It is equipped with an ADSC Q315R CCD detector. For aditional information about the experimental capabilities, see http://smb.slac.stanford.edu/index.shtml. Status Open Supported Techniques Macromolecular Crystallography Multi wavelength anomalous diffraction (MAD) Single wavelength

  5. Experimental Station 9-2 | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Beamline 9-2 is a wiggler beamline dedicated for monochromatic, high-throughput and high-resolution macromolecular crystallography and optimized for SAD and MAD experiments. It can be run in a full remote access mode. It is equipped with a Rayonix MX325 CCD detector and a remote access controlled UV-Vis microspectrophotometer. For aditional information about the experimental capabilities, see http://smb.slac.stanford.edu/index.shtml. Status Open Supported Techniques Macromolecular

  6. New timing system for the Stanford Linear Collider

    SciTech Connect (OSTI)

    Paffrath, L.; Bernstein, D.; Kang, H.; Koontz, R.; Leger, G.; Ross, M.; Pierce, W.; Wilmunder, A.

    1984-11-01

    In order to be able to meet the goals of the Stanford Linear Collider, a much more precise timing system had to be implemented. This paper describes the specification and design of this system, and the results obtained from its use on 1/3 of the SLAC linac. The functions of various elements are described, and a programmable delay unit (PDU) is described in detail.

  7. 2011 Annual Planning Summary for Stanford Linear Accelerator Center Site Office (SLAC)

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the Stanford Linear Accelerator Center Site Office (SLAC SO) (See also Science).

  8. Final Environmental Assessment for the construction and operation of an office building at the Stanford Linear Accelerator Center. Part 2

    SciTech Connect (OSTI)

    1995-08-01

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA), DOE/EA-1107, analyzing the environmental effects relating to the construction and operation of an office building at the Stanford Linear Accelerator Center (SLAC). SLAC is a national facility operated by Stanford University, California, under contract with DOE. The center is dedicated to research in elementary particle physics and in those fields that make use of its synchrotron facilities. The objective for the construction and operation of an office building is to provide adequate office space for existing SLAC Waste Management (WM) personnel, so as to centralize WM personnel and to make WM operations more efficient and effective. Based on the analyses in the EA, the DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an Environmental Impact Statement is not required. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact (FONSI).

  9. MEASURING THE GEOMETRY OF THE UNIVERSE FROM WEAK GRAVITATIONAL LENSING BEHIND GALAXY GROUPS IN THE HST COSMOS SURVEY

    SciTech Connect (OSTI)

    Taylor, James E.; Massey, Richard J.; Leauthaud, Alexie; Tanaka, Masayuki; George, Matthew R.; Rhodes, Jason; Ellis, Richard; Scoville, Nick; Kitching, Thomas D.; Capak, Peter; Finoguenov, Alexis; Ilbert, Olivier; Kneib, Jean-Paul; Jullo, Eric; Koekemoer, Anton M.

    2012-04-20

    Gravitational lensing can provide pure geometric tests of the structure of spacetime, for instance by determining empirically the angular diameter distance-redshift relation. This geometric test has been demonstrated several times using massive clusters which produce a large lensing signal. In this case, matter at a single redshift dominates the lensing signal, so the analysis is straightforward. It is less clear how weaker signals from multiple sources at different redshifts can be stacked to demonstrate the geometric dependence. We introduce a simple measure of relative shear which for flat cosmologies separates the effect of lens and source positions into multiplicative terms, allowing signals from many different source-lens pairs to be combined. Applying this technique to a sample of groups and low-mass clusters in the COSMOS survey, we detect a clear variation of shear with distance behind the lens. This represents the first detection of the geometric effect using weak lensing by multiple, low-mass groups. The variation of distance with redshift is measured with sufficient precision to constrain the equation of state of the universe under the assumption of flatness, equivalent to a detection of a dark energy component {Omega}{sub X} at greater than 99% confidence for an equation-of-state parameter -2.5 {<=} w {<=} -0.1. For the case w = -1, we find a value for the cosmological constant density parameter {Omega}{sub {Lambda}} = 0.85{sup +0.044}{sub -}0{sub .19} (68% CL) and detect cosmic acceleration (q{sub 0} < 0) at the 98% CL. We consider the systematic uncertainties associated with this technique and discuss the prospects for applying it in forthcoming weak-lensing surveys.

  10. DOE-Funded Research at Stanford Sees Results in Reservoir Characterization

    Broader source: Energy.gov [DOE]

    The Stanford Geothermal Program had a noteworthy result this week, having achieved a proof of concept in the use of tiny particles called nanoparticles as tracers to characterize fractured rocks.

  11. Bio-Imaging With Liquid-Metal-Jet X-ray Sources | Stanford Synchrotron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bio-Imaging With Liquid-Metal-Jet X-ray Sources Wednesday, September 9, 2015 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Speaker: Daniel Larsson, Stanford Program Description...

  12. M.; /Bern U.; Auty, D.J.; /Alabama U.; Barbeau, P.S.; /Stanford...

    Office of Scientific and Technical Information (OSTI)

    Neutrinoless Double-Beta Decay in 136Xe with EXO-200 Auger, M.; Bern U.; Auty, D.J.; Alabama U.; Barbeau, P.S.; Stanford U., Phys. Dept.; Beauchamp, E.; Laurentian U.;...

  13. Big Machines and Big Science: 80 Years of Accelerators at Stanford

    SciTech Connect (OSTI)

    Loew, Gregory

    2008-12-16

    Longtime SLAC physicist Greg Loew will present a trip through SLAC's origins, highlighting its scientific achievements, and provide a glimpse of the lab's future in 'Big Machines and Big Science: 80 Years of Accelerators at Stanford.'

  14. The Dale E. Sayers Fellowship | Stanford Synchrotron Radiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dale E. Sayers Fellowship North Carolina State University Physical and Mathematical Sciences Foundation A dear colleague, Dale E. Sayers, one of the three pioneers of the...

  15. A New Center for Organic Electronics at Masdar Institute | Stanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Presented by Samuele Lilliu Masdar Institute is a graduate level, research-oriented university, which is focused on alternative energy, sustainability, and the environment. It is ...

  16. Cleantech University Prize Regional Competitions Wrap Up in Florida and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California | Department of Energy Cleantech University Prize Regional Competitions Wrap Up in Florida and California Cleantech University Prize Regional Competitions Wrap Up in Florida and California June 10, 2016 - 11:25am Addthis Hosts of the Cleantech University Prize (Cleantech Up) FLoW competition with the winners, Xstream Trucking of Stanford University. The team took home the $50,000 first-place prize for their drag-reducing trucking technology. | Photo courtesy of Caltech Hosts of

  17. Technical Report from the High Energy Physics Group of the University of California, Santa Barbara, DOE grant DE-FG02-91ER40618

    SciTech Connect (OSTI)

    Richman, Jeffrey; Berenstein, David; Campagnari, Claudio; Giddings, Steven; Incandela, Joseph; Nelson, Harry; Stuart, David; Witherell, Michael

    2014-09-11

    The research program of the UCSB high energy physics group encompasses advanced projects in both experimental and theoretical particle physics. This program has been strongly supported by the DOE Office of High Energy Physics for many years. The program addresses questions related to the properties of matter, the fundamental forces of nature, the origin and evolution of the universe, and the nature of spacetime. The mission of the group also has a strong educational component, and the training of physicists in advanced research is a key part of our program.

