Sample records for group rock lab

  1. Rock Lab Analysis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy ResourcesRock Lab Analysis Jump

  2. Jefferson Lab Users Group News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNewLabLab To ReceiveUser

  3. PTYS 109 LAB EXPLORATION AND DISCOVERY IN PLANETARY SCIENCE ROCKS AND MINERALS 133

    E-Print Network [OSTI]

    Cohen, Barbara Anne

    PTYS 109 LAB EXPLORATION AND DISCOVERY IN PLANETARY SCIENCE ROCKS AND MINERALS 133 Rocks and Minerals I. OBJECTIVES One of the many ways to study Earth is by examining the rocks that make up its types of rocks and minerals; · determine the formation and the history of each rock and mineral; · infer

  4. Work and Energy Simulation Name_______________________ Lab Worksheet Group member names__________________________________

    E-Print Network [OSTI]

    Winokur, Michael

    Work and Energy Simulation Name_______________________ Lab Worksheet Group member names://phet.colorado.edu, in a browser and click on the Go to the simulations button. Open Work, Energy, and Power on the left. This lab uses three of the simulations on this page, Masses and Springs, Energy Skate Park, and The Ramp. I

  5. Category:Rock Lab Analysis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermal Regulatory Roadmap.source HistoryLab

  6. Science Education Group | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearch BriefsTenney, Office ofScience Education Group View

  7. Jefferson Lab Invites Families, Groups, Classes to Physics Fest Events |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHuman ResourcesJefferson

  8. Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flexible hydropower: boosting energy December 16, 2014 New hydroelectric resource for Northern New Mexico supplies clean energy to homes, businesses and the Lab We know a lot of...

  9. APOLLO + UW Eot-Wash Group, AAPT GR Labs Workshop, 2007 Tests of Gravity with Lunar Laser Ranging

    E-Print Network [OSTI]

    APOLLO + UW Eot-Wash Group, AAPT GR Labs Workshop, 2007 Tests of Gravity with Lunar Laser Ranging;APOLLO + UW Eot-Wash Group, AAPT GR Labs Workshop, 2007 LLR Outline · What LLR measures · What LLR tests · LLR and the equivalence principle #12;APOLLO + UW Eot-Wash Group, AAPT GR Labs Workshop, 2007 Lunar

  10. Richard A. Schultz Geomechanics-Rock Fracture Group, Department of Geological

    E-Print Network [OSTI]

    AUTHORS Richard A. Schultz Geomechanics-Rock Fracture Group, Department of Geological Sciences University (1982), and his Ph.D. in geomechanics from Purdue University (1987). He has worked at the Lunar

  11. Jefferson Lab's Detector Group builds small-animal imaging device...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March Smith Mark Smith, Detector Group Biomedical Imaging Physicist and project manager for this effort, holds the tungsten box encasing the detector head for the mini gamma camera...

  12. Shear velocity as the function of frequency in heavy oils De-hua Han and Jiajin Liu, Rock Physics Lab, UH;

    E-Print Network [OSTI]

    Shear velocity as the function of frequency in heavy oils De-hua Han and Jiajin Liu, Rock Physics of heavy oils is discussed based on the measured data in our lab. Havriliak and Negami (HN) model is suggested to describe the frequency dispersion of heavy oils. Introduction The velocity behavior in heavy

  13. Scientists to Meet in Carlsbad, NM for Hard Rock Lab Task Force

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearchPhysics Lab

  14. Rocks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResources ResourcesRobust, High-ThroughputRocks Rocks

  15. Jefferson Lab Invites Classes, Groups to 2008-2009 Physics Fests |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHuman ResourcesJefferson Lab

  16. Journal Review Guidelines In general our lab will use our weekly group meeting as a "journal club" every other

    E-Print Network [OSTI]

    George, Steven C.

    Journal Review Guidelines In general our lab will use our weekly group meeting as a "journal for the journal club is responsible for selecting the paper to review, distributing the paper to lab members and the presentation. Journal. We will focus our review on papers published in "high impact" journals. While

  17. Jefferson Lab Group Gets 10 Million Hours of Supercomputer Time | Jefferson

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group Gets 10 Million Hours of

  18. RESEARCH PROJECTS & IDEAS FOR 2013 Soil and Water Lab, Ecohydrology Group (compiled by Todd Walter)

    E-Print Network [OSTI]

    Walter, M.Todd

    out) lab expts: degradation, transport, preparing for large expts in Sweden and Western NY, new Grant) Sheila (WOULD LIKE HELP) On-going (needs lab help) Microbial transport (RPRS) Chaozi and Erik and writing papers. New proposal (Will) Biochar freeze/thaw Andrea/Selene thinking Biochar field experiments

  19. Uranium and its relationship to host rock mineralogy in an unoxidized roll front in the Jackson group, South Texas

    E-Print Network [OSTI]

    Prasse, Eric Martin

    1978-01-01T23:59:59.000Z

    of the requirement for the degree of MASTER OF SCIENCE December 1978 Major Subject: Geology URANIUM AND ITS RELATIONSHIP TO HOST ROCK MINERALOGY IN AN UNOXIDIZED ROLL FRONT IN THE JACKSON GROUP, SOUTH TEXAS A Thesis by ERIC MARTIN PRASSE Approved as to style... and content by: Chairman of Committee r Head of Department Member Member December 1978 :& ~'8% 055 ABSTRACT Uranium and its Relat1onship to Host Rock Mineralogy in an Unox1dized Roll Front in the Jackson Group, South Texas (December, 1978) Eric...

  20. Lab's Theory Group leader is one of two newly elected American...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rocco Schiavilla Interim Theory Group leader Rocco Schiavilla was elected a Fellow of the American Physical Society in 2002 JLab's Theory Group leader is one of two newly elected...

  1. Dissertation Lab Dissertation Lab (D-Lab)

    E-Print Network [OSTI]

    Texas at Arlington, University of

    Dissertation Lab TLB 5/1/2012 Dissertation Lab (D-Lab) May 29-May 31, 2012 Carlisle Suite, 2nd Floor University Center What is Dissertation Lab (D-Lab)? The Office of Graduate Studies Student Services offers D-Lab to help students progress through the difficult process of writing their dissertation

  2. Gateway:U.S. OpenLabs/Research Groups | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarms A SUK Place: Newport,Gate SolarGroups Jump to:

  3. Deep Underground Science and Engineering Lab: S1 Dark Matter Working Group

    SciTech Connect (OSTI)

    Akerib, Daniel S.; Aprile, E.; /Case Western Reserve U. /Columbia U.; Baltz, E.A.; /KIPAC, Menlo Park; Dragowsky, M.R.; /Case Western Reserve U.; Gaitskell, R.J.; /Brown U.; Gondolo, P.; /Utah U.; Hime, A.; /Los Alamos; Martoff, C.J.; /Temple U.; Mei, D.-M.; /Los Alamos; Nelson, H.; /UC, Santa Barbara; Sadoulet, B.; /UC, Berkeley; Schnee, R.W.; /Case Western; Sonnenschein, A.H.; /Fermilab; Strigari, L.E.; /UC, Irvine

    2006-06-09T23:59:59.000Z

    In this report we have described the broad and compelling range of astrophysical and cosmological evidence that defines the dark matter problem, and the WIMP hypothesis, which offers a solution rooted in applying fundamental physics to the dynamics of the early universe. The WIMP hypothesis is being vigorously pursued, with a steady march of sensitivity improvements coming both from astrophysical searches and laboratory efforts. The connections between these approaches are profound and will reveal new information from physics at the smallest scales to the origin and workings of the entire universe. Direct searches for WIMP dark matter require sensitive detectors that have immunity to electromagnetic backgrounds, and are located in deep underground laboratories to reduce the flux from fast cosmic-ray-muon-induced neutrons which is a common background to all detection methods. With US leadership in dark matter searches and detector R&D, a new national laboratory will lay the foundation of technical support and facilities for the next generation of scientists and experiments in this field, and act as magnet for international cooperation and continued US leadership. The requirements of depth, space and technical support for the laboratory are fairly generic, regardless of the approach. Current experiments and upgraded versions that run within the next few years will probe cross sections on the 10{sup -45}-10{sup -44} cm{sup 2} scale, where depths of 3000-4000 m.w.e. are sufficient to suppress the neutron background. On the longer term, greater depths on the 5000-6000 level are desirable as cross sections down to 10{sup -46} cm{sup 2} are probed, and of course, if WIMPs are discovered then building up a statistical sample free of neutron backgrounds will be essential to extracting model parameters and providing a robust solution to the dark matter problem. While most of the detector technologies are of comparable physical scale, i.e., the various liquid and solid-state detector media under consideration have comparable density, a notable exception is the low-pressure gaseous detectors. These detectors are very likely to play a critical role in establishing the galactic origin of a signal, and so it is important to design the lab with this capability in mind. For example, for a WIMP-nucleon cross section of 10{sup -43} cm{sup 2} (just below the present limit [20]), 100 of the current DRIFT-II modules of 1 m{sup 3} at 40 torr CS{sub 2} [63] would require a two-year exposure [61] to get the approximately 200 events [64] required to establish the signal's galactic origin. While detector improvements are under investigation, a simple scaling for the bottom of the MSSM region at 10{sup -46} cm{sup 2} would require a 100,000 m{sup 3} detector volume. If a factor of 10 reduction in required volume is achieved (e.g., higher pressure operation, more detailed track reconstruction, etc.) then an experimental hall of (50 m){sup 3} could accommodate the experiment. Because the WIMP-nucleon cross section is unknown, it is impossible to make a definitive statement as to the ultimate requirements for a directional gaseous dark matter detector, or any other device, for that matter. What is clear, however, is that whatever confidence one gives to specific theoretical considerations, the foregoing discussion clearly indicates the high scientific priority of, broad intellectual interest in, and expanding technical capabilities for increasing the ultimate reach of direct searches for WIMP dark matter. Upcoming experiments will advance into the low-mass Supersymmetric region and explore the most favored models in a complementary way to the LHC, and on a similar time scale. The combination of astrophysical searches and accelerator experiments stands to check the consistency of the solution to the dark matter problem and provide powerful constraints on the model parameters. Knowledge of the particle properties from laboratory measurements will help to isolate and reduce the astrophysical uncertainties, which will allow a more complete picture of

  4. Oil and Gas CDT Bots in Rocks: Intelligent Rock Deformation for Fault Rock

    E-Print Network [OSTI]

    Henderson, Gideon

    Heriot-Watt University, Institute of Petroleum Engineering Supervisory Team · Dr Helen Lewis, Heriot://www.pet.hw.ac.uk/staff-directory/jimsomerville.htm Key Words Nano/Micro sensors; faults; fault zones; geomechanics; rock mechanics; rock deformation-deformed equivalent, a different lab-deformed example and a geomechanical simulation of a fault zone showing permanent

  5. Berkeley Lab's Bill Collins talks about Modeling the Changing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Berkeley Lab's Bill Collins talks about Modeling the Changing Earth System: Prospects and Challenges. From the 2014 NERSC User's Group Meeting Berkeley Lab's Bill Collins talks...

  6. Uranium and its relationship to host rock mineralogy in an unoxidized roll front in the Jackson group, South Texas 

    E-Print Network [OSTI]

    Prasse, Eric Martin

    1978-01-01T23:59:59.000Z

    /Tordilla Sandstone Dubose Deweesville Sandstone Conquista Clay Dilworth Sandstone tion of uran1um bearing solutions to take place. Sandstone is the most common uranium host rock because its perme- ability permits the flow of m1nera11z1ng solutions through... to the flow of uranium bear1ng solutions during mineralization . In addition, the Deweesvi lie contai ns a shaly lens in its middle which is the upper boundary of several ore bod1es ( Dickinson and Sullivan, 1976), including the deposit studied 1 n...

  7. Rock Mechanics in Civil and Environmental Engineering Zhao, Labiouse, Dudt & Mathier (eds) 2010 Taylor & Francis Group, London, ISBN 978-0-415-58654-2

    E-Print Network [OSTI]

    Merguerian, Charles

    properties such as strength and brittleness are crucial parameters for performance analysis of hard rock TBMs of the experiences and datasets obtained from these projects indicates that even though intact rock properties researches have been conducted to investi- gate the affect of intact rock properties, geological and rock

  8. Rock Art

    E-Print Network [OSTI]

    Huyge, Dirk

    2009-01-01T23:59:59.000Z

    The archaeology of early Egypt: Social transformations inAlexander 1938 Rock-drawings of southern Upper Egypt. Vol.1. London: The Egypt Exploration Society. 1939 Rock-drawings

  9. TechLab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TechLab Inside the Museum Exhibitions Norris Bradbury Museum Lobby Defense Gallery Research Gallery History Gallery TechLab Virtual Exhibits invisible utility element TechLab...

  10. Laundry Group in Foods Lab 

    E-Print Network [OSTI]

    Unknown

    2011-08-17T23:59:59.000Z

    Driving a horizontal roadway curve requires a change in vehicle alignment and a potential reduction in speed. Curves may present a challenging situation during adverse conditions or to inattentive drivers. Chevron signs ...

  11. Lab White Paper Hitachi Unified Compute Platform (UCP)

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    Architectures for Private Clouds By Kerry Dolan, Lab Analyst February 2014 This ESG Lab White Paper Reference Architecture for Private Clouds 2 © 2014 by The Enterprise Strategy Group, Inc. All Rights? ....................................................................................................................... 4 Microsoft Private Cloud Fast Track

  12. Lab Astrophysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy MaterialsFeatured Videos >> spaceTutorialsLab

  13. The Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2Dand WaterThe Future isThe IronThe Lab The

  14. Q00906010024 rock check dam

    E-Print Network [OSTI]

    00906010024 rock check dam Q00906010025 rock check dam Q00906010021 rock check dam Q00906010022 rock check dam Q00906010027 rock check dam Q00906010026 rock check dam Q00906010018 rock check dam Q00906010023 rock check dam Q00906010011 rock check dam Q00906010008 rock check dam Q00906010007 rock check dam Q

  15. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group Gets 10JeffersonHuman Resources

  16. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group Gets 10JeffersonHuman

  17. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group Gets 10JeffersonHumanAppraisal

  18. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group Gets 10JeffersonHumanAppraisalHR

  19. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group Gets

  20. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group GetsDiversity Council Emeritus

  1. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group GetsDiversity Council

  2. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group GetsDiversity CouncilHow we're

  3. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group GetsDiversity CouncilHow

  4. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group GetsDiversity CouncilHowJLab

  5. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group GetsDiversity

  6. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group GetsDiversityQuestions about

  7. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group GetsDiversityQuestions

  8. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group GetsDiversityQuestionsEmployee

  9. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group

  10. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHuman Resources Human Resources

  11. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHuman Resources Human Resources

  12. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHuman Resources Human

  13. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHuman Resources Human print

  14. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHuman Resources Human

  15. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHuman Resources HumanAppraisal

  16. Jefferson Lab Information Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHuman Resources

  17. Jefferson Lab Leadership Council

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHumanLaser Twinkles in Rare

  18. Instrument Development Lab | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fabrication Circuit boards Component integration Custom enclosures Microfabrication 3D Printing Facilities and equipment Fully equipped electronics development lab Equipment...

  19. Rock Bands/Rock Brands: Mediation and Musical Performance in Post-liberalization Bangalore

    E-Print Network [OSTI]

    Coventry, Chloe Louise

    2013-01-01T23:59:59.000Z

    2009 PolyGram advertisement Coca-cola and MTV contest PepsiNokia, Pepsi, Seagrams, and Coca Cola sponsored rock showsGroup and Brigade Group, Coca-Cola, and the biotechnology

  20. V00306010057 rock check dam

    E-Print Network [OSTI]

    ¬« ¬« ¬« ¬« ¬« XY! 16-020 16-030(c) 16-026(l) 16-028(c) 16-026(l) V00306010057 rock check dam V00306010012 rock check dam V00306010040 rock check dam V00306010039 rock check dam V00306010058 rock check dam V00306010064 rock check dam V00306010061 rock check dam V00306010062 rock check dam V00306010063

  1. Jefferson Lab awards upgrade contracts | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNewLabLabbeginawards upgrade

  2. Final report for Texas A&M University Group Contribution to DE-FG02-09ER25949/DE-SC0002505: Topology for Statistical Modeling of Petascale Data (and ASCR-funded collaboration between Sandia National Labs, Texas A&M University and University of Utah)

    SciTech Connect (OSTI)

    Rojas, Joseph Maurice [Texas A& M University

    2013-02-27T23:59:59.000Z

    We summarize the contributions of the Texas A\\&M University Group to the project (DE-FG02-09ER25949/DE-SC0002505: Topology for Statistical Modeling of Petascale Data - an ASCR-funded collaboration between Sandia National Labs, Texas A\\&M U, and U Utah) during 6/9/2011 -- 2/27/2013.

  3. Jefferson Lab group wins national award (Daily Press) | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron beam charges up

  4. Rock magnetism of remagnetized carbonate rocks: another look

    E-Print Network [OSTI]

    Jackson, M.; Swanson-Hysell, N. L

    2012-01-01T23:59:59.000Z

    and significance of magnetism in sedimentary rocks. Journal1997. Rock Magnetism. ¨ zdemir, O Dunlop, D. J. & Oon July 30, 2013 ROCK MAGNETISM: REMAGNETIZED CARBONATES

  5. V01406010015 rock check dam

    E-Print Network [OSTI]

    XY! ¬« ¬« V01406010015 rock check dam V01406010014 rock check dam V01406010013 rock check dam 1501403010012 earthen berm V01403010008 earthen berm V01406010003 rock check dam V01406010004 rock check dam V01406010010 rock check dam V01406010011 rock check dam 15-0651 15-0307 15-0588 15-0532 15-0575 stormdrain 7160

  6. Lab Leadership | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy MaterialsFeatured Videos >> spaceTutorialsLabLab News

  7. LAB #8 Numerical Methods

    E-Print Network [OSTI]

    2005-10-20T23:59:59.000Z

    Page 1. LAB #8. Numerical Methods. Goal: The purpose of this lab is to explain how computers numerically ... Also you will examine what .... (7) Now consider the differential equation ... 3-exp(2*y)+sqrt(t)/y; (Don't forget the “;” at the end.).

  8. Lab Breakthrough: Microelectronic Photovoltaics | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Lab Breakthrough: Microelectronic Photovoltaics Lab Breakthrough: Microelectronic Photovoltaics June 7, 2012 - 9:31am Addthis Sandia developed tiny glitter-sized photovoltaic (PV)...

  9. National Labs | Department of Energy

    Office of Environmental Management (EM)

    Lab Day Fact Sheets Secretary Ernest Moniz learns about the Labs' work in high performance computing and additive manufacturing. | Photo courtesy of Sarah Gerrity, Energy...

  10. Jefferson Lab Hosts Science Poster Session | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group Gets 10 MillionJefferson45July

  11. Jefferson Lab Hosts Science Poster Session | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group Gets 10

  12. Jefferson Lab Laser Twinkles in Rare Color | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHumanLaser Twinkles in Rare Color

  13. Jefferson Lab Names Chief Technology Officer | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHumanLaserMichaelChiefChief

  14. T00406010008 rock check dam

    E-Print Network [OSTI]

    XY! ¬« T00406010008 rock check dam T00406010009 rock check dam T00406010010 rock check dam T00406010011 rock check dam T-SMA-2.85 0.344 Acres 35-014(g) 35-016(n) T00406010005 rock check dam T00406010006 rock check dam T00403090004 curb T00402040007 established vegetation, green hatch area 7200 7200 7180

  15. Jefferson Lab Detector and Imaging Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    web standards, but its content is accessible to any browser. Concerns? Nuclear Physics Program print version LINKS Detector & Imaging Home Overview Staff News Advanced...

  16. Jefferson Lab - Detector Support Group (DSG) Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home as Ready for Summer asJacob17Jeff PorterSearch the JLab

  17. Berkeley Lab Welcomes the NERSC Users' Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumniComplex historianBenefits of

  18. Jefferson Lab Search

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNew SafetyLabJefferson LabWins

  19. Jefferson Lab Visitor's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNewLabLab To ReceiveUser

  20. Berkeley Lab - ARRA - Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility August 18, 2011 Tools and Toys for Builders: New Test Center for Low-Energy Buildings July 19, 2011 Moving Data at the Speed of Science: Berkeley Lab Lays Foundation...

  1. Jefferson Lab Virtual Tour

    SciTech Connect (OSTI)

    None

    2013-07-13T23:59:59.000Z

    Take a virtual tour of the campus of Thomas Jefferson National Accelerator Facility. You can see inside our two accelerators, three experimental areas, accelerator component fabrication and testing areas, high-performance computing areas and laser labs.

  2. Jefferson Lab Virtual Tour

    ScienceCinema (OSTI)

    None

    2014-05-22T23:59:59.000Z

    Take a virtual tour of the campus of Thomas Jefferson National Accelerator Facility. You can see inside our two accelerators, three experimental areas, accelerator component fabrication and testing areas, high-performance computing areas and laser labs.

  3. Session 4: Creating a Successful and Productive Lab Environment DISCUSSION OUTLINE: SESSION 4

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Session 4: Creating a Successful and Productive Lab Environment DISCUSSION OUTLINE: SESSION 4 Topics: Themes at the core of creating a successful lab environment Groups ­ needs and development Teams and Productive Lab Environment ­ FACILITATOR GUIDELINES Timeline ­ 1.5 Hours Total 10 minutes Themes at the core

  4. Geological Hazards Labs Spring 2010

    E-Print Network [OSTI]

    Chen, Po

    Geological Hazards Labs Spring 2010 TA: En-Jui Lee (http://www.gg.uwyo.edu/ggstudent/elee8/site - An Indispensible Tool in Hazard Planning 3 26/1; 27/1 Lab 2: Geologic Maps - Mapping the Hazards 4 2/2; 3/2 Lab 3: Population - People at Risk 5 9/2; 10/2 Lab 4: Plate Tectonics - Locating Geologic Hazards 6 16/2; 17/2 Lab 5

  5. Jefferson Lab imager can detect beginnings of breast tumors ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "This is going to be a very useful device," said Majewski, leader of Jefferson Lab's Radiation Detector and Medical Imaging Group. A round of what's called pre-clinical test...

