Sample records for groundwaters lessons learned

  1. Lessons Learned

    E-Print Network [OSTI]

    DiMento, Joseph F.C.

    2000-01-01T23:59:59.000Z

    Lessons Learned Joseph F.C. DiMento The contributions insuccessful in bringing LESSONS LEARNED parties to discuss arelations." Yet LESSONS LEARNED "innovations" in the

  2. DOE Lessons Learned

    Broader source: Energy.gov [DOE]

    DOE Lessons Learned Information Services Catches the Eye of Corporations and Educational Institutions

  3. Lessons Learned | Department of Energy

    Energy Savers [EERE]

    Lessons Learned Lessons Learned The Department of Energy utilizes project management lessons learned (PMLL) in the execution of DOE capital asset projects to improve current and...

  4. Cycle Track Lessons Learned

    E-Print Network [OSTI]

    Bertini, Robert L.

    Cycle Track Lessons Learned #12;Presentation Overview · Bicycling trends · Cycle track lessons learned · What is a "Cycle track"? · Essential design elements of cycle tracks Separation Width Crossing

  5. Project Learning What are the "Lessons Learned"

    E-Print Network [OSTI]

    Christian, Eric

    Project Learning What are the "Lessons Learned" requirements? How can you fulfill the requirements the initial Lessons Learned Plan after KDP A and incorporate into the Preliminary Project Plan; Hold a PaL after KDP D/launch, review and submit lessons · Consolidate all Lessons Learned into a Final Lessons

  6. Lessons Learned

    SciTech Connect (OSTI)

    Dougan, A D; Blair, S

    2006-11-14T23:59:59.000Z

    LLNL turned in 5 Declaration Line Items (DLI's) in 2006. Of these, one was declared completed. We made some changes to streamline our process from 2005, used less money, time and fewer team members. This report is a description of what changes we made in 2006 and what we learned. Many of our core review team had changed from last year, including our Laboratory Director, the Facility safety and security representatives, our Division Leader, and the OPSEC Committee Chair. We were able to hand out an AP Manual to some of them, and briefed all newcomers to the AP process. We first went to the OPSEC Committee and explained what the Additional Protocol process would be for 2006 and solicited their help in locating declarable projects. We utilized the 'three questions' from the AP meeting last year. LLNL has no single place to locate all projects at the laboratory. We talked to Resource Managers and key Managers in the Energy and Environment Directorate and in the Nonproliferation Homeland and International Security Directorate to find applicable projects. We also talked to the Principal Investigators who had projects last year. We reviewed a list of CRADA's and LDRD projects given to us by the Laboratory Site Office. Talking to the PI's proved difficult because of vacation or travel schedules. We were never able to locate one PI in town. Fortunately, collateral information allowed us to screen out his project. We had no problems in downloading new versions of the DWA and DDA. It was helpful for both Steve Blair and Arden Dougan to have write privileges. During the time we were working on the project, we had to tag-team the work to allow for travel and vacation schedules. We had some difficulty locating an 'activities block' in the software. This was mentioned as something we needed to fix from our 2005 declaration. Evidently the Activities Block has been removed from the current version of the software. We also had trouble finding the DLI Detail Report, which we included in our signature process last year. This report had been inadvertently omitted from the version of the software we used. We typed our own version of the Detail Report and the package was sent to signature. The final software was not available in time to include the DLI Report. We streamlined our review process for the Technical and Security Reviews by sending one letter to each entity instead of getting separate approvals from the subordinates, then getting an approval from the lead reviewer. The Review process took 20 days, far shorter than the 6 weeks it required last year. It will be difficult to shorten the process much more. One of our projects had associated laboratory work at NIF. This required many discussions with NIF management during the review process and before their paperwork came to them for signature since they were not aware of the Additional Protocol.

  7. LESSONS LEARNED AND BEST PRACTICES PROGRAM MANUAL

    E-Print Network [OSTI]

    Gravois, Melanie C.

    2007-01-01T23:59:59.000Z

    Experience Program. LESSONS LEARNED AND BEST PRACTICESUpon receipt of a Lessons Learned/Best Practices Feedbackreview disseminated Lessons Learned/Best Practices Briefings

  8. Sharing Lessons Learned

    SciTech Connect (OSTI)

    Mohler, Bryan L.

    2004-09-01T23:59:59.000Z

    Workplace safety is inextricably tied to the culture the leadership, management and organization of the entire company. Nor is a safety lesson fundamentally different from any other business lesson. With these points in mind, Pacific Northwest National Laboratory recast its lessons learned program in 2000. The laboratory retained elements of a traditional lessons learned program, such as tracking and trending safety metrics, and added a best practices element to increase staff involvement in creating a safer, healthier work environment. Today, the Lessons Learned/Best Practices program offers the latest business thinking summarized from current external publications and shares better ways PNNL staff have discovered for doing things. According to PNNL strategic planning director Marilyn Quadrel, the goal is to sharpen the business acumen, project management ability and leadership skills of all staff and to capture the benefits of practices that emerge from lessons learned. A key tool in the PNNL effort to accelerate learning from past mistakes is one that can be easily implemented by other firms and tailored to their specific needs. It is the weekly placement of Lessons Learned/Best Practices articles in the labs internal electronic newsletter. The program is equally applicable in highly regulated environments, such as the national laboratories, and in enterprises that may have fewer external requirements imposed on their operations. And it is cost effective, using less than the equivalent of one fulltime person to administer.

  9. The Alameda Corridor: Lessons Learned

    E-Print Network [OSTI]

    Bertini, Robert L.

    The Alameda Corridor: Lessons Learned Plus Past and Future Challenges Presented to: Portland State Corridor **Trucked around Corridor but leaves or enters Southern California by rail. #12;Lessons Learned

  10. Lessons Learned Quarterly Report, March 2004

    Broader source: Energy.gov [DOE]

    Welcome to the 38th quarterly report on lessons learned in the NEPA process. In this issue we are continuing a multi-part examination of lessons learned from Lessons Learned.

  11. Lessons Learned Quarterly Report, June 2004

    Broader source: Energy.gov [DOE]

    Welcome to the 39th quarterly report on lessons learned in the NEPA process. In this issue we are continuing a multi-part examination of lessons learned from Lessons Learned.

  12. NEPA Lessons Learned Questionnaire

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of theTechno-economicOctober 2013 -DepartmentLessons Learned

  13. Lessons Learned: Peer Exchange Calls Fall 2014 | Department of...

    Energy Savers [EERE]

    Calls Fall 2014 Lessons Learned: Peer Exchange Calls Fall 2014 Better Buildings Residential Network, Lessons Learned: Peer Exchange Calls Fall 2014. Lessons Learned: Peer...

  14. Initial Site-wide Groundwater remediation Strategy of the Hanford Site, WA: Its Application, Lessons Learned and Future Path forward

    SciTech Connect (OSTI)

    Goswami, D.; Hedges, J.; Whalen, C. [Nuclear Waste Program, Washington State Department of Ecology, WA (United States)

    2007-07-01T23:59:59.000Z

    In 1989, the Washington State Department of Ecology (Ecology), the U.S. Environmental Protection Agency (EPA), and the U.S. Department of Energy (DOE) formed an agreement to clean up the Hanford Site, located in the state of Washington. By 1995, the three parties developed an initial comprehensive site wide groundwater remediation strategy with a vision to address contaminated plumes of hazardous and radioactive waste. The Hanford Site has more than 170 square miles of contaminated groundwater. Almost half exceeds the state and federal drinking water standards. The plumes are often commingled. The remediation is challenged by limited technologies, poor understanding of conceptual models, and subsurface contaminant behavior. This paper briefly describes the basic principles of the initial strategy, its application, the results of the decade-long operation, and the future path forward. The initial strategy was based on a qualitative assessment to reduce immediate risk to human health and the environment; to support commonly held values of stakeholders, including tribal nations and the public; and to deploy available remediation technologies. Two different approaches were used for two distinct geographic, the river shore reactor areas and the central plateau few miles away. The strategy was to cleanup the major groundwater plumes in the reactor areas next to the Columbia River where chromium, strontium-90, and uranium already entering the river and to contain the plumes of chlorinated solvents and radionuclides in the central plateau. The strategy acknowledges the lack of cost-effective technologies to address the contaminants, and asked DOE to develop, test, and deploy cost-effective alternative technologies wherever applicable. After more than a decade, the results are mixed. While the pump and treat provided a meaningful approach to address certain contaminants, it was too small in scale. Efforts to scale up these operations enhance characterization, and to deployment innovative technologies are progressing; albeit slowly due to budget constraints. A number of innovative technologies were identified to address source control and groundwater remediation across the Hanford Site. In the 10 years since the initial strategy was developed, additional severe groundwater and vadose zone contaminations were discovered under the waste storage tanks on the central plateau and river corridor areas. These problems required changes to the strategy. Changes include complete integration of vadose zone and groundwater characterization and remediation activities and immediate needs for technologies to address the deep vadose zone source areas, as well as thick aquifer contamination - especially for chlorinated solvents and technetium-99. The successes of the initial strategy show that even a strategy based on incomplete information can make progress on difficult issues. The regulatory agencies identified these issues early and provided the needed direction to DOE to move forward with the overall mission of clean up. The cleanup of the Hanford site is a big challenge, not only for DOE, but also for the regulators, to ensure the tri-party agencies achieve the desired goals. (authors)

  15. ARTIFICIAL INTELLIGENCE ] Learning One Subprocedure per Lesson

    E-Print Network [OSTI]

    VanLehn, Kurt

    ARTIFICIAL INTELLIGENCE ] Learning One Subprocedure per Lesson Kurt VanLehn Department be called learning from lesson s'equence.~, because the extra information given to the learner is embedded section ,of this article, a variant of learning from lesson sequcnccs will bc discusscd whercm lessons arc

  16. Project Learning I. What are the "Lessons Learned"

    E-Print Network [OSTI]

    Christian, Eric

    Project Learning I. What are the "Lessons Learned" requirements? II. How of a Lessons Learned Plan · Project Learning Processes · Timeline of Project Learning Ac;5/4/2012 11 #12;Timeline of AcYviYes · Review lessons learned from other relevant

  17. Lessons Learned Tracy Glauser, M.D.

    E-Print Network [OSTI]

    Lessons Learned Tracy Glauser, M.D. Cincinnati Children's Hospital Medical Center #12;Overview 1. Lessons Learned a. NeuroNEXT Executive Committee b. NINDS clinical trials (NSD-K) study section c. PI

  18. Satellite Navigation Integrity Assurance: Lessons Learned

    E-Print Network [OSTI]

    Stanford University

    Satellite Navigation Integrity Assurance: Lessons Learned from Hurricane Katrina ION GNSS 2008 by the FAA Satellite Navigation Program Office #12;17 September 2008 Lessons Learned from Hurricane Katrina 2 for probabilistic modeling and analysis #12;17 September 2008 Lessons Learned from Hurricane Katrina 3 Key Sources

  19. INCOSE 2007 1 Lessons Learned From

    E-Print Network [OSTI]

    de Weck, Olivier L.

    INCOSE 2007 1 Lessons Learned From Industrial Validation of COSYSMO 17th INCOSE Symposium Dr. Gan is not standardized · Model development process yielded 11 lessons learned Valerdi, R., Rieff, J., Roedler, G., Wheaton, M., Lessons Learned from Collecting Systems Engineering Data, Conference on Systems Engineering

  20. Environmental Restoration Disposal Facility Lessons Learned

    SciTech Connect (OSTI)

    Caulfield, R.

    2012-07-12T23:59:59.000Z

    The purpose of lessons learned is to identify insight gained during a project successes or failures that can be applied on future projects. Lessons learned can contribute to the overall success of a project by building on approaches that have worked well and avoiding previous mistakes. Below are examples of lessons learned during ERDFs ARRA-funded expansion project.

  1. LESSONS LEARNED AND BEST PRACTICES PROGRAM MANUAL

    E-Print Network [OSTI]

    LESSONS LEARNED AND BEST PRACTICES PROGRAM MANUAL LBNL/PUB-5519 (4), Rev. 1 Approved by: _James (4), Rev. 1 Page 2 of 15 Lessons Learned and Best Practices Program Manual RECORD OF REVISION........................................................................................ 15 #12;LBNL/PUB-5519 (4), Rev. 1 Page 4 of 15 Lessons Learned and Best Practices Program Manual 1

  2. Lessons Learned from Safety Events

    SciTech Connect (OSTI)

    Weiner, Steven C.; Fassbender, Linda L.

    2012-11-01T23:59:59.000Z

    The Hydrogen Incident Reporting and Lessons Learned website (www.h2incidents.org) was launched in 2006 as a database-driven resource for sharing lessons learned from hydrogen-related safety events to raise safety awareness and encourage knowledge-sharing. The development of this database, its first uses and subsequent enhancements have been described at the Second and Third International Conferences on Hydrogen Safety. [1,2] Since 2009, continuing work has not only highlighted the value of safety lessons learned, but enhanced how the database provides access to another safety knowledge tool, Hydrogen Safety Best Practices (http://h2bestpractices.org). Collaborations with the International Energy Agency (IEA) Hydrogen Implementing Agreement (HIA) Task 19 Hydrogen Safety and others have enabled the database to capture safety event learnings from around the world. This paper updates recent progress, highlights the new Lessons Learned Corner as one means for knowledge-sharing and examines the broader potential for collecting, analyzing and using safety event information.

  3. Field observations and lessons learned

    SciTech Connect (OSTI)

    Nielsen, Joh B [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    This presentation outlines observations and lessons learned from the Megaports program. It provides: (1) details of field and technical observations collected during LANL field activities at ports around the world and details of observations collected during radiation detections system testing at Los Alamos National Laboratory; (2) provides suggestions for improvement and efficiency; and (3) discusses possible program execution changes for more effective operations.

  4. File: 070629 Lessons Learned

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New Mexico Feb.Information 9 Default Caption andLessons

  5. Lessons learned from RTG programs

    SciTech Connect (OSTI)

    Reinstrom, R.M.; Cockfield, R.D. [Lockheed Martin Missiles and Space, P.O. Box 8555, Philadelphia, Pennsylvania 19101 (United States)

    1998-01-01T23:59:59.000Z

    During the Cassini Radioisotope Thermoelectric Generator (RTG) program, the heritage RTG design was reviewed and modified to incorporate lessons learned. Design changes were made both to resolve problems as they occurred and to correct difficulties noted in earlier missions. Topics addressed in this paper included problems experienced previously at the launch facility in attaching the pressure relief device to the generators, and the open circuit conditions that occurred at times in the resistance temperature device wiring harness. Also discussed is a problem caused by mistakes in software configuration management. How lessons learned refined the RTG design and integration with the spacecraft are discussed and the adopted solutions are described. {copyright} {ital 1998 Lockheed Martin Missles and Space, reproduced with permission.}

  6. System safety management lessons learned

    SciTech Connect (OSTI)

    Piatt, J.A.