  18. The Stanford Automated Mounter: Pushing the limits of sample exchange at the SSRL macromolecular crystallography beamlines

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Russi, Silvia; Song, Jinhu; McPhillips, Scott E.; Cohen, Aina E.

    2016-02-24

    The Stanford Automated Mounter System, a system for mounting and dismounting cryo-cooled crystals, has been upgraded to increase the throughput of samples on the macromolecular crystallography beamlines at the Stanford Synchrotron Radiation Lightsource. This upgrade speeds up robot maneuvers, reduces the heating/drying cycles, pre-fetches samples and adds an air-knife to remove frost from the gripper arms. As a result, sample pin exchange during automated crystal quality screening now takes about 25 s, five times faster than before this upgrade.

  19. A "Cardinal" Partnership: Stanford University & the Energy Department |

    Energy Savers [EERE]

    Rulemakings - Implementation Report: Energy Conservation Standards Activities | Department of Energy 3rd Semi-Annual Report to Congress on Appliance Energy-Efficiency Rulemakings - Implementation Report: Energy Conservation Standards Activities 3rd Semi-Annual Report to Congress on Appliance Energy-Efficiency Rulemakings - Implementation Report: Energy Conservation Standards Activities This document is the 3rd Semi-Annual Report to Congress on Appliance Energy-Efficiency Rulemakings -

  20. Solar space- and water-heating system at Stanford University. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    Application of an active hydronic domestic hot water and space heating solar system for the Central Food Services Building is discussed. The closed-loop drain-back system is described as offering dependability of gravity drain-back freeze protection, low maintenance, minimal costs, and simplicity. The system features an 840 square-foot collector and storage capacity of 1550 gallons. The acceptance testing and the predicted system performance data are briefly described. Solar performance calculations were performed using a computer design program (FCHART). Bidding, costs, and economics of the system are reviewed. Problems are discussed and solutions and recommendations given. An operation and maintenance manual is given in Appendix A, and Appendix B presents As-built Drawings. (MCW)

  1. Solar space and water heating system at Stanford University Central Food Services Building. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    This active hydronic domestic hot water and space heating system was 840 ft/sup 2/ of single-glazed, liquid, flat plate collectors and 1550 gal heat storage tanks. The following are discussed: energy conservation, design philosophy, operation, acceptance testing, performance data, collector selection, bidding, costs, economics, problems, and recommendations. An operation and maintenance manual and as-built drawings are included in appendices. (MHR)

  2. ARPA-E & Stanford University Explore the Hows and Whys of Energy...

    Office of Environmental Management (EM)

    Researchers are seeking a breakthrough on the human behavioral side of energy use. They have made a long-term goal of reducing average residential energy use by over 20 percent. ...

  3. A New Center for Organic Electronics at Masdar Institute | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation Lightsource A New Center for Organic Electronics at Masdar Institute Friday, August 2, 2013 - 10:00am SLAC, Conference Room 137-322 Presented by Samuele Lilliu Masdar Institute is a graduate level, research-oriented university, which is focused on alternative energy, sustainability, and the environment. It is located in Masdar City in Abu Dhabi, United Arab Emirates. The project here outlined focuses on improving the performance of organic/hybrid bulk heterojunction

  4. Structure of Molecular Thin Films for Organic Electronics | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation Lightsource Structure of Molecular Thin Films for Organic Electronics Friday, April 6, 2012 - 1:00pm SSRL Conference Room 137-322 Bert Nickel, Physics Faculty and CeNS, Ludwig-Maximilians-University, München Thin films made out of conjugated small molecules and polymers exhibit very interesting semiconducting properties. While some applications such as light emitting diodes (OLED) are already on the market, other application such as solar cells, integrated circuits,

  5. Bimolecular Imaging with femtosecond X-ray pulses | Stanford Synchrotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Lightsource Bimolecular Imaging with femtosecond X-ray pulses Wednesday, June 22, 2016 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Speaker: Marvin Seibert, Uppsala University Program Description This talk will be part review, part outlook of the potential for imaging biological structures with fs X-ray pulses, from the first experiments at LCLS to the current single particle imaging initiative. Bimolecular Imaging with femtosecond X-ray pulses

  6. Tutorial: The Basics of SAXS Data Analysis | Stanford Synchrotron Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lightsource Tutorial: The Basics of SAXS Data Analysis Thursday, November 17, 2011 - 1:00pm SLAC, Redtail Hawk Conference Room 108A Dr. Alexander V. Shkumatov, Biological Small Angle Scattering Group, EMBL Hamburg

  7. Final report for Texas A&M University Group Contribution to DE-FG02-09ER25949/DE-SC0002505: Topology for Statistical Modeling of Petascale Data (and ASCR-funded collaboration between Sandia National Labs, Texas A&M University and University of Utah)

    SciTech Connect (OSTI)

    Rojas, Joseph Maurice

    2013-02-27

    We summarize the contributions of the Texas A\\&M University Group to the project (DE-FG02-09ER25949/DE-SC0002505: Topology for Statistical Modeling of Petascale Data - an ASCR-funded collaboration between Sandia National Labs, Texas A\\&M U, and U Utah) during 6/9/2011 -- 2/27/2013.

  8. Type B Accident Investigation of the January 28, 2003, Fall and Injury at the Stanford Linear Accelerator Center

    Broader source: Energy.gov [DOE]

    This report is an independent product of the Type B Accident Investigation Board appointed by John S. Muhlestein, Director, Stanford Site Office (DOE/SC), U.S. Department of Energy.

  9. Stanford Synchrotron Radiation Laboratory activity report for 1986

    SciTech Connect (OSTI)

    Cantwell, K.

    1987-12-31

    1986 was another year of major advances for SSRL as the ultimate capabilities of PEP as a synchrotron radiation source became more apparent and a second PEP beam line was initiated, while effective development and utilization of SPEAR proceeded. Given these various PEP developments, SSRL abandoned its plans for a separate diffraction limited ring, as they abandoned their plans for a 6--7 GeV ring of the APS type last year. It has become increasingly apparent that SSRL should concentrate on developing SPEAR and PEP as synchrotron radiation sources. Consequently, initial planning for a 3 GeV booster synchrotron injector for SPEAR was performed in 1986, with a proposal to the Department of Energy resulting. As described in Chapter 2, the New Rings Group and the Machine Physics Group were combined into one Accelerator Physics Group. This group is focusing mainly on the improvement of SPEAR`s operating conditions and on planning for the conversion of PEP into a fourth generation x-ray source. Considerable emphasis is also being given to the training of accelerator physics graduate students. At the same time, several improvements of SSRL`s existing facilities were made. These are described in Chapter 3. Chapter 4 describes new SSRL beam lines being commissioned. Chapter 5 discusses SSRL`s present construction projects. Chapter 6 discusses a number of projects presently underway in the engineering division. Chapter 7 describes SSRL`s advisory panels while Chapter 8 discusses SSRL`s overall organization. Chapter 9 describes the experimental progress reports.

