National Library of Energy BETA

Sample records for group downhole techniques

  1. Category:Downhole Techniques | Open Energy Information

    Open Energy Info (EERE)

    Downhole Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Downhole Techniques page? For detailed information on Downhole...

  2. Downhole Techniques | Open Energy Information

    Open Energy Info (EERE)

    in-situ within the well, downhole techniques are capable of accurately constraining these reservoir parameters relative to depth.2 Gaining an understanding of these reservoir...

  3. Downhole drilling network using burst modulation techniques

    DOE Patents [OSTI]

    Hall; David R. , Fox; Joe

    2007-04-03

    A downhole drilling system is disclosed in one aspect of the present invention as including a drill string and a transmission line integrated into the drill string. Multiple network nodes are installed at selected intervals along the drill string and are adapted to communicate with one another through the transmission line. In order to efficiently allocate the available bandwidth, the network nodes are configured to use any of numerous burst modulation techniques to transmit data.

  4. Downhole tool

    DOE Patents [OSTI]

    Hall, David R.; Muradov, Andrei; Pixton, David S.; Dahlgren, Scott Steven; Briscoe, Michael A.

    2007-03-20

    A double shouldered downhole tool connection comprises box and pin connections having mating threads intermediate mating primary and secondary shoulders. The connection further comprises a secondary shoulder component retained in the box connection intermediate a floating component and the primary shoulders. The secondary shoulder component and the pin connection cooperate to transfer a portion of makeup load to the box connection. The downhole tool may be selected from the group consisting of drill pipe, drill collars, production pipe, and reamers. The floating component may be selected from the group consisting of electronics modules, generators, gyroscopes, power sources, and stators. The secondary shoulder component may comprises an interface to the box connection selected from the group consisting of radial grooves, axial grooves, tapered grooves, radial protrusions, axial protrusions, tapered protrusions, shoulders, and threads.

  5. Feasibility and Design Studies for a High Temperature Downhole Tool

    Broader source: Energy.gov [DOE]

    Project objective: Perform feasibility and design studies for a high temperature downhole tool; which uses nuclear techniques for characterization purposes; using measurements and modeling/simulation.

  6. Downhole Dynamometer Data Processor

    Energy Science and Technology Software Center (OSTI)

    1996-08-19

    The Downhole Dynamometer Database contains data taken during tests made on a number of different wells using both a surface dynamometer and a number of different downhole dynamometer tools. DOWNDYN allows the user to perform four different functions on the database: select a data file, choose information from the file, and either plot or export that information.

  7. Downhole telemetry system

    DOE Patents [OSTI]

    Normann, R.A.; Kadlec, E.R.

    1994-11-08

    A downhole telemetry system is described for optically communicating to the surface operating parameters of a drill bit during ongoing drilling operations. The downhole telemetry system includes sensors mounted with a drill bit for monitoring at least one operating parameter of the drill bit and generating a signal representative thereof. The downhole telemetry system includes means for transforming and optically communicating the signal to the surface as well as means at the surface for producing a visual display of the optically communicated operating parameters of the drill bit. 7 figs.

  8. Downhole telemetry system

    DOE Patents [OSTI]

    Normann, Randy A.; Kadlec, Emil R.

    1994-01-01

    A downhole telemetry system is described for optically communicating to the surface operating parameters of a drill bit during ongoing drilling operations. The downhole telemetry system includes sensors mounted with a drill bit for monitoring at least one operating parameter of the drill bit and generating a signal representative thereof. The downhole telemetry system includes means for transforming and optically communicating the signal to the surface as well as means at the surface for producing a visual display of the optically communicated operating parameters of the drill bit.

  9. Downhole Data Transmission System

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Fox, Joe

    2004-04-06

    A system for transmitting data through a string of down-hole components. In accordance with one aspect, the system includes a plurality of downhole components, such as sections of pipe in a drill string. Each downhole component includes a pin end and a box end, with the pin end of one downhole component being adapted to be connected to the box end of another. Each pin end includes external threads and an internal pin face distal to the external threads. Each box end includes an internal shoulder face with internal threads distal to the internal shoulder face. The internal pin face and the internal shoulder face are aligned with and proximate each other when the pin end of the one component is threaded into a box end of the other component.

  10. Downhole steam quality measurement

    DOE Patents [OSTI]

    Lee, David O.; Montoya, Paul C.; Muir, James F.; Wayland, Jr., J. Robert

    1987-01-01

    An empirical method for the remote sensing of steam quality that can be easily adapted to downhole steam quality measurements by measuring the electrical properties of two-phase flow across electrode grids at low frequencies.

  11. Three phase downhole separator process

    DOE Patents [OSTI]

    Cognata, Louis John (Baytown, TX)

    2008-06-24

    Three Phase Downhole Separator Process (TPDSP) is a process which results in the separation of all three phases, (1) oil, (2) gas, and (3) water, at the downhole location in the well bore, water disposal injection downhole, and oil and gas production uphole.

  12. Downhole transmission system

    DOE Patents [OSTI]

    Hall, David R.; Fox, Joe

    2008-01-15

    A transmission system in a downhole component comprises a data transmission element in both ends of the downhole component. Each data transmission element houses an electrically conducting coil in a MCEI circular trough. An electrical conductor connects both the transmission elements. The electrical conductor comprises at least three electrically conductive elements insulated from each other. In the preferred embodiment the electrical conductor comprises an electrically conducting outer shield, an electrically conducting inner shield and an electrical conducting core. In some embodiments of the present invention, the electrical conductor comprises an electrically insulating jacket. In other embodiments, the electrical conductor comprises a pair of twisted wires. In some embodiments, the electrical conductor comprises semi-conductive material.

  13. Distributed downhole drilling network

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Fox, Joe; Pixton, David S.

    2006-11-21

    A high-speed downhole network providing real-time data from downhole components of a drilling strings includes a bottom-hole node interfacing to a bottom-hole assembly located proximate the bottom end of a drill string. A top-hole node is connected proximate the top end of the drill string. One or several intermediate nodes are located along the drill string between the bottom-hole node and the top-hole node. The intermediate nodes are configured to receive and transmit data packets transmitted between the bottom-hole node and the top-hole node. A communications link, integrated into the drill string, is used to operably connect the bottom-hole node, the intermediate nodes, and the top-hole node. In selected embodiments, a personal or other computer may be connected to the top-hole node, to analyze data received from the intermediate and bottom-hole nodes.

  14. Property:ExplorationGroup | Open Energy Information

    Open Energy Info (EERE)

    Survey + Field Techniques + A Acoustic Logs + Downhole Techniques + Active Seismic Methods + Geophysical Techniques + Active Seismic Techniques + Geophysical Techniques +...

  15. Downhole steam injector

    DOE Patents [OSTI]

    Donaldson, A. Burl; Hoke, Donald E.

    1983-01-01

    An improved downhole steam injector has an angled water orifice to swirl the water through the device for improved heat transfer before it is converted to steam. The injector also has a sloped diameter reduction in the steam chamber to throw water that collects along the side of the chamber during slant drilling into the flame for conversion to steam. In addition, the output of the flame chamber is beveled to reduce hot spots and increase efficiency, and the fuel-oxidant inputs are arranged to minimize coking.

  16. Method and system for downhole clock synchronization

    DOE Patents [OSTI]

    Hall, David R.; Bartholomew, David B.; Johnson, Monte; Moon, Justin; Koehler, Roger O.

    2006-11-28

    A method and system for use in synchronizing at least two clocks in a downhole network are disclosed. The method comprises determining a total signal latency between a controlling processing element and at least one downhole processing element in a downhole network and sending a synchronizing time over the downhole network to the at least one downhole processing element adjusted for the signal latency. Electronic time stamps may be used to measure latency between processing elements. A system for electrically synchronizing at least two clocks connected to a downhole network comprises a controlling processing element connected to a synchronizing clock in communication over a downhole network with at least one downhole processing element comprising at least one downhole clock. Preferably, the downhole network is integrated into a downhole tool string.

  17. Downhole pulse tube refrigerators

    SciTech Connect (OSTI)

    Swift, G.; Gardner, D.

    1997-12-01

    This report summarizes a preliminary design study to explore the plausibility of using pulse tube refrigeration to cool instruments in a hot down-hole environment. The original motivation was to maintain Dave Reagor`s high-temperature superconducting electronics at 75 K, but the study has evolved to include three target design criteria: cooling at 30 C in a 300 C environment, cooling at 75 K in a 50 C environment, cooling at both 75 K and 30 C in a 250 C environment. These specific temperatures were chosen arbitrarily, as representative of what is possible. The primary goals are low cost, reliability, and small package diameter. Pulse-tube refrigeration is a rapidly growing sub-field of cryogenic refrigeration. The pulse tube refrigerator has recently become the simplest, cheapest, most rugged and reliable low-power cryocooler. The authors expect this technology will be applicable downhole because of the ratio of hot to cold temperatures (in absolute units, such as Kelvin) of interest in deep drilling is comparable to the ratios routinely achieved with cryogenic pulse-tube refrigerators.

  18. Downhole Data Transmission System

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Fox, Joe

    2003-12-30

    A system for transmitting data through a string of downhole components. In one aspect, the system includes first and second magnetically conductive, electrically insulating elements at both ends of the component. Each element includes a first U-shaped trough with a bottom, first and second sides and an opening between the two sides. Electrically conducting coils are located in each trough. An electrical conductor connects the coils in each component. In operation, a varying current applied to a first coil in one component generates a varying magnetic field in the first magnetically conductive, electrically insulating element, which varying magnetic field is conducted to and thereby produces a varying magnetic field in the second magnetically conductive, electrically insulating element of a connected component, which magnetic field thereby generates a varying electrical current in the second coil in the connected component.

  19. Downhole data transmission system

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S; Dahlgren, Scott; Fox, Joe

    2006-06-20

    A system for transmitting data through a string of downhole components. In one aspect, the system includes first and second magnetically conductive, electrically insulating elements at both ends of the component. Each element includes a first U-shaped trough with a bottom, first and second sides and an opening between the two sides. Electrically conducting coils are located in each trough. An electrical conductor connects the coils in each component. In operation, a varying current applied to a first coil in one component generates a varying magnetic field in the first magnetically conductive, electrically insulating element, which varying magnetic field is conducted to and thereby produces a varying magnetic field in the second magnetically conductive, electrically insulating element of a connected component, which magnetic field thereby generates a varying electrical current in the second coil in the connected component.

  20. Downhole thermoacoustic device

    SciTech Connect (OSTI)

    Kuznetsov, O. L.; Malchenok, V. O.; Maxutov, R. A.; Mordukhaev, K. M.; Ostrovsky, A. P.

    1985-12-17

    A downhole thermoacoustic device comprises a heater with a terminal chamber, connected to a source or radiator of acoustic oscillation, including a hollow housing having mounted therein a longitudinal shaft carrying coils with cores in the form of a plurality of flat rings of a magnetostrictive material, operable as the active elements adapted to generate acoustic oscillation. Accommodated intermediate the coils is a member for focusing the acoustic field, in the form of a sleeve, while the longitudinal shaft carries a tube-shaped reflector of acoustic oscillation internally of the core of each coil. The top and bottom portions of the hollow housing of the radiator of acoustic oscillation have mounted therein damping elements including sleeves of a resilient material, while a heat-insulating member including a sleeve with a fluted surface is provided intermediate the terminal chamber of the heater and the hollow housing of the radiator.

  1. Downhole hydraulic seismic generator

    DOE Patents [OSTI]

    Gregory, Danny L.; Hardee, Harry C.; Smallwood, David O.

    1992-01-01

    A downhole hydraulic seismic generator system for transmitting energy wave vibrations into earth strata surrounding a borehole. The system contains an elongated, unitary housing operably connected to a well head aboveground by support and electrical cabling, and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a hydraulic oscillator containing a double-actuating piston whose movement is controlled by an electro-servovalve regulating a high pressure hydraulic fluid flow into and out of upper and lower chambers surrounding the piston. The spent hydraulic fluid from the hydraulic oscillator is stored and pumped back into the system to provide high pressure fluid for conducting another run at the same, or a different location within the borehole.

  2. Downhole steam quality measurement

    DOE Patents [OSTI]

    Lee, D.O.; Montoya, P.C.; Muir, J.F.; Wayland, J.R. Jr.

    1985-06-19

    The present invention relates to an empirical electrical method for remote sensing of steam quality utilizing flow-through grids which allow measurement of the electrical properties of a flowing two-phase mixture. The measurement of steam quality in the oil field is important to the efficient application of steam assisted recovery of oil. Because of the increased energy content in higher quality steam it is important to maintain the highest possible steam quality at the injection sandface. The effectiveness of a steaming operation without a measure of steam quality downhole close to the point of injection would be difficult to determine. Therefore, a need exists for the remote sensing of steam quality.

  3. Downhole Sensor Holds Transformative Potential

    Office of Energy Efficiency and Renewable Energy (EERE)

    Long-term operation of electronics at high temperatures remains a challenge for the geothermal sector; many downhole sensors are prone to failure when deployed in high-temperature wells, which limits the availability and complexity of logging tools av

  4. Borehole Seismic Techniques | Open Energy Information

    Open Energy Info (EERE)

    Technique: Downhole Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities StratigraphicStructural: Structural geology-...

  5. Jiaozuo Coal Group Hejing Technique Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Jiaozuo Coal Group Hejing Technique Co Ltd Jump to: navigation, search Name: Jiaozuo Coal Group Hejing Technique Co Ltd Place: Jiaozuo, Henan Province, China Zip: 454002 Product: A...

  6. Downhole tool adapted for telemetry

    DOE Patents [OSTI]

    Hall, David R.; Fox, Joe

    2010-12-14

    A cycleable downhole tool such as a Jar, a hydraulic hammer, and a shock absorber adapted for telemetry. This invention applies to other tools where the active components of the tool are displaced when the tool is rotationally or translationally cycled. The invention consists of inductive or contact transmission rings that are connected by an extensible conductor. The extensible conductor permits the transmission of the signal before, after, and during the cycling of the tool. The signal may be continuous or intermittent during cycling. The invention also applies to downhole tools that do not cycle, but in operation are under such stress that an extensible conductor is beneficial. The extensible conductor may also consist of an extensible portion and a fixed portion. The extensible conductor also features clamps that maintain the conductor under stresses greater than that seen by the tool, and seals that are capable of protecting against downhole pressure and contamination.

  7. Transducer for downhole drilling components

    DOE Patents [OSTI]

    Hall, David R; Fox, Joe R

    2006-05-30

    A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. The transmission element may include an annular housing forming a trough, an electrical conductor disposed within the trough, and an MCEI material disposed between the annular housing and the electrical conductor.

  8. West Flank Downhole Temperature Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Doug Blankenship

    2008-03-01

    Downhole temperature data for the three wells inside the West Flank FORGE footprint; 83-11, TCH 74-2 and TCH 48-11. TCH 74-2 and TCH 48-11 were both collected before 1990 and 83-11 was collected in 2009. The are compiled into one spreadsheet for ease of visualization.

  9. Battery switch for downhole tools

    DOE Patents [OSTI]

    Boling, Brian E.

    2010-02-23

    An electrical circuit for a downhole tool may include a battery, a load electrically connected to the battery, and at least one switch electrically connected in series with the battery and to the load. The at least one switch may be configured to close when a tool temperature exceeds a selected temperature.

  10. Downhole steam generator having a downhole oxidant compressor

    DOE Patents [OSTI]

    Fox, R.L.

    1981-01-07

    Am improved apparatus is described for the downhole injection of steam into boreholes, for tertiary oil recovery. It includes an oxidant supply, a fuel supply, an igniter, a water supply, an oxidant compressor, and a combustor assembly. The apparatus is designed for efficiency, preheating of the water, and cooling of the combustion chamber walls. The steam outlet to the borehole is provided with pressure-responsive doors for closing the outlet in response to flameout. (DLC)

  11. Advanced downhole periodic seismic generator

    DOE Patents [OSTI]

    Hardee, Harry C.; Hills, Richard G.; Striker, Richard P.

    1991-07-16

    An advanced downhole periodic seismic generator system for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

  12. High Temperature Downhole Motor - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Geothermal Find More Like This Return to Search High Temperature Downhole Motor Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (164 KB) Technology Marketing Summary Drilling costs amount to over half of the total cost of geothermal energy production. To address the high cost of well construction, Sandia engineers are developing a high temperature downhole motor that provides a high-power downhole rotation solution for

  13. Corrosion reference for geothermal downhole materials selection

    SciTech Connect (OSTI)

    Ellis, P.F. II, Smith, C.C.; Keeney, R.C.; Kirk, D.K.; Conover, M.F.

    1983-03-01

    Geothermal downhole conditions that may affect the performance and reliability of selected materials and components used in the drilling, completion, logging, and production of geothermal wells are reviewed. The results of specific research and development efforts aimed at improvement of materials and components for downhole contact with the hostile physicochemical conditions of the geothermal reservoir are discussed. Materials and components covered are tubular goods, stainless steels and non-ferrous metals for high-temperature downhole service, cements for high-temperature geothermal wells, high-temperature elastomers, drilling and completion tools, logging tools, and downhole pumps. (MHR)

  14. Downhole component with a pressure equalization passageway

    DOE Patents [OSTI]

    Hall, David R.; Pixton, David S.; Dahlgren, Scott; Reynolds, Jay T.; Breihan, James W.; Briscoe, Michael A.

    2006-08-22

    The present invention includes a downhole component adapted for transmitting downhole data. The downhole component includes a threaded end on a downhole component. The threaded end furthermore includes an interior region, and exterior region, and a mating surface wherein a cavity is formed. A data transmission element is disposed in the cavity and displaces a volume of the cavity. At least one passageway is formed in the threaded region between interior and exterior regions. The passageway is in fluid communication with both the interior and exterior regions and thereby relieves pressure build up of thread lubricant upon tool joint make up.

  15. Downhole steam generator having a downhole oxidant compressor

    DOE Patents [OSTI]

    Fox, Ronald L.

    1983-01-01

    Apparatus and method for generation of steam in a borehole for penetration into an earth formation wherein a downhole oxidant compressor is used to compress relatively low pressure (atmospheric) oxidant, such as air, to a relatively high pressure prior to mixing with fuel for combustion. The multi-stage compressor receives motive power through a shaft driven by a gas turbine powered by the hot expanding combustion gases. The main flow of compressed oxidant passes through a velocity increasing nozzle formed by a reduced central section of the compressor housing. An oxidant bypass feedpipe leading to peripheral oxidant injection nozzles of the combustion chamber are also provided. The downhole compressor allows effective steam generation in deep wells without need for high pressure surface compressors. Feedback preheater means are provided for preheating fuel in a preheat chamber. Preheating of the water occurs in both a water feed line running from aboveground and in a countercurrent water flow channel surrounding the combustor assembly. The countercurrent water flow channels advantageously serve to cool the combustion chamber wall. The water is injected through slotted inlets along the combustion chamber wall to provide an unstable boundary layer and stripping of the water from the wall for efficient steam generation. Pressure responsive doors are provided at the steam outlet for closing and sealing the combustion chamber from entry of reservoir fluids in the event of a flameout.

  16. Downhole material injector for lost circulation control

    DOE Patents [OSTI]

    Glowka, D.A.

    1994-09-06

    Apparatus and method are disclosed for simultaneously and separately emplacing two streams of different materials through a drill string in a borehole to a downhole location for lost circulation control. The two streams are mixed outside the drill string at the desired downhole location and harden only after mixing for control of a lost circulation zone. 6 figs.

  17. Downhole material injector for lost circulation control

    DOE Patents [OSTI]

    Glowka, D.A.

    1991-01-01

    This invention is comprised of an apparatus and method for simultaneously and separately emplacing two streams of different materials through a drillstring in a borehole to a downhole location for lost circulation control. The two streams are mixed outside the drillstring at the desired downhole location and harden only after mixing for control of a lost circulation zone.

  18. Downhole material injector for lost circulation control

    DOE Patents [OSTI]

    Glowka, David A.

    1994-01-01

    Apparatus and method for simultaneously and separately emplacing two streams of different materials through a drillstring in a borehole to a downhole location for lost circulation control. The two streams are mixed outside the drillstring at the desired downhole location and harden only after mixing for control of a lost circulation zone.

  19. Downhole steam injector. [Patent application

    SciTech Connect (OSTI)

    Donaldson, A.B.; Hoke, E.

    1981-06-03

    An improved downhole steam injector has an angled water orifice to swirl the water through the device for improved heat transfer before it is converted to steam. The injector also has a sloped diameter reduction in the steam chamber to throw water that collects along the side of the chamber during slant drilling into the flame for conversion to steam. In addition, the output of the flame chamber is beveled to reduce hot spots and increase efficiency, and the fuel-oxidant inputs are arranged to minimize coking.

  20. Advisory Group On The Application Of Nuclear Techniques To Geothermal...

    Open Energy Info (EERE)

    Group On The Application Of Nuclear Techniques To Geothermal Studies-Meeting In Pisa 8-12 Sep 1975 Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal...

  1. 275 C Downhole Microcomputer System

    SciTech Connect (OSTI)

    Chris Hutchens; Hooi Miin Soo

    2008-08-31

    An HC11 controller IC and along with serial SRAM and ROM support ICs chip set were developed to support a data acquisition and control for extreme temperature/harsh environment conditions greater than 275 C. The 68HC11 microprocessor is widely used in well logging tools for control, data acquisition, and signal processing applications and was the logical choice for a downhole controller. This extreme temperature version of the 68HC11 enables new high temperature designs and additionally allows 68HC11-based well logging tools and MWD tools to be upgraded for high temperature operation in deep gas reservoirs, The microcomputer chip consists of the microprocessor ALU, a small boot ROM, 4 kbyte data RAM, counter/timer unit, serial peripheral interface (SPI), asynchronous serial interface (SCI), and the A, B, C, and D parallel ports. The chip is code compatible with the single chip mode commercial 68HC11 except for the absence of the analog to digital converter system. To avoid mask programmed internal ROM, a boot program is used to load the microcomputer program from an external mask SPI ROM. A SPI RAM IC completes the chip set and allows data RAM to be added in 4 kbyte increments. The HC11 controller IC chip set is implemented in the Peregrine Semiconductor 0.5 micron Silicon-on-Sapphire (SOS) process using a custom high temperature cell library developed at Oklahoma State University. Yield data is presented for all, the HC11, SPI-RAM and ROM. The lessons learned in this project were extended to the successful development of two high temperature versions of the LEON3 and a companion 8 Kbyte SRAM, a 200 C version for the Navy and a 275 C version for the gas industry.

  2. Loaded transducer for downhole drilling components

    DOE Patents [OSTI]

    Hall, David R.; Fox, Joe; Daly, Jeffery E.

    2009-05-05

    A system for transmitting information between downhole components has a first downhole component with a first mating surface and a second downhole component having a second mating surface configured to substantially mate with the first mating surface. The system also has a first transmission element with a first communicating surface and is mounted within a recess in the first mating surface. The first transmission element also has an angled surface. The recess has a side with multiple slopes for interacting with the angled surface, each slope exerting a different spring force on the first transmission element. A second transmission element has a second communicating surface mounted proximate the second mating surface and adapted to communicate with the first communicating surface.

  3. Dual-cone double-helical downhole logging device

    DOE Patents [OSTI]

    Yu, Jiunn S.

    1984-01-01

    A broadband downhole logging device includes a double-helix coil wrapped over a dielectric support and surrounded by a dielectric shield. The device may also include a second coil longitudinally aligned with a first coil and enclosed within the same shield for measuring magnetic permeability of downhole formations and six additional coils for accurately determining downhole parameters.

  4. Loaded Transducer Fpr Downhole Drilling Component

    DOE Patents [OSTI]

    Hall, David R.; Hall, H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Briscoe, Michael; Fox, Joe

    2005-07-05

    A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. To close gaps present between transmission elements, transmission elements may be biased with a "spring force," urging them closer together.

  5. Loaded transducer for downhole drilling components

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Briscoe, Michael A.; Dahlgren, Scott Steven; Fox, Joe; Sneddon, Cameron

    2006-02-21

    A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. To close gaps present between transmission elements, transmission elements may be biased with a "spring force, urging them closer together."

  6. Remote down-hole well telemetry

    DOE Patents [OSTI]

    Briles, Scott D.; Neagley, Daniel L.; Coates, Don M.; Freund, Samuel M.

    2004-07-20

    The present invention includes an apparatus and method for telemetry communication with oil-well monitoring and recording instruments located in the vicinity of the bottom of gas or oil recovery pipes. Such instruments are currently monitored using electrical cabling that is inserted into the pipes; cabling has a short life in this environment, and requires periodic replacement with the concomitant, costly shutdown of the well. Modulated reflectance, a wireless communication method that does not require signal transmission power from the telemetry package will provide a long-lived and reliable way to monitor down-hole conditions. Normal wireless technology is not practical since batteries and capacitors have to frequently be replaced or recharged, again with the well being removed from service. RF energy generated above ground can also be received, converted and stored down-hole without the use of wires, for actuating down-hole valves, as one example. Although modulated reflectance reduces or eliminates the loss of energy at the sensor package because energy is not consumed, during the transmission process, additional stored extra energy down-hole is needed.

  7. Expandable Metal Liner For Downhole Components

    DOE Patents [OSTI]

    Hall, David R.; Fox, Joe R.

    2004-10-05

    A liner for an annular downhole component is comprised of an expandable metal tube having indentations along its surface. The indentations are formed in the wall of the tube either by drawing the tube through a die, by hydroforming, by stamping, or roll forming and may extend axially, radially, or spirally along its wall. The indentations accommodate radial and axial expansion of the tube within the downhole component. The tube is inserted into the annular component and deformed to match an inside surface of the component. The tube may be expanded using a hydroforming process or by drawing a mandrel through the tube. The tube may be expanded in such a manner so as to place it in compression against the inside wall of the component. The tube is useful for improving component hydraulics, shielding components from contamination, inhibiting corrosion, and preventing wear to the downhole component during use. It may also be useful for positioning conduit and insulated conductors within the component. An insulating material may be disposed between the tube and the component in order to prevent galvanic corrosion of the downhole component.

  8. DOWNHOLE POWER GENERATION AND WIRELESS COMMUNICATIONS FOR INTELLIGENT COMPLETIONS APPLICATIONS

    SciTech Connect (OSTI)

    Paul Tubel

    2003-03-24

    The first quarter of the Downhole Power Generation and Wireless Communications for Intelligent Completions Applications was characterized by the evaluation and determination of the specifications required for the development of the system for permanent applications in wellbores to the optimization of hydrocarbon production. The system will monitor and transmit in real time pressure and temperature information from downhole using the production tubing as the medium for the transmission of the acoustic waves carrying digital information. The most common casing and tubing sizes were determined by interfacing with the major oil companies to obtain information related to their wells. The conceptual design was created for both the wireless gauge section of the tool as well as the power generation module. All hardware for the wireless gauge will be placed in an atmospheric pressure chamber located on the outside of a production tubing with 11.4 centimeter (4-1/2 inch) diameter. This mounting technique will reduce cost as well as the diameter and length of the tool and increase the reliability of the system. The power generator will use piezoelectric wafers to generate electricity based on the flow of hydrocarbons through an area in the wellbore where the tool will be deployed. The goal of the project is to create 1 Watt of power continuously.

  9. DOWNHOLE POWER GENERATION AND WIRELESS COMMUNICATIONS FOR INTELLIGENT COMPLETIONS APPLICATIONS

    SciTech Connect (OSTI)

    Paul Tubel

    2003-07-05

    The third quarter of the project was dedicated to creating the detailed design for the manufacturing of the mechanical system for wireless communications and the power generation module. Another emphasis for the quarter was the development of the surface system and acoustic detector for the downhole tool for 2 way communications. The tasks accomplished during this report period were: (1) All detailed drawings for manufacturing of the wireless communications gauge and power generator were completed and the drawings were forward to a machine shop for manufacturing. (2) The power generator was incorporated to the mandrel of the wireless gauge reducing the length of the tool by 25% and manufacturing cost by about 35%. (3) The new piezoelectric acoustic generator was manufactured successfully and it was delivered during this quarter. The assembly provides a new technique to manufacture large diameter piezoelectric based acoustic generators. (4) The acoustic two-way communications development progressed significantly. The real time firmware for the surface system was developed and the processor was able to detect and process the data frame transmitted from downhole. The analog section of the tool was also developed and it is being tested for filtering capabilities and signal detection and amplification. (5) The new transformer to drive the piezoelectric wafer assembly was designed and manufactured. The transformer has been received and it will go through testing and evaluation during the next quarter.

  10. Polished Downhole Transducer Having Improved Signal Coupling

    DOE Patents [OSTI]

    Hall, David R.; Fox, Joe

    2006-03-28

    Apparatus and methods to improve signal coupling in downhole inductive transmission elements to reduce the dispersion of magnetic energy at the tool joints and to provide consistent impedance and contact between transmission elements located along the drill string. A transmission element for transmitting information between downhole tools is disclosed in one embodiment of the invention as including an annular core constructed of a magnetically conductive material. The annular core forms an open channel around its circumference and is configured to form a closed channel by mating with a corresponding annular core along an annular mating surface. The mating surface is polished to provide improved magnetic coupling with the corresponding annular core. An annular conductor is disposed within the open channel.

  11. Downhole transmission system comprising a coaxial capacitor

    DOE Patents [OSTI]

    Hall, David R.; Pixton, David S.; Johnson, Monte L.; Bartholomew, David B.; Hall, Jr., H. Tracy; Rawle, Michael

    2011-05-24

    A transmission system in a downhole component comprises a plurality of data transmission elements. A coaxial cable having an inner conductor and an outer conductor is disposed within a passage in the downhole component such that at least one capacitor is disposed in the passage and having a first terminal coupled to the inner conductor and a second terminal coupled to the outer conductor. Preferably the transmission element comprises an electrically conducting coil. Preferably, within the passage a connector is adapted to electrically connect the inner conductor of the coaxial cable and the lead wire. The coaxial capacitor may be disposed between and in electrically communication with the connector and the passage. In another embodiment a connector is adapted to electrical connect a first and a second portion of the inner conductor of the coaxial cable and a coaxial capacitor is in electrical communication with the connector and the passage.

  12. Data transmission element for downhole drilling components

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Dahlgren, Scott; Fox, Joe; Sneddon, Cameron; Briscoe, Michael

    2006-01-31

    A robust data transmission element for transmitting information between downhole components, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The data transmission element components include a generally U-shaped annular housing, a generally U-shaped magnetically conductive, electrically insulating element such as ferrite, and an insulated conductor. Features on the magnetically conducting, electrically insulating element and the annular housing create a pocket when assembled. The data transmission element is filled with a polymer to retain the components within the annular housing by filling the pocket with the polymer. The polymer can bond with the annular housing and the insulated conductor but preferably not the magnetically conductive, electrically insulating element. A data transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe.

  13. Downhole pipe selection for acoustic telemetry

    DOE Patents [OSTI]

    Drumheller, D.S.

    1995-12-19

    A system is described for transmitting signals along a downhole string including a plurality of serially connected tubular pipes such as drill or production pipes, a transmitter for transmitting a signal along the string and a receiver for receiving the signal placed along the string at a location spaced from said transmitting means, wherein the pipes between the transmitter and the receiver are ordered according to length of tube to minimize loss of signal from said transmitter to said receiver. 7 figs.

  14. Downhole pipe selection for acoustic telemetry

    DOE Patents [OSTI]

    Drumheller, Douglas S.