    1989-05-01T23:59:59.000Z

    The Assistant Secretary of the Army for Research, Development and Acquisition directed the Army Safety Center to provide an audit of the causes of accidents and safety of use restrictions on recently fielded systems by tracking residual hazards back through the acquisition process. The objective was to develop ''lessons learned'' that could be applied to the acquisition process to minimize mishaps in fielded systems. System safety management lessons learned are defined as Army practices or policies, derived from past successes and failures, that are expected to be effective in eliminating or reducing specific systemic causes of residual hazards. They are broadly applicable and supportive of the Army structure and acquisition objectives. 29 refs., 7 figs.

  7. SPECIAL SEMINAR Cheating Lessons: Learning from

    E-Print Network [OSTI]

    Liberzon, Daniel

    SPECIAL SEMINAR Cheating Lessons: Learning from Academic Dishonesty SPONSORED BY THE CENTER Lang is author of four books, the most recent of which are Cheating Lessons: Learning from Aca- demic FOR INNOVATION IN TEACHING & LEARNING AND NATIONAL CENTER FOR PROFESSIONAL & RESEARCH ETHICS Thurs, May 29, 2014

  8. Lessons Learned Quarterly Report, September 1999

    Broader source: Energy.gov [DOE]

    Welcome to the 20th Quarterly Report on lessons learned in the NEPA process. This issue includes a cumulative index for the past five years.

  9. Lessons Learned Quarterly Report, June 2003

    Broader source: Energy.gov [DOE]

    Welcome to the 35th quarterly report on lessons learned in the NEPA process. We are pleased to include in this issue three new mini-guidance articles.

  10. Software Carpentry: Lessons Learned

    E-Print Network [OSTI]

    Greg Wilson

    2014-01-29T23:59:59.000Z

    Over the last 15 years, Software Carpentry has evolved from a week-long training course at the US national laboratories into a worldwide volunteer effort to raise standards in scientific computing. This article explains what we have learned along the way the challenges we now face, and our plans for the future.

  11. Software Carpentry: Lessons Learned

    E-Print Network [OSTI]

    Wilson, Greg

    2013-01-01T23:59:59.000Z

    Over the last 15 years, Software Carpentry has evolved from a week-long training course at the US national laboratories into a worldwide volunteer effort to raise standards in scientific computing. This article explains what we have learned along the way the challenges we now face, and our plans for the future.

  12. Contractor Work Planning and Control Lessons Learned from DOE...

    Broader source: Energy.gov (indexed) [DOE]

    Work Planning and Control Lessons Learned from DOE and International Projects Contractor Work Planning and Control Lessons Learned from DOE and International Projects Addthis...

  13. Lessons Learned from Net Zero Energy Assessments and Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lessons Learned from Net Zero Energy Assessments and Renewable Energy Projects at Military Installations Lessons Learned from Net Zero Energy Assessments and Renewable Energy...

  14. LESSONS LEARNED FROM RECENT PROMOTION STRATEGIES FOR ELECTRICITY

    E-Print Network [OSTI]

    LESSONS LEARNED FROM RECENT PROMOTION STRATEGIES FOR ELECTRICITY FROM RENEWABLES IN EU COUNTRIES and OPTRES. Finally, the lessons learned from recent promotion strategies for electricity from renewables

  15. Growth of the NGV Market: Lessons Learned Roadmap for Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Growth of the NGV Market: Lessons Learned Roadmap for Infrastructure Development Growth of the NGV Market: Lessons Learned Roadmap for Infrastructure Development Presented at...

  16. Lessons Learned: Devolping Thermochemical Cycles for Solar Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lessons Learned: Devolping Thermochemical Cycles for Solar Heat Storage Applications Lessons Learned: Devolping Thermochemical Cycles for Solar Heat Storage Applications This...

  17. Incorporating Past Lessons Learned on UPF Project - John Eschenberg...

    Office of Environmental Management (EM)

    Incorporating Past Lessons Learned on UPF Project - John Eschenberg, UPF Federal Project Director Incorporating Past Lessons Learned on UPF Project - John Eschenberg, UPF Federal...

  18. Request Access to the PARSIIe Project Management Lessons Learned...

    Energy Savers [EERE]

    Request Access to the PARSIIe Project Management Lessons Learned (PMLL) Repository Request Access to the PARSIIe Project Management Lessons Learned (PMLL) Repository PURPOSE...

  19. Lessons Learned Quarterly Report, March 2009

    Broader source: Energy.gov [DOE]

    Welcome to the 58th quarterly report on lessons learned in the NEPA process. We have been very busy addressing our NEPA responsibilities arising from the recovery act as well as the new policies of the obama administration. In this issue of the Lessons Learned Quarterly Report (LLQR), we share ideas and experiences that will foster an improved and expedited NEPA compliance process.

  20. Learning Lessons to Promote Certification and

    E-Print Network [OSTI]

    Financing and Investment in Companies Engaged in Destructive or Illegal Logging in Indonesia 14 2Learning Lessons to Promote Certification and Combat Illegal Logging in Indonesia September 2003;Learning Lessons to Promote Certification and Combat Illegal Logging in Indonesia September 2003 to June

  1. Lessons Learned Quarterly Report, June 2005

    Broader source: Energy.gov [DOE]

    Welcome to the 43rd quarterly report on lessons learned in the NEPA process. In this issue we take a look at our hard-working NEPA Compliance Of?cers, who share bits of wisdom (and a little humor) gained from their lessons learned implementing NEPA. Countless thanks to all NCOs for their dedication, ?exibility, and perseverance.

  2. Lessons Learned Quarterly Report, March 2007

    Broader source: Energy.gov [DOE]

    Welcome to the 50th quarterly report on lessons learned in the NEPA process. The Of?ce of NEPA Policy and Compliance launched the Lessons Learned program in December 1994 to support continuous improvement in the NEPA process. The Of?ce began by presenting cost and time metrics and What Worked and What Didnt Work. Other features were soon introduced.

  3. Implementing US Department of Energy lessons learned programs. Volume 2

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    The DOE Lessons Learned Handbook is a two-volume publication developed to supplement the DOE Lessons Learned Standard (DOE-STD-7501-95) with information that will organizations in developing or improving their lessons learned programs. Volume 1 includes greater detail than the Standard in areas such as identification and documentation of lessons learned; it also contains sections on specific processes such as training and performance measurement. Volume 2 (this document) contains examples of program documents developed by existing lessons learned programs as well as communications material, functional categories, transmittal documents, sources of professional and industry lessons learned, and frequently asked questions about the Lessons Learned List Service.

  4. Smart Parking Linked to Transit: Lessons Learned from the San Francisco Bay Area Field Test

    E-Print Network [OSTI]

    Shaheen, Susan; Kemmerer, Charlene

    2007-01-01T23:59:59.000Z

    LINKED TO TRANSIT: LESSONS LEARNED FROM THE SAN FRANCISCOmonth on average. Key lessons learned include that it wouldof the field test, and lessons learned. Key Words: Smart

  5. Reasoning about Probabilistic Phenomena: Lessons Learned and Applied in Software Design

    E-Print Network [OSTI]

    Lee, Hollylynne S; Lee, J. Todd

    2009-01-01T23:59:59.000Z

    Probabilistic Phenomena: Lessons Learned and Applied inand empirical data. The lessons learned from students worksome of the key lessons learned within each of these

  6. Spatial Generalization in Operant Learning: Lessons from Professional Basketball

    E-Print Network [OSTI]

    Spatial Generalization in Operant Learning: Lessons from Professional Basketball Tal Neiman1: Neiman T, Loewenstein Y (2014) Spatial Generalization in Operant Learning: Lessons from Professional, Israel Abstract In operant learning, behaviors are reinforced or inhibited in response

  7. Lessons Learned Quarterly Report, September 2001

    Broader source: Energy.gov [DOE]

    Welcome to the 28th quarterly report on lessons learned in the NEPA process. This completes our seventh year of providing performance metrics, news, and guidance to the DOE NEPA Community. Please note the cumulative index in this issue.

  8. Lessons Learned Quarterly Report, September 2000

    Broader source: Energy.gov [DOE]

    Welcome to the 24th quarterly report on lessons learned in the NEPA process. Note that this issue includes a cumulative index covering the past six years of reports.

  9. Aquatic Species Program (ASP): Lessons Learned

    SciTech Connect (OSTI)

    Jarvis, E. E.

    2008-02-01T23:59:59.000Z

    Presentation on lessons learned from the U.S. Department of Energy?s Aquatic Species Program 1978-1996 microalgae R&D activities, presented at the 2008 AFOSR Workshop in Washington, D.C.

  10. Lessons Learned Quarterly Report, December 1994

    Broader source: Energy.gov [DOE]

    On August 12, 1994 the Office of NEPA Oversight distributed an interim/draft lessons learned questionnaire to NEPA contacts to be used for reporting onenvironmental impact statements and...

  11. Lessons Learned Quarterly Report, September 2007

    Broader source: Energy.gov [DOE]

    Welcome to the 52nd quarterly report on lessons learned in the NEPA process. This issue highlights the start of two major DOE EISs and features several guest-written articles.

  12. Lessons Learned Quarterly Report, March 1995

    Broader source: Energy.gov [DOE]

    This second quarterly report summarizes the lessons learned for documents completedbetween October 1 and December 31, 1994. It is based on responses to the revisedquestionnaire that was provided...

  13. Sustainable Development: Case Studies & Lessons Learned

    E-Print Network [OSTI]

    Netoff, Theoden

    Sustainable Development: Case Studies & Lessons Learned Prepared For City of Rosemount UMore Development LLC PA 8081 Capstone: Sustainability Planning Humphrey School of Public Affairs University studies that analyze how local and national developments have either successfully implemented sustainable

  14. Lessons Learned from the journ to Institutional

    E-Print Network [OSTI]

    Hemmers, Oliver

    Lessons Learned from the journ to Institutional TransformationOctober 2013 University of Las Vegas I'll talk a little about what we've learned through an NSF Institutional Transformation grant- group preferences, more work to communicate, tokenism if learn

  15. Introduction: Lessons Learned from Data Mining Applications and Collaborative Problem Solving

    E-Print Network [OSTI]

    Langley, Pat

    Introduction: Lessons Learned from Data Mining Applications and Collaborative Problem Solving Nada paper to the special issue on Data Mining Lessons Learned presents lessons from data mining applications. Keywords: data mining, machine learning, scientific discovery, lessons learned, applications, collaborative

  16. Digital Technology For Conviviality 99 Lessons Learned 5555

    E-Print Network [OSTI]

    Digital Technology For Conviviality 99 Lessons Learned 5555 5.1 The Essence of Conviviality 5 at all. Quite the contrary, he learns well and he is fluent no less than any #12;5 ­ Lessons Learned 100 definition of #12;5 ­ Lessons Learned Digital Technology For Conviviality 101 himself as an incapable person

  17. Learning, Memory, and Education Lessons for the Classroom

    E-Print Network [OSTI]

    Rose, Michael R.

    Learning, Memory, and Education Lessons for the Classroom Michael A. Yassa, M.A. Ph.D. Candidate memory? How can we optimize individual learning? How do lessons from memory apply to the classroom? Brain individual learning? How do lessons from memory apply to the classroom? Brain-based learning: fact or fiction

  18. The Icecube Data Acquisition Software: Lessons Learned During Distributed, Collaborative,

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    The Icecube Data Acquisition Software: Lessons Learned During Distributed, Collaborative, Multi@mail.npxdesigns.com, CPMcParland@lbl.gov, SJPatton@lbl.gov Abstract. In this experiential paper we report on lessons learned

  19. NEPA Lessons Learned Quarterly Report - 1st Quarter FY 1999

    Broader source: Energy.gov (indexed) [DOE]

    use a server to promptly Society Promotes Lessons Learned Exchange at DOE L L Lesson Learned A good work practice or innovative approach that is captured and shared to...

  20. Response to IG Recommendation to Create a Formal Lessons Learned...

    Broader source: Energy.gov (indexed) [DOE]

    digrecommendations.pdf lessonslearnedigcompilation.pdf More Documents & Publications Integrated Biorefinery Lessons Learned and Best Practices Demonstration and Deployment...

  1. Going Deep Green: A Whole House Approach- Lessons Learned

    Broader source: Energy.gov [DOE]

    Provides an overview of the SustainableWorks program based in Puget Sound and Spokane, Washington, including lessons learned.

  2. Technical Workshop: Annual Merit Review Lessons Learned on Alternative...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Refueling Infrastructure Technical Workshop: Annual Merit Review Lessons Learned on Alternative Transportation Refueling Infrastructure The Office of Energy Policy and...

  3. Learning Defect Predictors:Lessons from the Trenches Learning Defect Predictors

    E-Print Network [OSTI]

    Menzies, Tim

    Learning Defect Predictors:Lessons from the Trenches Learning Defect Predictors: Lessons from the Trenches Tim Menzies LCSEE, WVU tim@menzies.us October 28, 2008 1 / 40 #12;Learning Defect Predictors:Lessons change the rules of the game. 2 / 40 #12;Learning Defect Predictors:Lessons from the Trenches

  4. Lessons learned on the UMTRA Project

    SciTech Connect (OSTI)

    Not Available

    1991-02-01T23:59:59.000Z

    This report has been compiled as part of the Technical Assistance Contractor's (TAC's) continuing efforts to improve the quality of its product to the US Department of Energy (DOE), and to reduce the costswhile maintaining a standard of excellence on the Uranium Mill Tailings Remedial Action (UMTRA) Project. The report documents the lessons learned and the steps taken to benefit the project as a result. This study has multiple objectives, which fall under the following hierarchy: To examine and evaluate past successes and mistakes. To provide a record of lessons learned for the benefit and orientation of future staffmembers. To identify shortcomings of, and desired improvements to, current UMTRA Project practices and procedures. To establish a means for the future review and dissemination of lessons learned.

  5. Lessons Learned from ADVANCE at the UW-Madison

    E-Print Network [OSTI]

    Sheridan, Jennifer

    #12;Lessons Learned from ADVANCE at the UW-Madison What we wish we had known.... #12;Issues Sustainability Dissemination Surprises #12;Lesson Learned, Administrative How to get the most out of your explicitly, and at the beginning #12;Lesson Learned, Programmatic Don't be afraid to deviate from your

  6. The Future of Government Lessons Learned from around the World

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    i The Future of Government Lessons Learned from around the World A Discussion Paper Global Agenda and Lessons Learned Singapore: E-Government Strategy United Arab Emirates: An Evolving Holistic Approach of Government: Lessons Learned from around the World, a discussion paper elaborated by the World Economic Forum

  7. LESSONS LEARNED FROM A LANDFILL SLOPE FAILURE INVOLVING

    E-Print Network [OSTI]

    LESSONS LEARNED FROM A LANDFILL SLOPE FAILURE INVOLVING GEOSYTNTHETICS Virginia L. Wilson: Geosynthetics: Lessons Learned from Failures International Geosynthetics Society editors J.P. Giroud, K.L. Soderman and G.P. Raymond November 12, 1998 #12;LESSONS LEARNED FROM A LANDFILL SLOPE FAILURE INVOLVING

  8. Aspects in Agent-Oriented Software Engineering: Lessons Learned

    E-Print Network [OSTI]

    Aspects in Agent-Oriented Software Engineering: Lessons Learned Alessandro Garcia1 , Uirá Kulesza2 of the crosscutting concerns relative to MASs. This paper reports some lessons learned based on our experience lessons learned based on our experience in applying both aspect-oriented techniques and methods

  9. EMERGENCY RESPONSE FOR HOMELAND SECURITY: LESSONS LEARNED AND THE

    E-Print Network [OSTI]

    Wang, Hai

    EMERGENCY RESPONSE FOR HOMELAND SECURITY: LESSONS LEARNED AND THE NEED FOR ANALYSIS Larson, R;Emergency Response for Homeland Security: Lessons Learned and the Need for Analysis By Richard C. Larson. In this section, we are particularly concerned with `lessons learned' and with recurring decisions that must

  10. Lessons Learned in the Challenge: Making Predictions and Scoring Them

    E-Print Network [OSTI]

    Suomela, Jukka

    Lessons Learned in the Challenge: Making Predictions and Scoring Them Jukka Kohonen and Jukka.suomela@cs.helsinki.fi Abstract. In this paper we present lessons learned in the Evaluating Predictive Uncertainty Challenge. We probability score (CRPS). 1 Introduction In this paper we present lessons learned in the Evaluating Predictive

  11. Lessons Learned from Failures Involving Geofoam in Roads and Embankments

    E-Print Network [OSTI]

    Horvath, John S.

