Powered by Deep Web Technologies
Note: This page contains sample records for the topic "group aspen pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Aspen Pipeline | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: Energy Resources JumpAspen Aerogels Jump to: navigation,

2

Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Working Group Workshop: Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines Code for Hydrogen Piping and Pipelines. B31 Hydrogen...

3

DOE Hydrogen Pipeline Working Group Workshop  

E-Print Network [OSTI]

DOE Hydrogen Pipeline Working Group Workshop August 31, 2005 Augusta, Georgia #12;Hydrogen Pipeline Experience Presented By: LeRoy H. Remp Lead Project Manager Pipeline Projects #12;ppt00 3 Hydrogen Pipeline Pipeline Photos #12;ppt00 8 Pipeline Photos #12;ppt00 9 Overview of North American Air Products Hydrogen P

4

BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop  

E-Print Network [OSTI]

BP and Hydrogen Pipelines DOE Hydrogen Pipeline Working Group Workshop August 30-31, 2005 Gary P · UK partnership opened the first hydrogen demonstration refueling station · Two hydrogen pipelines l · " i i l i 2 i i ll i i l pl ifi i · 8" ly idl i i l s Hydrogen Pipelines Two nes, on y a brand

5

VAX/ASPEN installation guide  

SciTech Connect (OSTI)

Information necessary to install the ASPEN computerized simulation program on the VAX system is provided.

Williams, K.E.

1984-11-01T23:59:59.000Z

6

Hydrogen Delivery Pipeline Working Group Workshop September 25-26, 2007 Center for Hydrogen Research, Aiken, GA  

E-Print Network [OSTI]

Hydrogen Delivery Pipeline Working Group Workshop September 25-26, 2007 Center for Hydrogen..................................................................................................... 1. Introduction The DOE Hydrogen Pipeline Working Group (PWG) met on September 25-26, 2007 challenges and future goals for hydrogen pipeline research and development (R&D). One of the near-term goals

7

DOE Hydrogen Pipeline Working Group Workshop | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebratePartnersDepartment DOE ESPCofOfficeGuidePipeline Working

8

Aspen Ecology in the MixedAspen Ecology in the Mixed Conifer TypeConifer Type  

E-Print Network [OSTI]

Aspen Ecology in the MixedAspen Ecology in the Mixed Conifer TypeConifer Type Wayne D. Shepperd Colorado State University Fort Collins, CO Aspen Ecology in the MixedAspen Ecology in the Mixed ConiferAssumptions Mixed conifer forests are a collection of different species, each with different ecologic requirements

9

City of Aspen- Green Power Purchasing  

Broader source: Energy.gov [DOE]

In 2005, the City of Aspen set a goal to purchase 75% of the city government's energy from renewable sources by 2010. As of December 2006, Aspen had accomplished its goal to provide 75% non-carbon...

10

Aspen, Colorado: Community Energy Strategic Planning Process  

Broader source: Energy.gov [DOE]

This presentation features Lee Ledesma, utilities operations manager with the City of Aspen, Colorado. Ledesma provides an overview of the City of Aspen's experience in putting together a financing...

11

City of Aspen- Energy Assessment Rebate Program  

Broader source: Energy.gov [DOE]

The City of Aspen encourages interested residents and businesses to increase the energy efficiency of homes and offices through the Energy Assessment Program. Participating homes and offices must...

12

aspens: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Design of Linear Energy Storage, Conversion and Utilization Websites Summary: Stirling Engines Final Report E FILE COpy I DO NOT | REMOVE Report Prepared by ASPEN SYSTEMS,...

13

Aspen Aerogels | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: Energy Resources JumpAspen Aerogels Jump to: navigation, search Name:

14

Aspen Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: Energy Resources JumpAspen Aerogels Jump to: navigation,Solar Jump to:

15

Aspen Global Change Institute Summer Science Sessions  

SciTech Connect (OSTI)

The Aspen Global Change Institute (AGCI) successfully organized and convened six interdisciplinary meetings over the course of award NNG04GA21G. The topics of the meetings were consistent with a range of issues, goals and objectives as described within the NASA Earth Science Enterprise Strategic Plan and more broadly by the US Global Change Research Program/Our Changing Planet, the more recent Climate Change Program Strategic Plan and the NSF Pathways report. The meetings were chaired by two or more leaders from within the disciplinary focus of each session. 222 scholars for a total of 1097 participants-days were convened under the auspices of this award. The overall goal of each AGCI session is to further the understanding of Earth system science and global environmental change through interdisciplinary dialog. The format and structure of the meetings allows for presentation by each participant, in-depth discussion by the whole group, and smaller working group and synthesis activities. The size of the group is important in terms of the group dynamics and interaction, and the ability for each participant's work to be adequately presented and discussed within the duration of the meeting, while still allowing time for synthesis

Katzenberger, John; Kaye, Jack A

2006-10-01T23:59:59.000Z

16

Aspen: Noncompliance Determination (2010-SE-0305)  

Broader source: Energy.gov [DOE]

DOE issued a Notice of Noncompliance Determination to Aspen Manufacturing finding that a variety of basic models of split-system air conditioning heat pumps do not comport with the energy conservation standards.

17

Code for Hydrogen Hydrogen Pipeline  

E-Print Network [OSTI]

#12;2 Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop Augusta, Georgia August development · Charge from BPTCS to B31 Standards Committee for Hydrogen Piping/Pipeline code development · B31.12 Status & Structure · Hydrogen Pipeline issues · Research Needs · Where Do We Go From Here? #12;4 Code

18

Aspen Winter Conferences on High Energy  

SciTech Connect (OSTI)

The 2011 Aspen Winter Conference on Particle Physics was held at the Aspen Center for Physics from February 12 to February 18, 2011. Ninety-four participants from ten countries, and several universities and national labs attended the workshop titled, ?New Data From the Energy Frontier.? There were 54 formal talks, and a considerable number of informal discussions held during the week. The week?s events included a public lecture (?The Hunt for the Elusive Higgs Boson? given by Ben Kilminster from Ohio State University) and attended by 119 members of the public, and a physics caf? geared for high schoolers that is a discussion with physicists. The 2011 Aspen Winter Conference on Astroparticle physics held at the Aspen Center for Physics was ?Indirect and Direct Detection of Dark Matter.? It was held from February 6 to February 12, 2011. The 70 participants came from 7 countries and attended 53 talks over five days. Late mornings through the afternoon are reserved for informal discussions. In feedback received from participants, it is often these unplanned chats that produce the most excitement due to working through problems with fellow physicists from other institutions and countries or due to incipient collaborations. In addition, Blas Cabrera of Stanford University gave a public lecture titled ?What Makes Up Dark Matter.? There were 183 members of the general public in attendance. Before the lecture, 45 people attended the physics caf? to discuss dark matter. This report provides the attendee lists, programs, and announcement posters for each event.

multiple speakers, presenters listed on link below

2011-02-12T23:59:59.000Z

19

Aspen: Noncompliance Determination (2011-SE-1602)  

Broader source: Energy.gov [DOE]

DOE issued a Notice of Noncompliance Determination to Aspen Manufacturing finding that indoor unit model AEW244 and outdoor unit model NCPC-424-3010 of residential split system central air conditioning system do not comport with the energy conservation standards.

20

aspen populus tremuloides: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Design of Linear Energy Storage, Conversion and Utilization Websites Summary: Stirling Engines Final Report E FILE COpy I DO NOT | REMOVE Report Prepared by ASPEN SYSTEMS,...

Note: This page contains sample records for the topic "group aspen pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Pipelines (Minnesota)  

Broader source: Energy.gov [DOE]

This section regulates pipelines that are used to carry natural or synthetic gas at a pressure of more than 90 pounds per square inch, along with pipelines used to carry petroleum products and coal...

22

Evaluation of Natural Gas Pipeline Materials and Infrastructure for  

E-Print Network [OSTI]

South Carolina Electric and Gas University of South Carolina Praxair Hydrogen Pipeline Working Group

23

Worldwide pipelines and contractors directory  

SciTech Connect (OSTI)

This directory contains information on the following: pipeline contractors; US natural gas pipelines; US crude oil pipelines; US product pipelines; Canadian pipelines and foreign pipelines.

NONE

1999-11-01T23:59:59.000Z

24

arctic gas pipeline: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and ROW Lower South Carolina Electric and Gas University of South Carolina Praxair Hydrogen Pipeline Working Group 3 A moving horizon solution to the gas pipeline...

25

arctic gas pipelines: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and ROW Lower South Carolina Electric and Gas University of South Carolina Praxair Hydrogen Pipeline Working Group 3 A moving horizon solution to the gas pipeline...

26

Aspen and Pitkin County- Renewable Energy Mitigation Program  

Broader source: Energy.gov [DOE]

The City of Aspen and Pitkin County have adopted the 2009 International Energy Conservation Code (IECC), with some amendments, as their official energy code effective March 9, 2010. The [http:/...

27

Questions and Issues on Hydrogen Pipeline Transmission of Hydrogen  

E-Print Network [OSTI]

Questions and Issues on Hydrogen Pipelines Pipeline Transmission of Hydrogen Doe Hydrogen Pipeline Working Group Meeting August 31, 2005 #12;Pipeline Transmission of Hydrogen --- 2 Copyright: Air Liquide Transmission of Hydrogen --- 3 Copyright: #12;Pipeline Transmission of Hydrogen --- 4 Copyright: 3. Special

28

Pipeline Setback Ordinance (Minnesota)  

Broader source: Energy.gov [DOE]

This statute establishes the Office of Pipeline Safety to regulate pipelines in Minnesota. Among other duties, the office is responsible for implementing a Model Pipeline Setback Ordinance.

29

A Pipeline for Computational Historical Linguistics  

E-Print Network [OSTI]

#12;A Pipeline for Computational Historical Linguistics Lydia Steiner Bioinformatics Group an algorithmic pipeline that mimics, as closely as possible, the traditional workflow of language reconstruction known as the comparative method. The pipeline consists of suitably modified algorithms based on recent

30

Virginia Natural Gas's Hampton Roads Pipeline Crossing  

Broader source: Energy.gov [DOE]

Presentationgiven at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meetingcovers Virginia Natural Gas's (VNG's) pipeline project at Hampton Roads Crossing (HRX).

31

Pipeline refurbishing  

SciTech Connect (OSTI)

A novel process for simultaneously removing deteriorated coatings (such as coal tar and asphalt enamel or tape) and providing surface preparation suitable for recoating has been developed for pipelines up to 36 in. (914 mm) in diameter. This patented device provides a near-white metal surface finish. Line travel or bell-hole operations are possible at rates up to 10 times conventional blasting techniques. This article describes development of a tool and machine that will remove pipeline coatings, including coal tar enamel and adhesive-backed plaster tape systems. After coating removal, the pipe surface is suitable for recoating and can be cleaned to a near-white metal finsh (Sa 2 1/2 or NACE No. 2) if desired. This cleaning system is especially useful where the new coating is incompatible with the coating to be removed, the new coating requires a near-white or better surface preparation, or no existing method has been found to remove the failed coating. This cleaning system can remove all generic coating systems including coal tar enamel, asphalt, adhesive-backed tape, fusion-bonded epoxy, polyester, and extruded polyethylene.

McConkey, S.E.

1989-04-01T23:59:59.000Z

32

Gas Pipeline Safety (Indiana)  

Broader source: Energy.gov [DOE]

This section establishes the Pipeline Safety Division within the Utility Regulatory Commission to administer federal pipeline safety standards and establish minimum state safety standards for...

33

Pipeline Safety (South Dakota)  

Broader source: Energy.gov [DOE]

The South Dakota Pipeline Safety Program, administered by the Public Utilities Commission, is responsible for regulating hazardous gas intrastate pipelines. Relevant legislation and regulations...

34

Pipeline Operations Program (Louisiana)  

Broader source: Energy.gov [DOE]

The Pipeline Operations Program regulates the construction, acquisition, abandonment and interconnection of natural gas pipelines, as well as, the transportation and use of natural gas supplies.

35

Pipeline Safety (Maryland)  

Broader source: Energy.gov [DOE]

The Public Service Commission has the authority enact regulations pertaining to pipeline safety. These regulations address pipeline monitoring, inspections, enforcement, and penalties.

36

Intrastate Pipeline Safety (Minnesota)  

Broader source: Energy.gov [DOE]

These regulations provide standards for gas and liquid pipeline maintenance and operating procedures, per the Federal Hazardous Liquid and Natural Gas Pipeline Safety Acts, and give the...

37

2012 Aspen Winter Conferences on High Energy and Astrophysics  

SciTech Connect (OSTI)

Aspen Center for Physics Project Summary DE-SC0007313 Budget Period: 1/1/2012 to 12/31/2012 The Hunt for New Particles, from the Alps to the Plains to the Rockies The 2012 Aspen Winter Conference on Particle Physics was held at the Aspen Center for Physics from February 11 to February 17, 2012. Sixty-seven participants from nine countries, and several universities and national labs attended the workshop titled, The Hunt for New Particles, from the Alps to the Plains to the Rockies. There were 53 formal talks, and a considerable number of informal discussions held during the week. The weeks events included a public lecture-Hunting the Dark Universe given by Neal Weiner from New York University) and attended by 237 members of the public, and a physics cafe geared for high schoolers that is a discussion with physicists conducted by Spencer Chang (University of Oregon), Matthew Reece (Harvard University) and Julia Shelton (Yale University) and attended by 67 locals and visitors. While there were no published proceedings, some of the talks are posted online and can be Googled. The workshop was organized by John Campbell (Fermilab), Patrick Fox (Fermilab), Ivan Furic (University of Florida), Eva Halkiadakis (Rutgers University) and Daniel Whiteson (University of California Irvine). Additional information is available at http://indico.cern.ch/conferenceDisplay.py?confId=143360. Inflationary Theory and its Confrontation with Data in the Planck Era The 2012 Aspen Winter Conference on Astroparticle physics held at the Aspen Center for Physics was Inflationary Theory and its Confrontation with Data in the Planck Era.? It was held from January 30 to February 4, 2012. The 62 participants came from 7 countries and attended 43 talks over five days. Late mornings through the afternoon are reserved for informal discussions. In feedback received from participants, it is often these unplanned chats that produce the most excitement due to working through problems with fellow physicists from other institutions and countries or due to incipient collaborations. In addition, Shamit Kachru of Stanford University gave a public lecture titled The Small (and Large) Scale Structure of Space-Time.There were 237 members of the general public in attendance. Before the lecture, 65 people attended the physics cafe to discuss the current topic with Matthew Kleban (New York University) and Chao-Lin Kuo (Stanford University). This workshop was organized by Olivier Dore (Jet Propulsion Lab), Fabian Schmidt (Caltech), Leonardo Senatore (Stanford University), and Kendrick Smith (Princeton University).

Campbell, John; Olivier, Dore; Fox, Patrick; Furic, Ivan; Halkiadakis, Eva; Schmidt, Fabian; Senatore, Leonardo; Smith, Kendrick M; Whiteson, Daniel

2012-05-01T23:59:59.000Z

38

E-Print Network 3.0 - aspen populus tremula Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

tremula Page: << < 1 2 3 4 5 > >> 1 A Populus EST resource for plant functional genomics Fredrik Sterky* Summary: (Populus tremula), a hybrid aspen (P. tremula tremuloides...

39

E-Print Network 3.0 - aspen homolog pttcel9a1 Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(Populus tremula) and local environmental conditions explain their distribution... bark pH and nutrient content (Kuusinen 1996) without affecting the host tree vitality. Aspen...

40

E-Print Network 3.0 - aspen winter conference Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

-Tuning and Little Hierarchy Problems In the NMSSM NMSSM LHC and Tevatron Phenomenology Aspen Winter Conference... : Gauge coupling unification works very ... Source:...

Note: This page contains sample records for the topic "group aspen pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

E-Print Network 3.0 - aspen cancer conference Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cancer conference Search Powered by Explorit Topic List Advanced Search Sample search results for: aspen cancer conference Page: << < 1 2 3 4 5 > >> 1 Edited November 11, 2011...

42

INTERNAL REPAIR OF PIPELINES  

SciTech Connect (OSTI)

The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is only marginally effective at restoring the pressure containing capabilities of pipelines. Failure pressures for larger diameter pipe repaired with a semi-circular patch of carbon fiber-reinforced composite lines were also marginally greater than that of a pipe section with un-repaired simulated damage without a liner. These results indicate that fiber reinforced composite liners have the potential to increase the burst pressure of pipe sections with external damage Carbon fiber based liners are viewed as more promising than glass fiber based liners because of the potential for more closely matching the mechanical properties of steel. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. In lieu of a field installation on an abandoned pipeline, a preliminary nondestructive testing protocol is being developed to determine the success or failure of the fiber-reinforced liner pipeline repairs. Optimization and validation activities for carbon-fiber repair methods are ongoing.

Bill Bruce; Nancy Porter; George Ritter; Matt Boring; Mark Lozev; Ian Harris; Bill Mohr; Dennis Harwig; Robin Gordon; Chris Neary; Mike Sullivan

2005-07-20T23:59:59.000Z

43

Simple Dynamic Gasifier Model That Runs in Aspen Dynamics  

SciTech Connect (OSTI)

Gasification (or partial oxidation) is a vital component of 'clean coal' technology. Sulfur and nitrogen emissions can be reduced, overall energy efficiency is increased, and carbon dioxide recovery and sequestration are facilitated. Gasification units in an electric power generation plant produce a fuel for driving combustion turbines. Gasification units in a chemical plant generate gas, which can be used to produce a wide spectrum of chemical products. Future plants are predicted to be hybrid power/chemical plants with gasification as the key unit operation. The widely used process simulator Aspen Plus provides a library of models that can be used to develop an overall gasifier model that handles solids. So steady-state design and optimization studies of processes with gasifiers can be undertaken. This paper presents a simple approximate method for achieving the objective of having a gasifier model that can be exported into Aspen Dynamics. The basic idea is to use a high molecular weight hydrocarbon that is present in the Aspen library as a pseudofuel. This component should have the same 1:1 hydrogen-to-carbon ratio that is found in coal and biomass. For many plantwide dynamic studies, a rigorous high-fidelity dynamic model of the gasifier is not needed because its dynamics are very fast and the gasifier gas volume is a relatively small fraction of the total volume of the entire plant. The proposed approximate model captures the essential macroscale thermal, flow, composition, and pressure dynamics. This paper does not attempt to optimize the design or control of gasifiers but merely presents an idea of how to dynamically simulate coal gasification in an approximate way.

Robinson, P.J.; Luyben, W.L. [Lehigh University, Bethlehem, PA (United States). Dept. of Chemical Engineering

2008-10-15T23:59:59.000Z

44

Tank SY-102 remediation project summary report: ASPEN modeling  

SciTech Connect (OSTI)

The U.S. Department of Energy established the Tank Waste Remediation System (TWRS) to safely manage and dispose of radioactive waste stored in underground tanks on the Hanford Site. As a part of this program, personnel at Los Alamos National Laboratory (LANL) have developed and demonstrated a flow sheet to remediate tank SY-102, which is located in the 200 West Area and contains high-level radioactive waste. In the conceptual design report issued earlier, an ASPEN plus{trademark} computer model of the flow sheet was presented. This report documents improvements in the flow sheet model after additional thermodynamic data for the actinide species were incorporated.

Punjak, W.A.; Schreiber, S.B.; Yarbro, S.L.

1995-05-01T23:59:59.000Z

45

Aspen Clean Fuels Ltd ACF Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: Energy Resources JumpAspen Aerogels Jump to: navigation, search Name:Clean

46

Aspen Hill, Maryland: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: Energy Resources JumpAspen Aerogels Jump to: navigation, search

47

Aspen Park, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: Energy Resources JumpAspen Aerogels Jump to: navigation, searchColorado:

48

The seasonal water and energy exchange above and within a boreal aspen forest  

E-Print Network [OSTI]

The seasonal water and energy exchange above and within a boreal aspen forest P.D. Blankena,*, T 2001; accepted 2 February 2001 Abstract The seasonal water and energy exchange of a boreal aspen forest: Biometeorology; Boreal forest; Deciduous forest; Transpiration; Radiation; Surface energy balance 1. Introduction

Lee, Xuhui

49

NATIVE MYCORRHIZAL FUNGI WITH ASPEN ON SMELTER-IMPACTED SITES IN THE NORTHERN ROCKY MOUNTAINS  

E-Print Network [OSTI]

by extensive aspen stands on the East Ridge of Butte, MT (inactive copper smelter), adjacent to the smelter stack at Anaconda, MT (inactive copper smelter), at the (removed) lead smelter at Kellogg, ID, and alongNATIVE MYCORRHIZAL FUNGI WITH ASPEN ON SMELTER- IMPACTED SITES IN THE NORTHERN ROCKY MOUNTAINS

Cripps, Cathy

50

Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation  

E-Print Network [OSTI]

Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation P. Sofronis, I. M. Robertson, D. D. Johnson University of Illinois at Urbana-Champaign Hydrogen Pipeline Working Group Workshop% · Contractor share: 25% · Barriers ­ Hydrogen embrittlement of pipelines and remediation (mixing with water

51

Pipeline Construction Guidelines (Indiana)  

Broader source: Energy.gov [DOE]

The Division of Pipeline Safety of the Indiana Utility Regulatory Commission regulates the construction of any segment of an interstate pipeline on privately owned land in Indiana. The division has...

52

Pipeline Safety Rule (Tennessee)  

Broader source: Energy.gov [DOE]

The Pipeline Safety Rule simply states, "The Minimum Federal Safety Standards for the transportation of natural and other gas by pipeline (Title 49, Chapter 1, Part 192) as published in the Federal...

53

Keystone XL pipeline update  

Broader source: Energy.gov [DOE]

Questions have been raised recently about the Keystone XL pipeline project, so we wanted to make some points clear.

54

Aqueous electrolyte modeling in ASPEN PLUS{trademark}  

SciTech Connect (OSTI)

The presence of electrolytes in aqueous solutions has long been recognized as contributing to significant departures from thermodynamic ideality. The presence of ions in process streams can greatly add to the difficulty of predicting process behavior. The difficulties are increased as temperatures and pressures within a process are elevated. Because many chemical companies now model their processes with chemical process simulators it is important that such codes be able to accurately model electrolyte behavior under a variety of conditions. Here the authors examine the electrolyte modeling capability of ASPEN PLUS{trademark}, a widely used simulator. Specifically, efforts to model alkali metal halide and sulfate systems are presented. The authors show conditions for which the models within the code work adequately and how they might be improved for conditions where the simulator models fail.

Bloomingburg, G.F. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemical Engineering]|[Oak Ridge National Lab., TN (United States); Simonson, J.M.; Moore, R.C.; Mesmer, R.E.; Cochran, H.D. [Oak Ridge National Lab., TN (United States)

1995-02-01T23:59:59.000Z

55

INTERNAL REPAIR OF PIPELINES  

SciTech Connect (OSTI)

The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is only marginally effective at restoring the pressure containing capabilities of pipelines. Failure pressures for larger diameter pipe repaired with a semi-circular patch of carbon fiber-reinforced composite lines were also marginally greater than that of a pipe section with un-repaired simulated damage without a liner. These results indicate that fiber reinforced composite liners have the potential to increase the burst pressure of pipe sections with external damage Carbon fiber based liners are viewed as more promising than glass fiber based liners because of the potential for more closely matching the mechanical properties of steel. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. The first round of optimization and validation activities for carbon-fiber repairs are complete. Development of a comprehensive test plan for this process is recommended for use in the field trial portion of this program.

Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; George Ritter; Bill Mohr; Matt Boring; Nancy Porter; Mike Sullivan; Chris Neary

2004-12-31T23:59:59.000Z

56

INTERNAL REPAIR OF PIPELINES  

SciTech Connect (OSTI)

The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is only marginally effective at restoring the pressure containing capabilities of pipelines. Failure pressures for larger diameter pipe repaired with a semi-circular patch of carbon fiber-reinforced composite lines were also marginally greater than that of a pipe section with un-repaired simulated damage without a liner. These results indicate that fiber reinforced composite liners have the potential to increase the burst pressure of pipe sections with external damage Carbon fiber based liners are viewed as more promising than glass fiber based liners because of the potential for more closely matching the mechanical properties of steel. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. Development of a comprehensive test plan for this process is recommended for use in the field trial portion of this program.

Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; George Ritter; Bill Mohr; Matt Boring; Nancy Porter; Mike Sullivan; Chris Neary

2004-08-17T23:59:59.000Z

57

INTERNAL REPAIR OF PIPELINES  

SciTech Connect (OSTI)

The two broad categories of deposited weld metal repair and fiber-reinforced composite liner repair technologies were reviewed for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Preliminary test programs were developed for both deposited weld metal repair and for fiber-reinforced composite liner repair. Evaluation trials have been conducted using a modified fiber-reinforced composite liner provided by RolaTube and pipe sections without liners. All pipe section specimens failed in areas of simulated damage. Pipe sections containing fiber-reinforced composite liners failed at pressures marginally greater than the pipe sections without liners. The next step is to evaluate a liner material with a modulus of elasticity approximately 95% of the modulus of elasticity for steel. Preliminary welding parameters were developed for deposited weld metal repair in preparation of the receipt of Pacific Gas & Electric's internal pipeline welding repair system (that was designed specifically for 559 mm (22 in.) diameter pipe) and the receipt of 559 mm (22 in.) pipe sections from Panhandle Eastern. The next steps are to transfer welding parameters to the PG&E system and to pressure test repaired pipe sections to failure. A survey of pipeline operators was conducted to better understand the needs and performance requirements of the natural gas transmission industry regarding internal repair. Completed surveys contained the following principal conclusions: (1) Use of internal weld repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling (HDD) when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) Pipe diameter sizes range from 50.8 mm (2 in.) through 1,219.2 mm (48 in.). The most common size range for 80% to 90% of operators surveyed is 508 mm to 762 mm (20 in. to 30 in.), with 95% using 558.8 mm (22 in.) pipe. An evaluation of potential repair methods clearly indicates that the project should continue to focus on the development of a repair process involving the use of GMAW welding and on the development of a repair process involving the use of fiber-reinforced composite liners.

Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; Nancy Porter; Mike Sullivan; Chris Neary

2004-04-12T23:59:59.000Z

58

Free Air CO2 Enrichment (FACE) Research Data from the Aspen FACE Experiment (FACTS II)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Ring maps, lists of publications, data from the experiments, newsletters, protocol and performance information, and links to other FACTS and FACE information are provided at the ASPEN FACE website.