  6. J00206010020 rock check dam

    E-Print Network [OSTI]

    XY! J00206010020 rock check dam J00206010023 rock check dam 09-009 09-009 09-009 PJ-SMA-2 0.901 Acres J00206010021 rock check dam J00206010019 rock check dam J00206010014 rock check dam J00203010007 Smith DATE: 14-November-2014 REVISION NUMBER: 8 XY! IP sampler location Berm Channel/swale Check dam

  7. W02106010008 rock check dam

    E-Print Network [OSTI]

    W-SMA-14.1 5.169 Acres W02106010008 rock check dam W02106010009 rock check dam W02106010010 rock check dam W02106010011 rock check dam W02106010012 rock check dam W02103010018 earthen berm W02103010016 dam Established vegetation Seed and mulch Sediment trap/basin Gabion Cap SWMU boundary SMA drainage

  8. Chapter Eight Rock Varnish

    E-Print Network [OSTI]

    Dorn, Ron

    ) Coating Description Carbonate skin Coating composed primarily of carbonate, usually calcium carbonate; the agent may be manganese, sulphate, carbonate, silica, iron, oxalate, organisms, or anthropogenic Dust, cyanobacteria, algae Nitrate crust Potassium and calcium nitrate coatings on rocks, often in caves and rock

  9. Science Education Lab | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter Principalfuel cells" Find Science DMZ CaseScienceLab

  10. Incident at the Rock Pile

    E-Print Network [OSTI]

    Birgfeld, Doug

    2015-01-01T23:59:59.000Z

    At the off limit rock pile At a Portland school Where theDoug. “Incident at the Rock Pile” http://escholarship.org/Doug. “Incident at the Rock Pile” http://escholarship.org/

  11. Jefferson Lab Public Affairs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNew SafetyLab The accelerator

  12. Jefferson Lab Public Affairs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNew SafetyLab The acceleratorWeb

  13. Jefferson Lab Public Affairs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNew SafetyLab The

  14. Jefferson Lab Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNew SafetyLab TheElectronic

  15. Lab celebrates Earth Day

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -Lab SubcontractoractiveLab

  16. Ames Lab 101: Magnetic Refrigeration

    ScienceCinema (OSTI)

    Pecharsky, Vitalij

    2013-03-01T23:59:59.000Z

    Vitalij Pecharsky, distinguished professor of materials science and engineering, discusses his research in magnetic refrigeration at Ames Lab.

  17. Ames Lab 101: Magnetic Refrigeration

    SciTech Connect (OSTI)

    Pecharsky, Vitalij

    2011-01-01T23:59:59.000Z

    Vitalij Pecharsky, distinguished professor of materials science and engineering, discusses his research in magnetic refrigeration at Ames Lab.

  18. MECHANICAL TEST LAB CAPABILITIES

    E-Print Network [OSTI]

    MECHANICAL TEST LAB CAPABILITIES · Static and cyclic testing (ASTM and non-standard) · Impact drop testing · Slow-cycle fatigue testing · High temperature testing to 2500°F · ASTM/ Boeing/ SACMA standard testing · Ability to design and fabricate non-standard test fixtures and perform non-standard tests

  19. Mimbres rock art: a graphic legacy of cultural expression

    E-Print Network [OSTI]

    Tidemann, Kathryn

    2002-01-01T23:59:59.000Z

    Rock art abounds along the Mimbres River banks and drainage tributaries reflecting the rich cultural remains of the ancient Mimbres people. The Mimbres are a well established cultural group who lived in southwest New Mexico and northern Mexico from...

  20. The Big Group of People Looking at How to Control Putting the Parts of the Air That Are the Same as What You Breathe Out Into Small Spaces in Rocks

    SciTech Connect (OSTI)

    Stack, Andrew

    2013-07-18T23:59:59.000Z

    Representing the Nanoscale Control of Geologic CO2 (NCGC), this document is one of the entries in the Ten Hundred and One Word Challenge. As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE energy. The mission of NCGC is to build a fundamental understanding of molecular-to-pore-scale processes in fluid-rock systems, and to demonstrate the ability to control critical aspects of flow, transport, and mineralization in porous rock media as applied to the injection and storage of carbon dioxide (CO2) in subsurface reservoirs.

  1. The Landscape of Klamath Basin Rock Art

    E-Print Network [OSTI]

    David, Robert James

    2012-01-01T23:59:59.000Z

    the Lines: Ethnographic Sources and Rock Art Interpretationwhen applying these sources toward rock art interpretation.information source for developing rock art interpretations.

  2. Guidelines for Vocal Tract Development Lab (VT Lab) team members to access the VT Lab WebSpace via the VT Lab website

    E-Print Network [OSTI]

    Vorperian, Houri K.

    Guidelines for Vocal Tract Development Lab (VT Lab) team members to access the VT Lab WebSpace via the VT Lab website The VTLab WebSpace is a new and improved mechanism for VT lab team members to share files. We are replacing the former Member Login section of our website with MyWeb Space (developed by Do

  3. Software Engineer RockAuto www.RockAuto.com

    E-Print Network [OSTI]

    Liblit, Ben

    Software Engineer ­ RockAuto www.RockAuto.com Position Description Software is the foundation · Familiarity with open-source development technologies like PHP, Perl, JavaScript and C (Linux system Lane, Madison, WI 53719) Why RockAuto? Strategic and tactical impact. We're an e-commerce company

  4. Tri-Lab Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Z Site MapTrends, Discovery, &Tri-Lab

  5. Lab announces security changes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLS Experimental RunProcedureofUWVoluntaryLab

  6. About the Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related LinksATHENA could reduceCustomerEIA's RSS,UsAboutLab

  7. Lab announces Venture Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -Lab Subcontractoractive in

  8. Archaeology on Lab Land

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperational Management » History »DeptArchaeology on Lab

  9. Open House | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTest and Evaluation |quasicrystals65 (9/12)Jefferson Lab

  10. Policymakers | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding accessPeptoidLabPhysicsPits |Regulations Policy andConstruction

  11. AMERICA'S NATIONAL LABS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See theDoctoral20ALSNews Vol.AMERICA'S NATIONAL LABS by

  12. Friends of Berkeley Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget(DANCE)Frequently AskedofFriends of Berekeley Lab

  13. TechLab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D AlloysTrails News Home | ORNL |TechLab

  14. Microwave assisted hard rock cutting

    DOE Patents [OSTI]

    Lindroth, David P. (Apple Valley, MN); Morrell, Roger J. (Bloomington, MN); Blair, James R. (Inver Grove Heights, MN)

    1991-01-01T23:59:59.000Z

    An apparatus for the sequential fracturing and cutting of subsurface volume of hard rock (102) in the strata (101) of a mining environment (100) by subjecting the volume of rock to a beam (25) of microwave energy to fracture the subsurface volume of rock by differential expansion; and , then bringing the cutting edge (52) of a piece of conventional mining machinery (50) into contact with the fractured rock (102).

  15. Labs21 Environmental Performance Criteria: Toward 'LEED (trademark) for Labs'

    SciTech Connect (OSTI)

    Mathew, Paul; Sartor, Dale; Lintner, William; Wirdzek, Phil

    2002-10-14T23:59:59.000Z

    Laboratory facilities present a unique challenge for energy efficient and sustainable design, with their inherent complexity of systems, health and safety requirements, long-term flexibility and adaptability needs, energy use intensity, and environmental impacts. The typical laboratory is about three to five times as energy intensive as a typical office building and costs about three times as much per unit area. In order to help laboratory stakeholders assess the environmental performance of their laboratories, the Labs21 program, sponsored by the US Environmental Protection Agency and the US Department of Energy, is developing the Environmental Performance Criteria (EPC), a point-based rating system that builds on the LEED(TM) rating system. Currently, LEED(TM) is the primary tool used to rate the sustainability of commercial buildings. However, it lacks some attributes essential to encouraging the application of sustainable design principles to laboratory buildings. Accordingly, the EPC has additions and modifications to the prerequisites and credits in each of the six sections of LEED(TM). It is being developed in a consensus-based approach by a diverse group of architects, engineers, consulting experts, health & safety personnel and facilities personnel. This report describes the EPC version 2.0, highlighting the underlying technical issues, and describes implications for the development of a LEED version for Laboratories.

  16. Name: ____________________ Stream Profile Lab 1

    E-Print Network [OSTI]

    Name: ____________________ Stream Profile Lab 1 LAB 4. Stream Profiles and Mass Balance: Supply vs hillslope diffusion experiments. We will now examine a slightly more complicated profile-evolution model on longitudinal channel profile shapes. The Questions: I. Why do streams generally have concave profiles

  17. E ngineering& S ystems Lab

    E-Print Network [OSTI]

    Corporation,Motorola,andincooperationwith Siemens Automotive and Detroit Diesel Corporation. S oftware E ngineering& N etwork S ystems Lab-time systems ­ fault tolerance and security ­ formal methods, code generation ­ compilation Transformations ·Test Case generation 6 S oftware E ngineering& N etwork S ystems Lab OutlineOutline Introduction

  18. Lab Validation Workload Performance Analysis

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    data center technology products for companies of all types and sizes. ESG Lab reports are not meant areas needing improvement. ESG Lab's expert third-party perspective is based on our own hands-on testing.....................................................................................................................................................15 All trademark names are property of their respective companies. Information contained

  19. Berkeley Lab Compact Accelerator Sets World Record

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Berkeley Lab Particle Accelerator Sets World Record Berkeley Lab Particle Accelerator Sets World Record Simulations at NERSC Help Validate Experimental Laser-Plasma Design December...

  20. Jefferson Lab Scientist Wins 2011 Lawrence Award | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNew SafetyLabJefferson LabWins

  1. Jefferson Lab Weekly Briefs - July 15, 2015 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNewLabLab ToTravel|Jefferson

  2. Jefferson Lab Work Officially Begins (Inside Business) | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNewLabLab

  3. Jefferson Lab awards several contracts (Daily Press) | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNewLabLabbegin whilePhysics

  4. Jefferson Lab awards upgrade contracts (Inside Business) | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNewLabLabbegin

  5. Jefferson Lab begins $310 million upgrade (Daily Press) | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNewLabLabbeginawards

  6. LabVIEW Core 2 Course | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -LabgrantsLab team makesLab'sLabVIEW

  7. Future{at}Labs.Prosperity Game{trademark}

    SciTech Connect (OSTI)

    Beck, D.F.; Boyack, K.W.; Berman, M. [Sandia National Labs., Albuquerque, NM (United States). Innovative Alliances Dept.] [Sandia National Labs., Albuquerque, NM (United States). Innovative Alliances Dept.

    1996-10-01T23:59:59.000Z

    Prosperity Games{trademark} are an outgrowth and adaptation of move/countermove and seminar War Games, Prosperity Games{trademark} are simulations that explore complex issues in a variety of areas including economics, politics, sociology, environment, education, and research. These issues can be examined from a variety of perspectives ranging from global, macroeconomic and geopolitical viewpoint down to the details of customer/supplier/market interactions specific industries. All Prosperity Games{trademark} are unique in that both the game format and the player contributions vary from game to game. This report documents the Future{at}Labs.Prosperity Game{trademark} conducted under the sponsorship of the Industry Advisory Boards of the national labs, the national labs, Lockheed Martin Corporation, and the University of California. Players were drawn from all stakeholders involved including government, industry, labs, and academia. The primary objectives of this game were to: (1) explore ways to optimize the role of the multidisciplinary labs in serving national missions and needs; (2) explore ways to increase collaboration and partnerships among government, laboratories, universities, and industry; and (3) create a network of partnership champions to promote findings and policy options. The deliberations and recommendations of these players provided valuable insights as to the views of this diverse group of decision makers concerning the future of the labs.

  8. Jefferson Lab Human Resources: Training and Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHuman Resources HumanAppraisalHR

  9. Jefferson Lab Leadership Council - Claus Rode

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHumanLaser Twinkles in RareAmber

  10. Jefferson Lab Leadership Council - Claus Rode

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHumanLaser Twinkles in

  11. Jefferson Lab Leadership Council - Claus Rode

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHumanLaser Twinkles inDrew

  12. Jefferson Lab Leadership Council - Dr. Allison Lung

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHumanLaser Twinkles

  13. Jefferson Lab Leadership Council - Dr. Andrew Hutton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHumanLaser TwinklesAccelerator

  14. Jefferson Lab Leadership Council - Dr. Andrew Hutton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHumanLaser

  15. Jefferson Lab Leadership Council - Dr. Andrew Hutton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHumanLaserMichael R. Pennington

  16. Jefferson Lab Leadership Council - Hugh E. Montgomery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHumanLaserMichael R.

  17. Jefferson Lab Leadership Council - Joe Scarcello

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHumanLaserMichael R.Council

  18. Jefferson Lab Leadership Council - Mary Logue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHumanLaserMichael

  19. Jefferson Lab Leadership Council - Michael Dallas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHumanLaserMichaelChief Operating

  20. Lab Analysis Techniques | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groups < LEDSGP‎LEEPuente,Salle,LaMoure County,Lab

  1. Jefferson Lab Weekly Briefs March 25, 2015 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    was planned for the months of March and April. Physics Jefferson Lab Published Journal Articles March 16-20 S. Pisano et al. (CLAS Collaboration). "Single and double spin...

  2. Neutron Transversity at Jefferson Lab

    SciTech Connect (OSTI)

    Jian-Ping Chen; Xiaodong Jiang; Jen-chieh Peng; Lingyan Zhu

    2005-09-07T23:59:59.000Z

    Nucleon transversity and single transverse spin asymmetries have been the recent focus of large efforts by both theorists and experimentalists. On-going and planned experiments from HERMES, COMPASS and RHIC are mostly on the proton or the deuteron. Presented here is a planned measurement of the neutron transversity and single target spin asymmetries at Jefferson Lab in Hall A using a transversely polarized {sup 3}He target. Also presented are the results and plans of other neutron transverse spin experiments at Jefferson Lab. Finally, the factorization for semi-inclusive DIS studies at Jefferson Lab is discussed.

  3. Rock Point, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy ResourcesRock Lab Analysis

  4. Rock River LLC Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy ResourcesRock Lab Analysisin

  5. Rock Sampling At Chena Geothermal Area (Kolker, 2008) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy ResourcesRock Lab

  6. Rock Sampling At Coso Geothermal Area (1995) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy ResourcesRock Lab Activity Date

  7. Rock Sampling At Florida Mountains Area (Brookins, 1982) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy ResourcesRock Lab Activity

  8. Jefferson Lab Employee Activities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JAG Privacy and Security Notice Skip over navigation search Group Please upgrade your browser. This site's design is only visible in a graphical browser that supports web...

  9. Rock Bands/Rock Brands: Mediation and Musical Performance in Post-liberalization Bangalore

    E-Print Network [OSTI]

    Coventry, Chloe Louise

    2013-01-01T23:59:59.000Z

    these recorded sources important rock pedagogical tools inwere a primary source of western rock music for young fans,Nevertheless, a source of funding for rock music performance

  10. NYC MEDIA LAB 2 Metrotech Center, 10

    E-Print Network [OSTI]

    Aronov, Boris

    Justin Hendrix Named Executive Director of NYC Media Lab NEW YORK, New York ­ NYC Media Lab is pleased, testing, and commercializing new digital media business concepts. Prior to this role, Hendrix directed ! About NYC Media Lab NYC Media Lab connects companies seeking to advance new media technologies

  11. Recap: Energy Efficiency at the National Labs

    Broader source: Energy.gov [DOE]

    Learn how the Energy Department's National Labs are helping consumers and businesses save energy and money.

  12. SURA Rewards Inventors | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Johns Hopkins University, helped develop three inventions during his summer internship at Jefferson Lab. A ceremony was held at 1 p.m. October 30, 1997, in the CEBAF...

  13. Precision mechatronics lab robot development

    E-Print Network [OSTI]

    Rogers, Adam Gregory

    2009-05-15T23:59:59.000Z

    based mobile robot. The principal goal of this work was the demonstration of the Precision Mechatronics Lab (PML) robot. This robot should be capable of traversing any known distance while maintaining a minimal position error. An optical correction...

  14. Precision mechatronics lab robot development

    E-Print Network [OSTI]

    Rogers, Adam Gregory

    2008-10-10T23:59:59.000Z

    based mobile robot. The principal goal of this work was the demonstration of the Precision Mechatronics Lab (PML) robot. This robot should be capable of traversing any known distance while maintaining a minimal position error. An optical correction...

  15. State of the Lab 2012

    ScienceCinema (OSTI)

    King, Alex

    2013-03-01T23:59:59.000Z

    Ames Laboratory Director Alex King delivers the annual State of the Lab address on Thursday, May 17, 2012, the 65th Anniversary of the founding of The Ames Laboratory. This video contains highlights from the address.

  16. Rock Properties Model

    SciTech Connect (OSTI)

    C. Lum

    2004-09-16T23:59:59.000Z

    The purpose of this model report is to document the Rock Properties Model version 3.1 with regard to input data, model methods, assumptions, uncertainties and limitations of model results, and qualification status of the model. The report also documents the differences between the current and previous versions and validation of the model. The rock properties model provides mean matrix and lithophysae porosity, and the cross-correlated mean bulk density as direct input to the ''Saturated Zone Flow and Transport Model Abstraction'', MDL-NBS-HS-000021, REV 02 (BSC 2004 [DIRS 170042]). The constraints, caveats, and limitations associated with this model are discussed in Section 6.6 and 8.2. Model validation accomplished by corroboration with data not cited as direct input is discussed in Section 7. The revision of this model report was performed as part of activities being conducted under the ''Technical Work Plan for: The Integrated Site Model, Revision 05'' (BSC 2004 [DIRS 169635]). The purpose of this revision is to bring the report up to current procedural requirements and address the Regulatory Integration Team evaluation comments. The work plan describes the scope, objectives, tasks, methodology, and procedures for this process.

  17. Iron and Steel Phosphate Rock

    E-Print Network [OSTI]

    Torgersen, Christian

    Lime Lithium Magnesium Manganese Mercury Mica Molybdenum Nickel Nitrogen Peat Perlite Phosphate Rock . . . . . . . . . . . . . . . . . . . . . . . . 194 Appendix C--Resource/Reserve Definitions . . . . . . 195 Commodities: Abrasives (Manufactured

  18. Iron and Steel Phosphate Rock

    E-Print Network [OSTI]

    Torgersen, Christian

    Mica Molybdenum Nickel Nitrogen Peat Perlite Phosphate Rock Platinum Potash Pumice Quartz Crystal Rare . . . . . . . . . . . . . . . . . . . . . . . . 190 Appendix C--A Resource/Reserve Classification for Minerals

  19. Lab 9 LabVIEW and GPIB LabVIEW (National Instruments)

    E-Print Network [OSTI]

    Glashausser, Charles

    Automatic data acquisition DAC 01010 Actuator, Heater... control Power amplifiers LabVIEW GPIB GPIB #12 Toolbar Retain Wire Values Button Step Function Buttons #12;Block Diagram Window Front Panel Window

  20. Jefferson Lab Hosts Upcoming Science Lectures on DNA and Chocolate |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group Gets 10Jefferson Lab

  1. Iron and Steel Phosphate Rock

    E-Print Network [OSTI]

    Torgersen, Christian

    Phosphate Rock Platinum Potash Pumice Quartz Crystal Rare Earths Rhenium Rubidium Salt Sand and Gravel Graphite Peat Sulfur Beryllium Gypsum Perlite Talc Bismuth Hafnium Phosphate Rock Tantalum Boron Helium on the USGS--the Federal source for science about the Earth, its natural and living resources, natural hazards

  2. #LabChat Recap: Solutions through Supercomputing | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Addthis Related Articles LabChat Recap: The Future of Biofuels LabChat Recap: What is Dark Energy LabChat Recap: Innovations Driving More Efficient Vehicles...

  3. DOE - Office of Legacy Management -- Slick Rock

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -K Le BlondSantaWyomingSlick Rock Slick

  4. Lab Breakthroughs | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy MaterialsFeatured Videos >> spaceTutorialsLabLab

  5. Lab transitions employee giving campaigns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -LabgrantsLab team makes uniqueLab

  6. Jefferson Lab Hosts High School Science Bowl on Feb. 27 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group Gets 10 MillionJefferson

  7. Jefferson Lab Hosts High School Science Bowl on Feb. 4 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group Gets 10 MillionJefferson4

  8. Jefferson Lab Hosts High School Science Bowl on Feb. 5 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group Gets 10 MillionJefferson45

  9. Jefferson Lab Laser Twinkles in Rare Color (PhysOrg) | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHuman

  10. Shotgun cartridge rock breaker

    DOE Patents [OSTI]

    Ruzzi, Peter L. (Eagan, NM); Morrell, Roger J. (Bloomington, MN)

    1995-01-01T23:59:59.000Z

    A rock breaker uses shotgun cartridges or other firearm ammunition as the explosive charge at the bottom of a drilled borehole. The breaker includes a heavy steel rod or bar, a gun with a firing chamber for the ammunition which screws onto the rod, a long firing pin running through a central passage in the rod, and a firing trigger mechanism at the external end of the bar which strikes the firing pin to fire the cartridge within the borehole. A tubular sleeve surround the main body of the rod and includes slits the end to allow it to expand. The rod has a conical taper at the internal end against which the end of the sleeve expands when the sleeve is forced along the rod toward the taper by a nut threaded onto the external end of the rod. As the sleeve end expands, it pushes against the borehole and holds the explosive gasses within, and also prevents the breaker from flying out of the borehole. The trigger mechanism includes a hammer with a slot and a hole for accepting a drawbar or drawpin which, when pulled by a long cord, allows the cartridge to be fired from a remote location.