    Lessons Learned from Failures Involving Geofoam in Roads and Embankments Manhattan College Research July 1999) #12;Lessons Learned from Failures Involving Geofoam in Roads and Embankments Manhattan College Research Report No. CE/GE-99-1 ii This page intentionally left blank. #12;Lessons Learned from

  12. LESSONS LEARNED AND BEST PRACTICES DATABASE USER MANUAL

    E-Print Network [OSTI]

    LESSONS LEARNED AND BEST PRACTICES DATABASE USER MANUAL OIA-OCA-0002, Rev. 0 Effective Date: June Lessons Learned and Best Practices Database User Manual RECORD OF REVISION Revision Number Date Approved.............................................................. 26 #12;OIA-OCA-0002, Rev. 0 Page 4 of 26 Lessons Learned and Best Practices Database User Manual 1

  13. Very Large System Dynamics Models - Lessons Learned

    SciTech Connect (OSTI)

    Jacob J. Jacobson; Leonard Malczynski

    2008-10-01T23:59:59.000Z

    This paper provides lessons learned from developing several large system dynamics (SD) models. System dynamics modeling practice emphasize the need to keep models small so that they are manageable and understandable. This practice is generally reasonable and prudent; however, there are times that large SD models are necessary. This paper outlines two large SD projects that were done at two Department of Energy National Laboratories, the Idaho National Laboratory and Sandia National Laboratories. This paper summarizes the models and then discusses some of the valuable lessons learned during these two modeling efforts.

  14. Lessons Learned by Lawrence Livermore National Laboratory Activity...

    Energy Savers [EERE]

    Learned by Lawrence Livermore National Laboratory Activity-level Work Planning & Control Lessons Learned by Lawrence Livermore National Laboratory Activity-level Work...

  15. Lessons Learned Quarterly Report, December 2006

    Broader source: Energy.gov [DOE]

    Welcome to the 49th quarterly report on lessons learned in the NEPA process. In this issue, we feature the initiation of three signi?cant EISs: the Complex 2030 Supplemental Programmatic EIS, the Supplemental Yucca Mountain Repository EIS, and the expanded Yucca Mountain Rail EIS.

  16. Lessons Learned Quarterly Report, December 1995

    Broader source: Energy.gov [DOE]

    This quarterly report summarizes the lessons learned for documents completed between July 1 and September 30, 1995. It is based primarily on responses to the revised questionnaire that was provided for use during January 1995, and includes information on direct and indirect NEPA process costs and on total project costs.

  17. Lessons Learned Quarterly Report, March 2005

    Broader source: Energy.gov [DOE]

    Welcome to the 42nd quarterly report on lessons learned in the NEPA process. We are pleased to introduce our new Assistant Secretary for Environment, Safety and Health. John Spitaleri Shaw is a strong supporter of good NEPA compliance, as evidenced during our interview with him and in his February 16, 2005, memorandum, both of which are summarized in this issue.

  18. LESSONS LEARNED AND BEST PRACTICES PROGRAM MANUAL

    SciTech Connect (OSTI)

    Gravois, Melanie C.

    2007-05-24T23:59:59.000Z

    This document provides requirements and guidelines for conducting a Lessons Learned and Best Practices Program within Lawrence Berkeley National Laboratory (LBNL) to ensure ongoing improvement of safety and reliability, prevent the recurrence of significant adverse events/trends, and determine implementation strategies that will help LBNL successfully meet the missions and goals set forth by the Department of Energy (DOE).

  19. Lessons Learned Quarterly Report, March 1996

    Broader source: Energy.gov [DOE]

    Welcome to the newly-revised Quarterly Report of Lessons Learned in the NEPA process. In response to reader suggestions, we have expanded the scope of the report to provide a wider variety of NEPArelated information, and enhanced the format for better clarity and overall readability.

  20. Lessons Learned Quarterly Report, June 2006

    Broader source: Energy.gov [DOE]

    Welcome to the 47th quarterly report on lessons learned in the NEPA process. The quality of our NEPA process affects the quality of DOEs decisions. Our appreciation goes out to all the NCOs and NEPA Document Managers who work every day to build quality into NEPA documents.

  1. Lessons Learned Quarterly Report, June 2007

    Broader source: Energy.gov [DOE]

    Welcome to the 51st quarterly report on lessons learned in the NEPA process. This issue features collaboration as a key element of a successful NEPA process. Related articles discuss approaches to and bene?ts of collaboration and illustrate various applications.

  2. Lessons Learned Quarterly Report, December 2005

    Broader source: Energy.gov [DOE]

    Welcome to the 45th quarterly report on lessons learned in the NEPA process. We thank all those who participated in the NEPA 35 conference. You made it successful. We hope you are as inspired as we are by the spirit of NEPA Section 101and the challenge to improve the implementation of NEPA.

  3. Lessons Learned Quarterly Report, March 2008

    Broader source: Energy.gov [DOE]

    Welcome to the 54th quarterly report on lessons learned in the NEPA process. As noted in articles on recently issued DOE EISs (Complex Transformation, Yucca Mountain Repository and Railroad, and Western Energy Corridors), DOE has received and is responding to extensive public comment. This issue also pays tribute to two women who have made extraordinary contributions to NEPA implementation.

  4. Lessons learned from existing biomass power plants

    SciTech Connect (OSTI)

    Wiltsee, G.

    2000-02-24T23:59:59.000Z

    This report includes summary information on 20 biomass power plants, which represent some of the leaders in the industry. In each category an effort is made to identify plants that illustrate particular points. The project experiences described capture some important lessons learned that lead in the direction of an improved biomass power industry.

  5. Lessons Learned Quarterly Report, June 2000

    Broader source: Energy.gov [DOE]

    Welcome to the 23rd quarterly report on lessons learned in theNEPA process. This issue features highlights from the May 2000 NEPA Compliance Officers Meeting. Also featured is an article on NEPA and the wildfire at Los Alamos. This is an unusually long issue, due simply to the abundance of information to be shared.

  6. Lessons Learned Quarterly Report, September 1997

    Broader source: Energy.gov [DOE]

    Welcome again to the Quarterly Report on lessons learned in the NEPA process. This issue features NEPA success stories from field organizations: how the NEPA process helped resolve cultural resource protection issues at Fernald, and how innovative approaches are aiding preparation of a Site-wide EIS for Sandia, New Mexico.

  7. Lesson Summary Students will learn about the magnetic fields of

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Lesson Summary Students will learn about the magnetic fields of the Sun and Earth. This activity if they have learned them in another context and you can remind them about those lessons in this activity minutes 1. Read and review the lesson plan 2. Gather required materials 3. Form student teams Exploring

  8. Lessons Learned in Applying Formal Concept Analysis to Reverse Engineering

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Lessons Learned in Applying Formal Concept Analysis to Reverse Engineering Gabriela Ar´evalo, St in "International Conference on Formal Concept Analysis (ICFCA '05) (2005)" #12;Lessons Learned in Applying Formal artifacts. In this paper we describe our approach, outline three case studies, and draw various lessons from

  9. New Report: Early Lessons Learned in Bringing SSL to Market

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) has published a new report that documents early challenges and lessons learned in the development of the SSL market. Entitled Solid-State Lighting: Early Lessons...

  10. Lessons Learned | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732on ArmedManufacturingJune 17,Department ofLessonsServices »

  11. WHC significant lessons learned 1993--1995

    SciTech Connect (OSTI)

    Bickford, J.C.

    1997-12-12T23:59:59.000Z

    A lesson learned as defined in DOE-STD-7501-95, Development of DOE Lessons Learned Programs, is: A ``good work practice`` or innovative approach that is captured and shared to promote repeat applications or an adverse work practice or experience that is captured and shared to avoid a recurrence. The key word in both parts of this definition is ``shared``. This document was published to share a wide variety of recent Hanford experiences with other DOE sites. It also provides a valuable tool to be used in new employee and continuing training programs at Hanford facilities and at other DOE locations. This manual is divided into sections to facilitate extracting appropriate subject material when developing training modules. Many of the bulletins could be categorized into more than one section, however, so examination of other related sections is encouraged.

  12. Lessons Learned Quarterly Report, September 2005

    Broader source: Energy.gov [DOE]

    Welcome to the 44th quarterly report on lessons learned in the NEPA process. This issue completes our 11th year publishing LLQR, and as we go to press, were preparing to mark an even more impressive milestone our observance of the 35th anniversary of NEPA. Were busily working on all the details that will make this a great conference. We hope to see YOU there.

  13. Lessons Learned Quarterly Report, September 1995

    Broader source: Energy.gov [DOE]

    This quarterly report summarizes the lessons learned for documents completed between April 1 and June 30, 1995. It is based primarily on responses to the revised questionnaire that was provided for use during January 1995, and includes information on direct and indirect NEPA process costs and on total project costs. The report includes a Question and Answer section as well as guidance on selected topics.

  14. A Heliospheric Imager for Deep Space: Lessons Learned from Helios, SMEI, and STEREO

    E-Print Network [OSTI]

    Jackson, B. V.; Buffington, A.; Hick, P. P.; Bisi, M. M.; Clover, J. M.

    2010-01-01T23:59:59.000Z

    Imager for Deep Space: Lessons Learned Jackson, B.V. , Hick,Imager for Deep Space: Lessons Learned from Helios, SMEI,Imager for Deep Space: Lessons Learned (STEREO) spacecraft

  15. Review Article Huygens HASI servo accelerometer: A review and lessons learned

    E-Print Network [OSTI]

    Withers, Paul

    Review Article Huygens HASI servo accelerometer: A review and lessons learned B. Hathi a,?, A. Techniques used for data analysis and lessons learned that may be useful for accelerometry payloads on future . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1323 2.4. Lessons learned

  16. A Framework of Lessons Learned from Community-Based Marine Reserves and Its Effectiveness in

    E-Print Network [OSTI]

    Queensland, University of

    A Framework of Lessons Learned from Community- Based Marine Reserves and Its Effectiveness factors for success. Reviewing relevant literature, we present a framework of "lessons learned" during; Community-based; coral reef conservation; Philippines; Alternative livelihood; Lessons learned Published

  17. Whither India? Ten Lessons Learned from the HIV Epidemic in Africa

    E-Print Network [OSTI]

    Potts, Malcolm; Walsh, Julia

    2002-01-01T23:59:59.000Z

    i31-9 Whither India? Lessons learned from the HIV epidemic139. Whither India? Lessons learned from the HIV epidemic in81. Whither India? Lessons learned from the HIV epidemic in

  18. Lessons Learned from Cyber Security Assessments of SCADA and...

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Office of Electricity Delivery and Energy Reliability Enhancing control systems security in the energy sector NSTB September 2006 LESSONS LEARNED FROM CYBER...

  19. Lesson Learned by Environmental Management Complex-wide Activity...

    Broader source: Energy.gov (indexed) [DOE]

    Environmental Management Complex-wide Activity-level Work Planning and Control Lesson Learned by Environmental Management Complex-wide Activity-level Work Planning and Control...

  20. Lessons Learned from Net Zero Energy Assessments and Renewable...

    Broader source: Energy.gov (indexed) [DOE]

    Lessons Learned from Net Zero Energy Assessments and Renewable Energy Projects at Military Installations Michael Callahan, Kate Anderson, Sam Booth, Jessica Katz, and Tim Tetreault...

  1. assessment lessons learned: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lukas CHP Small Wind Photovoltaics Energy Efficiency Smart Demand Heat Pumps Networks Micro-CHP Energy Oak Ridge National Laboratory 54 WorkplaceAdapted Behaviors: Lessons Learned...

  2. application lessons learned: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lukas CHP Small Wind Photovoltaics Energy Efficiency Smart Demand Heat Pumps Networks Micro-CHP Energy Oak Ridge National Laboratory 54 WorkplaceAdapted Behaviors: Lessons Learned...

  3. areas lessons learned: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lukas CHP Small Wind Photovoltaics Energy Efficiency Smart Demand Heat Pumps Networks Micro-CHP Energy Oak Ridge National Laboratory 47 WorkplaceAdapted Behaviors: Lessons Learned...

  4. applying lessons learned: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lukas CHP Small Wind Photovoltaics Energy Efficiency Smart Demand Heat Pumps Networks Micro-CHP Energy Oak Ridge National Laboratory 50 WorkplaceAdapted Behaviors: Lessons Learned...

  5. Lessons Learned Quarterly Report Archive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    We are pleased to feature the September DOE NEPA Community Meeting as well as recent case studies. September 2, 2008 Lessons Learned Quarterly Report, September 2008 Welcome...

  6. Policy Impacts on Deforestation: Lessons Learned from Past Experiences...

    Open Energy Info (EERE)

    to Inform New Initiatives Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Policy Impacts on Deforestation: Lessons Learned from Past Experiences to Inform New...

  7. Website Collects EMs D&D Lessons Learned

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. EM is taking steps to collect lessons learned and best practices in the Cold War cleanup gained through the experience of its workforce.

  8. aging lessons learned: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    studies National Forest, USDAForestService,1600Tollhouse Road, Clovis, CA 93611. 3 Timber Management Officer Standiford, Richard B. 2 Project Learning What are the "Lessons...

  9. Implementing US Department of Energy lessons learned programs. Volume 1

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    Purpose of this handbook is provide DOE and DOE contractor organizations with information that can be used to modify existing lessons learned programs or to develop new programs.

  10. Panel 1, Hawaii Hydrogen Projects Status & Lessons Learned

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Status & Lessons Learned Mitch Ewan Hydrogen Systems Program Manager Hawaii Natural Energy Institute School of Ocean Earth Science and Technology University of Hawaii at...