59

E-Print Network 3.0 - aspen lung conference Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hills and Bear Lodge Mountains (Thilenius 1972). Quaking aspen, paper birch, and Black Hills... habitat type wa rosa pine types s the most common they identified. of the seven...

60

E-Print Network 3.0 - aspen sociedad americana Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hills and Bear Lodge Mountains (Thilenius 1972). Quaking aspen, paper birch, and Black Hills... habitat type wa rosa pine types s the most common they identified. of the seven...

Note: This page contains sample records for the topic "group aspen pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

E-Print Network 3.0 - aspen computer models Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sciences and Ecology ; Biology and Medicine 71 Acute O3 damage on first year coppice sprouts of aspen and maple sprouts in an open-air experiment Summary: Acute O3 damage...

62

E-Print Network 3.0 - aspen trees final Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Medicine ; Environmental Sciences and Ecology 82 Acute O3 damage on first year coppice sprouts of aspen and maple sprouts in an open-air experiment Summary: ) concentration...

63

Pipeline Safety (Pennsylvania)  

Broader source: Energy.gov [DOE]

The Pennsylvania legislature has empowered the Public Utility Commission to direct and enforce safety standards for pipeline facilities and to regulate safety practices of certificated utilities...

64

The Motion Capture Pipeline.  

E-Print Network [OSTI]

?? Motion Capture is an essential part of a world full of digital effects in movies and games. Understanding the pipelines between software is a (more)

Holmboe, Dennis

2008-01-01T23:59:59.000Z

65

EIA - Natural Gas Pipeline Network - Largest Natural Gas Pipeline...  

U.S. Energy Information Administration (EIA) Indexed Site

Interstate Pipelines Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Thirty Largest U.S. Interstate Natural...

66

FEATURE ARTICLE Pipeline Corrosion  

E-Print Network [OSTI]

F FEATURE ARTICLE Pipeline Corrosion Issues Related to Carbon Capture, Transportation, and Storage Capture, Transportation, and Storage--Aspects of Corrosion and Materials. "Until these new technologies are developed and applied, corrosion engineers are focusing on how to best design pipelines for CO2 transport

Botte, Gerardine G.

67

Impacts of elevated CO2 and/or O3 on leaf ultrastructure of aspen (Populus tremuloides) and birch (Betula papyrifera) in the Aspen  

E-Print Network [OSTI]

in Wisconsin (USA) prior to sampling for ultrastructural investigations on 19 June 1999. In the aspen clones the proportion of vacuoles, the amount of condensed vacuolar tan- nins and the number of plastoglobuli. Ozone concentrations, antioxidant activities and gas exchange in Norway spruce (Picea abies) after one growing season

68

Natural Gas Pipeline Utilities (Maine)  

Broader source: Energy.gov [DOE]

These regulations apply to entities seeking to develop and operate natural gas pipelines and provide construction requirements for such pipelines. The regulations describe the authority of the...

69

Natural Gas Pipeline Safety (Kansas)  

Broader source: Energy.gov [DOE]

This article states minimum safety standards for the transportation of natural gas by pipeline and reporting requirements for operators of pipelines.

70

Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Groundto ApplyRoadmapNear-term

71

Gas Pipelines (Texas)  

Broader source: Energy.gov [DOE]

This chapter applies to any entity that owns, manages, operates, leases, or controls a pipeline for the purpose of transporting natural gas in the state for sale or compensation, as well as any...

72

Pipeline Carriers (Montana)  

Broader source: Energy.gov [DOE]

Pipeline carriers transporting crude petroleum, coal, the products of crude petroleum or coal, or carbon dioxide produced in the combustion or gasification of fossil fuels are required to abide by...

73

Gas Pipeline Securities (Indiana)  

Broader source: Energy.gov [DOE]

This statute establishes that entities engaged in the transmission of gas by pipelines are not required to obtain the consent of the Utility Regulatory Commission for issuance of stocks,...

74

Composites Technology for Hydrogen Pipelines  

E-Print Network [OSTI]

Composites Technology for Hydrogen Pipelines Barton Smith, Barbara Frame, Larry Anovitz and Cliff;Composites Technology for Hydrogen Pipelines Fiber-reinforced polymer pipe Project Overview: Investigate of pipeline per day. · $190k/mile capital cost for distribution pipelines · Hydrogen delivery cost below $1

75

USDA Forest Service Proceedings RMRS-P-18. 2001. 185 Do Pine Trees in Aspen Stands Increase  

E-Print Network [OSTI]

suppression and successional processes. Al- though the Black Hills National Forest is removing conifers ago (Severson and Thilenius 1976). Currently, aspen comprises 4% of the Black Hills National Forest and Resource Man- agement Plan, Black Hills National Forest, Custer, SD, 1996). Many aspen stands are old

76

Tefken builds Turkish pipeline project  

SciTech Connect (OSTI)

A turnkey contract was let in early 1983 for the construction of the Yumurtalik-Kirikkale crude oil pipeline system in Turkey. The design and construction of the 277 mile, 24 in dia pipeline will be completed toward the end of 1985. The pipeline will transport crude oil to the Central Anatolian Refinery. In the original design, the pipeline was planned for an ultimate capacity of 10 million tons/year with three pumping stations. Problems encountered in constructing the pipeline are discussed.

Not Available

1984-08-01T23:59:59.000Z

77

Physical property parameter set for modeling ICPP aqueous wastes with ASPEN electrolyte NRTL model  

SciTech Connect (OSTI)

The aqueous waste evaporators at the Idaho Chemical Processing Plant (ICPP) are being modeled using ASPEN software. The ASPEN software calculates chemical and vapor-liquid equilibria with activity coefficients calculated using the electrolyte Non-Random Two Liquid (NRTL) model for local excess Gibbs free energies of interactions between ions and molecules in solution. The use of the electrolyte NRTL model requires the determination of empirical parameters for the excess Gibbs free energies of the interactions between species in solution. This report covers the development of a set parameters, from literature data, for the use of the electrolyte NRTL model with the major solutes in the ICPP aqueous wastes.

Schindler, R.E.

1996-09-01T23:59:59.000Z

78

INNOVATIVE ELECTROMAGNETIC SENSORS FOR PIPELINE CRAWLERS  

SciTech Connect (OSTI)

Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they encounter. Recent development efforts include a new generation of powered inspection platforms that crawl slowly inside a pipeline and are able to maneuver past the physical barriers that can limit inspection. At Battelle, innovative electromagnetic sensors are being designed and tested for these new pipeline crawlers. The various sensor types can be used to assess a wide range of pipeline anomalies including corrosion, mechanical damage, and cracks. The Applied Energy Systems Group at Battelle is concluding the first year of work on a projected three-year development effort. In this first year, two innovative electromagnetic inspection technologies were designed and tested. Both were based on moving high-strength permanent magnets to generate inspection energy. One system involved translating permanent magnets towards the pipe. A pulse of electric current would be induced in the pipe to oppose the magnetization according to Lenz's Law. The decay of this pulse would indicate the presence of defects in the pipe wall. This inspection method is similar to pulsed eddy current inspection methods, with the fundamental difference being the manner in which the current is generated. Details of this development effort were reported in the first semiannual report on this project. This second semiannual report focuses on the development of a second inspection methodology, based on rotating permanent magnets. During this period, a rotating permanent magnet exciter was designed and built. The exciter unit produces strong eddy currents in the pipe wall. The tests have shown that at distances of a pipe diameter or more, the currents flow circumferentially, and that these circumferential currents are deflected by pipeline defects such as corrosion and axially aligned cracks. Simple sensors are used to detect the change in current densities in the pipe wall.

J. Bruce Nestleroth

2004-11-05T23:59:59.000Z

79

Growth and crown architecture of two aspen genotypes exposed to interacting ozone and carbon dioxide  

E-Print Network [OSTI]

Growth and crown architecture of two aspen genotypes exposed to interacting ozone and carbon to O3, atmos- pheric carbon dioxide (CO2) concentrations are increasing rapidly (Keeling et al., 1995 concentrations may offset the detrimental effects of increasing O3 (Allen, 1990). Some studies have shown that CO

80

Genetic variation of hydraulic and wood anatomical traits in hybrid poplar and trembling aspen  

E-Print Network [OSTI]

Genetic variation of hydraulic and wood anatomical traits in hybrid poplar and trembling aspen Stefan G. Schreiber1 , Uwe G. Hacke2 , Andreas Hamann1 and Barb R. Thomas1,3 1 Department of Renewable of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB, Canada T6G 2E3; 3

Hacke, Uwe

Note: This page contains sample records for the topic "group aspen pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Snow ablation modelling in a mature aspen stand of the boreal forest  

E-Print Network [OSTI]

of components of energy transfer at the forest ¯oor. Our previous work successfully predicted snow ablationSnow ablation modelling in a mature aspen stand of the boreal forest J. P. Hardy,1* R. E. Davis,1 R below forest canopies. This work represents a second test of our basic modelling scenario by predict

Ni-Meister, Wenge

82

Final Harvest of Above-Ground Biomass and Allometric Analysis of the Aspen FACE Experiment  

SciTech Connect (OSTI)

The Aspen FACE experiment, located at the US Forest Service Harshaw Research Facility in Oneida County, Wisconsin, exposes the intact canopies of model trembling aspen forests to increased concentrations of atmospheric CO2 and O3. The first full year of treatments was 1998 and final year of elevated CO2 and O3 treatments is scheduled for 2009. This proposal is to conduct an intensive, analytical harvest of the above-ground parts of 24 trees from each of the 12, 30 m diameter treatment plots (total of 288 trees) during June, July & August 2009. This above-ground harvest will be carefully coordinated with the below-ground harvest proposed by D.F. Karnosky et al. (2008 proposal to DOE). We propose to dissect harvested trees according to annual height growth increment and organ (main stem, branch orders, and leaves) for calculation of above-ground biomass production and allometric comparisons among aspen clones, species, and treatments. Additionally, we will collect fine root samples for DNA fingerprinting to quantify biomass production of individual aspen clones. This work will produce a thorough characterization of above-ground tree and stand growth and allocation above ground, and, in conjunction with the below ground harvest, total tree and stand biomass production, allocation, and allometry.

Mark E. Kubiske

2013-04-15T23:59:59.000Z

83

Pipeline and Pressure Vessel R&D under the Hydrogen Regional Infrastructure  

E-Print Network [OSTI]

Pipeline and Pressure Vessel R&D under the Hydrogen Regional Infrastructure Program In Pennsylvania Kevin L. Klug, Ph.D. 25 September 2007 DOE Hydrogen Pipeline Working Group Meeting, Aiken, SC & Sensors Hydrogen Delivery Composite Overwrapped Pressure Vessels (COPVs) Pipeline for Off-Board Hydrogen

84

Gas Pipeline Safety (West Virginia)  

Broader source: Energy.gov [DOE]

The Gas Pipeline Safety Section of the Engineering Division is responsible for the application and enforcement of pipeline safety regulations under Chapter 24B of the West Virginia Code and 49 U.S...

85

Programmable Graphics Pipelines Anjul Patney  

E-Print Network [OSTI]

Programmable Graphics Pipelines By Anjul Patney B.Tech. (Indian Institute of Technology Delhi) 2007 as Abstractions for Computer Graphics 5 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Modern Graphics Pipelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2

Yoo, S. J. Ben

86

PID control of gas pipelines  

SciTech Connect (OSTI)

The use of low cost digital controllers for pipeline control is increasing as the reliability and cost improves. In pipeline applications, the proportional, integral, and derivative (PID) controller algorithm is often used. However, the unique problems associated with pipeline operation have caused manufacturers to modify the basic control algorithms. Features such as set point ramping, built in pressure control, freeze on input error, and high and low output limits help assure safe and predictable pipeline operation.

Coltharp, B.; Bergmann, J. [Baker CAC, Kingwood, TX (United States)

1996-09-01T23:59:59.000Z

87

CASE CRITICAL Keystone XL Pipeline  

E-Print Network [OSTI]

CASE CRITICAL Keystone XL Pipeline: A Line in the Sand? Case Critical is presented by ASU's Global Professor, ASU's School of Geographical Sciences and Urban Planning The Keystone XL Pipeline, a large, and environmental pressures of the heated Pipeline controversy. #12;

Hall, Sharon J.

88

Hydrogen Pipeline Working Group | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013Department ofThispurpose ofPresentation

89

Data-stationary pipelined machine  

SciTech Connect (OSTI)

The paper presents the data-stationary control concept of pipelined machines, with emphasis on its application in image processing systems. A parallel array of pipelined machines for image processing is considered, and data-stationary control is compared with time-stationary control. A system is proposed that is a parallel array of pipelined machines. Each pipeline is a multifunctional, statically configured, data-stationary device. The pipelines do not accommodate branching instructions or interrupts, and the design focus on vector processing only. The system can be used in other applications such as signal processing and arithmetic number crunching. 5 references.

Abdou, I.E.

1984-01-01T23:59:59.000Z

90

How to Create, Modify, and Interface Aspen In-House and User Databanks for System Configuration 2:  

SciTech Connect (OSTI)

The goal of this document is to provide detailed instructions to create, modify, interface, and test Aspen User and In-House databanks with minimal frustration. The level of instructions are aimed at a novice Aspen Plus simulation user who is neither a programming nor computer-system expert. The instructions are tailored to Version 10.1 of Aspen Plus and the specific computing configuration summarized in the Title of this document and detailed in Section 2. Many details of setting up databanks depend on the computing environment specifics, such as the machines, operating systems, command languages, directory structures, inter-computer communications software, the version of the Aspen Engine and Graphical User Interface (GUI), and the directory structure of how these were installed.

Camp, D W

2000-10-27T23:59:59.000Z

91

How to Create, Modify, and Interface Aspen In-House and User Databanks for System Configuration 1:  

SciTech Connect (OSTI)

The goal of this document is to provide detailed instructions to create, modify, interface, and test Aspen User and In-House databanks with minimal frustration. The level of instructions are aimed at a novice Aspen Plus simulation user who is neither a programming nor computer-system expert. The instructions are tailored to Version 10.1 of Aspen Plus and the specific computing configuration summarized in the Title of this document and detailed in Section 2. Many details of setting up databanks depend on the computing environment specifics, such as the machines, operating systems, command languages, directory structures, inter-computer communications software, the version of the Aspen Engine and Graphical User Interface (GUI), and the directory structure of how these were installed.

Camp, D W

2000-10-27T23:59:59.000Z

92

Instrumented Pipeline Initiative  

SciTech Connect (OSTI)

This report summarizes technical progress achieved during the cooperative agreement between Concurrent Technologies Corporation (CTC) and U.S. Department of Energy to address the need for a for low-cost monitoring and inspection sensor system as identified in the Department of Energy (DOE) National Gas Infrastructure Research & Development (R&D) Delivery Reliability Program Roadmap.. The Instrumented Pipeline Initiative (IPI) achieved the objective by researching technologies for the monitoring of pipeline delivery integrity, through a ubiquitous network of sensors and controllers to detect and diagnose incipient defects, leaks, and failures. This report is organized by tasks as detailed in the Statement of Project Objectives (SOPO). The sections all state the objective and approach before detailing results of work.

Thomas Piro; Michael Ream

2010-07-31T23:59:59.000Z

93

Pipeline corridors through wetlands  

SciTech Connect (OSTI)

This paper presents preliminary findings from six vegetational surveys of gas pipeline rights-of-way (ROW) through wetlands and quantifies the impacts of a 20-year-old pipeline ROW through a boreal forest wetland. Six sites of various ages were surveyed in ecosystems ranging from coastal marsh to forested wetland. At all sites except one, both the number and the percentage of wetland species on the Row approximated or exceeded those in the adjacent natural area. The boreal forest study showed that (1) adjacent natural wetland areas were not altered in type; (2) water sheet flow restriction had been reversed by nature; (3) no nonnative plant species invaded the natural area; (4) three-quarters of the ROW area was a wetland, and (5) the ROW increased diversity.

Zimmerman, R.E.; Wilkey, P.L. (Argonne National Lab., IL (United States)); Isaacson, H.R. (Gas Research Institute (United States))

1992-01-01T23:59:59.000Z

94

Pipeline corridors through wetlands  

SciTech Connect (OSTI)

This paper presents preliminary findings from six vegetational surveys of gas pipeline rights-of-way (ROW) through wetlands and quantifies the impacts of a 20-year-old pipeline ROW through a boreal forest wetland. Six sites of various ages were surveyed in ecosystems ranging from coastal marsh to forested wetland. At all sites except one, both the number and the percentage of wetland species on the Row approximated or exceeded those in the adjacent natural area. The boreal forest study showed that (1) adjacent natural wetland areas were not altered in type; (2) water sheet flow restriction had been reversed by nature; (3) no nonnative plant species invaded the natural area; (4) three-quarters of the ROW area was a wetland, and (5) the ROW increased diversity.

Zimmerman, R.E.; Wilkey, P.L. [Argonne National Lab., IL (United States); Isaacson, H.R. [Gas Research Institute (United States)

1992-12-01T23:59:59.000Z

95

Genetic Augmentation of Syringyl Lignin in Low-lignin Aspen Trees, Final Report  

SciTech Connect (OSTI)

As a polysaccharide-encrusting component, lignin is critical to cell wall integrity and plant growth but also hinders recovery of cellulose fibers during the wood pulping process. To improve pulping efficiency, it is highly desirable to genetically modify lignin content and/or structure in pulpwood species to maximize pulp yields with minimal energy consumption and environmental impact. This project aimed to genetically augment the syringyl-to-guaiacyl lignin ratio in low-lignin transgenic aspen in order to produce trees with reduced lignin content, more reactive lignin structures and increased cellulose content. Transgenic aspen trees with reduced lignin content have already been achieved, prior to the start of this project, by antisense downregulation of a 4-coumarate:coenzyme A ligase gene (Hu et al., 1999 Nature Biotechnol 17: 808- 812). The primary objective of this study was to genetically augment syringyl lignin biosynthesis in these low-lignin trees in order to enhance lignin reactivity during chemical pulping. To accomplish this, both aspen and sweetgum genes encoding coniferaldehyde 5-hydroxylase (Osakabe et al., 1999 PNAS 96: 8955-8960) were targeted for over-expression in wildtype or low-lignin aspen under control of either a constitutive or a xylem-specific promoter. A second objective for this project was to develop reliable and cost-effective methods, such as pyrolysis Molecular Beam Mass Spectrometry and NMR, for rapid evaluation of cell wall chemical components of transgenic wood samples. With these high-throughput techniques, we observed increased syringyl-to-guaiacyl lignin ratios in the transgenic wood samples, regardless of the promoter used or gene origin. Our results confirmed that the coniferaldehyde 5-hydroxylase gene is key to syringyl lignin biosynthesis. The outcomes of this research should be readily applicable to other pulpwood species, and promise to bring direct economic and environmental benefits to the pulp and paper industry.

Chung-Jui Tsai; Mark F. Davis; Vincent L. Chiang

2004-11-10T23:59:59.000Z

96

Using Natural Gas Transmission Pipeline Costs to Estimate Hydrogen Pipeline Costs  

E-Print Network [OSTI]

future estimates of hydrogen pipelines. Construction Cost (does this mean for hydrogen pipelines? The objective of thisinto the cost of hydrogen pipelines. To this end I will

Parker, Nathan

2004-01-01T23:59:59.000Z

97

Total Crude by Pipeline  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008 (Next1,Product: Total

98

A pipeline scheduling model  

E-Print Network [OSTI]

is dynamic- ally maintained as the pointer for the next record to be 26 written. This record pointer then is written on the working report as the option number for each of the five possible pipeline options. Also this pointer is written as the first... followed by a discussion of the data items. EXAMPLE: First Data Card CARD COLUMN 1 - 4 5 ? 8 9 ? 14 15 ? 20 21 ? 26 27 ? 32 33 ? 38 39 ? 44 DATA NAME ORIGIN DESTIN XREF (1) XREF (2) XREF ( 3) XREF (4) XREF (5) FIXCCT FORMAT/ SIZE A6...

Beatty, Thomas Melvin

1975-01-01T23:59:59.000Z

99

Machinist Pipeline/Apprentice Program Program Description  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Machinist PipelineApprentice Program Program Description The Machinist Pipeline Program was created by the Prototype Fabrication Division to fill a critical need for skilled...

100

Detection of the internal corrosion in pipeline  

E-Print Network [OSTI]

Detection of the internal corrosion in pipeline. Hyeonbae Kang. In this talk I will explain our new methods to detect internal corrosions in pipelines.

2006-10-17T23:59:59.000Z

Note: This page contains sample records for the topic "group aspen pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

INNOVATIVE ELECTROMAGNETIC SENSORS FOR PIPELINE CRAWLERS  

SciTech Connect (OSTI)

Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they encounter. Recent development efforts include a new generation of powered inspection platforms that crawl slowly inside a pipeline and are able to maneuver past the physical barriers that can limit inspection. At Battelle, innovative electromagnetic sensors are being designed and tested for these new pipeline crawlers. The various sensor types can be used to assess a wide range of pipeline anomalies including corrosion, mechanical damage, and cracks. The Applied Energy Systems Group at Battelle is in the second year of work on a projected three-year development effort. In the first year, two innovative electromagnetic inspection technologies were designed and tested. Both were based on moving high-strength permanent magnets to generate inspection energy. One system involved translating permanent magnets towards the pipe. A pulse of electric current would be induced in the pipe to oppose the magnetization according to Lenz's Law. The decay of this pulse would indicate the presence of defects in the pipe wall. This inspection method is similar to pulsed eddy current inspection methods, with the fundamental difference being the manner in which the current is generated. Details of this development effort were reported in the first semiannual report on this project. The second inspection methodology is based on rotating permanent magnets. The rotating exciter unit produces strong eddy currents in the pipe wall. At distances of a pipe diameter or more from the rotating exciter, the currents flow circumferentially. These circumferential currents are deflected by pipeline defects such as corrosion and axially aligned cracks. Simple sensors are used to detect the change in current densities in the pipe wall. The second semiannual report on this project reported on experimental and modeling results. The results showed that the rotating system was more adaptable to pipeline inspection and therefore only this system will be carried into the second year of the sensor development. In this third reporting period, the rotating system inspection was further developed. Since this is a new inspection modality without published fundamentals to build upon, basic analytical and experimental investigations were performed. A closed form equation for designing rotating exciters and positioning sensors was derived from fundamental principles. Also signal processing methods were investigated for detection and assessment of pipeline anomalies. A lock in amplifier approach was chosen as the method for detecting the signals. Finally, mechanical implementations for passing tight restrictions such as plug valves were investigated. This inspection concept is new and unique; a United States patent application has been submitted.

J. Bruce Nestleroth; Richard J. Davis

2005-05-23T23:59:59.000Z

102

Natural gas pipeline technology overview.  

SciTech Connect (OSTI)

The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by transmission companies. Compressor stations at required distances boost the pressure that is lost through friction as the gas moves through the steel pipes (EPA 2000). The natural gas system is generally described in terms of production, processing and purification, transmission and storage, and distribution (NaturalGas.org 2004b). Figure 1.1-2 shows a schematic of the system through transmission. This report focuses on the transmission pipeline, compressor stations, and city gates.

Folga, S. M.; Decision and Information Sciences

2007-11-01T23:59:59.000Z

103

Development of an ASPEN PLUS physical property database for biofuels components  

SciTech Connect (OSTI)

Physical property data for many of the key components used in the simulation for the ethanol from lignocellulose process are not available in the standard ASPEN PLUS property databases. Indeed, many of the properties necessary to successfully simulate this process are not available anywhere. In addition, inputting the available properties into each simulation is awkward and tedious, and mistakes can be easily introduced when a long list of physical property equation parameters is entered. Therefore, one must evaluate the literature, estimate properties where necessary, and determine a set of consistent physical properties for all components of interest. The components must then be entered into an in-house NREL ASPEN PLUS database so they can be called on without being retyped into each specific simulation. The first phase of this work is complete. A complete set of properties for the currently identifiable important compounds in the ethanol process is attached. With this as the starting base the authors can continue to search for and evaluate new properties or have properties measured in the laboratory and update the central database.

Wooley, R.J.; Putsche, V.

1996-04-01T23:59:59.000Z

104

Common Pipeline Carriers (North Dakota)  

Broader source: Energy.gov [DOE]

Any entity that owns, operates, or manages a pipeline for the purpose of transporting crude petroleum, gas, coal, or carbon dioxide within or through the state of North Dakota, or is engaged in the...

105

Gas Utility Pipeline Tax (Texas)  

Broader source: Energy.gov [DOE]

All gas utilities, including any entity that owns, manages, operates, leases, or controls a pipeline for the purpose of transporting natural gas in the state for sale or compensation, as well as...

106

Pipelines programming paradigms: Prefab plumbing  

SciTech Connect (OSTI)

Mastery of CMS Pipelines is a process of learning increasingly sophisticated tools and techniques that can be applied to your problem. This paper presents a compilation of techniques that can be used as a reference for solving similar problems

Boeheim, C.

1991-08-01T23:59:59.000Z

107

Decoupled Sampling for Graphics Pipelines  

E-Print Network [OSTI]

We propose a generalized approach to decoupling shading from visibility sampling in graphics pipelines, which we call decoupled sampling. Decoupled sampling enables stochastic supersampling of motion and defocus blur at ...

Ragan-Kelley, Jonathan Millar

108

Gas Pipelines, County Roads (Indiana)  

Broader source: Energy.gov [DOE]

A contract with any Board of County Commissioners is required prior to the construction of a pipeline, conduit, or private drain across or along any county highway. The contract will include terms...

109

Interstate Natural Gas Pipelines (Iowa)  

Broader source: Energy.gov [DOE]

This statute confers upon the Iowa Utilities Board the authority to act as an agent of the federal government in determining pipeline company compliance with federal standards within the boundaries...

110

Materials Solutions for Hydrogen Delivery in Pipelines  

E-Print Network [OSTI]

Materials Solutions for Hydrogen Delivery in Pipelines Dr. Subodh K. Das Secat, Inc. September of new pipeline infrastructure Develop barrier coatings for minimizing hydrogen permeation in pipelines;NACE Hydrogen Induced Cracking (HIC) Test Evaluates resistance of pipeline and pressure vessel

111

About U.S. Natural Gas Pipelines  

Reports and Publications (EIA)

This information product provides the interested reader with a broad and non-technical overview of how the U.S. natural gas pipeline network operates, along with some insights into the many individual pipeline systems that make up the network. While the focus of the presentation is the transportation of natural gas over the interstate and intrastate pipeline systems, information on subjects related to pipeline development, such as system design and pipeline expansion, are also included.