  10. In situ X-ray Characterization of Energy Storage Materials | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation Lightsource X-ray Characterization of Energy Storage Materials Tuesday, July 9, 2013 - 11:00am SLAC, Conference Room 137-322 Presented by Johanna Nelson, Stanford Postdoctoral Scholar, SSRL MSD Hard X-ray Department A key factor in the global move towards clean, renewable energy is the electrification of the automobile. Current battery technology limits EV (electric vehicles) to a short travel range, slow recharge, and costly price tag. Li-ion batteries promise the high

  11. Final Report: High Energy Physics Program (HEP), Physics Department, Princeton University

    SciTech Connect (OSTI)

    Callan, Curtis G.; Gubser, Steven S.; Marlow, Daniel R.; McDonald, Kirk T.; Meyers, Peter D.; Olsen, James D.; Smith, Arthur J.S.; Steinhardt, Paul J.; Tully, Christopher G.; Stickland, David P.

    2013-04-30

    The activities of the Princeton Elementary particles group funded through Department of Energy Grant# DEFG02-91 ER40671 during the period October 1, 1991 through January 31, 2013 are summarized. These activities include experiments performed at Brookhaven National Lab; the CERN Lab in Geneva, Switzerland; Fermilab; KEK in Tsukuba City, Japan; the Stanford Linear Accelerator Center; as well as extensive experimental and the- oretical studies conducted on the campus of Princeton University. Funded senior personnel include: Curtis Callan, Stephen Gubser, Valerie Halyo, Daniel Marlow, Kirk McDonald, Pe- ter Meyers, James Olsen, Pierre Pirou e, Eric Prebys, A.J. Stewart Smith, Frank Shoemaker (deceased), Paul Steinhardt, David Stickland, Christopher Tully, and Liantao Wang.

  12. Stanford Synchrotron Radiation Laboratory. Activity report for 1989

    SciTech Connect (OSTI)

    1996-01-01

    The April, 1990 SPEAR synchrotron radiation run was one of the two or three best in SSRL`s history. High currents were accumulated, ramping went easily, lifetimes were long, beam dumps were infrequent and the average current was 42.9 milliamps. In the one month of operation, 63 different experiments involving 208 scientists from 50 institutions received beam. The end-of-run summary forms completed by the experimenters indicated high levels of user satisfaction with the beam quality and with the outstanding support received from the SSRL technical and scientific staffs. These fine experimental conditions result largely from the SPEAR repairs and improvements performed during the past year and described in Section I. Also quite significant was Max Cornacchia`s leadership of the SLAG staff. SPEAR`s performance this past April stands in marked contrast to that of the January-March, 1989 run which is also described in Section I. It is, we hope, a harbinger of the operation which will be provided in FY `91, when the SPEAR injector project is completed and SPEAR is fully dedicated to synchrotron radiation research. Over the coming years, SSRL intends to give highest priority to increasing the effectiveness of SPEAR and its various beam lines. The beam line and facility improvements performed during 1989 are described in Section III. In order to concentrate effort on SSRL`s three highest priorities prior to the March-April run: (1) to have a successful run, (2) to complete and commission the injector, and (3) to prepare to operate, maintain and improve the SPEAR/injector system, SSRL was reorganized. In the new organization, all the technical staff is contained in three groups: Accelerator Research and Operations Division, Injector Project and Photon Research and Operations Division, as described in Section IV. In spite of the limited effectiveness of the January-March, 1989 run, SSRL`s users made significant scientific progress, as described in Section V of this report.

  13. JLF User Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jlf user group JLF User Group 2015 NIF and JLF User Group Meeting Links: Send request to join the JLF User Group Join the NIF User Group Dr. Carolyn Kuranz - JLF User Group Dr. Carolyn Kuranz received her Ph.D. in Applied Physics from the University of Michigan in 2009. She is currently an Assistant Research Scientist at the Center for Laser Experimental Astrophysical Research and the Center for Radiative Shock Hydrodynamics at the University of Michigan. Her research involves hydrodynamic

  14. Galaxy groups

    SciTech Connect (OSTI)

    Brent Tully, R.

    2015-02-01

    Galaxy groups can be characterized by the radius of decoupling from cosmic expansion, the radius of the caustic of second turnaround, and the velocity dispersion of galaxies within this latter radius. These parameters can be a challenge to measure, especially for small groups with few members. In this study, results are gathered pertaining to particularly well-studied groups over four decades in group mass. Scaling relations anticipated from theory are demonstrated and coefficients of the relationships are specified. There is an update of the relationship between light and mass for groups, confirming that groups with mass of a few times 10{sup 12}M{sub ?} are the most lit up while groups with more and less mass are darker. It is demonstrated that there is an interesting one-to-one correlation between the number of dwarf satellites in a group and the group mass. There is the suggestion that small variations in the slope of the luminosity function in groups are caused by the degree of depletion of intermediate luminosity systems rather than variations in the number per unit mass of dwarfs. Finally, returning to the characteristic radii of groups, the ratio of first to second turnaround depends on the dark matter and dark energy content of the universe and a crude estimate can be made from the current observations of ?{sub matter}?0.15 in a flat topology, with a 68% probability of being less than 0.44.

  15. Type A Investigation of the Electrical Arc Injury at the Stanford Linear Accelerator Complex on October 11, 2004

    Broader source: Energy.gov [DOE]

    On October 11, 2004, at approximately 11:15 am, a subcontractor electrician working at the Stanford Linear Accelerator Center (SLAC) received serious burn injuries requiring hospitalization due to an electrical arc flash that occurred during the installation of a circuit breaker in an energized 480-Volt (V) electrical panel.

  16. Stanford Synchrotron Radiation Laboratory 1991 activity report. Facility developments January 1991--March 1992

    SciTech Connect (OSTI)

    Cantwell, K.; St. Pierre, M.

    1992-12-31

    SSRL is a national facility supported primarily by the Department of Energy for the utilization of synchrotron radiation for basic and applied research in the natural sciences and engineering. It is a user-oriented facility which welcomes proposals for experiments from all researchers. The synchrotron radiation is produced by the 3.5 GeV storage ring, SPEAR, located at the Stanford Linear Accelerator Center (SLAC). SPEAR is a fully dedicated synchrotron radiation facility which operates for user experiments 7 to 9 months per year. SSRL currently has 24 experimental stations on the SPEAR storage ring. There are 145 active proposals for experimental work from 81 institutions involving approximately 500 scientists. There is normally no charge for use of beam time by experimenters. This report summarizes the activity at SSRL for the period January 1, 1991 to December 31, 1991 for research. Facility development through March 1992 is included.