  11. Instructions for Glacier Recession Lesson Objective: Students will learn

    E-Print Network [OSTI]

    Instructions for Glacier Recession Lesson Objective: Students will learn: - about the connection post-discussion) The movie or some other type of lesson relating glaciers to climate change should amount of ice and multiply by 100. If using Option 3 (GIS lesson on computers): #12;

  12. Interactive learning: Lessons from two hybrids over two Stanley Fields

    E-Print Network [OSTI]

    Dunham, Maitreya

    REVIEW Interactive learning: Lessons from two hybrids over two decades Stanley Fields Howard Hughes the lessons of the two-hybrid approach. These include the value of timeliness in a method's development instructive, provid- ing lessons about the nature and nurture of technology development that I have carried

  13. Microsoft PowerPoint - 10 Lee LCLS Lessons Learned PM Workshop...

    Office of Environmental Management (EM)

    0 Lee LCLS Lessons Learned PM Workshop Final Compatibility Mode Microsoft PowerPoint - 10 Lee LCLS Lessons Learned PM Workshop Final Compatibility Mode Microsoft PowerPoint -...

  14. Lessons Learned | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -ofLearningLensless4AlternativeServices

  15. Tracing And Quantifying Magmatic Carbon Discharge In Cold Groundwaters...

    Open Energy Info (EERE)

    Tracing And Quantifying Magmatic Carbon Discharge In Cold Groundwaters- Lessons Learned From Mammoth Mountain, USA Jump to: navigation, search OpenEI Reference LibraryAdd to...

  16. Lessons Learned: Planning and Operating Power Systems with Large

    E-Print Network [OSTI]

    Lessons Learned: Planning and Operating Power Systems with Large Amounts of Renewable Energy agency thereof. #12;Lessons Learned: Planning and Operating Power Systems with Large Amounts of Renewable to their systems powered by as-available renewable energy sources (primarily wind and solar). The Big Island also

  17. LESSONS LEARNED FROM A RECENT LASER ACCIDENT

    SciTech Connect (OSTI)

    Woods, Michael; /SLAC

    2011-01-26T23:59:59.000Z

    A graduate student received a laser eye injury from a femtosecond Ti:sapphire laser beam while adjusting a polarizing beam splitter optic. The direct causes for the accident included failure to follow safe alignment practices and failure to wear the required laser eyewear protection. Underlying root causes included inadequate on-the-job training and supervision, inadequate adherence to requirements, and inadequate appreciation for dimly visible beams outside the range of 400-700nm. This paper describes how the accident occurred, discusses causes and lessons learned, and describes corrective actions being taken.

  18. Lessons Learned Quarterly Report | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732on ArmedManufacturingJune 17,Department ofLessons Learned

  19. Visual Design of coherent Technology-Enhanced Learning Systems: a few lessons learned from CPM language

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Visual Design of coherent Technology-Enhanced Learning Systems: a few lessons learned from CPM Systems: a few lessons learned from CPM language Abstract. Visual instructional design languages currently Botturi ; Todd Stubbs (Ed.) (2007) 254-280" #12;-1- Visual Design of coherent Technology-Enhanced Learning

  20. Lessons Learned IKEA Furniture Store Hybrid GSHP System Lessons Learned IKEA Furniture Store

    E-Print Network [OSTI]

    : 2256.3 2105.3 Annual load profile One of several load models generated 8 #12;Lessons Learned IKEA January 109420 840 1615891 4016 0.18 0.54 Monthly Load Factor February 98670 707 1624532 4023 0.21 0.64 Total/Maximum 6784224.2 8542270.7 Highest Peak Monthly Load: 3006.9 4057.4 Peak Tons 250.6 338.1Peak

  1. Considerations for implementing an organizational lessons learned process.

    SciTech Connect (OSTI)

    Fosshage, Erik

    2013-05-01T23:59:59.000Z

    This report examines the lessons learned process by a review of the literature in a variety of disciplines, and is intended as a guidepost for organizations that are considering the implementation of their own closed-loop learning process. Lessons learned definitions are provided within the broader context of knowledge management and the framework of a learning organization. Shortcomings of existing practices are summarized in an attempt to identify common pitfalls that can be avoided by organizations with fledgling experiences of their own. Lessons learned are then examined through a dual construct of both process and mechanism, with emphasis on integrating into organizational processes and promoting lesson reuse through data attributes that contribute toward changed behaviors. The report concludes with recommended steps for follow-on efforts.

  2. Influence of Contextual Elements on Comprehensive Evaluations of Multi-Level Interventions: Lessons Learned and Promising Practices from Cases in Tobacco Control and Childhood Obesity

    E-Print Network [OSTI]

    Huddleston, Jenica

    2010-01-01T23:59:59.000Z

    Level Interventions: Lessons Learned and Promising PracticesLevel Interventions: Lessons Learned and Promising PracticesLevel Interventions: Lessons Learned and Promising Practices

  3. Assessing the Feasibility of Creek Daylighting in San Francisco, Part I: A Synthesis of Lessons Learned from Existing Urban Daylighting Projects

    E-Print Network [OSTI]

    Smith, Brooke Ray

    2007-01-01T23:59:59.000Z

    Part I: A Synthesis of Lessons Learned from Existing Urbaneffective? and 4) what lessons learned can apply to a Sanmonitoring, and lessons learned). Results: Case Study

  4. Methodologic and logistic issues in conducting longitudinal birth cohort studies: lessons learned from the Centers for Children's Environmental Health and Disease Prevention Research.

    E-Print Network [OSTI]

    2005-01-01T23:59:59.000Z

    Birth Cohort Studies: Lessons Learned from the Centers forassessment in children: lessons learned from the Centers fors Centers et al. 2005. Lessons learned for the study of

  5. Sellafield Decommissioning Programme - Update and Lessons Learned

    SciTech Connect (OSTI)

    Lutwyche, P. R.; Challinor, S. F.

    2003-02-24T23:59:59.000Z

    The Sellafield site in North West England has over 240 active facilities covering the full nuclear cycle from fuel manufacture through generation, reprocessing and waste treatment. The Sellafield decommissioning programme was formally initiated in the mid 1980s though several plants had been decommissioned prior to this primarily to create space for other plants. Since the initiation of the programme 7 plants have been completely decommissioned, significant progress has been made in a further 16 and a total of 56 major project phases have been completed. This programme update will explain the decommissioning arrangements and strategies and illustrate the progress made on a number of the plants including the Windscale Pile Chimneys, the first reprocessing plan and plutonium plants. These present a range of different challenges and requiring approaches from fully hands on to fully remote. Some of the key lessons learned will be highlighted.

  6. SWIM LESSONS Whether you want to learn how to swim, get some exercise or just

    E-Print Network [OSTI]

    Beex, A. A. "Louis"

    SWIM LESSONS Whether you want to learn how to swim, get some exercise or just have fun, you Learn To Swim program. There are always American Red Cross certified lifeguards on duty during lessons;SWIM LESSONS open house FREE SWIM LESSONS! Saturday, September 28th 11am - Noon, McComas Hall Learn

  7. Lessons Learned and Best Practices in Savannah River Site Saltstone...

    Office of Environmental Management (EM)

    Vegas, NV December 12, 2014 To view all the P&RA CoP 2014 Technical Exchange Meeting videos click here. Video Presentation Lessons Learned and Best Practices in Savannah River...

  8. Lessons Learned Quarterly Report Archive | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    September 2002 Welcome to the 32nd quarterly report on lessons learned in the NEPA process. Much of this issue is devoted to reporting on the July DOE NEPA Community Meeting....

  9. Developing Tutorials for Advanced Physics Students: Processes and Lessons Learned

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    Developing Tutorials for Advanced Physics Students: Processes and Lessons Learned Charles Baily electrodynamics, active learning, course transformation. PACS: 01.40.Fk, 01.40.gb INTRODUCTION A common theme in physics education research (PER) is that students will learn more when they are active participants

  10. Lesson Summary Students will learn about the Arctic Beaufort Sea

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Lesson Summary Students will learn about the Arctic Beaufort Sea and research the adaptations of people and animals in the arctic regions. They will also learn about how their actions can affect the Arctic and learn about the International Polar Year. Prior Knowledge & Skills · Research skills

  11. Power-games and organizational learning: Lessons for Organizations Management .

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    1 Power-games and organizational learning: Lessons for Organizations Management . Thierry LEVY Learning; Management. hal-00848674,version1-27Jul2013 #12;2 Power-games and organizational learning and power-games in the organizations are not so inefficient for the organization as it first would seem

  12. University Reactor Conversion Lessons Learned Workshop for Purdue University Reactor

    SciTech Connect (OSTI)

    Eric C. Woolstenhulme; Dana M. Hewit

    2008-09-01T23:59:59.000Z

    The Department of Energys Idaho National Laboratory, under its programmatic responsibility for managing the University Research Reactor Conversions, has completed the conversion of the reactor at Purdue University Reactor. With this work completed and in anticipation of other impending conversion projects, the INL convened and engaged the project participants in a structured discussion to capture the lessons learned. The lessons learned process has allowed us to capture gaps, opportunities, and good practices, drawing from the project teams experiences. These lessons will be used to raise the standard of excellence, effectiveness, and efficiency in all future conversion projects.

  13. New Orleans Education Reform: A Guide for Cities or a Warning for Communities? (Grassroots Lessons Learned, 2005-2012)

    E-Print Network [OSTI]

    Buras, Kristen L.; Urban South Grassroots Research Collective, Members

    2013-01-01T23:59:59.000Z

    guide for cities (Lessons learned, 2004-2010). New Orleans,Communities? (Grassroots Lessons Learned, 2005-2012) KristenA Guide for Cities (Lessons Learned, 2004-2010), a report

  14. Lessons Learned in Risk Management on NCSX

    SciTech Connect (OSTI)

    G.H. Neilson, C.O. Gruber, J.H. Harris, D.J. Rej, R.T. Simmons, and R.L. Strykowsky

    2009-02-11T23:59:59.000Z

    The National Compact Stellarator Experiment (NCSX) was designed to test physics principles of an innovative stellarator design developed by the Princeton Plasma Physics Laboratory and Oak Ridge National Laboratory. Construction of some of the major components and sub-assemblies was completed, but the estimated cost and schedule for completing the project grew as the technical requirements and risks became better understood, leading to its cancellation in 2008. The project's risks stemmed from its technical challenges, primarily the complex component geometries and tight tolerances that were required. The initial baseline, established in 2004, was supported by a risk management plan and risk-based contingencies, both of which proved to be inadequate. Technical successes were achieved in the construction of challenging components and subassemblies, but cost and schedule growth was experienced. As part of an effort to improve project performance, a new risk management program was devised and implemented in 2007-08. It led to a better understanding of project risks, a sounder basis for contingency estimates, and improved management tools. Although the risks ultimately were unacceptable to the sponsor, valuable lessons in risk management were learned through the experiences with the NCSX project.

  15. CEBAF Upgrade: Cryomodule Performance And Lessons Learned

    SciTech Connect (OSTI)

    Drury, Michael A.; Davis, G. Kirk; Hogan, John P.; Hovater, J. Curt; King, Lawrence; Marhauser, Frank; Park, HyeKyoung; Preble, Joe; Reece, Charles E.; Rimmer, Robert A.; Wang, Haipeng; Wiseman, Mark A.

    2014-02-01T23:59:59.000Z

    The Thomas Jefferson National Accelerator Facility is currently engaged in the 12 GeV Upgrade Project. The goal of the 12 GeV Upgrade is a doubling of the available beam energy of the Continuous Electron Beam Accelerator Facility (CEBAF) from 6 GeV to 12 GeV. This increase in beam energy will be due in large part to the addition of ten C100 cryomodules plus associated new RF in the CEBAF linacs. The C100 cryomodules are designed to deliver 100 MeV per installed cryomodule. Each C100 cryomodule is built around a string of eight seven-cell, electro-polished, superconducting RF cavities. While an average performance of 100MV per cryomodule is needed to achieve the overall 12 GeV beam energy goal, the actual performance goal for the cryomodules is an average energy gain of 108 MV to provide operational headroom. Cryomodule production started in December 2010. All ten of the C100 cryomodules are installed in the linac tunnels and are on schedule to complete commissioning by September 2013. Performance during Commissioning has ranged from 104 MV to 118 MV. In May, 2012 a test of an early C100 achieved 108 MV with full beam loading. This paper will discuss the performance of the C100 cryomodules along with operational challenges and lessons learned for future designs.

  16. Lessons Learned in Risk Management on NCSX

    SciTech Connect (OSTI)

    Neilson, G. H.; Gruber, C. O.; Harris, J. H.; Rej, D. J.; Simmons, R. T.; Strykowsky, R. L.

    2009-07-21T23:59:59.000Z

    The National Compact Stellarator Experiment (NCSX) was designed to test physics principles of an innovative stellarator design developed by the Princeton Plasma Physics Laboratory and Oak Ridge National Laboratory. Construction of some of the major components and sub-assemblies was completed, but the estimated cost and schedule for completing the project grew as the technical requirements and risks became better understood, leading to its cancellation in 2008. The project's risks stemmed from its technical challenges, primarily the complex component geometries and tight tolerances that were required. The initial baseline, established in 2004, was supported by a risk management plan and risk-based contingencies, both of which proved to be inadequate. Technical successes were achieved in the construction of challenging components and subassemblies, but cost and schedule growth was experienced. As part of an effort to improve project performance, a new risk management program was devised and implemented in 2007-08. It led to a better understanding of project risks, a sounder basis for contingency estimates, and improved management tools. Although the risks ultimately were unacceptable to the sponsor, valuable lessons in risk management were learned through the experiences with the NCSX project.

  17. Solar greenhouses and sunspaces: lessons learned

    SciTech Connect (OSTI)

    Not Available

    1984-01-01T23:59:59.000Z

    The experiences of the DOE Appropriate Technology grantees provide valuable information for others to use in building and operating better sunspaces and greenhouses. Their experiences are the basis for Solar Greenhouses and Sunspaces: Lessons Learned. This publication is divided into six major categories: design; construction tips; management, maintenance, and safety; horticulture; greenhouse construction workshops; and information sources. Each chapter presents basic background material on the topic and relevant information from selected project reports. A question and answer format is used to present information on ways greenhouses and sunspaces can be improved. This publication has been developed as a supplement to the existing literature to help prospective sunspace/greenhouse owner/builders get started in the right direction. It is not a text book, and is not a substitute for any of the good ''how-to'' greenhouse books available. Its purpose is to identify common mistakes in design, construction and/or operation that affect performance, and provide useful advice to help consumers avoid these mistakes.

  18. Fund-Raising Realities Former Pitt employee Carolyn Green shares 5 lessons she learned

    E-Print Network [OSTI]

    Benos, Panayiotis "Takis"

    1 Fund-Raising Realities Former Pitt employee Carolyn Green shares 5 lessons she learned in trying. Here are five lessons that Green learned along the way to fund-raising success: 1. Expect to invest

  19. Critical Issues for Success in the International Markets for Wood Products: Lessons Learned from Bolivia

    E-Print Network [OSTI]

    Critical Issues for Success in the International Markets for Wood Products: Lessons Learned from, where forest certification may provide an advantage. 4. Learned Lessons from the Bolivian Case 4

  20. A summary of lessons learned at the Shippingport Station Decommissioning Project (SSDP)

    SciTech Connect (OSTI)

    Crimi, F.P.; Mullee, G.R.