2007-01-01T23:59:59.000Z

112

Mapco's NGL Rocky Mountain pipeline  

SciTech Connect (OSTI)

The Rocky Mountain natural gas liquids (NGL) pipeline was born as a result of major producible gas finds in the Rocky Mountain area after gas deregulation. Gas discoveries in the overthurst area indicated considerable volumes of NGL would be available for transportation out of the area within the next 5 to 7 years. Mapco studied the need for a pipeline to the overthrust, but the volumes were not substantial at the time because there was little market and, consequently, little production for ethane. Since that time crude-based products for ethylene manufacture have become less competitive as a feed product on the world plastics market, and ethane demand has increased substantially. This change in the market has caused a major modification in the plans of the NGL producers and, consequently, the ethane content of the NGL stream for the overthrust area is expected to be 30% by volume at startup and is anticipated to be at 45% by 1985. These ethane volumes enhance the feasibility of the pipeline. The 1196-mile Rocky Mountain pipeline will be installed from the existing facility in W. Texas, near Seminole, to Rock Springs, Wyoming. A gathering system will connect the trunk line station to various plant locations. The pipeline development program calls for a capacity of 65,000 bpd by the end of 1981.

Isaacs, S.F.

1980-01-01T23:59:59.000Z

113

Hydrogen permeability and Integrity of hydrogen transfer pipelines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

permeability and Integrity of hydrogen transfer pipelines Hydrogen permeability and Integrity of hydrogen transfer pipelines Presentation by 03-Babu for the DOE Hydrogen Pipeline...

114

Computer Science and Information Technology Student Pipeline  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Student Pipeline Program Description Los Alamos National Laboratory's High Performance Computing and Information Technology Divisions recruit and hire promising...

115

Modeling and Validation of Pipeline Specifications  

E-Print Network [OSTI]

-on-Chip design process. Many existing approaches employ a bottom-up approach to pipeline validation, where description language (ADL) constructs, and thus allows a powerful top-down approach to pipeline validationModeling and Validation of Pipeline Specifications PRABHAT MISHRA and NIKIL DUTT University

Mishra, Prabhat

116

Pipeline Safety Program Oak Ridge National Laboratory  

E-Print Network [OSTI]

, · fracture mechanics and metallurgy, · hydrogen and natural gas pipeline safety, · in-line inspection methodsPipeline Safety Program Oak Ridge National Laboratory managed by UT-Battelle, LLC for the U support to the U.S. Department of Transportation's Pipeline and Hazardous Materials Safety Administration

117

Proceedings of IPC 2004 International Pipeline Conference  

E-Print Network [OSTI]

Proceedings of IPC 2004 International Pipeline Conference October 4 - 8, 2004 Calgary, Alberta) inspection tools have the potential to locate and characterize mechanical damage in pipelines. However, MFL The most common cause of pipeline failure in North America is mechanical damage: denting or gouging

Clapham, Lynann

118

BDP: BrainSuite Diffusion Pipeline  

E-Print Network [OSTI]

BDP: BrainSuite Diffusion Pipeline Chitresh Bhushan #12; Quantify microstructural tissue ROI Connectivity ROI Statistics MPRAGE Diffusion #12;Diffusion Pipeline Dicom to NIfTI Co ROIs Custom ROIs #12;Diffusion Pipeline Dicom to NIfTI Co-registration Diffusion Modeling Tractography

Leahy, Richard M.

119

NAZ EDUCATION PIPELINE the-naz.org  

E-Print Network [OSTI]

NAZ EDUCATION PIPELINE the-naz.org 1200 W. Broadway #250 | Minneapolis, MN 55411 | Family Academy is a foundational component of the NAZ "cradle to career" pipeline. NAZ families can enroll in the Family Academy college ready. Families and children move through a "cradle to career" pipeline that provides

Amin, S. Massoud

120

Tassel Pipeline Tutorial (Command Line Interface)  

E-Print Network [OSTI]

Tassel Pipeline Tutorial (Command Line Interface) Terry Casstevens Institute for Genomic Diversity, Cornell University May 11, 2011 #12;Tassel Pipeline Basics... · Consists of Modules (i.e. Plugins) · Output from one Module can be Input to another Module. Determined by order specified. run_pipeline

Buckler, Edward S.

Note: This page contains sample records for the topic "group aspen pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Trawler: de novo regulatory motif discovery pipeline  

E-Print Network [OSTI]

Trawler: de novo regulatory motif discovery pipeline for chromatin immunoprecipitation Laurence, the fastest computational pipeline to date, to efficiently discover over-represented motifs in chromatin present the Trawler pipeline (Fig. 1a) that attempts the de novo identification of all over

Cai, Long

122

TASSEL: MLM/GLM Pipeline: Guide to using Tassel Pipeline Terry Casstevens (tmc46@cornell.edu), Zhiwu Zhang, Peter Bradbury, and Edward  

E-Print Network [OSTI]

1 TASSEL: MLM/GLM Pipeline: Guide to using Tassel Pipeline Terry Casstevens (tmc46@cornell..............................................................................................................................................................2 Appendix A: MLM Pipeline Diagrams..........................................................................................................3 Appendix B: GLM Pipeline Diagrams

Buckler, Edward S.

123

Analytic prognostic for petrochemical pipelines  

E-Print Network [OSTI]

Pipelines tubes are part of vital mechanical systems largely used in petrochemical industries. They serve to transport natural gases or liquids. They are cylindrical tubes and are submitted to the risks of corrosion due to high PH concentrations of the transported liquids in addition to fatigue cracks due to the alternation of pressure-depression of gas along the time, initiating therefore in the tubes body micro-cracks that can propagate abruptly to lead to failure. The development of the prognostic process for such systems increases largely their performance and their availability, as well decreases the global cost of their missions. Therefore, this paper deals with a new prognostic approach to improve the performance of these pipelines. Only the first mode of crack, that is, the opening mode, is considered.

Abdo Abou Jaoude; Seifedine Kadry; Khaled El-Tawil; Hassan Noura; Mustapha Ouladsine

2012-12-25T23:59:59.000Z

124

THE PIPELINE THESIS One of the requirements of the CUNY Pipeline Program is the Pipeline thesis. This is an independent research  

E-Print Network [OSTI]

THE PIPELINE THESIS One of the requirements of the CUNY Pipeline Program is the Pipeline thesis by writing a Pipeline thesis proposal during the spring of your junior year. The thesis should be completed before "going public." 3) Explore the possibility of doing the Pipeline thesis for credit

Dennehy, John

125

THE PIPELINE THESIS One of the requirements of the CUNY Pipeline Program is the Pipeline thesis. This is an independent research  

E-Print Network [OSTI]

THE PIPELINE THESIS One of the requirements of the CUNY Pipeline Program is the Pipeline thesis by writing a Pipeline thesis proposal during the spring of your junior year. The thesis should be completed. The proposal must be completed and signed by your mentor by the beginning of the Pipeline summer research

Dennehy, John

126

EIA - Natural Gas Pipeline Network - Pipeline Capacity and Utilization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scattering characterizesAnalysis &MapMajor NaturalPipeline

127

EIA - Natural Gas Pipeline Network - Generalized Natural Gas Pipeline  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623Primary MetalsOriginCapacity Design

128

Addressing the workforce pipeline challenge  

SciTech Connect (OSTI)

A secure and affordable energy supply is essential for achieving U.S. national security, in continuing U.S. prosperity and in laying the foundations to enable future economic growth. To meet this goal the next generation energy workforce in the U.S., in particular those needed to support instrumentation, controls and advanced operations and maintenance, is a critical element. The workforce is aging and a new workforce pipeline, to support both current generation and new build has yet to be established. The paper reviews the challenges and some actions being taken to address this need.

Leonard Bond; Kevin Kostelnik; Richard Holman

2006-11-01T23:59:59.000Z

129

Addressing the workforce pipeline challenge  

SciTech Connect (OSTI)

A secure and affordable energy supply is essential for achieving U.S. national security, in continuing U.S. prosperity and in laying the foundations to enable future economic growth. To meet this goal the next generation energy workforce in the U.S., in particular those needed to support instrumentation, controls and advanced operations and maintenance, is a critical element. The workforce is aging and a new workforce pipeline, to support both current generation and new build has yet to be established. The paper reviews the challenges and some actions being taken to address this need. (authors)

Bond, L.; Kostelnik, K.; Holman, R. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3898 (United States)

2006-07-01T23:59:59.000Z

130

Hazardous Liquid Pipelines and Storage Facilities (Iowa)  

Broader source: Energy.gov [DOE]

This statute regulates the permitting, construction, monitoring, and operation of pipelines transporting hazardous liquids, including petroleum products and coal slurries. The definition used in...

131

Pipelines and Underground Gas Storage (Iowa)  

Broader source: Energy.gov [DOE]

These rules apply to intrastate transport of natural gas and other substances via pipeline, as well as underground gas storage facilities. The construction and operation of such infrastructure...

132

Illinois Gas Pipeline Safety Act (Illinois)  

Broader source: Energy.gov [DOE]

Standards established under this Act may apply to the design, installation, inspection, testing, construction, extension, operation, replacement, and maintenance of pipeline facilities. Whenever...

133

Natural Gas Transmission Pipeline Siting Act (Florida)  

Broader source: Energy.gov [DOE]

This Act establishes a centralized and coordinated permitting process for the location of natural gas transmission pipeline corridors and the construction and maintenance of natural gas...

134

GLAST (FERMI) Data-Processing Pipeline  

SciTech Connect (OSTI)

The Data Processing Pipeline ('Pipeline') has been developed for the Gamma-Ray Large Area Space Telescope (GLAST) which launched June 11, 2008. It generically processes graphs of dependent tasks, maintaining a full record of its state, history and data products. The Pipeline is used to automatically process the data down-linked from the satellite and to deliver science products to the GLAST collaboration and the Science Support Center and has been in continuous use since launch with great success. The pipeline handles up to 2000 concurrent jobs and in reconstructing science data produces approximately 750GB of data products using 1/2 CPU-year of processing time per day.

Flath, Daniel L.; Johnson, Tony S.; Turri, Massimiliano; Heidenreich, Karen A.; /SLAC

2011-08-12T23:59:59.000Z

135

Acoustic system for communication in pipelines  

DOE Patents [OSTI]

A system for communication in a pipe, or pipeline, or network of pipes containing a fluid. The system includes an encoding and transmitting sub-system connected to the pipe, or pipeline, or network of pipes that transmits a signal in the frequency range of 3-100 kHz into the pipe, or pipeline, or network of pipes containing a fluid, and a receiver and processor sub-system connected to the pipe, or pipeline, or network of pipes containing a fluid that receives said signal and uses said signal for a desired application.

Martin, II, Louis Peter (San Ramon, CA); Cooper, John F. (Oakland, CA)

2008-09-09T23:59:59.000Z

136

Petroleum Pipeline Eminent Domain Permit Procedures (Georgia)  

Broader source: Energy.gov [DOE]

The Petroleum Pipeline Eminent Domain Permit Procedures serve to protect Georgia's natural and environmental resources by requiring permits be issued by the Director of the Environmental Protection...

137

Capsule injection system for a hydraulic capsule pipelining system  

DOE Patents [OSTI]

An injection system for injecting capsules into a hydraulic capsule pipelining system, the pipelining system comprising a pipeline adapted for flow of a carrier liquid therethrough, and capsules adapted to be transported through the pipeline by the carrier liquid flowing through the pipeline. The injection system comprises a reservoir of carrier liquid, the pipeline extending within the reservoir and extending downstream out of the reservoir, and a magazine in the reservoir for holding capsules in a series, one above another, for injection into the pipeline in the reservoir. The magazine has a lower end in communication with the pipeline in the reservoir for delivery of capsules from the magazine into the pipeline.

Liu, Henry (Columbia, MO)

1982-01-01T23:59:59.000Z

138

Equivalence Checking for Function Pipelining in Behavioral Synthesis  

E-Print Network [OSTI]

on subtle design invariants. Function pipelining (a.k.a. system-level pipelining) is an important, correct-by-construction abstraction of function pipeline; thus, instead of developing pipelineEquivalence Checking for Function Pipelining in Behavioral Synthesis Kecheng Hao, Sandip Ray

Xie, Fei

139

assessment working group: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(PV) Systems June 2012 First Edition 12;California Solar Permitting Guidebook2 47 DOE Hydrogen Pipeline Working Group Workshop Renewable Energy Websites Summary: DOE Hydrogen...

140

airp work group: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(PV) Systems June 2012 First Edition 12;California Solar Permitting Guidebook2 35 DOE Hydrogen Pipeline Working Group Workshop Renewable Energy Websites Summary: DOE Hydrogen...

Note: This page contains sample records for the topic "group aspen pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

aer working group: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(PV) Systems June 2012 First Edition 12;California Solar Permitting Guidebook2 37 DOE Hydrogen Pipeline Working Group Workshop Renewable Energy Websites Summary: DOE Hydrogen...

142

Liquefaction and Pipeline Costs Bruce Kelly  

E-Print Network [OSTI]

1 Liquefaction and Pipeline Costs Bruce Kelly Nexant, Inc. Hydrogen Delivery Analysis Meeting May 8 are representative of hydrogen pipeline costs; 10 percent added to unit hydrogen costs as a contingency Better-9, 2007 Columbia, Maryland #12;2 Hydrogen Liquefaction Basic process Compress Cool to temperature

143

Hydrogen Delivery Technologies and Pipeline Transmission of Hydrogen  

E-Print Network [OSTI]

Hydrogen Delivery Technologies and Systems Pipeline Transmission of Hydrogen Strategic Initiatives, and Infrastructure Technologies Program #12;Pipeline Transmission of Hydrogen --- 2 Copyright: Design & Operation development) #12;Pipeline Transmission of Hydrogen --- 3 Copyright: Future H2 Infrastructure Wind Powered

144

Supplementary Figure 1 SHAPE-MaP data analysis pipeline.  

E-Print Network [OSTI]

Supplementary Figure 1 SHAPE-MaP data analysis pipeline. Outline of software pipeline that fully.1 GHz Intel Core i7 and 16 GB RAM). This strategy is implemented in the SHAPE-MaP Folding Pipeline

Cai, Long

145

EIS-0433: Keystone XL Pipeline  

Broader source: Energy.gov [DOE]

The proposed Keystone XL project consists of a 1,700-mile crude oil pipeline and related facilities that would primarily be used to transport Western Canadian Sedimentary Basin crude oil from an oil supply hub in Alberta, Canada to delivery points in Oklahoma and Texas. This EIS, prepared by the Department of State, evaluates the environmental impacts of the proposed Keystone XL project. DOEs Western Area Power Administration, a cooperating agency, has jurisdiction over certain proposed transmission facilities (construction and operation of a short 230-kv transmission line and construction of a new substation). The State Department published a notice in the Federal Register on February 3, 2012, regarding the denial of the Keystone XL presidential permit (77 FR 5614).

146

Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Permeability and Integrity of Hydrogen Delivery Pipelines Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines Project Objectives: To gain basic understanding of...

147

Evalutation of Natural Gas Pipeline Materials and Infrastructure...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Evalutation of Natural Gas Pipeline Materials and Infrastructure for HydrogenMixed Gas Service Evalutation of Natural Gas Pipeline Materials and Infrastructure for HydrogenMixed...

148

Report to Congress: Dedicated Ethanol Pipeline Feasability Study...  

Energy Savers [EERE]

Report to Congress: Dedicated Ethanol Pipeline Feasability Study - Energy Independence and Security Act of 2007 Section 243 Report to Congress: Dedicated Ethanol Pipeline...

149

"Assessment of the Adequacy of Natural Gas Pipeline Capacity...  

Broader source: Energy.gov (indexed) [DOE]

"Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States" Report Now Available "Assessment of the Adequacy of Natural Gas Pipeline Capacity in...

150

EIA - Natural Gas Pipeline Network - Regional Overview and Links  

U.S. Energy Information Administration (EIA) Indexed Site

Overview and Links About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Regional Overviews and Links to Pipeline...

151

Evaluation of Natural Gas Pipeline Materials for Hydrogen Science...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Evaluation of Natural Gas Pipeline Materials for Hydrogen Science Evaluation of Natural Gas Pipeline Materials for Hydrogen Science Presentation by 04-Adams to DOE Hydrogen...

152

Assessment of the Adequacy of Natural Gas Pipeline Capacity in...  

Broader source: Energy.gov (indexed) [DOE]

Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 Assessment of the Adequacy of Natural Gas Pipeline Capacity in the...

153

argentinian pipeline enlargement: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fiber-reinforced polymer pipe Project Overview: Investigate 25 Code for Hydrogen Hydrogen Pipeline Renewable Energy Websites Summary: 12;2 Code for Hydrogen Pipelines...

154

acicular ferrite pipeline: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fiber-reinforced polymer pipe Project Overview: Investigate 18 Code for Hydrogen Hydrogen Pipeline Renewable Energy Websites Summary: 12;2 Code for Hydrogen Pipelines...

155

alaska pipeline system: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fiber-reinforced polymer pipe Project Overview: Investigate 93 Code for Hydrogen Hydrogen Pipeline Renewable Energy Websites Summary: 12;2 Code for Hydrogen Pipelines...

156

automatic pipeline analysing: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fiber-reinforced polymer pipe Project Overview: Investigate 45 Code for Hydrogen Hydrogen Pipeline Renewable Energy Websites Summary: 12;2 Code for Hydrogen Pipelines...

157

annotation pipelines differences: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fiber-reinforced polymer pipe Project Overview: Investigate 73 Code for Hydrogen Hydrogen Pipeline Renewable Energy Websites Summary: 12;2 Code for Hydrogen Pipelines...

158

alaska highway pipeline: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fiber-reinforced polymer pipe Project Overview: Investigate 45 Code for Hydrogen Hydrogen Pipeline Renewable Energy Websites Summary: 12;2 Code for Hydrogen Pipelines...

159

Harmonic distortion correction in pipelined analog to digital converters  

E-Print Network [OSTI]

Background Correction of Harmonic Distortion in PipelinedBackground Correction of Harmonic Distortion in PipelinedADC with 69dB SNDR Enabled by Digital Harmonic Distortion

Panigada, Andrea

2009-01-01T23:59:59.000Z

160

Hydrogen Delivery Technologies and Systems- Pipeline Transmission of Hydrogen  

Broader source: Energy.gov [DOE]

Hydrogen Delivery Technologies and Systems - Pipeline Transmission of Hydrogen. Design and operations standards and materials for hydrogen and natural gas pipelines.

Note: This page contains sample records for the topic "group aspen pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Pipeline Decommissioning Trial AWE Berkshire UK - 13619  

SciTech Connect (OSTI)

This Paper details the implementation of a 'Decommissioning Trial' to assess the feasibility of decommissioning the redundant pipeline operated by AWE located in Berkshire UK. The paper also presents the tool box of decommissioning techniques that were developed during the decommissioning trial. Constructed in the 1950's and operated until 2005, AWE used a pipeline for the authorised discharge of treated effluent. Now redundant, the pipeline is under a care and surveillance regime awaiting decommissioning. The pipeline is some 18.5 km in length and extends from AWE site to the River Thames. Along its route the pipeline passes along and under several major roads, railway lines and rivers as well as travelling through woodland, agricultural land and residential areas. Currently under care and surveillance AWE is considering a number of options for decommissioning the pipeline. One option is to remove the pipeline. In order to assist option evaluation and assess the feasibility of removing the pipeline a decommissioning trial was undertaken and sections of the pipeline were removed within the AWE site. The objectives of the decommissioning trial were to: - Demonstrate to stakeholders that the pipeline can be removed safely, securely and cleanly - Develop a 'tool box' of methods that could be deployed to remove the pipeline - Replicate the conditions and environments encountered along the route of the pipeline The onsite trial was also designed to replicate the physical prevailing conditions and constraints encountered along the remainder of its route i.e. working along a narrow corridor, working in close proximity to roads, working in proximity to above ground and underground services (e.g. Gas, Water, Electricity). By undertaking the decommissioning trial AWE have successfully demonstrated the pipeline can be decommissioned in a safe, secure and clean manor and have developed a tool box of decommissioning techniques. The tool box of includes; - Hot tapping - a method of breaching the pipe while maintaining containment to remove residual liquids, - Crimp and shear - remote crimping, cutting and handling of pipe using the excavator - Pipe jacking - a way of removing pipes avoiding excavations and causing minimal disturbance and disruption. The details of the decommissioning trial design, the techniques employed, their application and effectiveness are discussed and evaluated here in. (authors)

Agnew, Kieran [AWE, Aldermaston, Reading, RG7 4PR (United Kingdom)] [AWE, Aldermaston, Reading, RG7 4PR (United Kingdom)

2013-07-01T23:59:59.000Z

162

2005 Hydrogen Pipeline Working Group Workshop | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE Blog Posts of 2014 Year inDepartment of EnergyDepartment5

163

2007 Hydrogen Pipeline Working Group Workshop | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE Blog Posts of 2014 Year inDepartment ofPresentations ||77 Fuel Cell7

164

2012 Aspen Winter Conference New Paradigms for Low-Dimensional Electronic Materials, February 5-10, 2012  

SciTech Connect (OSTI)

Aspen Center for Physics Project Summary DOE Budget Period: 10/1/2011 to 9/30/2012 Contract # DE-SC0007479 New Paradigms for Low-Dimensional Electronic Materials The 2012 Aspen Winter Conference on Condensed Matter Physics was held at the Aspen Center for Physics from February 5 to 10, 2012. Seventy-four participants from seven countries, and several universities and national labs attended the workshop titled, ???¢????????New Paradigms for Low-Dimensional Electronic Materials.???¢??????? There were 34 formal talks, and a number of informal discussions held during the week. Talks covered a variety of topics related to DOE BES priorities, including, for example, advanced photon techniques (Hasan, Abbamonte, Orenstein, Shen, Ghosh) and predictive theoretical modeling of materials properties (Rappe, Pickett, Balents, Zhang, Vanderbilt); the full conference schedule is provided with this report. The week???¢????????s events included a public lecture (???¢????????Quantum Matters???¢??????? given by Chetan Nayak from Microsoft Research) and attended by 234 members of the public, and a physics caf???????© geared for high schoolers that is a discussion with physicists conducted by Kathryn Moler (Stanford University) and Andrew M. Rappe (University of Pennsylvania) and attended by 67 locals and visitors. While there were no published proceedings, some of the talks are posted online and can be Googled. The workshop was organized by Joel Moore (University of California Berkeley), Chetan Nayak (Microsoft Research), Karin Rabe (Rutgers University), and Matthias Troyer (ETH Zurich). Two organizers who did not attend the conference were Gabriel Aeppli (University College London & London Centre for Nanotechnology) and Andrea Cavalleri (Oxford University & Max Planck Hamburg).

Moore, Joel; Rabe, Karin; Nayak, Chetan; Troyer, Matthias

2012-05-01T23:59:59.000Z

165

Experience with pipelined multiple instruction streams  

SciTech Connect (OSTI)

Pipelining has been used to implement efficient, high-speed vector computers. It is also an effective method for implementing multiprocessors. The Heterogeneous Element Processor (HEP) built by Denelcor Incorporated is the first commercially available computer system to use pipelining to implement multiple processes. This paper introduces the architecture and programming environment of the HEP and surveys a range of scientific applications programs for which parallel versions have been produced, tested, and analyzed on this computer. In all cases, the ideal of one instruction completion every pipeline step time is closely approached. Speed limitations in the parallel programs are more often a result of the extra code necessary to ensure synchronization than of actual synchronization lockout at execution time. The pipelined multiple instruction stream architecture is shown to cover a wide range of applications with good utilization of the parallel hardware.

Jordon, H.F.

1984-01-01T23:59:59.000Z

166

Overview of interstate hydrogen pipeline systems.  

SciTech Connect (OSTI)

The use of hydrogen in the energy sector of the United States is projected to increase significantly in the future. Current uses are predominantly in the petroleum refining sector, with hydrogen also being used in the manufacture of chemicals and other specialized products. Growth in hydrogen consumption is likely to appear in the refining sector, where greater quantities of hydrogen will be required as the quality of the raw crude decreases, and in the mining and processing of tar sands and other energy resources that are not currently used at a significant level. Furthermore, the use of hydrogen as a transportation fuel has been proposed both by automobile manufacturers and the federal government. Assuming that the use of hydrogen will significantly increase in the future, there would be a corresponding need to transport this material. A variety of production technologies are available for making hydrogen, and there are equally varied raw materials. Potential raw materials include natural gas, coal, nuclear fuel, and renewables such as solar, wind, or wave energy. As these raw materials are not uniformly distributed throughout the United States, it would be necessary to transport either the raw materials or the hydrogen long distances to the appropriate markets. While hydrogen may be transported in a number of possible forms, pipelines currently appear to be the most economical means of moving it in large quantities over great distances. One means of controlling hydrogen pipeline costs is to use common rights-of-way (ROWs) whenever feasible. For that reason, information on hydrogen pipelines is the focus of this document. Many of the features of hydrogen pipelines are similar to those of natural gas pipelines. Furthermore, as hydrogen pipeline networks expand, many of the same construction and operating features of natural gas networks would be replicated. As a result, the description of hydrogen pipelines will be very similar to that of natural gas pipelines. The following discussion will focus on the similarities and differences between the two pipeline networks. Hydrogen production is currently concentrated in refining centers along the Gulf Coast and in the Farm Belt. These locations have ready access to natural gas, which is used in the steam methane reduction process to make bulk hydrogen in this country. Production centers could possibly change to lie along coastlines, rivers, lakes, or rail lines, should nuclear power or coal become a significant energy source for hydrogen production processes. Should electrolysis become a dominant process for hydrogen production, water availability would be an additional factor in the location of production facilities. Once produced, hydrogen must be transported to markets. A key obstacle to making hydrogen fuel widely available is the scale of expansion needed to serve additional markets. Developing a hydrogen transmission and distribution infrastructure would be one of the challenges to be faced if the United States is to move toward a hydrogen economy. Initial uses of hydrogen are likely to involve a variety of transmission and distribution methods. Smaller users would probably use truck transport, with the hydrogen being in either the liquid or gaseous form. Larger users, however, would likely consider using pipelines. This option would require specially constructed pipelines and the associated infrastructure. Pipeline transmission of hydrogen dates back to late 1930s. These pipelines have generally operated at less than 1,000 pounds per square inch (psi), with a good safety record. Estimates of the existing hydrogen transmission system in the United States range from about 450 to 800 miles. Estimates for Europe range from about 700 to 1,100 miles (Mohipour et al. 2004; Amos 1998). These seemingly large ranges result from using differing criteria in determining pipeline distances. For example, some analysts consider only pipelines above a certain diameter as transmission lines. Others count only those pipelines that transport hydrogen from a producer to a customer (e.g., t

Gillette, J .L.; Kolpa, R. L

2008-02-01T23:59:59.000Z

167

On-the-fly pipeline parallelism  

E-Print Network [OSTI]

Pipeline parallelism organizes a parallel program as a linear sequence of s stages. Each stage processes elements of a data stream, passing each processed data element to the next stage, and then taking on a new element ...