    1995-01-01

    A system for transmitting signals along a downhole string including a plurality of serially connected tubular pipes such as drill or production pipes, a transmitter for transmitting a signal along the string and a receiver for receiving the signal placed along the string at a location spaced from said transmitting means, wherein the pipes between the transmitter and the receiver are ordered according to length of tube to minimize loss of signal from said transmitter to said receiver.

  15. Method and apparatus of assessing down-hole drilling conditions

    DOE Patents [OSTI]

    Hall, David R.; Pixton, David S.; Johnson, Monte L.; Bartholomew, David B.; Fox, Joe

    2007-04-24

    A method and apparatus for use in assessing down-hole drilling conditions are disclosed. The apparatus includes a drill string, a plurality of sensors, a computing device, and a down-hole network. The sensors are distributed along the length of the drill string and are capable of sensing localized down-hole conditions while drilling. The computing device is coupled to at least one sensor of the plurality of sensors. The data is transmitted from the sensors to the computing device over the down-hole network. The computing device analyzes data output by the sensors and representative of the sensed localized conditions to assess the down-hole drilling conditions. The method includes sensing localized drilling conditions at a plurality of points distributed along the length of a drill string during drilling operations; transmitting data representative of the sensed localized conditions to a predetermined location; and analyzing the transmitted data to assess the down-hole drilling conditions.

  16. Self-Consuming Downhole Packer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consuming Downhole Packer Self-Consuming Downhole Packer Self-Consuming Downhole Packer presentation at the April 2013 peer review meeting held in Denver, Colorado. self_consuming_packer_peer2013.pdf (107.51 KB) More Documents & Publications track 3: enhanced geothermal systems (EGS) | geothermal 2015 peer review Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells track 4: enhanced geothermal systems (EGS) |

  17. High-Temperature Downhole Tools | Open Energy Information

    Open Energy Info (EERE)

    and Analysis of Geothermal Technologies Albuquerque, NM 941,000 941,000 Feasibility and Design for a High-Temperature Downhole Tool Tennessee Oak Ridge National...

  18. High-Temperature Motor Windings for Downhole Pumps Used in Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Temperature Motor Windings for Downhole Pumps Used in Geothermal Energy Production High-Temperature Motor Windings for Downhole Pumps Used in Geothermal Energy Production Project ...

  19. Method for bonding a transmission line to a downhole tool

    DOE Patents [OSTI]

    Hall, David R.; Fox, Joe

    2007-11-06

    An apparatus for bonding a transmission line to the central bore of a downhole tool includes a pre-formed interface for bonding a transmission line to the inside diameter of a downhole tool. The pre-formed interface includes a first surface that substantially conforms to the outside contour of a transmission line and a second surface that substantially conforms to the inside diameter of a downhole tool. In another aspect of the invention, a method for bonding a transmission line to the inside diameter of a downhole tool includes positioning a transmission line near the inside wall of a downhole tool and placing a mold near the transmission line and the inside wall. The method further includes injecting a bonding material into the mold and curing the bonding material such that the bonding material bonds the transmission line to the inside wall.

  20. Downhole delay assembly for blasting with series delay

    DOE Patents [OSTI]

    Ricketts, Thomas E.

    1982-01-01

    A downhole delay assembly is provided which can be placed into a blasthole for initiation of explosive in the blasthole. The downhole delay assembly includes at least two detonating time delay devices in series in order to effect a time delay of longer than about 200 milliseconds in a round of explosions. The downhole delay assembly provides a protective housing to prevent detonation of explosive in the blasthole in response to the detonation of the first detonating time delay device. There is further provided a connection between the first and second time delay devices. The connection is responsive to the detonation of the first detonating time delay device and initiates the second detonating time delay device. A plurality of such downhole delay assemblies are placed downhole in unfragmented formation and are initiated simultaneously for providing a round of explosive expansions. The explosive expansions can be used to form an in situ oil shale retort containing a fragmented permeable mass of formation particles.

  1. Apparatus for responding to an anomalous change in downhole pressure

    DOE Patents [OSTI]

    Hall, David R.; Fox, Joe; Wilde, Tyson; Barlow, Jonathan S.

    2010-04-13

    A method of responding to an anomalous change in downhole pressure in a bore hole comprises detecting the anomalous change in downhole pressure, sending a signal along the segmented electromagnetic transmission path, receiving the signal, and performing a automated response. The anomalous change in downhole pressure is detected at a first location along a segmented electromagnetic transmission path, and the segmented electromagnetic transmission path is integrated into the tool string. The signal is received by at least one receiver in communication with the segmented electromagnetic transmission path. The automated response is performed along the tool string. Disclosed is an apparatus for responding to an anomalous change in downhole pressure in a downhole tool string, comprising a segmented electromagnetic transmission path connecting one or more receivers and at least one pressure sensor.

  2. Data Transmission System For A Downhole Component

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Fox, Joe; Briscoe, Michael

    2005-01-18

    The invention is a system for transmitting data through a string of downhole components. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string. Each component has a first and second end, with a first communication element located at the first end and a second communication element located at the second end. Each communication element includes a first contact and a second contact. The system also includes a coaxial cable running between the first and second communication elements, the coaxial cable having a conductive tube and a conductive core within it. The system also includes a first and second connector for connecting the first and second communication elements respectively to the coaxial cable. Each connector includes a conductive sleeve, lying concentrically within the conductive tube, which fits around and makes electrical contact with the conductive core. The conductive sleeve is electrically isolated from the conductive tube. The conductive sleeve of the first connector is in electrical contact with the first contact of the first communication element, the conductive sleeve of the second connector is in electrical contact with the first contact of the second communication element, and the conductive tube is in electrical contact with both the second contact of the first communication element and the second contact of the second communication element.

  3. Data transmission system for a downhole component

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., Tracy H.; Pixton, David S.; Dahlgren, Scott Steven; Fox, Joe; Sneddon, Cameron; Briscoe, Michael A.

    2006-05-09

    The invention is a system for transmitting data through a string of downhole components. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string. Each component has a first and second end, with a first communication element located at the first end and a second communication element located at the second end. Each communication element includes a first contact and a second contact. The system also includes a coaxial cable running between the first and second communication elements, the coaxial cable having a conductive tube and a conductive core within it. The system also includes a first and second connector for connecting the first and second communication elements respectively to the coaxial cable. Each connector includes a conductive sleeve, lying concentrically within the conductive tube, which fits around and makes electrical contact with the conductive core. The conductive sleeve is electrically isolated from the conductive tube. The conductive sleeve of the first connector is in electrical contact with the first contact of the first communication element, the conductive sleeve of the second connector is in electrical contact with the first contact of the second communication element, and the conductive tube is in electrical contact with both the second contact of the first communication element and the second contact of the second communication element.

  4. Deep Downhole Seismic Testing for Earthquake Engineering Studies

    SciTech Connect (OSTI)

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh; Rohay, Alan C.

    2008-10-17

    Downhole seismic testing is one field test that is commonly used to determine compression-wave (P) and shear-wave (S) velocity profiles in geotechnical earthquake engineering investigations. These profiles are required input in evaluations of the responses to earthquake shaking of geotechnical sites and structures at these sites. In the past, traditional downhole testing has generally involved profiling in the 30- to 150-m depth range. As the number of field seismic investigations at locations with critical facilities has increased, profiling depths have also increased. An improved downhole test that can be used for wave velocity profiling to depths of 300 to 600 m or more is presented.

  5. Multipurpose Acoustic Sensor for Downhole Fluid Monitoring

    SciTech Connect (OSTI)

    Pantea, Cristian

    2012-05-04

    The projects objectives and purpose are to: (1) development a multipurpose acoustic sensor for downhole fluid monitoring in Enhanced Geothermal Systems (EGS) reservoirs over typical ranges of pressures and temperatures and demonstrate its capabilities and performance for different EGS systems; (2) determine in real-time and in a single sensor package several parameters - temperature, pressure, fluid flow and fluid properties; (3) needed in nearly every phase of an EGS project, including Testing of Injection and Production Wells, Reservoir Validation, Inter-well Connectivity, Reservoir Scale Up and Reservoir Sustainability. (4) Current sensors are limited to operating at lower temperatures, but the need is for logging at high temperatures. The present project deals with the development of a novel acoustic-based sensor that can work at temperatures up to 374 C, in inhospitable environments.

  6. Signal connection for a downhole tool string

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Bradford, Kline; Fox, Joe; Briscoe, Michael

    2006-08-29

    A signal transmission connection for a tool string used in exploration and production of natural resources, namely: oil, gas, and geothermal energy resources. The connection comprises first and second annular elements deployed in cooperative association with each other. The respective elements comprise inductive transducers that are capable of two-way signal transmission between each other, with downhole components of the tool string, and with ground-level equipment. The respective inductive transducers comprise one or more conductive loops housed within ferrite troughs, or within ferrite trough segments. When energized, the conductive loops produce a magnetic field suitable for transmitting the signal. The second element may be rotational in drilling applications. The respective elements may be fitted with electronic equipment to aid and manipulate the transmission of the signal. The first element may also be in communication with the World Wide Web.

  7. Multipurpose Acoustic Sensor for Downhole Fluid Monitoring | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Multipurpose Acoustic Sensor for Downhole Fluid Monitoring Multipurpose Acoustic Sensor for Downhole Fluid Monitoring Novel sensor design based on acoustics. Determine in real-timeand in a single sensor packagemultiple parameters: temperature, pressure, fluid flow; and fluid properties, such as density, viscosity, fluid composition. high_pantea_acoustic_sensor.pdf (829.2 KB) More Documents & Publications Geothermal Ultrasonic Fracture Imager Waveguide-based Ultrasonic and

  8. Continuous chain bit with downhole cycling capability

    DOE Patents [OSTI]

    Ritter, Don F.; St. Clair, Jack A.; Togami, Henry K.

    1983-01-01

    A continuous chain bit for hard rock drilling is capable of downhole cycling. A drill head assembly moves axially relative to a support body while the chain on the head assembly is held in position so that the bodily movement of the chain cycles the chain to present new composite links for drilling. A pair of spring fingers on opposite sides of the chain hold the chain against movement. The chain is held in tension by a spring-biased tensioning bar. A head at the working end of the chain supports the working links. The chain is centered by a reversing pawl and piston actuated by the pressure of the drilling mud. Detent pins lock the head assembly with respect to the support body and are also operated by the drilling mud pressure. A restricted nozzle with a divergent outlet sprays drilling mud into the cavity to remove debris. Indication of the centered position of the chain is provided by noting a low pressure reading indicating proper alignment of drilling mud slots on the links with the corresponding feed branches.

  9. Downhole Vibration Monitoring and Control System

    SciTech Connect (OSTI)

    Martin E. Cobern

    2007-09-30

    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. The key feature of this system is its use of a magnetorheological fluid (MRF) to allow the damping coefficient to be changed extensively, rapidly and reversibly without the use of mechanical valves, but only by the application of a current. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. Much of the effort was devoted to the design and testing of the MRF damper, itself. The principal objectives of Phase II were: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in a drilling laboratory. Phase II concluded on January 31, 2006, and a final report was issued. Work on Phase III of the project began during the first quarter, 2006, with the objectives of building precommercial prototypes, testing them in a drilling laboratory and the field; developing and implementing a commercialization plan. All of these have been accomplished. The Downhole Vibration Monitoring & Control System (DVMCS) prototypes have been successfully proven in testing at the TerraTek drilling facility and at the Rocky Mountain Oilfield Test Center (RMOTC.) Based on the results of these tests, we have signed a definitive development and distribution agreement with Smith, and commercial deployment is underway. This current version of the DVMCS monitors and controls axial vibrations. Due to time and budget constraints of this program, it was not possible to complete a system that would also deal with lateral and torsional (stick-slip) vibrations as originally planned; however, this effort is continuing without DOE

  10. Fallon FORGE GIS and Downhole Well Lithology Data

    SciTech Connect (OSTI)

    Doug Blankenship

    2015-12-23

    ArcGIS Map Package with MT Station Locations, 2D Seismic Lines, Well data, Known Regional Hydrothermal Systems, Regional Historic Earthquake Seismicity, Regional Temperature Gradient Data, Regional Heat Flow Data, Regional Radiogenic Heat Production, Local Geology, Land Status, Cultural Data, 2m Temperature Probe Data, and Gravity Data. Also a detailed down-hole lithology notes are provided.

  11. Downhole steam generator with improved preheating, combustion, and protection features

    DOE Patents [OSTI]

    Fox, R.L.

    1981-01-07

    For tertiary oil recovery, a downhole steam generator is designed which provides for efficient counterflow cooling of the combustion chamber walls and preheating of the fuel and water. Pressure-responsive doors are provided for closing and opening the outlet in response to flameout, thereby preventing flooding of the combustion chamber. (DLC)

  12. Subsurface exploration using bucket auger borings and down-hole geologic inspection

    SciTech Connect (OSTI)

    Scullin, C.M. )

    1994-03-01

    The down-hole geologic inspection of 24 in. bucket auger borings has been a hands-on technique for collecting valuable geologic structural and lithologic detail in southern California investigations for over 35 yr. Although it has been used for all types of investigations for hillside urban development, it is of particular benefit in landslide investigations and evaluations. The benefits of down-hole geologic inspection during detailed mapping of large landslide complexes with multiple slide planes are discussed in this paper. Many of the geotechnical investigations of these massive landslide complexes have been very limited in their determinations of accurate landslide parameters and very deficient in proper engineering analysis while based upon this limited data. This has resulted in many cases where the geotechnical consultant erroneously concludes that ancient landslides don't move and it is all right to build upon them, even though they have neither justified the landslide parameters, nor the slope stability or safety. Because this author and the many consultants contacted during the preparation of this paper were not aware of other publications regarding this method of collecting detailed geologic data, this author included the safety considerations, safety equipment, the cost and the Cal OSHA requirements for entering exploration shafts.

  13. Drilling jar for use in a downhole network

    DOE Patents [OSTI]

    Hall, David R.; Fox, Joe; McPherson, James; Pixton, David S.; Briscoe, Michael

    2006-01-31

    Apparatus and methods for integrating transmission cable into the body of selected downhole tools, such as drilling jars, having variable or changing lengths. A wired downhole-drilling tool is disclosed in one embodiment of the invention as including a housing and a mandrel insertable into the housing. A coiled cable is enclosed within the housing and has a first end connected to the housing and a second end connected to the mandrel. The coiled cable is configured to stretch and shorten in accordance with axial movement between the housing and the mandrel. A clamp is used to fix the coiled cable with respect to the housing, the mandrel, or both, to accommodate a change of tension in the coiled cable.

  14. Specs should increase use of fiber glass downhole

    SciTech Connect (OSTI)

    Biro, J.P. )

    1989-08-21

    Several American Petroleum Institute (API) committees are at work to develop product specifications for fiber glass tubulars. Specifications for low-pressure line pipe were issued in 1986. Specifications for high-pressure line pipe followed in 1988. A specification for fiber glass downhole tubing is expected to be issued in 1990. Finally, a specification for fiber glass casing is planned to be issued in 1991. The status of the specification is summarized in this paper.

  15. Use of Downhole Motors in Geothermal Drilling in the Philippines

    SciTech Connect (OSTI)

    Pyle, D. E.

    1981-01-01

    This paper describes the use of downhole motors in the Tiwi geothermal field in the Philippines, The discussion includes the application Of a Dyna-Drill with insert-type bits for drilling through surface alluvium. The economics of this type of drilling are compared to those of conventional rotary drilling. The paper also describes the use of a turbodrill that drills out scale as the well produces geothermal fluids.

  16. High power laser downhole cutting tools and systems

    DOE Patents [OSTI]

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2015-01-20

    Downhole cutting systems, devices and methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena. Systems and devices for the laser cutting operations within a borehole in the earth. These systems and devices can deliver high power laser energy down a deep borehole, while maintaining the high power to perform cutting operations in such boreholes deep within the earth.

  17. Apparatus and method for downhole injection of radioactive tracer

    DOE Patents [OSTI]

    Potter, R.M.; Archuleta, J.; Fink, C.F.

    The disclosure relates to downhole injection of radioactive /sup 82/Br and monitoring its progress through fractured structure to determine the nature thereof. An ampule containing granular /sup 82/Br is remotely crushed and water is repeatedly flushed through it to cleanse the instrument as well as inject the /sup 82/Br into surrounding fractured strata. A sensor in a remote horehole reads progress of the radioactive material through fractured structure.

  18. Apparatus and method for downhole injection of radioactive tracer

    DOE Patents [OSTI]

    Potter, Robert M.; Archuleta, Jacobo R.; Fink, Conrad F.

    1983-01-01

    The disclosure relates to downhole injection of radioactive .sup.82 Br and monitoring its progress through fractured structure to determine the nature thereof. An ampule containing granular .sup.82 Br is remotely crushed and water is repeatedly flushed through it to cleanse the instrument as well as inject the .sup.82 Br into surrounding fractured strata. A sensor in a remote borehole reads progress of the radioactive material through fractured structure.

  19. System for loading executable code into volatile memory in a downhole tool

    DOE Patents [OSTI]

    Hall, David R.; Bartholomew, David B.; Johnson, Monte L.

    2007-09-25

    A system for loading an executable code into volatile memory in a downhole tool string component comprises a surface control unit comprising executable code. An integrated downhole network comprises data transmission elements in communication with the surface control unit and the volatile memory. The executable code, stored in the surface control unit, is not permanently stored in the downhole tool string component. In a preferred embodiment of the present invention, the downhole tool string component comprises boot memory. In another embodiment, the executable code is an operating system executable code. Preferably, the volatile memory comprises random access memory (RAM). A method for loading executable code to volatile memory in a downhole tool string component comprises sending the code from the surface control unit to a processor in the downhole tool string component over the network. A central processing unit writes the executable code in the volatile memory.

  20. High Temperature Tools and Sensors, Down-hole Pumps and Drilling

    Broader source: Energy.gov [DOE]

    Below are the project presentations and respective peer review results for High Temperature Tools and Sensors, Down-hole Pumps and Drilling.

  1. Inductive coupler for downhole components and method for making same

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Dahlgren, Scott; Sneddon, Cameron; Fox, Joe; Briscoe, Michael A.

    2006-10-03

    An inductive coupler for downhole components. The inductive coupler includes an annular housing having a recess defined by a bottom portion and two opposing side wall portions. At least one side wall portion includes a lip extending toward but not reaching the other side wall portion. A plurality of generally U-shaped MCEI segments, preferably comprised of ferrite, are disposed in the recess and aligned so as to form a circular trough. The coupler further includes a conductor disposed within the circular trough and a polymer filling spaces between the segments, the annular housing and the conductor.

  2. Caliper Log | Open Energy Information

    Open Energy Info (EERE)

    Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Well Log Techniques Information Provided by...

  3. Thrust bearing assembly for a downhole drill motor

    SciTech Connect (OSTI)

    Geczy, B. A.

    1985-12-24

    A bidirectional thrust bearing assembly is used between a downhole fluid motor and a rock bit for drilling oil wells. The bearing assembly has a stationary housing with radial journal bearing sleeves and a rotatable drive shaft also having radial bearing sleeves. A pair of oppositely facing thrust bearing rings are mounted in the housing. A second pair of thrust bearing rings are mounted on the shaft so as to have faces opposing the bearing faces on the first pair of rings. Belleville springs resiliently bias a pair of the thrust bearing rings apart and carry the thrust load between such rings. Each ring has a plurality of inserts of hard material, preferably polycrystalline diamond, at the bearing surface. Means are provided for circulating drilling fluid from the motor through the thrust bearing faces for forming hydrodynamic fluid bearing films in the bearing interfaces.

  4. Element for use in an inductive coupler for downhole components

    DOE Patents [OSTI]

    Hall, David R.; Fox, Joe

    2009-03-31

    An element for use in an inductive coupler for downhole components comprises an annular housing having a generally circular recess. The element further comprises a plurality of generally linear, magnetically conductive segments. Each segment includes a bottom portion, an inner wall portion, and an outer wall portion. The portions together define a generally linear trough from a first end to a second end of each segment. The segments are arranged adjacent to each other within the housing recess to form a generally circular trough. The ends of at least half of the segments are shaped such that the first end of one of the segments is complementary in form to the second end of an adjacent segment. In one embodiment, all of the ends are angled. Preferably, the first ends are angled with the same angle and the second ends are angled with the complementary angle.

  5. Subsea intensifier supplies high pressure to downhole safety valves

    SciTech Connect (OSTI)

    1996-07-01

    A subsea high-pressure hydraulic intensifier (HPI) is now available as an alternative method of operating downhole surface-controlled subsea safety valves (SCSSVs). By generating high hydraulic pressures on the seafloor, the system eliminates need for transmitting high pressure via hose from surface. The new intensifier can generate up to 15,000 psi (1,035 bar) from the 3,000-psi (210-bar) low pressure actuator supply already within the umbilical. It uses low pressure hydraulic fluid acting on a large-area piston to push a second piston, one-fifth the cross sectional area, acting in a second hydraulic circuit. To reduce pulsation, the unit is double acting, with one piston drawing in fluid while the other discharges it. This paper reviews the design, performance, and construction of this equipment.

  6. Method and apparatus for transmitting and receiving data to and from a downhole tool

    DOE Patents [OSTI]

    Hall, David R.; Fox, Joe

    2007-03-13

    A transmission line network system for transmitting and/or receiving data from a downhole tool. The invention is achieved by providing one or more transceiving elements, preferably rings, at either end of a downhole tool. A conduit containing a coaxial cable capable of communicating an electrical signal is attached to the transceiving element and extends through a central bore of the downhole tool and through the central bore of any tool intermediate the first transceiving element and a second transceiving element. Upon receiving an electrical signal from the cable, the second transceiving element may convert such signal to a magnetic field. The magnetic field may be detected by a third transceiving element in close proximity to the second transceiving element. In this manner, many different tools may be included in a downhole transmission network without requiring substantial modification, if any, of any particular tool.

  7. Report covering examination of parts from downhole steam generators. [Combustor head and sleeve parts

    SciTech Connect (OSTI)

    Pettit, F. S.; Meier, G. H.

    1983-08-01

    Combustor head and sleeve parts were examined by using optical and scanning electron metallography after use in oxygen/diesel and air/diesel downhole steam generators. The degradation of the different alloy components is described in terms of reactions with oxygen, sulfur and carbon in the presence of cyclic stresses, all generated by the combustion process. Recommendations are presented for component materials (alloys and coatings) to extend component lives in the downhole steam generators. 9 references, 22 figures, 3 tables.

  8. Energy Department Announces First-of-its-Kind, High-Temperature, Downhole

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rechargeable Energy Storage Device | Department of Energy Announces First-of-its-Kind, High-Temperature, Downhole Rechargeable Energy Storage Device Energy Department Announces First-of-its-Kind, High-Temperature, Downhole Rechargeable Energy Storage Device July 2, 2014 - 10:50am Addthis The Energy Department today announced commercialization of a rechargeable energy storage device capable of operating in the extreme temperatures necessary for geothermal energy production. Industry partner

  9. High-Temperature Motor Windings for Downhole Pumps Used in Geothermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Production | Department of Energy Temperature Motor Windings for Downhole Pumps Used in Geothermal Energy Production High-Temperature Motor Windings for Downhole Pumps Used in Geothermal Energy Production Project objective: Develop and demonstrate high-temperature ESP motor windings for use in Enhanced Geothermal Systems and operation at 300˚C. high_hooker_motor_windings.pdf (377.84 KB) More Documents & Publications High-Temperature Circuit Boards for Use in Geothermal Well

  10. Apparatus for downhole drilling communications and method for making and using the same

    DOE Patents [OSTI]

    Normann, Randy A.; Lockwood, Grant J.; Gonzales, Meliton

    1998-01-01

    An apparatus for downhole drilling communications is presented. The apparatus includes a spool and end pieces for maintaining the spool at the bottom of a drill string near a drill bit during drilling operations. The apparatus provides a cable for communicating signals between a downhole electronics package and a surface receiver in order to perform measurements while drilling. A method of forming the apparatus is also set forth wherein the apparatus is formed about a central spindle and lathe.

  11. Apparatus for downhole drilling communications and method for making and using the same

    DOE Patents [OSTI]

    Normann, R.A.; Lockwood, G.J.; Gonzales, M.

    1998-03-03

    An apparatus for downhole drilling communications is presented. The apparatus includes a spool and end pieces for maintaining the spool at the bottom of a drill string near a drill bit during drilling operations. The apparatus provides a cable for communicating signals between a downhole electronics package and a surface receiver in order to perform measurements while drilling. A method of forming the apparatus is also set forth wherein the apparatus is formed about a central spindle and lathe. 6 figs.

  12. Downhole seal for low profile oil well pumping installations

    SciTech Connect (OSTI)

    James, R.G.

    1984-02-14

    Set out herein is a seal arrangement for sealing an oil well rod string below ground surface. More specifically a polished cylinder is inserted into the casing of an oil well and is supported at the well head by a flange radially extending from the upper end thereof. Received in the cylinder is a piston assembly connected at the upper surface to a flexible string or chain articulated by a pump and supporting at the lower surface a polished rod sealably extending through a lower seal fitting received in the bottom end of the polished cylinder. The cavity formed between the piston and the polished cylinder is aspirated into the well casing through a one-way check valve on the upward stroke of the piston and any oil residue that may pass through the lower sealing assembly is forced back into the well casing by another check valve opened during the downward piston stroke. Both the piston and the seal assembly may include sealing rings to improve edge contact which thus render the downhole seal less vulnerable to hot gases and abrasive impurities commonly found in the course of secondary recovery.

  13. Inductive coupler for downhole components and method for making same

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Dahlgren, Scott; Briscoe, Michael A.; Sneddon, Cameron; Fox, Joe

    2006-05-09

    The present invention includes a method of making an inductive coupler for downhole components. The method includes providing an annular housing, preferably made of steel, the housing having a recess. A conductor, preferably an insulated wire, is also provided along with a plurality of generally U-shaped magnetically conducting, electrically insulating (MCEI) segments. Preferably, the MCEI segments comprise ferrite. An assembly is formed by placing the plurality of MCEI segments within the recess in the annular housing. The segments are aligned to form a generally circular trough. A first portion of the conductor is placed within the circular trough. This assembly is consolidated with a meltable polymer which fills spaces between the segments, annular housing and the first portion of the conductor. The invention also includes an inductive coupler including an annular housing having a recess defined by a bottom portion and two opposing side wall portions. At least one side wall portion includes a lip extending toward but not reaching the other side wall portion. A plurality of generally U-shaped MCEI segments, preferably comprised of ferrite, are disposed in the recess and aligned so as to form a circular trough. The coupler further includes a conductor disposed within the circular trough and a polymer filling spaces between the segments, the annular housing and the conductor.

  14. Downhole steam generator with improved preheating/cooling features

    DOE Patents [OSTI]

    Donaldson, A. Burl; Hoke, Donald E.; Mulac, Anthony J.

    1983-01-01

    An apparatus for downhole steam generation employing dual-stage preheaters for liquid fuel and for the water. A first heat exchange jacket for the fuel surrounds the fuel/oxidant mixing section of the combustor assembly downstream of the fuel nozzle and contacts the top of the combustor unit of the combustor assembly, thereby receiving heat directly from the combustion of the fuel/oxidant. A second stage heat exchange jacket surrounds an upper portion of the oxidant supply line adjacent the fuel nozzle receiving further heat from the compression heat which results from pressurization of the oxidant. The combustor unit includes an inner combustor sleeve whose inner wall defines the combustion zone. The inner combustor sleeve is surrounded by two concentric water channels, one defined by the space between the inner combustor sleeve and an intermediate sleeve, and the second defined by the space between the intermediate sleeve and an outer cylindrical housing. The channels are connected by an annular passage adjacent the top of the combustor assembly and the countercurrent nature of the water flow provides efficient cooling of the inner combustor sleeve. An annular water ejector with a plurality of nozzles is provided to direct water downwardly into the combustor unit at the boundary of the combustion zone and along the lower section of the intermediate sleeve.

  15. Apparatus and method for compensating for clock drift in downhole drilling components

    SciTech Connect (OSTI)

    Hall, David R.; Pixton, David S.; Johnson, Monte L.; Bartholomew, David B.; Hall, Jr., H. Tracy

    2007-08-07

    A precise downhole clock that compensates for drift includes a prescaler configured to receive electrical pulses from an oscillator. The prescaler is configured to output a series of clock pulses. The prescaler outputs each clock pulse after counting a preloaded number of electrical pulses from the oscillator. The prescaler is operably connected to a compensator module for adjusting the number loaded into the prescaler. By adjusting the number that is loaded into the prescaler, the timing may be advanced or retarded to more accurately synchronize the clock pulses with a reference time source. The compensator module is controlled by a counter-based trigger module configured to trigger the compensator module to load a value into the prescaler. Finally, a time-base logic module is configured to calculate the drift of the downhole clock by comparing the time of the downhole clock with a reference time source.

  16. Development of a High Pressure/High Temperature Down-hole Turbine Generator

    SciTech Connect (OSTI)

    Ben Plamp

    2008-06-30

    As oil & natural gas deposits become more difficult to obtain by conventional means, wells must extend to deeper more heat-intensive environments. The technology of the drilling equipment required to reach these depths has exceeded the availability of electrical power sources needed to operate these tools. Historically, logging while drilling (LWD) and measure while drilling (MWD) devices utilized a wireline to supply power and communication from the operator to the tool. Lithium ion batteries were used in scenarios where a wireline was not an option, as it complicated operations. In current downhole applications, lithium ion battery (LIB) packs are the primary source for electrical power. LIB technology has been proven to supply reliable downhole power at temperatures up to 175 °C. Many of the deeper well s reach ambient temperatures above 200 °C, creating an environment too harsh for current LIB technology. Other downfalls of LIB technology are cost, limitations on charge cycles, disposal issues and possible safety hazards including explosions and fires. Downhole power generation can also be achieved by utilizing drilling fluid flow and converting it to rotational motion. This rotational motion can be harnessed to spin magnets around a series of windings to produce power proportional to the rpm experienced by the driven assembly. These generators are, in most instances, driven by turbine blades or moyno-based drilling fluid pumps. To date, no commercially available downhole power generators are capable of operating at ambient temperatures of 250 °C. A downhole power g enerator capable of operation in a 250 °C and 20,000 psi ambient environment will be an absolute necessity in the future. Dexter Magnetic Technologies’ High-Pressure High-Temperature (HPHT) Downhole Turbine Generator is capable of operating at 250 °C and 20, 000 psi, but has not been tested in an actual drilling application. The technology exists, but to date no company has been willing to

  17. Downhole geothermal well sensors comprising a hydrogen-resistant optical fiber

    DOE Patents [OSTI]

    Weiss, Jonathan D.

    2005-02-08

    A new class of optical fiber based thermal sensors has been invented. The new sensors comprise hydrogen-resistant optical fibers which are able to withstand a hot, hydrogen-containing environment as is often found in the downhole well environment.

  18. Effective porosity and pore-throat sizes of Conasauga Group mudrock: Application, test and evaluation of petrophysical techniques

    SciTech Connect (OSTI)

    Dorsch, J.; Katsube, T.J.; Sanford, W.E.; Dugan, B.E.; Tourkow, L.M.