  17. NREL and Stanford Team up on Peel-and-Stick Solar Cells - News...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A scientific paper, "Peel and Stick: Fabricating Thin Film Solar Cells on Universal Substrates," appears in the online version of Scientific Reports, a subsidiary of the British ...

  18. NIF User Group Executive Board

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    executive board NIF User Group Executive Board Professor Don Lamb (Chair) University of Chicago Professor Farhat Beg (Vice Chair) University of California, San Diego Professor Justin Wark (Past Chair) University of Oxford Dr. Riccardo Betti University of Rochester Dr. Kirk Flippo Los Alamos National Laboratory Professor Gianluca Gregori University of Oxford Professor Michel Koenig École Polytechnique Dr. Chikang Li Massachusetts Institute of Technology Dr. Jena Meinecke Young Researcher:

  19. Lead, Uranium, and Nickel Compound Data from the XAFS Library at the Stanford Synchrotron Radiation Laboratory (SSRL)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The x-ray absorption fine structure spectroscopy (XAFS) library at the Stanford Synchrotron Radiation Laboratory is intended to be a reference library of XAFS spectra for various lead, uranium, and nickel compounds. Compounds are organized by central atom and all spectra are transmission data. Molecular Environmental Science (MES) research at SSRL focuses on the fundamental interfacial, molecular- and nano-scale processes that control contaminant and nutrient cycling in the biosphere with the goal of elucidating global elemental cycles and anthropogenic influences on the environment. Key areas of investigation include the: (a) Structural chemistry of water and dissolved solutes, (b) Structural chemistry and reactivity of complex natural environmental materials with respect to heavy metals and metalloids (biominerals, Fe- and Mn-oxides, biofilms, and organic materials), (c) Reactions at environmental interfaces, including sorption, precipitation and dissolution processes that affect the bioavailability of heavy metals and other contaminants, and (d) Microbial transformations of metals and anions. SSRL-based MES research utilizes synchrotron-based x-ray absorption spectroscopy (XAS), x-ray diffraction (XRD), small-angle x-ray scattering (SAXS), x-ray standing wave (XSW) spectroscopy, and photoemission spectroscopy (PES) because of their unique capabilities to probe structure/composition relationships in complex, non-crystalline, and dilute materials. [copied from http://www-ssrl.slac.stanford.edu/mes/index.html

  20. Secretary of Energy Advisory Board Subcommittee (SEAB) on Shale...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Defense Fund; Kathleen McGinty, Weston Solutions; Susan Tierney, Analysis Group; Daniel Yergin, IHS-Cambridge Energy Research Associates; Mark Zoback, Stanford University. ...

  1. Fermilab Today | Texas Tech University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and to increasing public awareness of physics research. FUNDING AGENCIES: DOE, NSF Texas Tech University High-Energy Physics Group: (Left) From left: Kittikul Kovitanggoon, Nural...

  2. C3Nano, inc | Open Energy Information

    Open Energy Info (EERE)

    has emerged from Stanford University in Stanford, California. C3Nano, inc. is team of students from Stanford University, who recently won the Massachusetts Institute of Technology...

  3. Scientific Challenges for Understanding the Quantum Universe

    SciTech Connect (OSTI)

    Khaleel, Mohammad A.

    2009-10-16

    A workshop titled "Scientific Challenges for Understanding the Quantum Universe" was held December 9-11, 2008, at the Kavli Institute for Particle Astrophysics and Cosmology at the Stanford Linear Accelerator Center-National Accelerator Laboratory. The primary purpose of the meeting was to examine how computing at the extreme scale can contribute to meeting forefront scientific challenges in particle physics, particle astrophysics and cosmology. The workshop was organized around five research areas with associated panels. Three of these, "High Energy Theoretical Physics," "Accelerator Simulation," and "Experimental Particle Physics," addressed research of the Office of High Energy Physics’ Energy and Intensity Frontiers, while the"Cosmology and Astrophysics Simulation" and "Astrophysics Data Handling, Archiving, and Mining" panels were associated with the Cosmic Frontier.

  4. Time-resolved Spectroscopy of Laser-heated Copper Foils | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation Lightsource Time-resolved Spectroscopy of Laser-heated Copper Foils Tuesday, July 16, 2013 - 11:00am SLAC, Conference Room 137-322 Presented by Kelly Cone, PhD Engineering, Dept. of Applied Science, University of California, Davis The volumetric heating of a thin copper target has been studied with time resolved x-ray spectroscopy. The copper target was heated by a plasma produced using the Lawrence Livermore National Laboratory's Compact Multipulse Terawatt (COMET)

  5. Widely tunable two-color FEL pulses at FERMI | Stanford Synchrotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Wide Bandgap Semiconductors: Essential to Our Technology Future Wide Bandgap Semiconductors: Essential to Our Technology Future January 15, 2014 - 8:00am Addthis Learn how wide bandgap semiconductors could impact clean energy technology and our daily lives. | Video by Sarah Gerrity and Matty Greene, Energy Department. Dr. Ernest Moniz Dr. Ernest Moniz Secretary of Energy What are the key facts? North Carolina State University will lead the Energy Department's new

  6. Yennello Group Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cyclotron Chemistry Dept. Physics Dept. College of Science Texas A&M University The Group Activities Publications Articles Talks and Posters Detectors Links Pictures Women in Nuclear Science Internal Documents Contacts run photos people photos equipment photos Copyright © 2009 Texas A&M University Cyclotron Institute MS #3366 College Station TX 77843-3366 Phone: 979-845-1411 Fax: 979-845-1899

  7. Fermilab Today | University of Wisconsin Profile

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University of Wisconsin experimental particle physics group focuses on searches for the Higgs boson within and beyond the Standard Model. The group also focuses on new exotic...

  8. About the Stanford Synchrotron Radiation Lightsource | Stanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The DOE Office of Science is the single largest supporter of basic research in the physical ... to design new materials, in atom by atom detail, that precisely fit society's needs. ...

  9. Local Universities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Universities Local Universities Los Alamos Lab recruits the best minds on the planet and offers job search information and assistance to our dual career spouses or partners. Contact Us dualcareers@lanl.gov The listing of schools, colleges and universities in New Mexico is organized by region. Northern New Mexico Area Espanola Public Schools District (K-12) Los Alamos Public Schools McCurdy Charter School New Mexico School for the Deaf Northern New Mexico Community College Pojoaque Valley Schools

  10. A seven-crystal Johann-type hard x-ray spectrometer at the Stanford Synchrotron Radiation Lightsource

    SciTech Connect (OSTI)

    Sokaras, D.; Weng, T.-C.; Nordlund, D.; Velikov, P.; Wenger, D.; Garachtchenko, A.; George, M.; Borzenets, V.; Johnson, B.; Rabedeau, T.; Alonso-Mori, R.; Bergmann, U.