Lee, I-Ting Angelina

168

Exploiting level sensitive latches in wire pipelining  

E-Print Network [OSTI]

The present research presents procedures for exploitation of level sensitive latches in wire pipelining. The user gives a Steiner tree, having a signal source and set of destination or sinks, and the location in rectangular plane, capacitive load...

Seth, Vikram

2005-02-17T23:59:59.000Z

169

Rotary Pipeline Processors Simon Moore, Peter Robinson, Steve Wilcox  

E-Print Network [OSTI]

to the current range of superscalar designs using multiple instruction issue into parallel pipelines to increase] is designed around a bi-directional pipeline carry- ing instructions and arguments in one direction it will start to execute as soon as the data arrives. 2.2 Basic Pipeline Construction A rotary pipeline

Robinson, Peter

170

ORIGINAL CONTRIBUTION The Physician-Scientist Career Pipeline  

E-Print Network [OSTI]

ORIGINAL CONTRIBUTION The Physician-Scientist Career Pipeline in 2005 Build It, and They Will Come, the pipeline of physician- scientists has a serious problem, first de- scribed more than a generation ago.2-scientist career pipeline. Design We assessed recent trends in the physician-scientist career pipeline using data

Oliver, Douglas L.

171

Reference: RGL 84-07 Subject: MAPPING PIPELINES  

E-Print Network [OSTI]

Reference: RGL 84-07 Subject: MAPPING PIPELINES Title: CHARTING OF PIPELINES AND CABLES Issued: 05/01/84 Expires: 12/31/86 Originator: DAEN-CWO-N Description: REQUIRES MAPPING OF PIPELINE CROSSINGS ON NAUTICAL and pipeline crossings on nautical charts published by the Government. This policy is contained in 33 CFR 209

US Army Corps of Engineers

172

Pipelined Memory Controllers for DSP Applications Handling Unpredictable Data Accesses  

E-Print Network [OSTI]

Pipelined Memory Controllers for DSP Applications Handling Unpredictable Data Accesses Bertrand Le pipelined memory access controllers can be generated improving the pipeline access mode to RAM. We focus as unpredictable ones (dynamic address computations) in a pipeline way. 1 Introduction Actual researches

Paris-Sud XI, Université de

173

Pipelined FPGA Adders LIP Research Report RR2010-16  

E-Print Network [OSTI]

Pipelined FPGA Adders LIP Research Report RR2010-16 Florent de Dinechin, Hong Diep Nguyen, Bogdan and frequency for pipelined large-precision adders on FPGA. It compares three pipelined adder architectures: the classical pipelined ripple-carry adder, a variation that reduces register count, and an FPGA- specific

Paris-Sud XI, Université de

174

A moving horizon solution to the gas pipeline optimization problem  

E-Print Network [OSTI]

A moving horizon solution to the gas pipeline optimization problem EWO MEETING, Fall 2010 Ajit Gopalakrishnan Advisor: L. T. Biegler #12;Background: Gas pipeline optimization 2 Gas pipeline networks optimization Load forecast Weather, load history Controller #12;Pipeline modeling [Baumrucker & Biegler, 09

Grossmann, Ignacio E.

175

Seadrift/UCAR pipelines achieve ISO registration  

SciTech Connect (OSTI)

Proper meter station design using gas orifice meters must include consideration of a number of factors to obtain the best accuracy available. This paper reports that Union Carbide's Seadrift/UCAR Pipelines has become the world's first cross-country pipelines to comply with the International Standards Organization's quality criteria for transportation and distribution of ethylene. Carbide's organization in North America and Europe, with 22 of the corporation's businesses having the internationally accepted quality system accredited by a third-party registrar.

Arrieta, J.R.; Byrom, J.A.; Gasko, H.M. (Carbide Corp., Danbury, CT (United States))

1992-10-01T23:59:59.000Z

176

Statistical Modeling of Pipeline Delay and Design of Pipeline under Process Variation to Enhance Yield in sub-100nm Technologies*  

E-Print Network [OSTI]

Statistical Modeling of Pipeline Delay and Design of Pipeline under Process Variation to Enhance), Intel Corp. and Semiconductor Research Corp. (SRC). Abstract Operating frequency of a pipelined circuit is determined by the delay of the slowest pipeline stage. However, under statistical delay variation in sub-100

Paris-Sud XI, Université de

177

PipelinePipelineSeptember -October 2009 Volume 1, Issue 8 Energy Management's It All Adds Up  

E-Print Network [OSTI]

.umn.edu/italladdsup FM Safety: Safe Driving is a Full-Time Job continued on page 3 Building occupants take the energyPipelinePipelineSeptember - October 2009 Volume 1, Issue 8 Energy Management's It All Adds Up energy conservation campaign seeks to reduce annual campus energy usage five percent by the end of 2010

Webb, Peter

178

A Cheap Levitating Gas/Load Pipeline  

E-Print Network [OSTI]

Design of new cheap aerial pipelines, a large flexible tube deployed at high altitude, for delivery of natural (fuel) gas, water and other payload over a long distance is delineated. The main component of the natural gas is methane which has a specific weight less than air. A lift force of one cubic meter of methane equals approximately 0.5 kg (1 pound). The lightweight film flexible pipeline can be located in air at high altitude and, as such, does not damage the environment. Using the lift force of this pipeline and wing devices payloads of oil, water, or other fluids, or even solids such as coal, cargo, passengers can be delivered cheaply at long distance. This aerial pipeline dramatically decreases the cost and the time of construction relative to conventional pipelines of steel which saves energy and greatly lowers the capital cost of construction. The article contains a computed project for delivery 24 billion cubic meters of gas and tens of million tons of oil, water or other payload per year.

Alexander Bolonkin

2008-12-02T23:59:59.000Z

179

A Web-Accessible Protein Structure Prediction Pipeline Michael S. Lee  

E-Print Network [OSTI]

atomic structures. The pipeline was designed to be used with high performance computing clusters is currently installed at the Department of Defense (DoD) Maui High Performance Computing CenterD High Performance Computing Modernization Program Users Group Conference 978-0-7695-3946-1/10 $26

180

Experience with pipelined multiple instruction streams  

SciTech Connect (OSTI)

The authors introduces the architecture and programming environment of the heterogeneous element processor (HEP) and surveys a range of scientific applications programs for which parallel versions have been produced, tested, and analyzed on this computer. In all cases, the ideal of one instruction completion every pipeline step time is closely approached. Speed limitations in the parallel programs are more often a result of the extra code necessary to ensure synchronization than of actual synchronization lockout at execution time. The pipelined multiple instruction stream architecture is shown to cover a wide range of applications with good utilization of the parallel hardware. 35 references.

Jordan, H.F.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "group aspen pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Self lubrication of bitumen froth in pipelines  

SciTech Connect (OSTI)

In this paper I will review the main properties of water lubricated pipelines and explain some new features which have emerged from studies of self-lubrication of Syncrudes` bitumen froth. When heavy oils are lubricated with water, the water and oil are continuously injected into a pipeline and the water is stable when in a lubricating sheath around the oil core. In the case of bitumen froth obtained from the Alberta tar sands, the water is dispersed in the bitumen and it is liberated at the wall under shear; water injection is not necessary because the froth is self-lubricating.

Joseph, D.D. [Univ. of Minnesota, Minneapolis, MN (United States)

1997-12-31T23:59:59.000Z

182

Pipeline inspection using an autonomous underwater vehicle  

SciTech Connect (OSTI)

Pipeline inspection can be carried out by means of small Autonomous Underwater Vehicles (AUVs), operating either with a control link to a surface vessel, or totally independently. The AUV offers an attractive alternative to conventional inspection methods where Remotely Operated Vehicles (ROVs) or paravanes are used. A flatfish type AUV ``MARTIN`` (Marine Tool for Inspection) has been developed for this purpose. The paper describes the proposed types of inspection jobs to be carried out by ``MARTIN``. The design and construction of the vessel, its hydrodynamic properties, its propulsion and control systems are discussed. The pipeline tracking and survey systems, as well as the launch and recovery systems are described.

Egeskov, P.; Bech, M. [Maridan Aps., Hoersholm (Denmark); Bowley, R. [TSS Ltd., Weston-on-the-Green (United Kingdom); Aage, C. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Ocean Engineering

1995-12-31T23:59:59.000Z

183

Innovative Electromagnetic Sensors for Pipeline Crawlers  

SciTech Connect (OSTI)

Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they encounter. Recent development efforts include a new generation of powered inspection platforms that crawl slowly inside a pipeline and are able to maneuver past the physical barriers that can limit inspection. At Battelle, innovative electromagnetic sensors are being designed and tested for these new pipeline crawlers. The various sensor types can be used to assess a wide range of pipeline anomalies including corrosion, mechanical damage, and cracks. Battelle is in the final year on a projected three-year development effort. In the first year, two innovative electromagnetic inspection technologies were designed and tested. Both were based on moving high-strength permanent magnets to generate inspection energy. One system involved translating permanent magnets towards the pipe. A pulse of electric current would be induced in the pipe to oppose the magnetization according to Lenz's Law. The decay of this pulse would indicate the presence of defects in the pipe wall. This inspection method is similar to pulsed eddy current inspection methods, with the fundamental difference being the manner in which the current is generated. Details of this development effort were reported in the first semiannual report on this project. The second inspection methodology is based on rotating permanent magnets. The rotating exciter unit produces strong eddy currents in the pipe wall. At distances of a pipe diameter or more from the rotating exciter, the currents flow circumferentially. These circumferential currents are deflected by pipeline defects such as corrosion and axially aligned cracks. Simple sensors are used to detect the change in current densities in the pipe wall. The second semiannual report on this project reported on experimental and modeling results. The results showed that the rotating system was more adaptable to pipeline inspection and therefore only this system will be carried into the second year of the sensor development. In the third reporting period, the rotating system inspection was further developed. Since this is a new inspection modality without published fundamentals to build upon, basic analytical and experimental investigations were performed. A closed form equation for designing rotating exciters and positioning sensors was derived from fundamental principles. Also signal processing methods were investigated for detection and assessment of pipeline anomalies. A lock in amplifier approach was chosen as the method for detecting the signals. Finally, mechanical implementations for passing tight restrictions such as plug valves were investigated. This inspection concept is new and unique; a United States patent application has been submitted. In this reporting period, a general design of the rotating permanent magnet inspection system is presented. The rotating permanent magnet inspection system is feasible for pipes ranging in diameter from 8 to 18 inches using a two pole configuration. Experimental results and theoretical calculations provide the basis for selection of the critical design parameters. The parameters include a significant magnet to pipe separation that will facilitate the passage of pipeline features. With the basic values of critical components established, the next step is a detailed mechanical design of a pipeline ready inspection system.

J. Bruce Nestleroth

2006-05-04T23:59:59.000Z

184

,"U.S. Natural Gas Pipeline Imports From Canada (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

2015 1:45:50 PM" "Back to Contents","Data 1: U.S. Natural Gas Pipeline Imports From Canada (MMcf)" "Sourcekey","N9102CN2" "Date","U.S. Natural Gas Pipeline Imports From Canada...

185

Statistical Modeling of Corrosion Failures in Natural Gas Transmission Pipelines  

E-Print Network [OSTI]

and deterioration processes in pipeline networks. Therefore, pipeline operators need to rethink their corrosion prevention strategies. These results of corrosion failures are forcing the companies to develop accurate maintenance models based on failure frequency...

Cobanoglu, Mustafa Murat

2014-03-28T23:59:59.000Z

186

Energy Department Moves Forward on Alaska Natural Gas Pipeline...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Moves Forward on Alaska Natural Gas Pipeline Loan Guarantee Program Energy Department Moves Forward on Alaska Natural Gas Pipeline Loan Guarantee Program May 26, 2005 - 1:03pm...

187

Some applications of pipelining techniques in parallel scientific computing  

E-Print Network [OSTI]

In this thesis, we study the applicability of pipelining techniques to the development of parallel algorithms for scientific computation. General principles for pipelining techniques are discussed and two applications, Gram-Schmidt orthogonalization...

Deng, Yuanhua

1996-01-01T23:59:59.000Z

188

Blending Hydrogen into Natural Gas Pipeline Networks: A Review...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues The United States has 11...

189

3D Polygon Rendering Pipeline Michael Kazhdan  

E-Print Network [OSTI]

3D Polygon Rendering Pipeline Michael Kazhdan (600.357 / 600.457) HB Ch. 12 FvDFH Ch. 6, 18.3 #12;3D Polygon Rendering · Many applications use rendering of 3D polygons with direct illumination #12;3D Polygon Rendering · Many applications use rendering of 3D polygons with direct illumination Half-Life 2

Kazhdan, Michael

190

3D Polygon Rendering Pipeline Michael Kazhdan  

E-Print Network [OSTI]

3D Polygon Rendering Pipeline Michael Kazhdan (600.357 / 600.457) HB Ch. 12 FvDFH Ch. 6, 18.3 #12;3D Polygon Rendering · Many applications use rendering of 3D polygons with direct illumination #12;3D Polygon Rendering · Many applications use rendering of 3D polygons with direct illumination Crysis 3

Kazhdan, Michael

191

Energy Reduction in California Pipeline Operations  

E-Print Network [OSTI]

technologies that can help California's industrial sectors reduce their energy consumption, their water use. In addition to significant baseline energy consumption, more energy is often required by pipelines Energy Commission Public Interest Energy Research Program Industrial/Agriculture/Water EndUse Phone

192

New system pinpoints leaks in ethylene pipeline  

SciTech Connect (OSTI)

A model-based leak detection, PLDS, developed by Modisette Associates, Inc., Houston has been operating on the Solvay et Cie ethylene pipeline since 1989. The 6-in. pipeline extends from Antwerp to Jemeppe sur Sambre, a distance of 73.5 miles and is buried at a depth of 3 ft. with no insulation. Except for outlets to flares, located every 6 miles for test purposes, there are no injections or deliveries along the pipeline. Also, there are block valves, which are normally open, at each flare location. This paper reviews the design and testing procedures used to determine the system performance. These tests showed that the leak system was fully operational and no false alarms were caused by abrupt changes in inlet/outlet flows of the pipeline. It was confirmed that leaks larger than 2 tonnes/hr. (40 bbl/hr) are quickly detected and accurately located. Also, maximum leak detection sensitivity is 1 tonne/hr. (20 bbl/hr) with a detection time of one hour. Significant operational, configuration, and programming issues also were found during the testing program. Data showed that temperature simulations needed re-examining for improvement since accurate temperature measurements are important. This is especially true for ethylene since its density depends largely on temperature. Another finding showed the averaging period of 4 hrs. was too long and a 1 to 2 hr. interval was better.

Hamande, A. [Solvay et Cie, Jemeppe sur Sambre (Belgium); Condacse, V.; Modisette, J. [Modisette Associates, Inc., Houston, TX (United States)

1995-04-01T23:59:59.000Z

193

The effect of pipe spacing on marine pipeline scour  

E-Print Network [OSTI]

. The exposed pipe may be damaged since pipelines generally are not designed for conditions where spanning and vibrations due to vortex shedding occur (Herbich et al. 1984). In shallow depths, pipelines are usually buried, placed in trenches or undergo self..., exposing buried pipelines. Once exposed, the pipe lays on the surface of the seabed, and is further subjected to scouring currents. Local and area scour threaten pipeline stability which may damage the pipe. Scour holes endanger stability when large free...

Westerhorstmann, Joseph Henry

2012-06-07T23:59:59.000Z

194

INNOVATIVE ELECTROMAGNETIC SENSORS FOR PIPELINE CRAWLERS  

SciTech Connect (OSTI)

Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they encounter. Recent development efforts include a new generation of powered inspection platforms that crawl slowly inside a pipeline and are able to maneuver past the physical barriers that can limit inspection. At Battelle, innovative electromagnetic sensors are being designed and tested for these new pipeline crawlers. The various sensor types can be used to assess a wide range of pipeline anomalies including corrosion, mechanical damage, and cracks. Battelle has completed the second year of work on a projected three-year development effort. In the first year, two innovative electromagnetic inspection technologies were designed and tested. Both were based on moving high-strength permanent magnets to generate inspection energy. One system involved translating permanent magnets towards the pipe. A pulse of electric current would be induced in the pipe to oppose the magnetization according to Lenz's Law. The decay of this pulse would indicate the presence of defects in the pipe wall. This inspection method is similar to pulsed eddy current inspection methods, with the fundamental difference being the manner in which the current is generated. Details of this development effort were reported in the first semiannual report on this project. The second inspection methodology is based on rotating permanent magnets. The rotating exciter unit produces strong eddy currents in the pipe wall. At distances of a pipe diameter or more from the rotating exciter, the currents flow circumferentially. These circumferential currents are deflected by pipeline defects such as corrosion and axially aligned cracks. Simple sensors are used to detect the change in current densities in the pipe wall. The second semiannual report on this project reported on experimental and modeling results. The results showed that the rotating system was more adaptable to pipeline inspection and therefore only this system will be carried into the second year of the sensor development. In the third reporting period, the rotating system inspection was further developed. Since this is a new inspection modality without published fundamentals to build upon, basic analytical and experimental investigations were performed. A closed form equation for designing rotating exciters and positioning sensors was derived from fundamental principles. Also signal processing methods were investigated for detection and assessment of pipeline anomalies. A lock in amplifier approach was chosen as the method for detecting the signals. Finally, mechanical implementations for passing tight restrictions such as plug valves were investigated. This inspection concept is new and unique; a United States patent application has been submitted. In this fourth reporting period, the rotating system inspection was further developed. A multichannel real-time data recorder system was implemented and fundamental experiments were conducted to provide data to aid in the design of the rotating magnetizer system. An unexpected but beneficial result was achieved when examining the separation between the rotating magnet and the pipe wall; separations of over an inch could be tolerated. Essentially no change in signal from corrosion anomalies could be detected for separations up to 1.35 inches. The results presented in this report will be used to achieve the next deliverable, designs of components of the rotating inspection system that will function with inspection crawlers in a pipeline environment.

J. Bruce Nestleroth

2005-11-30T23:59:59.000Z

195

Architectural Considerations for Application-Specific Counterflow Pipelines  

E-Print Network [OSTI]

a new pipeline organization called the Counterflow Pipeline (CFP). This paper evaluates CFP design to an application can be constructed automatically. Third, we present measurements that evaluate CFP design tradeArchitectural Considerations for Application-Specific Counterflow Pipelines Bruce R. Childers, Jack

Childers, Bruce

196

Sensor and transmitter system for communication in pipelines  

DOE Patents [OSTI]

A system for sensing and communicating in a pipeline that contains a fluid. An acoustic signal containing information about a property of the fluid is produced in the pipeline. The signal is transmitted through the pipeline. The signal is received with the information and used by a control.

Cooper, John F.; Burnham, Alan K.

2013-01-29T23:59:59.000Z

197

Method for route selection of transcontinental natural gas pipelines  

E-Print Network [OSTI]

1 Method for route selection of transcontinental natural gas pipelines Fotios G. Thomaidis1@kepa.uoa.gr Abstract. The route of transcontinental natural gas pipelines is characterized by complexity, compared choices. Keywords: Optimum route method, natural gas, transcontinental pipelines, Caspian Region ­ E

Kouroupetroglou, Georgios

198

Hydrogen permeability and Integrity of hydrogen transfer pipelines  

E-Print Network [OSTI]

Hydrogen permeability and Integrity of hydrogen transfer pipelines Team: Sudarsanam Suresh Babu, Z Pressure Permeation Testing) Hydrogen Pipeline R&D, Project Review Meeting Oak Ridge National Laboratory direction and review) #12;Outline of the presentation Background Hydrogen delivery through steel pipelines

199

PSPP: A Protein Structure Prediction Pipeline for Computing Clusters  

E-Print Network [OSTI]

PSPP: A Protein Structure Prediction Pipeline for Computing Clusters Michael S. Lee1,2,3 , Rajkumar. Methodology/Principal Findings: The pipeline consists of a Perl core that integrates more than 20 individual-delimited, and hypertext markup language (HTML) formats. So far, the pipeline has been used to study viral and bacterial

200

Radiological Habits Survey: Chapelcross Liquid Effluent Pipeline, 2002  

E-Print Network [OSTI]

Radiological Habits Survey: Chapelcross Liquid Effluent Pipeline, 2002 Science commissioned Pipeline, 2002 The Centre for Environment, Fisheries and Aquaculture Science Lowestoft Laboratory Pakefield OF SURVEY 5 2.1 Pipeline description 5 2.2 Occupancy 6 2.3 Gamma dose rate measurements 7 3 SURVEY FINDINGS

Note: This page contains sample records for the topic "group aspen pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Capabilities of the VLA pipeline in AIPS Lorant O. Sjouwerman  

E-Print Network [OSTI]

Capabilities of the VLA pipeline in AIPS Lor??ant O. Sjouwerman National Radio Astronomy Observatory November 15, 2006 Abstract This document describes the VLA pipeline procedure. The procedure runs in AIPS, though a system has been set up to process VLA data with this pipeline from a UNIX command line

Sjouwerman, Loránt

202

Rapid communication Mapping urban pipeline leaks: Methane leaks across Boston  

E-Print Network [OSTI]

Rapid communication Mapping urban pipeline leaks: Methane leaks across Boston Nathan G. Phillips a of methane (CH4) in the United States. To assess pipeline emissions across a major city, we mapped CH4 leaks extraction and pipeline transmission are the largest human-derived source of emissions (EPA, 2012). However

Jackson, Robert B.

203

Color Appearance and the Digital Imaging Pipeline Brian A. Wandell  

E-Print Network [OSTI]

Color Appearance and the Digital Imaging Pipeline Brian A. Wandell Psychology Department Stanford reproduction pipeline, spanning image capture, processing and display, must be designed to account for the properties of the human observer. In designing an image pipeline, three principles of human vision

Wandell, Brian A.

204

INFORMAL REPORT DETECTION OF INTERSTATE LIQUIDS PIPELINE LEAKS  

E-Print Network [OSTI]

BNL-65970 INFORMAL REPORT DETECTION OF INTERSTATE LIQUIDS PIPELINE LEAKS: FEASIBILITY EVALUATION R PIPELINE LEAKS: FEASIBILITY EVALUATION A Concept Paper Russell N. Dietz, Head Gunnar I. Senum Tracer with Battelle Memorial Institute and the Colonial Pipeline Company #12;ABSTRACT The approximately 200,000-mile

205

AIPS Memo 112 Capabilities of the VLA pipeline in AIPS  

E-Print Network [OSTI]

AIPS Memo 112 Capabilities of the VLA pipeline in AIPS Lorant O. Sjouwerman March 19, 2007 Abstract This document describes the VLA pipeline procedure. The procedure runs in AIPS, though a system has been set up to process VLA data with this pipeline from a UNIX command line. The latter and an analysis of a pilot

Sjouwerman, Loránt

206

Software Pipelined Execution of Stream Programs on GPUs  

E-Print Network [OSTI]

Software Pipelined Execution of Stream Programs on GPUs Abhishek Udupa, R. Govindarajan, Matthew J task, data and pipeline parallelism which can be exploited on modern Graphics Processing Units (GPUsIt to GPUs and propose an efficient technique to software pipeline the execution of stream programs on GPUs

Plotkin, Joshua B.

207

INT WFS Pipeline Processing Mike Irwin & Jim Lewis  

E-Print Network [OSTI]

INT WFS Pipeline Processing Mike Irwin & Jim Lewis Institute of Astronomy, Madingley Road pipeline processing developed specifically for the Wide Field Sur­ vey (WFS). The importance of accurate and complete FITS header information is stresed. Data processing products output from the complete pipeline

Irwin, Mike

208

CUNY Pipeline Program for Careers in College Teaching and Research  

E-Print Network [OSTI]

CUNY Pipeline Program for Careers in College Teaching and Research Educational Opportunity to the CUNY Pipeline Program which is designed to prepare promising undergraduate students for admission;CUNY Pipeline Program for Careers in College Teaching and Research Educational Opportunity & Diversity

Dennehy, John

209

Evolution of Graphics Pipelines 1 Understanding the Graphics Heritage  

E-Print Network [OSTI]

Evolution of Graphics Pipelines 1 Understanding the Graphics Heritage the era of fixed-function graphics pipelines the stages to render triangles 2 Programmable Real-Time Graphics programmable vertex and fragment processors an example of a programmable pipeline unified graphics and computing processors GPU

Verschelde, Jan

210

Design of a model pipeline for testing of piezoelectric micro power generator for the Trans-Alaska Pipeline System  

E-Print Network [OSTI]

In order to provide a reliable corrosion detection system for the Trans-Alaska Pipeline System (TAPS), a distributed wireless self-powered sensor array is needed to monitor the entire length of the pipeline at all times. ...

Lah, Mike M. (Mike Myoung)

2007-01-01T23:59:59.000Z

211

E-Print Network 3.0 - api pipeline conference Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: ); SOCIETY OF INDONESIAN PETROLEUM ENGINEERS (IATMI) ASIAN PIPELINE CONFERENCE ASEAN COUNCIL ON PETROLEUM... INSTITUTE (COPRI) DEEPWATER PIPELINE & RISER TECHNOLOGY...

212

TASSEL 3.0 / 4.0 Pipeline Command Line Interface: Guide to using Tassel Pipeline Terry Casstevens (tmc46@cornell.edu)  

E-Print Network [OSTI]

1 TASSEL 3.0 / 4.0 Pipeline Command Line Interface: Guide to using Tassel Pipeline Terry Casstevens....................................................................................................................................................................... 3 Pipeline Controls.0_standalone or tassel4.0_standalone. Execute On Windows, use run_pipeline.bat to execute the pipeline. In UNIX

Buckler, Edward S.

213

Pipeline safety joint eliminates need for divers  

SciTech Connect (OSTI)

The Sea-Hook coupling is a diverless pressure-compensated pipeline safety joint designed to protect the pipe from damage by excessive physical loads. The coupling provides a predetermined weak point in the line that will cause a controlled separation when the line is exposed to strong wave action or dragging anchors. Moreover, it offers prepressurized remote lockout protection, metal seal integrity, no hand-up separation, enclosed bolting, optimal manual lockout, and no springs or shear rings.