  11. Contacts | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGas SeparationsRelevant toSite MapContact UsP-27 Group News Media

  12. Strength of transversely isotropic rocks

    E-Print Network [OSTI]

    Pei, Jianyong, 1975-

    2008-01-01T23:59:59.000Z

    This thesis proposes a new Anisotropic Matsuoka-Nakai (AMN) criterion to characterize the failure of transversely isotropic rocks under true triaxial stress states. One major obstacle in formulating an anisotropic criterion ...

  13. State of the Lab Address

    ScienceCinema (OSTI)

    King, Alex

    2013-03-01T23:59:59.000Z

    In his third-annual State of the Lab address, Ames Laboratory Director Alex King called the past year one of "quiet but strong progress" and called for Ames Laboratory to continue to build on its strengths while responding to changing expectations for energy research.

  14. Program of Study Lab Facilities

    E-Print Network [OSTI]

    Thomas, Andrew

    Program of Study Lab Facilities Financial Aid Applying Individuals in all areas of private of commercial, on- profit and government settings. While the market-place demand for students with graduate courses taught within Business, Computer Science, Education, Electrical and Computer Engineering

  15. ABBGroup-1-High voltage lab

    E-Print Network [OSTI]

    Basse, Nils Plesner

    oscillations are due to travelling waves in the heating volume. #12;©ABBGroup-9- 3-Sep-07 2. High voltage phase interrupts the injected current, it is stressed by the transient recovery voltage (TRV) oscillating©ABBGroup-1- 3-Sep-07 High voltage lab Research on high voltage gas circuit breakers Nils P. Basse

  16. CHEMICAL HYGIENE LAB SPECIFIC INFORMATION

    E-Print Network [OSTI]

    Bigelow, Stephen

    1 CHEMICAL HYGIENE PLAN (CHP) LAB SPECIFIC INFORMATION & STANDARD OPERATING PROCEDURES (SOPs____________________19 #12;3 Introduction 12/4/2013 This is the Chemical Hygiene Plan (CHP) for the Materials Research University of California at Santa Barbara Spectroscopy Department Chemical Hygiene Plan NMR and EPR

  17. CHEMICAL HYGIENE LAB SPECIFIC INFORMATION

    E-Print Network [OSTI]

    Sideris, Thomas C.

    1 CHEMICAL HYGIENE PLAN (CHP) LAB SPECIFIC INFORMATION & STANDARD OPERATING PROCEDURES (SOPs____________________19 #12;3 Introduction 12/4/2013 This is the Chemical Hygiene Plan (CHP) for the Materials Research Hygiene Plan NMR and EPR Laboratory Form Version 8/6/98 1. General Laboratory Information Laboratory Name

  18. CHEMICAL HYGIENE LAB SPECIFIC INFORMATION

    E-Print Network [OSTI]

    Bigelow, Stephen

    1 CHEMICAL HYGIENE PLAN (CHP) LAB SPECIFIC INFORMATION & STANDARD OPERATING PROCEDURES (SOPs______________________19 #12;3 Introduction 10/23/09 This is the Chemical Hygiene Plan (CHP) for the Materials Research Department Chemical Hygiene Plan NMR Laboratory Form Version 8/6/98 1. General Laboratory Information

  19. OIL ANALYSIS LAB TRIVECTOR ANALYSIS

    E-Print Network [OSTI]

    OIL ANALYSIS LAB TRIVECTOR ANALYSIS This test method is a good routine test for the overall condition of the oil, the cleanliness, and can indicate the presence of wear metals that could be coming of magnetic metal particles within the oil. This may represent metals being worn from components (i

  20. EES 1001 Lab 9 Groundwater

    E-Print Network [OSTI]

    Li, X. Rong

    EES 1001 ­ Lab 9 Groundwater Water that seeps into the ground, and is pulled down by gravity is groundwater. The water table is the top of the saturated zone, and is the target for well drillers that want to pump out the groundwater. *About those voids... Porosity is the volume of void space in a sediment

  1. W. FIFTH AVE. RADIATION LAB

    E-Print Network [OSTI]

    Ohta, Shigemi

    W. FIFTH AVE. NASA SPACE RADIATION LAB 958 ENERGY EFFICIENCY & CONSERVATION DIVISION THOMSON RD. E WASTE MANAGEMENT FACILITY INSTRUMENTATION 901906 750 801 701 703 815 933 912 923 925 911 938 939 902 197 Matter Physics & Materials Science Dept. 480 J5 Medical Research Center 490 H7 National Synchrotron Light

  2. evolution genetics lab GENE 4230L: MECHANISMSAND INFERENCES

    E-Print Network [OSTI]

    Arnold, Jonathan

    evolution genetics lab GENE 4230L: MECHANISMSAND INFERENCES OFEVOLUTIONARYPROCESSES Fall2006, 12 Selection 1. Aug. 28 Lab 4. Measuring Natural Selection 2. Aug. 30 LABOR DAY Sep. 4 Lab 5. Evolution. 30 Lab 20. Phylogenetics part 2 Nov. 1 Lab 21. Evolution of Development Nov. 6 Lab 22. Catch

  3. Rock physics at Los Alamos Scientific Laboratory

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    Rock physics refers to the study of static and dynamic chemical and physical properties of rocks and to phenomenological investigations of rocks reacting to man-made forces such as stress waves and fluid injection. A bibliography of rock physics references written by LASL staff members is given. Listing is by surname of first author. (RWR)

  4. Lab suppliers receive Department of Energy awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -Labgrants DecisionLabLabLabLabLab

  5. December 15, 2014 LAB COMMISSION MEETING MINUTES

    Broader source: Energy.gov [DOE]

    The Commission to Review the Effectiveness of the National Energy Laboratories (Commission) was convened for its fifth meeting at 10:00 AM on December 15, 2014. Commission Co-Chair Jared Cohon led the meeting. The meeting included two panels: (1) authors of recent reports about the DOE National Labs and (2) a national lab contractor panel. The report authors summarized their respective reports, highlighting concerns related to the relationship between DOE and the labs, research funding and strategy stove-piping, weak links between the labs and market, an inconsistent economic development mission, the difficulty small firms have in accessing labs, the labs’ lack of regional engagement, and DOE and congressional micromanagement of the labs. The lab contractor representatives responded to questions posed by the commissioners related to lab management and the relationship with DOE. Additionally, Patricia Falcone spoke of the important role of the labs in the science and technology enterprise and Alan Leshner talked about the labs and their relationship with the scientific community. Christopher Paine presented his views on transforming the weapons complex. The next meeting will be held February 24 at the Hilton at Mark Center in VA.

  6. Combustion Group Group members

    E-Print Network [OSTI]

    Wang, Wei

    Combustion Group Group members: Thierry Poinsot, Emilien Courtine, Luc Vervisch, Benjamin Farcy 2014 #12;Combustion Group Combustion Physics and Modeling Pollutants, Emissions, and Soot Formation Thermoacoustics and Combustion Dynamics Research focus § Examine mechanisms responsible for flame stabilization

  7. Radiator Labs | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Radiation Protection Regulations: TheCompetition » Radiator Labs

  8. Scientific Labs | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearch BriefsTenney,ScienceScientificScientific Labs SHARE

  9. Detector Group Leader Accepts Additional Role as Lab's Chief...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in use at Johns Hopkins University where it has been put to work for awake-animal brain studies (without the complication of anesthesia). Weisenberger, a native of...

  10. Hampton University professor to become group leader at Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonic EngineHIV and evolutionSiteHamada wins

  11. Joint Working Group for Fusion Safety | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home as Ready for(SC)Joint Genome InstituteDialysis

  12. Jefferson Lab's Detector Group Wins Prestigious National Award |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron beam charges upJeffersonFridayMarch 6 |31

  13. COLLOQUIUM: The Formation of Stellar Groups | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess StoriesFebruary 26, 2014, 4:00pmPlasma Physics19, 2014,

  14. Detector Group Leader Accepts Additional Role as Lab's Chief Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: Potential Application to ARM Measurements Detection

  15. Lab hosts multi-lab cyber security games

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLS ExperimentalFive R&D awards formuonLab hosts

  16. Jefferson Lab Names New Safety Director | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNew Safety Director NEWPORT NEWS, Va.,

  17. Jefferson Lab News - Jefferson Lab Achieves Critical Milestone Toward

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNew Safety Director NEWPORT NEWS,

  18. Jefferson Lab Plans Open House for May 19 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNew Safety

  19. Jefferson Lab, ODU team up for center | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron beam charges upJeffersonFridayMarch 6|Lab, ODU team

  20. Grad. Students Sought for Lab Tour Program | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heat PumpJorgeAtlGrad. Students Sought for Lab

  1. Reconstruction of Sedimentary Rock Based on Mechanical Properties

    E-Print Network [OSTI]

    Jin, Guodong; Patzek, Tad W.; Silin, Dmitry B.

    2008-01-01T23:59:59.000Z

    the veri?cation of rock mechanical properties. The dynamicis white. IV. ROCK MECHANICAL PROPERTIES FIG. 9: Cementationextracting meaningful rock transport properties from these

  2. Iron and Steel Phosphate Rock

    E-Print Network [OSTI]

    Torgersen, Christian

    Kyanite Lead Lime Lithium Magnesium Manganese Mercury Mica Molybdenum Nickel Nitrogen Peat Perlite Graphite Peat Sulfur Beryllium Gypsum Perlite Talc Bismuth Hafnium Phosphate Rock Tantalum Boron Helium information on the USGS--the Federal source for science about the Earth, its natural and living resources

  3. Jefferson Lab Vehicle Fleet Do's and Don'ts | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Vehicle Fleet Do's and Don'ts In addition to safe driving, Jefferson Lab Fleet vehicle drivers are responsible for the proper use, maintenance and protection of their...

  4. Combustion Group Group members

    E-Print Network [OSTI]

    Wang, Wei

    Combustion Group Group members: Thierry Poinsot, Emilien Courtine, Luc Vervisch, Benjamin Farcy § New combustion and energy-conversion concepts #12;Introduction Combustion research thrusts Combustion Dynamics and Flame-Stabilization Research objectives § Obtain fundamental understanding of combustion

  5. Back to School at the National Labs

    Broader source: Energy.gov [DOE]

    Learn how one Energy Department internship program is providing students with hands-on experience performing cutting edge research at the National Labs.

  6. Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning...

    Broader source: Energy.gov (indexed) [DOE]

    Desiccant Enhanced Evaporative Air Conditioning Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning May 29, 2012 - 5:22pm Addthis This breakthrough combines desiccant...

  7. Page 1 of 2 THERMO Lab Information

    E-Print Network [OSTI]

    Liebling, Michael

    Plan update. (http://optoelectronics.ece.ucsb.edu/thermoelectrics-and-high-efficiency-photovoltaics://optoelectronics.ece.ucsb.edu/thermoelectrics-and-high-efficiency-photovoltaics-lab By signing below, you

  8. Lab supercomputer finds new home at UNM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -Labgrants DecisionLabLabLabLab

  9. Lichen: the challenge for rock art conservation

    E-Print Network [OSTI]

    Dandridge, Debra Elaine

    2007-04-25T23:59:59.000Z

    This study investigates the effects that lichens have on rock surfaces in which ancient rock art (petroglyphs and pictographs) may be found. The study area includes four sites in the United States: one quartzite site in southwest Minnesota, two...

  10. MECHANICAL DEGRADATION OF EMPLACEMENT DRIFTS AT YUCCA MOUNTAIN - A CASE STUDY IN ROCK MECHANICS, PART 1: NONLITHOPHYSAL ROCK, PART 2: LITHOPHYSAL ROCK

    SciTech Connect (OSTI)

    M. Lin, D. Kicker, B. Damjanac, M. Board, and M. Karakouzian

    2006-02-27T23:59:59.000Z

    This paper outlines rock mechanics investigations associated with mechanical degradation of planned emplacement drifts at Yucca Mountain, which is the designated site for a US high-level nuclear waste repository. The factors leading to drift degradation include stresses from the overburden, stresses induced by the heat released from the emplaced waste, stresses due to seismically related ground motions, and time-dependent strength degradation. The welded tuff emplacement horizon consists of two groups of rock with distinct engineering properties: nonlithophysal units and lithophysal units, based on the relative proportion of lithophysal cavities. Part I of the paper concentrates on the generally hard, strong, and fractured nonlithophysal rock. The degradation behavior of the tunnels in the nonlithophysal rock is controlled by the occurrence of keyblocks. A statistically equivalent fracture model was generated based on extensive underground fracture mapping data from the Exploratory Studies Facility at Yucca Mountain. Three-dimensional distinct block analyses, generated with the fracture patterns randomly selected from the fracture model, were developed with the consideration of in situ, thermal, seismic loads. In this study, field data, laboratory data, and numerical analyses are well integrated to provide a solution for the unique problem of modeling drift degradation throughout the regulatory period for repository performance.

  11. National Labs | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota1 JulyScienceScientistsNational Labs

  12. Lab Write-Up: Rubric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLED Lighting5-15Trade |VesselLPOD Name: Lab

  13. Lab Subcontractor Consortium provides grants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -Lab Subcontractor Consortium

  14. National Labs | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement ofConverDyn NOPRNancy SutleyNational Labs Commission

  15. Solar Labs | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |RippeyInformationSodaAtlas (PACADecker MackSolar Labs

  16. At A Glance | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumni AlumniFederalAshley BoyleAn overhead view of Jefferson Lab.

  17. Element Labs | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| OpenElectromagnetic Profiling TechniquesLabs Jump

  18. Green Labs and EH&S, Nov. 2013 ___________________ Lab Recycling Guide

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Green Labs and EH&S, Nov. 2013 ___________________ Lab Recycling Guide Non-contaminated, clean lab plastic containers and conical tubes may be recycled. To be accepted, containers must be clean, triple. Recycling bin located: PSB Loading Dock Alcohol cans and metal shipping containers may be recycled

  19. TEAM MEMBERS INSPECTED LAB Oct 2014 Suhare Adam Greg Silverberg Cruft Lab

    E-Print Network [OSTI]

    INSPECTION TEAM TEAM CHAIR MEMBER TEAM MEMBERS INSPECTED LAB LOCATIONS LAB SAFETY OFFICERS TEAM 1 Oct 2014 Suhare Adam Greg Silverberg Cruft Lab Hau (Eric Brandin) Electronics Shop (Al Takeda) TEAM 2/Tamas Szalay) Capasso (Alan She) Stubbs (Peter Doherty) TEAM 3 Nov 2014 Mike Gerhardt Zach Gault Paul Loschak

  20. Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s - 16,3/14

  1. Guide to Savannah River Laboratory Analytical Services Group

    SciTech Connect (OSTI)

    Not Available

    1990-04-01T23:59:59.000Z

    The mission of the Analytical Services Group (ASG) is to provide analytical support for Savannah River Laboratory Research and Development Programs using onsite and offsite analytical labs as resources. A second mission is to provide Savannah River Site (SRS) operations with analytical support for nonroutine material characterization or special chemical analyses. The ASG provides backup support for the SRS process control labs as necessary.

  2. The AmeriFlux QA/ QC group was created to

    E-Print Network [OSTI]

    also provides secondary standards and reference sensors (e.g. lab quality PPFD sensors) to Ameri, this special issue is dedicated to all the engi- neers and technicians of Fluxnet who ensure the sensors keep and evaluation. Our modular system and a group of dedi- cated people in the QA/ QC lab allows quick and effective

  3. ANNUAL FISH PASSAGE REPORT ROCK ISLAND DAM

    E-Print Network [OSTI]

    ANNUAL FISH PASSAGE REPORT ROCK ISLAND DAM COLUMBIA RIVER, WASHINGTON, 1959 :y .iiJA/i-3ri ^' WUUUi. ANNUAL FISH PASSAGE REPORT - ROCK ISLAND DAM COLUMBIA RIVER, WASHINGTON, 1959 by Paul D. Zimmer, Clifton and observations 10 Summary 13 #12;#12;ANNUAL FISH PASSAGE REPORT - ROCK ISLAND DAM COLUMBIA RIVER, WASHINGTON

  4. ANNUAL FISH PASSAGE REPORT ROCK ISLAND DAM

    E-Print Network [OSTI]

    42) ANNUAL FISH PASSAGE REPORT ROCK ISLAND DAM COLUMBIA RIVER, WASHINGTON 1961 Marine Biological. McKeman, Director ANNUAL FISH PASSAGE REPORT - ROCK ISLAND DAM COLUMBIA RIVER, WASHINGTON, 1961--Fisheries No. 421 Washington, D. C. April 1962 #12;Rock Island Dam, Columbia River, Washington ii #12;CONTENTS

  5. Annual Fish Passage Report -Rock Island Dam

    E-Print Network [OSTI]

    Annual Fish Passage Report - Rock Island Dam Columbia River, Washington, 1965 By Paul D. Zimmer L. McKeman, Director Annual Fish Passage Report - Rock Island Dam Columbia River, Washington, 1965;#12;Annual Fish Passage Report - Rock Island Dam Columbia River, Washington, 1965 By PAUL D. ZIMMER, Fishery

  6. Introduction 1.1 Why study rocks?

    E-Print Network [OSTI]

    Lee, Cin-Ty Aeolus

    2 Chapter 1 Introduction 1.1 Why study rocks? I am a petrologist and I study rocks. Petrology and modification of certain types of rocks. On one level, petrology involves the art of identifying and classifying. This is of course the reverse of the historical development of petrology. I have chosen this approach because all

  7. Rock magnetism of remagnetized carbonate rocks: another look MIKE JACKSON* & NICHOLAS L. SWANSON-HYSELL

    E-Print Network [OSTI]

    Swanson-Hysell, Nicholas

    Rock magnetism of remagnetized carbonate rocks: another look MIKE JACKSON* & NICHOLAS L. SWANSON-HYSELL Institute for Rock Magnetism, Winchell School of Earth Sciences, University of Minnesota, Minnesota, US, dominantly in the super- paramagnetic and stable single-domain size range, also give rise to distinctive rock-magnetic

  8. Water Rock Interaction [WRI 14] Chemical weathering of granitic rocks: experimental approach and Pb-Li

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of water/rock interactions both in terms of source and extent of weathering, by measuring major and traceWater Rock Interaction [WRI 14] Chemical weathering of granitic rocks: experimental approach and Pb, France Abstract In order to characterize water/rock interactions of granite, we performed laboratory

  9. Analysis of rock-fall and rock-fall avalanche seismograms in the French Alps

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    the source rock slope (Figure 1), the falling mass strikes the talus slope and breaks up and/or bounces1 Analysis of rock-fall and rock-fall avalanche seismograms in the French Alps J. Deparis, D reviews seismograms from 10 rock-fall events recorded between 1992 and 2001 by the permanent seismological

  10. 2.20 Properties of Rocks and Minerals -Magnetic Properties of Rocks and Minerals

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    2.20 Properties of Rocks and Minerals - Magnetic Properties of Rocks and Minerals R. J. Harrison, R 621 622 623 623 579 #12;580 Magnetic Properties of Rocks and Minerals 2.20.5.3 2.20.5.4 2, and are present in all types of rocks, sediments, and soils. These minerals retain a memory of the geomagnetic

  11. 37The Oldest Lunar Rocks Apollo astronauts recovered over 840 pounds of lunar rocks, and during

    E-Print Network [OSTI]

    37The Oldest Lunar Rocks Apollo astronauts recovered over 840 pounds of lunar rocks, and during applied to the different rock samples. Location Mission Rock Type Age (Myr) Mare Tranquillitatis Apollo-11 Basalt 3,500 Oceanus Procellarum Apollo-12 Basalt 3,200 Fra Mauro Formation Apollo-14 Basalt 4,150 Apollo

  12. advanced lab frame: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences Websites Summary: , David Wessel, and Kathy Yelick UC Berkeley Par Lab End-of-Project Party May 30, 2013 12;BERKELEY PAR LAB Par Lab Timeline 2 Initial Meetings...

  13. astd field lab: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences Websites Summary: , David Wessel, and Kathy Yelick UC Berkeley Par Lab End-of-Project Party May 30, 2013 12;BERKELEY PAR LAB Par Lab Timeline 2 Initial Meetings...

  14. advances lab astrophysics: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences Websites Summary: , David Wessel, and Kathy Yelick UC Berkeley Par Lab End-of-Project Party May 30, 2013 12;BERKELEY PAR LAB Par Lab Timeline 2 Initial Meetings...

  15. acid bacteria lab: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences Websites Summary: , David Wessel, and Kathy Yelick UC Berkeley Par Lab End-of-Project Party May 30, 2013 12;BERKELEY PAR LAB Par Lab Timeline 2 Initial Meetings...

  16. animal diagnostic lab: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences Websites Summary: , David Wessel, and Kathy Yelick UC Berkeley Par Lab End-of-Project Party May 30, 2013 12;BERKELEY PAR LAB Par Lab Timeline 2 Initial Meetings...