    2013-05-15

    We present a multicrystal Johann-type hard x-ray spectrometer ({approx}5-18 keV) recently developed, installed, and operated at the Stanford Synchrotron Radiation Lightsource. The instrument is set at the wiggler beamline 6-2 equipped with two liquid nitrogen cooled monochromators - Si(111) and Si(311) - as well as collimating and focusing optics. The spectrometer consists of seven spherically bent crystal analyzers placed on intersecting vertical Rowland circles of 1 m of diameter. The spectrometer is scanned vertically capturing an extended backscattering Bragg angular range (88 Degree-Sign -74 Degree-Sign ) while maintaining all crystals on the Rowland circle trace. The instrument operates in atmospheric pressure by means of a helium bag and when all the seven crystals are used (100 mm of projected diameter each), has a solid angle of about 0.45% of 4{pi} sr. The typical resolving power is in the order of (E/{Delta}E){approx}10 000. The spectrometer's high detection efficiency combined with the beamline 6-2 characteristics permits routine studies of x-ray emission, high energy resolution fluorescence detected x-ray absorption and resonant inelastic x-ray scattering of very diluted samples as well as implementation of demanding in situ environments.

  11. Group X

    SciTech Connect (OSTI)

    Fields, Susannah

    2007-08-16

    This project is currently under contract for research through the Department of Homeland Security until 2011. The group I was responsible for studying has to remain confidential so as not to affect the current project. All dates, reference links and authors, and other distinguishing characteristics of the original group have been removed from this report. All references to the name of this group or the individual splinter groups has been changed to 'Group X'. I have been collecting texts from a variety of sources intended for the use of recruiting and radicalizing members for Group X splinter groups for the purpose of researching the motivation and intent of leaders of those groups and their influence over the likelihood of group radicalization. This work included visiting many Group X websites to find information on splinter group leaders and finding their statements to new and old members. This proved difficult because the splinter groups of Group X are united in beliefs, but differ in public opinion. They are eager to tear each other down, prove their superiority, and yet remain anonymous. After a few weeks of intense searching, a list of eight recruiting texts and eight radicalizing texts from a variety of Group X leaders were compiled.

  12. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Katz, Emanuel Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94305 (United States) (1) Katz, Emanuel, E-mail: bfeldste@buphy.bu.edu, E-mail: ...

  13. Fermilab Today | Oklahoma State University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University group is involved in top quark studies, searches for a non-Standard Model Higgs boson, heavy flavor tagging and upgrade of the pixel detector in the ATLAS...

  14. Ulubelu Geothermal Field | Open Energy Information

    Open Energy Info (EERE)

    Stanford, California: Stanford University. Benjamin Matek. Geo-energy Internet. Geothermal Energy Association. updated 20150428;cited 20150428. Available from:...

  15. University contracts summary book

    SciTech Connect (OSTI)

    1980-08-01

    The principal objectives of the Fossil Energy Program are to seek new ideas, new data, fundamental knowledge that will support the ongoing programs, and new processes to better utilize the nation's fossil energy resources with greater efficiency and environmental acceptability. Toward this end, the Department of Energy supports research projects conducted by universities and colleges to: Ensure a foundation for innovative technology through the use of the capabilities and talents in our academic institutions; provide an effective, two-way channel of communication between the Department of Energy and the academic community; and ensure that trained technical manpower is developed to carry out basic and applied research in support of DOE's mission. Fossil Energy's university activities emphasize the type of research that universities can do best - research to explore the potential of novel process concepts, develop innovative methods and materials for improving existing processes, and obtain fundamental information on the structure of coal and mechanisms of reactions of coal, shale oil, and other fossil energy sources. University programs are managed by different Fossil Energy technical groups; the individual projects are described in greater detail in this book. It is clear that a number of research areas related to the DOE Fossil Energy Program have been appropriate for university involvement, and that, with support from DOE, university scientific and technical expertise can be expected to continue to play a significant role in the advancement of fossil energy technology in the years to come.

  16. University of California Davis | Open Energy Information

    Open Energy Info (EERE)

    65714,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map References: University of California, Davis1 This article is a stub. You can help...

  17. Real-World Models

    Broader source: Energy.gov (indexed) [DOE]

    of Technology (MIT), Michigan State University, Michigan Technological University, New Hampshire University, Pennsylvania State University, Stanford University, University of ...

  18. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as a dissociative anesthetic acting as a noncompetitive antagonist on the N-methyl-D-aspartate (NMDA) receptor, it is also a potent inhibitor of neuronal nAChRs, and the sites of...

  19. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structure of Human Argonaute2: A Programmable Ribonuclease July 2013 SSRL Science Summary by Manuel Gnida, SLAC Office of Communications Figure RNA degradation is an important process in all organisms with functions including cellular clean-up of unwanted RNA, defense against RNA viruses, and a variety of other cellular strategies involving RNA modifications. RNA degradation is mediated by ribonucleases (RNases), which are for the most part relatively non-specific. However, Argonaute proteins

  20. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Botulinum Neurotoxin is Bio-shielded by NTNHA in a Handshake Complex SSRL Science Summary - October 2012 Figure A single reconstructed slice and a volume rendering of the tomography sequence. Botulinum neurotoxins (BoNTs) invade motor neurons at their junctions with muscular tissue, where the toxins disable the release of the neurotransmitter acetylcholine and subsequently paralyze the affected muscles. Accidental BoNT poisoning primarily occurs through ingestion of food products contaminated by

  1. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Competing Phases Found in High-Temperature Superconductor December 2012 SSRL Science Summary by Lori Ann White, SLAC Office of Communications Figure [larger image] Although the behavior of conventional superconductors has been explained via the BCS theory, the mechanism of superconductivity in the cuprate high temperature superconductors remains unresolved. One approach to this problem is to explore the phases next to superconductivity on the temperature-doping phase diagram. The pseudogap phase

  2. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enzyme Created in Test Tube Promises Biocatalysts for a Range of Uses December 2012 SSRL Science Summary by Lori Ann White, SLAC Office of Communications Figure [larger image] In recent years, enzymes have gained an important role in industry as cheap and environmentally friendly alternatives to traditional chemical catalysts. Learning to create such enzymes from scratch is necessary in order to provide biocatalysts for the wealth of non-natural reaction chemistries and substrates that have

  3. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BL7-2 XRD Rapid Access Application Form A block of 6 shifts of beam time will be set aside periodically for rapid access XRD on BL7-2. Both new and current users are eligible to apply. Allocation of time will be based on a one-page scientific proposal, which will be reviewed by the MEIS or MAT subpanel of the SSRL Proposal Review Panel. Rapid access proposals should be submitted by the first of each month, and users will be notified ~2 weeks prior to their allocated beam time. New users

  4. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    melanoma, and degenerative diseases like multiple sclerosis, Alzheimer's and Type 2 diabetes. Understanding of how Wnt proteins bind and activate Frizzled receptors is important...