Not Available

1983-04-01T23:59:59.000Z

214

Drag reduction in coal log pipelines  

SciTech Connect (OSTI)

It is well-known that solutions of dissolved long-chain macromolecules produce lower friction or drag losses than with the solvent alone. In coal log pipeline (CLP), water is the conveying medium. Synthetic polymers such as poly(ethylene oxide) have been dissolved in water and tested for their extent of drag reduction as a function of concentration and other variables. Lab-scale experimental results for CLP indicate substantial drag reduction at low concentration levels of polymer. But, the macromolecules exhibit degradation under mechanical shear stresses. The large molecules break into smaller units. This degradation effect causes a loss of drag reduction. However, high levels of drag reduction can be maintained as follows: (1) by injecting polymer into the CLP at several locations along the pipeline, (2) by injecting polymer of different particle sizes, (3) by using more robust types of polymers, or (4) by using polymer-fiber mixtures. This report presents the value of drag-reducing agents in terms of pumping power net cost savings. In addition, this report outlines the environmental impact of drag reduction polymers, and end-of-pipeline water treatment processes. For an operating CLP, hundreds of miles in length, the use of poly(ethylene oxide) as a drag reducing agent provides significant pumping power cost savings at a minimal materials cost.

Marrero, T.R.; Liu, H. [Univ. of Missouri, Columbia, MO (United States). Capsule Pipeline Research Center

1996-12-31T23:59:59.000Z

215

Hydrogen pipeline compressors annual progress report.  

SciTech Connect (OSTI)

The objectives are: (1) develop advanced materials and coatings for hydrogen pipeline compressors; (2) achieve greater reliability, greater efficiency, and lower capital in vestment and maintenance costs in hydrogen pipeline compressors; and (3) research existing and novel hydrogen compression technologies that can improve reliability, eliminate contamination, and reduce cost. Compressors are critical components used in the production and delivery of hydrogen. Current reciprocating compressors used for pipeline delivery of hydrogen are costly, are subject to excessive wear, have poor reliability, and often require the use of lubricants that can contaminate the hydrogen (used in fuel cells). Duplicate compressors may be required to assure availability. The primary objective of this project is to identify, and develop as required, advanced materials and coatings that can achieve the friction, wear, and reliability requirements for dynamically loaded components (seal and bearings) in high-temperature, high-pressure hydrogen environments prototypical of pipeline and forecourt compressor systems. The DOE Strategic Directions for Hydrogen Delivery Workshop identified critical needs in the development of advanced hydrogen compressors - notably, the need to minimize moving parts and to address wear through new designs (centrifugal, linear, guided rotor, and electrochemical) and improved compressor materials. The DOE is supporting several compressor design studies on hydrogen pipeline compression specifically addressing oil-free designs that demonstrate compression in the 0-500 psig to 800-1200 psig range with significant improvements in efficiency, contamination, and reliability/durability. One of the designs by Mohawk Innovative Technologies Inc. (MiTi{reg_sign}) involves using oil-free foil bearings and seals in a centrifual compressor, and MiTi{reg_sign} identified the development of bearings, seals, and oil-free tribological coatings as crucial to the successful development of an advanced compressor. MiTi{reg_sign} and ANL have developed potential coatings for these rigorous applications; however, the performance of these coatings (as well as the nickel-alloy substrates) in high-temperature, high-speed hydrogen environments is unknown at this point.

Fenske, G. R.; Erck, R. A. (Energy Systems)

2011-07-15T23:59:59.000Z

216

Illumina GA IIx& HiSeq 2000 Production Sequenccing and QC Analysis Pipelines at the DOE Joint Genome Institute  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Joint Genome Institute's (JGI) Production Sequencing group is committed to the generation of high-quality genomic DNA sequence to support the mission areas of renewable energy generation, global carbon management, and environmental characterization and clean-up. Within the JGI's Production Sequencing group, a robust Illumina Genome Analyzer and HiSeq pipeline has been established. Optimization of the sesequencer pipelines has been ongoing with the aim of continual process improvement of the laboratory workflow, reducing operational costs and project cycle times to increases ample throughput, and improving the overall quality of the sequence generated. A sequence QC analysis pipeline has been implemented to automatically generate read and assembly level quality metrics. The foremost of these optimization projects, along with sequencing and operational strategies, throughput numbers, and sequencing quality results will be presented.

Daum, Christopher; Zane, Matthew; Han, James; Kennedy, Megan; San Diego, Matthew; Copeland, Alex; Li, Mingkun; Lucas, Susan

2011-01-31T23:59:59.000Z

217

Virtual Pipeline System Testbed to Optimize the U.S. Natural Gas Transmission Pipeline System  

SciTech Connect (OSTI)

The goal of this project is to develop a Virtual Pipeline System Testbed (VPST) for natural gas transmission. This study uses a fully implicit finite difference method to analyze transient, nonisothermal compressible gas flow through a gas pipeline system. The inertia term of the momentum equation is included in the analysis. The testbed simulate compressor stations, the pipe that connects these compressor stations, the supply sources, and the end-user demand markets. The compressor station is described by identifying the make, model, and number of engines, gas turbines, and compressors. System operators and engineers can analyze the impact of system changes on the dynamic deliverability of gas and on the environment.

Kirby S. Chapman; Prakash Krishniswami; Virg Wallentine; Mohammed Abbaspour; Revathi Ranganathan; Ravi Addanki; Jeet Sengupta; Liubo Chen

2005-06-01T23:59:59.000Z

218

Combustion Group Group members  

E-Print Network [OSTI]

Combustion Group Group members: Thierry Poinsot, Emilien Courtine, Luc Vervisch, Benjamin Farcy 2014 #12;Combustion Group Combustion Physics and Modeling Pollutants, Emissions, and Soot Formation Thermoacoustics and Combustion Dynamics Research focus § Examine mechanisms responsible for flame stabilization

Wang, Wei

219

Materials Solutions for Hydrogen Delivery in Pipelines  

SciTech Connect (OSTI)

The main objective of the study is as follows: Identify steel compositions/microstructures suitable for construction of new pipeline infrastructure and evaluate the potential use of the existing steel pipeline infrastructure in high pressure gaseous hydrogen applications. The microstructures of four pipeline steels were characterized and tensile testing was conducted in gaseous hydrogen and helium at pressures of 5.5 MPa (800 psi), 11 MPa (1600 psi) and 20.7 MPa (3000 psi). Based on reduction of area, two of the four steels that performed the best across the pressure range were selected for evaluation of fracture and fatigue performance in gaseous hydrogen at 5.5 MPa (800 psi) and 20.7 MPa (3000 psi). The basic format for this phase of the study is as follows: Microstructural characterization of volume fraction of phases in each alloy; Tensile testing of all four alloys in He and H{sub 2} at 5.5 MPa (800 psi), 11 MPa (1600 psi), and 20.7 MPa (3000 psi). RA performance was used to choose the two best performers for further mechanical property evaluation; Fracture testing (ASTM E1820) of two best tensile test performers in H{sub 2} at 5.5 MPa (800 psi) and 20.7 MPa (3000 psi); Fatigue testing (ASTM E647) of two best tensile test performers in H2 at 5.5 MPa (800 psi) and 20.7 MPa (3000 psi) with frequency =1.0 Hz and R-ratio=0.5 and 0.1.

Ningileri, Shridas T.; Boggess, Todd A; Stalheim, Douglas

2013-01-02T23:59:59.000Z

220

Praxair extending hydrogen pipeline in Southeast Texas  

SciTech Connect (OSTI)

This paper reports that Praxair Inc., an independent corporation created by the spinoff of Union Carbide Corp.'s Linde division, is extending its high purity hydrogen pipeline system from Channelview, Tex., to Port Arthur, Tex. The 70 mile, 10 in. extension begins at a new pressure swing adsorption (PSA) purification unit next to Lyondell Petrochemical Co.'s Channelview plant. The PSA unit will upgrade hydrogen offgas from Lyondell's methanol plant to 99.99% purity hydrogen. The new line, advancing at a rate of about 1 mile/day, will reach its first customer, Star Enterprise's 250,000 b/d Port Arthur refinery, in September.

Not Available

1992-08-24T23:59:59.000Z

Note: This page contains sample records for the topic "group aspen pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Industry Research for Pipeline Systems Panel  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi NationalBusiness PlanPosting Thomas F. Edgar, Ph.D.,Pipeline

222

Panel 2, Hydrogen Delivery in the Natural Gas Pipeline Network  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in the Natural Gas Pipeline Network DOE'S HYDROGEN ENERGY STORAGE FOR GRID AND TRANSPORTATION SERVICES WORKSHOP Sacramento, CA May 14, 2014 Brian Weeks Gas Technology Institute 2 2...

223

,"International Falls, MN Natural Gas Pipeline Imports From Canada...  

U.S. Energy Information Administration (EIA) Indexed Site

International Falls, MN Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

224

,"Highgate Springs, VT Natural Gas Pipeline Imports From Canada...  

U.S. Energy Information Administration (EIA) Indexed Site

Highgate Springs, VT Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","L...

225

,"Corsby, ND Natural Gas Pipeline Imports From Canada (MMcf)...  

U.S. Energy Information Administration (EIA) Indexed Site

Corsby, ND Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data...

226

,"Sault St Marie, MI Natural Gas Pipeline Exports to Canada ...  

U.S. Energy Information Administration (EIA) Indexed Site

Sault St Marie, MI Natural Gas Pipeline Exports to Canada (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

227

,"Sweetgrass, MT Natural Gas Pipeline Imports From Canada (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Sweetgrass, MT Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

228

,"North Troy, VT Natural Gas Pipeline Imports From Canada (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Troy, VT Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data...

229

,"Whitlash, MT Natural Gas Pipeline Imports From Canada (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Whitlash, MT Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

230

,"Champlain, NY Natural Gas Pipeline Imports From Canada (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Champlain, NY Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

231

,"Portal, ND Natural Gas Pipeline Imports From Canada (MMcf)...  

U.S. Energy Information Administration (EIA) Indexed Site

Portal, ND Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data...

232

Mobile sensor network to monitor wastewater collection pipelines  

E-Print Network [OSTI]

17 Mobile robot localization in23 WCS monitoring using mobile floatingDesign of mobile pipeline floating sensor SewerSnort

Lim, Jungsoo

2012-01-01T23:59:59.000Z

233

,"New York Natural Gas Pipeline and Distribution Use Price (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic...

234

EIA - Natural Gas Pipeline Network - Depleted Reservoir Storage...  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Reservoir Storage Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Depleted Production...

235

UNITED STATES OF AMERICA DEPARTMENT OF TRANSPORTATION PIPELINE...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AMERICA DEPARTMENT OF TRANSPORTATION PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION HAZARDOUS MATERIALS CERTIFICATE OF REGISTRATION FOR REGISTRATION YEAR(S) 2009-2012...

236

EIA - Natural Gas Pipeline Network - Aquifer Storage Reservoir...  

U.S. Energy Information Administration (EIA) Indexed Site

Aquifer Storage Reservoir Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Aquifer Underground...

237

The Keystone XL Pipeline Dispute: A Strategic Analysis.  

E-Print Network [OSTI]

??TransCanada Corporation has proposed the Keystone XL pipeline project to transfer crude bitumen from the oil sand fields in northern Alberta, Canada, to oil refineries (more)

Payganeh, Sevda

2013-01-01T23:59:59.000Z

238

Pipeline and vehicle transportation problems in the petroleum industry.  

E-Print Network [OSTI]

???In the petroleum industry, petroleum product logistics can be divided into two phases: first logistics, which is mainly provided through pipeline transportation or railway, refers (more)

Zhen, Feng ( ??)

2011-01-01T23:59:59.000Z

239

Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Barriers: Hydrogen embrittlement of pipelines and remediation (mixing with water vapor?) hpwgwembrittlementsteelssofronis.pdf More Documents & Publications Webinar: I2CNER: An...

240

Frank Masci Page 1 06/17/2003 Initial Pipeline Assignment Procedure  

E-Print Network [OSTI]

Frank Masci Page 1 06/17/2003 Initial Pipeline Assignment Procedure (The SIRTF "Pipeline Picker") F and request (AOR, IER or SER) is assigned a pipeline thread to initiate processing. It was developed by J, the "pipeline picker" routine is triggered to uniquely determine an appropriate pipeline script-ID (pl

Masci, Frank

Note: This page contains sample records for the topic "group aspen pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

IMPACTS OF INTERACTING ELEVATED ATMOSPHERIC CO2 AND O3 ON THE STRUCTURE AND FUNCTIONING OF A NORTHERN FOREST ECOSYSTEM: OPERATING AND DECOMMISSIONING THE ASPEN FACE PROJECT  

SciTech Connect (OSTI)

Two of the most important and pervasive greenhouse gases driving global change and impacting forests in the U.S. and around the world are atmospheric CO2 and tropospheric O3. As the only free air, large-scale manipulative experiment studying the interaction of elevated CO2 and O3 on forests, the Aspen FACE experiment was uniquely designed to address the long-term ecosystem level impacts of these two greenhouse gases on aspen-birch-maple forests, which dominate the richly forested Lake States region. The project was established in 1997 to address the overarching scientific question: What are the effects of elevated [CO2] and [O3], alone and in combination, on the structure and functioning of northern hardwood forest ecosystems? From 1998 through the middle of the 2009 growing season, we examined the interacting effects of elevated CO2 and O3 on ecosystem processes in an aggrading northern forest ecosystem to compare the responses of early-successional, rapid-growing shade intolerant trembling aspen and paper birch to those of a late successional, slower growing shade tolerant sugar maple. Fumigations with elevated CO2 (560 ppm during daylight hours) and O3 (approximately 1.5 x ambient) were conducted during the growing season from 1998 to 2008, and in 2009 through harvest date. Response variables quantified during the experiment included growth, competitive interactions and stand dynamics, physiological processes, plant nutrient status and uptake, tissue biochemistry, litter quality and decomposition rates, hydrology, soil respiration, microbial community composition and respiration, VOC production, treatment-pest interactions, and treatment-phenology interactions. In 2009, we conducted a detailed harvest of the site. The harvest included detailed sampling of a subset of trees by component (leaves and buds, fine branches, coarse branches and stem, coarse roots, fine roots) and excavation of soil to a depth of 1 m. Throughout the experiment, aspen and birch photosynthesis increased with elevated CO2 and tended to decrease with elevated O3, compared to the control. In contrast to aspen and birch, maple photosynthesis was not enhanced by elevated CO2. Elevated O3 did not cause significant reductions in maximum photosynthesis in birch or maple. In addition, photosynthesis in ozone sensitive clones was affected to a much greater degree than that in ozone tolerant aspen clones. Treatment effects on photosynthesis contributed to CO2 stimulation of aboveground and belowground growth that was species and genotype dependent, with birch and aspen being most responsive and maple being least responsive. The positive effects of elevated CO2 on net primary productivity NPP were sustained through the end of the experiment, but negative effects of elevated O3 on NPP had dissipated during the final three years of treatments. The declining response to O3 over time resulted from the compensatory growth of O3-tolerant genotypes and species as the growth of O3-sensitive individuals declined over time. Cumulative NPP over the entire experiment was 39% greater under elevated CO2 and 10% lower under elevated O3. Enhanced NPP under elevated CO2 was sustained by greater root exploration of soil for growth-limiting N, as well as more rapid rates of litter decomposition and microbial N release during decay. Results from Aspen FACE clearly indicate that plants growing under elevated carbon dioxide, regardless of community type or ozone level, obtained significantly greater amounts of soil N. These results indicate that greater plant growth under elevated carbon dioxide has not led to progressive N limitation. If similar forests growing throughout northeastern North America respond in the same manner, then enhanced forest NPP under elevated CO2 may be sustained for a longer duration than previously thought, and the negative effect of elevated O3 may be diminished by compensatory growth of O3-tolerant plants as they begin to dominate forest communities. By the end of the experiment, elevated CO2 increased ecosystem C content by 11%, whereas

Burton, Andrew J. [Michigan Technological University; Zak, Donald R. [University of Michigan; Kubiske, Mark E. [USDA Forest Service; Pregitzer, Kurt S. [University of Idaho

2014-06-30T23:59:59.000Z

242

Leak detection on an ethylene pipeline  

SciTech Connect (OSTI)

A model-based leak detection system has been in operation on the Solvay et Cie ethylene pipeline from Antwerp to Jemeppe on Sambre since 1989. The leak detection system, which is the commercial product PLDS of Modisette Associations, Inc., was originally installed by the supplier. Since 1991, all system maintenance and configuration changes have been done by Solvay et Cie personnel. Many leak tests have been performed, and adjustments have been made in the configuration and the automatic tuning parameters. The leak detection system is currently able to detect leaks of 2 tonnes/hour in 11 minutes with accurate location. Larger leaks are detected in about 2 minutes. Leaks between 0.5 and 1 tonne per hour are detected after several hours. (The nominal mass flow in the pipeline is 15 tonnes/hour, with large fluctuations.) Leaks smaller than 0.5 tonnes per hour are not detected, with the alarm thresholds set at levels to avoid false alarms. The major inaccuracies of the leak detection system appear to be associated with the ethylene temperatures.

Hamande, A.; Condacse, V.; Modisette, J.

1995-12-31T23:59:59.000Z

243

The Oil Network in US:The Oil Network in US: A Closer Look at PipelinesA Closer Look at Pipelines  

E-Print Network [OSTI]

The Oil Network in US:The Oil Network in US: A Closer Look at PipelinesA Closer Look at Pipelines of Oil Network in USHistory of Oil Network in US Origin of pipelines:Origin of pipelines: WWII: Relied of transportationtransportation Need for a complex network:Need for a complex network: Move the raw materials (crude oils), from

Nagurney, Anna

244

The CUNY Pipeline Program for Careers in College Teaching and Research The CUNY Pipeline Program is administered by the Office of Educational Opportunity and  

E-Print Network [OSTI]

The CUNY Pipeline Program for Careers in College Teaching and Research The CUNY Pipeline Program available to each Pipeline student is over $4,000. · In the summer before the senior year (June-July), Pipeline fellows attend a six-week institute at the Graduate Center). This institute includes workshops

Dennehy, John

245

TASSEL: LD Pipeline: Guide to using Tassel Pipeline Terry Casstevens (tmc46@cornell.edu), Zhiwu Zhang, Peter Bradbury, and Edward  

E-Print Network [OSTI]

1 TASSEL: LD Pipeline: Guide to using Tassel Pipeline Terry Casstevens (tmc46@cornell.edu), Zhiwu.1_standalone. Execute On Windows, see run_file_ld.bat for an example how to execute the pipeline. In Bash Shell, see run_file_ld.pl for an example how to execute the pipeline. If you are using a UNIX operating

Buckler, Edward S.

246

Pipelined Mutual Exclusion and The Design of an Asynchronous Microprocessor *  

E-Print Network [OSTI]

RVM46 -1 Pipelined Mutual Exclusion and The Design of an Asynchronous Microprocessor * Rajit; Pipelining; Microprocessor design; Program transformation. 1. Introduction Formal transformations are an e#11 by construction [3]. In the design of asynchronous systems, it is important to be able to decouple various parts

Martin, Alain

247

Natural Gas Pipeline Leaks Across Washington, DC Robert B. Jackson,,,  

E-Print Network [OSTI]

Natural Gas Pipeline Leaks Across Washington, DC Robert B. Jackson,,, * Adrian Down, Nathan G increased in recent decades, but incidents involving natural gas pipelines still cause an average of 17 fatalities and $133 M in property damage annually. Natural gas leaks are also the largest anthropogenic

Jackson, Robert B.

248

A Pipelined Turbo Decoder with Random Convolutional Interleaver Werner Henkel  

E-Print Network [OSTI]

A Pipelined Turbo Decoder with Random Convolutional Interleaver Werner Henkel University of Applied: jusif, sayir¡ @ftw.at Abstract-- This paper describes a pipelined iterative decoder ("Turbo" decoder. INTRODUCTION SINCE the introduction of "Turbo" codes in 1993 [1] the coding community has put much effort

Henkel, Werner

249

Statistical Methods for Estimating the Minimum Thickness Along a Pipeline  

E-Print Network [OSTI]

along the pipeline can be used to estimate corrosion levels. The traditional parametric model method for this problem is to estimate parameters of a specified corrosion distribution and then to use these parameters companies use pipelines to transfer oil, gas and other materials from one place to another. Manufactures

250

How Safe Are Pipelines? Diana Furchtgott-Roth  

E-Print Network [OSTI]

How Safe Are Pipelines? Diana Furchtgott-Roth Director, Economics21, Manhattan Institute Moving Statement: Keystone XL Project, page 5.1-96. January 2014. #12;Number of Injuries per Million Ton-Miles Transported: Petroleum Pipeline and Class I Rail Source: "Final Supplemental Environmental Impact Statement

Calgary, University of

251

Increasing pipelined IP core utilization in Process Networks using Exploration  

E-Print Network [OSTI]

Increasing pipelined IP core utilization in Process Networks using Exploration Claudiu Zissulescu pipelined. In this paper, we present an exploration methodology that uses feedback provided by the Laura tool to increase the uti- lization of IP cores embedded in our PN network. Using this exploration, we

Kienhuis, Bart

252

ABB Review 4/2000 55 ultiphase pipelines connecting  

E-Print Network [OSTI]

ABB Review 4/2000 55 ultiphase pipelines connecting remote wellhead platforms and subsea wells of the multi-phase pipelines connecting wells and remote installations to the processing unit. One common form and unstable, it is difficult to predict the pressure drop, heat and mass transfer. In addition, the flow

Skogestad, Sigurd

253

Analysis of oil-pipeline distribution of multiple products subject to delivery time-windows  

E-Print Network [OSTI]

This dissertation defines the operational problems of, and develops solution methodologies for, a distribution of multiple products into oil pipeline subject to delivery time-windows constraints. A multiple-product oil pipeline is a pipeline system...

Jittamai, Phongchai

2006-04-12T23:59:59.000Z

254

EIS-0429: Proposed IG CO2 Pipeline Route | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Proposed IG CO2 Pipeline Route EIS-0429: Proposed IG CO2 Pipeline Route Map of Proposed CO2 Pipeline Route More Documents & Publications EIS-0429: Amended Notice of Intent To...

255

Beyond Myopic Inference in Big Data Pipelines Karthik Raman, Adith Swaminathan, Johannes Gehrke, Thorsten Joachims  

E-Print Network [OSTI]

]: Learning General Terms Algorithms, Experimentation, Theory Keywords Big Data Pipelines, Modular Design Detection & Recognition pipeline. creation, model construction, testing, and visualization. In orderBeyond Myopic Inference in Big Data Pipelines Karthik Raman, Adith Swaminathan, Johannes Gehrke

Joachims, Thorsten

256

Aspen Code Development Collaboration  

SciTech Connect (OSTI)

Wyoming has a wealth of primary energy resources in the forms of coal, natural gas, wind, uranium, and oil shale. Most of Wyoming?s coal and gas resources are exported from the state in unprocessed form rather than as refined higher value products. Wyoming?s leadership recognizes the opportunity to broaden the state?s economic base energy resources to make value-added products such as synthetic vehicle fuels and commodity chemicals. Producing these higher value products in an environmentally responsible manner can benefit from the use of clean energy technologies including Wyoming?s abundant wind energy and nuclear energy such as new generation small modular reactors including the high temperature gas-cooled reactors.

none,; Cherry, Robert S. [INL] INL; Richard, Boardman D. [INL] INL

2013-10-03T23:59:59.000Z

257

Use of look-ahead modeling in pipeline operations  

SciTech Connect (OSTI)

Amoco Canada Petroleum Company, Ltd. operates the Cochin pipeline system. Cochin pumps batched liquid ethane, propane, ethylene, butane, and NGL. Operating and scheduling this pipeline is very complex. There are safety considerations, especially for ethylene, which cannot be allowed to drop below vapor pressure. Amoco Canada needs to know where batches are in the line, what pressure profiles will look like into the future, and when batches arrive at various locations along the line. In addition to traditional instrumentation and SCADA, Amoco Canada uses modeling software to help monitor and operate the Cochin pipeline. Two important components of the modeling system are the Estimated Time of Arrival (ETA) and Predictive Model (PM) modules. These modules perform look ahead modeling to assist in operating the Cochin pipeline. The modeling software was first installed for the Cochin system in February of 1994, and was commissioned on August 1, 1994. This paper will discuss how the look ahead modules are used for the Cochin pipeline.

Wray, B.; O`Leary, C.

1995-12-31T23:59:59.000Z

258

Supersonic Air Jets Preserve Tree Roots in Underground Pipeline Installation1  

E-Print Network [OSTI]

Supersonic Air Jets Preserve Tree Roots in Underground Pipeline Installation1 Rob Gross 2 trenching operations for pipeline installation. Although mechanical soil excavation using heavy equipment

Standiford, Richard B.

259

A Low-Cost Natural Gas/Freshwater Aerial Pipeline  

E-Print Network [OSTI]

Offered is a new type of low-cost aerial pipeline for delivery of natural gas, an important industrial and residential fuel, and freshwater as well as other payloads over long distances. The offered pipeline dramatically decreases the construction and operation costs and the time necessary for pipeline construction. A dual-use type of freight pipeline can improve an arid rural environment landscape and provide a reliable energy supply for cities. Our aerial pipeline is a large, self-lofting flexible tube disposed at high altitude. Presently, the term "natural gas" lacks a precise technical definition, but the main components of natural gas are methane, which has a specific weight less than air. A lift force of one cubic meter of methane equals approximately 0.5 kg. The lightweight film flexible pipeline can be located in the Earth-atmosphere at high altitude and poses no threat to airplanes or the local environment. The authors also suggest using lift force of this pipeline in tandem with wing devices for cheap shipment of a various payloads (oil, coal and water) over long distances. The article contains a computed macroproject in northwest China for delivery of 24 billion cubic meter of gas and 23 millions tonnes of water annually.