  17. DATE : NVLAP LAB CODE: CONSTRUCTION MATERIALS TESTING

    E-Print Network [OSTI]

    Short Title ADMIXTURES _____ 02/A35 ASTM C233 Testing Air-Entraining Admixtures for Concrete _____ 02/A MATERIALS TESTING APPLICATION (REV. 2014-08-25) PAGE 2 OF 10 #12;DATE : NVLAP LAB CODE: CONCRETE _____ 02/ADATE : NVLAP LAB CODE: CONSTRUCTION MATERIALS TESTING TEST METHOD SELECTION LIST Instructions

  18. Multimedia Statistical Labs & Toolkit (TILE) Deborah Nolan

    E-Print Network [OSTI]

    Nolan, Deborah

    Multimedia Statistical Labs & Toolkit (TILE) Deborah Nolan University of California, Department@research.bell-labs.com 1. Introduction The potential for multimedia to enhance the statistics curriculum is clear, but how to develop instructional materials that take advantage of the riches that multimedia has to offer

  19. Electronics I 4 cr with Lab

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    ECE 332 Electronics I 4 cr with Lab ECE 370 Signals & Systems 3 cr co ECE 225 Electric Circuits 3 106 - 4 cr General Physics with Calculus CS 116 - 1 cr Intro to Comp. Program. Lab co MATH 227 4 cr cr Department of Electrical and Computer Engineering -- Department of Physics and Astromony

  20. The DVCS program at Jefferson Lab

    SciTech Connect (OSTI)

    Niccolai, Silvia [Institut de Physique Nucleaire, Orsay, France

    2014-06-01T23:59:59.000Z

    Recent promising results, obtained at Jefferson Lab, on cross sections and asymmetries for DVCS and their link to the Generalized Parton Distributions are the focus of this paper. The extensive experimental program to measure DVCS with the 12-GeV-upgraded CEBAF in three experimental Halls (A, B, C) of Jefferson Lab, will also be presented.

  1. Wireshark Lab: SSL Version: 2.0

    E-Print Network [OSTI]

    Lu, Enyue "Annie"

    Wireshark Lab: SSL Version: 2.0 © 2007 J.F. Kurose, K.W. Ross. All Rights Reserved Computer Networking: A Top- down Approach, 4 th edition. In this lab, we'll investigate the Secure Sockets Layer (SSL) protocol, focusing on the SSL records sent over a TCP connection. We'll do so by analyzing a trace

  2. CHEMICAL HYGIENE PLAN LAB SPECIFIC INFORMATION

    E-Print Network [OSTI]

    Bigelow, Stephen

    CHEMICAL HYGIENE PLAN (CHP) LAB SPECIFIC INFORMATION & STANDARD OPERATING PROCEDURES (SOPs/23/09 This is the Chemical Hygiene Plan (CHP) for the Materials Research Laboratory (MRL) Spectroscopy Facility. All labs Chemical Hygiene Plan NMR Laboratory Form Version 8/6/98 1. General Laboratory Information Laboratory Name

  3. Office of Educational Programs Solar Energy Lab

    E-Print Network [OSTI]

    Homes, Christopher C.

    Office of Educational Programs Solar Energy Lab Overview Kaitlin Thomassen Target student audience: High School Regents Physics High School AP Physics #12;Solar Energy Lab: Goals Highlight research Solar Farm & Northeast Solar Energy Research Center (NSERC) Scientists and engineers will research

  4. 2014 PMEL Lab Review 1 Background

    E-Print Network [OSTI]

    integrated into ESGF software stack to provide discovery, exploration and download of subsets #12;2014 PMEL submission in development for version 4 #12;2014 PMEL Lab Review 17 Isn't this the PMEL lab lifecycle ·minimizes effort required by researchers ·Greatly improves access for users Do it in a wa

  5. n CAPABILITY STATEMENT Intelligent Transport Systems Lab

    E-Print Network [OSTI]

    Liley, David

    collaborative research programs with the following institutions and organisations: VicRoads ARRB ITSL is open Lab (ITSL) isVictoria's first dedicated traffic analysis research Lab established in April 2012 and Australia facilitate and foster excellent, industry relevant and cross-disciplinary research in Australia

  6. Lab Validation Microsoft Windows Server 2012

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    data center technology products for companies of all types and sizes. ESG Lab reports are not meant areas needing improvement. ESG Lab's expert third-party perspective is based on our own hands-on testing.....................................................................................................................................................22 All trademark names are property of their respective companies. Information contained

  7. Lab Validation Microsoft Windows Server 2012 with

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    data center technology products for companies of all types and sizes. ESG Lab reports are not meant areas needing improvement. ESG Lab's expert third-party perspective is based on our own hands-on testing.....................................................................................................................................................16 All trademark names are property of their respective companies. Information contained

  8. Relative Permeability of Fractured Rock

    SciTech Connect (OSTI)

    Mark D. Habana

    2002-06-30T23:59:59.000Z

    Contemporary understanding of multiphase flow through fractures is limited. Different studies using synthetic fractures and various fluids have yielded different relative permeability-saturation relations. This study aimed to extend the understanding of multiphase flow by conducting nitrogen-water relative permeability experiments on a naturally-fractured rock from The Geysers geothermal field. The steady-state approach was used. However, steady state was achieved only at the endpoint saturations. Several difficulties were encountered that are attributed to phase interference and changes in fracture aperture and surface roughness, along with fracture propagation/initiation. Absolute permeabilities were determined using nitrogen and water. The permeability values obtained change with the number of load cycles. Determining the absolute permeability of a core is especially important in a fractured rock. The rock may change as asperities are destroyed and fractures propagate or st rain harden as the net stresses vary. Pressure spikes occurred in water a solute permeability experiments. Conceptual models of an elastic fracture network can explain the pressure spike behavior. At the endpoint saturations the water relative permeabilities obtained are much less than the nitrogen gas relative permeabilities. Saturations were determined by weighing and by resistivity calculations. The resistivity-saturation relationship developed for the core gave saturation values that differ by 5% from the value determined by weighing. Further work is required to complete the relative permeability curve. The steady-state experimental approach encountered difficulties due to phase interference and fracture change. Steady state may not be reached until an impractical length of time. Thus, unsteady-state methods should be pursued. In unsteady-state experiments the challenge will be in quantifying rock fracture change in addition to fluid flow changes.

  9. Jefferson Lab's Science Education Website Helps Students Prepare...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab's Science Education Website Helps Students Prepare for Upcoming Standards of Learning Tests April 12, 2004 Usage of Jefferson Lab's Science Education website is...

  10. Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virtual Lab in Supporting Heavy Duty Engine and Vehicle Emission Rulemaking Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle Emission Rulemaking Presentation...

  11. Jefferson Lab Contract to be Awarded to Jefferson Science Associates...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jefferson Lab Contract to be Awarded to Jefferson Science Associates, LLC for Management and Operation of World-Class Office of Science Laboratory Jefferson Lab Contract to be...

  12. ASC at the Labs | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Our Programs Defense Programs Future Science & Technology Programs Advanced Simulation and Computing and Institutional R&D Programs ASC at the Labs ASC at the Labs The...

  13. President Obama Visits the Argonne National Research Lab to Talk...

    Energy Savers [EERE]

    President Obama Visits the Argonne National Research Lab to Talk About American Energy Security President Obama Visits the Argonne National Research Lab to Talk About American...

  14. National Lab Day Fact Sheets | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lab Day Fact Sheets Secretary Ernest Moniz learns about the Labs' work in high performance computing and additive manufacturing. | Photo courtesy of Sarah Gerrity, Energy...

  15. MOU signed between CIAE and Jefferson National Lab, USA. (China...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    https:www.jlab.orgnewsarticlesmou-signed-between-ciae-and-jefferson-national-lab-usa-china-nuclear-industry-news-ge... MOU signed between CIAE and Jefferson National Lab, USA....

  16. Energy Department Announces New Lab Program to Accelerate Commercializ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Program to Accelerate Commercialization of Clean Energy Technologies Energy Department Announces New Lab Program to Accelerate Commercialization of Clean Energy Technologies...

  17. Energy Department, Oak Ridge National Lab Officials to Celebrate...

    Office of Environmental Management (EM)

    Department, Oak Ridge National Lab Officials to Celebrate First of its Kind Carbon Fiber Facility Energy Department, Oak Ridge National Lab Officials to Celebrate First of its Kind...

  18. Particle Measurement Methodology: Comparison of On-road and Lab...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Measurement Methodology: Comparison of On-road and Lab Diesel Particle Size Distributions Particle Measurement Methodology: Comparison of On-road and Lab Diesel Particle Size...

  19. SLAC All Access: Laser Labs

    SciTech Connect (OSTI)

    Minitti, Mike; Woods Mike

    2013-03-01T23:59:59.000Z

    From supermarket checkouts to video game consoles, lasers are ubiquitous in our lives. Here at SLAC, high-power lasers are critical to the cutting-edge research conducted at the laboratory. But, despite what you might imagine, SLAC's research lasers bear little resemblance to the blasters and phasers of science fiction. In this edition of All Access we put on our safety goggles for a peek at what goes on inside some of SLAC's many laser labs. LCLS staff scientist Mike Minitti and SLAC laser safety officer Mike Woods detail how these lasers are used to study the behavior of subatomic particles, broaden our understanding of cosmic rays and even unlock the mysteries of photosynthesis.

  20. SLAC All Access: Laser Labs

    ScienceCinema (OSTI)

    Minitti, Mike; Woods Mike

    2014-06-03T23:59:59.000Z

    From supermarket checkouts to video game consoles, lasers are ubiquitous in our lives. Here at SLAC, high-power lasers are critical to the cutting-edge research conducted at the laboratory. But, despite what you might imagine, SLAC's research lasers bear little resemblance to the blasters and phasers of science fiction. In this edition of All Access we put on our safety goggles for a peek at what goes on inside some of SLAC's many laser labs. LCLS staff scientist Mike Minitti and SLAC laser safety officer Mike Woods detail how these lasers are used to study the behavior of subatomic particles, broaden our understanding of cosmic rays and even unlock the mysteries of photosynthesis.

  1. Jefferson Lab's Trim Card II

    SciTech Connect (OSTI)

    Trent Allison; Sarin Philip; C. Higgins; Edward Martin; William Merz

    2005-05-01T23:59:59.000Z

    Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) uses Trim Card I power supplies to drive approximately 1900 correction magnets. These trim cards have had a long and illustrious service record. However, some of the employed technology is now obsolete, making it difficult to maintain the system and retain adequate spares. The Trim Card II is being developed to act as a transparent replacement for its aging predecessor. A modular approach has been taken in its development to facilitate the substitution of sections for future improvements and maintenance. The resulting design has been divided into a motherboard and 7 daughter cards which has also allowed for parallel development. The Trim Card II utilizes modern technologies such as a Field Programmable Gate Array (FPGA) and a microprocessor to embed trim card controls and diagnostics. These reprogrammable devices also provide the versatility to incorporate future requirements.

  2. Jefferson Lab Weekly Briefs May 13, 2015 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering The installation group has been working on the following projects: - brazing plates and straps for Hall B on the Torus cold beams. - repairing a...

  3. Rock Sampling At Blue Mountain Geothermal Area (U.S. Geological Survey,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy ResourcesRock Lab Analysisin2012)

  4. Rock Sampling At Jemez Mountain Area (Eichelberger & Koch, 1979) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy ResourcesRock Lab ActivityEnergy

  5. Rock Sampling At Mt Ranier Area (Frank, 1995) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy ResourcesRock Lab

  6. Rock Sampling At Roosevelt Hot Springs Geothermal Area (Ward, Et Al., 1978)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy ResourcesRock Lab| Open Energy

  7. Rock Sampling At San Francisco Volcanic Field Area (Warpinski, Et Al.,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy ResourcesRock Lab| Open

  8. Rock Sampling At Seven Mile Hole Area (Larson, Et Al., 2009) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy ResourcesRock Lab|

  9. Rock Sampling At Socorro Mountain Area (Armstrong, Et Al., 1995) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy ResourcesRock Lab|Energy

  10. Jefferson Lab Leadership Council - Robert D. McKeown

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHumanLaserMichaelChief

  11. DOE - Office of Legacy Management -- Bowen Lab - NJ 33

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTable ofArizonaBuffalo - NYBowen Lab - NJ 33 FUSRAP

  12. Jefferson Lab Visitor's Center - Driving in Virginia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNewLabLab To ReceiveUserDriving

  13. Jefferson Lab Visitor's Center - Schedule a Tour

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNewLabLab To

  14. Jefferson Lab Visitor's Center - Travel Accommodations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNewLabLab ToTravel

  15. Hot Dry Rock; Geothermal Energy

    SciTech Connect (OSTI)

    None

    1990-01-01T23:59:59.000Z

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic engineering procedures at depth may still be attained if high temperature sites with extensive fracturing are developed or exploited. [DJE -2005

  16. Big Bang Day : Physics Rocks

    ScienceCinema (OSTI)

    None

    2011-04-25T23:59:59.000Z

    Is particle physics the new rock 'n' roll? The fundamental questions about the nature of the universe that particle physics hopes to answer have attracted the attention of some very high profile and unusual fans. Alan Alda, Ben Miller, Eddie Izzard, Dara O'Briain and John Barrowman all have interests in this branch of physics. Brian Cox - CERN physicist, and former member of 90's band D:Ream, tracks down some very well known celebrity enthusiasts and takes a light-hearted look at why this subject can appeal to all of us.

  17. MULTI-ATTRIBUTE SEISMIC/ROCK PHYSICS APPROACH TO CHARACTERIZING FRACTURED RESERVOIRS

    SciTech Connect (OSTI)

    Gary Mavko

    2000-10-01T23:59:59.000Z

    This project consists of three key interrelated Phases, each focusing on the central issue of imaging and quantifying fractured reservoirs, through improved integration of the principles of rock physics, geology, and seismic wave propagation. This report summarizes the results of Phase I of the project. The key to successful development of low permeability reservoirs lies in reliably characterizing fractures. Fractures play a crucial role in controlling almost all of the fluid transport in tight reservoirs. Current seismic methods to characterize fractures depend on various anisotropic wave propagation signatures that can arise from aligned fractures. We are pursuing an integrated study that relates to high-resolution seismic images of natural fractures to the rock parameters that control the storage and mobility of fluids. Our goal is to go beyond the current state-of-the art to develop and demonstrate next generation methodologies for detecting and quantitatively characterizing fracture zones using seismic measurements. Our study incorporates 3 key elements: (1) Theoretical rock physics studies of the anisotropic viscoelastic signatures of fractured rocks, including up scaling analysis and rock-fluid interactions to define the factors relating fractures in the lab and in the field. (2) Modeling of optimal seismic attributes, including offset and azimuth dependence of travel time, amplitude, impedance and spectral signatures of anisotropic fractured rocks. We will quantify the information content of combinations of seismic attributes, and the impact of multi-attribute analyses in reducing uncertainty in fracture interpretations. (3) Integration and interpretation of seismic, well log, and laboratory data, incorporating field geologic fracture characterization and the theoretical results of items 1 and 2 above. The focal point for this project is the demonstration of these methodologies in the Marathon Oil Company Yates Field in West Texas.

  18. September 1997 Coord `97 Lucent Technologies Bell Labs Innovations

    E-Print Network [OSTI]

    Perry, Dewayne E.

    1 September 1997 Coord `97 Lucent Technologies Bell Labs Innovations Software Architecture and its Hill NJ 07974 dep@research.bell-labs.com www.bell-labs.com/~dep/ September 1997 Coord `97 Lucent Engineering · Issues of Emerging Significance September 1997 Coord `97 Lucent Technologies Bell Labs

  19. Instrumentation and Equipment for Three Independent Research Labs

    SciTech Connect (OSTI)

    Darlene Roth

    2012-03-29T23:59:59.000Z

    Completed in 2011, Albright's new Science Center includes three independent student and faculty research labs in Biology, Chemistry/Biochemistry, and Physics (separate from teaching labs). Providing independent research facilities, they eliminate disruptions in classrooms and teaching labs, encourage and accommodate increased student interest, and stimulate advanced research. The DOE grant of $369,943 enabled Albright to equip these advanced labs for 21st century science research, with much instrumentation shared among departments. The specialty labs will enable Albright to expand its student-faculty research program to meet growing interest, help attract superior science students, maximize faculty expertise, and continue exceeding its already high rates of acceptance for students applying for postgraduate education or pharmaceutical research positions. Biology instrumentation/equipment supports coursework and independent and collaborative research by students and faculty. The digital shaker, CO{sub 2} and water bath incubators (for controlled cell growth), balance, and micropipettes support cellular biology research in the advanced cell biology course and student-faculty research into heavy metal induction of heat shock proteins in cultured mammalian cells and the development of PCR markers from different populations of the native tree, Franklinia. The gravity convection oven and lyophilizer support research into physical and chemical analysis of floodplain sediments used in assessment of riparian restoration efforts. The Bio-Rad thermocycler permits fast and accurate DNA amplification as part of research into genetic diversity in small mammal populations and how those populations are affected by land-use practices and environmental management. The Millipore water deionizing system and glassware washer provide general support of the independent research lab and ensure quality control of coursework and interdisciplinary research at the intersection of biology, chemistry, and toxicology. Grant purchases support faculty and students working in the areas of plant cellular biology, landscape ecology and wildlife management, wetland restoration, and ecotoxicology of aquatic invertebrates. Chemistry/BioChemistry instrumentation supports a wide range of research and teaching needs. The Dell quad core Xeon processors and Gaussian 09 support computational research efforts of two of our faculty. The computational work of one of these groups is part of close collaboration with one organic chemist and provides support info for the synthetic work of this professor and his students. Computational chemistry studies were also introduced into the physical chemistry laboratory course for junior chemistry concentrators. The AKTA plus system and superdex columns, Thermoscientific Sorvall RC-6 plus superspeed centrifuge, Nanodrop spectrometer, Eppendorf microfuge, Homogenizer and Pipetman pipetters were incorporated into a research project involving purification and characterization of a construct of beta 2-microglobulin by one of our biochemists. The vacuum system (glove box, stand, and pump) makes a significant contribution to the research of our inorganic chemist, the newest department member, working on research projects with four students. The glove box provides the means to carry out their synthetic work in an oxygenless atmosphere. Supporting basic research pursued by faculty and students, the remaining items (refrigerator/freezer units for flammable storage, freezer, refrigerated water bath, rotary evaporator system, vacuum oven, analytical and top-loading balances) were distributed between our biochemistry and chemistry research labs. The Nanodrop spectrometer, Sorvall centrifuge, and rotary evaporator system are used in several junior/senior lab courses in both biochemistry and chemistry. To date, 14 undergraduate research students have been involved in projects using the new instrumentation and equipment provided by this grant. Physics equipment acquired is radically transforming Albright research and teaching capabilities. The tw

  20. Laboratory characterization of rock joints

    SciTech Connect (OSTI)

    Hsiung, S.M.; Kana, D.D.; Ahola, M.P.; Chowdhury, A.H.; Ghosh, A. [Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses

    1994-05-01T23:59:59.000Z

    A laboratory characterization of the Apache Leap tuff joints under cyclic pseudostatic and dynamic loads has been undertaken to obtain a better understanding of dynamic joint shear behavior and to generate a complete data set that can be used for validation of existing rock-joint models. Study has indicated that available methods for determining joint roughness coefficient (JRC) significantly underestimate the roughness coefficient of the Apache Leap tuff joints, that will lead to an underestimation of the joint shear strength. The results of the direct shear tests have indicated that both under cyclic pseudostatic and dynamic loadings the joint resistance upon reverse shearing is smaller than that of forward shearing and the joint dilation resulting from forward shearing recovers during reverse shearing. Within the range of variation of shearing velocity used in these tests, the shearing velocity effect on rock-joint behavior seems to be minor, and no noticeable effect on the peak joint shear strength and the joint shear strength for the reverse shearing is observed.

  1. The Landscape of Klamath Basin Rock Art

    E-Print Network [OSTI]

    David, Robert James

    2012-01-01T23:59:59.000Z

    I incorporate results from the XRF and projectile pointRay Fluorescence (hereafter, XRF) to help affiliate rock artstudies or reports in which XRF analysis have been done.

  2. Berkeley Lab Creates Superfast Search Engine

    Broader source: Energy.gov [DOE]

    Scientists at the Energy Department's Berkeley Lab developed a new approach to searching massive databases that can increase speeds by 10 to 100 times that of large commercial database software.

  3. John E. Hasse, Geospatial Research Lab,

    E-Print Network [OSTI]

    ap Executive Summary July 2010 John E. Hasse, Geospatial Research Lab Geospatial Research Laboratory Department of Geography Rowan University 201 Mullica Hill Road Glassboro by John Reiser, GIS specialist for the Rowan Geospatial Research Laboratory. http

  4. Lab experiences for teaching undergraduate dynamics

    E-Print Network [OSTI]

    Lilienkamp, Katherine A. (Katherine Ann), 1969-

    2003-01-01T23:59:59.000Z

    This thesis describes several projects developed to teach undergraduate dynamics and controls. The materials were developed primarily for the class 2.003 Modeling Dynamics and Control I. These include (1) a set of ActivLab ...

  5. Curnputr:r Labs. C:unficlential

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    #12;Curnputr:r Labs. Concurrent C:unficlential . 33-34 ...... 18-19 ., C) ...... JL. ........ 35 ................................................................... 98 Engineering............................................................. 100 Journalism .............................................................. 7, 12, 14 High School Concurrent Registration ............................. 36 Immunization

  6. Security Lab Series Introduction to Cryptography

    E-Print Network [OSTI]

    Tao, Lixin

    ......................................................................................7 4.2 Symmetric Key Encryption/Decryption with GPG/Decryption .....................................................11 4.3.1 Basic Concepts of PGP (GPG) Digital Certificates and Public Key Ciphers...............11 4.3.2 A Detailed Lab Guide for GPG

  7. Ames Lab 101: Rare-Earth Magnets

    ScienceCinema (OSTI)

    McCallum, Bill

    2012-08-29T23:59:59.000Z

    Senior Scientist, Bill McCallum, briefly discusses rare-earth magnets and their uses and how Ames Lab is research new ways to save money and energy using magnets.