    1987-10-01T23:59:59.000Z

    This paper describes the lessons learned from a management perspective during decommissioning. The lessons learned are presented in a chronological sequence during the life of the project up to the present time. The careful analysis of the lessons learned and the implementation of corresponding actions have contributed toward improving the effectiveness of decommissioning as time progresses. The lessons learned should be helpful in planning future decommissioning projects.

  1. Lessons learned on the UMTRA Project. Special study

    SciTech Connect (OSTI)

    Not Available

    1991-02-01T23:59:59.000Z

    This report has been compiled as part of the Technical Assistance Contractor`s (TAC`s) continuing efforts to improve the quality of its product to the US Department of Energy (DOE), and to reduce the costswhile maintaining a standard of excellence on the Uranium Mill Tailings Remedial Action (UMTRA) Project. The report documents the lessons learned and the steps taken to benefit the project as a result. This study has multiple objectives, which fall under the following hierarchy: To examine and evaluate past successes and mistakes. To provide a record of lessons learned for the benefit and orientation of future staffmembers. To identify shortcomings of, and desired improvements to, current UMTRA Project practices and procedures. To establish a means for the future review and dissemination of lessons learned.

  2. JOURNAL OF CELLULAR PHYSIOLOGY 209:604610 (2006) Mornings With Art, Lessons Learned

    E-Print Network [OSTI]

    Gao, Jinming

    JOURNAL OF CELLULAR PHYSIOLOGY 209:604­610 (2006) Mornings With Art, Lessons Learned: Feedback of no return'' is achieved; (ii) feedback regulation; and (iii) redundancy. Lessons learned from the molecular cycle checkpoint responses after exposure to alkylating agents. We have learned these lessons and now

  3. Lessons Learned During the Development of the CapoOne Deterministic

    E-Print Network [OSTI]

    Torrellas, Josep

    Lessons Learned During the Development of the CapoOne Deterministic Multiprocessor Replay System, Wonsun Ahn, Samuel T. King and Josep Torrellas #12;Pablo Montesinos Lessons Learned during the CapoOne Development Motivation: Time Travel 2 #12;Pablo Montesinos Lessons Learned during the CapoOne Development

  4. Climbing to Understanding: Lessons from an Experimental Learning Environment for Adjudicated

    E-Print Network [OSTI]

    Climbing to Understanding: Lessons from an Experimental Learning Environment for Adjudicated Youth applicable to severely at-risk students, but also offers certain lessons about learning environments within the model as applied in the setting, and the lessons learned. Background The Maine Youth center

  5. Ecological Engineering 25 (2005) 153167 Lessons learned: An assessment of the effectiveness of a National

    E-Print Network [OSTI]

    Ecological Engineering 25 (2005) 153­167 Lessons learned: An assessment of the effectiveness lessons learned about the function of a national review Committee (National Technical Review Committee of the Mississippi Delta). Lessons learned are based on responses to five questions to the NTRC. What was the best

  6. Mary Whitton_SIGGRAPH09 1 Lessons Learned from Ten Years of Studies of Virtual Environments

    E-Print Network [OSTI]

    North Carolina at Chapel Hill, University of

    Mary Whitton_SIGGRAPH09 1 Lessons Learned from Ten Years of Studies of Virtual Environments User lessons the Effective Virtual Environments (EVE) research team learned while doing a dozen or more studies and lessons learned by another, cross-disciplinary team in the Distributed nanoManipulator project

  7. Lessons Learned on 50,000 acres of Plantation in Northern California1

    E-Print Network [OSTI]

    Standiford, Richard B.

    Lessons Learned on 50,000 acres of Plantation in Northern California1 Jeff Webster and Ed Fredrickson2 Abstract Many lessons have been learned during reforestation of large wildfires and clearcuts), and Finley Fire (1990). The lessons learned from these fires were aggressively applied to the Fountain Fire

  8. Version 6.1.3 Operations Lessons Learned From the October/November 2003

    E-Print Network [OSTI]

    Schrijver, Karel

    Version 6.1.3 Operations Lessons Learned From the October/November 2003 Solar Storms Code 444/ 301 of these things make up our magnetosphere. #12;Version 6.1.3 Operations Lessons Learned From the October ......................................................................... 14 Lessons Learned, Operations Recommendations and Options.................. 14 Crosscutting

  9. Lessons Learned in Framework-Based Software Process Improvement Pankaj Jalote

    E-Print Network [OSTI]

    Jalote, Pankaj

    Lessons Learned in Framework-Based Software Process Improvement Pankaj Jalote Department of the lessons learned in using these frameworks for software process improvement. First, three critical success more guidance on how to do it [10]. In this article we share some of the lessons learned while using

  10. Evaluation of Software Visualization Tools: Lessons Learned Mariam Sensalire and Patrick Ogao Alexandru Telea

    E-Print Network [OSTI]

    Telea, Alexandru C.

    Evaluation of Software Visualization Tools: Lessons Learned Mariam Sensalire and Patrick Ogao future evaluators. This paper presents the lessons learned from evaluating over 20 SoftVis tools learned is shown with the hope that these lessons will be of some assistance to future SoftVis tool

  11. Lessons Learned from a Successful Implementation of Formal Methods in an

    E-Print Network [OSTI]

    Lawford, Mark

    Lessons Learned from a Successful Implementation of Formal Methods in an Industrial Project Alan, Hamilton, Ontario, Canada L8S 4L7 Abstract. This paper describes the lessons we learned over a thirteen Generation Inc., Feb 1997--Dec 1998 c #2003 Springer­Verlag #12; 2 Lessons Learned from Successful

  12. TOWSON'S PHYSTEC COURSE IMPROVEMENT PROJECT, YEARS 1 AND 2: RESULTS AND LESSONS LEARNED

    E-Print Network [OSTI]

    Sandifer, Cody

    TOWSON'S PHYSTEC COURSE IMPROVEMENT PROJECT, YEARS 1 AND 2: RESULTS AND LESSONS LEARNED Cody. Lastly, the project team has learned numerous lessons about large-scale course reform with respect to include lessons learned by the project team about effective course structure, different forms of inquiry

  13. October--November 2003's space weather and operations lessons learned

    E-Print Network [OSTI]

    Schrijver, Karel

    October--November 2003's space weather and operations lessons learned L. P. Barbieri and R. E experience and lessons learned widely among both developing and operating missions, and to uniformly apply: space weather, operations, lessons learned, best practices, environmental effects Citation: Barbieri, L

  14. Phytoremediation of contaminated soils and groundwater: lessons from the field

    SciTech Connect (OSTI)

    Vangronsveld, J.; van der Lelie, D.; Herzig, R.; Weyens, N.; Boulet, J.; Adriaensen, K.; Ruttens, A.; Thewys, T.; Vassilev, A.; Meers, E.; Nehnevajova, E.; Mench, M.

    2009-11-01T23:59:59.000Z

    The use of plants and associated microorganisms to remove, contain, inactivate, or degrade harmful environmental contaminants (generally termed phytoremediation) and to revitalize contaminated sites is gaining more and more attention. In this review, prerequisites for a successful remediation will be discussed. The performance of phytoremediation as an environmental remediation technology indeed depends on several factors including the extent of soil contamination, the availability and accessibility of contaminants for rhizosphere microorganisms and uptake into roots (bioavailability), and the ability of the plant and its associated microorganisms to intercept, absorb, accumulate, and/or degrade the contaminants. The main aim is to provide an overview of existing field experience in Europe concerning the use of plants and their associated microorganisms whether or not combined with amendments for the revitalization or remediation of contaminated soils and undeep groundwater. Contaminations with trace elements (except radionuclides) and organics will be considered. Because remediation with transgenic organisms is largely untested in the field, this topic is not covered in this review. Brief attention will be paid to the economical aspects, use, and processing of the biomass. It is clear that in spite of a growing public and commercial interest and the success of several pilot studies and field scale applications more fundamental research still is needed to better exploit the metabolic diversity of the plants themselves, but also to better understand the complex interactions between contaminants, soil, plant roots, and microorganisms (bacteria and mycorrhiza) in the rhizosphere. Further, more data are still needed to quantify the underlying economics, as a support for public acceptance and last but not least to convince policy makers and stakeholders (who are not very familiar with such techniques).

  15. Blue Lacuna: Lessons Learned Writing the World's Longest Interactive Fiction

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    1 Blue Lacuna: Lessons Learned Writing the World's Longest Interactive Fiction Aaron A. Reed Abstract--Blue Lacuna is a new long form interactive fic- tion comprising nearly 400,000 words of prose play time of fifteen to twenty hours. In development between 2006 and 2009, Blue Lacuna fea- tures

  16. Lessons learned How to Build Successful Heat Pump Markets

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;2 Lessons learned How to Build Successful Heat Pump Markets Lukas Bergmann, Delta Energy & Environment European Heat Pump Summit 2013 Nrnberg, 15th October 2013 Contact: lukas CHP Small Wind Photovoltaics Energy Efficiency Smart Demand Heat Pumps Networks Micro-CHP Energy

  17. Providing Integrity for Satellite Navigation: Lessons Learned (Thus Far) from the Financial

    E-Print Network [OSTI]

    Stanford University

    Providing Integrity for Satellite Navigation: Lessons Learned (Thus Far) from the Financial], the goal is to learn lessons from this experience that can improve the way that risk is assessed directly to the worldwide financial crisis of 2008 - 2009 and identifies lessons that are applicable

  18. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen; Workshop Proceedings

    SciTech Connect (OSTI)

    Melaina, M. W.; McQueen, S.; Brinch, J.

    2008-07-01T23:59:59.000Z

    DOE sponsored the Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen workshop to understand how lessons from past experiences can inform future efforts to commercialize hydrogen vehicles. This report contains the proceedings from the workshop.

  19. Summary of Planned Implementation for the HTGR Lessons Learned Applicable to the NGNP

    SciTech Connect (OSTI)

    Ian Mckirdy

    2011-09-01T23:59:59.000Z

    This document presents a reconciliation of the lessons learned during a 2010 comprehensive evaluation of pertinent lessons learned from past and present high temperature gas-cooled reactors that apply to the Next Generation Nuclear Plant Project along with current and planned activities. The data used are from the latest Idaho National Laboratory research and development plans, the conceptual design report from General Atomics, and the pebble bed reactor technology readiness study from AREVA. Only those lessons related to the structures, systems, and components of the Next Generation Nuclear Plant (NGNP), as documented in the recently updated lessons learned report are addressed. These reconciliations are ordered according to plant area, followed by the affected system, subsystem, or component; lesson learned; and finally an NGNP implementation statement. This report (1) provides cross references to the original lessons learned document, (2) describes the lesson learned, (3) provides the current NGNP implementation status with design data needs associated with the lesson learned, (4) identifies the research and development being performed related to the lesson learned, and (5) summarizes with a status of how the lesson learned has been addressed by the NGNP Project.

  20. Lesson Plan: Take Charge of Your Learning!

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofs o u t h e aTheLesson 8 -Makes

  1. DOE Lessons Learned | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&DDepartment offorEnergy LabSmartDOE Lessons

  2. Lessons learned from facilitating the state and tribal government working group

    SciTech Connect (OSTI)

    Kurstedt, H.A. Jr.

    1994-12-31T23:59:59.000Z

    Thirteen lessons learned from my experience in facilitating the State and Tribal Government Working Group for the U.S. Department of Energy have been identified. The conceptual base for supporting the veracity of each lesson has been developed and the lessons are believed to be transferable to any stakeholder group. The crux of stakeholder group success if the two-directional, two-mode empowerment required in this case. Most of the lessons learned deal with the scope of that empowerment. A few of the lessons learned deal with the operations of the group.

  3. LESSONS LEARNED Biosurveillance Mobile App Development Intern Competition (Summer 2013)

    SciTech Connect (OSTI)

    Noonan, Christine F.; Henry, Michael J.; Corley, Courtney D.

    2014-01-14T23:59:59.000Z

    The purpose of the lessons learned document for the BEOWulf Biosurveillance Mobile App Development Intern Competition is to capture the projects lessons learned in a formal document for use by other project managers on similar future projects. This document may be used as part of new project planning for similar projects in order to determine what problems occurred and how those problems were handled and may be avoided in the future. Additionally, this document details what went well with the project and why, so that other project managers may capitalize on these actions. Project managers may also use this document to determine who the project team members were in order to solicit feedback for planning their projects in the future. This document will be formally communicated with the organization and will become a part of the organizational assets and archives.

  4. Reactor D and D at Argonne National Laboratory - lessons learned.

    SciTech Connect (OSTI)

    Fellhauer, C. R.

    1998-03-23T23:59:59.000Z

    This paper focuses on the lessons learned during the decontamination and decommissioning (D and D) of two reactors at Argonne National Laboratory-East (ANL-E). The Experimental Boiling Water Reactor (EBWR) was a 100 MW(t), 5 MSV(e) proof-of-concept facility. The Janus Reactor was a 200 kW(t) reactor located at the Biological Irradiation Facility and was used to study the effects of neutron radiation on animals.

  5. ULO Course Learning Outcome Assessment Method Pedagogy 01-01 Plan lessons and instructional units that

    E-Print Network [OSTI]

    Barrash, Warren

    MATH400 ULO Course Learning Outcome Assessment Method Pedagogy 01-01 Plan lessons and instructional strategies ; Short lecture 04-01 Plan lessons and instructional units that address appropriate learning goals units that address appropriate learning goals and focus on developing students' understanding

  6. Worldwide Overview of Lessons Learned from Decommissioning Projects

    SciTech Connect (OSTI)

    Laraia, Michele [IAEA, Vienna (Austria)

    2008-01-15T23:59:59.000Z

    With an increasing number of radioactive facilities and reactors now reaching the end of their useful life and being taken out of service, there is a growing emphasis worldwide on the safe and efficient decommissioning of such plants. There is a wealth of experience already gained in decommissioning projects for all kinds of nuclear facilities. It is now possible to compare and discuss progress and accomplishments worldwide. In particular, rather than on the factual descriptions of projects, technologies and case histories, it is important to focus on lessons learned: in this way, the return of experience is felt to effectively contribute to progress. Key issues - inevitably based on a subjective ranking - are presented in this paper. Through the exchange of lessons learned, it is possible to achieve full awareness of the need for resources for and constraints of safe and cost-effective decommissioning. What remains now is the identification of specific, remaining issues that may hinder or delay the smooth progress of decommissioning. To this end, lessons learned provide the necessary background information; this paper tries to make extensive use of practical experience gained by the international community.

  7. LESSONS LEARNED THROUGH OPTIMIZATION OF THE VOLUNTARY CORRECTIVE ACTION PROCESS

    SciTech Connect (OSTI)

    Thacker, M. S.; Freshour, P.; McDonald, W.