    1996-04-01

    Effective porosity (specifically referring to the interconnected pore space) was recently recognized as being essential in determining the effectiveness and extent of matrix diffusion as a transport mechanism within fractured low-permeability rock formations. The research presented in this report was performed to test the applicability of several petrophysical techniques for the determination of effective porosity of fine-grained siliciclastic rocks. In addition, the aim was to gather quantitative data on the effective porosity of Conasauga Group mudrock from the Oak Ridge Reservation (ORR). The quantitative data reported here include not only effective porosities based on diverse measurement techniques, but also data on the sizes of pore throats and their distribution, and specimen bulk and grain densities. The petrophysical techniques employed include the immersion-saturation method, mercury and helium porosimetry, and the radial diffusion-cell method.

  19. Biased insert for installing data transmission components in downhole drilling pipe

    DOE Patents [OSTI]

    Hall, David R.; Briscoe, Michael A.; Garner, Kory K.; Wilde, Tyson J.

    2007-04-10

    An apparatus for installing data transmission hardware in downhole tools includes an insert insertable into the box end or pin end of drill tool, such as a section of drill pipe. The insert typically includes a mount portion and a slide portion. A data transmission element is mounted in the slide portion of the insert. A biasing element is installed between the mount portion and the slide portion and is configured to create a bias between the slide portion and the mount portion. This biasing element is configured to compensate for varying tolerances encountered in different types of downhole tools. In selected embodiments, the biasing element is an elastomeric material, a spring, compressed gas, or a combination thereof.

  20. An Internal Coaxial Cable Electrical Connector For Use In Downhole Tools

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Dahlgren, Scott; Fox, Joe; Sneddon, Cameron; Briscoe, Michael

    2005-11-29

    A coaxial cable electrical connector more specifically an internal coaxial cable connector placed within a coaxial cable and its constituent components. A coaxial cable connector is in electrical communcation with an inductive transformer and a coaxial cable. The connector is in electrical communication with the outer housing of the inductive transfonner. A generally coaxial center conductor, a portion of which could be the coil in the inductive transformer, passes through the connector, is electrically insulated from the connector, and is in electrical communication with the conductive care of the coaxial cable. A plurality of bulbous pliant tabs on the coaxial cable connector mechanically engage the inside diameter of the coaxial cable thus grounding the transformer to the coaxial cable. The coaxial cable and inductive transformer are disposed within downhole tools to transmit electrical signals between downhole tools within a drill string.

  1. High-Temperature Motor Windings for Downhole Pumps Used in Geothermal Energy Production

    SciTech Connect (OSTI)

    Hooker, Matthew; Hazelton, Craig; Kano, Kimi

    2010-12-31

    The development of highly reliable downhole equipment is an essential element in enabling the widespread utilization of Enhanced Geothermal Systems (EGS). The downhole equipment used in these systems will be required to operate at high voltages and temperatures on the order of 200 to 250C (and eventually to 300?C). These conditions exceed the practical operating ranges of currently available thermoplastic wire insulations, and thus limit the operating lifetime of tools such as Electric Submersible Pumps (ESPs). In this work, high-temperature insulations based on composite materials were developed and demonstrated. The products of this work were found to exhibit electrical resistivities and dielectric breakdown strengths that PEEK at temperatures above 250C. In addition, sub-scale motor windings were fabricated and tested to validate the performance of this technology

  2. Downhole steam generator using low-pressure fuel and air supply

    DOE Patents [OSTI]

    Fox, R.L.

    1981-01-07

    For tertiary oil recovery, an apparatus for downhole steam generation is designed in which water is not injected directly onto the flame in the combustor, the combustion process is isolated from the reservoir pressure, the fuel and oxidant are supplied to the combustor at relatively low pressures, and the hot exhaust gases is prevented from entering the earth formation but is used to preheat the fuel and oxidant and water. The combustion process is isolated from the steam generation process. (DLC)

  3. An Internal Coaxial Cable Electrical Connector For Use In Downhole Tools

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Dahlgren, Scott; Fox, Joe; Sneddon, Cameron; Briscoe, Michael

    2005-09-20

    A seal for a coaxial cable electrical connector more specifically an internal seal for a coaxial cable connector placed within a coaxial cable and its constituent components. A coaxial cable connector is in electrical communcation with an inductive transformer and a coaxial cable. The connector is in electrical communication with the outer housing of the inductive transformer. A generally coaxial center conductor, a portion of which could be the coil in the inductive transformer, passes through the connector, is electrically insulated from the connector, and is in electrical communication with the conductive core of the coaxial cable. The electrically insulating material also doubles as a seal to safegaurd against penetration of fluid, thus protecting against shorting out of the electrical connection. The seal is a multi-component seal, which is pre-compressed to a desired pressure rating. The coaxial cable and inductive transformer are disposed within downhole tools to transmit electrical signals between downhole tools within a drill string. The internal coaxial cable connector and its attendant seal can be used in a plurality of downhole tools, such as sections of pipe in a drill string, drill collars, heavy weight drill pipe, and jars.

  4. Downhole control -- The key to coiled tubing drilling efficiency

    SciTech Connect (OSTI)

    1996-10-01

    Coiled tubing drilling has experienced dramatic growth in recent years. Originally a step-child, the technique now claims built-for-purpose equipment and promises cost-effective drilling with little damage to formations. The paper describes a bottom hole assembly and an orienting tool designed to be used to control coiled tubing drilling.

  5. Ground Electromagnetic Techniques | Open Energy Information

    Open Energy Info (EERE)

    Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Techniques Information...

  6. Enhanced Oil Recovery with Downhole Vibrations Stimulation in Osage County, Oklahoma

    SciTech Connect (OSTI)

    J. Ford Brett; Robert V. Westermark

    2001-09-30

    This Technical Quarterly Report is for the reporting period July 1, 2001 to September 30, 2001. The report provides details of the work done on the project entitled ''Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County Oklahoma''. The project is divided into nine separate tasks. Several of the tasks are being worked on simultaneously, while other tasks are dependent on earlier tasks being completed. The vibration stimulation well is permitted as Well 111-W-27, section 8 T26N R6E Osage County Oklahoma. It was spud July 28, 2001 with Goober Drilling Rig No. 3. The well was drilled to 3090-feet cored, logged, cased and cemented. The Rig No.3 moved off August 6, 2001. Phillips Petroleum Co. has begun analyzing the cores recovered from the test well. Standard porosity, permeability and saturation measurements will be conducted. They will then begin the sonic stimulation core tests Calumet Oil Company, the operator of the NBU, has begun to collect both production and injection wells information to establish a baseline for the project in the pilot field test area. Green Country Submersible Pump Company, a subsidiary of Calumet Oil Company, will provide both the surface equipment and downhole tools to allow the Downhole Vibration Tool to be operated by a surface rod rotating system. The 7-inch Downhole Vibration Tool (DHVT) has been built and is ready for initial shallow testing. The shallow testing will be done in a temporarily abandoned well operated by Calumet Oil Co. in the Wynona waterflood unit. The data acquisition doghouse and rod rotating equipment have been placed on location in anticipation of the shallow test in Well No.20-12 Wynona Waterflood Unit. A notice of invention disclosure was submitted to the DOE Chicago Operations Office. DOE Case No.S-98,124 has been assigned to follow the documentation following the invention disclosure. A paper covering the material presented to the Oklahoma Geologic Survey (OGS)/DOE Annual Workshop in

  7. ENHANCED OIL RECOVERY WITH DOWNHOLE VIBRATION STIMULATION IN OSAGE COUNTY OKLAHOMA

    SciTech Connect (OSTI)

    Robert Westermark; J. Ford Brett

    2003-11-01

    This Final Report covers the entire project from July 13, 2000 to June 30, 2003. The report summarizes the details of the work done on the project entitled ''Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County Oklahoma'' under DOE Contract Number DE-FG26-00BC15191. The project was divided into nine separate tasks. This report is written in an effort to document the lessons learned during the completion of each task. Therefore each task will be discussed as the work evolved for that task throughout the duration of the project. Most of the tasks are being worked on simultaneously, but certain tasks were dependent on earlier tasks being completed. During the three years of project activities, twelve quarterly technical reports were submitted for the project. Many individual topic and task specific reports were included as appendices in the quarterly reports. Ten of these reports have been included as appendices to this final report. Two technical papers, which were written and accepted by the Society of Petroleum Engineers, have also been included as appendices. The three primary goals of the project were to build a downhole vibration tool (DHVT) to be installed in seven inch casing, conduct a field test of vibration stimulation in a mature waterflooded field and evaluate the effects of the vibration on both the produced fluid characteristics and injection well performance. The field test results are as follows: In Phase I of the field test the DHVT performed exceeding well, generating strong clean signals on command and as designed. During this phase Lawrence Berkeley National Laboratory had installed downhole geophones and hydrophones to monitor the signal generated by the downhole vibrator. The signals recorded were strong and clear. Phase II was planned to be ninety-day reservoir stimulation field test. This portion of the field tests was abruptly ended after one week of operations, when the DHVT became stuck in the well during a routine

  8. Behavior of a hollow core photonic crystal fiber under high radial pressure for downhole application

    SciTech Connect (OSTI)

    Sadeghi, J., E-mail: j-sadeghi@sbu.ac.ir; Chenari, Z.; Ziaee, F. [Laser and Plasma Research Institute, Shahid Beheshti University, 1983963113 Tehran (Iran, Islamic Republic of); Latifi, H., E-mail: latifi@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, 1983963113 Tehran (Iran, Islamic Republic of); Department of Physics, Shahid Beheshti University, Evin, 1983963113 Tehran (Iran, Islamic Republic of); Santos, J. L., E-mail: josantos@fc.up.pt [INESC PortoInstituto de Engenharia de Sistemas e Computadores do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Departamento de Fsica, da Faculdade de Cincias, da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal)

    2014-02-17

    Pressure fiber sensors play an important role in downhole high pressure measurements to withstand long term operation. The purpose of this paper is to present an application of hollow core photonic crystal fiber (HC-PCF) as a high pressure sensor head for downhole application based on dispersion variation. We used a high pressure stainless steel unit to exert pressure on the sensor. The experimental results show that different wavelengths based on sagnac loop interferometer have additive sensitivities from 5??10{sup ?5}?nm/psi at 1480?nm to 1.3??10{sup ?3}?nm/psi at 1680?nm. We developed a simulation to understand the reason for difference in sensitivity of wavelengths and also the relationship between deformation of HC-PCF and dispersion variation under pressure. For this purpose, by using the finite element method, we investigated the effect of structural variation of HC-PCF on spectral transformation of two linear polarizations under 1000?psi pressure. The simulation and experimental results show exponential decay behavior of dispersion variation from ?3.4??10{sup ?6} 1/psi to ?1.3??10{sup ?6} 1/psi and from ?5??10{sup ?6} 1/psi to ?1.8??10{sup ?6} 1/psi, respectively, which were in a good accordance with each other.

  9. Fracture porosimeter--a new tool for determining fracture conductivity under downhole stress

    SciTech Connect (OSTI)

    Wedorff, C.L.

    1982-09-01

    This paper describes a new, fast, simplified procedure for determining fracture conductivity at downhole stresses. The embedment and crushing of proppant between rock samples from a specific formation are measured at closure stresses. The conductivities of fractures propped with various proppants can be determined rather quickly. As a result, the procedure can supply information useful in determining optimum fracture treatment for a specific well. In the new procedure, samples of formation and proppants are placed in an appropriate confinement chamber. Closure stresses are applied and fracture conductivity can be calculated. A proppant data base obtained using a modified Cooke conductivity test unit includes permeabilities, porosities and fracture widths measured over a range of closure stresses. These properties are dependent upon the type and amount of proppant tested and the stress applied. The paper includes examples of permeability and surface areas of conventional proppants. Fracture conductivity determinations, made with a variety of formations and proppants, indicate how this procedure can be useful when making decisions concerning fracture treatment design. An improvement in equipment design is also presented. The use of a Hoek triaxial cell as a fracture porosimeter allows the application of both closure and confining stresses, thus more closely simulating downhole conditions.

  10. Fabrication, assembly, bench and drilling tests of two prototype downhole pneumatic turbine motors: Final technical report

    SciTech Connect (OSTI)

    Bookwalter, R.; Duettra, P.D.; Johnson, P.; Lyons, W.C.; Miska, S.

    1987-04-01

    The first and second prototype downhole pneumatic turbine motors have been fabricated, assembled and tested. All bench tests showed that the motor will produce horsepower and bit speeds approximating the predicted values. Specifically, the downhole pneumatic turbine motor produced approximately 50 horsepower at 100 rpm, while being supplied with about 3600 SCFM of compressed air. The first prototype was used in a drilling test from a depth of 389 feet to a depth of 789 feet in the Kirtland formation. This first prototype motor drilled at a rate exceeding 180 ft/hr, utilizing only 3000 SCFM of compressed air. High temperature tests (at approximately 460/sup 0/F) were carried out on the thrust assembly and the gearboxes for the two prototypes. These components operated successfully at these temperatures. Although the bench and drilling tests were successful, the tests revealed design changes that should be made before drilling tests are carried out in geothermal boreholes at the Geysers area, near Santa Rosa, California.

  11. Element for use in an inductive coupler for downhole drilling components

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Dahlgren, Scott; Fox, Joe; Sneddon, Cameron

    2006-08-29

    The present invention includes an element for use in an inductive coupler in a downhole component. The element includes a plurality of ductile, generally U-shaped leaves that are electrically conductive. The leaves are less than about 0.0625" thick and are separated by an electrically insulating material. These leaves are aligned so as to form a generally circular trough. The invention also includes an inductive coupler for use in downhole components, the inductive coupler including an annular housing having a recess with a magnetically conductive, electrically insulating (MCEI) element disposed in the recess. The MCEI element includes a plurality of segments where each segment further includes a plurality of ductile, generally U-shaped electrically conductive leaves. Each leaf is less than about 0.0625" thick and separated from the otherwise adjacent leaves by electrically insulating material. The segments and leaves are aligned so as to form a generally circular trough. The inductive coupler further includes an insulated conductor disposed within the generally circular trough. A polymer fills spaces between otherwise adjacent segments, the annular housing, insulated conductor, and further fills the circular trough.

  12. Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County, Oklahoma

    SciTech Connect (OSTI)

    J. Ford Brett; Robert V. Westermark

    2002-06-30

    This Technical Quarterly Report is for the reporting period March 31, 2002 to June 30, 2002. The report provides details of the work done on the project entitled ''Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County Oklahoma''. The project is divided into nine separate tasks. Several of the tasks are being worked on simultaneously, while other tasks are dependent on earlier tasks being completed. The vibration stimulation Well 111-W-27 is located in section 8 T26N R6E of the North Burbank Unit (NBU), Osage County Oklahoma. It was drilled to 3090-feet cored, logged, cased and cemented. The rig moved off August 6, 2001. Phillips Petroleum Co. has performed several core studies on the cores recovered from the test well. Standard porosity, permeability and saturation measurements have been conducted. In addition Phillips has prepared a Core Petrology Report, detailing the lithology, stratigraphy and sedimentology for Well 111-W27, NBU. Phillips has also conducted the sonic stimulation core tests, the final sonic stimulation report has not yet been released. Calumet Oil Company, the operator of the NBU, began collecting both production and injection wells information to establish a baseline for the project in the pilot field test area since May 2001. The original 7-inch Downhole Vibration Tool (DHVT) has been thoroughly tested and it has been concluded that it needs to be redesigned. An engineering firm from Fayetteville AR has been retained to assist in developing a new design for the DHVT. The project participants requested from the DOE, a no-cost extension for the project through December 31, 2002. The no-cost extension amendment to the contract was signed during this reporting period. A technical paper SPE 75254 ''Enhanced Oil Recovery with Downhole Vibration Stimulation, Osage County, Oklahoma'' was presented at the 2002 SPE/DOE Thirteenth Symposium on Improved Oil Recovery, in Tulsa OK, April 17, 2002. A one-day short course was conducted at

  13. Field test of two high-pressure, direct-contact downhole steam generators. Volume I. Air/diesel system

    SciTech Connect (OSTI)

    Marshall, B.W.

    1983-05-01

    As a part of the Project DEEP STEAM to develop technology to more efficiently utilize steam for the recovery of heavy oil from deep reservoirs, a field test of a downhole steam generator (DSG) was performed. The DSG burned No. 2 diesel fuel in air and was a direct-contact, high pressure device which mixed the steam with the combustion products and injected the resulting mixture directly into the oil reservoir. The objectives of the test program included demonstration of long-term operation of a DSG, development of operational methods, assessment of the effects of the steam/combustion gases on the reservoir and comparison of this air/diesel DSG with an adjacent oxygen/diesel direct contact generator. Downhole operation of the air/diesel DSG was started in June 1981 and was terminated in late February 1982. During this period two units were placed downhole with the first operating for about 20 days. It was removed, the support systems were slightly modified, and the second one was operated for 106 days. During this latter interval the generator operated for 70% of the time with surface air compressor problems the primary source of the down time. Thermal contact, as evidenced by a temperature increase in the production well casing gases, and an oil production increase were measured in one of the four wells in the air/diesel pattern. Reservoir scrubbing of carbon monoxide was observed, but no conclusive data on scrubbing of SO/sub x/ and NO/sub x/ were obtained. Corrosion of the DSG combustor walls and some other parts of the downhole package were noted. Metallurgical studies have been completed and recommendations made for other materials that are expected to better withstand the downhole combustion environment. 39 figures, 8 tables.

  14. Comparison of lower-frequency (<1000 Hz) downhole seismic sources for use at environmental sites

    SciTech Connect (OSTI)

    Elbring, G.J.

    1995-03-01

    In conjunction with crosswell seismic surveying being done at the Hanford Site in south-central Washington, four different downhole seismic sources have been tested between the same set of boreholes. The four sources evaluated were the Bolt airgun, the OYO-Conoco orbital vibrator, and two Sandia-developed vertical vibrators, one pneumatically-driven, and the other based on a magnetostrictive actuator. The sources generate seismic energy in the lower frequency range of less than 1000 Hz and have different frequency characteristics, radiation patterns, energy levels, and operational considerations. Collection of identical data sets with all four sources allows the direct comparison of these characteristics and an evaluation of the suitability of each source for a given site and target.

  15. Downhole fluid injection systems, CO.sub.2 sequestration methods, and hydrocarbon material recovery methods

    DOE Patents [OSTI]

    Schaef, Herbert T.; McGrail, B. Peter

    2015-07-28

    Downhole fluid injection systems are provided that can include a first well extending into a geological formation, and a fluid injector assembly located within the well. The fluid injector assembly can be configured to inject a liquid CO.sub.2/H.sub.2O-emulsion into the surrounding geological formation. CO.sub.2 sequestration methods are provided that can include exposing a geological formation to a liquid CO.sub.2/H.sub.2O-emulsion to sequester at least a portion of the CO.sub.2 from the emulsion within the formation. Hydrocarbon material recovery methods are provided that can include exposing a liquid CO.sub.2/H.sub.2O-emulsion to a geological formation having the hydrocarbon material therein. The methods can include recovering at least a portion of the hydrocarbon material from the formation.

  16. Downhole fluid injection systems, CO2 sequestration methods, and hydrocarbon material recovery methods

    DOE Patents [OSTI]

    Schaef, Herbert T.; McGrail, B. Peter

    2015-07-28

    Downhole fluid injection systems are provided that can include a first well extending into a geological formation, and a fluid injector assembly located within the well. The fluid injector assembly can be configured to inject a liquid CO2/H2O-emulsion into the surrounding geological formation. CO2 sequestration methods are provided that can include exposing a geological formation to a liquid CO2/H2O-emulsion to sequester at least a portion of the CO2 from the emulsion within the formation. Hydrocarbon material recovery methods are provided that can include exposing a liquid CO2/H2O-emulsion to a geological formation having the hydrocarbon material therein. The methods can include recovering at least a portion of the hydrocarbon material from the formation.

  17. Fracture porosimeter: a new tool for determining fracture conductivity under downhole stress

    SciTech Connect (OSTI)

    Wendorff, C.L.

    1982-01-01

    This work describes a procedure for determining fracture conductivity at down-hole stresses. The embedment and crushing of proppant between rock samples from a specific formation are measured at closure stresses. The conductivities of fractures propped with various proppants can be determined rather quickly. As a result, the procedure can supply information useful in determining optimum fracture treatment for a specific well. In the procedure, samples of formation and proppants are placed in an appropriate confinement chamber. Closure stresses are applied and fracture conductivity can be calculated. The study includes examples of permeability and surface areas of conventional proppants. Fracture conductivity determinations, made with a variety of formations and proppants, indicate how this procedure can be useful when making decisions concerning fracture treatment design. An improvement in equipment design also is presented. 11 references.

  18. Harsh-Environment Solid-State Gamma Detector for Down-hole Gas and Oil Exploration

    SciTech Connect (OSTI)

    Peter Sandvik; Stanislav Soloviev; Emad Andarawis; Ho-Young Cha; Jim Rose; Kevin Durocher; Robert Lyons; Bob Pieciuk; Jim Williams; David O'Connor

    2007-08-10

    The goal of this program was to develop a revolutionary solid-state gamma-ray detector suitable for use in down-hole gas and oil exploration. This advanced detector would employ wide-bandgap semiconductor technology to extend the gamma sensor's temperature capability up to 200 C as well as extended reliability, which significantly exceeds current designs based on photomultiplier tubes. In Phase II, project tasks were focused on optimization of the final APD design, growing and characterizing the full scintillator crystals of the selected composition, arranging the APD device packaging, developing the needed optical coupling between scintillator and APD, and characterizing the combined elements as a full detector system preparing for commercialization. What follows is a summary report from the second 18-month phase of this program.

  19. System to inject steam and produce oil from the same wellbore through downhole valve switching. Final report

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    Through direct contacts with many California Operators, the potential market for this technology and hardware was more closely defined. The largest market might be for re-entry into existing but shut-in wells, equipped with 7{double_prime}OD cemented casings, for which a suitable configuration was designed. For field-testing any prototype Downhole equipment, however, Operators and Service Companies prefer to start with a new well, for better control of the well characteristics. In the relatively shallow reservoirs where Steam injection is currently used with success, the additional drilling cost, in soft formations, is sufficiently small that this became the main design case. Substantial savings were obtained by reducing the number of Downhole valves from two to one and by replacing the twin hydraulically-controlled ball or flapper-type valves with a single sliding sleeve valve, operated by wireline. Laboratory tests conducted at UC-Berkeley confirmed the satisfactory operation of this type of valve with wet steam over extended periods. Low reservoir pressures dictated the use of artificial lift methods, with rod pumps considered the most economical. The availability of live steam downhole at all times is, however, a major advantage which led to the selection of a combined method of artificial lift: (1) steam-lift of the produced fluids up to the kick-off point of the medium curvature drainholes, (2) dumping of the produced fluids into a vertical separator/sump below the kick-off points, (3) vertical rod pumping of the liquid phases from the downhole separator/sump to the surface through a dedicated production tubing.

  20. Microsoft Word - NETL-TRS-X-2014_Development of Fiber Optic Sensors for Downhole pH_final_20150723.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development of Fiber Optic Sensors for Downhole pH Measurement 23 July 2015 Office of Fossil Energy NETL-TRS-7-2015 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or

  1. Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County, Oklahoma

    SciTech Connect (OSTI)

    J. Ford Brett; Robert V. Westermark

    2001-12-31

    This Technical Quarterly Report is for the reporting period September 30, 2001 to December 31, 2001. The report provides details of the work done on the project entitled ''Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County Oklahoma''. The project is divided into nine separate tasks. Several of the tasks are being worked on simultaneously, while other tasks are dependent on earlier tasks being completed. The vibration stimulation well was permitted as Well 111-W-27, section 8 T26N R6E Osage County Oklahoma. It was spud July 28, 2001 with Goober Drilling Rig No. 3. The well was drilled to 3090-feet cored, logged, cased and cemented. The Rig No.3 moved off August 6, 2001. Phillips Petroleum Co. has performed standard core analysis on the cores recovered from the test well. Standard porosity, permeability and saturation measurements have been conducted. Phillips has begun the sonic stimulation core tests. Calumet Oil Company, the operator of the NBU, has been to collecting both production and injection wells information to establish a baseline for the project in the pilot field test area since May 2001. The 7-inch Downhole Vibration Tool (DHVT) has been built and has been run in a shallow well for initial power source testing. This testing was done in a temporarily abandoned well, Wynona Waterflood Unit, Well No.20-12 operated by Calumet Oil Co both in October and December 2001. The data acquisition system, and rod rotating equipment performed as designed. However, the DHVT experienced two internal failures during vibration operations. The DHVT has been repaired with modifications to improve its functionality. A proposed technical paper abstract has been accepted by the SPE to be presented at the 2002 SPE/DOE Thirteenth Symposium on Improved Oil Recovery, in Tulsa OK, 13-17 April 2002. A one-day SPE sponsored short course which is planned to cover seismic stimulation efforts around the world, will be offered at the SPE/DOE Thirteenth Symposium on

  2. Downhole steam generator with improved preheating/cooling features. [Patent application

    DOE Patents [OSTI]

    Donaldson, A.B.; Hoke, D.E.; Mulac, A.J.

    1980-10-10

    An apparatus is described for downhole steam generation employing dual-stage preheaters for liquid fuel and for the water. A first heat exchange jacket for the fuel surrounds the fuel/oxidant mixing section of the combustor assembly downstream of the fuel nozzle and contacts the top of the combustor unit of the combustor assembly, thereby receiving heat directly from the combustion of the fuel/oxidant. A second stage heat exchange jacket surrounds an upper portion of the oxidant supply line adjacent the fuel nozzle receiving further heat from the compression heat which results from pressurization of the oxidant. The combustor unit includes an inner combustor sleeve whose inner wall defines the combustion zone. The inner combustor sleeve is surrounded by two concentric water channels, one defined by the space between the inner combustor sleeve and an intermediate sleeve, and the second defined by the space between the intermediate sleeve and an outer cylindrical housing. The channels are connected by an annular passage adjacent the top of the combustor assembly and the countercurrent nature of the water flow provides efficient cooling of the inner combustor sleeve. An annular water ejector with a plurality of nozzles is provided to direct water downwardly into the combustor unit at the boundary of the combustion zone and along the lower section of the intermediate sleeve.

  3. Casingless down-hole for sealing an ablation volume and obtaining a sample for analysis

    DOE Patents [OSTI]

    Noble, D.T.; Braymen, S.D.; Anderson, M.S.

    1996-10-01

    A casing-less down hole sampling system for acquiring a subsurface sample for analysis using an inductively coupled plasma system is disclosed. The system includes a probe which is pushed into the formation to be analyzed using a hydraulic ram system. The probe includes a detachable tip member which has a soil point and a barb, with the soil point aiding the penetration of the earth, and the barb causing the tip member to disengage from the probe and remain in the formation when the probe is pulled up. The probe is forced into the formation to be tested, and then pulled up slightly, to disengage the tip member and expose a column of the subsurface formation to be tested. An instrumentation tube mounted in the probe is then extended outward from the probe to longitudinally extend into the exposed column. A balloon seal mounted on the end of the instrumentation tube allows the bottom of the column to be sealed. A source of laser radiation is emitted from the instrumentation tube to ablate a sample from the exposed column. The instrumentation tube can be rotated in the probe to sweep the laser source across the surface of the exposed column. An aerosol transport system carries the ablated sample from the probe to the surface for testing in an inductively coupled plasma system. By testing at various levels in the down-hole as the probe is extracted from the soil, a profile of the subsurface formation may be obtained. 9 figs.

  4. Casingless down-hole for sealing an ablation volume and obtaining a sample for analysis

    DOE Patents [OSTI]

    Noble, Donald T.; Braymen, Steven D.; Anderson, Marvin S.

    1996-10-01

    A casing-less down hole sampling system for acquiring a subsurface sample for analysis using an inductively coupled plasma system is disclosed. The system includes a probe which is pushed into the formation to be analyzed using a hydraulic ram system. The probe includes a detachable tip member which has a soil point mad a barb, with the soil point aiding the penetration of the earth, and the barb causing the tip member to disengage from the probe and remain in the formation when the probe is pulled up. The probe is forced into the formation to be tested, and then pulled up slightly, to disengage the tip member and expose a column of the subsurface formation to be tested. An instrumentation tube mounted in the probe is then extended outward from the probe to longitudinally extend into the exposed column. A balloon seal mounted on the end of the instrumentation tube allows the bottom of the column to be sealed. A source of laser radiation is emitted from the instrumentation tube to ablate a sample from the exposed column. The instrumentation tube can be rotated in the probe to sweep the laser source across the surface of the exposed column. An aerosol transport system carries the ablated sample from the probe to the surface for testing in an inductively coupled plasma system. By testing at various levels in the down-hole as the probe is extracted from the soil, a profile of the subsurface formation may be obtained.

  5. Methods and computer executable instructions for marking a downhole elongate line and detecting same

    DOE Patents [OSTI]

    Watkins, Arthur D.

    2003-05-13

    Methods and computer executable instructions are provided for making an elongate line (22) with a plurality of marks (30) and detecting those marks (30) to determine a distance of the elongate line (22) in a downhole or a physical integrity thereof. In a preferred embodiment, each mark comprises a plurality of particles (44) having a substantially permanent magnetizing capability adhered to an exterior surface of the elongate line (22) at preselected intervals with an epoxy paint. The particles (44) are arranged at each interval as a plurality of bands (40). Thereafter, the particles are oriented into a magnetic signature for that interval by magnetizing the particles to create a magnetic field substantially normal to the exterior surface. This facilitates detection by a Hall effect probe. The magnetic signatures are stored in a computing configuration and, once a mark is detected, a correlation is made to a unique position on the elongate line by comparison with the stored magnetic signatures. Preferred particles include samarium-cobalt and neodymium-iron-boride.

  6. Electromagnetic Sounding Techniques | Open Energy Information

    Open Energy Info (EERE)

    Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Ground Electromagnetic Techniques Information Provided by Technique Lithology: Rock...

  7. Electromagnetic Profiling Techniques | Open Energy Information

    Open Energy Info (EERE)

    Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Ground Electromagnetic Techniques Information Provided by Technique Lithology: Rock...

  8. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    SciTech Connect (OSTI)

    Bjorn N. P. Paulsson

    2006-09-30

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to perform high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology has been hampered by the lack of acquisition technology necessary to record large volumes of high frequency, high signal-to-noise-ratio borehole seismic data. This project took aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array has removed the technical acquisition barrier for recording the data volumes necessary to do high resolution 3D VSP and 3D cross-well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that promise to take the gas industry to the next level in their quest for higher resolution images of deep and complex oil and gas reservoirs. Today only a fraction of the oil or gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of detailed compartmentalization of oil and gas reservoirs. In this project, we developed a 400 level 3C borehole seismic receiver array that allows for economic use of 3D borehole seismic imaging for reservoir characterization and monitoring. This new array has significantly increased the efficiency of recording large data volumes at sufficiently dense spatial sampling to resolve reservoir complexities. The receiver pods have been fabricated and tested to withstand high temperature (200 C/400 F) and high pressure (25,000 psi), so that they can operate in wells up to 7,620 meters (25,000 feet) deep. The receiver array is deployed on standard production or drill tubing. In combination with 3C surface seismic or 3C borehole seismic sources, the 400

  9. Waveguide-based ultrasonic and far-field electromagnetic sensors for downhole reservoir characterization.

    SciTech Connect (OSTI)

    Sheen, S. H.; Chien, H. T.; Wang, K.; Liao, S.; Gopalsami, N.; Bakhtiari, S.; Raptis, A. C.; Nuclear Engineering Division

    2010-11-12

    This report summarizes the first year research and development effort leading to development of high-temperature sensors for enhanced geothermal systems. It covers evaluation of ultrasonic and electromagnetic (EM) techniques applied to temperature measurement and flow characterization. On temperature measurement, we have evaluated both microwave radiometry and ultrasonic techniques for temperature gradient and profile measurements. Different antenna designs are evaluated and array loop antenna design is selected for further development. We have also evaluated ultrasonic techniques for total flow characterization, which includes using speed of sound to determine flow temperature, measuring acoustic impedance to estimate fluid density, and using cross-correlation technique to determine the mass flow rate. Method to estimate the flow enthalpy is briefly discussed. At end, the need and proposed techniques to characterize the porosity and permeability of a hot dry rock resource are presented.