  8. Security Lab Series Introduction to Web Technologies

    E-Print Network [OSTI]

    Tao, Lixin

    Security Lab Series Introduction to Web Technologies Prof. Lixin Tao Pace University http...........................................................................................................................................1 1.1 Web ArchitectureScript..................................................................................16 4.6 Creating Your First JavaServer Page Web Application

  9. Getting Started Computing at the AI Lab

    E-Print Network [OSTI]

    Stacy, Christopher C.

    1982-09-07T23:59:59.000Z

    This document describes the computing facilities at M.I.T. Artificial Intelligence Laboratory, and explains how to get started using them. It is intended as an orientation document for newcomers to the lab, and will be ...

  10. BEAMS Lab at MIT: Status report

    E-Print Network [OSTI]

    Liberman, Rosa G.

    The Biological Engineering Accelerator Mass Spectrometry (BEAMS) Lab at the Massachusetts Institute of Technology is a facility dedicated to incorporating AMS into life sciences research. As such, it is focused exclusively ...

  11. Rock Bands/Rock Brands: Mediation and Musical Performance in Post-liberalization Bangalore

    E-Print Network [OSTI]

    Coventry, Chloe Louise

    2013-01-01T23:59:59.000Z

    as in its modes of fandom, production and dissemination. Inaspects of rock music fandom: America had everything a youngthe beginnings of rock music fandom in India, even while, as

  12. Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field...

    Open Energy Info (EERE)

    Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  13. Prehistoric Rock Structures of the Idaho National Laboratory

    SciTech Connect (OSTI)

    Brenda R Pace

    2007-04-01T23:59:59.000Z

    Over the past 13,500 years, human populations have lived in and productively utilized the natural resources offered by the cold desert environment of the northeastern Snake River Plain in eastern Idaho. Within an overall framework of hunting and gathering, groups relied on an intimate familiarity with the natural world and developed a variety of technologies to extract the resources that they needed to survive. Useful items were abundant and found everywhere on the landscape. Even the basaltic terrain and the rocks, themselves, were put to productive use. This paper presents a preliminary classification scheme for rock structures built on the Idaho National Laboratory landscape by prehistoric aboriginal populations, including discussions of the overall architecture of the structures, associated artifact assemblages, and topographic placement. Adopting an ecological perspective, the paper concludes with a discussion of the possible functions of these unique resources for the desert populations that once called the INL home.

  14. Jefferson Lab Hosts 23 Teams for Middle School Science Bowl on March 7 |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group Gets 10 MillionJefferson Lab

  15. Blasting Rocks and Blasting Cars Applied Engineering

    ScienceCinema (OSTI)

    LBNL

    2009-09-01T23:59:59.000Z

    June 30, 2004 Berkeley Lab lecture: Deb Hopkins works with industries like automobile, mining and paper to improve their evaluation and measuring techniques. For several years, she has coordinated ... June 30, 2004 Berkeley Lab lecture: Deb Hopkins works with industries like automobile, mining and paper to improve their evaluation and measuring techniques. For several years, she has coordinated a program at Berkeley Lab funded under the Partnership for a New Generation of Vehicles, a collaboration between the federal government and the U.S. Council for Automotive Research. Nondestructive evaluation techniques to test a car's structural integrity are being developed for auto assembly lines.

  16. e8-lab.ps

    E-Print Network [OSTI]

    half-spin) group SSpin(16) and E8, Frank Adams [1] determined that. the maximal ...... 1. J. F. Adams, 2-tori in E8, Math. Ann. 278 (1987), no. 1-4, 29–39. MR.

  17. Manufactured caverns in carbonate rock

    DOE Patents [OSTI]

    Bruce, David A.; Falta, Ronald W.; Castle, James W.; Murdoch, Lawrence C.

    2007-01-02T23:59:59.000Z

    Disclosed is a process for manufacturing underground caverns suitable in one embodiment for storage of large volumes of gaseous or liquid materials. The method is an acid dissolution process that can be utilized to form caverns in carbonate rock formations. The caverns can be used to store large quantities of materials near transportation facilities or destination markets. The caverns can be used for storage of materials including fossil fuels, such as natural gas, refined products formed from fossil fuels, or waste materials, such as hazardous waste materials. The caverns can also be utilized for applications involving human access such as recreation or research. The method can also be utilized to form calcium chloride as a by-product of the cavern formation process.

  18. Natelson Lab abbreviated safety procedures For full, detailed discussion of lab safety, see Natelson Lab Safety Manual and Chemical Hygiene Plan.

    E-Print Network [OSTI]

    Natelson, Douglas

    Natelson Lab Safety Manual and Chemical Hygiene Plan. An additional resource is "Prudent Practices-348-2485 (Based in part on 2012 Tour Lab chemical hygiene plan) Updated, September, 2013 #12;Major Medical

  19. WAVE GENERATIONS FROM CONFINED EXPLOSIONS IN ROCKS

    E-Print Network [OSTI]

    Stewart, Sarah T.

    WAVE GENERATIONS FROM CONFINED EXPLOSIONS IN ROCKS C. L. Liu and Thomas J. Ahrens Seismological Laboratory, California Institute of Technology, Pasadena, CA 91125 In order to record P- and S-waves on the interactions between incident P- and SV-waves and free-surfaces of rocks. The relations between particle

  20. Rheology of rock glaciers: a preliminary assessment

    SciTech Connect (OSTI)

    Giardino, J.R.; Vitek, J.D.; Hoskins, E.R.

    1985-01-01T23:59:59.000Z

    Movement of rock debris under the influence of gravity, i.e., mass movement, generates a range of phenomena from soil creep, through solifluction,debris flows and rock glaciers to rock falls. Whereas the resultant forms of these phenomena are different, common elements in the mechanics of movement are utilized in the basic interpretation of the processes of formation. Measurements of morphologic variables provide data for deductive analyses of processes that operate too slowly to observe or for processes that generated relict phenomena. External and internal characteristics or rock glacier morphometry and measured rates of motion serve as the basis for the development of a rheological model to explain phenomena classified as rock glaciers. A rock glacier in the Sangre de Cristo Mountains of Southern Colorado, which exhibits a large number of ridges and furrows and lichen bare fronts of lobes, suggests present day movement. A strain-net established on the surface provides evidence of movement characteristics. These data plus morphologic and fabric data suggest two rheological models to explain the flow of this rock glacier. Model one is based upon perfect plastic flow and model two is based upon stratified fluid movement with viscosity changing with depth. These models permit a better understanding of the movement mechanics and demonstrate that catastrophic events and slow creep contribute to the morphologic characteristics of this rock glacier.

  1. Damage and plastic deformation of reservoir rocks

    E-Print Network [OSTI]

    Ze'ev, Reches

    Damage and plastic deformation of reservoir rocks: Part 1. Damage fracturing Seth Busetti, Kyran mechanics, fluid flow in fractured reservoirs, and geomechanics in nonconventional reservoirs. Kyran Mish finite deformation of reservoir rocks. We present an at- tempt to eliminate the main limitations

  2. ANNUAL FISH PASSAGE REPORT ROCK ISLAND DAM

    E-Print Network [OSTI]

    ANNUAL FISH PASSAGE REPORT ROCK ISLAND DAM COLUMBIA RIVER, WASHINGTON 1960 . SPECIAL SCIENTIFIC ISLAND DAM COLUMBIA RIVER, WASHINGTON, 1960 by Paul D. Zimmer and Clifton C. Davidson United States Fish This annual report of fishway operations at Rock Island Dam in 1960 is dedicated to the memory of co

  3. ROCK ELASTIC PROPERTIES: DEPENDENCE ON MICROSTRUCTURE

    E-Print Network [OSTI]

    ROCK ELASTIC PROPERTIES: DEPENDENCE ON MICROSTRUCTURE James G. Berryman and Patricia A. Berge Lawrence Livermore National Laboratory P. O. Box 808 L­202 Livermore, CA 94551­9900 #12; ROCK ELASTIC PROPERTIES: DEPENDENCE ON MICROSTRUCTURE James G. Berryman and Patricia A. Berge Lawrence Livermore National

  4. Specific energy for pulsed laser rock drilling.

    SciTech Connect (OSTI)

    Xu, Z.; Reed, C. B.; Kornecki, G.; Gahan, B. C.; Parker, R. A.; Batarseh, S.; Graves, R. M.; Figueroa, H.; Skinner, N.; Technology Development

    2003-02-01T23:59:59.000Z

    Application of advanced high power laser technology to oil and gas well drilling has been attracting significant research interests recently among research institutes, petroleum industries, and universities. Potential laser or laser-aided oil and gas well drilling has many advantages over the conventional rotary drilling, such as high penetration rate, reduction or elimination of tripping, casing, and bit costs, and enhanced well control, perforating and side-tracking capabilities. The energy required to remove a unit volume of rock, namely the specific energy (SE), is a critical rock property data that can be used to determine both the technical and economic feasibility of laser oil and gas well drilling. When a high power laser beam is applied on a rock, it can remove the rock by thermal spallation, melting, or vaporization depending on the applied laser energy and the way the energy is applied. The most efficient rock removal mechanism would be the one that requires the minimum energy to remove a unit volume of rock. Samples of sandstone, shale, and limestone were prepared for laser beam interaction with a 1.6 kW pulsed Nd:yttrium-aluminum-garnet laser beam to determine how the beam size, power, repetition rate, pulse width, exposure time and energy can affect the amount of energy transferred to the rock for the purposes of spallation, melting, and vaporization. The purpose of the laser rock interaction experiment was to determine the optimal parameters required to remove a maximum rock volume from the samples while minimizing energy input. Absorption of radiant energy from the laser beam gives rise to the thermal energy transfer required for the destruction and removal of the rock matrix. Results from the tests indicate that each rock type has a set of optimal laser parameters to minimize specific energy (SE) values as observed in a set of linear track and spot tests. As absorbed energy outpaces heat diffusion by the rock matrix, local temperatures can rise to the melting points of the minerals and quickly increase observed SE values. Tests also clearly identified the spallation and melting zones for shale samples while changing the laser power. The lowest SE values are obtained in the spalling zone just prior to the onset of mineral melt. The laser thermally spalled and saw mechanically cut rocks show similarity of surface microstructure. The study also found that increasing beam repetition rate within the same material removal mechanism would increase the material removal rate, which is believed due to an increase of maximum temperature, thermal cycling frequency, and intensity of laser-driven shock wave within the rock.

  5. Dissertation Lab (D-Lab) May 21, 22, and 23, 2013

    E-Print Network [OSTI]

    Texas at Arlington, University of

    Dissertation Lab (D-Lab) May 21, 22, and 23, 2013 Rady Room, 6th Floor Nedderman Hall What through the difficult process of writing their dissertation. Over the course of three days, D participants with the structure and motivation to overcome typical roadblocks in the dissertation process. Our

  6. Clemson University Plant Problem Clinic, Nematode Assay Lab and Molecular Plant Pathogen Detection Lab

    E-Print Network [OSTI]

    Stuart, Steven J.

    Clemson University Plant Problem Clinic, Nematode Assay Lab and Molecular Plant Pathogen Detection Lab Annual Report for 2012 The Plant Problem Clinic serves the people of South Carolina through the Clinic. Plant pathogens, insect pests and weeds can significantly reduce plant growth

  7. Cite this: Lab Chip, 2013, 13, 3929 Lab-on-CMOS integration of microfluidics and

    E-Print Network [OSTI]

    Mason, Andrew

    Cite this: Lab Chip, 2013, 13, 3929 Lab-on-CMOS integration of microfluidics and electrochemical* and Andrew J. Mason This paper introduces a CMOS­microfluidics integration scheme for electrochemical of the carrier, leaving a flat and smooth surface for integrating microfluidic structures. A model device

  8. ADVANTAGES OF THE PROGRAM-BASED LOGBOOK SUBMISSION GUI AT JEFFERSON LAB

    SciTech Connect (OSTI)

    T. McGuckin

    2006-10-24T23:59:59.000Z

    DTlite is a Tcl/Tk script that is used as the primary interface for making entries into Jefferson Lab's electronic logbooks. DTlite was originally written and implemented by a user to simplify submission of entries into Jefferson Lab?s electronic logbook, but has subsequently been maintained and developed by the controls software group. The use of a separate, script-based tool for logbook submissions (as opposed to a web-based submission tool bundled with the logbook database/interface) provides many advantages to the users, as well as creating many challenges to the programmers and maintainers of the electronic logbook system. The paper describes the advantages and challenges of this design model and how they have affected the development lifecycle of the electronic logbook system.

  9. FRACTURE DETECTION IN CRYSTALLINE ROCK USING ULTRASONIC SHEAR WAVES

    E-Print Network [OSTI]

    Waters, K.H.

    2011-01-01T23:59:59.000Z

    the piezoelectric source plate and the rock surface. With aThe S^j sources were bonded to the rock surface with a fast-^ source plate was epoxied in position on the rock specimen.

  10. Hilbert transform based analyses on ship-rocking signals

    E-Print Network [OSTI]

    Huang, Wei; Kang, Deyong; Chen, Zhi

    2015-01-01T23:59:59.000Z

    The ship-rocking is a crucial factor which affects the accuracy of the ocean-based flight vehicle measurement. Here we have analyzed four groups of ship-rocking time series in horizontal and vertical directions utilizing a Hilbert based method from statistical physics. Our method gives a way to construct an analytic signal on the two-dimensional plane from a one-dimensional time series. The analytic signal share the complete property of the original time series. From the analytic signal of a time series, we have found some information of the original time series which are often hidden from the view of the conventional methods. The analytic signals of interest usually evolve very smoothly on the complex plane. In addition, the phase of the analytic signal is usually moves linearly in time. From the auto-correlation and cross-correlation functions of the original signals as well as the instantaneous amplitudes and phase increments of the analytic signals we have found that the ship-rocking in horizontal directi...

  11. altered granitic rock: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    22 Everglades National Park Groundwater wells Surface water monitoring locations Rock mining locations 12 Demers, Nora Egan 211 Nova Scotia Rock Garden Club Membership...

  12. Regional Geology: GIS Database for Alternative Host Rocks and...

    Energy Savers [EERE]

    Regional Geology: GIS Database for Alternative Host Rocks and Potential Siting Guidelines Regional Geology: GIS Database for Alternative Host Rocks and Potential Siting Guidelines...

  13. aspo hard rock: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bayesian estimation of rock mass boundary conditions with applications to the AECL underground research laboratory F. Tonon*,1 conditions for rock mass models is...

  14. antarctic rocks colonized: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bayesian estimation of rock mass boundary conditions with applications to the AECL underground research laboratory F. Tonon*,1 conditions for rock mass models is...

  15. algonquin class rocks: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bayesian estimation of rock mass boundary conditions with applications to the AECL underground research laboratory F. Tonon*,1 conditions for rock mass models is...

  16. acidic crystalline rock: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bayesian estimation of rock mass boundary conditions with applications to the AECL underground research laboratory F. Tonon*,1 conditions for rock mass models is...

  17. aphanitic melt rocks: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bayesian estimation of rock mass boundary conditions with applications to the AECL underground research laboratory F. Tonon*,1 conditions for rock mass models is...

  18. aespoe hard rock: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bayesian estimation of rock mass boundary conditions with applications to the AECL underground research laboratory F. Tonon*,1 conditions for rock mass models is...

  19. Stress and fault rock controls on fault zone hydrology, Coso...

    Open Energy Info (EERE)

    rock controls on fault zone hydrology, Coso geothermal field, CA Abstract In crystalline rock of the Coso Geothermal Field, CA, fractures are the primary source of permeability....

  20. EIS-0471: Areva Eagle Rock Enrichment Facility in Bonneville...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: Areva Eagle Rock Enrichment Facility in Bonneville County, ID EIS-0471: Areva Eagle Rock Enrichment Facility in Bonneville County, ID May 20, 2011 EIS-0471: Final Environmental...

  1. Rock bed behavior and reverse thermosiphon effects

    SciTech Connect (OSTI)

    Perry, J.E.

    1980-01-01T23:59:59.000Z

    Two rock beds, in the Mark Jones and Doug Balcomb houses, have been instrumented, monitored, and analyzed. Observed experimental operation has been compared with, or explained by, theoretical predictions. The latter are based on one-dimensional finite-difference computer calculation of rock bed charging and discharging, with fixed or variable inputs of air flow rate and temperature. Both rock beds exhibit appreciable loss of stored heat caused by lack of backdraft dampers or incomplete closure of such dampers. These topics are discussed, and some improvements that might be made in future installations are noted.

  2. Recent results in DIS from Jefferson Lab

    SciTech Connect (OSTI)

    David Gaskell

    2010-04-01T23:59:59.000Z

    Recent results in Deep Inelastic processes measured at Jefferson Lab are presented. In addition to the inclusive reactions typically discussed in the context of Deep Inelastic (electron) Scattering, particular emphasis is given to Deep Exclusive and semi#19;inclusive reactions. Jefferson Lab has made significant contributions to the understanding of the partonic structure of the nucleon at large x, and with its first dedicated measurements is already providing important contributions to understanding the three-dimensional structure of the nucleon via constraints on Generalized Parton Distributions (GPDs) and Transverse Momentum Distributions (TMDs).

  3. Jefferson Lab Public Affairs: Electronic Media

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNew SafetyLab TheElectronic Media

  4. Lab completes Recovery Act-funded demolition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -Lab SubcontractoractiveLabRecovery

  5. Lab scientists recognized for their achievements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -Labgrants DecisionLabLab scientists

  6. Lab's 70th Anniversary lecture series

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -LabgrantsLab team makesLab's 70th

  7. Jefferson Lab Upgrade OK'd (photonics.com) | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNewLabLab To Receive

  8. Jefferson Lab creates better way to discover breast cancer | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNewLabLabbeginawardsJefferson

  9. Biomass Company Sets Up Shop in High School Lab | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Biomass Company Sets Up Shop in High School Lab Biomass Company Sets Up Shop in High School Lab March 30, 2010 - 2:45pm Addthis Stephen Graff Former Writer & editor for Energy...

  10. Jere Chase Ocean Engineering Lab, Durham, NH Directions & Parking

    E-Print Network [OSTI]

    Jere Chase Ocean Engineering Lab, Durham, NH Directions & Parking Jere Chase Ocean Engineering Lab of the University of New Hampshire. Parking is available at the Jere A. Chase Ocean Engineering Building. Directions

  11. Ventilation Effectiveness Research at UT-Typer Lab Houses

    Broader source: Energy.gov (indexed) [DOE]

    Ventilation Effectiveness Research at UT-Tyler Lab Houses Source Of Outside Air, Distribution, Filtration Armin Rudd Twin (almost) Lab Houses at UT-Tyler House 2: Unvented attic,...

  12. Biomarkers Core Lab Price List Does NOT Include

    E-Print Network [OSTI]

    Grishok, Alla

    v3102014 Biomarkers Core Lab Price List Does NOT Include Kit Cost PURCHASED by INVESTIGATOR/1/2013 Page 1 of 5 #12;Biomarkers Core Lab Price List Does NOT Include Kit Cost PURCHASED by INVESTIGATOR

  13. Nano Research Facility Lab Safety Manual Nano Research Facility

    E-Print Network [OSTI]

    Subramanian, Venkat

    1 Nano Research Facility Lab Safety Manual Nano Research Facility: Weining Wang Office: Brauer---chemical, biological, or radiological. Notify the lab manager, Dr. Yujie Xiong at 5-4530. Eye Contact: Promptly flush

  14. Six NN High School Students Win Jefferson Lab Externships | Jefferson...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NN High School Students Win Jefferson Lab Externships March 23, 2001 Six Newport News 11th graders have won paid, six-week externships at Jefferson Lab. The six youth were...

  15. Jefferson Lab hosts 22 teams for Virginia High School Science...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the Jefferson Lab Science Bowl logo. Jefferson Lab hosts 22 teams for Virginia High School Science Bowl on Feb. 12 February 1, 2005 Some of the brightest young minds in the...

  16. Maximum containment : the most controversial labs in the world

    E-Print Network [OSTI]

    Bruzek, Alison K. (Allison Kim)

    2013-01-01T23:59:59.000Z

    In 2002, following the September 11th attacks and the anthrax letters, the United States allocated money to build two maximum containment biology labs. Called Biosafety Level 4 (BSL-4) facilities, these labs were built to ...

  17. Los Alamos National Lab staff benchmark Y-12 sustainability programs...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Lab ... Los Alamos National Lab staff benchmark Y-12 sustainability programs Posted: June 27, 2013 - 3:53pm OAK RIDGE, Tenn. - Staff from Los Alamos National...

  18. Legendary Tuskegee Airmen to Speak at Jefferson Lab's Black History...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab's Black History Month Event February 3, 2004 Three members of the legendary, World War II era Tuskegee Airmen will speak at Jefferson Lab's Black History Month celebration at...

  19. Feb. 9 Event at Jefferson Lab Features Chemistry Demonstrations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feb. 9 Event at Jefferson Lab Features Chemistry Demonstrations Set to Pop Music NEWPORT NEWS, Va., Feb. 2, 2010 - Jefferson Lab's Feb. 9 Science Series event will feature members...

  20. JLab Posts OSHA Form 300 for 2014 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    about environment, safety and health programs at Jefferson Lab, please visit the ESH&Q Division webpage: http:www.jlab.orgehs Click on the following for Jefferson Lab's...

  1. Rock Slopes from Mechanics to Decision Making

    E-Print Network [OSTI]

    Einstein, Herbert H.