Alexander Bolonkin; Richard Cathcart

2007-01-05T23:59:59.000Z

260

Compression station key to Texas pipeline project  

SciTech Connect (OSTI)

This was probably the largest pipeline project in the US last year, and the largest in Texas in the last decade. The new compressor station is a key element in this project. TECO, its servicing dealer, and compression packager worked closely throughout the planning and installation stages of the project. To handle the amount of gas required, TECO selected the GEMINI F604-1 compressor, a four-throw, single-stage unit with a six-inch stroke manufactured by Weatherford Enterra Compression Co. (WECC) in Corpus Christi, TX. TECO also chose WECC to package the compressors. Responsibility for ongoing support of the units will be shared among TECO, the service dealer and the packager. TECO is sending people to be trained by WECC, and because the G3600 family of engines is still relatively new, both the Caterpillar dealer and WECC sent people for advanced training at Caterpillar facilities in Peoria, IL. As part of its service commitment to TECO, the servicing dealer drew up a detailed product support plan, encompassing these five concerns: Training, tooling; parts support; service support; and commissioning.

NONE

1996-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "group aspen pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Urethane coatings rehabilitate large crude oil pipeline  

SciTech Connect (OSTI)

Interprovincial Pipe Line Inc. (IPL) provides a vital transportation link for moving liquid petroleum resources from oil-producing areas of western Canada to refining centers and markets in eastern canada and the midwestern US. Together with Lakehead Pipe Line Co., Inc., the pipeline system consists of about 7,600 miles of pipe. Approximately 1.6 million bpd of crude oil and liquid hydrocarbons are transported by the system. Along with high-resolution inspection data, an in-house engineering critical assessment process based on Battelle`s NG-18 surface flaw equation was developed to identify corrosion anomalies needing structural reinforcement sleeve repairs. A majority of ht non-critical anomalies remained unearthed and were exposed to possible future growth which could become critical. Several rehabilitation methods were considered including on-going sleeve repair, selective pipe replacement, and coating reconditioning. Economics and logistics of sleeving programs and selective pipe replacement were well known at IPL. However, aspects of replacing a coating system over a relatively long length of pipe were not completely known. Preliminary cost estimates favored replacement of the coating over a massive sleeving program or pipe replacement. To gain further insight, IPL began a two-year pilot program to research long length coating replacement feasibility. Two sections of Line 3 ultimately were rehabilitated in this manner. This paper reviews the project.

Kresic, W. [Interprovincial Pipe Line Inc., Edmonton, Alberta (Canada)

1995-10-01T23:59:59.000Z

262

INTERNAL REPAIR OF PIPELINES REVIEW & EVALUATION OF INTERNAL PIPELINE REPAIR TRIALS REPORT  

SciTech Connect (OSTI)

The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners, indicating that this type of liner is generally ineffective at restoring the pressure containing capabilities of pipelines. Failure pressure for pipe repaired with carbon fiber-reinforced composite liner was greater than that of the un-repaired pipe section with damage, indicating that this type of liner is effective at restoring the pressure containing capability of pipe. Pipe repaired with weld deposition failed at pressures lower than that of un-repaired pipe in both the virgin and damaged conditions, indicating that this repair technology is less effective at restoring the pressure containing capability of pipe than a carbon fiber-reinforced liner repair. Physical testing indicates that carbon fiber-reinforced liner repair is the most promising technology evaluated to-date. Development of a comprehensive test plan for this process is recommended for use in the next phase of this project.

Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; George Ritter; Bill Mohr; Matt Boring; Nancy Porter; Mike Sullivan; Chris Neary

2004-09-01T23:59:59.000Z

263

Application Filing Requirements for Natural Gas Pipeline Construction Projects (Wisconsin)  

Broader source: Energy.gov [DOE]

Any utility proposing to construct a natural gas pipeline requiring a Certificate of Authority (CA) under Wis. Stat. 196.49 must prepare an application for Commission review. These regulations ...

264

Structural Genomics of Minimal Organisms: Pipeline and Results  

E-Print Network [OSTI]

of recombinant proteins. J. Struct. Funct. Genomics 5:69-74.proteins. J. Struct. Funct. Genomics 5:69-74. Oganesyan,Structural Genomics of Minimal Organisms: Pipeline and

Kim, Sung-Hou

2008-01-01T23:59:59.000Z

265

Ductile fracture and structural integrity of pipelines & risers  

E-Print Network [OSTI]

The Oil and Gas (O&G) industry has recently turned its interest towards deep and ultra-deep offshore installations in order to address the global increase of energy demand. Pipelines and risers are key components for the ...

Kofiani, Kirki N. (Kirki Nikolaos)

2013-01-01T23:59:59.000Z

266

Microsoft Word - SPR Emergency Pipeline Repair, 2013-2017 NEPA...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion to be applied: B5.4 Repair or replacement of sections of a crude oil, produced water, brine or geothermal pipeline, if the actions are determined by the Army...

267

Special Provisions Affecting Gas, Water, or Pipeline Companies (South Carolina)  

Broader source: Energy.gov [DOE]

This legislation confers the rights and privileges of telegraph and telephone companies (S.C. Code 58-9) on pipeline and water companies, and contains several additional provisions pertaining to...

268

EIA - Natural Gas Pipeline Network - Natural Gas Supply Basins...  

Gasoline and Diesel Fuel Update (EIA)

with selected updates U.S. Natural Gas Supply Basins Relative to Major Natural Gas Pipeline Transportation Corridors, 2008 U.S. Natural Gas Transporation Corridors out of Major...

269

Extensible microprocessor without interlocked pipeline stages (emips), the reconfigurable microprocessor  

E-Print Network [OSTI]

have called our dynamically extensible microprocessor design the Extensible Microprocessor without Interlocked Pipeline Stages, or eMIPS. The eMIPS architecture uses the interaction of fixed and configurable logic available in modern...

Pittman, Richard Neil

2007-09-17T23:59:59.000Z

270

Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Presentation by 09-Sofronis to DOE Hydrogen Pipeline R&D Project Review Meeting held January 5-6, 2005 at Oak Ridge National Laboratory in Oak Ridge, Tennessee....

271

EIA - Natural Gas Pipeline Network - U.S. Natural Gas Pipeline Network Map  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scattering characterizesAnalysisPipelines Map StatesNetwork

272

Technoeconomic Analysis of Biomethane Production from Biogas and Pipeline Delivery (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes "A Technoeconomic Analysis of Biomethane Production from Biogas and Pipeline Delivery".

Jalalzadeh-Azar, A.

2010-10-18T23:59:59.000Z

273

A Reconfigurable, On-The-Fly, Resource-Aware, Streaming Pipeline Scheduler  

E-Print Network [OSTI]

that create pipelines that are fully aware of the system's resources. In this paper, we present the design not offer enough expressiveness to cover all pipelines that can be constructed. Fully automated efficient pipeline construction presents multiple challenges. Some systems5, 1719 build the pipeline on

Massachusetts at Amherst, University of

274

A Reconfigurable, OnTheFly, ResourceAware, Streaming Pipeline Scheduler  

E-Print Network [OSTI]

that create pipelines that are fully aware of the system's resources. In this paper, we present the design not offer enough expressiveness to cover all pipelines that can be constructed. Fully automated efficient pipeline construction presents multiple challenges. Some systems 5, 17--19 build the pipeline on

Massachusetts at Amherst, University of

275

The Pipeline Design Pattern Allan Vermeulen, Gabe BegedDov, Patrick Thompson  

E-Print Network [OSTI]

1 The Pipeline Design Pattern Allan Vermeulen, Gabe BegedDov, Patrick Thompson Copyright Rogue in the processing pipeline. For example, the Web browser pipeline can be constructed in various ways depending Wave Software, Inc., 1995 Intent Build data pipelines in a configurable and typesafe manner. Motivation

Schmidt, Douglas C.

276

Residual Magnetic Flux Leakage: A Possible Tool for Studying Pipeline Defects  

E-Print Network [OSTI]

Residual Magnetic Flux Leakage: A Possible Tool for Studying Pipeline Defects Vijay Babbar1 weaker flux signals. KEY WORDS: Magnetic flux leakage; residual magnetization; pipeline defects; pipeline pipelines, which may develop defects such as corrosion pits as they age in service.(1) Under the ef- fect

Clapham, Lynann

277

High-Level Support for Pipeline Parallelism on Many-Core Architectures  

E-Print Network [OSTI]

High-Level Support for Pipeline Parallelism on Many-Core Architectures Siegfried Benkner1 , Enes the pipeline pattern. We propose C/C++ language annotations for specifying pipeline patterns and describe - International European Conference on Parallel and Distributed Computing - 2012 (2012)" #12;support for pipelined

Paris-Sud XI, Université de

278

On the current conditions along the Ormen Lange pipeline path during an extreme, idealized storm  

E-Print Network [OSTI]

On the current conditions along the Ormen Lange pipeline path during an extreme, idealized storm-shore for processing by means of a pipeline. Due to the abrupt topography this pipeline will have many long free spans along a possible path for the pipeline, and in a simulation study the effects on the flow due

Avlesen, Helge

279

A Counterflow Pipeline Experiment Bill Coates, Jo Ebergen, Jon Lexau, Scott Fairbanks, Ian Jones,  

E-Print Network [OSTI]

A Counterflow Pipeline Experiment Bill Coates, Jo Ebergen, Jon Lexau, Scott Fairbanks, Ian Jones The counterflow pipeline architecture [12] consists of two interacting pipelines in which data items flow in op. The maximum total throughput of the chip, which is the sum of the throughputs of the two pipelines, varies

Harris, David Money

280

Simulator Generation Using an Automaton Based Pipeline Model for Timing Analysis  

E-Print Network [OSTI]

Simulator Generation Using an Automaton Based Pipeline Model for Timing Analysis Rola Kassem, Mika the description of the pipeline. The description is transformed into an automaton and a set of resources which. The blocks communicate and synchronise with each other in order to handle the pipeline hazards. A pipeline

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "group aspen pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

EIS-0152: Iroquois, Tenn. Phase I, Pipeline Line Project  

Broader source: Energy.gov [DOE]

The Federal Energy Regulatory Commission prepared this statement to asses the environmental impacts of constructing and operating an interstate natural gas pipeline and associated infrastructure to transport gas from Canada and domestic sources to the New England Market, as proposed by the Iroquois Gas Transmission System and the Tennessee Gas Pipeline Company. The U.S. Department of Energy Office of Fossil Energy was a cooperating agency during statement development and adopted the statement on 9/1/1990.

282

Modeling fatique behavior of dents in petroleum pipelines  

E-Print Network [OSTI]

MODELING FATIGUE BEHAVIOR OF DENTS IN PETROLEUM PIPELINES A Thesis by ROGER LYNN HOFFMANN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... August 1997 Major Subject: Civil Engineering MODELING FATIGUE BEHAVIOR OF DENTS IN PETROLEUM PIPELINES A Thesis by ROGER LYNN HOFFMANN Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of MASTER...

Hoffmann, Roger Lynn

1997-01-01T23:59:59.000Z

283

Report of the Committee on oil pipeline regulation  

SciTech Connect (OSTI)

This report of the Committee on Oil Pipeline Regulations is divided into five sections. Section I addresses Order 561, a final rule entitled [open quotes]Revisions to Oil Pipeline Regulations Pursuant to the Energy Policy Act of 1992,[close quotes] which was released by the Federal Energy Regulatory Commission (FERC) on October 23, 1993. Section II discusses the question of FERC jurisdiction over partial abandments of service, focusing on the ARCO Pipe Line Co. case which centered on whether a pipeline may discontinue shipping in one direction even though the pipeline will continue to ship in another direction, and the Chevron Pipe Line Co. case in which the Commission ruled that it does not have the authority to prevent a pipeline from temporarily suspending service. Section II addresses the Lakehead Pipe Line Co., Ltd. Partnership case, in which the Administrative Law Judge issued an Initial Decision resolving Phase I issues. Section IV of the article discusses whether or not a pipeline may base its rates on the cost of leasing capacity from an other pipeline. Five cases are examined in which pipelines that proposed initial rates allegedly based on the cost of a lease found their tariffs protested. Section V reviews the matter of the Williams Pipe Line Co. rate case in which the Commission issued an order on complaint in which it granted in part and denied in part several shippers' request for an order directing Williams Pipe Line Co. to (1) cease levying unauthorized charges, (2) pay reparations to shippers, and (3) be subjected to sanction for violations of the Interstate Commerce Act.

Not Available

1994-01-01T23:59:59.000Z

284

Deliverability on the interstate natural gas pipeline system  

SciTech Connect (OSTI)

Deliverability on the Interstate Natural Gas Pipeline System examines the capability of the national pipeline grid to transport natural gas to various US markets. The report quantifies the capacity levels and utilization rates of major interstate pipeline companies in 1996 and the changes since 1990, as well as changes in markets and end-use consumption patterns. It also discusses the effects of proposed capacity expansions on capacity levels. The report consists of five chapters, several appendices, and a glossary. Chapter 1 discusses some of the operational and regulatory features of the US interstate pipeline system and how they affect overall system design, system utilization, and capacity expansions. Chapter 2 looks at how the exploration, development, and production of natural gas within North America is linked to the national pipeline grid. Chapter 3 examines the capability of the interstate natural gas pipeline network to link production areas to market areas, on the basis of capacity and usage levels along 10 corridors. The chapter also examines capacity expansions that have occurred since 1990 along each corridor and the potential impact of proposed new capacity. Chapter 4 discusses the last step in the transportation chain, that is, deliverability to the ultimate end user. Flow patterns into and out of each market region are discussed, as well as the movement of natural gas between States in each region. Chapter 5 examines how shippers reserve interstate pipeline capacity in the current transportation marketplace and how pipeline companies are handling the secondary market for short-term unused capacity. Four appendices provide supporting data and additional detail on the methodology used to estimate capacity. 32 figs., 15 tabs.

NONE

1998-05-01T23:59:59.000Z

285

Nondestructive inspection of the condition of oil pipeline cleaning units  

SciTech Connect (OSTI)

One of the reasons for shutdowns of main oil pipelines is stoppage of the cleaning unit in cleaning of the inner surface of paraffin deposits caused by damage to the cleaning unit. The authors propose a method of searching for and determining the condition of the cleaning unit not requiring dismantling of the pipeline according to which the initial search for the cleaning unit is done with acoustic instruments (the increased acoustic noise at the point of stoppage of its is recorded) and subsequent inspection by a radiographic method. An experimental model of an instrument was developed making it possible to determine the location of a cleaning unit in an oil pipeline in stoppage of it from the acoustic noise. The instrument consists of two blocks, the remote sensor and the indicator block, which are connected to each other with a cable up to 10 m long. The design makes it possible to place the sensor at any accessible point of a linear part of the pipeline (in a pit, on a valve, etc.) while the indicator block may remain on the surface of the ground. The results obtained make it possible to adopt the optimum solutions on elimination of their malfunctioning and to prevent emergency situations without dismantling of the pipeline. With the equipment developed it is possible to inspect oil and gas pipelines with different reasons for a reduction in their throughput.

Berdonosov, V.A.; Boiko, D.A.; Lapshin, B.M.; Chakhlov, V.L.

1989-02-01T23:59:59.000Z

286

Will heat from the pipeline affect groundwater and surface water? Response by Professor James Goeke The temperature of a pipeline buried 4 feet would  

E-Print Network [OSTI]

1 Water Will heat from the pipeline affect groundwater and surface water? Response by Professor James Goeke ­ The temperature of a pipeline buried 4 feet would probably affect surface water. In some places the pipeline might be quite near the water table and in others it could be 50-100 feet

Nebraska-Lincoln, University of

287

REALTIME MONITORING OF PIPELINES FOR THIRD-PARTY CONTACT  

SciTech Connect (OSTI)

Third-party contact with pipelines (typically caused by contact with a digging or drilling device) can result in mechanical damage to the pipe, in addition to coating damage that can initiate corrosion. Because this type of damage often goes unreported and can lead to eventual catastrophic failure of the pipe, a reliable, cost-effective method is needed for monitoring and reporting third-party contact events. The impressed alternating cycle current (IACC) pipeline monitoring method consists of impressing electrical signals on the pipe by generating a time-varying voltage between the pipe and the soil at periodic locations where pipeline access is available. The signal voltage between the pipe and ground is monitored continuously at receiving stations located some distance away. Third-party contact to the pipe that breaks through the coating changes the signal received at the receiving stations. In this project, the IACC monitoring method is being developed, tested, and demonstrated. Work performed to date includes (1) a technology assessment, (2) development of an IACC model to predict performance and assist with selection of signal operating parameters, (3) investigation of potential interactions with cathodic protection systems, and (4) experimental measurements on operating pipelines. Based on information recently found in published studies, it is believed that the operation of IACC on a pipeline will cause no interference with CP systems. Initial results on operating pipelines showed that IACC signals could be successfully propagated over a distance of 3.5 miles, and that simulated contact can be detected up to a distance of 1.4 miles, depending on the pipeline and soil conditions.

Gary L. Burkhardt; Alfred E. Crouch

2005-10-01T23:59:59.000Z

288

REALTIME MONITORING OF PIPELINES FOR THIRD-PARTY CONTACT  

SciTech Connect (OSTI)

Third-party contact with pipelines (typically caused by contact with a digging or drilling device) can result in mechanical damage to the pipe, in addition to coating damage that can initiate corrosion. Because this type of damage often goes unreported and can lead to eventual catastrophic failure of the pipe, a reliable, cost-effective method is needed for monitoring the pipeline and reporting third-party contact events. The impressed alternating cycle current (IACC) pipeline monitoring method developed by Southwest Research Institute (SwRI) consists of impressing electrical signals on the pipe by generating a time-varying voltage between the pipe and the soil. The signal voltage between the pipe and ground is monitored continuously at receiving stations located some distance away. Third-party contact to the pipe that breaks through the coating (thus resulting in a signal path to ground) changes the signal received at the receiving stations. The IACC method was shown to be a viable method that can be used to continuously monitor pipelines for third-party contact. Electrical connections to the pipeline can be made through existing cathodic protection (CP) test points without the need to dig up the pipe. The instrumentation is relatively simple, consisting of (1) a transmitting station with a frequency-stable oscillator and amplifier and (2) a receiving station with a filter, lock-in amplifier, frequency-stable oscillator, and remote reporting device (e.g. cell phone system). Maximum distances between the transmitting and receiving stations are approximately 1.61 km (1 mile), although the length of pipeline monitored can be twice this using a single transmitter and one receiver on each side (since the signal travels in both directions). Certain conditions such as poor pipeline coatings or strong induced 60-Hz signals on the pipeline can degrade IACC performance, so localized testing should be performed to determine the suitability for an IACC installation at a given location. The method can be used with pipelines having active CP systems in place without causing interference with operation of the CP system. The most appropriate use of IACC is monitoring of localized high-consequence areas where there is a significant risk of third-party contact (e.g. construction activity). The method also lends itself to temporary, low-cost installation where there is a short-term need for monitoring.

Gary L. Burkhardt

2005-12-31T23:59:59.000Z

289

REMOTE DETECTION OF INTERNAL PIPELINE CORROSION USING FLUIDIZED SENSORS  

SciTech Connect (OSTI)

Pipelines present a unique challenge to monitoring because of the great geographical distances they cover, their burial depth, their age, and the need to keep the product flowing without much interruption. Most other engineering structures that require monitoring do not pose such combined challenges. In this regard, a pipeline system can be considered analogous to the blood vessels in the human body. The human body has an extensive ''pipeline'' through which blood and other fluids are transported. The brain can generally sense damage to the system at any location and alert the body to provide temporary repair, unless the damage is severe. This is accomplished through a vast network of fixed and floating sensors combined with a vast and extremely complex communication/decision making system. The project described in this report mimics the distributed sensor system of our body, albeit in a much more rudimentary fashion. Internal corrosion is an important factor in pipeline integrity management. At present, the methods to assess internal corrosion in pipelines all have certain limitations. In-line inspection tools are costly and cannot be used in all pipelines. Because there is a significant time interval between inspections, any impact due to upsets in pipeline operations can be missed. Internal Corrosion Direct Assessment (ICDA) is a procedure that can be used to identify locations of possible internal corrosion. However, the uncertainties in the procedure require excavation and location of damage using more detailed inspection tools. Non-intrusive monitoring techniques can be used to monitor internal corrosion, but these tools also require pipeline excavation and are limited in the spatial extent of corrosion they can examine. Therefore, a floating sensor system that can deposit at locations of water accumulation and communicate the corrosion information to an external location is needed. To accomplish this, the project is divided into four main tasks related to wireless data transmission, corrosion sensor development, sensor system motion and delivery, and consideration of other pipeline operations issues. In the first year of the program, focus was on sensor development and wireless data transmission. The second year of the program, which was discontinued due to funding shortfall, would have focused on further wireless transmission development, packaging of sensor on wireless, and other operational issues. Because, the second year funding has been discontinued, recommendations are made for future studies.

Narasi Sridhar; Garth Tormoen; Ashok Sabata

2005-10-31T23:59:59.000Z

290

REALTIME MONITORING OF PIPELINES FOR THIRD-PARTY CONTACT  

SciTech Connect (OSTI)

Third-party contact with pipelines (typically caused by contact with a digging or drilling device) can result in mechanical damage to the pipe, in addition to coating damage that can initiate corrosion. Because this type of damage often goes unreported and can lead to eventual catastrophic failure of the pipe, a reliable, cost-effective method is needed for monitoring and reporting third-party contact events. The impressed alternating cycle current (IACC) pipeline monitoring method consists of impressing electrical signals on the pipe by generating a time-varying voltage between the pipe and the soil at periodic locations where pipeline access is available. The signal voltage between the pipe and ground is monitored continuously at receiving stations located some distance away. Third-party contact to the pipe that breaks through the coating changes the signal received at the receiving stations. In this project, the IACC monitoring method is being developed, tested, and demonstrated. Work performed to date includes (1) a technology assessment, (2) development of an IACC model to predict performance and assist with selection of signal operating parameters, (3) Investigation of potential interactions with cathodic protection systems, and (4) experimental measurements on buried pipe at a test site as well as on an operating pipeline. Initial results show that simulated contact can be detected. Future work will involve further refinement of the method and testing on operating pipelines.

Gary L. Burkhardt; Alfred E. Crouch

2004-10-01T23:59:59.000Z

291

The FERC EBB working group: Put a fork in us, we`re done  

SciTech Connect (OSTI)

The Federal Energy Regulatory Commission`s (FERC) Order 636 required interstate pipelines to set up electronic bulletin boards for trading released capacity. Their goal was to foster an efficient and competitive secondary market for pipeline capacity. Five working groups were created to address the issues of core capacity, operationally available capacity, customer specific gas flows, communications protocols/operational logistics, and common codes. This paper describes the scope of the working groups and their accomplishments.

White, B.

1995-12-31T23:59:59.000Z

292

Alaskan Natural Gas Pipeline Developments (released in AEO2007)  

Reports and Publications (EIA)

The Annual Energy Outlook 2007 reference case projects that an Alaska natural gas pipeline will go into operation in 2018, based on the Energy Information Administration's current understanding of the projects time line and economics. There is continuing debate, however, about the physical configuration and the ownership of the pipeline. In addition, the issue of Alaskas oil and natural gas production taxes has been raised, in the context of a current market environment characterized by rising construction costs and falling natural gas prices. If rates of return on investment by producers are reduced to unacceptable levels, or if the project faces significant delays, other sources of natural gas, such as unconventional natural gas production and liquefied natural gas imports, could fulfill the demand that otherwise would be served by an Alaska pipeline.

2007-01-01T23:59:59.000Z

293

Soft-Decision-Driven Channel Estimation for Pipelined Turbo Receivers  

E-Print Network [OSTI]

We consider channel estimation specific to turbo equalization for multiple-input multiple-output (MIMO) wireless communication. We develop a soft-decision-driven sequential algorithm geared to the pipelined turbo equalizer architecture operating on orthogonal frequency division multiplexing (OFDM) symbols. One interesting feature of the pipelined turbo equalizer is that multiple soft-decisions become available at various processing stages. A tricky issue is that these multiple decisions from different pipeline stages have varying levels of reliability. This paper establishes an effective strategy for the channel estimator to track the target channel, while dealing with observation sets with different qualities. The resulting algorithm is basically a linear sequential estimation algorithm and, as such, is Kalman-based in nature. The main difference here, however, is that the proposed algorithm employs puncturing on observation samples to effectively deal with the inherent correlation among the multiple demappe...

Yoon, Daejung

2011-01-01T23:59:59.000Z

294

REALTIME MONITORING OF PIPELINES FOR THIRD-PARTY CONTACT  

SciTech Connect (OSTI)

Third-party contact with pipelines (typically caused by contact with a digging or drilling device) can result in mechanical damage to the pipe, in addition to coating damage that can initiate corrosion. Because this type of damage often goes unreported and can lead to eventual catastrophic failure of the pipe, a reliable, cost-effective method is needed for monitoring and reporting third-party contact events. The impressed alternating cycle current (IACC) pipeline monitoring method consists of impressing electrical signals on the pipe by generating a time-varying voltage between the pipe and the soil at periodic locations where pipeline access is available. The signal voltage between the pipe and ground is monitored continuously at receiving stations located some distance away. Third-party contact to the pipe that breaks through the coating changes the signal received at the receiving stations. In this project, the IACC monitoring method is being developed, tested, and demonstrated. Work performed to date includes (1) a technology assessment, (2) development of an IACC model to predict performance and assist with selection of signal operating parameters, (3) Investigation of potential interactions with cathodic protection systems, and (4) experimental measurements on buried pipe at a test site as well as on an operating pipeline. Initial results showed that IACC signals could be successfully propagated over a distance of 3.5 miles, and that simulated contact can be detected up to a distance of 0.7 mile. Unexpected results were that the electrical impedance from the operating pipelines to the soil was very low and, therefore, the changes in impedance and signal resulting from third-party contact were unexpectedly low. Future work will involve further refinement of the method to resolve the issues with small signal change and additional testing on operating pipelines.

Gary L. Burkhardt; Alred E. Crouch

2005-04-01T23:59:59.000Z

295

EIS-0140: Ocean State Power Project, Tennessee Gas Pipeline Company  

Broader source: Energy.gov [DOE]

The Federal Energy Regulatory Commission prepared this statement to evaluate potential impacts of construction and operation of a new natural gas-fired, combined-cycle power plant which would be located on a 40.6-acre parcel in the town of Burrillville, Rhode Island, as well as construction of a 10-mile pipeline to transport process and cooling water to the plant from the Blackstone River and a 7.5-mile pipeline to deliver No. 2 fuel oil to the site for emergency use when natural gas may not be available. The Economic Regulatory Administration adopted the EIS on 7/15/1988.