  10. Research Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Techniques Research Techniques Print Coming Soon

  11. Adsorbed sulfur-gas methods for both near-surface exploration and downhole logging

    SciTech Connect (OSTI)

    Farwell, S.O.; Barinaga, C.J.; Dolenc, M.R.; Farwell, G.H.

    1986-08-01

    The use of sulfur-containing gases in petroleum exploration is supported by (1) the idea that sulfur may play a role in petroleum genesis, (2) the corresponding existence of sulfur-containing compounds in petroleum and the potential for vertical migration of the low-molecular-weight sulfur species from these reservoirs, (3) the production of H/sub 2/S by anaerobic microorganism populations that develop in the subsurface areas overlying petroleum reservoirs due to the concomitant supply of hydrocarbon nutrients, (4) the recent discovery of near-surface accumulations of pyrite and marcasite as the source of induction potential anomalies over certain fields, and (5) the strong adsorptive affinities of sulfur gases to solid surfaces, which enhance both the concentration and localization of such sulfur-expressed anomalies. During the past 3 years, numerous near-surface soil samples and well cuttings from the Utah-Wyoming Overthrust belt have been analyzed for adsorbed sulfur-gas content by two novel analytical techniques: thermal desorption/metal foil collection/flash desorption/sulfur-selective detection (TD/MFC/FD/SSD) and thermal desorption/cryogenic preconcentration/high-resolution-gas chromatography/optimized-flame photometry (TD/CP/HRGC/OFP).

  12. Real-Time Pretreatment Review Limits Unacceptable Deviations on a Cooperative Group Radiation Therapy Technique Trial: Quality Assurance Results of RTOG 0933

    SciTech Connect (OSTI)

    Gondi, Vinai; Cui, Yunfeng; Mehta, Minesh P.; Manfredi, Denise; Xiao, Ying; Galvin, James M.; Rowley, Howard; Tome, Wolfgang A.

    2015-03-01

    cases passed the pre-enrollment credentialing, the pretreatment centralized review disqualified 5.7% of reviewed cases, prevented unacceptable deviations in 24% of reviewed cases, and limited the final unacceptable deviation rate to 5%. Thus, pretreatment review is deemed necessary in future hippocampal avoidance trials and is potentially useful in other similarly challenging radiation therapy technique trials.

  13. Downhole pulse radar

    DOE Patents [OSTI]

    Chang, Hsi-Tien

    1989-01-01

    A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole.

  14. Downhole pulse radar

    DOE Patents [OSTI]

    Chang, Hsi-Tien

    1987-09-28

    A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole. 7 figs.

  15. ADVANCED TECHNIQUES FOR RESERVOIR SIMULATION AND MODELING OF...

    Office of Scientific and Technical Information (OSTI)

    For example, the optimal use of downhole inflow control devices has not been addressed for ... all other variables) for compositional modeling as well as an adaptive implicit procedure. ...

  16. Group X

    SciTech Connect (OSTI)

    Fields, Susannah

    2007-08-16

    This project is currently under contract for research through the Department of Homeland Security until 2011. The group I was responsible for studying has to remain confidential so as not to affect the current project. All dates, reference links and authors, and other distinguishing characteristics of the original group have been removed from this report. All references to the name of this group or the individual splinter groups has been changed to 'Group X'. I have been collecting texts from a variety of sources intended for the use of recruiting and radicalizing members for Group X splinter groups for the purpose of researching the motivation and intent of leaders of those groups and their influence over the likelihood of group radicalization. This work included visiting many Group X websites to find information on splinter group leaders and finding their statements to new and old members. This proved difficult because the splinter groups of Group X are united in beliefs, but differ in public opinion. They are eager to tear each other down, prove their superiority, and yet remain anonymous. After a few weeks of intense searching, a list of eight recruiting texts and eight radicalizing texts from a variety of Group X leaders were compiled.

  17. Galaxy groups

    SciTech Connect (OSTI)

    Brent Tully, R.

    2015-02-01

    Galaxy groups can be characterized by the radius of decoupling from cosmic expansion, the radius of the caustic of second turnaround, and the velocity dispersion of galaxies within this latter radius. These parameters can be a challenge to measure, especially for small groups with few members. In this study, results are gathered pertaining to particularly well-studied groups over four decades in group mass. Scaling relations anticipated from theory are demonstrated and coefficients of the relationships are specified. There is an update of the relationship between light and mass for groups, confirming that groups with mass of a few times 10{sup 12}M{sub ?} are the most lit up while groups with more and less mass are darker. It is demonstrated that there is an interesting one-to-one correlation between the number of dwarf satellites in a group and the group mass. There is the suggestion that small variations in the slope of the luminosity function in groups are caused by the degree of depletion of intermediate luminosity systems rather than variations in the number per unit mass of dwarfs. Finally, returning to the characteristic radii of groups, the ratio of first to second turnaround depends on the dark matter and dark energy content of the universe and a crude estimate can be made from the current observations of ?{sub matter}?0.15 in a flat topology, with a 68% probability of being less than 0.44.

  18. Research Groups - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Groups Research Group Homepages: Nuclear Theory Group Dr. Sherry Yennello's Research Group Dr. Dan Melconian's Research Group Dr. Cody Folden's Group...

  19. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    SciTech Connect (OSTI)

    Martin E. Cobern

    2006-01-17

    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. The principal objectives of Phase II are: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in drilling laboratories and test wells. Work during this quarter centered on the testing of the rebuilt laboratory prototype and its conversion into a version that will be operable in the drilling tests at TerraTek Laboratories. In addition, formations for use in these tests were designed and constructed, and a test protocol was developed. The change in scope and no-cost extension of Phase II to January, 2006, described in our last report, were approved. The tests are scheduled to be run during the week of January 23, and should be completed before the end of the month.

  20. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    SciTech Connect (OSTI)

    Martin E. Cobern

    2004-08-31

    The deep hard rock drilling environment induces severe vibrations into the drillstring, which can cause reduced rates of penetration (ROP) and premature failure of the equipment. The only current means of controlling vibration under varying conditions is to change either the rotary speed or the weight-on-bit (WOB). These changes often reduce drilling efficiency. Conventional shock subs are useful in some situations, but often exacerbate the problems. The objective of this project is development of a unique system to monitor and control drilling vibrations in a ''smart'' drilling system. This system has two primary elements: (1) The first is an active vibration damper (AVD) to minimize harmful axial, lateral and torsional vibrations. The hardness of this damper will be continuously adjusted using a robust, fast-acting and reliable unique technology. (2) The second is a real-time system to monitor drillstring vibration, and related parameters. This monitor adjusts the damper according to local conditions. In some configurations, it may also send diagnostic information to the surface via real-time telemetry. The AVD is implemented in a configuration using magnetorheological (MR) fluid. By applying a current to the magnetic coils in the damper, the viscosity of the fluid can be changed rapidly, thereby altering the damping coefficient in response to the measured motion of the tool. Phase I of this program entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. Phase I of the project was completed by the revised end date of May 31, 2004. The objectives of this phase were met, and all prerequisites for Phase II have been completed.

  1. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    SciTech Connect (OSTI)

    Martin E. Cobern

    2004-10-29

    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. Phase II began on June 1, and the first month's effort were reported in the seventh quarterly report on the project.1 The principal objectives of Phase II are: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in drilling laboratories and test wells. The redesign and upgrade of the laboratory prototype was completed on schedule during this period, and assembly was complete at the end of this period. Testing will begin during the first week of October. This aspect of the project is thus approximately six weeks behind schedule. Design of the field prototype is progressing per schedule.

  2. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    SciTech Connect (OSTI)

    Martin E. Cobern

    2006-05-01

    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. The principal objectives of Phase II were: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in drilling laboratories and test wells. Phase II concluded on January 31, 2006. The month of January was devoted to the final preparations for, and conducting of testing of the DVMCS at TerraTek laboratories in Salt Lake City. This testing was concluded on January 27, 2006. Much of the effort in this period was then devoted to the analysis of the data and the preparation of the Phase II final report. The report was issued after the close of the period. Work on Phase III of the project began during this quarter. It has consisted of making some modifications in the prototype design to make it more suitable for field testing an more practical for commercial use. This work is continuing. The redesign effort, coupled with the current extreme lead times quoted by oilfield machine shops for collar components, will delay the deployment of the field prototypes. The precommercial prototypes are being developed in parallel, so the project should be completed per the current schedule.

  3. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    SciTech Connect (OSTI)

    Martin E. Cobern

    2005-04-27

    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. The principal objectives of Phase II are: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in drilling laboratories and test wells. As a result of the lower than expected performance of the MR damper noted last quarter, several additional tests were conducted. These dealt with possible causes of the lack of dynamic range observed in the testing: additional damping from the oil in the Belleville springs; changes in properties of the MR fluid; and, residual magnetization of the valve components. Of these, only the last was found to be significant. By using a laboratory demagnetization apparatus between runs, a dynamic range of 10:1 was achieved for the damper, more than adequate to produce the needed improvements in drilling. Additional modeling was also performed to identify a method of increasing the magnetic field in the damper. As a result of the above, several changes were made in the design. Additional circuitry was added to demagnetize the valve as the field is lowered. The valve was located to above the Belleville springs to reduce the load placed upon it and offer a greater range of materials for its construction. In addition, to further increase the field strength, the coils were relocated from the mandrel to the outer housing. At the end of the quarter, the redesign was complete and new parts were on order. The project is approximately three months behind schedule at this time.

  4. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    SciTech Connect (OSTI)

    Martin E. Cobern

    2005-01-28

    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. The principal objectives of Phase II are: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in drilling laboratories and test wells. The redesign and upgrade of the laboratory prototype was completed on schedule and it was assembled during the last period. Testing was begin during the first week of October. Initial results indicated that the dynamic range of the damping was less than predicted and that the maximum damping was also less than required. A number of possible explanations for these results were posited, and test equipment was acquired to evaluate the various hypotheses. Testing was just underway at the end of this period.

  5. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    SciTech Connect (OSTI)

    Martin E. Cobern

    2004-01-09

    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program entails modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. The project continues to advance, but is behind the revised (14-month) schedule. Tasks 1-3 (Modeling, Specification and Design) are all essentially complete. The test bench for the Test and Evaluation (Tasks 4 & 5) has been designed and constructed. The design of the full-scale laboratory prototype and associated test equipment is complete and the components are out for manufacture. Barring any unforeseen difficulties, laboratory testing should be complete by the end of March, as currently scheduled. We anticipate the expenses through March to be approximately equal to those budgeted for Phase I.

  6. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    SciTech Connect (OSTI)

    Martin E. Cobern

    2004-04-17

    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program entails modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. The project continues to advance, but is behind the revised (14-month) schedule. Tasks 1-3 (Modeling, Specification and Design) are all essentially complete. The test bench for the Test and Evaluation (Tasks 4 & 5) and the laboratory prototype were constructed by the end of the period. During assembly, however, several of the key subassemblies became galled together, and had to be cut apart. These parts are being remachined with harder surfaces to prevent recurrence of this problem. One key component, the MR damper mandrel, has been redesigned into a three-piece assembly which will facilitate assembly and reduce the cost of replacement of worn components. The remade parts will be delivered by April 19, and the prototype assembled. Testing will begin during the first week of May and is anticipated to be completed before the revised end date for Phase I, May 31, 2004.

  7. Self-Consuming Downhole Packer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    inorganic oxidizer + metal powder + structural elements (epoxy) + curing agent + ... changed for high temperature curing and stability Two formulation successfully burned ...

  8. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    SciTech Connect (OSTI)

    Martin E. Cobern

    2005-10-31

    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. The principal objectives of Phase II are: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in drilling laboratories and test wells. Work during this quarter centered on the rebuilding of the prototype using the improved valve design described in the Jan-March report1. Most of the components have been received and assembly was nearly complete at the end of the period. Testing started in October and results will be submitted in the next report. The field testing component of this Phase has been rethought. The current plan is to adapt the laboratory prototype for use in a drilling laboratory and run a series of controlled drilling tests with and without the DVMCS. This should give a more quantitative evaluation of its value, which will help us sign a commercialization partner. While this testing is underway, we will order and begin machining parts for full field prototypes to be use in Phase III. A modification application is being submitted in October to reflect these changes.

  9. Category:Well Testing Techniques | Open Energy Information

    Open Energy Info (EERE)

    this category, out of 9 total. D Downhole Fluid Sampling E Earth Tidal Analysis F Flow Test I Injectivity Test S Static Temperature Survey Stress Test T Tracer Testing V Vertical...

  10. Electrochemical Techniques

    SciTech Connect (OSTI)

    Chen, Gang; Lin, Yuehe

    2008-07-20

    Sensitive and selective detection techniques are of crucial importance for capillary electrophoresis (CE), microfluidic chips, and other microfluidic systems. Electrochemical detectors have attracted considerable interest for microfluidic systems with features that include high sensitivity, inherent miniaturization of both the detection and control instrumentation, low cost and power demands, and high compatibility with microfabrication technology. The commonly used electrochemical detectors can be classified into three general modes: conductimetry, potentiometry, and amperometry.

  11. TEC Working Group Topic Groups Archives Consolidated Grant Topic Group |

    Office of Environmental Management (EM)

    Department of Energy Consolidated Grant Topic Group TEC Working Group Topic Groups Archives Consolidated Grant Topic Group The Consolidated Grant Topic Group arose from recommendations provided by the TEC and other external parties to the DOE Senior Executive Transportation Forum in July 1998. It was proposed that the consolidation of multiple funding streams from numerous DOE sources into a single grant would provide a more equitable and efficient means of assistance to States and Tribes

  12. Interagency mechanical operations group numerical systems group

    SciTech Connect (OSTI)

    1997-09-01

    This report consists of the minutes of the May 20-21, 1971 meeting of the Interagency Mechanical Operations Group (IMOG) Numerical Systems Group. This group looks at issues related to numerical control in the machining industry. Items discussed related to the use of CAD and CAM, EIA standards, data links, and numerical control.

  13. JLF User Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jlf user group JLF User Group 2015 NIF and JLF User Group Meeting Links: Send request to join the JLF User Group Join the NIF User Group Dr. Carolyn Kuranz - JLF User Group Dr. Carolyn Kuranz received her Ph.D. in Applied Physics from the University of Michigan in 2009. She is currently an Assistant Research Scientist at the Center for Laser Experimental Astrophysical Research and the Center for Radiative Shock Hydrodynamics at the University of Michigan. Her research involves hydrodynamic

  14. TEC Working Group Topic Groups Routing

    Broader source: Energy.gov [DOE]

    The Routing Topic Group has been established to examine topics of interest and relevance concerning routing of shipments of spent nuclear fuel (SNF) and high-level radioactive waste (HLW) to a...

  15. TEC Working Group Topic Groups Manual Review

    Broader source: Energy.gov [DOE]

    This group is responsible for the update of DOE Manual 460.2-1, Radioactive Material Transportation Practices Manual.  This manual was issued on September 23, 2002, and establishes a set of...

  16. JLab Users Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JLab Users Group Please upgrade your browser. This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? JLab Users Group User Liaison Home Users Group Program Advisory Committee User/Researcher Information print version UG Resources Background & Purpose Users Group Wiki By Laws Board of Directors Board of Directors Minutes Directory of Members Events At-A-Glance Member Institutions News Users Group Mailing

  17. Moltech Power Systems Group MPS Group | Open Energy Information

    Open Energy Info (EERE)

    Moltech Power Systems Group MPS Group Jump to: navigation, search Name: Moltech Power Systems Group (MPS Group) Place: China Product: China-based subsidiary of Shanghai Huayi Group...

  18. Hanergy Holdings Group Company Ltd formerly Farsighted Group...

    Open Energy Info (EERE)

    Hanergy Holdings Group Company Ltd formerly Farsighted Group aka Huarui Group Jump to: navigation, search Name: Hanergy Holdings Group Company Ltd (formerly Farsighted Group, aka...

  19. MiniBooNE Pion Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pion Group

  20. Running Jobs by Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Running Jobs by Group Running Jobs by Group Daily Graph: Weekly Graph: Monthly Graph: Yearly Graph: 2 Year Graph: Last edited: 2011-04-05 13:59:48...

  1. Pending Jobs by Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pending Jobs by Group Pending Jobs by Group Daily Graph: Weekly Graph: Monthly Graph: Yearly Graph: 2 Year Graph: Last edited: 2011-04-05 14:00:14...

  2. UFD Working Group 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working Group 2015 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Twitter Google + Vimeo GovDelivery SlideShare UFD Working Group 2015 HomeStationary ...

  3. Pending Jobs by Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pending Jobs by Group Pending Jobs by Group Daily Graph: Weekly Graph: Monthly Graph: Yearly Graph: 2 Year Graph: Last edited: 2016-04-29 11:35:04

  4. Running Jobs by Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Running Jobs by Group Running Jobs by Group Daily Graph: Weekly Graph: Monthly Graph: Yearly Graph: 2 Year Graph: Last edited: 2016-04-29 11:34:43

  5. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    17, 2012 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:05 PM on July 17, 2012 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Glen Clark, Robert Elkins, Scot Fitzgerald, Larry Markel, Cindy Taylor, Sam Vega, Rich Weiss and Eric Wyse. I. Huei Meznarich requested comments on the minutes from the June 12, 2012 meeting. No HASQARD Focus Group members present stated any

  6. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2013 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:05 PM on June 18, 2013 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Glen Clark, Scot Fitzgerald, Joan Kessner, Larry Markel, Karl Pool, Chris Sutton, Amanda Tuttle, Rich Weiss and Eric Wyse. I. Huei Meznarich requested comments on the minutes from the May 21, 2013 meeting. No HASQARD Focus Group members present

  7. NIF User Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    group NIF User Group The National Ignition Facility User Group provides an organized framework and independent vehicle for interaction between the scientists who use NIF for "Science Use of NIF" experiments and NIF management. Responsibility for NIF and the research programs carried out at NIF resides with the NIF Director. The NIF User Group advises the NIF Director on matters of concern to users, as well as providing a channel for communication for NIF users with funding agencies and

  8. TEC Communications Topic Group

    Office of Environmental Management (EM)

    procurement - Routing criteriaemergency preparedness Tribal Issues Topic Group * TEPP Navajo Nation (Tom Clawson) - 1404 - Needs Assessment * Identified strengths and...

  9. Tritium Focus Group- INEL

    Broader source: Energy.gov [DOE]

    Presentation from the 34th Tritium Focus Group Meeting held in Idaho Falls, Idaho on September 23-25, 2014.

  10. Interagency Sustainability Working Group

    Broader source: Energy.gov [DOE]

    The Interagency Sustainability Working Group (ISWG) is the coordinating body for sustainable buildings in the federal government.

  11. SSRL ETS Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    STANFORD SYNCHROTRON RADIATION LABORATORY Stanford Linear Accelerator Center Engineering & Technical Services Groups: Mechanical Services Group Mechanical Services Group Sharepoint ASD: Schedule Priorites Accelerator tech support - Call List Documentation: Engineering Notes, Drawings, and Accelerator Safety Documents Mechanical Systems: Accelerator Drawings Accelerator Pictures Accelerator Vacuum Systems (SSRL) LCW Vacuum Projects: Last Updated: February 8, 2007 Ben Scott

  12. Large Group Visits

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Group Visits Large Group Visits All tours of the Museum are self-guided, but please schedule in advance so we can best accommodate your group. Contact Us thumbnail of 1350 Central Avenue (505) 667-4444 Email Let us know if you plan to bring a group of 10 or more. All tours of the Museum are self-guided, but please schedule in advance so we can best accommodate your group. Parking for buses and RVs is available on Iris Street behind the Museum off of 15th St. See attached map (pdf). Contact

  13. Grouped exposed metal heaters

    DOE Patents [OSTI]

    Vinegar, Harold J.; Coit, William George; Griffin, Peter Terry; Hamilton, Paul Taylor; Hsu, Chia-Fu; Mason, Stanley Leroy; Samuel, Allan James; Watkins, Ronnie Wade

    2012-07-31

    A system for treating a hydrocarbon containing formation is described. The system includes two or more groups of elongated heaters. The group includes two or more heaters placed in two or more openings in the formation. The heaters in the group are electrically coupled below the surface of the formation. The openings include at least partially uncased wellbores in a hydrocarbon layer of the formation. The groups are electrically configured such that current flow through the formation between at least two groups is inhibited. The heaters are configured to provide heat to the formation.

  14. Grouped exposed metal heaters

    DOE Patents [OSTI]

    Vinegar, Harold J.; Coit, William George; Griffin, Peter Terry; Hamilton, Paul Taylor; Hsu, Chia-Fu; Mason, Stanley Leroy; Samuel, Allan James; Watkins, Ronnie Wade

    2010-11-09

    A system for treating a hydrocarbon containing formation is described. The system includes two or more groups of elongated heaters. The group includes two or more heaters placed in two or more openings in the formation. The heaters in the group are electrically coupled below the surface of the formation. The openings include at least partially uncased wellbores in a hydrocarbon layer of the formation. The groups are electrically configured such that current flow through the formation between at least two groups is inhibited. The heaters are configured to provide heat to the formation.

  15. Use of Tracers to Characterize Fractures in Engineered Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    injectionbackflow techniques; design, fabricate and test a downhole instrument for measuring fracture flow following a hydraulic stimulation experiment. reservoirrosetracersch...

  16. TEC Working Group Topic Groups Rail Key Documents Intermodal Subgroup |

    Office of Environmental Management (EM)

    Department of Energy Intermodal Subgroup TEC Working Group Topic Groups Rail Key Documents Intermodal Subgroup Intermodal Subgroup Draft Work Plan (206.83 KB) More Documents & Publications TEC Working Group Topic Groups Rail Key Documents Radiation Monitoring Subgroup TEC Working Group Topic Groups Rail Conference Call Summaries Intermodal Subgroup TEC Working Group Topic Groups Rail Conference Call Summaries Rail Topic Group

  17. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 15, 2013 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:02 PM on January 15, 2013 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Glen Clark, Scot Fitzgerald, Larry Markel, Karl Pool, Dave St. John, Chris Sutton, Chris Thompson, Steve Trent, Amanda Tuttle and Eric Wyse. I. Huei Meznarich requested comments on the minutes from the December 18, 2012 meeting. One issue

  18. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2013 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:09 PM on December 17, 2013 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Taffy Almeida, Joe Archuleta, Jeff Cheadle, Glen Clark, Robert Elkins, Scot Fitzgerald, Joan Kessner, Karl Pool, Chris Sutton, Amanda Tuttle, Rich Weiss and Eric Wyse. I. Huei Meznarich asked if there were any comments on the minutes from the

  19. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    22, 2015 The meeting was called to order by Cliff Watkins, HASQARD Focus Group Secretary at 2:05 PM on October 22, 2015 in Conference Room 328 at 2420 Stevens. Those attending were: Jonathan Sanwald (Mission Support Alliance (MSA), Focus Group Chair), Cliff Watkins (Corporate Allocation Services, DOE-RL Support Contractor, Focus Group Secretary), Glen Clark (Washington River Protection Solution (WRPS)), Fred Dunhour (DOE-ORP), Joan Kessner (Washington Closure Hanford (WCH)), Karl Pool (Pacific

  20. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2016 The meeting was called to order by Jonathan Sanwald, HASQARD Focus Group Chair at 2:05 PM on January 26, 2016 in Conference Room 308 at 2420 Stevens. Those attending were: Jonathan Sanwald (Mission Support Alliance (MSA), Focus Group Chair), Cliff Watkins (Corporate Allocation Services, DOE-RL Support Contractor, Focus Group Secretary), Taffy Almeida (Pacific Northwest National Laboratory (PNNL)), Jeff Cheadle (DOE-ORP), Glen Clark (Washington River Protection Solution (WRPS)), Fred

  1. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 The meeting was called to order by Jonathan Sanwald, HASQARD Focus Group Chair at 2:10 PM on April 19, 2016 in Conference Room 308 at 2420 Stevens. Those attending were: Jonathan Sanwald (Mission Support Alliance (Mission Support Alliance (MSA)), Focus Group Chair), Cliff Watkins (Corporate Allocation Services, DOE-RL Support Contractor, Focus Group Secretary), Marcus Aranda (Wastren Advantage Inc. Wastren Hanford Laboratory (WHL)), Joe Archuleta (CH2M HILL Plateau Remediation Company

  2. TEC Communications Topic Group

    Office of Environmental Management (EM)

    Tribal Issues Topic Group Judith Holm, Chair April 21, 2004 Albuquerque, NM Tribal Issues Topic Group * February Tribal Summit with Secretary of Energy (Kristen Ellis, CI) - Held in conjunction with NCAI mid-year conference - First Summit held in response to DOE Indian Policy - Addressed barriers to communication and developing framework for interaction Tribal Issues Topic Group * Summit (continued) - Federal Register Notice published in March soliciting input on how to improve summit process

  3. ALS Communications Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Communications Group Print From left: Ashley White, Lori Tamura, Keri Troutman, and Carina Braun. The ALS Communications staff maintain the ALS Web site; write and edit all...

  4. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2012 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:04 PM on October 16, 2012 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Jeff Cheadle, Glen Clark, Robert Elkins, Larry Markel, Mary McCormick-Barger, Karl Pool, Noe'l Smith-Jackson, Chris Sutton, Steve Trent, Amanda Tuttle, Sam Vega, Rich Weiss and Eric Wyse. New personnel have joined the Focus Group since the last

  5. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    27, 2012 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:09 PM on November 27, 2012 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Glen Clark, Robert Elkins, Joan Kessner, Larry Markel, Mary McCormick-Barger, Steve Trent, and Rich Weiss. I. Huei Meznarich requested comments on the minutes from the October 16, 2012 meeting. No HASQARD Focus Group members present stated any

  6. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0, 2013 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:05 PM on August 20, 2013 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Taffy Almeida, Glen Clark, Robert Elkins, Scot Fitzgerald, Joan Kessner, Steve Smith, Rich Weiss and Eric Wyse. I. Huei Meznarich asked if there were any comments on the minutes from the July 23, 2013 meeting. No Focus Group members stated they had

  7. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 2014 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:10 PM on April 15, 2014 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Glen Clark, Robert Elkins, Scot Fitzgerald, Mary McCormick-Barger, Karl Pool, Noe'l Smith-Jackson, and Eric Wyse. I. Huei Meznarich asked if there were any comments on the minutes from the March 18, 2014 meeting. No Focus Group members stated they

  8. Hydrogen Technologies Group

    SciTech Connect (OSTI)

    Not Available

    2008-03-01

    The Hydrogen Technologies Group at the National Renewable Energy Laboratory advances the Hydrogen Technologies and Systems Center's mission by researching a variety of hydrogen technologies.

  9. The Chaninik Wind Group

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Chaninik Wind Group Villages Kongiganak pop.359 Kwigillingok pop. 388 Kipnuk pop.644 Tuntutuliak pop. 370 On average, 24% of families are below the poverty line. ...

  10. Buildings Sector Working Group

    U.S. Energy Information Administration (EIA) Indexed Site

    Group Forrestal 2E-069 July 22, 2013 2 * Residential projects - RECS update - Lighting model - Equipment, shell subsidies - ENERGY STAR benchmarking - Housing stock formation ...

  11. Tritium Focus Group Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meeting Information Tritium Focus Group Charter (pdf) Hotel Information Classified Session Information Los Alamos Restaurants (pdf) LANL Information Visiting Los Alamos Area Map ...

  12. SCM Working Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling Working Group Translator Update Shaocheng Xie Lawrence Livermore National Laboratory Outline 1. Data development in support of CMWG * Climate modeling best estimate data * ...

  13. Unix File Groups at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A user's default group is the same as their username. NERSC users usually belong to ... Useful Unix Group Commands Command Description groups username List group membership id ...

  14. TEC Working Group Topic Groups Routing Meeting Summaries | Department of

    Office of Environmental Management (EM)

    Energy Meeting Summaries TEC Working Group Topic Groups Routing Meeting Summaries MEETING SUMMARIES Atlanta TEC Meeting, Routing Topic Group Summary (101.72 KB) More Documents & Publications TEC Meeting Summaries - January - February 2007 TEC Working Group Topic Groups Rail Meeting Summaries TEC Working Group Topic Groups Rail Conference Call Summaries Rail Topic Group

  15. TEC Working Group Topic Groups Rail Conference Call Summaries...

    Office of Environmental Management (EM)

    Summaries Rail Topic Group TEC Working Group Topic Groups Rail Conference Call Summaries Rail Topic Group Rail Topic Group PDF icon May 17, 2007 PDF icon January 16, 2007 PDF icon...

  16. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:06 PM on June 12, 2012 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Jeff Cheadle, Glen Clark, Shannan Johnson, Joan Kessner, Larry Markel, Karl Pool, Steve Smith, Noe'l Smith-Jackson, Chris Sutton, Cindy Taylor, Chris Thomson, Amanda Tuttle, Sam Vega, Rick Warriner and Eric Wyse. I. Huei Meznarich requested comments on the

  17. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, 2012 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:10 PM on August 21, 2012 in an alternate Conference Room in 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Lynn Albin, Glen Clark, Robert Elkins, Scot Fitzgerald, Joan Kessner, Larry Markel, Steve Smith, Chris Sutton. Chris Thompson, Amanda Tuttle, and Rich Weiss. I. Because the meeting was scheduled to take place in Room 308 and a glitch in

  18. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2013 The beginning of the meeting was delayed due to an unannounced loss of the conference room scheduled for the meeting. After securing another meeting location, the meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:18 PM on April 16, 2013 in Conference Room 156 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Jeff Cheadle, Glen Clark, Joan Kessner, Larry Markel, Mary McCormick-Barger, Karl Pool,

  19. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    19, 2013 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:05 PM on November 19, 2013 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Taffy Almeida, Joe Archuleta, Mike Barnes, Jeff Cheadle, Glen Clark, Robert Elkins, Scot Fitzgerald, Joan Kessner, Mary McCormick-Barger, Noe'l Smith-Jackson, Chris Sutton, Amanda Tuttle, Rich Weiss and Eric Wyse. I. Huei Meznarich asked if

  20. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 28, 2014 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:04 PM on January 28, 2014 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Joe Archuleta, Glen Clark, Robert Elkins, Scot Fitzgerald, Joan Kessner, Mary McCormick-Barger, Karl Pool, Noe'l Smith-Jackson, Chris Sutton, Chris Thompson, Rich Weiss and Eric Wyse. I. Huei Meznarich asked if there were any comments on

  1. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 2014 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:07 PM on February 25, 2014 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Lynn Albin, Taffy Almeida, Joe Archuleta, Glen Clark, Robert Elkins, Scot Fitzgerald, Joan Kessner, Mary McCormick-Barger, Karl Pool, Noe'l Smith-Jackson, Chris Sutton, Chris Thompson, and Eric Wyse. I. Huei Meznarich asked if there were any

  2. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2014 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:05 PM on March 18, 2014 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Joe Archuleta, Glen Clark, Robert Elkins, Scot Fitzgerald, Joan Kessner, Mary McCormick-Barger, Karl Pool, Noe'l Smith-Jackson, Rich Weiss, and Eric Wyse. I. Huei Meznarich asked if there were any comments on the minutes from the February 25, 2014

  3. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0, 2014 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:05 PM on May 20, 2014 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Lynn Albin, Taffy Almeida, Joe Archuleta, Glen Clark, Robert Elkins, Scot Fitzgerald, Shannan Johnson, Joan Kessner, Mary McCormick-Barger, Craig Perkins, Karl Pool, Noe'l Smith-Jackson, Chris Sutton, Chris Thompson and Eric Wyse. I. Acknowledging the

  4. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:07 PM on June 12, 2014 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Joe Archuleta, Sara Champoux, Glen Clark, Jim Douglas, Robert Elkins, Scot Fitzgerald, Joan Kessner, Jan McCallum, Mary McCormick-Barger, Karl Pool, Noe'l Smith-Jackson, Rich Weiss and Eric Wyse. I. Acknowledging the presence of new and/or infrequent

  5. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2014 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:10 PM on June 17, 2014 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Robert Elkins, Shannan Johnson, Joan Kessner, Jan McCallum, Craig Perkins, Karl Pool, Chris Sutton and Rich Weiss. I. Because of the short time since the last meeting, Huei Meznarich stated that the minutes from the June 12, 2014 meeting have not yet

  6. Trails Working Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working Group Trails Working Group Our mission is to inventory, map, and prepare historical reports on the many trails used at LANL. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email The LANL Trails Working Group inventories, maps, and prepares historical reports on the many trails used at LANL. Some of these trails are ancient pueblo footpaths that continue to be used for recreational hiking today. Some serve as quiet

  7. Group key management

    SciTech Connect (OSTI)

    Dunigan, T.; Cao, C.