    Rock slope instabilities are discussed in the context of decision making for risk assessment and management. Hence, the state of the slope and possible failure mechanism need to be defined first. This is done with geometrical ...

  2. First Rocks from Outside the Solar System

    SciTech Connect (OSTI)

    Westphal, Andrew

    2014-10-17T23:59:59.000Z

    Andrew Westphal presents his findings in examining the first rocks from outside the solar system at our '8 Big Ideas' Science at the Theater event on October 8th, 2014, in Oakland, California.

  3. Determination of mechanical properties of reservoir rock

    E-Print Network [OSTI]

    Barnett, Ashley

    1993-01-01T23:59:59.000Z

    Apparatus, experimental procedure, and methodology have been developed to determine the mechanical response of reservoir rock. The apparatus is capable of subjecting cylindrical core specimens to triaxial stress states and temperatures...

  4. Stress-induced transverse isotropy in rocks

    SciTech Connect (OSTI)

    Schwartz, L.M.; Murphy, W.F. III [Schlumberger-Doll Research Center, Ridgefield, CT (United States); Berryman, J.G. [Lawrence Livermore National Lab., CA (United States)

    1994-03-28T23:59:59.000Z

    The application of uniaxial pressure can induce elastic anisotropy in otherwise isotropic rock. We consider models based on two very different rock classes, granites and weakly consolidated granular systems. We show that these models share common underlying assumptions, that they lead to similar qualitative behavior, and that both provide a microscopic basis for elliptical anisotropy. In the granular case, we make experimentally verifiable predictions regarding the horizontally propagating modes based on the measured behavior of the vertical modes.

  5. BERKELEY PAR LABBERKELEY PAR LAB Where we ended up

    E-Print Network [OSTI]

    California at Berkeley, University of

    , David Wessel, and Kathy Yelick UC Berkeley Par Lab End-of-Project Party May 30, 2013 #12;BERKELEY PAR

  6. PRIVATE TUTORING COURSE LIST: FALL 2014 BOLDFACE TITLES = Group Tutoring (option available)

    E-Print Network [OSTI]

    Ziurys, Lucy M.

    )... BOLDFACE TITLES = Group Tutoring (option available) Econ 150C1 An Economic Perspective Econ 200 Basic for Business BNAD 314R Business Communication CE 214 Statics CHEE 201 Elements of Chemical Engineering I and Lab CHEE 202 Elements of Chemical Engineering II and Lab CHEE 203 Chemical Engineering Heat Transfer

  7. Berkeley Lab's Cool Your School Program

    SciTech Connect (OSTI)

    Ivan Berry

    2012-07-30T23:59:59.000Z

    Cool Your School is a series of 6th-grade, classroom-based, science activities rooted in Berkeley Lab's cool-surface and cool materials research and aligned with California science content standards. The activities are designed to build knowledge, stimulate curiosity, and carry the conversation about human-induced climate change, and what can be done about it, into the community.

  8. UM Taubman College Metals Lab Handbook

    E-Print Network [OSTI]

    Papalambros, Panos

    of welding technologies including MIG, TIG, stick welding as well as high and low temperature brazing and tool introductions are scheduled at the beginning of each semester. Welding tutorials are provided for unsupervised use. #12;5 Welding Tutorials and Tool Introductions A major goal of the Metals Lab is to empower

  9. Aruna Ravinagarajan System Energy Efficiency Lab

    E-Print Network [OSTI]

    Wang, Deli

    scheduler needs toThe task scheduler needs to manage energy consumptionmanage energy consumption energy harvesting Operating with severe energy constraints Too much data to continually transmit Energy Efficiency Lab 12 Execution Time Constraint Given a time limit, what is the highest level of data

  10. Reproductive Hazards in the Lab Reproductive Hazards

    E-Print Network [OSTI]

    de Lijser, Peter

    Reproductive Hazards in the Lab Reproductive Hazards The term reproductive hazard refers to agents healthy children. Reproductive hazards may have harmful effects on libido, sexual behavior, or sperm the effects of reproductive hazards may be reversible for the parent, the effects on the fetus or offspring

  11. Ames Lab 101: Single Crystal Growth

    ScienceCinema (OSTI)

    Schlagel, Deborah

    2014-06-04T23:59:59.000Z

    Ames Laboratory scientist Deborah Schlagel talks about the Lab's research in growing single crystals of various metals and alloys. The single crystal samples are vital to researchers' understanding of the characteristics of a materials and what gives these materials their particular properties.

  12. SSSSSSSS LLLLSemiconductor System LabSemiconductor System LabSemiconductor System LabSemiconductor System Lab Jaeseo Lee, Gigabit Optical Interface IC Design 1

    E-Print Network [OSTI]

    Yoo, Hoi-Jun

    range Wide Bandwidth Low Noise amplifier is required!! 60~80dB 1) providing dc level restoration 2Semiconductor System Lab Design Goal · Gain range : 60~80dB (1k ~ 10k) · Wide bandwidth · Low Noise · CMOS · Motivation · Transimpedance Amplifier (TIA) ­ Why TIA? ­ Noise Source ­ TIA Noise & Design Solution

  13. Heart Physiology Lab Part 1: Pulse Rate

    E-Print Network [OSTI]

    Loughry, Jim

    Heart Physiology Lab Part 1: Pulse Rate Measure your pulse in each of the following conditions (in in the class. You may use Table 1 in the Heart Physiology Worksheet for this, if you wish. Once you have all of the class averages for each measurement. You may use Graph 1 in the Heart Physiology Worksheet for this

  14. GMT: Texas Map Lab 9 Part 2

    E-Print Network [OSTI]

    Smith-Konter, Bridget

    ), and the grid lines and title (-B), just like you practiced with the pscoast command in previous labs. ·Enter window, type: startxwin.bat. Use the white "X" window that appears to type in the remaining commands;3 Create a new GMT command file · Use the text editor nedit to create a file named make

  15. Berkeley Lab's Cool Your School Program

    ScienceCinema (OSTI)

    Ivan Berry

    2013-06-24T23:59:59.000Z

    Cool Your School is a series of 6th-grade, classroom-based, science activities rooted in Berkeley Lab's cool-surface and cool materials research and aligned with California science content standards. The activities are designed to build knowledge, stimulate curiosity, and carry the conversation about human-induced climate change, and what can be done about it, into the community.

  16. Lab Five & Six Building & Editing Geodatabase

    E-Print Network [OSTI]

    Hung, I-Kuai

    coverages, shapefiles, CAD drawings, INFO tables, and DBF tables. File geodatabase works across platforms boundary shapefile by digitizing. Now with the topological data model, coverage, you can easily build or using Calculate Geometry in a shapefile in Lab 4. In geodatabases, area is given automatically. However

  17. Steam Sterilization Cycles for Lab Applications

    E-Print Network [OSTI]

    Farritor, Shane

    Steam Sterilization Cycles for Lab Applications Presented by Gary Butler STERIS Life Sciences August 2009 #12;Early Steam Sterilizers Koch Upright Sterilizer · First Pressurized Sterilizer · First OPERATING END (NO PRINTER) PRIMARY OPERATING END WITH PRINTER SAFETY VALVE CHAMBER PRESSURE GAUGE Steam

  18. LEGO Engineer and RoboLab: Teaching Engineering with LabVIEW from

    E-Print Network [OSTI]

    and construction. The Control Lab Interface connects to the computer through a serial port and controls LEGO motors to offer. College seniors went on to build a computer-controlled milling machine with three degrees

  19. National Lab Day: How the National Labs Keep Moving America Forward...

    Energy Savers [EERE]

    their support for the National Lab system. | Photo by Sarah Gerrity, Energy Department. Panel Discussion 2 of 9 Panel Discussion From left: Clark Gellings, a Fellow at the Electric...

  20. Nano Fab Lab, Stockholm Sweden The Albanova Nano Fabrication Facility

    E-Print Network [OSTI]

    Haviland, David

    Nano Fab Lab, Stockholm Sweden The Albanova Nano Fabrication Facility Nano technology for basic research and small commercial enterprises Director: Prof. David Haviland #12;Nano Fab Lab, Stockholm Sweden Nano-Lab Philosophy · Nanometer scale patterning and metrology · Broad spectrum of user research

  1. BERKELEY LAB Bringing Science Solutions to the World

    E-Print Network [OSTI]

    BERKELEY LAB Bringing Science Solutions to the World lbl.gov #12;Lawrence Berkeley National Laboratory's science is a global enterprise. From the Lab's site in the hills overlooking the University of California Berkeley campus, to locations across the continent and around the world, Berkeley Lab scientists

  2. Geology 460:301 Fall 2007 Mineralogy Lab

    E-Print Network [OSTI]

    Geology 460:301 Fall 2007 Mineralogy Lab Professor Jeremy Delaney Teaching Assistant: Alissa Henza Science by Cornelius Klein (22nd edition) Introduction to Optical Mineralogy by William Nesse Grading Policy: Lab is 33% of your Mineralogy grade. This 33% is made up of: Labs: 70% Quizzes: 5% Final Exam: 25

  3. Behind the Scenes at Berkeley Lab - The Mechanical Fabrication Facility

    ScienceCinema (OSTI)

    Wells, Russell; Chavez, Pete; Davis, Curtis; Bentley, Brian

    2014-09-15T23:59:59.000Z

    Part of the Behind the Scenes series at Berkeley Lab, this video highlights the lab's mechanical fabrication facility and its exceptional ability to produce unique tools essential to the lab's scientific mission. Through a combination of skilled craftsmanship and precision equipment, machinists and engineers work with scientists to create exactly what's needed - whether it's measured in microns or meters.

  4. DATE: NVLAP LAB CODE: INFORMATION TECHNOLOGY SECURITY TESTING

    E-Print Network [OSTI]

    DATE: NVLAP LAB CODE: INFORMATION TECHNOLOGY SECURITY TESTING TEST METHOD SELECTION LIST;DATE: NVLAP LAB CODE: INFORMATION TECHNOLOGY SECURITY TESTING TEST METHOD SELECTION LIST for reasons outside the scope of this document. #12;DATE: NVLAP LAB CODE: INFORMATION TECHNOLOGY SECURITY

  5. Forsgsanlg Ris Danmarks Tekniske Hjskole Kemiafdelingen Lab. for Bygningsmaterialer

    E-Print Network [OSTI]

    Forsøgsanlæg Risø Danmarks Tekniske Højskole Kemiafdelingen Lab. for Bygningsmaterialer Risø-M-1863 MEKANISKE EGENSKABER O o i) ir \\}. Danmarks Tekniske Højskole ^\\ Lab. for Bygningsmaterialer af Kåre Hastrup-550-0395-8 #12;FORSØGSANLÆG RISØ DANMARKS TEKNISKE HØJSKOLE KEMIAFDELINGEN LAB. FOR BYGNINGSMATERIALER RISØ

  6. Lab Home A and B Construction Specifications and Alterations

    E-Print Network [OSTI]

    Appendix A ­ Lab Home A and B Construction Specifications and Alterations #12;A.1 Appendix A -Lab Home A and B Construction Specifications and Alterations A.1 Lab Home A Construction Specifications walls that are replaced or constructed shall be taped, finished and painted in the original wall color

  7. Behind the Scenes at Berkeley Lab - The Mechanical Fabrication Facility

    SciTech Connect (OSTI)

    Wells, Russell; Chavez, Pete; Davis, Curtis; Bentley, Brian

    2013-05-17T23:59:59.000Z

    Part of the Behind the Scenes series at Berkeley Lab, this video highlights the lab's mechanical fabrication facility and its exceptional ability to produce unique tools essential to the lab's scientific mission. Through a combination of skilled craftsmanship and precision equipment, machinists and engineers work with scientists to create exactly what's needed - whether it's measured in microns or meters.

  8. Design of tabular excavations in foliated rock: an integrated numerical

    E-Print Network [OSTI]

    to the mineralized zone (development openings), extracting the ore from the surrounding host rock (stopes. The first stage in the design process is the characterization of the rock mass using both in situ of the mining process, requiring that the rock mass stability, both within the orebody and in the rock adjacent

  9. Mixture Theories for Rock Properties James G. Berryman

    E-Print Network [OSTI]

    Mixture Theories for Rock Properties James G. Berryman Lawrence Livermore National Laboratory by Batchelor [3], Hale [41], Hashin [42], Torquato [95], and Willis [110] are also recommended. 1.1. Rocks Are Inhomogeneous Materials A rock is a naturally occurring mixture of minerals. Rocks are normally inhomogeneous

  10. Metallography at the Met Lab -- The first fifty years

    SciTech Connect (OSTI)

    Lee, R.H. [Argonne National Lab., IL (United States). Energy Technology Div.

    1995-12-31T23:59:59.000Z

    The Met Lab at the University of Chicago was established to build the world`s first nuclear reactor. The object was to see if a pile (CP-1) could be built to create a sustained chain reaction, i.e., controlled nuclear fission. New materials of the very best quality were needed and people of many skills worked together to achieve the goal as quickly as possible. This is the story of a select group of people who were scientific and engineering pioneers in this new field. Research continued at new sites on more advanced reactors and cooling systems. Many problems were encountered in the fabrication of reactor components, and metallography was a crucial method of analyzing the reactions and quality of consolidation. 1996 will be the 50th anniversary of the beginning of the National Laboratories, so it is appropriate to commemorate and recall some pioneering achievements.

  11. Lab Safety/Hazardous Waste Training Persons (including faculty, staff and students) working in a lab and work-

    E-Print Network [OSTI]

    Tennessee, University of

    Lab Safety/Hazardous Waste Training Persons (including faculty, staff and students) working in a lab and work- ing with hazardous materials should receive annual training that address- es lab safety, personal protective equipment, storage, use, and disposal of hazardous materials, emergency procedures

  12. Geochemical relationships of petroleum in Mesozoic reservoirs to carbonate source rocks of Jurassic Smackover Formation, southwestern Alabama

    SciTech Connect (OSTI)

    Claypool, G.E.; Mancini, E.A.

    1989-07-01T23:59:59.000Z

    Algal carbonate mudstones of the Jurassic Smackover Formation are the main source rocks for oil and condensate in Mesozoic reservoir rocks in southwestern Alabama. This interpretation is based on geochemical analyses of oils, condensates, and organic matter in selected samples of shale (Norphlet Formation, Haynesville Formation, Trinity Group, Tuscaloosa Group) and carbonate (Smackover Formation) rocks. Potential and probable oil source rocks are present in the Tuscaloosa Group and Smackover Formation, respectively. Extractable organic matter from Smackover carbonates has molecular and isotopic similarities to Jurassic oil. Although the Jurassic oils and condensates in southwestern Alabama have genetic similarities, they show significant compositional variations due to differences in thermal maturity and organic facies/lithofacies. Organic facies reflect different depositional conditions for source rocks in the various basins. The Mississippi Interior Salt basin was characterized by more continuous marine to hypersaline conditions, whereas the Manila and Conecuh embayments periodically had lower salnity and greater input of clastic debris and terrestrial organic matter. Petroleum and organic matter in Jurassic rocks of southwestern Alabama show a range of thermal transformations. The gas content of hydrocarbons in reservoirs increases with increasing depth and temperature. In some reservoirs where the temperature is above 266/degrees/F(130/degrees/C), gas-condensate is enriched in isotopically heavy sulfur, apparently derived from thermochemical reduction of Jurassic evaporite sulfate. This process also resulted in increase H/sub 2/S and CO in the gas, and depletion of saturated hydrocarbons in the condensate liquids.

  13. Group X

    SciTech Connect (OSTI)

    Fields, Susannah

    2007-08-16T23:59:59.000Z

    This project is currently under contract for research through the Department of Homeland Security until 2011. The group I was responsible for studying has to remain confidential so as not to affect the current project. All dates, reference links and authors, and other distinguishing characteristics of the original group have been removed from this report. All references to the name of this group or the individual splinter groups has been changed to 'Group X'. I have been collecting texts from a variety of sources intended for the use of recruiting and radicalizing members for Group X splinter groups for the purpose of researching the motivation and intent of leaders of those groups and their influence over the likelihood of group radicalization. This work included visiting many Group X websites to find information on splinter group leaders and finding their statements to new and old members. This proved difficult because the splinter groups of Group X are united in beliefs, but differ in public opinion. They are eager to tear each other down, prove their superiority, and yet remain anonymous. After a few weeks of intense searching, a list of eight recruiting texts and eight radicalizing texts from a variety of Group X leaders were compiled.

  14. Field-Scale Effective Matrix Diffusion Coefficient for FracturedRock: Results From Literature Survey

    SciTech Connect (OSTI)

    Zhou, Quanlin; Liu, Hui Hai; Molz, Fred J.; Zhang, Yingqi; Bodvarsson, Gudmundur S.

    2005-03-28T23:59:59.000Z

    Matrix diffusion is an important mechanism for solutetransport in fractured rock. We recently conducted a literature survey onthe effective matrix diffusion coefficient, Dem, a key parameter fordescribing matrix diffusion processes at the field scale. Forty fieldtracer tests at 15 fractured geologic sites were surveyed and selectedfor study, based on data availability and quality. Field-scale Dem valueswere calculated, either directly using data reported in the literature orby reanalyzing the corresponding field tracer tests. Surveyed dataindicate that the effective-matrix-diffusion-coefficient factor FD(defined as the ratio of Dem to the lab-scale matrix diffusioncoefficient [Dem]of the same tracer) is generally larger than one,indicating that the effective matrix diffusion coefficient in the fieldis comparatively larger than the matrix diffusion coefficient at therock-core scale. This larger value could be attributed to the manymass-transfer processes at different scales in naturally heterogeneous,fractured rock systems. Furthermore, we observed a moderate trend towardsystematic increase in the emDFmDDF value with observation scale,indicating that the effective matrix diffusion coefficient is likely tobe statistically scale dependent. The FD value ranges from 1 to 10,000for observation scales from 5 to 2,000 m. At a given scale, the FD valuevaries by two orders of magnitude, reflecting the influence of differingdegrees of fractured rock heterogeneity at different sites. In addition,the surveyed data indicate that field-scale longitudinal dispersivitygenerally increases with observation scale, which is consistent withprevious studies. The scale-dependent field-scale matrix diffusioncoefficient (and dispersivity) may have significant implications forassessing long-term, large-scale radionuclide and contaminant transportevents in fractured rock, both for nuclear waste disposal and contaminantremediation.

  15. Deep drilling technology for hot crystalline rock

    SciTech Connect (OSTI)

    Rowley, J.C.

    1984-01-01T23:59:59.000Z

    The development of Hot Dry Rock (HDR) geothermal systems at the Fenton Hill, New Mexico site has required the drilling of four deep boreholes into hot, Precambrian granitic and metamorphic rocks. Thermal gradient holes, four observation wells 200 m (600 ft) deep, and an exploration core hole 800 m (2400 ft) deep guided the siting of the four deep boreholes. Results derived from the exploration core hole, GT-1 (Granite Test No. 1), were especially important in providing core from the granitic rock, and establishing the conductive thermal gradient and heat flow for the granitic basement rocks. Essential stratigraphic data and lost drilling-fluid zones were identified for the volcanic and sedimentary rocks above the contact with the crystalline basement. Using this information drilling strategies and well designs were then devised for the planning of the deeper wells. The four deep wells were drilled in pairs, the shallowest were planned and drilled to depths of 3 km in 1975 at a bottom-hole temperature of nearly 200/sup 0/C. These boreholes were followed by a pair of wells, completed in 1981, the deepest of which penetrated the Precambrian basement to a vertical depth of 4.39 km at a temperature of 320/sup 0/C.

  16. Post Rock | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,Pillar Group BV Jump to: navigation, searchPocatelloIIIRock Jump to: navigation,

  17. SHIF'ROCK, NEW MEXICO

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V O 1 8B100B100WWNASCUBA TECHNIQUES

  18. NTUCHE Bioprocessing Lab Copper Oxide Nanoarchitectures for

    E-Print Network [OSTI]

    Ehrman, Sheryl H.

    al., Int J Hydrogen Energ 2012a UMDChE Particle Sci & Tech Lab #12;Increase Surface Area Approach 2 chemical Photocurrent is about 30% more Chiang et al., Int J Hydrogen Energ 2012b UMDChE Particle Sci Xenon Arc -0.5 vs. SCE 2.2 Chauhan et al., 2006 CuO 150W Solar simulator 1000 -0.55 vs. Ag/AgCl 0

  19. Optical Calibration For Jefferson Lab HKS Spectrometer

    E-Print Network [OSTI]

    L. Yuan; L. Tang

    2005-11-04T23:59:59.000Z

    In order to accept very forward angle scattering particles, Jefferson Lab HKS experiment uses an on-target zero degree dipole magnet. The usual spectrometer optics calibration procedure has to be modified due to this on-target field. This paper describes a new method to calibrate HKS spectrometer system. The simulation of the calibration procedure shows the required resolution can be achieved from initially inaccurate optical description.

  20. Overview of Nuclear Physics at Jefferson Lab

    SciTech Connect (OSTI)

    McKeown, Robert D. [JLAB

    2013-08-01T23:59:59.000Z

    The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. This facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.

  1. Jefferson Lab Science, Past and Future

    E-Print Network [OSTI]

    R. D. McKeown

    2014-12-03T23:59:59.000Z

    The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. This facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.

  2. Jefferson Lab Science, Past and Future

    E-Print Network [OSTI]

    McKeown, R D

    2014-01-01T23:59:59.000Z

    The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. This facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.

  3. Overview of Nuclear Physics at Jefferson Lab

    E-Print Network [OSTI]

    R. D. McKeown

    2013-03-26T23:59:59.000Z

    The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. This facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.