    2002-02-25T23:59:59.000Z

    Valuable experience in environmental remediation was gained at Sandia National Laboratories/New Mexico (Sandia) by concurrently conducting Voluntary Corrective Actions (VCAs) at three Solid Waste Management Units (SWMUs). Sandia combined the planning, implementation, and reporting phases of three VCAs with the goal of realizing significant savings in both cost and schedule. The lessons learned through this process have been successfully implemented within the Sandia Environmental Restoration (ER) Project and could be utilized at other locations with multiple ER sites. All lessons learned resulted from successful teaming with the New Mexico Environment Department (NMED) Hazardous Waste Bureau (HWB), Sandia management, a Sandia risk assessment team, and Sandia waste management personnel. Specific lessons learned included the following: (1) potential efficiencies can be exploited by reprioritization and rescheduling of activities; (2) cost and schedule reductions can be realized by combining similar work at contiguous sites into a single effort; (3) working with regulators to develop preliminary remediation goals (PRGs) and gain regulatory acceptance for VCA planning prior to project initiation results in significant time savings throughout the remediation and permit modification processes; (4) effective and thoughtful contingency planning removes uncertainties and defrays costs so that projects can be completed without interruption; (5) timely collection of waste characterization samples allows efficient disposal of waste streams, and (6) concurrent reporting of VCA activities results in significant savings in time for the authors and reviewers.

  8. Lessons Learned Quarterly Report, March 2015 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »of EnergyLearningMarch 2015 Lessons Learned Quarterly

  9. Lessons Learned Quarterly Report, September 2013 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »of EnergyLearningMarch 2015 Lessons Learned Quarterly3

  10. Lessons Learned Quarterly Report, September 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »of EnergyLearningMarch 2015 Lessons Learned

  11. Lessons Learned from Cyber Security Assessments of SCADA and Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »of EnergyLearningMarch 2015 Lessons LearnedManagement

  12. Lessons Learned: Peer Exchange Calls Fall 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »of EnergyLearningMarch 2015 LessonsLearned: Peer

  13. Lessons Learned: The Grand Junction Office Site Transfer to Private

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »of EnergyLearningMarch 2015 LessonsLearned:

  14. Lesson Learned by Lawrence Livermore National Laboratory Activity-level Work Planning and Control

    Broader source: Energy.gov [DOE]

    Slide Presentation by Donna J. Governor, Lawrence Livermore National Laboratory. Lessons Learned by Lawrence Livermore National Laboratory Activity-Level Work Planning & Control.

  15. Case Studies from the Climate Technology Partnership: Landfill Gas Projects in South Korea and Lessons Learned

    SciTech Connect (OSTI)

    Larney, C.; Heil, M.; Ha, G. A.

    2006-12-01T23:59:59.000Z

    This paper examines landfill gas projects in South Korea. Two case studies provide concrete examples of lessons learned and offer practical guidance for future projects.

  16. The Effect of the Recovery Act on the River Corridor Closure Project: Lessons Learned

    SciTech Connect (OSTI)

    Mackay, S. M.

    2012-07-31T23:59:59.000Z

    This summary report provides a high-level lessons learned by WCH of the impact to its project performance. The context is limited to the WCH project alone.

  17. Building Energy-Efficient Schools in New Orleans: Lessons Learned (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01T23:59:59.000Z

    This brochure presents the lessons learned from incorporating energy efficiency in the rebuilding and renovating of New Orleans K-12 schools after Hurricanes Katrina and Rita.

  18. J. Neville and D. Jensen (2002). Supporting relational knowledge discovery: Lessons in architecture and algorithm design. Papers of the ICML 2002 Workshop on Data Mining Lessons Learned.

    E-Print Network [OSTI]

    Neville, Jennifer

    and algorithm design. Papers of the ICML 2002 Workshop on Data Mining Lessons Learned. Supporting Relational of the lessons we have learned developing a relational knowledge discovery system. The relationships among dataJ. Neville and D. Jensen (2002). Supporting relational knowledge discovery: Lessons in architecture

  19. GYMNASTICS LESSONS Whether you want to learn how to tumble, get some exercise, or

    E-Print Network [OSTI]

    Beex, A. A. "Louis"

    GYMNASTICS LESSONS Whether you want to learn how to tumble, get some exercise, or just have fun will be practiced with females and all men's events will be practiced with males. PRIVATE LESSONS Designed lessons offer an excellent opportunity to explore your potential. These classes may be taken in addition

  20. Lessons Learned from Annual Inspection Process - 12329

    SciTech Connect (OSTI)

    Kothari, Vijendra [Weldon Spring Site Manager, DOE Office of Legacy Management, Morgantown, West Virginia (United States); Uhlmeyer, Terri; Thompson, Randy [SM Stoller Corporation, St. Charles, Missouri (United States)

    2012-07-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Office of Legacy Management's (LM) mission is to manage DOE's post-closure responsibilities and ensure the future protection of human health and the environment. LM has control and custody of legacy land, structures, and facilities and is responsible for maintaining them at levels suitable for their long-term use. As defined by the DOE guidance document Long-Term Stewardship Planning Guidance for Closure Sites, long-term stewardship refers to all activities necessary to ensure protection of human health and the environment. These activities include, but are not limited to, 'all engineered and institutional controls (ICs) designed to contain or to prevent exposure to residual contamination and waste, such as surveillance activities, record-keeping activities, inspections, groundwater monitoring, maintenance of other barriers and contained structures, access control, and posting signs'. The development and management of ICs have been, and continue to be, critical to the success of LM surveillance and maintenance activities. (authors)

  1. Development and Leadership of R&D Consortia: Lessons learned and possible road ahead for continued innovation1

    E-Print Network [OSTI]

    Amin, S. Massoud

    1 Development and Leadership of R&D Consortia: Lessons learned and possible road ahead/industry/government/NGO organizations, primarily based on lessons I have learned after creating (in 1998) and leading (during 19982001

  2. Solid-State Lighting: Early Lessons Learned on the Way to Market

    SciTech Connect (OSTI)

    Sandahl, Linda J.; Cort, Katherine A.; Gordon, Kelly L.

    2013-12-31T23:59:59.000Z

    The purpose of this report is to document early challenges and lessons learned in the solid-state lighting (SSL) market development as part of the DOEs SSL Program efforts to continually evaluate market progress in this area. This report summarizes early actions taken by DOE and others to avoid potential problems anticipated based on lessons learned from the market introduction of compact fluorescent lamps and identifies issues, challenges, and new lessons that have been learned in the early stages of the SSL market introduction. This study identifies and characterizes12 key lessons that have been distilled from DOE SSL program results.

  3. Successes, Challenges, Lessons Learned in Land Use Planning Efforts Adjacent to an LRT Station

    E-Print Network [OSTI]

    Minnesota, University of

    Successes, Challenges, Lessons Learned in Land Use Planning Efforts Adjacent to an LRT Station interest in "new outreach methods" ·!Demonstrated value added in more collaborative process #12;Lessons Learned 1.! Begin internal & external outreach earlier 2.! Our "good ideas" were not necessarily good

  4. Using Simulation for Decision Support: Lessons Learned from FireGrid

    E-Print Network [OSTI]

    Wickler, Gerhard; Beckett, George; Han, Liangxiu; Koo, Sung-Han; Potter, Stephen; Pringle, Gavin; Tate, Austin

    This paper describes some of the lessons learned from the FireGrid project. It starts with a brief overview of the project. The discussion of the lessons learned that follows is intended for others attempting to develop a similar system, where...

  5. Kaleidoscope, impact and lessons learned 21/06/2009 18:35:31 page 1 of 35 Kaleidoscope

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Kaleidoscope, impact and lessons learned 21/06/2009 18:35:31 page 1 of 35 Kaleidoscope Impact and lessons learned A position paper N. Balacheff1 , S. Ludvigsen2 This document is based on the contributions lessons which can be learned from what we consider as being the first period of the life of the network

  6. Soil and Groundwater Cleanup - In-Situ Grouting, Lessons Learned...

    Office of Environmental Management (EM)

    15, 2001, Grout Injection Operator Injury at the Cold Test Pit South, Idaho National Engineering and Environmental Laboratory 2010 ARRA Newsletters Preliminary Notice of Violation,...

  7. PUREX/UO{sub 3} facilities deactivation lessons learned: History

    SciTech Connect (OSTI)

    Gerber, M.S.

    1997-11-25T23:59:59.000Z

    In May 1997, a historic deactivation project at the PUREX (Plutonium URanium EXtraction) facility at the Hanford Site in south-central Washington State concluded its activities (Figure ES-1). The project work was finished at $78 million under its original budget of $222.5 million, and 16 months ahead of schedule. Closely watched throughout the US Department of Energy (DOE) complex and by the US Department of Defense for the value of its lessons learned, the PUREX Deactivation Project has become the national model for the safe transition of contaminated facilities to shut down status.

  8. JLab SRF Cavity Fabrication Errors, Consequences and Lessons Learned

    SciTech Connect (OSTI)

    Frank Marhauser

    2011-09-01T23:59:59.000Z

    Today, elliptical superconducting RF (SRF) cavities are preferably made from deep-drawn niobium sheets as pursued at Jefferson Laboratory (JLab). The fabrication of a cavity incorporates various cavity cell machining, trimming and electron beam welding (EBW) steps as well as surface chemistry that add to forming errors creating geometrical deviations of the cavity shape from its design. An analysis of in-house built cavities over the last years revealed significant errors in cavity production. Past fabrication flaws are described and lessons learned applied successfully to the most recent in-house series production of multi-cell cavities.

  9. Lessons Learned from Creating a Course Advising Tool

    E-Print Network [OSTI]

    Mattei, Nicholas; Guerin, Joshua T; Goldsmith, Judy; Mazur, Joan M

    2013-01-01T23:59:59.000Z

    We detail some lessons learned while designing and testing a course selection tool for undergraduates at a large state university. Between 2009 - 2011 we conducted two surveys of over 500 students in multiple majors and colleges. These surveys asked students detailed questions about their preferences concerning courses selection, advising, and career paths. We present data from this study which may be helpful for faculty and staff who advise undergraduate students. We find that advising software tools can help both students and human advisors in terms of rote requirement checking and basic course planning, but nothing can replace an in person advising session.

  10. Space reactor safety, 1985--1995 lessons learned

    SciTech Connect (OSTI)

    Marshall, A.C.

    1995-12-31T23:59:59.000Z

    Space reactor safety activities and decisions have evolved over the last decade. Important safety decisions have been made in the SP-100, Space Exploration Initiative, NEPSTP, SNTP, and Bimodal Space Reactor programs. In addition, international guidance on space reactor safety has been instituted. Space reactor safety decisions and practices have developed in the areas of inadvertent criticality, reentry, radiological release, orbital operation, programmatic, and policy. In general, the lessons learned point out the importance of carefully reviewing previous safety practices for appropriateness to space nuclear programs in general and to the specific mission under consideration.

  11. Space reactor safety, 1985{endash}1995 lessons learned

    SciTech Connect (OSTI)

    Marshall, A.C. [Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185 (United States)

    1996-03-01T23:59:59.000Z

    Space reactor safety activities and decisions have evolved over the last decade. Important safety decisions have been made in the SP-100, Space Exploration Initiative, NEPSTP, SNTP, and Bimodal Space Reactor programs. In addition, international guidance on space reactor safety has been instituted. Space reactor safety decisions and practices have developed in the areas of inadvertent criticality, reentry, radiological release, orbital operation, programmatics, and policy. In general, the lessons learned point out the importance of carefully reviewing previous safety practices for appropriateness to space nuclear programs in general and to the specific mission under consideration. {copyright} {ital 1996 American Institute of Physics.}

  12. Lessons Learned Concerning the Human Element in Events and Training

    SciTech Connect (OSTI)

    Michael D. Sandvig

    2006-02-01T23:59:59.000Z

    As the number and complexity of responses to hazardous material incidents have increased, government regulators have implemented a national incident command system, bolstered by a host of protective measures and response equipment. Special advanced technical equipment has also been developed and made available to on-scene responders and command staff. Yet with all the investment in organizational and technical advance, the human element of emergency response remains critical and also needs our continued attention to ensure effective operation and success. This paper focuses on lessons learned from radiological events and training exercises that pertain to these human elements.

  13. Lessons Learned Quarterly Report, December 2012 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofs o u t h e2 Lessons Learned

  14. Lessons Learned Quarterly Report, December 2013 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofs o u t h e2 Lessons Learned3

  15. Lessons Learned Quarterly Report, June 2012 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofs o u t h e22 Lessons Learned

  16. Lessons Learned Quarterly Report, June 2013 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofs o u t h e22 Lessons Learned3

  17. Lessons Learned Quarterly Report, March 2006 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofs o u t h e22 Lessons Learned306

  18. Lessons Learned Quarterly Report, March 2010 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofs o u t h e22 Lessons Learned3060

  19. Lessons Learned Quarterly Report, March 2011 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofs o u t h e22 Lessons Learned30601

  20. Lessons Learned: Peer Exchange Calls Fall 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofs o u t hLessons Learned: Peer

  1. Lessons Learned | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -ofLearningLensless4AlternativeServicesLessons

  2. Lessons Learned: Peer Exchange Calls -- No. 3 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »of EnergyLearningMarch 2015 Lessons

  3. Seismic Lessons-Learned Panel Meetings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of Energy Advisory BoardSecuringSee the WindLessons-Learned

  4. NEPA Lessons Learned Quarterly Report Questionnaire | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many Devils Wash, Shiprock, NewThis paper091 NEPANEPA Lessons Learned

  5. WHY CAN'T WE LEARN FROM OUR MISTAKES LEARN THE LESSON TELL THE STORY

    SciTech Connect (OSTI)

    LANGSTAFF, D.C.

    2005-02-03T23:59:59.000Z

    Tell the story well and people can learn from the lesson. The United States Department of Energy (DOE) Office of Environmental Management (EM) and its contractors are pursuing environmental remediation at the Hanford Site. This endeavor has been underway for a number of years, both at Hanford and at other sites across the DOE complex. Independently, the occurrence of two fatalities on two Sites at opposite ends of the country within two weeks raised the question, ''What is going on in the Field?'' Corporate EM management communicated directly with Field Office Managers to answer the question. As a result of this intense interest and focused communication, EM identified four areas that need additional exploration. One of those is, ''EM's ability to learn from its mistakes.'' The need to cultivate the ability to learn from our mistakes is not unique to DOE. A quick review of EM Lessons Learned reports shows that most of the reports in the EM system originate at the sites with the largest budgets doing the most work. A second look, however, reveals that many reports are repetitive, that many people might consider many reports trivial, and that reports on some of the more significant events sometimes take a long time to get distributed across the DOE Complex. Spot checks of event reports revealed frequent identification of symptoms rather than root causes. With a high percentage of identified root causes in the questionable category, it is highly unlikely that the real root causes of many events are being corrected, thus leading to recurrences of events. To learn the lesson from an event, people need to be aware of the root causes of the event. Someone has to tell a story the reader can learn from, i.e., include all the information needed to understand what happened and why it happened. Most importantly, they need to understand the lesson to be learned.