    1997-08-01

    This report describes an architecture and implementation for doing group key management over a data communications network. The architecture describes a protocol for establishing a shared encryption key among an authenticated and authorized collection of network entities. Group access requires one or more authorization certificates. The implementation includes a simple public key and certificate infrastructure. Multicast is used for some of the key management messages. An application programming interface multiplexes key management and user application messages. An implementation using the new IP security protocols is postulated. The architecture is compared with other group key management proposals, and the performance and the limitations of the implementation are described.

  8. Applied Science/Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied ScienceTechniques Print The ALS is an excellent incubator of new scientific techniques and instrumentation. Many of the technical advances that make the ALS a world-class...

  9. Tritium Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    matters related to tritium. Contacts Mike Rogers (505) 665-2513 Email Chandra Savage Marsden (505) 664-0183 Email The Tritium Focus Group consists of participants from member...

  10. Strategic Initiatives Work Group

    Broader source: Energy.gov [DOE]

    The Work Group, comprised of members representing DOE, contractor and worker representatives, provides a forum for information sharing; data collection and analysis; as well as, identifying best practices and initiatives to enhance safety performance and safety culture across the Complex.

  11. InterGroup Protocols

    Energy Science and Technology Software Center (OSTI)

    2003-04-02

    Existing reliable ordered group communication protocols have been developed for local-area networks and do not in general scale well to a large number of nodes and wide-area networks. The InterGroup suite of protocols is a scalable group communication system that introduces an unusual approach to handling group membership, and supports a receiver-oriented selection of service. The protocols are intended for a wide-area network, with a large number of nodes, that has highly variable delays andmore » a high message loss rate, such as the Internet. The levels of the message delivery service range from unreliable unordered to reliable timestamp ordered.« less

  12. Date Times Group Speakers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Group Research Meeting Toms Arias Mon, 3-10 2:30-3:30pm Faculty Meeting Richard Robinson Fri, 3-14 12:30-1:30pm Student & Postdoc Mtg Michael Zachman (Kourkoutis) & Deniz...

  13. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Markel, Huei Meznarich, Karl Pool, Noe'l Smith-Jackson, Andrew Stevens, Genesis Thomas, ... the radar of the DOE- HQ QA group. Noe'l Smith-Jackson commented that Ecology was always ...

  14. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Elkins, Mary McCormick-Barger, Noe'l Smith-Jackson, Chris Sutton, Amanda Tuttle, Rick ... Noe'l Smith-Jackson stated that the HASQARD document is the work of the Focus Group not ...

  15. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Markel, Mary McCormick-Barger, Dave St. John, Steve Smith, Steve Trent and Eric Wyse. ... On January 31, the Secretary received a call from the QA Sub-Group Chair, Steve Smith. ...

  16. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    been distributed to the Focus Group prior to the meeting. The comments that required editorial changes to the document were made in the working electronic version. b. At the June...

  17. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2010 The meeting was called to order by Dave Crawford, Focus Group Chairman at 2:03 PM on November 16, 2010 in Conference Room 208 at 2425 Stevens. Those attending were: Dave Crawford (Chair), Cliff Watkins (Secretary), Lynn Albin, Heather Anastos, Paula Ciszak, Glen Clark, Doug Duvon, Kathi Dunbar, Robert Elkins, Scot Fitzgerald, Joan Kessner, Larry Markel, Huei Meznarich, Steve Smith, Chris Sutton, Noe'l Smith-Jackson, Chris Thompson, Eric Wyse. New members to the Focus Group were

  18. ALS Communications Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Communications Group Print From left: Ashley White, Lori Tamura, and Keri Troutman. The ALS Communications staff maintain the ALS Web site; write and edit all print and electronic publications for the ALS, including Science Highlights, Science Briefs, brochures, handouts, and the monthly newsletter ALSNews; and create educational and scientific outreach materials. In addition, members of the group organize bi-monthly Science Cafés, create conference and workshop Web sites and publicity, and

  19. DOE STGWG Group

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    STGWG Group The State and Tribal Government Working Group (STGWG) is one of the intergovernmental organizations with which the DOE EM office works with. They meet twice yearly for updates to the EM projects. They were formed in 1989. It is comprised of several state legislators and tribal staff and leadership from states in proximity to DOE's environmental cleanup sites of the following states: New York, South Carolina, Ohio, Washington, New Mexico, Idaho, California, Colorado, Georgia,

  20. Specific Group Hardware

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Specific Group Hardware Specific Group Hardware ALICE palicevo1 The Virtual Organization (VO) server. Serves as gatekeeper for ALICE jobs. It's duties include getting assignments from ALICE file catalog (at CERN), submitting jobs to pdsfgrid (via condor) which submits jobs to the compute nodes, monitoring the cluster work load, and uploading job information to ALICE file catalog. It is monitored with MonALISA (the monitoring page is here). It's made up of 2 Intel Xeon E5520 processors each with

  1. ALS Communications Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Communications Group Print From left: Ashley White, Lori Tamura, and Keri Troutman. The ALS Communications staff maintain the ALS Web site; write and edit all print and electronic publications for the ALS, including Science Highlights, Science Briefs, brochures, handouts, and the monthly newsletter ALSNews; and create educational and scientific outreach materials. In addition, members of the group organize bi-monthly Science Cafés, create conference and workshop Web sites and publicity, and

  2. TEC Working Group Topic Groups Section 180(c) Meeting Summaries |

    Office of Environmental Management (EM)

    Department of Energy Section 180(c) Meeting Summaries TEC Working Group Topic Groups Section 180(c) Meeting Summaries Meeting Summaries Washington, DC TEC Meeting - 180(c) Group Summary - March 15, 2006 (29.33 KB) More Documents & Publications TEC Working Group Topic Groups Tribal Meeting Summaries TEC Meeting Summaries - July 2007 TEC Working Group Topic Groups Tribal Conference Call Summaries

  3. Down-hole periodic seismic generator

    DOE Patents [OSTI]

    Hardee, H.C.; Hills, R.G.; Striker, R.P.

    1982-10-28

    A down hole periodic seismic generator system is disclosed for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

  4. DOWNHOLE VIBRATION MONITORING AND CONTROL SYSTEM

    SciTech Connect (OSTI)

    Martin E. Cobern

    2003-04-01

    The project continues to advance approximately per the revised (14-month) schedule. Tasks 1-3 (Modeling, Specification and Design) are all essentially complete. Work has begun on designing the test equipment for the Test and Evaluation (Tasks 4 & 5.) One of the intents of this project is to not only dampen vibration above the damper, but to also dampen vibrations below the damper. This is accomplished by smoothing out the discontinuities as the bit drills ahead. The model has the capability to simulate the drilling looking at the depth of cut along the discontinuities. It can also look at the amount of time that the bit is in contact with the formation. It is found that under some conditions the vibrations increased the discontinuities due to resonant conditions. In the ideal situation, the damper reduces the discontinuities and smooths out the drilling. APS looked at a wide range of spring stiffness and damping properties to determine the optimum damper. Spring rates of 10,000 lb/in to 60,000 lbs/in were analyzed. The best compromise is at 30,000 lb/in for the 6 3/4 inch tool. Low spring rates would require large displacements for the damper, while stiff springs do not provide enough motion for the damper. Several damping concepts were analyzed: (1) The first thought was to have a damper providing high damping in the upward direction and low damping in the downward direction. It was found that this increased the vibration by wallowing out the troughs of the discontinuities leading to increased displacements at the bit. (2) Another method investigated was having increased damping at high acceleration levels and less damping at lower acceleration levels. This gave improved results. (3) Constant damping so far provides the damping situation. With the proper damping level the damper can smooth out the discontinuities and provide smooth drilling. However, the damping values are different for different drilling conditions. Different WOB and ROP require different damping coefficients and therefore must be constantly adjusted to provide optimum drilling conditions. The DVMCS system is designed to provide this adjustment (4) Other methods are still being investigated. One method is a constant force damper that might provide optimum damping over a wider range.

  5. Coiled tubing solves multiple downhole problems

    SciTech Connect (OSTI)

    Bedford, S. ); Smith, I. )

    1994-11-01

    Declining reservoir pressure and water breakthrough in the UK North Sea Magnus field has coincided with general advances in application of coiled tubing and a continuous drive to reduce operating costs, particularly in a climate of weak oil prices. These factors have led to a dramatic increase in diversity and volume of coiled tubing interventions. In the following article, coiled tubing interventions, and results of those interventions, are discussed. An assessment of future coiled tubing activity on Magnus field is provided.

  6. Surging fluids downhole in an earth borehole

    SciTech Connect (OSTI)

    Wesson, D.S.; Edwards, A.G.; George, F.R.; George, K.R.; Brieger, E.F.

    1987-04-21

    An annulus pressure responsive surge tool is described for use in a conduit string in a well bore having fluid filling the annulus between the conduit string and the well bore. The annulus pressure responsive surge tool comprises; a housing having a bore therethrough, a first aperture therein to allow communication of the fluid from the exterior of the housing to the bore therethrough, and a second aperture therein to allow communication of the fluid from the exterior of the housing to the bore therethrough; a frangible closure member retained within the bore of the housing sealingly closing the same from fluid therethrough; a first annular piston slidable within a portion of the bore of the housing having, in turn, a bore therethrough, a portion of the exterior of the first annular piston sealingly engaging a portion of the bore of the housing to form a chamber containing a compressible fluid under pressure therein at a pressure less than the pressure of the fluid in the annulus. A portion of the first annular piston is in fluid communication through the first aperture in the housing with the fluid in the annulus; a second annular piston slidable within a portion of the bore of the housing having, in turn, a bore therethrough, a portion of the second annular piston abutting a portion of the first piston, a portion of the second annular piston sealingly engaging a portion of the bore of the housing, and a portion of the second annular piston in fluid communication through the second aperture in the housing with the fluid in the annulus; and first releasable locking means retained within a portion of the bore in the housing having a portion thereof releasably retaining the first piston in a first position in the bore in the housing.

  7. Link module for a downhole drilling network

    DOE Patents [OSTI]

    Hall, David R.; Fox, Joe

    2007-05-29

    A repeater is disclosed in one embodiment of the present invention as including a cylindrical housing, characterized by a proximal end and a distal end, and having a substantially cylindrical wall, the cylindrical wall defining a central bore passing therethrough. The cylindrical housing is formed to define at least one recess in the cylindrical wall, into which a repeater is inserted. The cylindrical housing also includes an annular recess formed into at least one of the proximal end and the distal end. An annular transmission element, operably connected to the repeater, is located in the annular recess. In selected embodiments, the annular transmission element inductively converts electrical energy to magnetic energy. In other embodiments, the annular transmission element includes an electrical contact to transmit electrical energy directly to another contact.

  8. Design of a Geothermal Downhole Magnetic Flowmeter

    SciTech Connect (OSTI)

    Glowka, Dave A.; Normann, Randy A.

    2015-06-15

    This paper covers the development of a 300°C geothermal solid-state magnetic flowmeter (or magmeter) to support in situ monitoring of future EGS (enhanced geothermal system) production wells. Existing flowmeters are simple mechanical spinner sensors. These mechanical sensors fail within as little as 10 hrs, while a solid-state magmeter has the potential for months/years of operation. The design and testing of a magnetic flow sensor for use with existing high-temperature electronics is presented.

  9. Facilities removal working group

    SciTech Connect (OSTI)

    1997-03-01

    This working group`s first objective is to identify major economic, technical, and regulatory constraints on operator practices and decisions relevant to offshore facilities removal. Then, the group will try to make recommendations as to regulatory and policy adjustments, additional research, or process improvements and/or technological advances, that may be needed to improve the efficiency and effectiveness of the removal process. The working group will focus primarily on issues dealing with Gulf of Mexico platform abandonments. In order to make the working group sessions as productive as possible, the Facilities Removal Working Group will focus on three topics that address a majority of the concerns and/or constraints relevant to facilities removal. The three areas are: (1) Explosive Severing and its Impact on Marine Life, (2) Pile and Conductor Severing, and (3) Deep Water Abandonments This paper will outline the current state of practice in the offshore industry, identifying current regulations and specific issues encountered when addressing each of the three main topics above. The intent of the paper is to highlight potential issues for panel discussion, not to provide a detailed review of all data relevant to the topic. Before each panel discussion, key speakers will review data and information to facilitate development and discussion of the main issues of each topic. Please refer to the attached agenda for the workshop format, key speakers, presentation topics, and panel participants. The goal of the panel discussions is to identify key issues for each of the three topics above. The working group will also make recommendations on how to proceed on these key issues.

  10. TEC Working Group Topic Groups Rail Meeting Summaries | Department...

    Office of Environmental Management (EM)

    TEC Working Group Topic Groups Rail Meeting Summaries MEETING SUMMARIES PDF icon Kansas City TEC Meeting, Rail Topic Group Summary - July 25, 2007 PDF icon Atlanta TEC...

  11. TEC Working Group Topic Groups Security | Department of Energy

    Office of Environmental Management (EM)

    TEC Working Group Topic Groups Security The Security Topic group is comprised of regulators, law enforcement officials, labor and industry representatives and other subject matter ...

  12. Good Energy Group Plc previously Monkton Group Plc | Open Energy...

    Open Energy Info (EERE)

    Plc previously Monkton Group Plc Jump to: navigation, search Name: Good Energy Group Plc (previously Monkton Group Plc) Place: Chippenham, Wiltshire, United Kingdom Zip: SN15 1EE...

  13. Illinois Wind Workers Group

    SciTech Connect (OSTI)

    David G. Loomis

    2012-05-28

    The Illinois Wind Working Group (IWWG) was founded in 2006 with about 15 members. It has grown to over 200 members today representing all aspects of the wind industry across the State of Illinois. In 2008, the IWWG developed a strategic plan to give direction to the group and its activities. The strategic plan identifies ways to address critical market barriers to the further penetration of wind. The key to addressing these market barriers is public education and outreach. Since Illinois has a restructured electricity market, utilities no longer have a strong control over the addition of new capacity within the state. Instead, market acceptance depends on willing landowners to lease land and willing county officials to site wind farms. Many times these groups are uninformed about the benefits of wind energy and unfamiliar with the process. Therefore, many of the project objectives focus on conferences, forum, databases and research that will allow these stakeholders to make well-educated decisions.

  14. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20, 2012 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:05 PM on March 20, 2012 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Chair), Cliff Watkins (Secretary), Jeff Cheadle, Glen Clark, Scot Fitzgerald, Larry Markel, Noe'l Smith-Jackson, Chris Sutton, Amanda Tuttle, Sam Vega, Rick Warriner and Eric Wyse. I. Huei Meznarich requested comments on the minutes from the February 21, 2012 meeting. No HASQARD Focus Group members present

  15. SUB ZERO GROUP, INC.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SUB ZERO GROUP, INC. 4717 Hammersley Road. Madison, WI 53711 P: 800.532.7820 P: 608.271.2233 F: 608.270.3362 Memorandum To: David Foster, Senior Advisor, Office of the Secretary of Energy CQ Michael Lafave, Director of Production Workers, SMART Union Workers Marc Norberg, Assistant to the General President, SMART Union Workers From: Christopher Jessup, Corporate Compliance Manager, Sub-Zero Group, Inc. Date: June 21, 2016 Re: June 15, 2016 Meeting at Department of Energy Forrestal Building in

  16. Upgraded Coal Interest Group

    SciTech Connect (OSTI)

    Evan Hughes

    2009-01-08

    The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

  17. Bell, group and tangle

    SciTech Connect (OSTI)

    Solomon, A. I.

    2010-03-15

    The 'Bell' of the title refers to bipartite Bell states, and their extensions to, for example, tripartite systems. The 'Group' of the title is the Braid Group in its various representations; while 'Tangle' refers to the property of entanglement which is present in both of these scenarios. The objective of this note is to explore the relation between Quantum Entanglement and Topological Links, and to show that the use of the language of entanglement in both cases is more than one of linguistic analogy.

  18. ENN Group aka XinAo Group | Open Energy Information

    Open Energy Info (EERE)

    ENN Group aka XinAo Group Jump to: navigation, search Name: ENN Group (aka XinAo Group) Place: Langfang, Hebei Province, China Zip: 65001 Product: Chinese private industrial...

  19. Greenko Group | Open Energy Information

    Open Energy Info (EERE)

    Greenko Group Jump to: navigation, search Name: Greenko Group Place: Hyderabad, India Zip: 500 033 Product: Focused on clean energy projects in Asia. References: Greenko Group1...

  20. Sinocome Group | Open Energy Information

    Open Energy Info (EERE)

    Group Jump to: navigation, search Name: Sinocome Group Place: Beijing Municipality, China Sector: Solar Product: A Chinese high tech group with business in solar PV sector...

  1. Valesul Group | Open Energy Information

    Open Energy Info (EERE)

    Valesul Group Jump to: navigation, search Name: Valesul Group Place: Brazil Product: Brazilian ethanol producer. References: Valesul Group1 This article is a stub. You can help...

  2. Angeleno Group | Open Energy Information

    Open Energy Info (EERE)

    Angeleno Group Jump to: navigation, search Logo: Angeleno Group Name: Angeleno Group Address: 2029 Century Park East, Suite 2980 Place: Los Angeles, California Zip: 90067 Region:...

  3. MTorres Group | Open Energy Information

    Open Energy Info (EERE)

    Group Jump to: navigation, search Name: MTorres Group Place: Murcia, Spain Zip: 30320 Sector: Wind energy Product: Wind turbine manufacturer References: MTorres Group1 This...

  4. Ferrari Group | Open Energy Information

    Open Energy Info (EERE)

    Ferrari Group Jump to: navigation, search Name: Ferrari Group Place: Sao Paulo, Brazil Product: Sao Paulo-based ethanol producer. References: Ferrari Group1 This article is a...

  5. TEC Working Group Topic Groups Archives Communications Meeting Summaries |

    Office of Environmental Management (EM)

    Department of Energy Archives Communications Meeting Summaries TEC Working Group Topic Groups Archives Communications Meeting Summaries Meeting Summaries Milwaukee TEC Meeting, Communications Topic Group Summary - July 1998 (58.3 KB) Inaugural Group Meeting - April 1998 (83.34 KB) More Documents & Publications TEC Working Group Topic Groups Archives Communications Conference Call Summaries TEC Meeting Summaries - January 1997 TEC Working Group Topic Groups Tribal Conference Call

  6. TEC Working Group Topic Groups Rail Conference Call Summaries Inspections

    Office of Environmental Management (EM)

    Subgroup | Department of Energy Summaries Inspections Subgroup TEC Working Group Topic Groups Rail Conference Call Summaries Inspections Subgroup Inspections Subgroup April 6, 2006 (14.05 KB) February 23, 2006 Draft (20.29 KB) January 24, 2006 (27.44 KB) More Documents & Publications TEC Working Group Topic Groups Rail Conference Call Summaries Planning Subgroup TEC Working Group Topic Groups Rail Conference Call Summaries Tracking Subgroup TEC Working Group Topic Groups Rail Conference

  7. TEC Working Group Topic Groups Rail Key Documents Radiation Monitoring

    Office of Environmental Management (EM)

    Subgroup | Department of Energy Radiation Monitoring Subgroup TEC Working Group Topic Groups Rail Key Documents Radiation Monitoring Subgroup Radiation Monitoring Subgroup Draft Work Plan - February 4, 2008 (114.02 KB) More Documents & Publications TEC Working Group Topic Groups Rail Meeting Summaries TEC Working Group Topic Groups Rail Conference Call Summaries Radiation Monitoring Subgroup TEC Working Group Topic Groups Rail Key Documents Intermodal Subgroup

  8. MEA BREAKOUT GROUP

    Office of Environmental Management (EM)

    MEA BREAKOUT GROUP TOPICS FOCUSED ON CCMs * IONOMER * CATALYST LAYER * PERFORMANCE * DEGRADATION * FUNDAMENTAL STUDIES IONOMER * DEVELOP IMPROVED IONOMERS: PERFLUORINATED IONOMERS (O2 SOLUBILITY) HYDROCARBON IONOMERS * ANODE FLOODING ISSUES, CATHODE DRYOUT ISSUES: - DEVELOP SEPARATE IONOMERS FOR ANODE/CATHODE - IONOMER CHEMISTRY * IONOMER/CATALYST INTERACTION * CL / MEMBRANE INTERACTION * IMPROVED CL/M INTERFACES - IONOMER CROSSLINKING CATALYST LAYER * CATALYST CHALLENGES IN ANODE SIDE * FOCUS

  9. Helms Research Group - Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Helms Group Home Research Members Publications Collaborations Connect Physical Organic Materials Chemistry Our research is devoted to understanding transport phenomena in mesostructured systems assembled from organic, organometallic, polymeric and nanocrystalline components. Enhanced capabilities relevant to energy, health, water, and food quality are enabled by our unique approaches to the modular design of their architectures and interfaces.

  10. Abandoning wells working group

    SciTech Connect (OSTI)

    1997-03-01

    The primary objective of this working group is to identify major technical, regulatory, and environmental issues that are relevant to the abandonment of offshore wellbores. Once the issues have been identified, the working group also has the objective of making recommendations or providing potential solutions for consideration. Areas for process improvement will be identified and {open_quotes}best practices{close_quotes} will be discussed and compared to {open_quotes}minimum standards.{close_quotes} The working group will primarily focus on wellbore abandonment in the Gulf of Mexico. However, workshop participants are encouraged to discuss international issues which may be relevant to wellbore abandonment practices in the Gulf of Mexico. The Abandoning Wells Group has identified several major areas for discussion that have concerns related to both operators and service companies performing wellbore abandonments in the Gulf of Mexico. The following broad topics were selected for the agenda: (1) MMS minimum requirements and state regulations. (2) Co-existence of best practices, new technology, and P & A economics. (3) Liability and environmental issues relating to wellbore abandonment.

  11. Applied Science/Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Spectroscopic Technique Reveals the Dynamics of Operating Battery Electrodes ... The ALS X-Ray Streak Camera: Bringing the Ultrafast and Ultrasmall into Focus Laser ...

  12. Focus Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Outreach Forums » Focus Group and Work Group Activities » Focus Group Focus Group The Focus Group was formed in March 2007 to initiate dialogue and interface with labor unions, DOE Program Secretarial Offices, and stakeholders in areas of mutual interest and concern related to health, safety, security, and the environment. Meeting Documents Available for Download November 13, 2012 Work Group Leadership Meetings: Transition Elements This Focus Group Work Group telecom was held with the Work

  13. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2011 The meeting was called to order by Dave Crawford, Focus Group Chairman at 2:08 PM on January 18, 2011 in Conference Room 208 at 2425 Stevens. Those attending were: Dave Crawford (Chair), Cliff Watkins (Secretary), Heather Anastos, Paula Ciszak, Jim Conca, Scott Conley, Glen Clark, Scott Conley, Jim Douglas, Scot Fitzgerald, Stewart Huggins, Jim Jewett, Joan Kessner, Larry Markel, Huei Meznarich, Karl Pool, Dave Shea, Steve Smith, Chris Sutton, Amanda Tuttle, Rich Weiss, Eric Wyse. Dave

  14. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 The meeting was called to order by Huei Meznarich who was acting for the absent Dave Crawford, Focus Group Chairman at 2:04 PM on April 19, 2011 in Conference Room 208 at 2425 Stevens. Those attending were: Huei Meznarich (Acting Chair), Cliff Watkins (Secretary), Taffy Almeida, Heather Anastos, Courtney Blanchard, Jeff Cheadle, Glen Clark, Kathie Dunbar, Robert Elkins, Scot Fitzgerald, Greg Holte, Joan Kessner, Noe'l Smith- Jackson, Chris Sutton, Cindy Taylor, Chris Thompson, Amanda Tuttle,

  15. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2011 The meeting was called to order by Dave Crawford, Focus Group Chairman at 2:03 PM on May 17, 2011 in Conference Room 208 at 2425 Stevens. Those attending were: Dave Crawford (Chair), Cliff Watkins (Secretary), Taffy Almeida, Courtney Blanchard, Jeff Cheadle, Glen Clark, Robert Elkins, Scot Fitzgerald, Al Hawkins, Greg Holte, Kris Kuhl-Klinger, Larry Markel, Huei Meznarich, Noe'l Smith-Jackson, Chris Sutton, Cindy Taylor, Chris Thompson, Amanda Tuttle, Eric Wyse. I. Dave Crawford

  16. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8, 2011 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:04 PM on November 8, 2011 in Conference Room 126 at 2420 Stevens. Those attending were: Huei Meznarich (Chair), Cliff Watkins (Secretary), Lynn Albin, Heather Anastos, Courtney Blanchard, Jeff Cheadle, Scot Fitzgerald, Jim Jewett, Shannan Johnson, Kris Kuhl-Klinger, Joan Kessner, Larry Markel, Karl Pool, Noe'l Smith-Jackson, Steve Smith, Chris Sutton, Cindy Taylor, Chris Thompson, Amanda Tuttle and Eric

  17. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2012 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:04 PM on January 17, 2012 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Chair), Cliff Watkins (Secretary), Mike Barnes, Jeff Cheadle, Glen Clark, Scot Fitzgerald, Shannan Johnson, Joan Kessner, Larry Markel, Cindy Taylor, Chris Thompson, Amanda Tuttle, Sam Vega, Rich Weiss and Eric Wyse. I. Huei Meznarich requested comments on the minutes from the December 13, 2011 meeting.

  18. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, 2012 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:02 PM on February 21, 2012 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Chair), Cliff Watkins (Secretary), Lynn Albin, Taffy Almeida, Courtney Blanchard, Glen Clark, Scot Fitzgerald, Shannan Johnson, Kris Kuhl-Klinger, Larry Markel, Karl Pool, Steve Smith, Cindy Taylor, Amanda Tuttle, Sam Vega, Rick Warriner, Rich Weiss and Eric Wyse. I. Huei Meznarich requested comments on

  19. Working Group Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Working Group Reports Special Working Session on the Role of Buoy Observations in the Tropical Western Pacific Measurement Scheme J. Downing Marine Sciences Laboratory Sequim, Washington R. M. Reynolds Brookhaven National Laboratory Upton, New York Attending W. Clements (TWPPO) F. Barnes (TWPPO) T. Ackerman (TWP Site Scientist) M. Ivey (ARCS Manager) H. Church J. Curry J. del Corral B. DeRoos S. Kinne J. Mather J. Michalsky M. Miller P. Minnett B. Porch J. Sheaffer P. Webster M. Wesely K.

  20. Yennello Group Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cyclotron Chemistry Dept. Physics Dept. College of Science Texas A&M University The Group Activities Publications Articles Talks and Posters Detectors Links Pictures Women in Nuclear Science Internal Documents Contacts run photos people photos equipment photos Copyright © 2009 Texas A&M University Cyclotron Institute MS #3366 College Station TX 77843-3366 Phone: 979-845-1411 Fax: 979-845-1899

  1. Tritium Focus Group Meeting:

    Office of Environmental Management (EM)

    32 nd Tritium Focus Group Meeting: Tritium research activities in Safety and Tritium Applied Research (STAR) facility, Idaho National Laboratory Masashi Shimada Fusion Safety Program, Idaho National Laboratory April 25 th 2013, Germantown, MD STI #: INL/MIS-13-28975 Outlines 1. Motivation of tritium research activity in STAR facility 2. Unique capabilities in STAR facility 3. Research highlights from tritium retention in HFIR neutron- irradiated tungsten April 25th 2013 Germantown, MD STAR

  2. Environmental/Interest Groups

    Office of Legacy Management (LM)

    Environmental/Interest Groups Miamisburg Mound Community Improvement Corporation (MMCIC) Mike J. Grauwelman President P.O. Box 232 Miamisburg, OH 45343-0232 (937) 865-4462 Email: mikeg@mound.com Mound Reuse Committee See MMCIC Mound Environmental Safety and Health Sharon Cowdrey President 5491 Weidner Road Springboro, OH 45066 (937) 748-4757 No email address available Mound Museum Association Dr. Don Sullenger President Mound Advanced Technology Center 720 Mound Road Miamisburg, OH 45342-6714

  3. TEC Working Group Topic Groups | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Topic Groups TEC Working Group Topic Groups TEC Topic Groups were formed in 1991 following an evaluation of the TEC program. Interested members, DOE and other federal agency staff meet to examine specific issues related to radioactive materials transportation. TEC Topic Groups enable a small number of participants to focus intensively on key issues at a level of detail that is unattainable during the TEC semiannual meetings due to time and group size constraints. Topic Groups meet individually

  4. Contamination Control Techniques

    SciTech Connect (OSTI)

    EBY, J.L.

    2000-05-16

    Welcome to a workshop on contamination Control techniques. This work shop is designed for about two hours. Attendee participation is encouraged during the workshop. We will address different topics within contamination control techniques; present processes, products and equipment used here at Hanford and then open the floor to you, the attendees for your input on the topics.