296

The liquefied natural gas pipeline: a system study  

E-Print Network [OSTI]

/hr-ft -'F. Norrie [11] also predicted a leak much less than Carbonnell's. Decreasing the 17 Table 2. 1 Optimum Diameter of a LNG Pipeline and Distance Between Two Refrigerated Stations [14] Flow rate, 1000 MMcf/day Optimum diameter, inch Distance...THE LIQUEFIED NATURAL GAS PIPELINE: A SYSTEM STUDY A Thesis by THOMAS RAY HAZEL Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1972 Major Subject...

Hazel, Thomas Ray

2012-06-07T23:59:59.000Z

297

Student Preparedness Checklist K I have completed the emergency contact information in my Banner Pipeline and it accurately reflects  

E-Print Network [OSTI]

Pipeline and it accurately reflects how I want to be notified in case of an emergency. (www.pipeline. (Sign into your account at www.pipeline.wayne.edu and follow the link for Broadcast Messaging.) K My

Finley Jr., Russell L.

298

Disinfection Procedure for Water Distribution Pipelines Drinking water contamination can be prevented by hydrostatic testing and disinfection of  

E-Print Network [OSTI]

Disinfection Procedure for Water Distribution Pipelines Drinking water contamination can pipeline connections to the system, and respond to requests for drinking water assessments. And, any be prevented by hydrostatic testing and disinfection of potable water distribution pipelines before connecting

de Lijser, Peter

299

Alternatives for reducing the environmental risks associated with natural disasters and their effects on pipelines  

E-Print Network [OSTI]

Past pipeline failure reports have typically focused on corrosion and third party related events. However, natural disasters pose a substantial risk to pipeline integrity as well. Therefore, it was the objective of this thesis to analyze the risks...

Wellborn, Michael Wayne

2012-06-07T23:59:59.000Z

300

Experiments to Separate the Effect of Texture on Anisotropy of Pipeline Steel  

E-Print Network [OSTI]

Experiments to Separate the Effect of Texture on Anisotropy of Pipeline Steel M. S. Jooa , D the anisotropy of Charpy test energy. Keywords: pipeline steel, anisotropy, crystallographic texture, memory

Cambridge, University of

Note: This page contains sample records for the topic "group aspen pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Development and Evaluation of an Automated Annotation Pipeline and cDNA Annotation System  

E-Print Network [OSTI]

Development and Evaluation of an Automated Annotation Pipeline and cDNA Annotation System Takeya, including an automated annotation pipeline that provides high-quality preliminary annotation for each

Gough, Julian

302

Workgroup #2 Emerging Solutions and Technologies How can we keep the pipeline full of  

E-Print Network [OSTI]

Workgroup #2 Emerging Solutions and Technologies ­ How can we keep the pipeline full of energy to keep the pipeline full of energy efficiency innovations for use in the Pacific Northwest." Our Phase 1

303

Behavioral modeling and digital calibration of pipeline analog to digital converters  

E-Print Network [OSTI]

This research focuses on digital calibration of pipeline analog to digital converters (ADCs) and also modeling of error sources and design parameters of pipeline ADCs. Modern applications such as communications systems require high resolution ADCs...

Bilhan, Erkan

2001-01-01T23:59:59.000Z

304

Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues  

Fuel Cell Technologies Publication and Product Library (EERE)

This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipeline

305

On Achieving Balanced Power Consumption in Software Pipelined Loops #  

E-Print Network [OSTI]

. The benchmarks are executed on the Wattch power simulator. In comparison to the original (powerOn Achieving Balanced Power Consumption in Software Pipelined Loops # Hongbo Yang Dept of ECE Univ@capsl.udel.edu ABSTRACT While a significant body of work in compilers has been de­ voted to reducing energy consumption

Gao, Guang R.

306

Northampton planners `thrilled' with affordable housing in pipeline  

E-Print Network [OSTI]

Northampton planners `thrilled' with affordable housing in pipeline By CHAD CAIN Daily Hampshire and two other significant developments under construction for senior citizens and veterans elsewhere's senior land use planner, said both panels offered small design tweaks but lauded the project overall

Mountziaris, T. J.

307

Planned oil pipeline vital to economy of Kazakhstan  

SciTech Connect (OSTI)

The West Kazakhstan-Kumkol pipeline project is extremely vital to the economy of the Republic of Kazakhstan`s ultimate goal of transporting crude oil produced from the western part of the country eastward to Kumkol, from where it is further transported through existing pipelines to refineries in Chimkent in the south and Pavoldar in the northeast. The two refineries are now mainly supplied with west Siberian crudes imported through a pipeline that approaches Kazakhstan via Omsk. The planned pipeline will allow increased use of local crudes, thereby considerably improving a secure supply for the consumers while also increasing the flexibility of the nation`s overall import/export situation. The importance of this project is stressed by the Kazakh government which has officially classified it as a national priority project. The technical feasibility study of the project was prepared by ILF Consulting Engineers of Germany and Price Waterhouse Financial Consultants is conducting a study to determine the economical viability of the project. The overall cost is estimated at $1.1 billion, with the cost of Phase 1 placed at $600 million.

NONE

1996-08-01T23:59:59.000Z

308

PERSISTENT SURVEILLANCE FOR PIPELINE PROTECTION AND THREAT INTERDICTION  

E-Print Network [OSTI]

PERSISTENT SURVEILLANCE FOR PIPELINE PROTECTION AND THREAT INTERDICTION Fusion Power Associates on Fast Ignition in Fusion Science and Technology, April 2006 · Strong International Collaboration (Osaka investment in lab facilities (Omega-EP, Z/PW,NIF and smaller facilities (Titan, Trident Upgrade

309

Natural Gas Pipeline Research: Best Practices in Monitoring Technology  

E-Print Network [OSTI]

Natural Gas Pipeline Research: Best Practices in Monitoring Technology Energy Systems Research/index.html January 2012 The Issue California is the secondlargest natural gas consuming state in the United States, just behind Texas. About 85% of the natural gas consumed in California is delivered on interstate

310

A contingency plan helps companies prepare for oilfield, pipeline spills  

SciTech Connect (OSTI)

There are many hazards associated with oilfield, pipeline spills such as fires, litigation, fines, etc. Operators and companies need to have a plan in place and make sure their employees know what to do when disaster strikes. This paper describes emergency preparedness plans.

Duey, R.

1996-02-01T23:59:59.000Z

311

REALTIME MONITORING OF PIPELINES FOR THIRD-PARTY CONTACT  

SciTech Connect (OSTI)

Third-party contact with pipelines (typically caused by contact with a digging or drilling device) can result in mechanical damage to the pipe, in addition to coating damage that can initiate corrosion. Because this type of damage often goes unreported and can lead to eventual catastrophic failure of the pipe, a reliable, cost-effective method is needed for monitoring and reporting third-party contact events. The impressed alternating cycle current (IACC) pipeline monitoring method consists of impressing electrical signals on the pipe by generating a time-varying voltage between the pipe and the soil at periodic locations where pipeline access is available. The signal voltage between the pipe and ground is monitored continuously at receiving stations located some distance away. Third-party contact to the pipe that breaks through the coating changes the signal received at the receiving stations. In this project, the IACC monitoring method is being developed, tested, and demonstrated. Work performed to date includes a technology assessment, development of an IACC model to predict performance and assist with selection of signal operating parameters, and experimental measurements on a buried pipe at a test site. Initial results show that simulated contact can be detected. Future work will involve further refinement of the method and testing on operating pipelines.

Gary L. Burkhardt; Alfred E. Crouch; Jay L. Fisher

2004-04-01T23:59:59.000Z

312

Computer Science and Information Technology Student Pipeline  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group andCompositional Variation The ComputationalofScience and

313

Automatic Modeling and Validation of Pipeline Specifications driven by an Architecture Description Language  

E-Print Network [OSTI]

) design process. Many existing approaches employ a bottom-up approach to pipeline validation, where about the behavior of the pipelined ar- chitecture through ADL constructs, which allows a powerful topAutomatic Modeling and Validation of Pipeline Specifications driven by an Architecture Description

Mishra, Prabhat

314

An Automatic Image Reduction Pipeline for the Advanced Camera for Surveys  

E-Print Network [OSTI]

are constructed similar to those used in STScI OPUS pipeline. Reading and manipulation of FITS images and tables and catalogs) for archiving purposes. Although Apsis was designed primarily as an automated pipeline, it canAn Automatic Image Reduction Pipeline for the Advanced Camera for Surveys John P. Blakeslee

Johns Hopkins University, Department of Physics and Astonomy, Advanced Camera for Surveys Team

315

Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues  

SciTech Connect (OSTI)

The United States has 11 distinct natural gas pipeline corridors: five originate in the Southwest, four deliver natural gas from Canada, and two extend from the Rocky Mountain region. This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipelines.

Melaina, M. W.; Antonia, O.; Penev, M.

2013-03-01T23:59:59.000Z

316

REAL-TIME ACTIVE PIPELINE INTEGRITY DETECTION (RAPID) SYSTEM FOR CORROSION DETECTION AND QUANTIFICATION  

E-Print Network [OSTI]

REAL-TIME ACTIVE PIPELINE INTEGRITY DETECTION (RAPID) SYSTEM FOR CORROSION DETECTION detection Acellent has developed a Real-time Active Pipeline Integrity Detection (RAPID) system. The RAPID system utilizes a sensor network permanently bonded to the pipeline structure along with in

Paris-Sud XI, Université de

317

Crystallographic Texture of Induction-welded and Heat-treated Pipeline Steel  

E-Print Network [OSTI]

Crystallographic Texture of Induction-welded and Heat-treated Pipeline Steel P. Yan1,a, ?. E.thibaux@arcelormittal.com, dhkdb@cam.ac.uk Keywords: crystallographic texture; pipeline steel; induction welding; induction heat°. Microstructural Characterisation Pipelines steels are normally hot­rolled at elevated temperatures

Cambridge, University of

318

Mapping pipeline skeletons onto heterogeneous platforms Anne Benoit and Yves Robert  

E-Print Network [OSTI]

Mapping pipeline skeletons onto heterogeneous platforms Anne Benoit and Yves Robert January 2007 mapping of the application. In this paper, we discuss the mapping of pipeline skeletons onto different, Fully Heterogeneous platforms. We assume that a pipeline stage must be mapped on a single processor

Paris-Sud XI, Université de

319

Sandhills Vegetation Will heat from the pipeline affect the growth of vegetation?  

E-Print Network [OSTI]

1 Sandhills Vegetation Will heat from the pipeline affect the growth of vegetation? What we know. Will the Sandhills vegetation grow back after the pipeline is constructed? What we know ­ response by Professor Jerry issues, revegetation problems on the pipeline will be at discreet locations. If surrounding pastures

Nebraska-Lincoln, University of

320

Pipeline Safety Our goal is to provide standard test methods and critical data to  

E-Print Network [OSTI]

Pipeline Safety METALS Our goal is to provide standard test methods and critical data to the pipeline industry to improve safety and reliability. Of particular interest is the testing of high-strength pipeline steels, which could enable higher volume gas transport and reduce energy costs. However

Note: This page contains sample records for the topic "group aspen pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

TECHNIQUES FOR MINIMIZING AND MONITORING THE IMPACT OF PIPELINE CONSTRUCTION ON COASTAL STREAMS1  

E-Print Network [OSTI]

TECHNIQUES FOR MINIMIZING AND MONITORING THE IMPACT OF PIPELINE CONSTRUCTION ON COASTAL STREAMS1 resources dur- ing construction of an oil and gas pipeline that crossed coastal reaches of 23 perennial, and representatives of Santa Barbara County. The Point Arguello pipeline was recently constructed by Chevron U

Standiford, Richard B.

322

Minimizing the Energy Cost of Throughput in a Linear Pipeline by Opportunistic Time Borrowing  

E-Print Network [OSTI]

Minimizing the Energy Cost of Throughput in a Linear Pipeline by Opportunistic Time Borrowing a technique to optimize the energy-delay product of a synchronous linear pipeline circuit with dynamic error and clock frequency of the design by exploiting slacks that are present in various stages of the pipeline

Pedram, Massoud

323

An Integrated Docking Pipeline for the Prediction of Large-Scale Protein-Protein Interactions  

E-Print Network [OSTI]

An Integrated Docking Pipeline for the Prediction of Large-Scale Protein-Protein Interactions Xin. In this study, we developed a protein-protein docking pipeline (PPDP) that integrates a variety of state studies. In this study, we developed a protein-protein docking pipeline by integrat

324

A Computational Pipeline for Protein Structure Prediction and Analysis at Genome Scale  

E-Print Network [OSTI]

1 A Computational Pipeline for Protein Structure Prediction and Analysis at Genome Scale Manesh that they can complement the existing experimental techniques. In this paper, we present an automated pipeline for protein structure prediction. The centerpiece of the pipeline is a threading-based protein structure

325

An integrated pipeline for the development of novel panels of mapped microsatellite markers for Leishmania donovani  

E-Print Network [OSTI]

An integrated pipeline for the development of novel panels of mapped microsatellite markers incorporates a primer design pipeline that will design primers to amplify the selected loci. Using this pipeline 12 out of 17 primer sets designed against the L. infantum genome generated polymorphic PCR

Steve Kemp

326

TASSEL 3.0 Universal Network Enabled Analysis Kit (UNEAK) pipeline documentation  

E-Print Network [OSTI]

1 TASSEL 3.0 Universal Network Enabled Analysis Kit (UNEAK) pipeline documentation Authors: Fei Lu.............................................................................................................................. 8 Introduction The UNEAK is the non-reference Genotyping by Sequencing (GBS) SNP calling pipeline the command line in the following format (Linux or Mac operating system; for Windows use run_pipeline

Buckler, Edward S.

327

The Construction and Maintenance Plan for a Grand Banks Multi-Purpose Pipeline  

E-Print Network [OSTI]

The Construction and Maintenance Plan for a Grand Banks Multi-Purpose Pipeline D.W. (Don) Wilson, Director, North Atlantic Pipeline Partners, L.P. NOIA 2000 Conference June, 2000 #12;Grand Banks Multi-Purpose Pipeline Route January 2000 Grand Banks of Newfoundland Newfoundland Come by Chance St. John's Argentia 50o

Bruneau, Steve

328

The data processing pipeline for the Herschel/SPIRE Imaging Fourier Transform Spectrometer  

E-Print Network [OSTI]

The data processing pipeline for the Herschel/SPIRE Imaging Fourier Transform Spectrometer Trevor R the data processing pipeline to generate calibrated data products from the Spectral and Photometric Imaging Receiver (SPIRE) imaging Fourier Transform Spectrometer. The pipeline processes telemetry from SPIRE point

Naylor, David A.

329

A Mathematical Solution to Power Optimal Pipeline Design by Utilizing Soft Edge Flip-Flops  

E-Print Network [OSTI]

A Mathematical Solution to Power Optimal Pipeline Design by Utilizing Soft Edge Flip-Flops Mohammad a novel technique to minimize the total power consumption of a synchronous linear pipeline circuit by exploiting extra slacks available in some stages of the pipeline. The key idea is to utilize soft-edge flip

Pedram, Massoud

330

PROSPECT-PSPP: an automatic computational pipeline for protein structure prediction  

E-Print Network [OSTI]

PROSPECT-PSPP: an automatic computational pipeline for protein structure prediction Jun-tao Guo1 useful informa- tion for the biological research community. We have developed a prediction pipeline prediction. The pipeline consists of tools for (i) preprocessing of pro- tein sequences, which includes

331

An analysis and validation pipeline for large-scale RNAi-based screens  

E-Print Network [OSTI]

An analysis and validation pipeline for large-scale RNAi-based screens Michael Plank1 , Guang Hu2 pipeline to prioritize these candidates incorporating effect sizes, functional enrichment analysis associated with oxidative stress resistance, as a proof-of-concept of our pipeline we demonstrate

de Magalhães, João Pedro

332

Yield Modeling and Analysis of a Clockless Asynchronous Wave Pipeline with Pulse Faults  

E-Print Network [OSTI]

Yield Modeling and Analysis of a Clockless Asynchronous Wave Pipeline with Pulse Faults T. Feng fault model and its modeling and analysis methods in a clockless asynchronous wave pipeline fault rate model for establishing a sound theoretical foundation for clockless wave pipeline design

Ayers, Joseph

333

Lessons from two field tests on pipeline damage detection using acceleration measurement (Invited Paper)  

E-Print Network [OSTI]

Lessons from two field tests on pipeline damage detection using acceleration measurement (Invited, Irvine, CA USA 92697-2700 ABSTRACT Early detection of pipeline damages has been highlighted in water supply industry. Water pressure change in pipeline due to a sudden rupture causes pipe to vibrate

Shinozuka, Masanobu

334

Tilescope: online analysis pipeline for high-density tiling microarray data Zhengdong D. Zhang1  

E-Print Network [OSTI]

1 Tilescope: online analysis pipeline for high-density tiling microarray data Zhengdong D. Zhang1 pipeline Key words: high-density tiling microarray, high-density oligonucleotide microarray, microarray processing pipeline for analyzing tiling array data (http://tilescope.gersteinlab.org). In a completely

Gerstein, Mark

335

Paper No. RBCSR RESPONSE OF A BURIED CONCRETE PIPELINE TO GROUND  

E-Print Network [OSTI]

Paper No. RBCSR RESPONSE OF A BURIED CONCRETE PIPELINE TO GROUND RUPTURE: A FULL-SCALE EXPERIMENT A typical water distribution system includes a network of steel and concrete pipelines. Concrete segmental pipelines are particularly vulnerable to damage by ground rupture. Ground displacements may produce

Michalowski, Radoslaw L.

336

Grid Workflow Software for a High-Throughput Proteome Annotation Pipeline  

E-Print Network [OSTI]

Grid Workflow Software for a High-Throughput Proteome Annotation Pipeline Adam Birnbaum1 , James-Throughput Proteome 69 Protein Data Bank [9]. Despite the advent of high throughput crystallization pipelines [25 Annotation Pipeline (iGAP) [28]. iGAP, which incorporates a number of well established bioinformatics

Bourne, Philip E.

337

Using Self-Organizing Maps approach to pipeline localization Puttipipatkajorn Amornrit  

E-Print Network [OSTI]

Using Self-Organizing Maps approach to pipeline localization Puttipipatkajorn Amornrit LIRMM the pipeline in sonar imagery. This work is performed in two steps. The first is to split an image (first experiment) or an transformed line image of pipeline image (second experiment) into regions of uniform

Paris-Sud XI, Université de

338

Pipeline Safety Our goal is to provide standard test methods and critical data to  

E-Print Network [OSTI]

Pipeline Safety METALS Our goal is to provide standard test methods and critical data to the pipeline industry to improve safety and reliability. Of particular interest is the testing of high strength pipeline steels, which could enable higher volume gas transport and reduce energy costs. However

339

Controllability analysis of severe slugging in well-pipeline-riser systems  

E-Print Network [OSTI]

Controllability analysis of severe slugging in well-pipeline-riser systems Esmaeil Jahanshahi analysis was performed on a pipeline-rise system using a 4-state model for comparing the results to the previous works. Next, using a 6-state model, the results were extended to a more general well-pipeline

Skogestad, Sigurd

340

THE CITY UNIVERSITY OF NEW YORK Pipeline Programs for College Students  

E-Print Network [OSTI]

THE CITY UNIVERSITY OF NEW YORK Pipeline Programs for College Students CUNY BMI undergraduate students are encouraged to apply to pipeline programs to prepare for competitive graduate and professional school applications processes Pipeline Program Overview Deadline Contact Information Pre-Law Pre-Law Pre

Qiu, Weigang

Note: This page contains sample records for the topic "group aspen pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Strategic Pipeline and Recruitment Fund: Practical Tools for Chairs, Faculty, and Deans (6/11)  

E-Print Network [OSTI]

Strategic Pipeline and Recruitment Fund: Practical Tools for Chairs, Faculty, and Deans (6/11) Goal: Enhance the University's capacity for pipeline development and competitive recruitment that strengthen to facilitate more robust pipeline and recruitment capacity. It complements, but does not duplicate, SHI

Sheridan, Jennifer

342

Economic Nonlinear Model Predictive Control for the Optimization of Gas Pipeline Networks  

E-Print Network [OSTI]

Economic Nonlinear Model Predictive Control for the Optimization of Gas Pipeline Networks EWO University Oct 12, 2011 Ajit Gopalakrishnan (CMU) Economic NMPC for gas pipeline optimization Oct 12, 2011 1 Gopalakrishnan (CMU) Economic NMPC for gas pipeline optimization Oct 12, 2011 4 / 24 #12;Natural Gas Industry

Grossmann, Ignacio E.

343

Parallel Implementation of a Bioinformatics Pipeline for the Design of Pathogen Diagnostic Assays  

E-Print Network [OSTI]

Parallel Implementation of a Bioinformatics Pipeline for the Design of Pathogen Diagnostic Assays Identification), a high performance computing software pipeline that designs microarray probes for multiple related pathogens in a single run. The TOFI pipeline is extremely efficient in designing microarray

344

Synchronization-Free Parallel Collision Detection Pipeline Quentin Avril Valerie Gouranton Bruno Arnaldi  

E-Print Network [OSTI]

Synchronization-Free Parallel Collision Detection Pipeline Quentin Avril Val´erie Gouranton Bruno a first parallel and adaptive collision detection pipeline running on a multi-core architecture. This pipeline integrates a first global synchronization-free parallelization of its major steps and enables

Paris-Sud XI, Université de

345

Mining the Structural Genomics Pipeline: Identification of Protein Properties that Affect  

E-Print Network [OSTI]

Mining the Structural Genomics Pipeline: Identification of Protein Properties that Affect High process through specialized "pipeline schematics". We find that the properties of a protein that are most the structural genomics pipeline,6 ­ 9 from target cloning, expression, purification, to structural determination

Gerstein, Mark

346

AROW A 128 Channel Analogue Pipeline with Wilkinson ADC and Sparsification ASIC  

E-Print Network [OSTI]

AROW ­ A 128 Channel Analogue Pipeline with Wilkinson ADC and Sparsification ASIC Authors: FS on a capacitor pipeline. A level­1 trigger is sent to the front end electronics from the trigger processorA/fC, giving a combined gain of approximately 100mV/MIP. .Analogue storage capacitor pipeline with differential

California at Santa Cruz, University of

347

Preparation of a Data Management Plan, Development of the Data Pipeline, and Efficient Archiving  

E-Print Network [OSTI]

Preparation of a Data Management Plan, Development of the Data Pipeline, and Efficient Archiving quality data archive is produced, design archive production into the instrument data pipeline, use PDS major archive design milestones, early generation of sample data, peer review of the pipeline

Waliser, Duane E.

348

Origin of a magnetic easy axis in pipeline steel L. Clapham,a)  

E-Print Network [OSTI]

Origin of a magnetic easy axis in pipeline steel L. Clapham,a) C. Heald, T. Krause, and D. L December 1998; accepted for publication 27 April 1999 Oil and gas pipelines are generally magnetically overlooked, the magnetic properties of oil and gas pipelines are an important consideration since the most

Clapham, Lynann

349

RAILROAD STRATEGY FOR CRUDE OIL TRANSPORT: Considering Public Policy and Pipeline Competition  

E-Print Network [OSTI]

[15] · Pipelines projects take several years (e.g. ~5 years for the original Keystone) to completeRAILROAD STRATEGY FOR CRUDE OIL TRANSPORT: Considering Public Policy and Pipeline Competition S transported by pipelines in North America, railroads have seen significant growth in this commodity, from just

Entekhabi, Dara

350

Theory and Algorithms for Software Pipelining with Minimal Cost on Nested Loops  

E-Print Network [OSTI]

Theory and Algorithms for Software Pipelining with Minimal Cost on Nested Loops Qingfeng Zhuge. However, little research has been done for the software pipelining problem on nested loops. The existing software pipelining techniques for single loops can only explore the innermost loop parallelism of a nested

Sha, Edwin

351

Group X  

SciTech Connect (OSTI)

This project is currently under contract for research through the Department of Homeland Security until 2011. The group I was responsible for studying has to remain confidential so as not to affect the current project. All dates, reference links and authors, and other distinguishing characteristics of the original group have been removed from this report. All references to the name of this group or the individual splinter groups has been changed to 'Group X'. I have been collecting texts from a variety of sources intended for the use of recruiting and radicalizing members for Group X splinter groups for the purpose of researching the motivation and intent of leaders of those groups and their influence over the likelihood of group radicalization. This work included visiting many Group X websites to find information on splinter group leaders and finding their statements to new and old members. This proved difficult because the splinter groups of Group X are united in beliefs, but differ in public opinion. They are eager to tear each other down, prove their superiority, and yet remain anonymous. After a few weeks of intense searching, a list of eight recruiting texts and eight radicalizing texts from a variety of Group X leaders were compiled.

Fields, Susannah

2007-08-16T23:59:59.000Z

352

www.eprg.group.cam.ac.uk EPRGWORKINGPAPERNON-TECHNICALSUMMARY  

E-Print Network [OSTI]

www.eprg.group.cam.ac.uk EPRGWORKINGPAPERNON-TECHNICALSUMMARY The Economics of the Nord Stream with the construction of the Yamal-Europe pipeline in the 1990s and continued more recently with the Nord Stream west-European clients. The Nord Stream project has been politically controversial since its inception

Aickelin, Uwe

353

www.eprg.group.cam.ac.uk EPRGWORKINGPAPER  

E-Print Network [OSTI]

www.eprg.group.cam.ac.uk EPRGWORKINGPAPER Abstract The Economics of the Nord Stream Pipeline System M. Reiner We calculate the total cost of building Nord Stream and compare its levelised unit cost of shipping through Nord Stream is clearly lower than using the Ukrainian route and is only

Aickelin, Uwe

354

FEASIBILITY STUDY OF PRESSURE PULSING PIPELINE UNPLUGGING TECHNOLOGIES FOR HANFORD  

SciTech Connect (OSTI)

The ability to unplug key waste transfer routes is generally essential for successful tank farms operations. All transfer lines run the risk of plugging but the cross site transfer line poses increased risk due to its longer length. The loss of a transfer route needed to support the waste feed delivery mission impacts the cost and schedule of the Hanford clean up mission. This report addresses the engineering feasibility for two pressure pulse technologies, which are similar in concept, for pipeline unplugging.