  5. Stanford Geothermal Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

  6. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    coming to SSRL) before beam time. Spokesperson: Institution: Email: Degree: Work Phone: Fax: Principal Investigator: Email: Work Phone: Collaborators: Institution: (if...

  7. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy storage materials, such as batteries, are of increasing importance in the modern world. They support the storage and distribution of electricity generated by different ...

  8. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    oxygenic photosynthesis approximately 2.3 to 2.4 billion years ago revolutionized life on Earth. For most modern-day terrestrial life, oxygen has become indispensable. At the heart...

  9. Stanford Geothermal Workshop

    Broader source: Energy.gov (indexed) [DOE]

    ... resource. Assessments of the current rare earth and near- critical metal resource base, ... fluids and identify additives that selectively leach high value strategic elements. ...

  10. Stanford Geothermal Workshop

    Broader source: Energy.gov (indexed) [DOE]

    ... resource. Assessments of the current rare earth and near-critical metal resource base, ... fluids and identify additives that selectively leach high value strategic elements. ...

  11. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This investigation was funded by the U.S. Department of Energy, Office of Basic Energy Sciences (DOE-BES) Chemical and Geosciences Programs, the National Science Foundation (NSF) ...

  12. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... This research was funded by was funded by the U.S. DOE Office of Science, Office of Biological and Environmental Research (FWP 10094) and Office of Basic Energy Sciences. Primary ...

  13. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary by Lori Ann White, SLAC Office of Communications Figure For the first ... Research supported by the Department of Energy, Basic Energy Sciences, Materials Sciences and ...

  14. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work was supported by the Office of Science, Office of Basic Energy Sciences (OBES), of the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. X-ray data were ...

  15. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Area: (hold Ctrl to select multiple options) Biological & Life Sciences Medical Applications Chemistry Materials Science Physics Polymers Earth Sciences Environmental...

  16. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SSRLUO functions include: sponsoring and presenting the Annual Farrel W. Lytle Award to promote important technical or scientific accomplishments in synchrotron radiation-based ...

  17. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This work demonstrates that synchrotron radiation-based spectroscopies provide invaluable, atom-specific tools to determine the electronic properties of different dopant and defect ...

  18. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stockpiling or use of a nuclear explosive device, chemical or biological weapons, or missiles; the user understands that SLAC will only return materials, samples and other items ...

  19. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and the roughness correlation function. Grazing Incidence X-ray Scattering and Diffraction on Thin Films Grazing incidence X-ray scattering or diffraction (GIXS) refers to a...

  20. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    while slightly nonstoichiometric material gives rises to magnetic order. Extended X-ray absorption fine structure (EXAFS) analysis performed on Beam Line 10-2 provides part...

  1. Stanford Synchrotron Radiation Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the next steps that you propose to pursue under this proposal (1-2 paragraphs) 4. COLLABORATORS: If different from the original proposal, list current collaborators, including...

  2. Stanford Synchrotron Radiation Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    under this proposal. Please cover safety concerns -if any. (1-2 paragraphs) 4. COLLABORATORS: If different from the original proposal, list current collaborators, including...

  3. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    it can cause rare metabolic diseases such as Tay-Sachs and Gaucher, which often cause death in affected children by their early teens. Three years ago, researchers discovered...

  4. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    follow a single nanoscale catalytic particle, a bulk iron oxide promoted with titanium, zinc and potassium oxides, during activation and under Fischer-Tropsch reaction conditions. ...

  5. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LASER USE yes no If yes, please fill out all of the fields in this section. ANSI classification Wavelength Total Power Laser hazard controls you will apply. HAZARDOUS...

  6. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the cytoskeleton. In their study, published in the journal Nature Structural & Molecular Biology, Rangarajan and Izard reported the structure of nearly full-length human...

  7. Stanford Geothermal Workshop

    Broader source: Energy.gov [DOE]

    The goals of the conference are to bring together engineers, scientists and managers involved in geothermal reservoir studies and developments; provide a forum for the exchange of ideas on the...

  8. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mesoscale Phase Distribution in Li-ion Battery Electrode Materials May 2013 SSRL Science Summary by Lori Ann White, SLAC Office of Communications Figure Figure 1a) Chemical phase...

  9. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supporting the User Community Register | Submit Proposals | Request Time | Check-In Plus Sign Overview SSRL experimental facilities are scheduled and managed centrally to...

  10. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to your user account. Specialty gases cannot be returned for credit to your account. Gas: Balance: Grade: Analyzed? Yes No No. Cylinders: Dewars: SSRL has a small supply of...

  11. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoparticulate FeS as an Effective Redox Buffer to Prevent Uraninite (UO2) Oxidation August 2013 SSRL Science Summary by Manuel Gnida Figure A major concern in the nuclear age is...

  12. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Structure and Dynamics of Eukaryotic Glutaminyl-tRNA Synthetase May 2013 SSRL Science Summary by Lori Ann White, SLAC Office of Communications Figure Full-length Gln4 shown...

  13. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantification of the Mercury Adsorption Mechanism on Brominated Activated Carbon August 2013 SSRL Science Summary by Manuel Gnida Figure Emissions from coal-fired power plants are...

  14. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crystal Structure and Functional Analysis Identify Evolutionary Secret of SerRS in Vascular Development July 2013 SSRL Science Summary by Manuel Gnida, SLAC Office of...

  15. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structural Basis for Iron Piracy by Pathogenic Neisseria January 2013 SSRL Science Summary by Lori Ann White, SLAC Office of Communications Figure (Courtesy of the Buchanan Lab...

  16. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Navigating Fermi Arcs SSRL Science Summary - November 2012 Figure In solids, Fermi surfaces are the boundaries between occupied and unoccupied electron levels, as defined in...

  17. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    between the two sub-domains, highlighting, in particular, a deep pocket that could be a prime target for anti-virals. (Courtesy of the Ollmann Saphire lab, The Scripps Research...

  18. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the design principles of natural functional sites. The team targeted a surface on the influenza hemagglutinin protein that enables flu viruses to attach to and invade cells lining...

  19. Stanford Geothermal Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Added

  20. Open University

    ScienceCinema (OSTI)

    None

    2011-04-25

    Michel Pentz est née en Afrique du Sud et venu au Cern en 1957 comme physicien et président de l'associaion du personnel. Il est également fondateur du mouvement Antiapartheid de Genève et a participé à la fondation de l'Open University en Grande-Bretagne. Il nous parle des contextes pédagogiques, culturels et nationaux dans lesquels la méthode peut s'appliquer.

  1. Universal Entanglement Entropy in 2D Conformal Quantum Critical...

    Office of Scientific and Technical Information (OSTI)

    of the conformal structure of the wave function of these quantum critical systems. ... Resource Relation: Journal Name: Physical Review B Research Org: Stanford Linear ...