  5. TEC Working Group Topic Groups Archives | Department of Energy

    Office of Environmental Management (EM)

    Archives TEC Working Group Topic Groups Archives The following Topic Groups are no longer active; however, related documents and notes for these archived Topic Groups are available through the following links: Communications Consolidated Grant Topic Group Training - Medical Training Protocols Route Identification Process Mechanics of Funding and Technical Assistance

  6. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    18, 2010 The meeting was called to order by Don Hart, Focus Group Chairman, at 2:00 PM on February 18, 2010 in Conference Room 199 at 2430 Stevens. Those attending were: Lynn Albin, Taffy Almeida, Heather Anastos, Glen Clark, Doug Duvon, Kathi Dunbar, Robert Elkins, Cindy English, Kris Kuhl-Klinger, Joan Kessner, Larry Markel, Huei Meznarich, Karl Pool, Steve Smith, Noe'l Smith-Jackson, Andrew Stevens, Chris Sutton, Chris Thompson, Wendy Thompson, Rich Weis, and Cliff Watkins. I. Because new

  7. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 The meeting was called to order by Dave Crawford, Focus Group Chairman at 2:10 PM on December 13, 2010 in Conference Room 199 at 2430 Stevens. Those attending were: Dave Crawford (Chair), Cliff Watkins (Secretary), Jeff Cheadle, Glen Clark, Robert Elkins, Scot Fitzgerald, Kris Kuhl-Klinger, Larry Markel, Huei Meznarich, Noe'l Smith-Jackson, Dave Shea, Chris Sutton, Cindy Taylor, Chris Thompson, Rich Weiss, Eric Wyse. I. Dave Crawford requested approval of the minutes from the November 16

  8. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    16, 2011 The meeting was called to order by Dave Crawford, HASQARD Focus Group Chairman at 2:07 PM on August 16, 2011 in Conference Room 208 at 2425 Stevens. Those attending were: (Chair), Cliff Watkins (Secretary), Lynn Albin, Heather Anastos, Jeff Cheadle, Kathi Dunbar, Robert Elkins, Scot Fitzgerald, Jim Jewett, Kris Kuhl-Klinger, Joan Kessner, Larry Markel, Huei Meznarich, Noe'l Smith-Jackson, Cindy Taylor, Amanda Tuttle, Rich Weiss and Eric Wyse. I. Dave Crawford requested comments on the

  9. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4, 2011 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:04 PM on October 4, 2011 in Conference Room 208 at 2425 Stevens. Those attending were: Huei Meznarich (Chair), Cliff Watkins (Secretary), Lynn Albin, Heather Anastos, Jeff Cheadle, Glen Clark, Scot Fitzgerald, Shannan Johnson, Kris Kuhl-Klinger, Joan Kessner, Larry Markel, Karl Pool, Noe'l Smith-Jackson, Dave Shea, Cindy Taylor, Amanda Tuttle, Mary Ryan, Rich Weiss and Eric Wyse. I. Huei Meznarich requested

  10. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:04 PM on December 13, 2011 in Conference Room 126 at 2420 Stevens. Those attending were: Huei Meznarich (Chair), Cliff Watkins (Secretary), Lynn Albin, Heather Anastos, Jeff Cheadle, Glen Clark, Scot Fitzgerald, Shannan Johnson, Kris Kuhl-Klinger, Joan Kessner, Karl Pool, Dave St. John, Noe'l Smith-Jackson, Chris Sutton, Cindy Taylor, Amanda Tuttle, Rich Weiss and Eric Wyse. I. Huei Meznarich requested comments

  11. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2012 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:06 PM on April 17, 2012 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Chair), Cliff Watkins (Secretary), Lynn Albin, Taffy Almeida, Jeff Cheadle, Glen Clark, Scot Fitzgerald, Kris Kuhl-Klinger, Joan Kessner, Larry Markel, Noe'l Smith-Jackson, Cindy Taylor, Amanda Tuttle, Rich Weiss and Eric Wyse. I. Huei Meznarich requested comments on the minutes from the March 20, 2012

  12. # Energy Measuremenfs Group

    Office of Legacy Management (LM)

    ri EECE # Energy Measuremenfs Group SUMMARY REPORT . AiRIAL R4DIOLOGICAL SURVEY - NIAGARA FALLS AREA NIAGARA FALLS, NEh' YORK DATE OF SURVEY: SEPTEMBER 1979 APPROVED FOR DISTRIBUTION: P Stuart, EC&G, Inc. . . Herbirt F. Hahn, Department of Energy PERFDRflED BY EGtf, INC. UNDER CONTRACT NO. DE-AHO&76NV01163 WITH THE UNITED STATES DEPARTMENT OF ENERGY II'AFID 010 November 30, 1979 - The Aerial Measurements System (A%), operated by EC&t, Inc< for the Un i ted States Department of

  13. TEC Working Group Topic Groups Rail Conference Call Summaries | Department

    Office of Environmental Management (EM)

    of Energy Rail Conference Call Summaries TEC Working Group Topic Groups Rail Conference Call Summaries CONFERENCE CALL SUMMARIES Rail Topic Group Inspections Subgroup Planning Subgroup Tracking Subgroup TRAGIS Subgroup Radiation Monitoring Subgroup Intermodel Subgroup

  14. TEC Working Group Topic Groups Archives Communications Conference Call

    Office of Environmental Management (EM)

    Summaries | Department of Energy Communications Conference Call Summaries TEC Working Group Topic Groups Archives Communications Conference Call Summaries Conference Call Summaries Conference Call Summary April 2000 (91.86 KB) Conference Call Summary February 1999 (11.81 KB) Conference Call Summary November 1998 (54.77 KB) More Documents & Publications TEC Working Group Topic Groups Archives Communications Meeting Summaries TEC Working Group Topic Groups Tribal Conference Call Summaries

  15. TEC Working Group Topic Groups Archives Protocols Meeting Summaries |

    Office of Environmental Management (EM)

    Department of Energy Protocols Meeting Summaries TEC Working Group Topic Groups Archives Protocols Meeting Summaries Meeting Summaries Philadelphia TEC Meeting, Protocols Topic Group Summary - July 1999 (110.63 KB) Jacksonville TEC Meeting, Protocols Topic Group Summary - January 1999 (102.04 KB) More Documents & Publications TEC Working Group Topic Groups Archives Protocols Conference Call Summaries TEC Meeting Summaries - July 1997 TEC Meeting Summaries - January 1997

  16. TEC Working Group Topic Groups Rail Archived Documents | Department of

    Office of Environmental Management (EM)

    Energy Archived Documents TEC Working Group Topic Groups Rail Archived Documents ARCHIVED DOCUMENTS Inspections Summary Matrix (49.36 KB) TEC Transportation Safety WIPP-PIG Rail Comparison (130.46 KB) Regulatory Summary Matrix (62.08 KB) More Documents & Publications TEC Working Group Topic Groups Rail Key Documents TEC Working Group Topic Groups Rail Meeting Summaries TEC Meeting Summaries - September 2005 Presentations

  17. TEC Working Group Topic Groups Security Key Documents | Department of

    Office of Environmental Management (EM)

    Energy Key Documents TEC Working Group Topic Groups Security Key Documents Key Documents Security TG Work Plan August 7, 2006 (24.31 KB) Security Lessons Learned Document August 2, 2006 (40.77 KB) Security Module (635.1 KB) STG Terms and Definitions from DOE 470.4 (18.54 KB) More Documents & Publications TEC Working Group Topic Groups Security Meeting Summaries TEC Meeting Summaries - April 2005 Presentations TEC Working Group Topic Groups Security Conference Call Summaries

  18. TEC Working Group Topic Groups Security Meeting Summaries | Department of

    Office of Environmental Management (EM)

    Energy Meeting Summaries TEC Working Group Topic Groups Security Meeting Summaries Meeting Summaries Green Bay STG Meeting Summary- September 14, 2006 (28.22 KB) Washington STG Meeting Summary - March 14, 2006 (25.61 KB) Pueblo STG Meeting Summary - September 22, 2005 (18.7 KB) More Documents & Publications TEC Working Group Topic Groups Security Conference Call Summaries TEC Meeting Summaries - September 2006 TEC Working Group Topic Groups Security Key Documents

  19. TEC Working Group Topic Groups Rail Key Documents | Department...

    Office of Environmental Management (EM)

    Rail Key Documents TEC Working Group Topic Groups Rail Key Documents KEY DOCUMENTS Radiation Monitoring Subgroup Intermodal Subgroup Planning Subgroup Current FRA State Rail Safety ...

  20. TEC Working Group Topic Groups Rail Conference Call Summaries...

    Office of Environmental Management (EM)

    Summaries Inspections Subgroup TEC Working Group Topic Groups Rail Conference Call Summaries Inspections Subgroup Inspections Subgroup PDF icon April 6, 2006 PDF icon February 23,...

  1. TEC Working Group Topic Groups Archives Mechanics of Funding...

    Office of Environmental Management (EM)

    Mechanics of Funding and Techical Assistance TEC Working Group Topic Groups Archives Mechanics of Funding and Techical Assistance Mechanics of Funding and Techical Assistance Items...

  2. TEC Working Group Topic Groups Tribal Conference Call Summaries...

    Office of Environmental Management (EM)

    Conference Call Summaries TEC Working Group Topic Groups Tribal Conference Call Summaries Conference Call Summaries PDF icon March 12, 2008 PDF icon October 3, 2007 PDF icon...

  3. TEC Working Group Topic Groups Archives Communications Conference...

    Office of Environmental Management (EM)

    Communications Conference Call Summaries TEC Working Group Topic Groups Archives Communications Conference Call Summaries Conference Call Summaries PDF icon Conference Call Summary...

  4. TEC Working Group Topic Groups Archives Communications Meeting...

    Office of Environmental Management (EM)

    Archives Communications Meeting Summaries TEC Working Group Topic Groups Archives Communications Meeting Summaries Meeting Summaries PDF icon Milwaukee TEC Meeting, Communications...

  5. TEC Working Group Topic Groups Section 180(c) Key Documents ...

    Office of Environmental Management (EM)

    Key Documents TEC Working Group Topic Groups Section 180(c) Key Documents Key Documents Briefing Package for Section 180(c) Implementation - July 2005 PDF icon Executive Summary...

  6. TEC Working Group Topic Groups Rail Key Documents Radiation Monitoring...

    Office of Environmental Management (EM)

    Radiation Monitoring Subgroup TEC Working Group Topic Groups Rail Key Documents Radiation Monitoring Subgroup Radiation Monitoring Subgroup PDF icon Draft Work Plan - February 4,...

  7. September 2012, HSS Focus Group Strategic Initiatives Work Group...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategic Initiatives Work Group Status Overview Accomplishments: 1. June 26. Telecom with ... reporting improvements are planned for the next Strategic Initiatives Work Group meeting. ...

  8. CORRELATION BETWEEN GROUP LOCAL DENSITY AND GROUP LUMINOSITY

    SciTech Connect (OSTI)

    Deng Xinfa; Yu Guisheng

    2012-11-10

    In this study, we investigate the correlation between group local number density and total luminosity of groups. In four volume-limited group catalogs, we can conclude that groups with high luminosity exist preferentially in high-density regions, while groups with low luminosity are located preferentially in low-density regions, and that in a volume-limited group sample with absolute magnitude limit M{sub r} = -18, the correlation between group local number density and total luminosity of groups is the weakest. These results basically are consistent with the environmental dependence of galaxy luminosity.

  9. Ken Hogstrom, PI, & Medical Physics Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CAMD Targets Cancer Ken Hogstrom, Marie Varnes, Kip Matthews, Erno Sajo, Medical Physics Group Department of Physics and Astronomy and Mary Bird Perkins Cancer Center Current radiation therapy techniques treat cancer by irradiating a volume of tissue that contains both healthy and cancerous tissue. Potential damage to healthy tissue can limit the amount of radiation dose to the cancer. Professor Hogstrom and his crew search for drugs that will allow radiation dose to preferentially target the

  10. Fall 2012 Working Groups

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 C STEC W orking G roup S chedule Thrust I --- s elected Thursdays; M SE C onference R oom ( 3062 H H D ow) October 1 1 Dylan B ayerl ( Kioupakis g roup) 3:00---4:00pm November 1 Andy M artin ( Millunchick g roup) 2:00---3:00pm December 1 3 Brian R oberts ( Ku g roup) 2:00---3:00pm Thrust II --- s elected T hursdays, 3 :30---4:30pm; M SE C onference R oom ( 3062 H H D ow) September 2 7 Hang C hi ( Uher g roup) October 1 8 Reddy g roup November 2 9 Gunho Kim (Pipe group) Thrust III --- s elected

  11. Working Group Report: Sensors

    SciTech Connect (OSTI)

    Artuso, M.; et al.,

    2013-10-18

    Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In addition the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.

  12. Tecate Group | Open Energy Information

    Open Energy Info (EERE)

    Tecate Group Jump to: navigation, search Name: Tecate Group Place: San Diego, California Zip: 92108-4400 Product: The Tecate Group is a global supplier of electronic components and...

  13. USJ Group | Open Energy Information

    Open Energy Info (EERE)

    USJ Group Jump to: navigation, search Name: USJ Group Place: So Paulo, Sao Paulo, Brazil Zip: 04534 000 Product: Sao Paulo based ethanol producer. References: USJ Group1 This...

  14. Rowan Group | Open Energy Information

    Open Energy Info (EERE)

    Rowan Group Place: United Kingdom Product: ( Private family-controlled ) References: Rowan Group1 This article is a stub. You can help OpenEI by expanding it. Rowan Group is a...

  15. ERIC Group | Open Energy Information

    Open Energy Info (EERE)

    ERIC Group Jump to: navigation, search Name: ERIC Group Place: Italy Product: Italian project developer of PV power plants. References: ERIC Group1 This article is a stub. You...

  16. CNEEC - Synchrotron Techniques Tutorial by Profs. Pianetta and Toney

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Techniques

  17. Westly Group | Open Energy Information

    Open Energy Info (EERE)

    Westly Group Jump to: navigation, search Name: Westly Group Place: Menlo Park, California Zip: 94025 Product: Clean technology-oriented venture capital firm. References: Westly...

  18. Enerbio Group | Open Energy Information

    Open Energy Info (EERE)

    Enerbio Group Jump to: navigation, search Name: Enerbio Group Place: Porto Alegre, Rio Grande do Sul, Brazil Zip: 90480-003 Sector: Renewable Energy, Services Product: Brazilian...

  19. BOC Group | Open Energy Information

    Open Energy Info (EERE)

    Group Jump to: navigation, search Name: BOC Group Place: United Kingdom Zip: GU20 6HJ Sector: Services Product: UK-based industrial gases, vacuum technologies and distribution...

  20. Jinglong Group | Open Energy Information

    Open Energy Info (EERE)

    Jinglong Group Jump to: navigation, search Name: Jinglong Group Place: Ningjin, Hebei Province, China Product: Chinese manufacturer and supplier of monocrystalline silicon and...

  1. Verdeo Group | Open Energy Information

    Open Energy Info (EERE)

    Verdeo Group Jump to: navigation, search Name: Verdeo Group Place: Washington, DC Zip: 20006 Sector: Carbon Product: Washington based integrated carbon solutions company....

  2. Bazan Group | Open Energy Information

    Open Energy Info (EERE)

    Bazan Group Jump to: navigation, search Name: Bazan Group Place: Pontal, Brazil Zip: 14180-000 Product: Bioethanol production company Coordinates: -21.023149, -48.037099 Show...

  3. Delaney Group | Open Energy Information

    Open Energy Info (EERE)

    Delaney Group Jump to: navigation, search Name: Delaney Group Place: Gloversville, New York Zip: 12078 Sector: Services, Wind energy Product: Services company focused on...

  4. Ramky Group | Open Energy Information

    Open Energy Info (EERE)

    Ramky Group Jump to: navigation, search Name: Ramky Group Place: Andhra Pradesh, India Zip: 500082 Product: Focussed on construction, infrastructure development and waste...

  5. Samaras Group | Open Energy Information

    Open Energy Info (EERE)

    Samaras Group Jump to: navigation, search Name: Samaras Group Place: Greece Sector: Renewable Energy, Services Product: Greek consultancy services provider with specialization in...

  6. Altira Group | Open Energy Information

    Open Energy Info (EERE)

    Altira Group Jump to: navigation, search Name: Altira Group Address: 1675 Broadway, Suite 2400 Place: Denver, Colorado Zip: 80202 Region: Rockies Area Product: Venture Capital...

  7. Sunvim Group | Open Energy Information

    Open Energy Info (EERE)

    Group Jump to: navigation, search Name: Sunvim Group Place: Gaomi, Shandong Province, China Zip: 261500 Product: Sunvim, a Chinese home textile maker, is also engaged in the...

  8. Balta Group | Open Energy Information

    Open Energy Info (EERE)

    Balta Group Jump to: navigation, search Name: Balta Group Place: Sint Baafs Vijve, Belgium Zip: 8710 Product: Belgium-based manufacturer of broadloom carpets, rugs and laminate...

  9. Noribachi Group | Open Energy Information

    Open Energy Info (EERE)

    Noribachi Group Jump to: navigation, search Name: Noribachi Group Place: Albuquerque, New Mexico Zip: 87104 Product: New Mexico-based private equity firm focused on investing in...

  10. Lucas Group | Open Energy Information

    Open Energy Info (EERE)

    Group Jump to: navigation, search Name: Lucas Group Place: Chicago, Illinois Sector: Services Product: Renewable Energy Recruiters Year Founded: 1970 Coordinates: 41.850033,...

  11. Humus Group | Open Energy Information

    Open Energy Info (EERE)

    search Name: Humus Group Place: Brazil Product: Stakeholder in the Vertente ethanol mill in Brazil. References: Humus Group1 This article is a stub. You can help...

  12. Bumlai Group | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Bumlai Group Place: Brazil Product: Investor in ethanol plant So Fernando Acar e lcool. References: Bumlai Group1 This...

  13. Paro group | Open Energy Information

    Open Energy Info (EERE)

    Paro group Jump to: navigation, search Name: Paro group Place: Brazil Product: Ethanol producer that plans to jointly own an ethanol plant in Minas Gerais. References: Paro...

  14. Reservoir Modeling Working Group Meeting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reservoir Modeling Working Group Meeting 2012 GEOTHERMAL TECHNOLOGIES PROGRAM PEER REVIEW ... History Past Meetings: March 2010 IPGT Modeling Working Group Meeting May 2010 GTP Peer ...

  15. Mouratoglou Group | Open Energy Information

    Open Energy Info (EERE)

    Mouratoglou Group Jump to: navigation, search Name: Mouratoglou Group Place: France Sector: Renewable Energy Product: Investment parent-company of EDF Energies Nouvelles, involved...

  16. Poyry Group | Open Energy Information

    Open Energy Info (EERE)

    Poyry Group Jump to: navigation, search Name: Poyry Group Place: Vantaa, Finland Zip: 1621 Product: Vantaa-based consulting and engineering firm, specialising in issues regarding...

  17. Richway Group | Open Energy Information

    Open Energy Info (EERE)

    by expanding it. Richway Group is a company based in Richmond, British Columbia. FROM WASTE TO ENERGY, YOUR WISE CHOICE Vision and Objectives Richway Group (Richway) is located...

  18. Copisa Group | Open Energy Information

    Open Energy Info (EERE)

    Copisa Group Jump to: navigation, search Name: Copisa Group Place: Barcelona, Spain Zip: 8029 Product: Barcelona-based, construction company. Copisa is involved in building three...

  19. Emte Group | Open Energy Information

    Open Energy Info (EERE)

    Group Jump to: navigation, search Name: Emte Group Place: Spain Sector: Renewable Energy, Services Product: String representation "EMTE is the ben ... ctor companies." is too long....

  20. Schaffner Group | Open Energy Information

    Open Energy Info (EERE)

    Schaffner Group Jump to: navigation, search Name: Schaffner Group Place: Switzerland Zip: 4542 Product: Switzerland-based company supplier of components that support the efficient...

  1. Schulthess Group | Open Energy Information

    Open Energy Info (EERE)

    Group Jump to: navigation, search Name: Schulthess Group Place: Wolfhausen, Switzerland Zip: CH-8633 Product: A company with activities in regenerative energy production,...

  2. TRITEC Group | Open Energy Information

    Open Energy Info (EERE)

    TRITEC Group Jump to: navigation, search Name: TRITEC Group Place: Basel, Switzerland Zip: CH-4123 Product: Basel-based installer and distributor for PV products. Coordinates:...

  3. Swatch Group | Open Energy Information

    Open Energy Info (EERE)

    Swatch Group Jump to: navigation, search Name: Swatch Group Place: Switzerland Product: String representation "The Swatch Grou ... ther industries" is too long. References: Swatch...

  4. Anel Group | Open Energy Information

    Open Energy Info (EERE)

    Anel Group Jump to: navigation, search Name: Anel Group Place: ISTANBUL, Turkey Zip: 34768 Sector: Solar, Wind energy Product: Istanbul-based technological and engineering...

  5. Aksa Group | Open Energy Information

    Open Energy Info (EERE)

    Aksa Group Jump to: navigation, search Name: Aksa Group Place: Istanbul, Turkey Zip: 34212 Sector: Wind energy Product: Turkey-based international company recently involved in the...

  6. Daesung Group | Open Energy Information

    Open Energy Info (EERE)

    Daesung Group Place: Jongno-Gu Seoul, Korea (Republic) Zip: 110-300 Sector: Hydro, Hydrogen Product: Daesung Group, a Korea-based energy provider and electric machinary...

  7. Electrocell Group | Open Energy Information

    Open Energy Info (EERE)

    Group Jump to: navigation, search Name: Electrocell Group Place: Sao Paolo, Brazil Zip: 05508-000 Product: Producer of fuel cells, accessories and controls. The company...

  8. Pohlen Group | Open Energy Information

    Open Energy Info (EERE)

    Pohlen Group Jump to: navigation, search Name: Pohlen Group Place: Geilenkirchen, Germany Product: Specialises in roof engineering, including installing and maintaining PV systems...

  9. Vaillant Group | Open Energy Information

    Open Energy Info (EERE)

    Group Jump to: navigation, search Name: Vaillant Group Place: Remscheid, Germany Zip: 42859 Product: For nearly 130 years Vaillant has been at the forefront of heating technology....

  10. Ostwind Group | Open Energy Information

    Open Energy Info (EERE)

    Ostwind Group Jump to: navigation, search Name: Ostwind Group Place: Regensburg, Germany Zip: D-93047 Sector: Biomass, Hydro, Wind energy Product: Develops wind projects, and also...

  11. Shenergy Group | Open Energy Information

    Open Energy Info (EERE)

    Shenergy Group Place: Shanghai Municipality, China Product: Gas and power project investor and developer based in Shanghai. References: Shenergy Group1 This article is a stub....

  12. GEA Group | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: GEA Group Place: Bochum, Germany Zip: 44809 Sector: Biofuels, Solar Product: Bochum-based, engineering group specialising in process engineering...

  13. Ralos Group | Open Energy Information

    Open Energy Info (EERE)

    Ralos Group Jump to: navigation, search Name: Ralos Group Place: Michelstadt, Germany Zip: D-64720 Sector: Solar Product: Germany-based solar project developer that specialises in...

  14. Enovos Group | Open Energy Information

    Open Energy Info (EERE)

    Enovos Group Jump to: navigation, search Name: Enovos Group Place: Germany Sector: Solar Product: Germany-based utility. The utility has interests in solar energy. References:...

  15. Rioglass Group | Open Energy Information

    Open Energy Info (EERE)

    Group Jump to: navigation, search Name: Rioglass Group Place: Spain Product: A Spanish glass company supplying the automotive sector, who has recently announced to launch...

  16. Training Work Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Outreach Forums Focus Group and Work Group Activities Focus Group Training Work Group 10 CFR 851 Implementation Work Group Workforce Retention Work Group Strategic Initiatives Work ...

  17. TEC Working Group Topic Groups Archives Protocols | Department of Energy

    Office of Environmental Management (EM)

    Protocols TEC Working Group Topic Groups Archives Protocols The Transportation Protocols Topic Group serves as an important vehicle for DOE senior managers to assess and incorporate stakeholder input into the protocols process. The Topic Group was formed to review a series of transportation protocols developed in response to a request for DOE to be more consistent in its approach to transportation.

  18. TEC Working Group Topic Groups Tribal | Department of Energy

    Office of Environmental Management (EM)

    Energy Meeting Summaries TEC Working Group Topic Groups Tribal Meeting Summaries Meeting Summaries Kansas City TEC Meeting - Tribal Group Summary - July 25, 2007 (29.33 KB) Atlanta TEC Meeting - Tribal Group Summary - March 6, 2007 (27.82 KB) Green Bay TEC Meeting -- Tribal Group Summary - October 26, 2006 (31.56 KB) Washington TEC Meeting - Tribal Topic Group Summary - March 14, 2006 (39.76 KB) Pueblo TEC Meeting - Tribal Topic Group Summary, September 22, 2005 (40.34 KB) Phoenix TEC

  19. TEC Working Group Topic Groups Tribal Meeting Summaries | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Tribal Meeting Summaries TEC Working Group Topic Groups Tribal Meeting Summaries Meeting Summaries Kansas City TEC Meeting - Tribal Group Summary - July 25, 2007 (29.33 KB) Atlanta TEC Meeting - Tribal Group Summary - March 6, 2007 (27.82 KB) Green Bay TEC Meeting -- Tribal Group Summary - October 26, 2006 (31.56 KB) Washington TEC Meeting - Tribal Topic Group Summary - March 14, 2006 (39.76 KB) Pueblo TEC Meeting - Tribal Topic Group Summary, September 22, 2005 (40.34 KB) Phoenix TEC

  20. Focus Group Training Work Group Meeting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Date: September 13, 2012 In conjunction with the HAMMER Steering Committee meeting the HSS Focus Group Training Working Group Meeting was conducted from 2:00 PM to 4:30 PM at the HAMMER Training Facility in Richland, WA. Documents Available for Download Meeting Agenda (43.92 KB) Meeting Summary (1.22 MB) More Documents & Publications Focus Group Training Work Group Meeting DOE Training Reciprocity Program Training Work Group Charter

  1. Fermilab Steering Group Report

    SciTech Connect (OSTI)

    Steering Group, Fermilab; /Fermilab

    2007-12-01

    The Fermilab Steering Group has developed a plan to keep U.S. accelerator-based particle physics on the pathway to discovery, both at the Terascale with the LHC and the ILC and in the domain of neutrinos and precision physics with a high-intensity accelerator. The plan puts discovering Terascale physics with the LHC and the ILC as Fermilab's highest priority. While supporting ILC development, the plan creates opportunities for exciting science at the intensity frontier. If the ILC remains near the Global Design Effort's technically driven timeline, Fermilab would continue neutrino science with the NOvA experiment, using the NuMI (Neutrinos at the Main Injector) proton plan, scheduled to begin operating in 2011. If ILC construction must wait somewhat longer, Fermilab's plan proposes SNuMI, an upgrade of NuMI to create a more powerful neutrino beam. If the ILC start is postponed significantly, a central feature of the proposed Fermilab plan calls for building an intense proton facility, Project X, consisting of a linear accelerator with the currently planned characteristics of the ILC combined with Fermilab's existing Recycler Ring and the Main Injector accelerator. The major component of Project X is the linac. Cryomodules, radio-frequency distribution, cryogenics and instrumentation for the linac are the same as or similar to those used in the ILC at a scale of about one percent of a full ILC linac. Project X's intense proton beams would open a path to discovery in neutrino science and in precision physics with charged leptons and quarks. World-leading experiments would allow physicists to address key questions of the Quantum Universe: How did the universe come to be? Are there undiscovered principles of nature: new symmetries, new physical laws? Do all the particles and forces become one? What happened to the antimatter? Building Project X's ILC-like linac would offer substantial support for ILC development by accelerating the industrialization of ILC components

  2. Fermilab Steering Group Report

    SciTech Connect (OSTI)

    Beier, Eugene; Butler, Joel; Dawson, Sally; Edwards, Helen; Himel, Thomas; Holmes, Stephen; Kim, Young-Kee; Lankford, Andrew; McGinnis, David; Nagaitsev, Sergei; Raubenheimer, Tor; /SLAC /Fermilab

    2007-01-01

    The Fermilab Steering Group has developed a plan to keep U.S. accelerator-based particle physics on the pathway to discovery, both at the Terascale with the LHC and the ILC and in the domain of neutrinos and precision physics with a high-intensity accelerator. The plan puts discovering Terascale physics with the LHC and the ILC as Fermilab's highest priority. While supporting ILC development, the plan creates opportunities for exciting science at the intensity frontier. If the ILC remains near the Global Design Effort's technically driven timeline, Fermilab would continue neutrino science with the NOVA experiment, using the NuMI (Neutrinos at the Main Injector) proton plan, scheduled to begin operating in 2011. If ILC construction must wait somewhat longer, Fermilab's plan proposes SNuMI, an upgrade of NuMI to create a more powerful neutrino beam. If the ILC start is postponed significantly, a central feature of the proposed Fermilab plan calls for building an intense proton facility, Project X, consisting of a linear accelerator with the currently planned characteristics of the ILC combined with Fermilab's existing Recycler Ring and the Main Injector accelerator. The major component of Project X is the linac. Cryomodules, radio-frequency distribution, cryogenics and instrumentation for the linac are the same as or similar to those used in the ILC at a scale of about one percent of a full ILC linac. Project X's intense proton beams would open a path to discovery in neutrino science and in precision physics with charged leptons and quarks. World-leading experiments would allow physicists to address key questions of the Quantum Universe: How did the universe come to be? Are there undiscovered principles of nature: new symmetries, new physical laws? Do all the particles and forces become one? What happened to the antimatter? Building Project X's ILC-like linac would offer substantial support for ILC development by accelerating the industrialization of ILC components

  3. The attribute measurement technique

    SciTech Connect (OSTI)

    Macarthur, Duncan W; Langner, Diana; Smith, Morag; Thron, Jonathan; Razinkov, Sergey; Livke, Alexander

    2010-01-01

    Any verification measurement performed on potentially classified nuclear material must satisfy two seemingly contradictory constraints. First and foremost, no classified information can be released. At the same time, the monitoring party must have confidence in the veracity of the measurement. An information barrier (IB) is included in the measurement system to protect the potentially classified information while allowing sufficient information transfer to occur for the monitoring party to gain confidence that the material being measured is consistent with the host's declarations, concerning that material. The attribute measurement technique incorporates an IB and addresses both concerns by measuring several attributes of the nuclear material and displaying unclassified results through green (indicating that the material does possess the specified attribute) and red (indicating that the material does not possess the specified attribute) lights. The attribute measurement technique has been implemented in the AVNG, an attribute measuring system described in other presentations at this conference. In this presentation, we will discuss four techniques used in the AVNG: (1) the 1B, (2) the attribute measurement technique, (3) the use of open and secure modes to increase confidence in the displayed results, and (4) the joint design as a method for addressing both host and monitor needs.

  4. 2007 High Temperature Membrane Working Group Meeting Archives | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 7 High Temperature Membrane Working Group Meeting Archives 2007 High Temperature Membrane Working Group Meeting Archives View 2007 meeting presentations from the High Temperature Membrane Working Group. October 10, 2007, Washington, D.C. This meeting was held in conjunction with the Electrochemical Society's fall meeting. Meeting Agenda Meeting Minutes Structure and Dynamics of Polymer Nanocomposites by Grazing-Incidence X-Ray Techniques, Jin Wang, Argonne National Laboratory

  5. Science Education Group | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Education Group View larger image Sci Ed Group 15 View larger image Group 21

  6. September 13, 2012, HSS Focus Group Training Working Group (TWG...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 082912 HSS Focus Group Training Working Group (TWG) Meeting September 13, 2012 Room 67 HAMMER 2:00 PM - 4:30 PM Time Topic Lead 2:00 p.m. Safety Minute Welcome and ...