  4. Overview of Nuclear Physics at Jefferson Lab

    E-Print Network [OSTI]

    McKeown, R D

    2013-01-01T23:59:59.000Z

    The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. This facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.

  5. Source rock maturation, San Juan sag

    SciTech Connect (OSTI)

    Gries, R.R.; Clayton, J.L.

    1989-09-01T23:59:59.000Z

    Kinetic modeling for thermal histories was simulated for seven wells in the San Juan sag honoring measured geochemical data. Wells in the area of Del Norte field (Sec. 9, T40N, R5E), where minor production has been established from an igneous sill reservoir, show that the Mancos Shale source rocks are in the mature oil generation window as a combined result of high regional heat flow and burial by approximately 2,700 m of Oligocene volcanic rocks. Maturation was relatively recent for this area and insignificant during Laramide subsidence. In the vicinity of Gramps field (Sec. 24, T33N, R2E) on the southwest flank of the San Juan sag, these same source rocks are exposed due to erosion of the volcanic cover but appear to have undergone a similar maturation history. At the north and south margins of the sag, two wells (Champlin 34A-13, Sec. 13, T35N, R4.5E; and Champlin 24A-1, Sec. 1, T44N, R5E) were analyzed and revealed that although the regional heat flow was probably similar to other wells, the depth of burial was insufficient to cause maturation (except where intruded by thick igneous sills that caused localized maturation). The Meridian Oil 23-17 South Fork well (Sec. 17, T39N, R4E) was drilled in a deeper part of the San Juan sag, and source rocks were intruded by numerous igneous sills creating a complex maturation history that includes overmature rocks in the lowermost Mancos Shale, possible CO{sub 2} generation from the calcareous Niobrara Member of the Mancos Shale, and mature source rocks in the upper Mancos Shale.

  6. Rock melting tool with annealer section

    DOE Patents [OSTI]

    Bussod, Gilles Y. (Santa Fe, NM); Dick, Aaron J. (Oakland, CA); Cort, George E. (Montrose, CO)

    1998-01-01T23:59:59.000Z

    A rock melting penetrator is provided with an afterbody that rapidly cools a molten geological structure formed around the melting tip of the penetrator to the glass transition temperature for the surrounding molten glass-like material. An annealing afterbody then cools the glass slowly from the glass transition temperature through the annealing temperature range to form a solid self-supporting glass casing. This allows thermally induced strains to relax by viscous deformations as the molten glass cools and prevents fracturing of the resulting glass liner. The quality of the glass lining is improved, along with its ability to provide a rigid impermeable casing in unstable rock formations.

  7. Oilfield rock bits: Are they a commodity

    SciTech Connect (OSTI)

    Caldwell, R.

    1994-05-01T23:59:59.000Z

    This paper discusses the quality of various types of rock drill bits and evaluates cost of these bits against service and performance to determine if bits should be viewed as a commodity when drilling a production or exploration well. Continuing advancements in materials technology, machining capabilities, hydraulics arrangements, bearing configuration, seal technology and cutter design continue to push the performance curve for oilfield rock bits. However, some very important advancements are patented, proprietary features of individual manufacturers. This paper reviews some of these design and performance features to help determine if they are worth the extra investment based on actual field drilling experience.

  8. Specific energy for laser removal of rocks.

    SciTech Connect (OSTI)

    Xu, Z.; Kornecki, G.; Reed, C. B.; Gahan, B. C.; Parker, R. A.; Batarseh, S.; Graves, R. M.

    2001-08-16T23:59:59.000Z

    Application of advanced high power laser technology into oil and gas well drilling has been attracting significant research interests recently among research institutes, petroleum industries, and universities. Potential laser or laser-aided oil and gas well drilling has many advantages over the conventional rotary drilling, such as high penetration rate, reduction or elimination of tripping, casing, and bit costs, and enhanced well control, perforating and side-tracking capabilities. The energy required to remove a unit volume of rock, namely the specific energy (SE), is a critical rock property data that can be used to determine both the technical and economic feasibility of laser oil and gas well drilling.

  9. Mechanical defradation of Emplacement Drifts at Yucca Mountain- A Modeling Case Study. Part I: Nonlithophysal Rock

    SciTech Connect (OSTI)

    M. Lin; D. Kicker; B. Damjanac; M. Board; M. Karakouzian

    2006-07-05T23:59:59.000Z

    This paper outlines rock mechanics investigations associated with mechanical degradation of planned emplacement drifts at Yucca Mountain, which is the designated site for the proposed U.S. high-level nuclear waste repository. The factors leading to drift degradation include stresses from the overburden, stresses induced by the heat released from the emplaced waste, stresses due to seismically related ground motions, and time-dependent strength degradation. The welded tuff emplacement horizon consists of two groups of rock with distinct engineering properties: nonlithophysal units and lithophysal units, based on the relative proportion of lithophysal cavities. The term 'lithophysal' refers to hollow, bubble like cavities in volcanic rock that are surrounded by a porous rim formed by fine-grained alkali feldspar, quartz, and other minerals. Lithophysae are typically a few centimeters to a few decimeters in diameter. Part I of the paper concentrates on the generally hard, strong, and fractured nonlithophysal rock. The degradation behavior of the tunnels in the nonlithophysal rock is controlled by the occurrence of keyblocks. A statistically equivalent fracture model was generated based on extensive underground fracture mapping data from the Exploratory Studies Facility at Yucca Mountain. Three-dimensional distinct block analyses, generated with the fracture patterns randomly selected from the fracture model, were developed with the consideration of in situ, thermal, and seismic loads. In this study, field data, laboratory data, and numerical analyses are well integrated to provide a solution for the unique problem of modeling drift degradation.

  10. Dakota sandstone and associated rocks adjacent to San Juan sag near Gunnison, Colorado

    SciTech Connect (OSTI)

    Bartleson, B. (Western State College of Colorado, Gunnison (USA))

    1989-09-01T23:59:59.000Z

    The stratigraphy and depositional systems of the Dakota Sandstone and associated rocks were studied in outcrop at the northeastern margin of the San Juan volcanic field in southern Gunnison and northern Saguache Counties, Colorado. This study fills in a major gap in regional Mesozoic stratigraphy and provides a last view of these rocks before they are concealed to the south by the volcanic cover of the San Juan sag, a frontier hydrocarbon basin. Locally, the Burro Canyon Formation is interpreted as a dominantly meandering fluvial system formed under oxidizing conditions similar to the underlying Morrison Formation. The Burro Canyon Formation pinches out along a roughly east-west line just south of US Highway 50 and is missing for about 15 mi south to the edge of the continuous volcanics. The Dakota Sandstone consists of a lower, low-sinuosity fluvial system abruptly overlain by an upper, mostly nearshore marine sequence which grades upward into the offshore Mancos Shale. While the total Dakota thickness is relatively constant, the fluvial system thickens markedly to the south where marine rocks are quite thin. To the north, marine rocks thicken irregularly and fluvial rocks are thin. In this area, the Mancos Shale can be readily subdivided into Graneros, Greenhorn, Carlile, Juana Lopez, and upper Niobrara formations, although the Fort Hays limestone is locally missing. The upper Mancos Shale and Mesaverde Group are also missing, presumably due to late Eocene prevolcanic erosion.

  11. Metamorphic Rocks, Processes, and Resources Metamorphic rocks are rocks changed from one form to another by intense heat, intense pressure,

    E-Print Network [OSTI]

    Li, X. Rong

    important ­ Rising temperature causes water to be released from unstable minerals ­ Hot water very reactive refers to the temperature and pressure under which a rock was metamorphosed, considered low grade or high ­ If range exceeded, new mineral structures result ­ If temperature gets high enough, melting will occur

  12. Esimation of field-scale thermal conductivities of unsaturated rocks from in-situ temperature data

    E-Print Network [OSTI]

    Mukhopadhyay, Sumit; Tsang, Yvonne W.; Birkholzer, Jens T.

    2008-01-01T23:59:59.000Z

    vicinity of the heat source, and rock temperature exceededand the dry rock near the heat source. The other differencesources, heat transfer takes place through the wet rock (see

  13. Seismic and Acoustic Investigations of Rock Fall Initiation, Processes, and Mechanics

    E-Print Network [OSTI]

    Zimmer, Valerie Louise

    2011-01-01T23:59:59.000Z

    systems  and  rock  fall  source  and  impact  areas,  it  meters  from  a  rock  fall  source  area.   The   success  possible  to  the  rock  fall  source  areas,   spacing  

  14. GEOTECHNICAL ASSESSMENT AND INSTRUMENTATION NEEDS FOR NUCLEAR WASTE ISOLATION IN CRYSTALLINE AND ARGILLACEOUS ROCKS SYMPOSIUM

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    INSTRUMENTATION NEEDS FOR DETERMINING ROCK PROPERTIES..Acknowledgements • ROCK PROPERTIES Participant Listing.OF MODELING IN ROCK PROPERTIES EVALUATION AND APPLICATION. •

  15. Parameter estimation from flowing fluid temperature logging data in unsaturated fractured rock using multiphase inverse modeling

    E-Print Network [OSTI]

    Mukhopadhyay, S.

    2009-01-01T23:59:59.000Z

    have assumed the same rock properties for the entire packed-earlier, among the rock properties (permeability, porosity,However, these are not rock properties and are constrained

  16. Coupled thermohydromechanical analysis of a heater test in unsaturated clay and fractured rock at Kamaishi Mine

    E-Print Network [OSTI]

    Rutqvist, J.

    2011-01-01T23:59:59.000Z

    Kamaishi mine. Laboratory rock property tests. Power reactor5.2 Near field rock properties and fiactire geometand hydraulic rock properties, and hydraulic conditions

  17. An Integrated Modeling Analysis of Unsaturated Flow Patterns in Fractured Rock

    E-Print Network [OSTI]

    Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Pan, Lehua; Bodvarsson, Gudmundur S.

    2008-01-01T23:59:59.000Z

    because large contrasts in rock properties exist across thetransitional changes in rock properties argues that lateralthe distribution of rock properties within different units.

  18. On the relationship between stress and elastic strain for porous and fractured rock

    E-Print Network [OSTI]

    Liu, Hui-Hai

    2009-01-01T23:59:59.000Z

    the other associated rock properties. Important examples ofand/or hydraulic rock properties. We show that theand other rock mechanical/hydraulic properties, and these

  19. SEARCH FOR UNDERGROUND OPENINGS FOR IN SITU TEST FACILITIES IN CRYSTALLINE ROCK

    E-Print Network [OSTI]

    Wallenberg, H.A.

    2010-01-01T23:59:59.000Z

    to complie and correlate rock properties and preliminaryProject Table 1. Rock properties and project characteristicsof Information Rock properties - Bad Creek area Exhibit 1.

  20. Lab-wide Cleanup Set for April 27-30 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -LabgrantsLab team makesLab's

  1. Hot-dry-rock geothermal resource 1980

    SciTech Connect (OSTI)

    Heiken, G.; Goff, F.; Cremer, G. (ed.)

    1982-04-01T23:59:59.000Z

    The work performed on hot dry rock (HDR) geothermal resource evaluation, site characterization, and geophysical exploration techniques is summarized. The work was done by region (Far West, Pacific Northwest, Southwest, Rocky Mountain States, Midcontinent, and Eastern) and limited to the conterminous US.

  2. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, Donald W. (Los Alamos, NM)

    1997-01-01T23:59:59.000Z

    A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

  3. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, D.W.

    1997-11-11T23:59:59.000Z

    A method is described for extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid inventory of the reservoir. 4 figs.

  4. Damage and plastic deformation of reservoir rocks

    E-Print Network [OSTI]

    Ze'ev, Reches

    Damage and plastic deformation of reservoir rocks: Part 2. Propagation of a hydraulic fracture Seth fracture and fault mechanics, fluid flow in fractured reservoirs, and geome- chanics in nonconventional the development of complex hydraulic fractures (HFs) that are commonly ob- served in the field and in experiments

  5. Transfer of hot dry rock technology

    SciTech Connect (OSTI)

    Smith, M.C.

    1985-11-01T23:59:59.000Z

    The Hot Dry Rock Geothermal Energy Development Program has focused worldwide attention on the facts that natural heat in the upper part of the earth's crust is an essentially inexhaustible energy resource which is accessible almost everywhere, and that practical means now exist to extract useful heat from the hot rock and bring it to the earth's surface for beneficial use. The Hot Dry Rock Program has successfully constructed and operated a prototype hot, dry rock energy system that produced heat at the temperatures and rates required for large-scale space heating and many other direct uses of heat. The Program is now in the final stages of constructing a larger, hotter system potentially capable of satisfying the energy requirements of a small, commercial, electrical-generating power plant. To create and understand the behavior of such system, it has been necessary to develop or support the development of a wide variety of equipment, instruments, techniques, and analyses. Much of this innovative technology has already been transferred to the private sector and to other research and development programs, and more is continuously being made available as its usefulness is demonstrated. This report describes some of these developments and indicates where this new technology is being used or can be useful to industry, engineering, and science.

  6. Radiocarbon dating of ancient rock paintings

    SciTech Connect (OSTI)

    Ilger, W.A.; Hyman, M.; Rowe, M.W. [Texas A and M Univ., College Station, TX (United States). Dept. of Chemistry; Southon, J. [Lawrence Livermore National Lab., CA (United States)

    1995-06-20T23:59:59.000Z

    This report presents progress made on a technique for {sup 14}C dating pictographs. A low-temperature oxygen plasma is used coupled with high-vacuum technologies to selectively remove C-containing material in the paints without contamination from inorganic carbon from rock substrates or accretions.

  7. Life cycle assessment of a rock crusher

    SciTech Connect (OSTI)

    Landfield, A.H.; Karra, V.

    1999-07-01T23:59:59.000Z

    Nordberg, Inc., a capital equipment manufacturer, performed a Life Cycle Assessment study on its rock crusher to aid in making decisions on product design and energy improvements. Life Cycle Assessment (LCA) is a relatively new cutting edge environmental tool recently standardized by ISO that provides quantitative environmental and energy data on products or processes. This paper commences with a brief introduction to LCA and presents the system boundaries, modeling and assumptions for the rock crusher study. System boundaries include all life major cycle stages except manufacturing and assembly of the crusher. Results of the LCA show that over 99% of most of the flows into and out of the system may be attributed to the use phase of the rock crusher. Within the use phase itself, over 95% of each environmental inflow and outflow (with some exceptions) are attributed to electricity consumption, and not the replacement of spares/wears or lubricating oil over the lifetime of the crusher. Results tables and charts present selected environmental flows, including CO{sub 2} NOx, SOx, particulate matter, and energy consumption, for each of the rock crusher life cycle stages and the use phase. This paper aims to demonstrate the benefits of adopting a rigorous scientific approach to assess energy and environmental impacts over the life cycle of capital equipment. Nordberg has used these results to enhance its engineering efforts toward developing an even more energy efficient machine to further progress its vision of providing economic solutions to its customers by reducing the crusher operating (mainly electricity) costs.

  8. Rock Classification in Organic Shale Based on Petrophysical and Elastic Rock Properties Calculated from Well Logs

    E-Print Network [OSTI]

    Aranibar Fernandez, Alvaro A

    2015-01-05T23:59:59.000Z

    classification method was then applied to the field examples from the Haynesville shale and Woodford shales for rock classification. The estimates of porosity, TOC, bulk modulus, shear modulus, and volumetric concentrations of minerals were obtained...

  9. FACTORS IN THE DESIGN OF A ROCK MECHANICS CENTRIFUGE FOR STRONG ROCK

    E-Print Network [OSTI]

    Clark, George B

    1984-01-01T23:59:59.000Z

    1 . Capacit i es of known centrifuges and v proposed SoftSolla I rock mechanics centrifuge r, ---------1~ --- dxB. , (1980), Geotechnical centrifuges for model studies and

  10. Overview of conservation treatments applied to rock glyph archaeological sites

    E-Print Network [OSTI]

    Dandridge, Debra E

    2000-01-01T23:59:59.000Z

    Rock glyphs, ubiquitously referred to as rock art, are often the most highly visible components of archaeological sites. Such artifacts, therefore, are most prone to deterioration and degradation from human caused and natural elements...

  11. Study of Acid Response of Qatar Carbonate Rocks

    E-Print Network [OSTI]

    Wang, Zhaohong

    2012-02-14T23:59:59.000Z

    of understanding of Qatar carbonate especially Middle East carbonates and the abundance of Middle East carbonate reservoirs is the main motivation behind this study. This work is an experimental study to understand the acid response to Qatar rocks in rocks...

  12. Modeling of crack initiation, propagation and coalescence in rocks

    E-Print Network [OSTI]

    Gonçalves da Silva, Bruno Miguel

    2009-01-01T23:59:59.000Z

    Natural or artificial fracturing of rock plays a very important role in geologic processes and for engineered structures in and on rock. Fracturing is associated with crack initiation, propagation and coalescence, which ...

  13. Inversion of seismic attributes for petrophysical parameters and rock facies 

    E-Print Network [OSTI]

    Shahraeeni, Mohammad Sadegh

    2011-01-01T23:59:59.000Z

    Prediction of rock and fluid properties such as porosity, clay content, and water saturation is essential for exploration and development of hydrocarbon reservoirs. Rock and fluid property maps obtained from such predictions ...

  14. Changes in sulfides and platinum-group minerals with the degree of alteration in the Roby, Twilight, and High

    E-Print Network [OSTI]

    Long, Bernard

    with laser ablation analysis of the sulfides was used to determine which phase controlled each of the PGE content of the rocks. Keywords Platinum-group elements . Platinum-group minerals . Laser ablation

  15. Maintenance & Cleaning Firm Earns Jefferson Lab's Small Business...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Maintenance & Cleaning Firm Earns Jefferson Lab's Small Business Award for 2013 Prestige award Prestige Maintenance staff (left to right) Sandra Coltrain, Operations Managers John...

  16. DOE's Jefferson Lab Receives Approval To Start Construction of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE's Jefferson Lab Receives Approval To Start Construction of 310 Million Upgrade NEWPORT NEWS, Va., Sept. 15, 2008 - The U.S. Department of Energy's Thomas Jefferson National...

  17. Jefferson Lab technology, capabilities take center stage in constructi...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    semi for its road test. Jefferson Lab technology, capabilities take center stage in construction of portion of DOE's Spallation Neutron Source accelerator By James Schultz January...

  18. Governor to Join Jefferson Lab in Celebrating Completion of Accelerato...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Governor to Join Jefferson Lab in Celebrating Completion of Accelerator Upgrade Construction CEBAF Race Track This aerial photo shows the outline of the racetrack-shaped CEBAF...

  19. Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth...

    Broader source: Energy.gov (indexed) [DOE]

    Other Institutions 13 J1711 HEV & PHEV test procedures In-depth Benchmarking DOE technology evaluation * DOE requests * National Lab requests AVTA (Advanced Vehicle Testing...

  20. The National Labs on Facebook | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    gamma rays. | Photo courtesy of Sandia National Laboratory. Like the National Labs on Facebook Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi...

  1. Department of Energy's National Renewable Energy Lab to Dramatically...

    Office of Environmental Management (EM)

    Energy's National Renewable Energy Lab to Dramatically Increase Use of Clean, Renewable Energy October 30, 2007 - 4:21pm Addthis New "Green Building," Biomass and Solar...

  2. Sandia Energy - The CRF's Turbulent Combustion Lab (TCL) Captures...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CRF's Turbulent Combustion Lab (TCL) Captures the Moment of Hydrogen Ignition Home Energy Transportation Energy CRF Facilities News News & Events Research & Capabilities The CRF's...

  3. LANL, Sandia National Lab recognize New Mexico small businesses...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL, Sandia National Lab recognize New Mexico small businesses for innovation LANL, Sandia recognized New Mexico small businesses for innovation Businesses include the Pueblo of...

  4. Los Alamos National Laboratory, Sandia Labs, other major employers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    STEM education in New Mexico Los Alamos National Laboratory, Sandia Labs, other major employers commit to STEM education in New Mexico Los Alamos, Sandia and several partners are...

  5. Ames Lab interns making their research mark in industry, academe...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and national labs Students participating in the Science Undergraduate Laboratory Internship (SULI), Community College Internship (CCI) and Faculty and Student Teams (FAST)...

  6. VIBRATION CHARACTERISTICS OF AN APS LAB FACILITY IN BUILDING...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    VIBRATION CHARACTERISTICS OF AN APS LAB FACILITY IN BUILDING 401 by T. J. Royston, Summer Faculty Participant Experimental Facilities Division, Advanced Photon Source, Argonne...

  7. Neutral Beam Electrical Engineer | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vacuum and cryogenic systems. Knowledge of AC power conversion, DC circuits, motors, power technology, industrial control systems and platforms (e.g. PLCs, LabView). Use...

  8. Lab-Corps Program Pitch Competition - April 17, 2015 | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab-Corps Program Pitch Competition - April 17, 2015 Share Browse By - Any - Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Diesel...

  9. Jefferson Lab announces two Fall Science Series events -- featuring...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conduct "Einstein and Beyond - The Magic Show" on Tuesday, Oct. 25 at the Jefferson Lab CEBAF Center auditorium. The magic show will concentrate on Newtonian mechanics, relativity,...

  10. 20 Amazing Things the National Labs Have Done

    Broader source: Energy.gov [DOE]

    Scroll through the gallery to see some of the top contributions by the National Labs. You might be surprised what you find.

  11. 20 Amazing Things the National Labs Have Done

    Broader source: Energy.gov [DOE]

    Check out the photo gallery to see some of the most notable contributions by the National Labs to science, energy and national security.