  2. Triangle Universities Nuclear Laboratory : 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Postdoctoral Position in Fundamental Symmetries Postdoctoral Position in Fundamental Symmetries - North Carolina State University, Department of Physics The Experimental Nuclear Physics group at North Carolina State University solicits applications for a postdoctoral research associate to work with us on the SNS-based neutron electric dipole moment experiment. Applicants must have a Ph.D. in physics, astronomy, or a related field. Candidates having low temperature (<4 K) experience are

  3. Research Groups - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Groups Research Group Homepages: Nuclear Theory Group Dr. Sherry Yennello's Research Group Dr. Dan Melconian's Research Group Dr. Cody Folden's Group...

  4. Final Report for U.S. DOE GRANT No. DEFG02-96ER41015 November 1, 2010 - April 30, 2013 entitled HIGH ENERGY ACCELERATOR AND COLLIDING BEAM USER GROUP at the UNIVERSITY of MARYLAND

    SciTech Connect (OSTI)

    Hadley, Nicholas; Jawahery, Abolhassan; Eno, Sarah C; Skuja, Andris; Baden, Andrew; Roberts, Douglas

    2013-07-26

    We have #12;finished the third year of a three year grant cycle with the U.S. Department of Energy for which we were given a #12;five month extension (U.S. D.O.E. Grant No. DEFG02-96ER41015). This document is the fi#12;nal report for this grant and covers the period from November 1, 2010 to April 30, 2013. The Maryland program is administered as a single task with Professor Nicholas Hadley as Principal Investigator. The Maryland experimental HEP group is focused on two major research areas. We are members of the CMS experiment at the LHC at CERN working on the physics of the Energy Frontier. We are also analyzing the data from the Babar experiment at SLAC while doing design work and R&D towards a Super B experiment as part of the Intensity Frontier. We have recently joined the LHCb experiment at CERN. We concluded our activities on the D#31; experiment at Fermilab in 2009.

  5. Folden Group - Heavy Element Nuclear and Radiochemistry at Texas...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home Welcome to the Heavy Elements Group at Texas A&M University, headed by Prof. Folden. ... Links Cyclotron Institute Texas A&M University Chemistry Department Department of Nuclear ...

  6. BOE Technology Group | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: BOE Technology Group Place: China Product: Beijing-based TFT-LCD manufacturer. The company owns, and is developing four PV projects in the BOE Universal...

  7. Unknown

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical El Stanford University Stanford, CA 94305 K. Bergey University of Oklahoma Aero Engineering Department Norman, OK 73069 Ir. Jos Beurskens Programme Manager for...

  8. Sorption and Precipitation of Co(II) in Hanford Sediments and...

    Office of Scientific and Technical Information (OSTI)

    Journal Volume: 20; Journal Issue: 1; Other Information: PBD: 1 Jan 2005 Publisher: Elsevier Ltd. Research Org: Stanford University, Stanford, CA; University of Saskatchewan,...

  9. Blog Archive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    role of colleges and universities in helping to further clean-energy research and entrepreneurship during a forum at Stanford University. | Photo courtesy of Stanford Energy Club....

  10. Reionization histories of Milky Way mass halos (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Kavli Institute for Particle Astrophysics and Cosmology, Physics Department, Stanford University, Stanford, CA 94305 (United States) CITA, University of Toronto, Toronto, Ontario ...

  11. TEC Working Group Topic Groups Archives Consolidated Grant Topic Group |

    Office of Environmental Management (EM)

    Department of Energy Consolidated Grant Topic Group TEC Working Group Topic Groups Archives Consolidated Grant Topic Group The Consolidated Grant Topic Group arose from recommendations provided by the TEC and other external parties to the DOE Senior Executive Transportation Forum in July 1998. It was proposed that the consolidation of multiple funding streams from numerous DOE sources into a single grant would provide a more equitable and efficient means of assistance to States and Tribes

  12. University Partners Panel

    Office of Energy Efficiency and Renewable Energy (EERE)

    Matt Tirrell, Pritzker Director and Professor, Institute for Molecular Engineering, University of Chicago Thomas Glasmacher, Facility for Rare Isotope Beams (FRIB) Project Manager, Michigan State University

  13. A high resolution and large solid angle x-ray Raman spectroscopy end-station at the Stanford Synchrotron Radiation Lightsource

    SciTech Connect (OSTI)

    Sokaras, D.; Nordlund, D.; Weng, T.-C.; Velikov, P.; Wenger, D.; Garachtchenko, A.; George, M.; Borzenets, V.; Johnson, B.; Rabedeau, T.; Mori, R. Alonso; Bergmann, U.; Qian, Q.

    2012-04-15

    We present a new x-ray Raman spectroscopy end-station recently developed, installed, and operated at the Stanford Synchrotron Radiation Lightsource. The end-station is located at wiggler beamline 6-2 equipped with two monochromators-Si(111) and Si(311) as well as collimating and focusing optics. It consists of two multi-crystal Johann type spectrometers arranged on intersecting Rowland circles of 1 m diameter. The first one, positioned at the forward scattering angles (low-q), consists of 40 spherically bent and diced Si(110) crystals with 100 mm diameters providing about 1.9% of 4{pi} sr solid angle of detection. When operated in the (440) order in combination with the Si (311) monochromator, an overall energy resolution of 270 meV is obtained at 6462.20 eV. The second spectrometer, consisting of 14 spherically bent Si(110) crystal analyzers (not diced), is positioned at the backward scattering angles (high-q) enabling the study of non-dipole transitions. The solid angle of this spectrometer is about 0.9% of 4{pi} sr, with a combined energy resolution of 600 meV using the Si (311) monochromator. These features exceed the specifications of currently existing relevant instrumentation, opening new opportunities for the routine application of this photon-in/photon-out hard x-ray technique to emerging research in multidisciplinary scientific fields, such as energy-related sciences, material sciences, physical chemistry, etc.

  14. Climate Systems Analysis Group (CSAG) University of Cape Town...

    Open Energy Info (EERE)

    about 35 members, including senior scientists, postdoctoral researchers, PhD students and administrative and technical support staff. CSAG has excellent national and...

  15. UNIVERSITY OF ARIZONA HIGH ENERGY PHYSICS PROGRAM (Technical...

    Office of Scientific and Technical Information (OSTI)

    The High Energy Physics Group at the University of Arizona has conducted forefront research in elementary particle physics. Our theorists have developed new ideas in lattice QCD, ...

  16. Interagency mechanical operations group numerical systems group

    SciTech Connect (OSTI)

    1997-09-01

    This report consists of the minutes of the May 20-21, 1971 meeting of the Interagency Mechanical Operations Group (IMOG) Numerical Systems Group. This group looks at issues related to numerical control in the machining industry. Items discussed related to the use of CAD and CAM, EIA standards, data links, and numerical control.