  7. TEC Working Group Topic Groups Archives Communications | Department of

    Office of Environmental Management (EM)

    Energy Communications TEC Working Group Topic Groups Archives Communications The Communications Topic Group was convened in April 1998 to improve internal and external strategic level communications regarding DOE shipments of radioactive and other hazardous materials. Major issues under consideration by this Topic Group include: - Examination of DOE external and internal communications processes; - Roles and responsibilities when communicating with a diverse range of stakeholders; and -

  8. TEC Working Group Topic Groups Archives Training - Medical Training |

    Office of Environmental Management (EM)

    Department of Energy Training - Medical Training TEC Working Group Topic Groups Archives Training - Medical Training The TEC Training and Medical Training Issues Topic Group was formed to address the training issues for emergency responders in the event of a radioactive material transportation incident. The Topic Group first met in 1996 to assist DOE in developing an approach to address radiological emergency response training needs and to avoid redundancy of existing training materials. The

  9. Resin infiltration transfer technique

    DOE Patents [OSTI]

    Miller, David V.; Baranwal, Rita

    2009-12-08

    A process has been developed for fabricating composite structures using either reaction forming or polymer infiltration and pyrolysis techniques to densify the composite matrix. The matrix and reinforcement materials of choice can include, but are not limited to, silicon carbide (SiC) and zirconium carbide (ZrC). The novel process can be used to fabricate complex, net-shape or near-net shape, high-quality ceramic composites with a crack-free matrix.

  10. Weld braze technique

    DOE Patents [OSTI]

    Kanne, Jr., William R.; Kelker, Jr., John W.; Alexander, Robert J.

    1982-01-01

    High-strength metal joints are formed by a combined weld-braze technique. A hollow cylindrical metal member is forced into an undersized counterbore in another metal member with a suitable braze metal disposed along the bottom of the counterbore. Force and current applied to the members in an evacuated chamber results in the concurrent formation of the weld along the sides of the counterbore and a braze along the bottom of the counterbore in one continuous operation.

  11. Image compression technique

    DOE Patents [OSTI]

    Fu, Chi-Yung; Petrich, Loren I.

    1997-01-01

    An image is compressed by identifying edge pixels of the image; creating a filled edge array of pixels each of the pixels in the filled edge array which corresponds to an edge pixel having a value equal to the value of a pixel of the image array selected in response to the edge pixel, and each of the pixels in the filled edge array which does not correspond to an edge pixel having a value which is a weighted average of the values of surrounding pixels in the filled edge array which do correspond to edge pixels; and subtracting the filled edge array from the image array to create a difference array. The edge file and the difference array are then separately compressed and transmitted or stored. The original image is later reconstructed by creating a preliminary array in response to the received edge file, and adding the preliminary array to the received difference array. Filling is accomplished by solving Laplace's equation using a multi-grid technique. Contour and difference file coding techniques also are described. The techniques can be used in a method for processing a plurality of images by selecting a respective compression approach for each image, compressing each of the images according to the compression approach selected, and transmitting each of the images as compressed, in correspondence with an indication of the approach selected for the image.

  12. Image compression technique

    DOE Patents [OSTI]

    Fu, C.Y.; Petrich, L.I.

    1997-03-25

    An image is compressed by identifying edge pixels of the image; creating a filled edge array of pixels each of the pixels in the filled edge array which corresponds to an edge pixel having a value equal to the value of a pixel of the image array selected in response to the edge pixel, and each of the pixels in the filled edge array which does not correspond to an edge pixel having a value which is a weighted average of the values of surrounding pixels in the filled edge array which do correspond to edge pixels; and subtracting the filled edge array from the image array to create a difference array. The edge file and the difference array are then separately compressed and transmitted or stored. The original image is later reconstructed by creating a preliminary array in response to the received edge file, and adding the preliminary array to the received difference array. Filling is accomplished by solving Laplace`s equation using a multi-grid technique. Contour and difference file coding techniques also are described. The techniques can be used in a method for processing a plurality of images by selecting a respective compression approach for each image, compressing each of the images according to the compression approach selected, and transmitting each of the images as compressed, in correspondence with an indication of the approach selected for the image. 16 figs.

  13. Research Group Websites - Links - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Group Websites Dr. Sherry J. Yennello's Research Group Nuclear Theory Group Dr. Dan Melconian's Research Group Dr. Cody Folden's Research Group...

  14. Electromagnetic Techniques | Open Energy Information

    Open Energy Info (EERE)

    Physical Properties See Electrical Techniques Electromagnetic techniques utilize EM induction processes to measure one or more electric or magnetic field components resulting...

  15. Electrical Techniques | Open Energy Information

    Open Energy Info (EERE)

    fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png Electrical Techniques: Electrical techniques aim to image the...

  16. Sova Group | Open Energy Information

    Open Energy Info (EERE)

    Sova Group Jump to: navigation, search Name: Sova Group Place: Kolkata, West Bengal, India Zip: 700012 Product: Kolkatta-based iron and steel major. The firm plans to foray into PV...

  17. Minoan Group | Open Energy Information

    Open Energy Info (EERE)

    Minoan Group Jump to: navigation, search Name: Minoan Group Place: Kent, England, United Kingdom Zip: BR5 1XB Sector: Solar Product: UK-based developer of resorts in Greece that...

  18. ESV Group | Open Energy Information

    Open Energy Info (EERE)

    ESV Group Jump to: navigation, search Name: ESV Group Place: London, England, United Kingdom Zip: W1K 4QH Sector: Biofuels Product: UK-based investment agri-business involved in...

  19. Ensus Group | Open Energy Information

    Open Energy Info (EERE)

    Ensus Group Jump to: navigation, search Name: Ensus Group Place: Stockton-on-Tees, England, United Kingdom Zip: TS15 9BW Product: North Yorkshire-based developer & operator of...

  20. Camco Group | Open Energy Information

    Open Energy Info (EERE)

    Group Jump to: navigation, search Name: Camco Group Place: Jersey, United Kingdom Zip: JE2 4UH Sector: Carbon, Renewable Energy, Services Product: UK-based firm that provides...

  1. Weighted Running Jobs by Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weighted Running Jobs by Group Weighted Running Jobs by Group Daily Graph: Weekly Graph: Monthly Graph: Yearly Graph: 2 Year Graph: Last edited: 2016-04-29 11:34:54

  2. Klebl Group | Open Energy Information

    Open Energy Info (EERE)

    Zip: 6388 Product: Construction and engineering group with some experience building PV plants. References: Klebl Group1 This article is a stub. You can help OpenEI by expanding...

  3. Breakout Group 3: Water Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3: Water Management Participants Name Organization Tom Benjamin Argonne National ... National Laboratory Breakout Group 3: Water Management GAPSBARRIERS The Water ...

  4. Applied ALARA techniques

    SciTech Connect (OSTI)

    Waggoner, L.O.

    1998-02-05

    The presentation focuses on some of the time-proven and new technologies being used to accomplish radiological work. These techniques can be applied at nuclear facilities to reduce radiation doses and protect the environment. The last reactor plants and processing facilities were shutdown and Hanford was given a new mission to put the facilities in a safe condition, decontaminate, and prepare them for decommissioning. The skills that were necessary to operate these facilities were different than the skills needed today to clean up Hanford. Workers were not familiar with many of the tools, equipment, and materials needed to accomplish:the new mission, which includes clean up of contaminated areas in and around all the facilities, recovery of reactor fuel from spent fuel pools, and the removal of millions of gallons of highly radioactive waste from 177 underground tanks. In addition, this work has to be done with a reduced number of workers and a smaller budget. At Hanford, facilities contain a myriad of radioactive isotopes that are 2048 located inside plant systems, underground tanks, and the soil. As cleanup work at Hanford began, it became obvious early that in order to get workers to apply ALARA and use hew tools and equipment to accomplish the radiological work it was necessary to plan the work in advance and get radiological control and/or ALARA committee personnel involved early in the planning process. Emphasis was placed on applying,ALARA techniques to reduce dose, limit contamination spread and minimize the amount of radioactive waste generated. Progress on the cleanup has,b6en steady and Hanford workers have learned to use different types of engineered controls and ALARA techniques to perform radiological work. The purpose of this presentation is to share the lessons learned on how Hanford is accomplishing radiological work.

  5. Steam Generator Group Project. Task 6. Channel head decontamination

    SciTech Connect (OSTI)

    Allen, R.P.; Clark, R.L.; Reece, W.D.

    1984-08-01

    The Steam Generator Group Project utilizes a retired-from-service pressurized-water-reactor steam generator as a test bed and source of specimens for research. An important preparatory step to primary side research activities was reduction of the radiation field in the steam generator channel head. This task report describes the channel head decontamination activities. Though not a programmatic research objective it was judged beneficial to explore the use of dilute reagent chemical decontamination techniques. These techniques presented potential for reduced personnel exposure and reduced secondary radwaste generation, over currently used abrasive blasting techniques. Two techniques with extensive laboratory research and vendors prepared to offer commercial application were tested, one on either side of the channel head. As indicated in the report, both techniques accomplished similar decontamination objectives. Neither technique damaged the generator channel head or tubing materials, as applied. This report provides details of the decontamination operations. Application system and operating conditions are described.

  6. TEC Working Group Topic Groups Rail | Department of Energy

    Office of Environmental Management (EM)

    The group's current task is to examine different aspects of rail transportation including inspections, tracking and radiation monitoring, planning and process, and review of ...

  7. TEC Working Group Topic Groups Routing Conference Call Summaries |

    Office of Environmental Management (EM)

    Department of Energy Routing Conference Call Summaries TEC Working Group Topic Groups Routing Conference Call Summaries CONFERENCE CALL SUMMARIES January 31, 2008 (11.6 KB) December 6, 2007 (11.96 KB) October 4, 2007 (16.46 KB) August 23, 2007 (26.38 KB) June 21, 2007 (41.02 KB) May 31, 2007 (31.04 KB) January 18, 2007 (93.16 KB) December 19, 2006 (28.83 KB) November 9, 2006 (19.84 KB) More Documents & Publications TEC Working Group Topic Groups Rail Conference Call Summaries Rail Topic

  8. TEC Working Group Topic Groups Security Conference Call Summaries |

    Office of Environmental Management (EM)

    Department of Energy Conference Call Summaries TEC Working Group Topic Groups Security Conference Call Summaries Conference Call Summaries August 17, 2006 (Draft) (17.12 KB) July 18, 2006 (Draft) (14.08 KB) June 20, 2006 (Draft) (16.18 KB) April 18, 2006 (27.83 KB) February 21, 2006 (32.98 KB) January 24, 2006 (19.36 KB) December 20, 2005 (13.79 KB) November 17, 2005 (17.52 KB) October 18, 2005 (18.51 KB) May 8, 2005 (29.42 KB) More Documents & Publications TEC Working Group Topic Groups

  9. MAGNIFICATION BY GALAXY GROUP DARK MATTER HALOS

    SciTech Connect (OSTI)

    Ford, Jes; Hildebrandt, Hendrik; Van Waerbeke, Ludovic; Leauthaud, Alexie; Tanaka, Masayuki; Capak, Peter; Finoguenov, Alexis; George, Matthew R.; Rhodes, Jason

    2012-08-01

    We report on the detection of gravitational lensing magnification by a population of galaxy groups, at a significance level of 4.9{sigma}. Using X-ray-selected groups in the COSMOS 1.64 deg{sup 2} field, and high-redshift Lyman break galaxies as sources, we measure a lensing-induced angular cross-correlation between the samples. After satisfying consistency checks that demonstrate we have indeed detected a magnification signal, and are not suffering from contamination by physical overlap of samples, we proceed to implement an optimally weighted cross-correlation function to further boost the signal to noise of the measurement. Interpreting this optimally weighted measurement allows us to study properties of the lensing groups. We model the full distribution of group masses using a composite-halo approach, considering both the singular isothermal sphere and Navarro-Frenk-White profiles, and find our best-fit values to be consistent with those recovered using the weak-lensing shear technique. We argue that future weak-lensing studies will need to incorporate magnification along with shear, both to reduce residual systematics and to make full use of all available source information, in an effort to maximize scientific yield of the observations.

  10. Groups

    Open Energy Info (EERE)

    groupbig-clean-data" target"blank">read more

    Big Data Concentrated Solar Power DataAnalysis energy efficiency energy storage expert systems machine learning...

  11. TEC Working Group Topic Groups Archives Route Identification Process |

    Office of Environmental Management (EM)

    Department of Energy Route Identification Process TEC Working Group Topic Groups Archives Route Identification Process Route Identification Process Items Available for Download Routing Discussion Paper (April 1998) (71.87 KB) More Documents & Publications TEC Meeting Summaries - January 1997 TEC Meeting Summaries - July 1997 TEC Meeting Summaries - January 1998

  12. Welcome - Modeling and Simulation Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CCS Directorate ORNL Modeling and Simulation Group Computational Sciences & Engineering Division Home Organization Chart Staff Research Areas Major Projects Fact Sheets Publications M&S News Awards Contacts Intership Programs ORNL has lots of opportunities for students to conduct research in scientific fields. Check out our Fellowship and Intership programs Fellowships Interships RAMS Program Modeling and Simulation Group The ORNL Modeling and Simulation Group (MSG) develops

  13. HASQARD Focus Group - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contracting Wastren Advantage, Inc. HASQARD Focus Group Contracting ORP Contracts and Procurements RL Contracts and Procurements CH2M HILL Plateau Remediation Company Mission Support Alliance Washington Closure Hanford HPM Corporation (HPMC) Wastren Advantage, Inc. Analytical Services HASQARD Focus Group Bechtel National, Inc. Washington River Protection Solutions HASQARD Focus Group Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size HASQARD Document HASQARD

  14. Creating Los Alamos Women's Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Raeanna Sharp-Geiger-Creating a cleaner, greener environment March 28, 2014 Creating Los Alamos Women's Group Inspired by their informal dinner discussions, Raeanna Sharp-Geiger and a few of her female colleagues decided to create a new resource a few years ago, the Los Alamos Women's Group. They wanted to create a comfortable environment where women from all across the diverse Lab could network, collaborate, share ideas and gain a broader perspective of the Lab's mission. The Women's Group has

  15. Data System Sciences & Engineering Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Architectures for National Security Risk Analysis Streaming Realtime Sensor Networks Visual Analytics Opportunities Contact Us Data System Sciences & Engineering Group DSSE goes...

  16. Schaeffler Group | Open Energy Information

    Open Energy Info (EERE)

    rolling bearings and linear products worldwide as well as a renowned supplier to the automotive industry. References: Schaeffler Group1 This article is a stub. You can help...

  17. Groups | OpenEI Community

    Open Energy Info (EERE)

    technologies. Groups Home Title Posts Members Subgroups Description Created sort icon Big Clean Data 2 We aim to bring together professionals who want to share ideas, knowledge...

  18. Marseglia Group | Open Energy Information

    Open Energy Info (EERE)

    diversified infrastructure developer. The firm is active in the fields of energy, tourism and hotels and real estate. References: Marseglia Group1 This article is a stub....

  19. Copelouzos Group | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Copelouzos Group Place: Athens, Greece Product: Fully integrated business development organisation, servicing key industrial and technological sectors such...

  20. Arakaki Group | Open Energy Information

    Open Energy Info (EERE)

    Name: Arakaki Group Place: Fernandopolis, Sao Paulo, Brazil Product: Brazil based agriculture company, which owns 50% of an ethanol plant. Coordinates: -20.284244,...

  1. Royalstar Group | Open Energy Information

    Open Energy Info (EERE)

    search Name: Royalstar Group Place: Hefei, Anhui Province, China Sector: Solar Product: Chinese manufacturer of washing machines, solar water heaters, and as of June 2006,...

  2. XSD Groups | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging (IMG) Primary Contact: Francesco De Carlo Research Disciplines: Materials Science, Biology, Physics, Life Sciences The IMG group designs, supports, and operates...

  3. Kedco Group | Open Energy Information

    Open Energy Info (EERE)

    Co. Cork, Ireland Product: Cork-based project developer of biogas and gasification plants; also active in the residential heating sector. References: Kedco Group1 This...

  4. Tim Kuneli, Electronics Maintenance Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tim Kuneli, Electronics Maintenance Group Print The recent ALS power supply failure was one of the most challenging projects that Electronics Engineer Technical Superintendent Tim...

  5. DAQO Group | Open Energy Information

    Open Energy Info (EERE)

    An enterprise group whose industry field involves electric, environmental protection, science and technology and hotels, and is also setting up a polysilicon factory. References:...

  6. TUNL Nuclear Data Evaluation Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TUNL Nuclear Data Evaluation Group As a part of the United States Nuclear Data Network and the international Nuclear Structure and Decay Data Evaluators' Network, the Nuclear Data...

  7. Acterra Group | Open Energy Information

    Open Energy Info (EERE)

    Product: Acterra Group provides consulting, project financing, services and support to energy, natural resource, and sustainability companies. Coordinates: 44.671312,...

  8. Martifer Group | Open Energy Information

    Open Energy Info (EERE)

    search Name: Martifer Group Place: Oliveira de Frades, Portugal Zip: 3684-001 Sector: Biofuels, Solar, Wind energy Product: Portugal-based company divided across four core business...

  9. Groupe Valeco | Open Energy Information

    Open Energy Info (EERE)

    Name: Groupe Valeco Place: Montpellier, France Zip: 34070 Sector: Biomass, Solar, Wind energy Product: Develops wind, solar, biomass and cogeneration projects in France....

  10. Airvoice Group | Open Energy Information

    Open Energy Info (EERE)

    Airvoice Group Place: Gurgaon, Haryana, India Zip: 122001 Sector: Services, Solar, Wind energy Product: Holding company with interest in tele-solutions, petrochemicals and...

  11. NERSC User Group Meeting 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large-Scale Structure experiments (DESDESILSST Euclid) will probe the nature of Dark Energy NERSC User Group Meeting 2014 CMB Satellite Missions Since COBE, the race has been ...

  12. SSRL School 2007 on Hard X-ray Scattering Techniques in MES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 15-17, 2007 SSRL School on Hard X-ray Scattering Techniques in Materials and Environmental Sciences Group photo taken at the SSRL School on Hard X-ray Scattering Techniques in...

  13. DOE STGWG Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    They were formed in 1989. DOESTGWGGroup.pdf PDF icon DOE STGWG Group More Documents & Publications TEC Working Group Topic Groups Tribal Meeting Summaries TEC Working Group Topic ...

  14. Focus Group Training Work Group Meeting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dates: July 10 - 11 The Focus Group Training Work Group met at the DOE National Training Center (NTC) inAlbuquerque, NM on Tuesday, July 10 and Wednesday, July 11, 2012. The meeting was chaired by the Work Group co-chairs, Karen Boardman,Pete Stafford (AFL-CIO BCTD/CPWR), and Julie Johnston (EFCOG). Attachment 1 is the Meeting Agenda; Attachment 2 is a list of meeting attendees; and Attachment3 is the proposed Radworker Training Reciprocity Program. Documents Available for Download Meeting

  15. SSRL School on Synchrotron X-ray Spectroscopy Techniques in Environmen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Tourism & Dining SSRL School on Synchrotron X-ray Spectroscopy Techniques in Environmental and Materials Sciences: Theory and Application June 2-5, 2009 Group...

  16. TEC Working Group Topic Groups Rail Key Documents Planning Subgroup |

    Office of Environmental Management (EM)

    Department of Energy Planning Subgroup TEC Working Group Topic Groups Rail Key Documents Planning Subgroup Planning Subgroup Rail Planning Timeline (135.57 KB) Benchmarking Project: AREVA Trip Report (651.92 KB) More Documents & Publications TEC Meeting Summaries - July 2007 Evaluation of Shortline Railroads & SNF/HLW Rail Shipment Inspections Tasked for the Transportation of Spent Nuclear Fuel Federal Railroad Administration

  17. Active Seismic Techniques | Open Energy Information

    Open Energy Info (EERE)

    Technique: Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. StratigraphicStructural: Structural geology-...

  18. Dose Reduction Techniques

    SciTech Connect (OSTI)

    WAGGONER, L.O.

    2000-05-16

    As radiation safety specialists, one of the things we are required to do is evaluate tools, equipment, materials and work practices and decide whether the use of these products or work practices will reduce radiation dose or risk to the environment. There is a tendency for many workers that work with radioactive material to accomplish radiological work the same way they have always done it rather than look for new technology or change their work practices. New technology is being developed all the time that can make radiological work easier and result in less radiation dose to the worker or reduce the possibility that contamination will be spread to the environment. As we discuss the various tools and techniques that reduce radiation dose, keep in mind that the radiological controls should be reasonable. We can not always get the dose to zero, so we must try to accomplish the work efficiently and cost-effectively. There are times we may have to accept there is only so much you can do. The goal is to do the smart things that protect the worker but do not hinder him while the task is being accomplished. In addition, we should not demand that large amounts of money be spent for equipment that has marginal value in order to save a few millirem. We have broken the handout into sections that should simplify the presentation. Time, distance, shielding, and source reduction are methods used to reduce dose and are covered in Part I on work execution. We then look at operational considerations, radiological design parameters, and discuss the characteristics of personnel who deal with ALARA. This handout should give you an overview of what it takes to have an effective dose reduction program.

  19. David Turner! User Services Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Services Group Accounts and Allocations --- 1 --- September 10, 2013 Accounts There a re t wo t ypes o f a ccounts a t N ERSC. 1. Your p ersonal, p rivate a ccount * ...

  20. Junqueira Group | Open Energy Information

    Open Energy Info (EERE)

    Brazil Product: Brazilian sugar and ethanol company planning to build a mill in Paraguay. References: Junqueira Group1 This article is a stub. You can help OpenEI by...

  1. Tonon Group | Open Energy Information

    Open Energy Info (EERE)

    Tonon Group Place: Bocaina, Sao Paulo, Brazil Zip: 17240-000 Product: Brazil-based ethanol producer, which owns two ethanol plants located in Bocaina, Sao Paulo, and Maracaju,...

  2. Tinna Group | Open Energy Information

    Open Energy Info (EERE)

    New Delhi, Delhi (NCT), India Zip: 110030 Product: The India-based Tinna Group is a biodiesel producer, an oil seed processor, but also a transport company which has formed two...

  3. Heolo Group | Open Energy Information

    Open Energy Info (EERE)

    Product: Yunnan province based thermostable LiMn2O4 cathode material producer for Lithium secondary batteries. References: Heolo Group1 This article is a stub. You can help...

  4. Noble Group | Open Energy Information

    Open Energy Info (EERE)

    Wealth Fund 2 Noble purchased 5.1% of USEC, a US company which enriches uranium for nuclear power reactors, in June 2010 2 References "Noble Group (HK)" 2.0 2.1 "New...

  5. Midwest Hydro Users Group Meeting

    Broader source: Energy.gov [DOE]

    The Midwest Hydro Users Group will be holding their annual Fall meeting on November 12th and 13th in Wausau, Wisconsin.  An Owners-only meeting on the afternoon of the 12th followed by a full...

  6. Zeppini Group | Open Energy Information

    Open Energy Info (EERE)

    Brazil Product: Brazilian firm that sells PV applications for homes, industry and business. References: Zeppini Group1 This article is a stub. You can help OpenEI by...

  7. AEO2016 Electricity Working Group

    U.S. Energy Information Administration (EIA) Indexed Site

    Office of Electricity, Coal, Nuclear, and Renewables Analysis December 8, 2015 | Washington, DC AEO2016 Electricity Working Group WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE What to look for: Electricity sector in AEO2016 * Inclusion of EPA final Clean Power Plan in Reference Case * Updated cost estimates for new generating technologies * Major data update on existing coal plant status: MATS- compliant technology or retirement

  8. LLNL Chemical Kinetics Modeling Group

    SciTech Connect (OSTI)

    Pitz, W J; Westbrook, C K; Mehl, M; Herbinet, O; Curran, H J; Silke, E J

    2008-09-24

    The LLNL chemical kinetics modeling group has been responsible for much progress in the development of chemical kinetic models for practical fuels. The group began its work in the early 1970s, developing chemical kinetic models for methane, ethane, ethanol and halogenated inhibitors. Most recently, it has been developing chemical kinetic models for large n-alkanes, cycloalkanes, hexenes, and large methyl esters. These component models are needed to represent gasoline, diesel, jet, and oil-sand-derived fuels.

  9. Many-Group Cross-Section Adjustment Techniques for Boiling Water Reactor Adaptive Simulation

    SciTech Connect (OSTI)

    Jessee, Matthew Anderson

    2011-01-01

    Computational capability has been developed to adjust multigroup neutron cross sections, including self-shielding correction factors, to improve the fidelity of boiling water reactor (BWR) core modeling and simulation. The method involves propagating multigroup neutron cross-section uncertainties through various BWR computational models to evaluate uncertainties in key core attributes such as core k{sub eff}, nodal power distributions, thermal margins, and in-core detector readings. Uncertainty-based inverse theory methods are then employed to adjust multigroup cross sections to minimize the disagreement between BWR core modeling predictions and observed (i.e., measured) plant data. For this paper, observed plant data are virtually simulated in the form of perturbed three-dimensional nodal power distributions with the perturbations sized to represent actual discrepancies between predictions and real plant data. The major focus of this work is to efficiently propagate multigroup neutron cross-section uncertainty through BWR lattice physics and core simulator calculations. The data adjustment equations are developed using a subspace approach that exploits the ill-conditioning of the multigroup cross-section covariance matrix to minimize computation and storage burden. Tikhonov regularization is also employed to improve the conditioning of the data adjustment equations. Expressions are also provided for posterior covariance matrices of both the multigroup cross-section and core attributes uncertainties.

  10. Technique for fast and efficient hierarchical clustering

    DOE Patents [OSTI]

    Stork, Christopher

    2013-10-08

    A fast and efficient technique for hierarchical clustering of samples in a dataset includes compressing the dataset to reduce a number of variables within each of the samples of the dataset. A nearest neighbor matrix is generated to identify nearest neighbor pairs between the samples based on differences between the variables of the samples. The samples are arranged into a hierarchy that groups the samples based on the nearest neighbor matrix. The hierarchy is rendered to a display to graphically illustrate similarities or differences between the samples.

  11. CFCC working group meeting: Proceedings

    SciTech Connect (OSTI)

    1997-12-31

    This report is a compilation of the vugraphs presented at this meeting. Presentations covered are: CFCC Working Group; Overview of study on applications for advanced ceramics in industries for the future; Design codes and data bases: The CFCC program and its involvement in ASTM, ISO, ASME, and military handbook 17 activities; CFCC Working Group meeting (McDermott Technology); CFCC Working Group meeting (Textron); CFCC program for DMO materials; Developments in PIP-derived CFCCs; Toughened Silcomp (SiC-Si) composites for gas turbine engine applications; CFCC program for CVI materials; Self-lubricating CFCCs for diesel engine applications; Overview of the CFCC program`s supporting technologies task; Life prediction methodologies for CFCC components; Environmental testing of CFCCs in combustion gas environments; High-temperature particle filtration ORNL/DCC CRADA; HSCT CMC combustor; and Case study -- CFCC shroud for industrial gas turbines.

  12. Diagnostic techniques used in AVLIS

    SciTech Connect (OSTI)

    Heestand, G.M.; Beeler, R.G.

    1992-12-01

    This is the second part of a general overview talk on the atomic vapor laser isotope separation (AVLIS) process. In this presentation the authors will discuss the diagnostic techniques used to measure key parameters in their atomic vapor including densities, temperature, velocities charge exchange rates and background ionization levels. Although these techniques have been extensively applied to their uranium program they do have applicability to other systems. Relevant data demonstrating these techniques will be shown.

  13. Symmetric spaces of exceptional groups

    SciTech Connect (OSTI)

    Boya, L. J.

    2010-02-15

    We address the problem of the reasons for the existence of 12 symmetric spaces with the exceptional Lie groups. The 1 + 2 cases for G{sub 2} and F{sub 4}, respectively, are easily explained from the octonionic nature of these groups. The 4 + 3 + 2 cases on the E{sub 6,7,8} series require the magic square of Freudenthal and, for the split case, an appeal to the supergravity chain in 5, 4, and 3 space-time dimensions.

  14. Jay Srinivasan! NERSC Systems Group!

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC Systems Group! ! NUG 2014! Feb 6, 2014 Computational Systems Group Update (CSG) What CSG Does- * Manage t he s ystems t hat r un y our j obs: - The L arge M PP s ystems ( Hopper & E dison) - The L inux C lusters ( Carver, Genepool, M endel, P DSF) - Testbeds ( Dirac, J esup, I ntel S B/MIC) * Help improve the user experience (batch system, login e nvironment, s ystem p erformance) * Deploy a nd m aintain s torage ( local, N ERSC---Global) on c ompute p laForms * ParHcipate o n S ystem

  15. Group theoretical methods in physics

    SciTech Connect (OSTI)

    Zachary, W.W.

    1984-01-01

    This book presents the papers given at a colloquium on group theory. Topics considered at the colloquium included supersymmetric Yang-Mills fields and relations with other nonlinear systems, quantum chaos, a Lie-transformed action principle for classical plasma dynamics, an obstacle to predictability, perturbation theory, simple Lie groups, coherent states, scattering and band structure problems, scattering amplitudes, bosons, charge density wave superconductors, harmonic analysis of boson algebras, the gauge principle, the equivalence principle, supergravity, quantum field theory, quantum gravity, and the Cauchy problem.

  16. Security and Policy for Group Collaboration

    SciTech Connect (OSTI)

    Ian Foster; Carl Kesselman

    2006-07-31

    “Security and Policy for Group Collaboration” was a Collaboratory Middleware research project aimed at providing the fundamental security and policy infrastructure required to support the creation and operation of distributed, computationally enabled collaborations. The project developed infrastructure that exploits innovative new techniques to address challenging issues of scale, dynamics, distribution, and role. To reduce greatly the cost of adding new members to a collaboration, we developed and evaluated new techniques for creating and managing credentials based on public key certificates, including support for online certificate generation, online certificate repositories, and support for multiple certificate authorities. To facilitate the integration of new resources into a collaboration, we improved significantly the integration of local security environments. To make it easy to create and change the role and associated privileges of both resources and participants of collaboration, we developed community wide authorization services that provide distributed, scalable means for specifying policy. These services make it possible for the delegation of capability from the community to a specific user, class of user or resource. Finally, we instantiated our research results into a framework that makes it useable to a wide range of collaborative tools. The resulting mechanisms and software have been widely adopted within DOE projects and in many other scientific projects. The widespread adoption of our Globus Toolkit technology has provided, and continues to provide, a natural dissemination and technology transfer vehicle for our results.

  17. Gravity Techniques | Open Energy Information

    Open Energy Info (EERE)

    in density, such as at fault contacts. 2 Gravity techniques are also applied towards reservoir monitoring for subsidence and mass gain or loss within a geothermal reservoir...

  18. Low temperature material bonding technique

    DOE Patents [OSTI]

    Ramsey, J. Michael (Knoxville, TN); Foote, Robert S. (Oak Ridge, TN)

    2002-02-12

    A method of performing a lower temperature bonding technique to bond together two mating pieces of glass includes applying a sodium silicate aqueous solution between the two pieces.

  19. Low Temperature Material Bonding Technique

    DOE Patents [OSTI]

    Ramsey, J. Michael (Knoxville, TN); Foote, Robert S. (Oak Ridge, TN)

    2000-10-10

    A method of performing a lower temperature bonding technique to bond together two mating pieces of glass includes applying a sodium silicate aqueous solution between the two pieces.

  20. techniques | OpenEI Community

    Open Energy Info (EERE)

    and discussion of smart grid technologies, tools, and techniques. The Smart Grid Investment Grant (SGIG) program is authorized by the Energy Independence and Security Act of...

  1. Orion Energy Group | Open Energy Information

    Open Energy Info (EERE)

    Group Jump to: navigation, search Name: Orion Energy Group Place: Oakland, California Zip: 94612 Product: Orion Energy Group is a developer and owner of two projects under...

  2. Biofuel Industries Group LLC | Open Energy Information

    Open Energy Info (EERE)

    Industries Group LLC Jump to: navigation, search Name: Biofuel Industries Group LLC Place: Adrian, Michigan Zip: 49221 Product: Biofuel Industries Group, LLC owns and operates the...