Servin, M. A. [Washington River Protection Solutions, LLC, Richland, WA (United States); Garfield, J. S. [AEM Consulting, LLC (United States); Golcar, G. R. [AEM Consulting, LLC (United States)

2012-12-20T23:59:59.000Z

355

Hunter College Black Male Initiative-"Brothers for Excellence"-Summer Pipeline Programs Hunter College Black Male Initiative  

E-Print Network [OSTI]

Hunter College Black Male Initiative-"Brothers for Excellence"- Summer Pipeline Programs 1 Hunter College Black Male Initiative "Brothers for Excellence" Summer Pipeline Programs Table of Contents Page 11 Law Pipeline Programs 1 11 Graduate School, Earning a Ph.D., Conduct Research Pipeline Programs 24 16

Qiu, Weigang

356

The NCBI Eukaryotic Genome Annotation Process Enhancing the value of assembled genomes through annotation using a standardized pipeline  

E-Print Network [OSTI]

annotation using a standardized pipeline http://www.ncbi.nlm.nih.gov/genome/ National Center Pipeline | Last Update August 19, 2013 Overview The NCBI eukaryotic genome annotation pipeline provides alignment services, and the Map Viewer genome browser. The pipeline uses a modular framework

Levin, Judith G.

357

Analysis of Frequency, Magnitude and Consequence of Worst-Case Spills From the Proposed Keystone XL Pipeline  

E-Print Network [OSTI]

approval to build the Keystone XL pipeline from Alber- ta, Canada to Texas. The pipeline will transport built Keystone pipeline, can be found on the US State Department web site. It is widely recognized that the environmental assessment docu- ments for the Keystone XL pipeline are inadequate, and that they do not properly

Farritor, Shane

358

Review of statistics of interstate natural gas pipeline companies  

SciTech Connect (OSTI)

This report presents the results of a review of the EIA publication Statistics of Interstate Natural Gas Pipeline Companies, DOE/EIA-0145. This review was conducted for the Development, Collection, Processing and Maintenance Branch of the Natural Gas Division. It was intended to review the format, distribution and production costs of the annual publication. The primary focus was examining alternative approaches for reducing the volume and complexity of the data contained in the report. Statistics of Interstate Natural Gas Pipeline Companies presents a tremendous amount of financial and operating detail on interstate pipeline companies subject to the Natural Gas Act. The report consists of more than 250 pages of tabular data with considerable amounts of overlap and redundancy among tables. Along with the obvious options of keeping the report in its current form or eliminating it entirely EIA has the option of condensing and streamlining the report. Primarily this would involve eliminating the appendices with their company level data and/or consolidating some of the 28 composite tables and placing them in a more manageable form. This would also help place a focus on the report which with its numerous, redundant and overlapping tables the current version lacks. Along with the consolidation and streamlining effort EIA could make the detailed information available upon request and at a charge. However, prior to any major revision the user community should be polled to determine how the report is currently used. (DMC)

None

1982-06-01T23:59:59.000Z

359

INVESTIGATION OF PIPELINES INTEGRITY ASSOCIATED WITH PUMP MODULES VIBRATION FOR PUMPING STATION 9 OF ALYESKA PIPELINE SERVICE COMPANY  

SciTech Connect (OSTI)

Since the operation of PS09 SR module in 2007, it has been observed that there is vibration in various parts of the structures, on various segments of piping, and on appurtenance items. At DOT Pipeline and Hazardous Materials Safety Administration (PHMSA) request, ORNL Subject Matter Experts support PHMSA in its review and analysis of the observed vibration phenomenon. The review and analysis consider possible effects of pipeline design features, vibration characteristics, machinery configuration, and operating practices on the structural capacity and leak tight integrity of the pipeline. Emphasis is placed on protection of welded joints and machinery against failure from cyclic loading. A series of vibration measurements were carried out by the author during the site visit to PS09, the power of the operating pump during the data collection is at about 2970KW, which is less than that of APSC's vibration data collected at 3900KW. Thus, a first order proportional factor of 4900/2970 was used to project the measured velocity data to that of APSC's measurement of the velocity data. It is also noted here that the average or the peak-hold value of the measured velocity data was used in the author's reported data, and only the maximum peak-hold data was used in APSC's reported data. Therefore, in some cases APSC's data is higher than the author's projective estimates that using the average data. In general the projected velocity data are consistent with APSC's measurements; the examples of comparison at various locations are illustrated in the Table 1. This exercise validates and confirms the report vibration data stated in APSC's summary report. After the reinforcement project for PS09 Station, a significant reduction of vibration intensity was observed for the associated pipelines at the SR Modules. EDI Co. provided a detailed vibration intensity investigation for the newly reinforced Pump Module structures and the associated pipelines. A follow-up review of EDI's report was carried out by the author. The comments and questions regarding the EDI report are categorized into four subjects, namely (1) piping vibration severity, (2) pulsation and its impact on the PS09 structure and piping, (3) strain-gage stress history profiles, and (4) the cavitation potential investigation, where the questions are stated at the end of the comments for further follow-on investigations.

Wang, Jy-An John [ORNL

2009-09-01T23:59:59.000Z

360

Automata groups  

E-Print Network [OSTI]

-presentation. We also find the L-presentation for several other groups generated by three-state automata, and we describe the defining relations in the Grigorchuk groups G_w. In case when the sequence w is almost periodic these relations provide an L...

Muntyan, Yevgen

2010-01-16T23:59:59.000Z

Note: This page contains sample records for the topic "group aspen pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Engineering High Performance Service-Oriented Pipeline Applications with MeDICi  

SciTech Connect (OSTI)

The pipeline software architecture pattern is commonly used in many application domains to structure a software system. A pipeline comprises a sequence of processing steps that progressively transform data to some desired outputs. As pipeline-based systems are required to handle increasingly large volumes of data and provide high throughput services, simple scripting-based technologies that have traditionally been used for constructing pipelines do not scale. In this paper we describe the MeDICI Integration Framework (MIF), which is specifically designed for building flexible, efficient and scalable pipelines that exploit distributed services as elements of the pipeline. We explain the core runtime and development infrastructures that MIF provides, and demonstrate how MIF has been used in two complex applications to improve performance and modifiability.

Gorton, Ian; Wynne, Adam S.; Liu, Yan

2011-01-07T23:59:59.000Z

362

Innovative Sensors for Pipeline Crawlers: Rotating Permanent Magnet Inspection  

SciTech Connect (OSTI)

Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they may encounter. To facilitate inspection of these ''unpiggable'' pipelines, recent inspection development efforts have focused on a new generation of powered inspection platforms that are able to crawl slowly inside a pipeline and can maneuver past the physical barriers that limit internal inspection applicability, such as bore restrictions, low product flow rate, and low pressure. The first step in this research was to review existing inspection technologies for applicability and compatibility with crawler systems. Most existing inspection technologies, including magnetic flux leakage and ultrasonic methods, had significant implementation limitations including mass, physical size, inspection energy coupling requirements and technology maturity. The remote field technique was the most promising but power consumption was high and anomaly signals were low requiring sensitive detectors and electronics. After reviewing each inspection technology, it was decided to investigate the potential for a new inspection method. The new inspection method takes advantage of advances in permanent magnet strength, along with their wide availability and low cost. Called rotating permanent magnet inspection (RPMI), this patent pending technology employs pairs of permanent magnets rotating around the central axis of a cylinder to induce high current densities in the material under inspection. Anomalies and wall thickness variations are detected with an array of sensors that measure local changes in the magnetic field produced by the induced current flowing in the material. This inspection method is an alternative to the common concentric coil remote field technique that induces low-frequency eddy currents in ferromagnetic pipes and tubes. Since this is a new inspection method, both theory and experiment were used to determine fundamental capabilities and limitations. Fundamental finite element modeling analysis and experimental investigations performed during this development have led to the derivation of a first order analytical equation for designing rotating magnetizers to induce current and positioning sensors to record signals from anomalies. Experimental results confirm the analytical equation and the finite element calculations provide a firm basis for the design of RPMI systems. Experimental results have shown that metal loss anomalies and wall thickness variations can be detected with an array of sensors that measure local changes in the magnetic field produced by the induced current flowing in the material. The design exploits the phenomenon that circumferential currents are easily detectable at distances well away from the magnets. Current changes at anomalies were detectable with commercial low cost Hall Effect sensors. Commercial analog to digital converters can be used to measure the sensor output and data analysis can be performed in real time using PC computer systems. The technology was successfully demonstrated during two blind benchmark tests where numerous metal loss defects were detected. For this inspection technology, the detection threshold is a function of wall thickness and corrosion depth. For thinner materials, the detection threshold was experimentally shown to be comparable to magnetic flux leakage. For wall thicknesses greater than three tenths of an inch, the detection threshold increases with wall thickness. The potential for metal loss anomaly sizing was demonstrated in the second benchmarking study, again with accuracy comparable to existing magnetic flux leakage technologies. The rotating permanent magnet system has the potential for inspecting unpiggable pipelines since the magnetizer configurations can be sufficiently small with respect to the bore of the pipe to pass obstructions that limit the application of many i

J. Bruce Nestleroth; Richard J. Davis; Stephanie Flamberg

2006-09-30T23:59:59.000Z

363

APPE forms task force to look at pipelines  

SciTech Connect (OSTI)

The Association of Petrochemicals Producers in Europe (APPE; Brussels) is embarking on an initiative to help with restructuring. Speaking at the recent meeting of the European Chemical Industry Council in Cernobbio, Italy, Jukka Viinanen, president of APPE, said that although the initial ethylene restructuring plan collapsed, {open_quotes}it was not a complete failure.{close_quotes} The association Viinanen says, is continuing to find ways and means to improve the situation. {open_quotes}One of the things that APPE is now doing is to study carefully the [ethylene] pipeline system.{close_quotes}

NONE

1994-06-29T23:59:59.000Z

364

EIA - Natural Gas Pipeline Network - States Dependent on Interstate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scattering characterizesAnalysisPipelines Map States Dependent

365

EIA - Natural Gas Pipeline Network - Transportation Process & Flow  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scattering characterizesAnalysisPipelines Map States

366

EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scattering characterizesAnalysisPipelines Map

367

EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scattering characterizesAnalysisPipelines MapFacilities

368

EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scattering characterizesAnalysisPipelines

369

West Virginia Natural Gas Pipeline and Distribution Use (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion CubicCubic39,287Sales1Feet) (Million

370

Whitlash, MT Natural Gas Imports by Pipeline from Canada  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008 2009 2010from SameperCubic9,195 7,707

371

Wisconsin Natural Gas Pipeline and Distribution Use (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008 2009 2010from2009 2010 (Million Cubic

372

Wisconsin Natural Gas Pipeline and Distribution Use Price (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008 2009 2010from2009 2010 (Million

373

Wyoming Natural Gas Pipeline and Distribution Use (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14Year (Million Cubic Feet)

374

Wyoming Natural Gas Pipeline and Distribution Use Price (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14Year (Million Cubic

375

Waddington, NY Natural Gas Pipeline Imports From Canada (Million Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYearFeet) Year Jan Feb MarSeptember

376

Alabama Natural Gas Pipeline and Distribution Use (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet) Base Gas)1,727Feet) YearIndustrial

377

Alabama Natural Gas Pipeline and Distribution Use Price (Dollars per  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet) Base Gas)1,727Feet)

378

Alamo, TX Natural Gas Imports by Pipeline from Mexico  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet) BaseSep-14 Oct-14per ThousandOnshore3,678

379

Alaska Natural Gas Pipeline and Distribution Use (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet)Year Jan Feb Mar Apr May Jun JulIndustrial

380

Alaska Natural Gas Pipeline and Distribution Use Price (Dollars per  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet)Year Jan Feb Mar Apr May Jun

Note: This page contains sample records for the topic "group aspen pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Arizona Natural Gas Pipeline and Distribution Use (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet)Year Jan FebForeignDecade Year-00 0Industrial

382

Arizona Natural Gas Pipeline and Distribution Use Price (Dollars per  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet)Year Jan FebForeignDecade Year-00

383

Arkansas Natural Gas Pipeline and Distribution Use (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet)YearIndustrial Consumers (Number of Elements)

384

Arkansas Natural Gas Pipeline and Distribution Use Price (Dollars per  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet)YearIndustrial Consumers (Number of

385

Sherwood, ND Natural Gas Imports by Pipeline from Canada  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) YearPriceThousandThousand479,741 476,855 448,967 433,713 432,497

386

Sherwood, ND Natural Gas Pipeline Exports (Price) Canada (Dollars per  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) YearPriceThousandThousand479,741 476,855 448,967 433,713

387

Sherwood, ND Natural Gas Pipeline Exports (Price) Canada (Dollars per  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) YearPriceThousandThousand479,741 476,855 448,967 433,713Thousand

388

South Carolina Natural Gas Pipeline and Distribution Use (Million Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) YearPriceThousandThousand479,741 476,85520Elements)Feet)

389

St. Clair, MI Natural Gas Imports by Pipeline from Canada  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet) Decade

390

Sweetgrass, MT Liquefied Natural Gas Pipeline Exports to Canada (Dollars  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet) DecadeCubicfromCubic Feet)

391

Sweetgrass, MT Liquefied Natural Gas Pipeline Exports to Canada (Dollars  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet) DecadeCubicfromCubic Feet)per

392

Sweetgrass, MT Liquefied Natural Gas Pipeline Exports to Canada (Million  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet) DecadeCubicfromCubic

393

Sweetgrass, MT Natural Gas Imports by Pipeline from Canada  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet) DecadeCubicfromCubic8 2009 2010 2011

394

Sweetgrass, MT Natural Gas Pipeline Imports From Canada (Dollars per  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet) DecadeCubicfromCubic8 2009 2010

395

Sweetgrass, MT Natural Gas Pipeline Imports From Canada (Dollars per  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet) DecadeCubicfromCubic8 2009

396

Sweetgrass, MT Natural Gas Pipeline Imports From Canada (Million Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet) DecadeCubicfromCubic8 2009Feet)

397

Tennessee Natural Gas Pipeline and Distribution Use (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2 10,037.24. (Million Cubic Feet)

398

Tennessee Natural Gas Pipeline and Distribution Use Price (Dollars per  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2 10,037.24. (Million Cubic Feet)Thousand

399

Texas Natural Gas Pipeline and Distribution Use (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14 (Million Cubic Feet) Texas

400

U.S. Natural Gas Imports by Pipeline from Mexico  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 QInternationalYear Jan Feb

Note: This page contains sample records for the topic "group aspen pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

U.S. Natural Gas Imports by Pipeline from Mexico  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 QInternationalYear Jan FebNoyes, MN Warroad,

402

International Falls, MN Natural Gas Imports by Pipeline from Canada  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0Year Jan Feb MarYearper09

403

International Falls, MN Natural Gas Pipeline Imports From Canada (Dollars  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0Year Jan Feb MarYearper09per

404

Iowa Natural Gas Pipeline and Distribution Use (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0Year JanDecadeCommercial (Million

405

Kansas Natural Gas Pipeline and Distribution Use (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0ExtensionsYear Jan FebYearIndustrial

406

Kansas Natural Gas Pipeline and Distribution Use Price (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0ExtensionsYear Jan

407

Kentucky Natural Gas Pipeline and Distribution Use (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15Industrial Consumers (Number of Elements)

408

Kentucky Natural Gas Pipeline and Distribution Use Price (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15Industrial Consumers (Number of

409

Louisiana Natural Gas Pipeline and Distribution Use (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 3289 0 0Fuel ConsumptionIndustrial

410

Louisiana Natural Gas Pipeline and Distribution Use Price (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 3289 0 0Fuel

411

Maine Natural Gas Pipeline and Distribution Use (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342CubicSep-14 Oct-14 (Million Cubic

412

Maryland Natural Gas Pipeline and Distribution Use (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343Decade Year-0 Year-1FuelIndustrial

413

Maryland Natural Gas Pipeline and Distribution Use Price (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343Decade Year-0

414

Marysville, MI Natural Gas Imports by Pipeline from Canada  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343Decade81 170 115 89 1164,925 22,198

415

Marysville, MI Natural Gas Pipeline Imports From Canada (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343Decade81 170 115 89 1164,925Year Jan

416

Marysville, MI Natural Gas Pipeline Imports From Canada (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343Decade81 170 115 89 1164,925Year

417

Marysville, MI Natural Gas Pipeline Imports From Canada (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343Decade81 170 115 89 1164,925YearFeet)

418

Massachusetts Natural Gas Pipeline and Distribution Use (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343Decade81 170Feet) (Million Cubic

419

Massachusetts Natural Gas Pipeline and Distribution Use Price (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343Decade81 170Feet) (Million

420

Massena, NY Natural Gas Imports by Pipeline from Canada  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343Decade81Feet) Vehicle3 10 * 0 *

Note: This page contains sample records for the topic "group aspen pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Michigan Natural Gas Pipeline and Distribution Use (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15 15 3Year Jan Feb (Million Cubic

422

Michigan Natural Gas Pipeline and Distribution Use Price (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15 15 3Year Jan Feb (Million

423

Minnesota Natural Gas Pipeline and Distribution Use (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15 15continues,WithdrawalsIndustrial

424

Minnesota Natural Gas Pipeline and Distribution Use Price (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15

425

Mississippi Natural Gas Pipeline and Distribution Use (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year Jan Feb (Million Cubic Feet)

426

Mississippi Natural Gas Pipeline and Distribution Use Price (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year Jan Feb (Million Cubic

427

Missouri Natural Gas Pipeline and Distribution Use (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year JanThousandFeet)Industrial

428

Missouri Natural Gas Pipeline and Distribution Use Price (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year

429

Montana Natural Gas Pipeline and Distribution Use (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19343 369 384 388Feet)Feet)Industrial

430

Montana Natural Gas Pipeline and Distribution Use Price (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19343 369 384

431

Crude Oil and Petroleum Products Movements by Pipeline between PAD  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOilCompanyexcludingDistricts Pipeline

432

Sweetgrass, MT Natural Gas Pipeline Imports From Canada (Million Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYear Jan FebThousand Cubicin North Dakota6,979 89 7,728

433

U.S. Natural Gas Pipeline Exports (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinter 2013-14Deliveries (Number ofof(Number

434

U.S. Natural Gas Pipeline Imports (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinter 2013-14Deliveries (NumberYear Jan Feb

435

From PADD 1 to PADD 2 Movements by Pipeline  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,99 Diagram 4.Future of CoalSep-14

436

Microsoft Word - Rockies Pipelines and Prices.doc  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0,InformationU.S. Crude Oil3 1 Short-TermJuly80

437

U.S. Natural Gas Pipeline Exports (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26,8,Coal Stocks atYearYearYear Jan Feb

438

U.S. Natural Gas Pipeline Imports (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26,8,Coal Stocks atYearYearYear Jan

439

Colorado Natural Gas Pipeline and Distribution Use (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 46 (Million Cubic Feet) Colorado

440

Colorado Natural Gas Pipeline and Distribution Use Price (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 46 (Million Cubic Feet)

Note: This page contains sample records for the topic "group aspen pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Connecticut Natural Gas Pipeline and Distribution Use (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42 (Million Cubic Feet)

442

Connecticut Natural Gas Pipeline and Distribution Use Price (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42 (Million Cubic Feet)Thousand

443

Crosby, ND Natural Gas Pipeline Imports From Canada  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42Year Jan Feb Mar 2014 View

444

Delaware Natural Gas Pipeline and Distribution Use (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42Year (Million Cubic Feet)

445

Delaware Natural Gas Pipeline and Distribution Use Price (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42Year (Million Cubic

446

Detroit, MI Natural Gas Imports by Pipeline from Canada  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42YearDelawareDetails of

447

District of Columbia Natural Gas Pipeline and Distribution Use (Million  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623and CommercialCubicCubic Feet)

448

District of Columbia Natural Gas Pipeline and Distribution Use Price  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623and CommercialCubicCubic Feet)

449

EIA - Analysis of Natural Gas Imports/Exports & Pipelines  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623Primary Metals (33)923

450

Eastport, ID Natural Gas Imports by Pipeline from Canada  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,237 1,471 2,114 2,970 2,6088 2009 2010

451

El Paso, TX Natural Gas Imports by Pipeline from Mexico  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,237 1,471 2,114 2,970 2,6088Education7,119

452

Florida Natural Gas Pipeline and Distribution Use (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 0 0 1979-2013 AdjustmentsYearandIndustrial

453

Florida Natural Gas Pipeline and Distribution Use Price (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 0 0 1979-2013

454

Galvan Ranch, TX Natural Gas Imports by Pipeline from Mexico  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 0 0ThousandFeet)Cubic621 611 559

455

Georgia Natural Gas Pipeline and Distribution Use (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 058.5 57.1 54.8Industrial Consumers

456

Georgia Natural Gas Pipeline and Distribution Use Price (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 058.5 57.1 54.8Industrial

457

Grand Island, NY Natural Gas Imports by Pipeline from Canada  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 058.5 57.1CubicVehicle0 0 1,517 6,194

458

Havre, MT Natural Gas Imports by Pipeline from Canada  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 058.588,219 719,4351998 1999 2000 2001

459

Hawaii Natural Gas Pipeline and Distribution Use (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 058.588,219

460

Hidalgo, TX Natural Gas Imports by Pipeline from Mexico  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0Decade Year-0 Year-1 Year-2 Year-30 0 0

Note: This page contains sample records for the topic "group aspen pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Highgate Springs, VT Natural Gas Pipeline Imports From Canada (Million  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0Decade Year-0 Year-1 Year-2Thousand

462

Idaho Natural Gas Pipeline and Distribution Use (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0Decade (Million Cubic Feet) Idaho Natural

463

Illinois Natural Gas Pipeline and Distribution Use (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0DecadeWithdrawals (Million CubicIndustrial

464

Illinois Natural Gas Pipeline and Distribution Use Price (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0DecadeWithdrawals (Million

465

Indiana Natural Gas Pipeline and Distribution Use (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0 0Withdrawals (MillionIndustrial

466

Indiana Natural Gas Pipeline and Distribution Use Price (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0 0Withdrawals

467

Utah Natural Gas Pipeline and Distribution Use (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198Separation 321 (Million Cubic Feet) Utah

468

Vermont Natural Gas Pipeline and Distribution Use (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198Separation 321Working40Industrial Consumers

469

Vermont Natural Gas Pipeline and Distribution Use Price (Dollars per  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198Separation 321Working40Industrial

470

Virginia Natural Gas Pipeline and Distribution Use (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28Decreases (Billion CubicYear JanCommercial (Million

471

Virginia Natural Gas Pipeline and Distribution Use Price (Dollars per  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28Decreases (Billion CubicYear JanCommercial

472

Waddington, NY Natural Gas Imports by Pipeline from Canada  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28Decreases349,980 267,227 231,831 241,506 214,671

473

Waddington, NY Natural Gas Pipeline Imports From Canada (Dollars per  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28Decreases349,980 267,227 231,831

474

Waddington, NY Natural Gas Pipeline Imports From Canada (Dollars per  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28Decreases349,980 267,227 231,831Thousand Cubic

475

Waddington, NY Natural Gas Pipeline Imports From Canada (Million Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28Decreases349,980 267,227 231,831Thousand

476

Warroad, MN Natural Gas Imports by Pipeline from Canada  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28Decreases349,980 267,227

477

Warroad, MN Natural Gas Pipeline Exports (Price) Canada (Dollars per  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28Decreases349,980 267,227Thousand Cubic Feet)

478

Washington Natural Gas Pipeline and Distribution Use (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28Decreases349,980Additions (MillionIndustrial

479

Washington Natural Gas Pipeline and Distribution Use Price (Dollars per  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28Decreases349,980Additions (MillionIndustrialThousand

480

Otay Mesa, CA Natural Gas Imports by Pipeline from Mexico  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas,095,3628,527 9,029 8,794Cubic Feet) Year Jan Feb Mar Apr 0

Note: This page contains sample records for the topic "group aspen pipeline" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Penitas, TX Natural Gas Imports by Pipeline from Mexico  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas,095,3628,527 9,029 8,794CubicExports of CrudeDegreesMethodology8

482

Pittsburg, NH Natural Gas Imports by Pipeline from Canada  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas,095,3628,527Price (Percent)thePrice2,177.8Table

483

Portal, ND Natural Gas Imports by Pipeline from Canada  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas,095,3628,527PriceThousand Cubic Feet) YearThousandFeet)8

484

Marysville, MI Natural Gas Pipeline Imports From Canada (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team: Kay Smith, RussFoot)per ThousandFeet)

485

Conventional Gasoline Movements by Tanker, Pipeline, Barge and Rail between  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87CBECS Public Use Data CBECSYearThousandPAD

486

EIA - Natural Gas Pipeline Network - Aquifer Storage Reservoir  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87CBECS Public Use Data03. U.S.

487

Highgate Springs, VT Natural Gas Pipeline Imports From Canada (Million  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam CoalReserves (Million Barrels)Reserves from%Year Jan FebCubic

488

International Falls, MN Natural Gas Pipeline Imports From Canada (Million  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam CoalReserves (MillionYear Jan Feb Mar AprUnderground591,609

489

Babb, MT Natural Gas Imports by Pipeline from Canada  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 566 8021 1 2 22008662 564 1,1460 0 20 0 0

490

Calais, ME Natural Gas Imports by Pipeline from Canada  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 566 8021 1 2andPublication >

491

Nebraska Natural Gas Pipeline and Distribution Use (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb Marthrough Monthly2.Fuel ConsumptionIndustrial

492

Nebraska Natural Gas Pipeline and Distribution Use Price (Dollars per  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb Marthrough Monthly2.Fuel

493

Nevada Natural Gas Pipeline and Distribution Use (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb MarthroughYear Jan Feband Plant FuelIndustrial

494

Nevada Natural Gas Pipeline and Distribution Use Price (Dollars per  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb MarthroughYear Jan Feband Plant

495

Niagara Falls, NY Natural Gas Imports by Pipeline from Canada  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan FebFeet)SalesYear Jan Feb Mar0 0 0 0 03a188,525

496

North Troy, VT Natural Gas Imports by Pipeline from Canada  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year JanProduction 4 12 7311,925 177,99581 1319 8 45 30 13

497

Noyes, MN Natural Gas Imports by Pipeline from Canada  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year JanProduction 4 12 7311,925 177,99581 13190 0

498

Ogilby, CA Natural Gas Imports by Pipeline from Mexico  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year JanProduction 4 12 7311,925Count)Thousand

499

,"Port of Del Bonita, MT Natural Gas Pipeline Imports From Canada...  

U.S. Energy Information Administration (EIA) Indexed Site

Del Bonita, MT Natural Gas Pipeline Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

500

Reading the public comment : the keystone XL pipeline and future of environmental writing.  

E-Print Network [OSTI]

?? In the lead up to the 2011 official U.S. State Department decision on the proposed Keystone XL pipeline running from the Alberta, Canada Tar (more)

Siegel, Eric Mitchell