  6. Lessons learned from decommissioning projects at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Salazar, M.

    1995-09-01T23:59:59.000Z

    This paper describes lessons learned over the last 20 years from 12 decommissioning projects at Los Alamos National Laboratory. These lessons relate both to overall program management and to management of specific projects during the planning and operations phases. The issues include waste management; the National Environmental Policy Act (NEPA); the Resource Conservation and Recovery Act (RCRA); the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); contracting; public involvement; client/customer interface; and funding. Key elements of our approach are to be proactive; follow the observation method; perform field activities concurrently; develop strategies to keep reportable incidents from delaying work; seek and use programs, methods, etc., in existence to shorten learning curves; network to help develop solutions; and avoid overstudying and overcharacterizing. This approach results in preliminary plans that require very little revision before implementation, reasonable costs and schedules, early acquisition of permits and NEPA documents, preliminary characterization reports, and contracting documents. Our track record is good -- the last four projects (uranium and plutonium-processing facility and three research reactors) have been on budget and on schedule.

  7. S E P T E M B E R 2 0 0 6 Lessons Learned From 9/11

    E-Print Network [OSTI]

    Kidd, Kenneth

    S E P T E M B E R 2 0 0 6 Lessons Learned From 9/11: DNA Identification in Mass Fatality Incidents Programs Partnerships for Safer Communities www.ojp.usdoj.gov #12;Lessons Learned From 9/11: DNA, and procedures to help identify those who perished in the WTC attack. This report contains the KADAP's "lessons

  8. Preservation and Implementation of Decommissioning Lessons Learned in the United States Nuclear Regulatory Commission

    SciTech Connect (OSTI)

    Rodriguez, Rafael L. [United States Nuclear Regulatory Commission, Office of Federal and State Materials and Environmental Management Programs, Washington, DC 20555 (United States)

    2008-01-15T23:59:59.000Z

    Over the past several years, the United States Nuclear Regulatory Commission (NRC) has actively worked to capture and preserve lessons learned from the decommissioning of nuclear facilities. More recently, NRC has involved industry groups, the Organization of Agreement States (OAS), and the Department of Energy (DOE) in the effort to develop approaches to capture, preserve and disseminate decommissioning lessons learned. This paper discusses the accomplishments of the working group, some lessons learned by the NRC in the recent past, and how NRC will incorporate these lessons learned into its regulatory framework. This should help ensure that the design and operation of current and future nuclear facilities will result in less environmental impact and more efficient decommissioning. In summary, the NRC will continue capturing today's experience in decommissioning so that future facilities can take advantage of lessons learned from today's decommissioning projects. NRC, both individually and collectively with industry groups, OAS, and DOE, is aggressively working on the preservation and implementation of decommissioning lessons learned. The joint effort has helped to ensure the lessons from the whole spectrum of decommissioning facilities (i.e., reactor, fuel cycle, and material facilities) are better understood, thus maximizing the amount of knowledge and best practices obtained from decommissioning activities. Anticipated regulatory activities at the NRC will make sure that the knowledge gained from today's decommissioning projects is preserved and implemented to benefit the nuclear facilities that will decommission in the future.

  9. Lessons Learned from the Puerto Rico Battery Energy Storage System

    SciTech Connect (OSTI)

    BOYES, JOHN D.; DE ANA, MINDI FARBER; TORRES, WENCESLANO

    1999-09-01T23:59:59.000Z

    The Puerto Rico Electric Power Authority (PREPA) installed a distributed battery energy storage system in 1994 at a substation near San Juan, Puerto Rico. It was patterned after two other large energy storage systems operated by electric utilities in California and Germany. The U.S. Department of Energy (DOE) Energy Storage Systems Program at Sandia National Laboratories has followed the progress of all stages of the project since its inception. It directly supported the critical battery room cooling system design by conducting laboratory thermal testing of a scale model of the battery under simulated operating conditions. The Puerto Rico facility is at present the largest operating battery storage system in the world and is successfully providing frequency control, voltage regulation, and spinning reserve to the Caribbean island. The system further proved its usefulness to the PREPA network in the fall of 1998 in the aftermath of Hurricane Georges. The owner-operator, PREPA, and the architect/engineer, vendors, and contractors learned many valuable lessons during all phases of project development and operation. In documenting these lessons, this report will help PREPA and other utilities in planning to build large energy storage systems.

  10. Lessons Learned From Developing Reactor Pressure Vessel Steel Embrittlement Database

    SciTech Connect (OSTI)

    Wang, Jy-An John [ORNL

    2010-08-01T23:59:59.000Z

    Materials behaviors caused by neutron irradiation under fission and/or fusion environments can be little understood without practical examination. Easily accessible material information system with large material database using effective computers is necessary for design of nuclear materials and analyses or simulations of the phenomena. The developed Embrittlement Data Base (EDB) at ORNL is this comprehensive collection of data. EDB database contains power reactor pressure vessel surveillance data, the material test reactor data, foreign reactor data (through bilateral agreements authorized by NRC), and the fracture toughness data. The lessons learned from building EDB program and the associated database management activity regarding Material Database Design Methodology, Architecture and the Embedded QA Protocol are described in this report. The development of IAEA International Database on Reactor Pressure Vessel Materials (IDRPVM) and the comparison of EDB database and IAEA IDRPVM database are provided in the report. The recommended database QA protocol and database infrastructure are also stated in the report.

  11. PUREX/UO{sub 3} facilities deactivation lessons learned history

    SciTech Connect (OSTI)

    Hamrick, D.G.; Gerber, M.S.

    1995-01-01T23:59:59.000Z

    The Plutonium-Uranium Extraction (PUREX) Facility operated from 1956-1972, from 1983-1988, and briefly during 1989-1990 to produce for national defense at the Hanford Site in Washington State. The Uranium Trioxide (UO{sub 3}) Facility operated at the Hanford Site from 1952-1972, 1984-1988, and briefly in 1993. Both plants were ordered to permanent shutdown by the U.S. Department of Energy (DOE) in December 1992, thus initiating their deactivation phase. Deactivation is that portion of a facility`s life cycle that occurs between operations and final decontamination and decommissioning (D&D). This document details the history of events, and the lessons learned, from the time of the PUREX Stabilization Campaign in 1989-1990, through the end of the first full fiscal year (FY) of the deactivation project (September 30, 1994).

  12. ULO Course Learning Outcome Assessment Method Pedagogy 01-01 Students will write effective lesson plans

    E-Print Network [OSTI]

    Barrash, Warren

    ENGL381 ULO Course Learning Outcome Assessment Method Pedagogy 01-01 Students will write effective lesson plans for a variety of audiences including peers, mentor teachers and administrators, as well as the course instructor and for themselves. Written lesson plans will be assessed for conventions

  13. Lessons Learned in Optimizing Workers' and Worker Representatives' Input to Work Planning and Control

    Broader source: Energy.gov [DOE]

    Slide Presentation by Tom McQuiston, Dr. P.H., United Steelworkers - Tony Mazzocchi Center for Health, Safety and Environmental Education. Lessons Learned in Optimizing Workers and Worker Representatives Input in Work Planning and Control.

  14. Contractor Work Planning and Control Lessons Learned from DOE and International Projects

    Broader source: Energy.gov [DOE]

    Slide Presentation by Bob McQuinn; URS Global Management and Operations Services; Frank McCoy and Rick Runnels; URS - Professional Solutions. Contractor Work Planning and Control-URS Lessons Learned.

  15. Understanding the influence of social media in medicine: lesson learned from facebook

    E-Print Network [OSTI]

    Savas, Jessica A; Huang, Karen E; Tuchayi, Sara Moradi; Feldman, Steven R

    2014-01-01T23:59:59.000Z

    medicine: lesson learned from Facebook Jessica A. Savas BSmedia outlets such as Facebook for medical information,the unmoderated Q&A series on Facebook begun by members of

  16. Commissioning/Performance Verification- Review of Applications for UESC & Lessons Learned

    Broader source: Energy.gov [DOE]

    Presentation covers the review of applications for utillity energy service contract (UESC) applications and lessons learned. Presentation given at the Federal Utility Partnership Working Group (FUPWG) Spring 2008 meeting in Destin, Florida.

  17. C-340 Complex D&D Final Lessons Learned (Post CD-4), Environmental...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EM-C C-340 Recovery Act Project Final Lessons Learned Sep 2011.pdf More Documents & Publications Paducah Site Management Plan Paducah Site Regulatory Documents DOE-STD-7501-99...

  18. Solid-State Lighting: Early Lessons Learned on the Way to Market

    Broader source: Energy.gov [DOE]

    This February 20, 2014 webinar presented information from a new DOE report, Solid-State Lighting: Early Lessons Learned on the Way to Market. The SSL market continues to evolve rapidly and LED...

  19. Renewable Energy Feed-in Tariffs: Lessons Learned from the U...

    Open Energy Info (EERE)

    from the U.S. and Abroad Presentation Jump to: navigation, search Tool Summary Name: Renewable Energy Feed-in Tariffs: Lessons Learned from the U.S. and Abroad Presentation...

  20. Arkansas Industrial Energy Clearinghouse - Successes and Lessons Learned from Creation to Implementation

    E-Print Network [OSTI]

    Nutter, D. W.; Harding, A. C.; McKnight, S.

    2011-01-01T23:59:59.000Z

    This paper shares the successes and lessons learned during the development stage and first eight months of the Arkansas Industrial Energy Clearinghouse (ArkansasIEC). Through the state of Arkansas via ARRA funding, the ArkansasIEC supports...

  1. Lessons Learned from the U.S. Department of Energy's Motor Challenge Showcase Demonstration Projects

    E-Print Network [OSTI]

    Szady, A. J.; Jallouk, P. A.; Olszewski, M.; Scheihing, P.

    1998-01-01T23:59:59.000Z

    This paper presents a summary of the practical lessons learned to date from the U.S. Department of Energy's (DOE) Showcase Demonstration Projects. These projects are part of the DOE Motor Challenge Program, and are aimed at demonstrating increased...

  2. Arkansas Industrial Energy Clearinghouse - Successes and Lessons Learned from Creation to Implementation

    E-Print Network [OSTI]

    Nutter, D. W.; Harding, A. C.; McKnight, S.

    2011-01-01T23:59:59.000Z

    This paper shares the successes and lessons learned during the development stage and first eight months of the Arkansas Industrial Energy Clearinghouse (ArkansasIEC). Through the state of Arkansas via ARRA funding, the ...

  3. SRS SLUDGE BATCH QUALIFICATION AND PROCESSING; HISTORICAL PERSPECTIVE AND LESSONS LEARNED

    SciTech Connect (OSTI)

    Cercy, M.; Peeler, D.; Stone, M.

    2013-09-25T23:59:59.000Z

    This report provides a historical overview and lessons learned associated with the SRS sludge batch (SB) qualification and processing programs. The report covers the framework of the requirements for waste form acceptance, the DWPF Glass Product Control Program (GPCP), waste feed acceptance, examples of how the program complies with the specifications, an overview of the Startup Program, and a summary of continuous improvements and lessons learned. The report includes a bibliography of previous reports and briefings on the topic.

  4. Lessons Learned from Continuous Commissioning of the Robert E. Johnson State Office Building, Austin, TX

    E-Print Network [OSTI]

    Bynum, J.; Claridge, D. E.

    2008-09-22T23:59:59.000Z

    ESL-TR-08-08-03 Lessons Learned from Continuous Commissioning of the Robert E. Johnson State Office Building, Austin, TX Submitted to Lawrence Berkeley National Laboratory By David Claridge, Ph.D., P.E. John Bynum Energy....5% annual lighting energy savings or 5.6% annual whole building energy savings based on a DOE-2 simulation analysis. Three main lessons were learned from the experience with the Robert E. Johnson building: The traditional design...

  5. Lessons Learned: The Texas Experience Ross Baldick and Hui Niu

    E-Print Network [OSTI]

    Baldick, Ross

    and lessons that can be drawn from the Texas experience. 1. Introduction Electricity market reform has taken

  6. Lessons Learned From Dynamic Simulations of Advanced Fuel Cycles

    SciTech Connect (OSTI)

    Steven J. Piet; Brent W. Dixon; Jacob J. Jacobson; Gretchen E. Matthern; David E. Shropshire

    2009-04-01T23:59:59.000Z

    Years of performing dynamic simulations of advanced nuclear fuel cycle options provide insights into how they could work and how one might transition from the current once-through fuel cycle. This paper summarizes those insights from the context of the 2005 objectives and goals of the Advanced Fuel Cycle Initiative (AFCI). Our intent is not to compare options, assess options versus those objectives and goals, nor recommend changes to those objectives and goals. Rather, we organize what we have learned from dynamic simulations in the context of the AFCI objectives for waste management, proliferation resistance, uranium utilization, and economics. Thus, we do not merely describe lessons learned from dynamic simulations but attempt to answer the so what question by using this context. The analyses have been performed using the Verifiable Fuel Cycle Simulation of Nuclear Fuel Cycle Dynamics (VISION). We observe that the 2005 objectives and goals do not address many of the inherently dynamic discriminators among advanced fuel cycle options and transitions thereof.

  7. PUREX/UO3 Facilities deactivation lessons learned history

    SciTech Connect (OSTI)

    Gerber, M.S.

    1996-09-19T23:59:59.000Z

    Disconnecting the criticality alarm permanently in June 1996 signified that the hazards in the PUREX (plutonium-uranium extraction) plant had been so removed and reduced that criticality was no longer a credible event. Turning off the PUREX criticality alarm also marked a salient point in a historic deactivation project, 1 year before its anticipated conclusion. The PUREX/UO3 Deactivation Project began in October 1993 as a 5-year, $222.5- million project. As a result of innovations implemented during 1994 and 1995, the project schedule was shortened by over a year, with concomitant savings. In 1994, the innovations included arranging to send contaminated nitric acid from the PUREX Plant to British Nuclear Fuels, Limited (BNFL) for reuse and sending metal solutions containing plutonium and uranium from PUREX to the Hanford Site tank farms. These two steps saved the project $36.9- million. In 1995, reductions in overhead rate, work scope, and budget, along with curtailed capital equipment expenditures, reduced the cost another $25.6 million. These savings were achieved by using activity-based cost estimating and applying technical schedule enhancements. In 1996, a series of changes brought about under the general concept of ``reengineering`` reduced the cost approximately another $15 million, and moved the completion date to May 1997. With the total savings projected at about $75 million, or 33.7 percent of the originally projected cost, understanding how the changes came about, what decisions were made, and why they were made becomes important. At the same time sweeping changes in the cultural of the Hanford Site were taking place. These changes included shifting employee relations and work structures, introducing new philosophies and methods in maintaining safety and complying with regulations, using electronic technology to manage information, and, adopting new methods and bases for evaluating progress. Because these changes helped generate cost savings and were accompanied by and were an integral part of sweeping ``culture changes,`` the story of the lessons learned during the PUREX Deactivation Project are worth recounting. Foremost among the lessons is recognizing the benefits of ``right to left`` project planning. A deactivation project must start by identifying its end points, then make every task, budget, and organizational decision based on reaching those end points. Along with this key lesson is the knowledge that project planning and scheduling should be tied directly to costing, and the project status should be checked often (more often than needed to meet mandated reporting requirements) to reflect real-time work. People working on a successful project should never be guessing about its schedule or living with a paper schedule that does not represent the actual state of work. Other salient lessons were learned in the PUREX/UO3 Deactivation Project that support these guiding principles. They include recognizing the value of independent review, teamwork, and reengineering concepts; the need and value of cooperation between the DOE, its contractors, regulators, and stakeholders; and the essential nature of early and ongoing communication. Managing a successful project also requires being willing to take a fresh look at safety requirements and to apply them in a streamlined and sensible manner to deactivating facilities; draw on the enormous value of resident knowledge acquired by people over years and sometimes decades of working in old plants; and recognize the value of bringing in outside expertise for certain specialized tasks.This approach makes possible discovering the savings that can come when many creative options are pursued persistently and the wisdom of leaving some decisions to the future. The essential job of a deactivation project is to place a facility in a safe, stable, low-maintenance mode, for an interim period. Specific end points are identified to recognize and document this state. Keeping the limited objectives of the project in mind can guide decisions that reduce risks with minimal manipul

  8. Lessons learned from the ATLAS performance studies of the Iberian Cloud for the first LHC running period.

    E-Print Network [OSTI]

    Snchez-Martnez, V; The ATLAS collaboration; Borrego, C; del Peso, J; Delfino, M; Gomes, J; Gonzlez de la Hoz, S; Pacheco Pages, A; Salt, J; Sedov, A; Villaplana, M; Wolters, H

    2013-01-01T23:59:59.000Z

    Poster: Lessons learned from the ATLAS performance studies of the Iberian Cloud for the first LHC running period. Conference: CHEP2013 - Amsterdam.