  3. Jiansu Tianshengda Group | Open Energy Information

    Open Energy Info (EERE)

    Jiansu Tianshengda Group Jump to: navigation, search Name: Jiansu Tianshengda Group Place: Wuxi, Jiangsu Province, China Zip: 214031 Product: Jiangsu Tianshengda Group is a textile...

  4. Santerno Carraro Group | Open Energy Information

    Open Energy Info (EERE)

    Santerno Carraro Group Jump to: navigation, search Logo: Santerno Carraro Group Name: Santerno Carraro Group Address: Strada Statale Selice 47 Place: Imola, Italy Product:...

  5. Carbon Solutions Group | Open Energy Information

    Open Energy Info (EERE)

    Solutions Group Jump to: navigation, search Name: Carbon Solutions Group Place: Chicago, Illinois Zip: 60601 Sector: Carbon Product: Carbon Solutions Group collaborates with...

  6. Transport Modeling Working Group Meeting Reports | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling Working Group Meeting Reports Transport Modeling Working Group Meeting Reports View reports from meetings of the Transport Modeling Working Group, which meets twice per ...

  7. The Conti Group | Open Energy Information

    Open Energy Info (EERE)

    Conti Group Jump to: navigation, search Name: The Conti Group Place: South Plainfield, New Jersey Zip: 7080 Sector: Services Product: The Conti Group provides a wide range of...

  8. Florida Biomass Energy Group | Open Energy Information

    Open Energy Info (EERE)

    Group Jump to: navigation, search Name: Florida Biomass Energy Group Place: Gulf Breeze, Florida Zip: 32561 Sector: Biomass Product: Florida Biomass Energy Group is a Florida...

  9. Affordable Solar Group | Open Energy Information

    Open Energy Info (EERE)

    Group Jump to: navigation, search Logo: Affordable Solar Group Name: Affordable Solar Group Address: 2501 Yale Blvd. SE STE 105 Place: Albuquerque, New Mexico Zip: 87106 Sector:...

  10. Green Power Group Ltd | Open Energy Information

    Open Energy Info (EERE)

    Group Ltd Jump to: navigation, search Name: Green Power Group Ltd Sector: Solar Product: A company under Nixon International Group specilized in solar technology R&D. References:...

  11. White Mountain Group LLC | Open Energy Information

    Open Energy Info (EERE)

    Group LLC Jump to: navigation, search Name: White Mountain Group, LLC Place: Delaware Product: The company has entered an agreement with Australian Biodiesel Group for a share...

  12. Water Electrolysis Working Group | Department of Energy

    Office of Environmental Management (EM)

    Water Electrolysis Working Group Water Electrolysis Working Group The Water Electrolysis Working Group, inaugurated in May 2007, brings industry, academia, and national ...

  13. Heschong Mahone Group | Open Energy Information

    Open Energy Info (EERE)

    Heschong Mahone Group Jump to: navigation, search Name: Heschong Mahone Group Place: Gold River, CA Website: www.heschongmahonegroup.com References: Heschong Mahone Group1...

  14. China Photoelectricity Group | Open Energy Information

    Open Energy Info (EERE)

    Photoelectricity Group Jump to: navigation, search Name: China Photoelectricity Group Place: China Product: A PV cell maker in China. References: China Photoelectricity Group1...

  15. Vert Investment Group | Open Energy Information

    Open Energy Info (EERE)

    Vert Investment Group Jump to: navigation, search Logo: Vert Investment Group Name: Vert Investment Group Address: 3939 Essex Lane Place: Houston, Texas Zip: 77027 Website:...

  16. Task Group 9 Update (Presentation)

    SciTech Connect (OSTI)

    Bosco, N.

    2014-04-01

    This presentation is a brief update of IEC TC82 QA Task Force, Group 9. Presented is an outline of the recently submitted New Work Item Proposal (NWIP) for a Comparative Thermal Cycling Test for CPV Modules to Differentiate Thermal Fatigue Durability.

  17. Finite groups and quantum physics

    SciTech Connect (OSTI)

    Kornyak, V. V.

    2013-02-15

    Concepts of quantum theory are considered from the constructive 'finite' point of view. The introduction of a continuum or other actual infinities in physics destroys constructiveness without any need for them in describing empirical observations. It is shown that quantum behavior is a natural consequence of symmetries of dynamical systems. The underlying reason is that it is impossible in principle to trace the identity of indistinguishable objects in their evolution-only information about invariant statements and values concerning such objects is available. General mathematical arguments indicate that any quantum dynamics is reducible to a sequence of permutations. Quantum phenomena, such as interference, arise in invariant subspaces of permutation representations of the symmetry group of a dynamical system. Observable quantities can be expressed in terms of permutation invariants. It is shown that nonconstructive number systems, such as complex numbers, are not needed for describing quantum phenomena. It is sufficient to employ cyclotomic numbers-a minimal extension of natural numbers that is appropriate for quantum mechanics. The use of finite groups in physics, which underlies the present approach, has an additional motivation. Numerous experiments and observations in the particle physics suggest the importance of finite groups of relatively small orders in some fundamental processes. The origin of these groups is unclear within the currently accepted theories-in particular, within the Standard Model.

  18. Jason Hick! Storage Systems Group! NERSC User Group Meeting!

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Group! ! NERSC User Group Meeting! February 6, 2014 Storage Systems: 2014 and beyond The compute and storage systems 2013 Produc(on C lusters Carver, P DSF, J GI,KBASE,HEP 1 4x Q DR Global Scratch 3.6 PB 5 x S FA12KE /project 5 PB DDN9900 & NexSAN /home 250 TB NetApp 5 460 50 P B s tored, 2 40 PB c apacity, 3 5 years o f community d ata HPSS 16 x Q DR I B 2.2 P B L ocal Scratch 70 GB/s 6.4 P B L ocal Scratch 140 GB/s 16 x F DR I B Ethernet & I B F abric Science F riendly S ecurity

  19. The independent review group`s comments on the MPC

    SciTech Connect (OSTI)

    Vincent, J.A.

    1994-10-01

    This article presents comments from the Group (IRG) who independently reviewed the multipurpose canister system (MCS) Conceptual Design Report. The IRG determined that its efforts would be best directed toward providing the DOE with recommendations concerning the MPC system design and development. Comments also focused on applying lessons learned during the CSDP review to the MPC design and procurement. Topics highlighted are the programmatic review and the MPC design review.

  20. TEC Working Group Member Organizations Representatives | Department...

    Office of Environmental Management (EM)

    Member Organizations Representatives TEC Working Group Member Organizations Representatives PDF icon TEC MEMBER ORGANIZATION REPRESENTATIVES TOPIC GROUP PARTICIPATION February 2006...

  1. Interagency Sustainability Working Group | Department of Energy

    Energy Savers [EERE]

    Facilities Sustainable Buildings & Campuses Interagency Sustainability Working Group ... Working Group (ISWG) is the coordinating body for sustainable federal buildings. ...

  2. Environmental Justice Interagency Working Group releases "Promising...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Justice Interagency Working Group releases "Promising Practices for EJ Methodologies in NEPA Reviews" Environmental Justice Interagency Working Group releases ...

  3. BEDES Strategic Working Group Recommendations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Energy Data Exchange Specification: Strategic Working Group Recommendations Rick Diamond, Robin Mitchell, Andrea Mercado, Shankar Earni, and Lindsay Holiday Lawrence Berkeley National Laboratory Jonathan Raab, Raab Associates October 27, 2014 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of

  4. NIF User Group Executive Board

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    executive board NIF User Group Executive Board Professor Don Lamb (Chair) University of Chicago Professor Farhat Beg (Vice Chair) University of California, San Diego Professor Justin Wark (Past Chair) University of Oxford Dr. Riccardo Betti University of Rochester Dr. Kirk Flippo Los Alamos National Laboratory Professor Gianluca Gregori University of Oxford Professor Michel Koenig École Polytechnique Dr. Chikang Li Massachusetts Institute of Technology Dr. Jena Meinecke Young Researcher:

  5. Working Group Presentation for Discussion

    U.S. Energy Information Administration (EIA) Indexed Site

    1, 2016 MEMORANDUM FOR: IAN MEAD ASSISTANT ADMINISTRATOR FOR ENERGY ANALYSIS PAUL HOLTBERG TEAM LEADER ANALYSIS INTEGRATION TEAM JIM TURNURE DIRECTOR OFFICE OF ENERGY CONSUMPTION AND EFFICIENCY ANALYSIS FROM: TRANSPORTATION CONSUMPTION AND EFFICIENCY ANALYSIS TEAM SUBJECT: Annual Energy Outlook (AEO)2017 Transportation Working Group Meeting Summary (presented on 08-31-2016) Attendees: David Daniels (EIA) Mindi Farber-DeAnda (EIA) Devi Mishra (EIA) Alicia Birky (Energetics) Sarah Garman (DOE)

  6. Renewable Electricity Working Group Presentation

    U.S. Energy Information Administration (EIA) Indexed Site

    Renewable Electricity Working Group Chris Namovicz, Renewable Electricity Analysis Team July 9, 2013 Agenda * Review status of AEO 2013 * Discuss new model updates and development efforts for AEO 2014 and future AEOs - Model updates - Policy updates - Planned additions updates - Performance updates * Obtain feedback from stakeholders on any key items that EIA should look at Chris Namovicz, July 9 2 Status of AEO 2013 Chris Namovicz, July 9 * AEO 2013 was released in stages this year - Reference

  7. Form:ExplorationTechnique | Open Energy Information

    Open Energy Info (EERE)

    Exploration Technique below. If the technique already exists, you will be able to edit its information. AddEdit Technique Retrieved from "http:en.openei.orgw...

  8. Formation Testing Techniques | Open Energy Information

    Open Energy Info (EERE)

    Testing Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Formation Testing Techniques Details Activities (0) Areas (0) Regions (0)...

  9. Twistor inspired techniques in QCD

    SciTech Connect (OSTI)

    Duhr, C.

    2008-08-29

    I present a short review of the new twistor inspired techniques in perturbative QCD, which are the result of Witten's conjecture of a duality between twistors and string theory. I give an introduction to the main two tree-level techniques, the BCFW recursion and the CSW formalism, and show how the idea of using on-shell QCD amplitudes evaluated for complex momenta can lead to efficient techniques to perform analytic computations. Finally, I briefly discuss how these ideas can be applied to loop calculations if they are combined to the generalized unitarity approach.

  10. PFT Air Infiltration Measurement Technique

    Broader source: Energy.gov [DOE]

    The airtightness of a building can be determined by using several methods. Learn how the PFT (PerFluorocarbon tracer gas) technique provides information about air leakage and energy loss.

  11. NERSC Users Group Monthly Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 25, 2016 Agenda ● Cori Phase II Update ● Data Day debrief ● NESAP & resources for porting to KNL ● Edison Scratch Filesystem Updates ● AY 2017 ERCAP Allocation Requests Cori Phase II Update Tina Declerck Computational Systems Group August 25, 2016 ● Prep for Cori Phase 2 ● Cori Phase 2 Installation ● System Arrival & Installation ● Current Status ● Projected Timeline ● NERSC pre-merge testing ● Merge plan ● Post Merge ● Acceptance Testing Agenda 4 ●

  12. DOE Catalysis Working Group Meeting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    16, 2014 Marriott Wardman Park Hotel 2660 Woodley Road NM, Washington, D.C. 8:30 - 9:00 Continental breakfast: breads, coffee, tea Joint Durability and Catalysis Working Groups Meeting Delaware A 9:00 - 9:05 Welcome & introductory comments DWG co-chairs - Debbie Myers (ANL), Rod Borup (LANL), Donna Ho (DOE); CWG co-chairs - Piotr Zelenay (LANL), Nancy Garland (DOE) 9:05 - 9:25 Are We There Yet? Pt-Alloy Catalyst - Anu Kongkanand (GM) 9:25 - 9:45 Pt-Co/C Catalysts: PEMFC Performance and

  13. Traction Drive Systems Breakout Group

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TRACTION DRIVE SYSTEM BREAKOUT GROUP EV Everywhere Workshop July 24, 2012 Breakout Session #1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the Targets * 1 - What is the material cost floor to meet the $4/kW (AER300) & $15/kW (AER100)? * 2 - Consolidation of power module technologies will help meet cost targets * 3 - Don't overlook profit motive in value chain * 4 - Today's HEV systems drive EV traction drive systems because of manufacturing base Barriers

  14. Jason Hick! Storage Systems Group NERSC User Group Storage Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC User Group Storage Update Feb 2 6, 2 014 The compute and storage systems 2014 Sponsored C ompute S ystems Carver, P DSF, J GI, K BASE, H EP 8 x F DR I B /global/ scratch 4 PB /project 5 PB /home 250 TB 45 P B s tored, 2 40 P B capacity, 4 0 y ears o f community d ata HPSS 48 GB/s 2.2 P B L ocal Scratch 70 GB/s 6.4 P B L ocal Scratch 140 GB/s 80 GB/s Ethernet & I B F abric Science F riendly S ecurity ProducKon M onitoring Power E fficiency WAN 2 x 10 Gb 1 x 100 Gb Science D ata N etwork

  15. Rejuvenated by environmental groups' support

    SciTech Connect (OSTI)

    Kirschner, E.

    1993-05-12

    A letter of conditional support last week from seven environmental groups reinvigorated the North American Free Trade Agreement. The likelihood of NAFTA ratification in Congress seemed to hit its nadir when Office of Management and Budget chief Leon Panetta declared that the Canada-US-Mexico pact was dead. Observers say that ratification, said to be stalled because of a lack of public support, could be jump-started by the proposal. The seven groups offered to back NAFTA on more conciliatory terms than they had previously demanded. They proposed that the North American Commission on the Environment (NACE), which is to be defined by the side agreements, be given power and finances to investigate environmental offenses. The signatories would also negotiate criteria for process standards. Public participation must be built into the side agreements, they said. Non-binding NACE recommendations must then be considered by the governments. The Sierra Club broke ranks, demanding more power for NACE, with a specific emphasis on industry accountability. [open quotes]NAFTA must insure that industries bear the responsibility for their actions,[close quotes] said Sierra trade and environmental program director John Audley. Sierra Club called for funding for cleanup under a [open quotes]polluter pays[close quotes] principle, legal avenues for NACE information gathering, industry-specific sanctions, and consideration of production processes in addition to product qualities.

  16. Mixed Waste Working Group report

    SciTech Connect (OSTI)

    Not Available

    1993-11-09

    The treatment of mixed waste remains one of this country`s most vexing environmental problems. Mixed waste is the combination of radioactive waste and hazardous waste, as defined by the Resource Conservation and Recovery Act (RCRA). The Department of Energy (DOE), as the country`s largest mixed waste generator, responsible for 95 percent of the Nation`s mixed waste volume, is now required to address a strict set of milestones under the Federal Facility Compliance Act of 1992. DOE`s earlier failure to adequately address the storage and treatment issues associated with mixed waste has led to a significant backlog of temporarily stored waste, significant quantities of buried waste, limited permanent disposal options, and inadequate treatment solutions. Between May and November of 1993, the Mixed Waste Working Group brought together stakeholders from around the Nation. Scientists, citizens, entrepreneurs, and bureaucrats convened in a series of forums to chart a course for accelerated testing of innovative mixed waste technologies. For the first time, a wide range of stakeholders were asked to examine new technologies that, if given the chance to be tested and evaluated, offer the prospect for better, safer, cheaper, and faster solutions to the mixed waste problem. In a matter of months, the Working Group has managed to bridge a gap between science and perception, engineer and citizen, and has developed a shared program for testing new technologies.

  17. Techniques for multiboson interferometry (Journal Article) |...

    Office of Scientific and Technical Information (OSTI)

    Techniques for multiboson interferometry Citation Details In-Document Search Title: Techniques for multiboson interferometry Authors: Gangadharan, Dhevan Publication Date: ...

  18. Category:Magnetotelluric Techniques | Open Energy Information

    Open Energy Info (EERE)

    Magnetotelluric Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Magnetotelluric Techniques page? For detailed...

  19. Exascale Hardware Architectures Working Group

    SciTech Connect (OSTI)

    Hemmert, S; Ang, J; Chiang, P; Carnes, B; Doerfler, D; Leininger, M; Dosanjh, S; Fields, P; Koch, K; Laros, J; Noe, J; Quinn, T; Torrellas, J; Vetter, J; Wampler, C; White, A

    2011-03-15

    The ASC Exascale Hardware Architecture working group is challenged to provide input on the following areas impacting the future use and usability of potential exascale computer systems: processor, memory, and interconnect architectures, as well as the power and resilience of these systems. Going forward, there are many challenging issues that will need to be addressed. First, power constraints in processor technologies will lead to steady increases in parallelism within a socket. Additionally, all cores may not be fully independent nor fully general purpose. Second, there is a clear trend toward less balanced machines, in terms of compute capability compared to memory and interconnect performance. In order to mitigate the memory issues, memory technologies will introduce 3D stacking, eventually moving on-socket and likely on-die, providing greatly increased bandwidth but unfortunately also likely providing smaller memory capacity per core. Off-socket memory, possibly in the form of non-volatile memory, will create a complex memory hierarchy. Third, communication energy will dominate the energy required to compute, such that interconnect power and bandwidth will have a significant impact. All of the above changes are driven by the need for greatly increased energy efficiency, as current technology will prove unsuitable for exascale, due to unsustainable power requirements of such a system. These changes will have the most significant impact on programming models and algorithms, but they will be felt across all layers of the machine. There is clear need to engage all ASC working groups in planning for how to deal with technological changes of this magnitude. The primary function of the Hardware Architecture Working Group is to facilitate codesign with hardware vendors to ensure future exascale platforms are capable of efficiently supporting the ASC applications, which in turn need to meet the mission needs of the NNSA Stockpile Stewardship Program. This issue is

  20. Jack Deslippe Application Performance Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Application Performance Group NERSC Optimizing Excited-State Electronic-Structure Codes for Intel Knights Landing What is GW Materials: InSb, InAs Ge GaSb Si InP GaAs CdS AlSb, AlAs CdSe, CdTe BP SiC C 60 GaP AlP ZnTe, ZnSe c-GaN, w-GaN InS w-BN, c-BN diamond w-AlN LiCl Fluorite LiF DFT GW The "GW" method is an accurate approach for simulate the "excited state" properties of materials. Examples: - What happens when you add or remove an electron from a system - How do

  1. Nick Balthaser! Storage Systems Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Systems Group Introduction to Archival Storage at NERSC --- 1 --- February 1 5, 2 013 Agenda * Objec2ves - Describe t he r ole o f a rchival s torage i n a 4 ered s torage s trategy - Log i nto t he N ERSC a rchive - Store a nd r etrieve fi les f rom t he a rchive - Avoid c ommon p roblems * Archive B asics - What i s a n a rchive? - Why s hould I u se o ne? - Features o f t he N ERSC a rchive * Using t he N ERSC A rchive Note: U nix/Linux c ommand---line f amiliarity r equired - How t o

  2. Authentication techniques for smart cards

    SciTech Connect (OSTI)

    Nelson, R.A.

    1994-02-01

    Smart card systems are most cost efficient when implemented as a distributed system, which is a system without central host interaction or a local database of card numbers for verifying transaction approval. A distributed system, as such, presents special card and user authentication problems. Fortunately, smart cards offer processing capabilities that provide solutions to authentication problems, provided the system is designed with proper data integrity measures. Smart card systems maintain data integrity through a security design that controls data sources and limits data changes. A good security design is usually a result of a system analysis that provides a thorough understanding of the application needs. Once designers understand the application, they may specify authentication techniques that mitigate the risk of system compromise or failure. Current authentication techniques include cryptography, passwords, challenge/response protocols, and biometrics. The security design includes these techniques to help prevent counterfeit cards, unauthorized use, or information compromise. This paper discusses card authentication and user identity techniques that enhance security for microprocessor card systems. It also describes the analysis process used for determining proper authentication techniques for a system.

  3. The Opus Group | Open Energy Information

    Open Energy Info (EERE)

    Opus Group Jump to: navigation, search Name: The Opus Group Address: 4643 South Ulster Street Place: Denver, CO Zip: 80237 Website: www.opus-group.com Coordinates: 39.6306863,...

  4. VenEarth Group | Open Energy Information

    Open Energy Info (EERE)

    VenEarth Group Jump to: navigation, search Name: VenEarth Group Place: San Francisco, California Product: San Francisco-based venture capital company. References: VenEarth Group1...

  5. Kore Group Inc | Open Energy Information

    Open Energy Info (EERE)

    Kore Group Inc Jump to: navigation, search Name: Kore Group Inc Place: Korea (Republic) Product: Plans to set up a 30MW PV project in India. References: Kore Group Inc1 This...

  6. Topaz Power Group | Open Energy Information

    Open Energy Info (EERE)

    Group Jump to: navigation, search Name: Topaz Power Group Place: Austin, Texas Sector: Hydro Product: Topaz Power Group, LLC is a 3.4GW generation portfolio, mostly coal but...

  7. DIFFERENTIAL GROUP-VELOCITY DETECTION OF FLUID PATHS

    SciTech Connect (OSTI)

    Leland Timothy Long

    2005-12-20

    For nearly 50 years, surface waves that propagate through near-surface soils have been utilized in engineering for the determination of the small-strain dynamic properties of soils. These techniques, although useful, have not been sufficiently precise to use in detecting the subtle changes in soil properties that accompany short-term changes in fluid content. The differential techniques developed in this research now make it possible to monitor small changes (less than 3 cm) in the water level of shallow soil aquifers. Using inversion techniques and tomography, differential seismic techniques could track the water level distribution in aquifers with water being pumped in or out. Differential surface wave analysis could lead to new ways to monitor reservoir levels and verify hydrologic models. Field data obtained during this investigation have measured changes in surface-wave phase and group velocity before and after major rain events, and have detected subtle changes associated with pumping water into an aquifer and pumping water out of an aquifer. This research has established analysis techniques for observing these changes. These techniques combine time domain measurements to isolate surface wave arrivals with frequency domain techniques to determine the effects as a function of frequency. Understanding the differences in response as a function of wave frequency facilitates the inversion of this data for soil velocity structure. These techniques have also quantified many aspects of data acquisition and analysis that are important for significant results. These include tight control on the character of the source and proper placement of the geophones. One important application is the possibility that surface waves could be used to monitor and/or track fluid movement during clean-up operations, verifying that the fluid reached all affected areas. Extending this to a larger scale could facilitate monitoring of water resources in basins without having to drill many

  8. Prabhat Steps In as DAS Group Lead

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prabhat Steps In as DAS Group Lead Prabhat Steps In as DAS Group Lead September 1, 2014 prabhat Prabhat has been named Group Lead of the Data and Analytics Services (DAS) Group at the Department of Energy's National Energy Research Scientific Computing Center (NERSC). The DAS group helps NERSC's users address data and analytics challenges arising from the increasing size and complexity of data from simulations and experiments. As the DAS Group Lead, Prabhat will play a key role in developing and

  9. Energy Ventures Group | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Logo: Energy Ventures Group Name: Energy Ventures Group Address: 3050 K Street, N.W., Suite 205 Place: Washington, District of Columbia Zip: 20007 Product:...

  10. Yunnan Metallurgical Group | Open Energy Information

    Open Energy Info (EERE)

    Metallurgical Group Jump to: navigation, search Name: Yunnan Metallurgical Group Place: Kunming, Yunnan Province, China Zip: 650000 Product: Chinese nonferrous metals manufacturer,...

  11. Inductotherm Group Consarc Corporation | Open Energy Information

    Open Energy Info (EERE)

    Inductotherm Group Consarc Corporation Jump to: navigation, search Name: Inductotherm Group Consarc Corporation Place: Rancocas, New Jersey Zip: 8073 Product: Metals production...

  12. Solena Group Inc | Open Energy Information

    Open Energy Info (EERE)

    Solena Group Inc Jump to: navigation, search Name: Solena Group Inc Place: Washington DC, Washington, DC Zip: 20006 Sector: Renewable Energy Product: Washington DC-based renewable...

  13. Donati Group Spa | Open Energy Information

    Open Energy Info (EERE)

    Donati Group Spa Jump to: navigation, search Name: Donati Group Spa Place: Medolago, Italy Zip: 24030 Product: A manufacturer of structural metal elements for various industries....

  14. SITIZN Group Holding AG | Open Energy Information

    Open Energy Info (EERE)

    SITIZN Group Holding AG Jump to: navigation, search Name: SITIZN Group Holding AG Place: Riederich, Germany Zip: 72585 Sector: Solar Product: Germany-based solar technology and...

  15. Vesuvius Group SA | Open Energy Information

    Open Energy Info (EERE)

    Vesuvius Group SA Jump to: navigation, search Name: Vesuvius Group SA Place: Brussels, Belgium Zip: 1950 Sector: Solar Product: Belgian manufacturer of industrial equipment such as...

  16. Windcast Group A S | Open Energy Information

    Open Energy Info (EERE)

    Windcast Group A S Jump to: navigation, search Name: Windcast Group AS Place: Denmark Sector: Wind energy Product: Supplier of advanced and high quality casting components for...

  17. Ruihao Corporation Group | Open Energy Information

    Open Energy Info (EERE)

    Ruihao Corporation Group Jump to: navigation, search Name: Ruihao Corporation Group Place: Daqing, Heilongjiang Province, China Zip: 163000 Sector: Efficiency, Renewable Energy...

  18. MiniBooNE Pion Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contents: Pion Group Home Pion Group Members Pion References Colin's Cross Section Page MiniBooNE Internal Email M. Tzanov....

  19. Maria Group Inc | Open Energy Information

    Open Energy Info (EERE)

    Group Inc Jump to: navigation, search Name: Maria Group Inc Place: Friendswood, Texas Zip: 77546 Sector: Wind energy Product: Holds patent to Noble Wind Turbine, a vertical axis...

  20. Nathaniel Group Inc | Open Energy Information

    Open Energy Info (EERE)

    Nathaniel Group Inc Jump to: navigation, search Name: Nathaniel Group Inc Place: Vergennes, Vermont Zip: 05491-1073 Product: Manufactures electronic devices, and received a USD...

  1. Cleantech Group LLC | Open Energy Information

    Open Energy Info (EERE)

    Group LLC Jump to: navigation, search Name: Cleantech Group LLC Place: Brighton, Michigan Zip: 48114 Sector: Services Product: Michigan-based cleantech consultant and parent of the...

  2. Tanfield Group Formerly Comeleon | Open Energy Information

    Open Energy Info (EERE)

    Tanfield Group Formerly Comeleon Jump to: navigation, search Name: Tanfield Group (Formerly Comeleon) Place: Stanley, United Kingdom Zip: DH9 9NX Product: They make electric...

  3. Altira Group LLC | Open Energy Information

    Open Energy Info (EERE)

    Group LLC Jump to: navigation, search Name: Altira Group LLC Address: 1675 Broadway, Suite 2400 Place: Denver, Colorado Zip: 80202 Region: Rockies Area Product: Venture capital for...

  4. Current Group LLC | Open Energy Information

    Open Energy Info (EERE)

    Group LLC Jump to: navigation, search Name: Current Group, LLC Place: Germantown, Maryland Zip: 20874 Sector: Services Product: Current provides electric utilities with smart grid...

  5. Peregrine Energy Group Inc | Open Energy Information

    Open Energy Info (EERE)

    Peregrine Energy Group Inc Jump to: navigation, search Name: Peregrine Energy Group Inc Place: Boston, Massachusetts Zip: 02114-1908 Sector: Efficiency, Renewable Energy Product:...

  6. Clean Energy Group Virginia | Open Energy Information

    Open Energy Info (EERE)

    Clean Energy Group Virginia Jump to: navigation, search Name: Clean Energy Group (Virginia) Place: Reston, Virginia Zip: VA 20191 Product: Virginia-based state regional office of...

  7. FE Clean Energy Group | Open Energy Information

    Open Energy Info (EERE)

    FE Clean Energy Group Jump to: navigation, search Name: FE Clean Energy Group Place: Darien, Connecticut Zip: 6820 Sector: Efficiency Product: A Private Equity Fund Manager which...

  8. Clean Energy Group | Open Energy Information

    Open Energy Info (EERE)

    Group Jump to: navigation, search Name: Clean Energy Group Place: Montpelier, Vermont Zip: 5602 Product: Vermont-based non-profit organization that promotes the greater use of...

  9. Sunwatt Group India | Open Energy Information

    Open Energy Info (EERE)

    Sunwatt Group India Jump to: navigation, search Name: Sunwatt Group (India) Place: Hyderabad, India Zip: 500 062 Sector: Solar Product: Hyderabad-based solar company involved in...

  10. Visual Design Group | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Visual Design Group alternative text alternative text alternative text alternative text alternative text alternative text alternative text alternative text The Visual Design Group ...

  11. Alternative Fuels Group | Open Energy Information

    Open Energy Info (EERE)

    Group Jump to: navigation, search Name: Alternative Fuels Group Place: Maryland Sector: Renewable Energy Product: US-based producer of renewable fuels. References: Alternative...

  12. Ford Electric Battery Group | Open Energy Information

    Open Energy Info (EERE)

    Electric Battery Group Jump to: navigation, search Name: Ford Electric Battery Group Place: Dearborn, MI References: Ford Battery1 Information About Partnership with NREL...

  13. Carbon Opportunity Group | Open Energy Information

    Open Energy Info (EERE)

    Opportunity Group Jump to: navigation, search Name: Carbon Opportunity Group Place: Chicago, Illinois Zip: 60606 Sector: Carbon, Services Product: Chicago-based firm that provides...

  14. Electromechanical Engineering Consulting Group ECG | Open Energy...

    Open Energy Info (EERE)

    Electromechanical Engineering Consulting Group ECG Jump to: navigation, search Name: Electromechanical Engineering Consulting Group (ECG) Place: San Jose, Costa Rica Zip: 1521-1000...

  15. Himin Solar Energy Group | Open Energy Information

    Open Energy Info (EERE)

    Solar Energy Group Jump to: navigation, search Name: Himin Solar Energy Group Place: Dezhou City, Shandong Province, China Zip: 253092 Sector: Solar Product: Its products are...

  16. Sunnyspain Energy Group | Open Energy Information

    Open Energy Info (EERE)

    search Name: Sunnyspain Energy Group Place: Spain Sector: Solar Product: Spanish solar cell and module manufacturer. References: Sunnyspain Energy Group1 This article is a stub....

  17. Separation Design Group LLC | Open Energy Information

    Open Energy Info (EERE)

    search Name: Separation Design Group LLC Place: Waynesburg, Pennsylvania Zip: 15370 Product: Separation Design Group is a research and product development firm established in...

  18. Constellation Energy Group | Open Energy Information

    Open Energy Info (EERE)

    Energy Group Jump to: navigation, search Name: Constellation Energy Group Place: Baltimore, Maryland Zip: 21202 Sector: Renewable Energy Product: US-based on-grid generator...

  19. Sunpower Group Ltd | Open Energy Information

    Open Energy Info (EERE)

    Sunpower Group Ltd Place: Nanjing, Jiangsu Province, China Zip: 211112 Product: Sunpower Group utilizes advanced heat transfer technologies. Coordinates: 32.0485, 118.778969...

  20. Vikram Group of Industries | Open Energy Information

    Open Energy Info (EERE)

    Vikram Group of Industries Jump to: navigation, search Name: Vikram Group of Industries Place: Kolkatta, West Bengal, India Zip: 700001 Product: Kolkata-based tea processing...