  17. History of the Stanford Synchrotron Radiation Lightsource | Stanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    government labs and foreign institutions in numerous disciplines including chemistry, biology, medicine, environmental science, materials science, and engineering as well as...

  18. Financial and Physical Oil Market Linkages

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    University * Discussant: by: James Smith, SMU * Questions, answers and discussions ... Singleton Stanford University * James Smith Southern Methodist University (SMU) * Wei ...

  19. University of Nebraska-Lincoln and University of Florida (Building...

    Open Energy Info (EERE)

    Nebraska-Lincoln and University of Florida (Building Energy Efficient Homes for America) Jump to: navigation, search Name: University of Nebraska-Lincoln and University of Florida...

  20. Fermilab Steering Group Report

    SciTech Connect (OSTI)

    Steering Group, Fermilab; /Fermilab

    2007-12-01

    The Fermilab Steering Group has developed a plan to keep U.S. accelerator-based particle physics on the pathway to discovery, both at the Terascale with the LHC and the ILC and in the domain of neutrinos and precision physics with a high-intensity accelerator. The plan puts discovering Terascale physics with the LHC and the ILC as Fermilab's highest priority. While supporting ILC development, the plan creates opportunities for exciting science at the intensity frontier. If the ILC remains near the Global Design Effort's technically driven timeline, Fermilab would continue neutrino science with the NOvA experiment, using the NuMI (Neutrinos at the Main Injector) proton plan, scheduled to begin operating in 2011. If ILC construction must wait somewhat longer, Fermilab's plan proposes SNuMI, an upgrade of NuMI to create a more powerful neutrino beam. If the ILC start is postponed significantly, a central feature of the proposed Fermilab plan calls for building an intense proton facility, Project X, consisting of a linear accelerator with the currently planned characteristics of the ILC combined with Fermilab's existing Recycler Ring and the Main Injector accelerator. The major component of Project X is the linac. Cryomodules, radio-frequency distribution, cryogenics and instrumentation for the linac are the same as or similar to those used in the ILC at a scale of about one percent of a full ILC linac. Project X's intense proton beams would open a path to discovery in neutrino science and in precision physics with charged leptons and quarks. World-leading experiments would allow physicists to address key questions of the Quantum Universe: How did the universe come to be? Are there undiscovered principles of nature: new symmetries, new physical laws? Do all the particles and forces become one? What happened to the antimatter? Building Project X's ILC-like linac would offer substantial support for ILC development by accelerating the industrialization of ILC components

  1. Fermilab Steering Group Report

    SciTech Connect (OSTI)

    Beier, Eugene; Butler, Joel; Dawson, Sally; Edwards, Helen; Himel, Thomas; Holmes, Stephen; Kim, Young-Kee; Lankford, Andrew; McGinnis, David; Nagaitsev, Sergei; Raubenheimer, Tor; /SLAC /Fermilab

    2007-01-01

    The Fermilab Steering Group has developed a plan to keep U.S. accelerator-based particle physics on the pathway to discovery, both at the Terascale with the LHC and the ILC and in the domain of neutrinos and precision physics with a high-intensity accelerator. The plan puts discovering Terascale physics with the LHC and the ILC as Fermilab's highest priority. While supporting ILC development, the plan creates opportunities for exciting science at the intensity frontier. If the ILC remains near the Global Design Effort's technically driven timeline, Fermilab would continue neutrino science with the NOVA experiment, using the NuMI (Neutrinos at the Main Injector) proton plan, scheduled to begin operating in 2011. If ILC construction must wait somewhat longer, Fermilab's plan proposes SNuMI, an upgrade of NuMI to create a more powerful neutrino beam. If the ILC start is postponed significantly, a central feature of the proposed Fermilab plan calls for building an intense proton facility, Project X, consisting of a linear accelerator with the currently planned characteristics of the ILC combined with Fermilab's existing Recycler Ring and the Main Injector accelerator. The major component of Project X is the linac. Cryomodules, radio-frequency distribution, cryogenics and instrumentation for the linac are the same as or similar to those used in the ILC at a scale of about one percent of a full ILC linac. Project X's intense proton beams would open a path to discovery in neutrino science and in precision physics with charged leptons and quarks. World-leading experiments would allow physicists to address key questions of the Quantum Universe: How did the universe come to be? Are there undiscovered principles of nature: new symmetries, new physical laws? Do all the particles and forces become one? What happened to the antimatter? Building Project X's ILC-like linac would offer substantial support for ILC development by accelerating the industrialization of ILC components

  2. Lancaster University | Open Energy Information

    Open Energy Info (EERE)

    University Jump to: navigation, search Name: Lancaster University Address: Engineering Department Lancaster University Place: Lancaster Zip: LA1 4YR Region: United Kingdom Sector:...

  3. Napier University | Open Energy Information

    Open Energy Info (EERE)

    University Jump to: navigation, search Name: Napier University Place: Edinburgh, Scotland, United Kingdom Zip: EH14 1DJ Product: A university located in Edinburgh, Scotland that...

  4. Hamdard University | Open Energy Information

    Open Energy Info (EERE)

    Hamdard University Jump to: navigation, search Name: Hamdard University Place: Karachi, Pakistan Zip: 74600 Sector: Solar Product: University setting up Pakistan's first solar lab....

  5. Purdue University | Open Energy Information

    Open Energy Info (EERE)

    Purdue University Jump to: navigation, search Logo: Purdue University Name: Purdue University Address: West Lafayette, IN Zip: 47907 Phone Number: (765) 494-4600 Website:...

  6. SSRL- Stanford Synchrotron Radiation Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    evolved. The staff accomplished this within 7.5 months with beam turn in the followin g month--2 months ahead of the completion milestone. Richard Boyce, responsible for the...

  7. Ni Ni: University of California - Los Angeles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ni Ni: University of California - Los Angeles Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Ni Ni: University of California - Los Angeles Condensed matter January 1, 2015 Ni Ni Ni Ni Contact Linda Anderman Email Ni Ni Ni Ni now at the University of California-Los Angeles After finishing her work at Princeton, Ni Ni began at the Lab as a postdoc in 2012 with the Condensed Matter and Magnetic Science Group. Ni was

  8. Registration-SSRL School 2007 on Hard X-ray Scattering: Techniques in MEIS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 15-17 SLAC | SSRL | Stanford University | Admin login | webmaster Last modified: May 12 2014

  9. Microsoft Word - 2000ReportOngTsaiFinal.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Carbon Fibers in Wind Turbine Blade Design: a SERI-8 Blade Example Cheng-Huat Ong & Stephen W. Tsai Department of Aeronautics & Astronautics Stanford University Stanford CA...

  10. Microsoft Word - poa_slac_ind2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NATIONAL ACCELERATOR LABORATORY * 2575 SAND HILL ROAD * MENLO PARK * CALIFORNIA * 94025 * USA SLAC is operated by Stanford University for the U.S. Department of Energy STANFORD...