  12. Kennebec Valley Community College's State of the Art Solar Lab

    Broader source: Energy.gov [DOE]

    Fairfield, Maine's Kennebec Valley Community College has opened a state of the art lab to teach participants from throughout the Northeast how to install solar systems.

  13. Jefferson Lab's Free-Electron Laser explores promise of carbon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the collaboration's FEL experiment (image not actual size). Jefferson Lab's Free-Electron Laser explores promise of carbon nanotubes By James Schultz January 27, 2003...

  14. DOE Congratulates Under Secretary, National Lab Director and...

    Broader source: Energy.gov (indexed) [DOE]

    Lawrence Berkeley National Laboratory (Berkeley Lab) and an award-winning cell and cancer biologist, and Alexis Bell is a chemical engineer with joint appointments at Berkeley...

  15. Jefferson Lab Medical Imager Spots Breast Cancer | Jefferson...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Eric Rosen, Duke University Medical Center Jefferson Lab Medical Imager Spots Breast Cancer March 3, 2005 Newport News, VA - A study published in the February issue of the...

  16. Jefferson Lab is now using Team Worldwide for International Customs...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    items on port-of-call manifests bound for the lab, arranging for shipping and terminal clearance, calculating tariffs, and pricing out and coordinating routing for ground...

  17. Young Physicist from Syracuse University Receives Jefferson Lab...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    designs for two experiments planned to run in the upgraded Continuous Electron Beam Accelerator Facility at Jefferson Lab. The Thesis Prize was established in 1999 by the...

  18. Jefferson Lab Tech Associate Invents Lockout Device for Equipment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tech Associate Invents Lockout Device for Equipment with Removable Power Cords April 22, 2002 It was the early 1990s and building Jefferson Lab's Continuous Electron Beam...

  19. JLab Awarded Vice President's Hammer Award | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Awarded Vice President's Hammer Award The Directives Review Team at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) has been awarded the Vice President's Hammer...

  20. 2014 Doing Business with Argonne & FermiLab | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Doing Business with Argonne & FermiLab 2014 Doing Business with Argonne and Fermi National Laboratories 1 of 17 2014 Doing Business with Argonne and Fermi National Laboratories...

  1. Integrated Lab/Industry Research Project at LBNL

    Broader source: Energy.gov (indexed) [DOE]

    Integrated LabIndustry Research Project at LBNL Jordi Cabana Lawrence Berkeley National Laboratory May 12 th , 2011 ES102 This presentation does not contain any proprietary,...

  2. Berkeley Lab Breaks Ground on the Computational Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of its kind. Joining Secretary Chu as speakers were Berkeley Lab Director Paul Alivisatos, University of California President Mark Yudof, Energy Department's Office of...

  3. Former Intel CEO Craig Barrett to Chair Berkeley Lab Advisory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    innovative ideas turn into world-changing products." Berkeley Lab Director Paul Alivisatos (center) presents outgoing Board Chair Norm Augustine with a photo from the hydrogen...

  4. 'Comic Book Physics' examined at Jefferson Lab's March 25 Science...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    examined at Jefferson Lab's March 25 Science Series event February 26, 2003 The wild, wacky world of 'Comic Book Physics' will be investigated by guest speaker Jim...

  5. Partnership Logging Accidents Cornelis de Hoop, LA Forest Products Lab

    E-Print Network [OSTI]

    Partnership Logging Accidents · by · Cornelis de Hoop, LA Forest Products Lab · Albert Lefort Agreement · 1998 & 1999 Accident Reports · 25 injuries reported · 185 loggers signed up · 8 deaths 1999

  6. Jefferson Lab adds three popular presentations to Fall Science...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    http:universe.gsfc.nasa.govpeople.html Then after a late October engagement in London, internationally known physicist and Jefferson Lab's Interim Deputy for Science Frank...

  7. CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone

    Energy Savers [EERE]

    LAWRENCE BERKELEY LAB POC David Chen Telephone (510) 486-4506 Email dtchen@lbl.gov Engineering Services 541330 Drafting Services 541340 Geophysical Surveying and Mapping Services...

  8. Argonne National Laboratory Partners with Advanced Magnet Lab...

    Energy Savers [EERE]

    next generation wind turbines and accelerate the deployment of advanced turbines for offshore wind energy in the United States. ANL will work with Magnet Lab, Emerson Electric...

  9. Jefferson Lab seeks applicants for summer, science teacher enrichment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    seeks applicants for summer, science teacher enrichment program February 26, 2003 Calling all middle school teachers who instruct science classes. Jefferson Lab would like to help...

  10. News Media invited to interview Jefferson Lab summer science...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JLab Media Advisory: News Media invited to interview Jefferson Lab summer science enrichment program participants; cover closing Poster Session July 29, 2005 News Media...

  11. News Media invited to interview Jefferson Lab summer science...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Media invited to interview Jefferson Lab summer science enrichment program participants; cover closing Poster Session August 1, 2007 News Media representatives are invited to...

  12. Media Advisory - Jefferson Lab Hosts Summer Intern Science Poster...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high school and college interns that participated in Jefferson Lab's summer science enrichment programs will share their summer experiences and projects during a Poster Session....

  13. Jefferson Lab welcomes students, teachers for summer internship...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Poster Session Jefferson Lab welcomes students, teachers for summer internship, enrichment program July 28, 2004 Newport News, VA. - As schools close for the summer, the...

  14. Jefferson Lab Seeks Applicants for Science Teacher Enrichment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Seeks Applicants for Science Teacher Enrichment Program March 14, 2001 Calling all middle school teachers who instruct science classes. Jefferson Lab would like to help you refresh...

  15. Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal Area (Phillips, 2004)...

  16. Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal Area (Ito & Tanaka, 1995)...

  17. Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area (Ito & Tanaka, 1995) Exploration...

  18. DOSAR/CalLab Operations Manual

    SciTech Connect (OSTI)

    Bogard, J.S.

    2000-03-01T23:59:59.000Z

    The Life Sciences Division (LSD) of Oak Ridge National Laboratory (ORNL) has a long record of radiation dosimetry research, primarily using the Health Physics Research Reactor (HPRR) and the Dosimetry Applications Research (DOSAR) Program Calibration Laboratory (CalLab), referred to formerly as the Radiation Calibration Laboratory. These facilities have been used by a broad segment of the research community to perform a variety of experiments in areas including, but not limited to, radiobiology, radiation dosimeter and instrumentation development and calibration, and the testing of materials in a variety of radiation environments.

  19. National Lab Day 2014 | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota1 JulyScience (SC)In99Security |Lab

  20. SolarLab | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, NewSingapore Jump to:Voltaic MalaysiaSolarLab Jump to:

  1. New app takes Lab's volunteer efforts mobile

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew Visible toNew app takes Lab's

  2. Jefferson Lab | Exploring the Nature of Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home as Ready for Summer asJacob17JeffStaffJefferson Lab

  3. Los Alamos Lab: Environmental Physical Sciences, ADEPS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatestCenterLogging inLooking northeastLos Alamos Lab

  4. Jefferson Lab Nuclear Physics Events: Seminars

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNew Safety Director NEWPORT

  5. Lab active in support of science activities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -Lab Subcontractoractive in support

  6. Lab celebrates 50 years in space

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -Lab Subcontractoractive

  7. Lab joins in global Earth Day celebrations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -Labgrants Decision SciencesLab has

  8. Lab school supply drive starts July 15

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -Labgrants DecisionLab school supply

  9. Lab scientists recognized for economic development efforts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -Labgrants DecisionLab

  10. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomeland and Nuclear SecurityHomelandImageAnnualFactLab

  11. Physics of Cancer | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding accessPeptoidLabPhysics Physics Our science

  12. Plasma astrophysics | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding accessPeptoidLabPhysics Physics OursourcesEdge Transport

  13. Plasma diagnostics | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding accessPeptoidLabPhysics Physics OursourcesEdge

  14. Plasma physics | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding accessPeptoidLabPhysics Physics OursourcesEdgephysics Subscribe

  15. Green Power Labs Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGoveNebraska:EthanolHabits JumpMachine Place:Labs Inc

  16. Element Labs Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois:EdinburghEldoradoElectronVault JumpLabs, Inc. Place:

  17. SmartLabs Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistmaSinosteel Corporation JumpShines afterSmartSmartLabs Inc

  18. Berkeley Lab Compact Accelerator Sets World Record

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumniComplex historianBenefits of BESBerkeley Lab Particle

  19. Berkeley Lab Ethical Values and Conduct

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumniComplex historianBenefits of BESBerkeley Lab

  20. Property:Lab Test | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOid JumpEligSysSize JumpTechDsc JumpAlpha3 JumpLab Test

  1. Vert Labs LLP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologiesVenkataraya|Vermont:Verona,Versailles,Labs LLP

  2. Department of Chemistry Quarterly Lab Inspection Report Lab Supervisor: ____________________ Room: _________________ Date: _________________

    E-Print Network [OSTI]

    Chan, Hue Sun

    and unobstructed _____ Proper use known by users _____ Airflow alarm tested _____ Floors, Aisles and Exits Dry _____ Aisles, doorways, emergency exits Unobstructed _____ Sinks and Drains Clean Water run to all drains _____ Good condition _____ Suitable for hazard present _____ Gloves, Lab Coats and Footwear Available

  3. Copyright 2004 Auto-ID Labs, All Rights Reserved The Auto-ID Labs

    E-Print Network [OSTI]

    Brock, David

    Reserved Several Types of Webs · The Web of Information HTML and the World Wide Web · The Web of Things-ID Labs, All Rights Reserved A Special Word of Thanks to my Colleagues · Stuart J. Allen - Professor Reserved A Special Word of Thanks to my Colleagues (continued) · Nhat-So Lam ­ Family Retail Business

  4. A CONSTITUTIVE MODEL TO PREDICT THE HYDROMECHANICAL BEHAVIOUR OF ROCK

    E-Print Network [OSTI]

    Aubertin, Michel

    in the presence of water to better assess the stability of rock structures under many situations. The accurate conditions. A rock mass behaviour can also be influenced by the water flow and ensuing pore pressure. For example, a previously stable rock structure can become unstable with an increase of water pressure inside

  5. Sigma Xi, The Scientific Research Society Rock Varnish

    E-Print Network [OSTI]

    Dorn, Ron

    Sigma Xi, The Scientific Research Society Rock Varnish Author(s): Ronald I. Dorn Source: American;Rock Varnish Over thousandsofyears,a thincoatingofclay,cementedtorocksbymanganese and iron that appeared "smooth, black, and as ifcoated with plumbago." Indian legends explained that these rocks had been

  6. Technical Note Evaluation of mechanical rock properties using a Schmidt

    E-Print Network [OSTI]

    Ze'ev, Reches

    Technical Note Evaluation of mechanical rock properties using a Schmidt Hammer O. Katza, b, c, *, Z, 91904, Israel b Geological Survey of Israel, 30 Malkhe Yisrael St., Jerusalem, 95501, Israel c Rock of concrete hardness [1], and was later used to estimate rock strength [2,3]. It con- sists of a spring

  7. A NEW MODEL FOR PERFORMANCE PREDICTION OF HARD ROCK TBMS.

    E-Print Network [OSTI]

    TBMs. The model uses information on the rock properties and cutting geometry to calculate TBM rate on data collected in the field and is merely a regression between machine parameters, rock properties is introduced to provide an estimate of disc cutting forces as a function of rock properties and the cutting

  8. Apollo Rock Reveals Moon Had Molten Core | Universe Additional Resources

    E-Print Network [OSTI]

    Weiss, Benjamin P.

    Apollo Rock Reveals Moon Had Molten Core | Universe Today Subscribe Podcast Home Additional Apollo Rock Reveals Moon Had Molten Core Written by Nancy Atkinson If you're new here, you may want to subscribe to my RSS feed. Thanks for visiting! Apollo Rock Reveals Moon Had Molten Core | Universe Today

  9. Thermal maturity of the Upper Triassic-Middle Jurassic Shemshak Group (Alborz Range, Northern Iran)

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Iran) based on organic petrography, geochemistry and basin modelling: implications for source rock1 Thermal maturity of the Upper Triassic-Middle Jurassic Shemshak Group (Alborz Range, Northern Iran. Organic matter (OM) has been investigated using Rock-Eval pyrolysis, elemental analysis

  10. FIELD-SCALE EFFECTIVE MATRIX DIFFUSION COEFFICIENT FOR FRACTURED ROCK:RESULTS FROM LITERATURE SURVEY

    SciTech Connect (OSTI)

    Q. Zhou; Hui-Hai Liu; F.J. Molz; Y. Zhang; G.S. Bodvarsson

    2005-04-08T23:59:59.000Z

    Matrix diffusion is an important mechanism for solute transport in fractured rock. We recently conducted a literature survey on the effective matrix diffusion coefficient, D{sub m}{sup e}, a key parameter for describing matrix diffusion processes at the field scale. Forty field tracer tests at 15 fractured geologic sites were surveyed and selected for the study, based on data availability and quality. Field-scale D{sub m}{sup e} values were calculated, either directly using data reported in the literature or by reanalyzing the corresponding field tracer tests. Surveyed data indicate that the effective-matrix-diffusion-coefficient factor F{sub D} (defined as the ratio of D{sub m}{sup e} to the lab-scale matrix diffusion coefficient [D{sub m}] of the same tracer) is generally larger than one, indicating that the effective matrix diffusion coefficient in the field is comparatively larger than the matrix diffusion coefficient at the rock-core scale. This larger value can be attributed to the many mass-transfer processes at different scales in naturally heterogeneous, fractured rock systems. Furthermore, we observed a moderate trend toward systematic increase in the F{sub D} value with observation scale, indicating that the effective matrix diffusion coefficient is likely to be statistically scale dependent. The F{sub D} value ranges from 1 to 10,000 for observation scales from 5 to 2,000 m. At a given scale, the F{sub D} value varies by two orders of magnitude, reflecting the influence of differing degrees of fractured rock heterogeneity at different sites. In addition, the surveyed data indicate that field-scale longitudinal dispersivity generally increases with observation scale, which is consistent with previous studies. The scale-dependent field-scale matrix diffusion coefficient (and dispersivity) may have significant implications for assessing long-term, large-scale radionuclide and contaminant transport events in fractured rock, both for nuclear waste disposal and contaminant remediation.

  11. ROCK PROPERTIES AND THEIR EFFECT ON THERMALLY-INDUCED DISPLACEMENTS AND STRESSES

    E-Print Network [OSTI]

    Chan, T.

    2010-01-01T23:59:59.000Z

    of laboratory rock property measurements. ACKNOWLEDGEMENT10517 u>ve-'zz&\\--lo ROCK PROPERTIES AND THEIR EFFECT OHin values i for the rock properties for an 1n-s1tu rock mass

  12. GEOL 103 Writing Assignment 2. Rock Cycle 1. How do each of the three major rock types form? Include the source of the material and the rock-forming

    E-Print Network [OSTI]

    Kirby, Carl S.

    ? Include the source of the material and the rock-forming process. · Igneous rocks form from the hiGEOL 103 Writing Assignment 2. Rock Cycle 1. How do each of the three major rock types form-temperature (650-1200 °C) melting of other rocks (ign. mmorphic, or sed), following by cooling, possibly

  13. GEOTECHNICAL ASSESSMENT AND INSTRUMENTATION NEEDS FOR NUCLEAR WASTE ISOLATION IN CRYSTALLINE AND ARGILLACEOUS ROCKS SYMPOSIUM

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    Characterization of Rock Masses Structural GeologicalCharacterization of Rock Masses . • • • • • • • • 5.2.1 Structural Geological

  14. Seismic and Acoustic Investigations of Rock Fall Initiation, Processes, and Mechanics

    E-Print Network [OSTI]

    Zimmer, Valerie Louise

    2011-01-01T23:59:59.000Z

    Happy  Isles  and  the  1999  Glacier  Point  rock  falls,  there   was   an   attempt   to   monitor   rock   fall   in   Yosemite   Valley  

  15. A Phased Array Approach to Rock Blasting

    SciTech Connect (OSTI)

    Leslie Gertsch; Jason Baird

    2006-07-01T23:59:59.000Z

    A series of laboratory-scale simultaneous two-hole shots was performed in a rock simulant (mortar) to record the shock wave interference patterns produced in the material. The purpose of the project as a whole was to evaluate the usefulness of phased array techniques of blast design, using new high-precision delay technology. Despite high-speed photography, however, we were unable to detect the passage of the shock waves through the samples to determine how well they matched the expected interaction geometry. The follow-up mine-scale tests were therefore not conducted. Nevertheless, pattern analysis of the vectors that would be formed by positive interference of the shockwaves from multiple charges in an ideal continuous, homogeneous, isotropic medium indicate the potential for powerful control of blast design, given precise characterization of the target rock mass.

  16. Low Pore Connectivity in Natural Rock

    SciTech Connect (OSTI)

    Hu, Qinhong; Ewing, Robert P.; Dultz, Stefan

    2012-05-15T23:59:59.000Z

    As repositories for CO? and radioactive waste, as oil and gas reservoirs, and as contaminated sites needing remediation, rock formations play a central role in energy and environmental management. The connectivity of the rock's porespace strongly affects fluid flow and solute transport. This work examines pore connectivity and its implications for fluid flow and chemical transport. Three experimental approaches (imbibition, tracer concentration profiles, and imaging) were used in combination with network modeling. In the imbibition results, three types of imbibition slope [log (cumulative imbibition) vs. log (imbibition time)] were found: the classical 0.5, plus 0.26, and 0.26 transitioning to 0.5. The imbibition slope of 0.26 seen in Indiana sandstone, metagraywacke, and Barnett shale indicates low pore connectivity, in contrast to the slope of 0.5 seen in the well-connected Berea sandstone. In the tracer profile work, rocks exhibited different distances to the plateau porosity, consistent with the pore connectivity from the imbibition tests. Injection of a molten metal into connected pore spaces, followed by 2-D imaging of the solidified alloy in polished thin sections, allowed direct assessment of pore structure and lateral connection in the rock samples. Pore-scale network modeling gave results consistent with measurements, confirming pore connectivity as the underlying cause of both anomalous behaviors: imbibition slope not having the classical value of 0.5, and accessible porosity being a function of distance from the edge. A poorly connected porespace will exhibit anomalous behavior in fluid flow and chemical transport, such as a lower imbibition slope (in air–water system) and diffusion rate than expected from classical behavior.

  17. Rock Chalk Report, May 7, 2014

    E-Print Network [OSTI]

    2014-05-07T23:59:59.000Z

    Trouble seeing something? view it online or To unsubscribe, click here or send an email to: unsubscribe- 87@pacmail.em.marketinghq.net. May 7, 2014 Rock Chalk Report The Official Newsletter of Kansas Athletics... an email to: unsubscribe-87@pacmail.em.marketinghq.net. © 2014, University of Kansas. The team names, logos and uniform designs are registered trademarks of the teams indicated. No logos, photographs or graphics in this email may be reproduced without...

  18. Hunton Group core workshop and field trip

    SciTech Connect (OSTI)

    Johnson, K.S. [ed.

    1993-12-31T23:59:59.000Z

    The Late Ordovician-Silurian-Devonian Hunton Group is a moderately thick sequence of shallow-marine carbonates deposited on the south edge of the North American craton. This rock unit is a major target for petroleum exploration and reservoir development in the southern Midcontinent. The workshop described here was held to display cores, outcrop samples, and other reservoir-characterization studies of the Hunton Group and equivalent strata throughout the region. A field trip was organized to complement the workshop by allowing examination of excellent outcrops of the Hunton Group of the Arbuckle Mountains.

  19. Hot Dry Rock Geothermal Energy Development Program

    SciTech Connect (OSTI)

    Smith, M.C.; Hendron, R.H.; Murphy, H.D.; Wilson, M.G.

    1989-12-01T23:59:59.000Z

    During Fiscal Year 1987, emphasis in the Hot Dry Rock Geothermal Energy Development Program was on preparations for a Long-Term Flow Test'' of the Phase II'' or Engineering'' hot dry rock energy system at Fenton Hill, New Mexico. A successful 30-day flow test of the system during FY86 indicated that such a system would produce heat at a temperature and rate that could support operation of a commercial electrical power plant. However, it did not answer certain questions basic to the economics of long-term operation, including the rate of depletion of the thermal reservoir, the rate of water loss from the system, and the possibility of operating problems during extended continuous operation. Preparations for a one-year flow test of the system to answer these and more fundamental questions concerning hot dry rock systems were made in FY87: design of the required surface facilities; procurement and installation of some of their components; development and testing of slimline logging tools for use through small-diameter production tubing; research on temperature-sensitive reactive chemical tracers to monitor thermal depletion of the reservoir; and computer simulations of the 30-day test, extended to modeling the planned Long-Term Flow Test. 45 refs., 34 figs., 5 tabs.

  20. Gage for measuring displacements in rock samples

    DOE Patents [OSTI]

    Holcomb, D.J.; McNamee, M.J.

    1985-07-18T23:59:59.000Z

    A gage for measuring diametral displacement within a rock sample for use in a rock mechanics laboratory and in the field, comprises a support ring housing a linear variable differential transformer (LVDT), a mounting screw, and a leaf spring. The mounting screw is adjustable and defines a first point of contact with the rock sample. The leaf spring has opposite ends fixed to the inner periphery of the mounting ring. An intermediate portion of the leaf spring projecting radially inward from the ring is formed with a dimple defining a second point of contact with the sample. The first and second points of contact are diametrically opposed to each other. The LVDT is mounted in the ring with its axis parallel to the line of measurement and its core rod received in the dimple of the leaf spring. Any change in the length of the line between the first and second support points is directly communicated to the LVDT. The leaf spring is rigid to completely support lateral forces so that the LVDT is free of all load for improved precision.