  9. Lessons Learned From Gen I Carbon Dioxide Cooled Reactors

    SciTech Connect (OSTI)

    David E. Shropshire

    2004-04-01T23:59:59.000Z

    This paper provides a review of early gas cooled reactors including the Magnox reactors originating in the United Kingdom and the subsequent development of the Advanced Gas-cooled Reactors (AGR). These early gas cooled reactors shared a common coolant medium, namely carbon dioxide (CO2). A framework of information is provided about these early reactors and identifies unique problems/opportunities associated with use of CO2 as a coolant. Reactor designers successfully rose to these challenges. After years of successful use of the CO2 gas cooled reactors in Europe, the succeeding generation of reactors, called the High Temperature Gas Reactors (HTGR), were designed with Helium gas as the coolant. Again, in the 21st century, with the latest reactor designs under investigation in Generation IV, there is a revived interest in developing Gas Cooled Fast Reactors that use CO2 as the reactor coolant. This paper provides a historical perspective on the 52 CO2 reactors and the reactor programs that developed them. The Magnox and AGR design features and safety characteristics were reviewed, as well as the technologies associated with fuel storage, reprocessing, and disposal. Lessons-learned from these programs are noted to benefit the designs of future generations of gas cooled nuclear reactors.

  10. License renewal demonstration program: NRC observations and lessons learned

    SciTech Connect (OSTI)

    Prato, R.J.; Kuo, P.T.; Newberry, S.F.

    1996-12-01T23:59:59.000Z

    This report summarizes the Nuclear Regulatory Commission staff`s observations and lessons learned from the five License Renewal Demonstration Program (LRDP) site visits performed by the staff from March 25, 1996, through August 16, 1996. The LRDP was a Nuclear Energy Institute (NEI) program intended to assess the effectiveness of the guidance provided by NEI 95-10, Revision 0, {open_quotes}Industry Guideline for Implementing the Requirements of 10 CFR Part 54 - The License Renewal Rule,{close_quotes} to implement the requirements of Title 10 of the Code of Federal Regulations, Part 54 (10 CFR Part 54), {open_quotes}Requirements for Renewal of Operating Licenses for Nuclear Power Plants.{close_quotes} In general, NEI 95-10 appeared to contain the basic guidance needed for scoping, screening, identifying aging effects, developing aging management programs, and performing time-limited aging analyses. However, inconsistent implementation of this guidance in some areas was an indication that clarification of existing guidance and/or the inclusion-of some new guidance may be needed for applicants to develop a license renewal program that is consistent with the intent of the rule.

  11. Lessons Learned in Decommissioning of NPP A-1 After Accident

    SciTech Connect (OSTI)

    Prazska, M.; Rezbarik, J.; Majersky, D.; Sekely, S.; Solcanyi, S.

    2002-02-25T23:59:59.000Z

    Decommissioning of the NPP A-1 in Jaslovske Bohunice is encountered with great variation of the problems connected primarily with the high radiation fields and the high activity of the contaminated materials. Decontamination of the contaminated objects and the thorough radiological protection of decontamination workers are therefore the tasks of top priority. The successful realization of these jobs is based on the experience, good working practice and the utilization of all proven methods together with the newly developed ones. Since 1996, AllDeco Ltd. has applied the decontamination methods and processes in a wide scale in the decommissioning and dismantling of the NPP A-1 in the cooperation with SE-VYZ Inc. The monitoring of the radiation situation and the investigation of the type and character of the radioactive waste were first steps in the decontamination of all objects. For this works, remote controlled mechanical manipulators and remote controlled electrical carriage equipped with instruments recording the levels of dose rates and with telemetric data transmission system were used. The recorded data were used for the modeling and 3D visualization of the radiation fields and for following planning and preparation of the decontamination projects or ''working programs'' based on the ALARA principle. The minimization of the radioactive waste was also taken into consideration. A lot of time and energy was spent on the preparation and training of the staff including non-active trials of planned procedures. The gained experience was evaluated and lessons learned were given in the final reports.

  12. Occurrence reporting and processing system (ORPS) lessons learned: Tools to improve workplace performance

    SciTech Connect (OSTI)

    Commander, S.L.

    1992-01-01T23:59:59.000Z

    Various Department of Energy (DOE) orders require DOE and DOE contractor personnel to review abnormal events to gain lessons learned information. The term event'' is used to mean a real-time occurrence. When reviewing events data, it must be possible to determine what happened and why (including root causes), the impacts, the appropriate corrective actions, and any lessons learned that might be applicable to activities of other operations or contractors. Merely obtaining the information will not prevent occurrence of a similar event; contributing conditions must be corrected. It is important for managers, trainers, and others to learn from the events of others so that they may apply these experiences to their own activities. Reports of events must be analyzed to determine possible applicability to other facilities and/or job functions. Relevant information can then be used to correct defects and improve facilities and operations, thus making them more efficient and safer for all employees. Lessons learned information is particularly helpful in planning employee training and in developing training curriculum and programs. Lessons learned information can be obtained from many sources. It can be found in the Safety Performance Measurement System's Computerized Accident/Incident Reporting System (CAIRS) module, the S H Publications module, the Unusual Occurrence Reports module, and the Office of Nuclear Safety Operating Experience Weekly Summary.'' One important source of lessons teamed information is the Occurrence Reporting and Processing System (ORPS) database, which contains event data from September 1, 1990, to the present. This report discusses this source.

  13. Occurrence reporting and processing system (ORPS) lessons learned: Tools to improve workplace performance

    SciTech Connect (OSTI)

    Commander, S.L.

    1992-12-31T23:59:59.000Z

    Various Department of Energy (DOE) orders require DOE and DOE contractor personnel to review abnormal events to gain lessons learned information. The term ``event`` is used to mean a real-time occurrence. When reviewing events data, it must be possible to determine what happened and why (including root causes), the impacts, the appropriate corrective actions, and any lessons learned that might be applicable to activities of other operations or contractors. Merely obtaining the information will not prevent occurrence of a similar event; contributing conditions must be corrected. It is important for managers, trainers, and others to learn from the events of others so that they may apply these experiences to their own activities. Reports of events must be analyzed to determine possible applicability to other facilities and/or job functions. Relevant information can then be used to correct defects and improve facilities and operations, thus making them more efficient and safer for all employees. Lessons learned information is particularly helpful in planning employee training and in developing training curriculum and programs. Lessons learned information can be obtained from many sources. It can be found in the Safety Performance Measurement System`s Computerized Accident/Incident Reporting System (CAIRS) module, the S&H Publications module, the Unusual Occurrence Reports module, and the Office of Nuclear Safety ``Operating Experience Weekly Summary.`` One important source of lessons teamed information is the Occurrence Reporting and Processing System (ORPS) database, which contains event data from September 1, 1990, to the present. This report discusses this source.

  14. High Temperature Gas-Cooled Reactors Lessons Learned Applicable to the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    J. M. Beck; L. F. Pincock

    2011-04-01T23:59:59.000Z

    The purpose of this report is to identify possible issues highlighted by these lessons learned that could apply to the NGNP in reducing technical risks commensurate with the current phase of design. Some of the lessons learned have been applied to the NGNP and documented in the Preconceptual Design Report. These are addressed in the background section of this document and include, for example, the decision to use TRISO fuel rather than BISO fuel used in the Peach Bottom reactor; the use of a reactor pressure vessel rather than prestressed concrete found in Fort St. Vrain; and the use of helium as a primary coolant rather than CO2. Other lessons learned, 68 in total, are documented in Sections 2 through 6 and will be applied, as appropriate, in advancing phases of design. The lessons learned are derived from both negative and positive outcomes from prior HTGR experiences. Lessons learned are grouped according to the plant, areas, systems, subsystems, and components defined in the NGNP Preconceptual Design Report, and subsequent NGNP project documents.

  15. Lessons Learned in International Safeguards - Implementation of Safeguards at the Rokkasho Reprocessing Plant

    SciTech Connect (OSTI)

    Ehinger, Michael H [ORNL; Johnson, Shirley [Tucker Creek Consulting

    2010-02-01T23:59:59.000Z

    The focus of this report is lessons learned at the Rokkasho Reprocessing Plant (RRP). However, the subject of lessons learned for application of international safeguards at reprocessing plants includes a cumulative history of inspections starting at the West Valley (New York, U.S.A.) reprocessing plant in 1969 and proceeding through all of the efforts over the years. The RRP is the latest and most challenging application the International Atomic Energy Agency has faced. In many ways the challenges have remained the same, timely inspection and evaluation with limited inspector resources, with the continuing realization that planning and preparations can never start early enough in the life cycle of a facility. Lessons learned over the years have involved the challenges of using ongoing advances in technology and dealing with facilities with increased throughput and continuous operation. This report will begin with a review of historical developments and lessons learned. This will provide a basis for a discussion of the experiences and lessons learned from the implementation of international safeguards at RRP.

  16. LESSONS

    E-Print Network [OSTI]

    Bunker, G.

    2012-01-01T23:59:59.000Z

    on SAP standard details - Tacit knowledge gap, poor design detailing gbunker@dmu.ac.ukInsights ? Air tightness ? cause of heat loss up to 50%! ? Elm Tree Mews, High levels of infiltration ? Lessons - Energy failure due to difficult junction details...

  17. LIST OF DECOMMISSIONING LESSONS-LEARNED IN SUPPORT OF THE DEVELOPMENT OF A STANDARD REVIEW PLAN FOR NEW REACTOR LICENSING

    E-Print Network [OSTI]

    Memorandum To; David B. Matthews; Elmo E. Collins

    2006-01-01T23:59:59.000Z

    Staff in the Division of New Reactor Licensing (DNRL) requested assistance from the Division of Waste Management and Environmental Protection (DWMEP) in the development of a standard review plan (SRP) for the licensing of new reactor facilities. Specifically, DNRL staff requested a list of high-level decommissioning lessons-learned that new applicants for a reactor license should address in order to minimize, to the extent practicable, contamination of the facility and the environment, facilitate eventual decommissioning, and minimize, to the extent practicable, the generation of radioactive waste. DWMEP staff met with your staff several times to discuss and clarify the requested input. This requested information is provided in Enclosure 1. I would like to bring to your attention other sources of decommissioning lessons-learned. The list of lessons-learned provided in Enclosure 1 is a subset of a much larger set of decommissioning lessons-learned. DWMEP developed the list in Enclosure 1 by reviewing the lessons-learned described in other documents (Enclosure 2) and selecting those it felt were most significant, based on DWMEP decommissioning experience. Additionally, the Electric Power Research Institute (EPRI) has developed decommissioning lessons-learned. DWMEP has not reviewed those lessons-learned because they are considered proprietary information by EPRI. DWMEP staff also developed a comprehensive bibliography of documents containing decommissioning lessons-learned. The bibliography is posted on the Nuclear Regulatory Commissions public website. CONTACT: Rafael L. Rodriguez, NMSS/DWMEP

  18. Lessons learned from the deployment of a high-interaction honeypot E. Alata1, V. Nicomette1, M. Kaniche1, M. Dacier2, M. Herrb1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Lessons learned from the deployment of a high-interaction honeypot E. Alata1, V. Nicomette1, M an experimental study and the lessons learned from the observation of the attackers when logged on a compromised in a controlled environment. In this paper, we describe the lessons learned from the development and deployment

  19. From the ground up Lessons learned from a librarian's experience with digitizing special collections

    E-Print Network [OSTI]

    Whittaker, Beth M.

    2001-01-01T23:59:59.000Z

    Russell, Beth M. From the Ground Up! Lessons Learned from One Librarians Experience Digitizing Special Collections. College & Research Libraries News 62 (2001): 603-606. Publishers official version: http://crln.acrl.org/. Open Access version... bl e on it s si te . [This document contains the authors accepted manuscript. For the publishers version, see the link in the header of this document.] Paper citation: Russell, Beth M. From the Ground Up! Lessons Learned from One...

  20. Lessons Learned for the MICE Coupling Solenoid from the MICE Spectrometer Solenoids

    SciTech Connect (OSTI)

    Green, Michael A.; Wang, Li; Pan, Heng; Wu, Hong; Guo, Xinglong; Li, S. Y.; Zheng, S. X.; Virostek, Steve P.; DeMello, Allen J.; Li, Derun; Trillaud, Frederick; Zisman, Michael S.

    2010-05-30T23:59:59.000Z

    Tests of the spectrometer solenoids have taught us some important lessons. The spectrometer magnet lessons learned fall into two broad categories that involve the two stages of the coolers that are used to cool the magnets. On the first spectrometer magnet, the problems were centered on the connection of the cooler 2nd-stage to the magnet cold mass. On the first test of the second spectrometer magnet, the problems were centered on the cooler 1st-stage temperature and its effect on the operation of the HTS leads. The second time the second spectrometer magnet was tested; the cooling to the cold mass was still not adequate. The cryogenic designs of the MICE and MuCOOL coupling magnets are quite different, but the lessons learned from the tests of the spectrometer magnets have affected the design of the coupling magnets.

  1. Lessons Learned Quarterly Report, December 2002 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofs o u t h e aTheLessonLessons

  2. Lessons Learned Quarterly Report, December 2003 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofs o u t h e aTheLessonLessons3

  3. Lessons Learned Quarterly Report, December 2007 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofs o u t h e aTheLessonLessons37

  4. Lessons Learned Quarterly Report, December 2008 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofs o u t h e aTheLessonLessons378

  5. Lessons Learned Quarterly Report, December 2009 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofs o u t h e aTheLessonLessons3789

  6. Lessons Learned Quarterly Report, December 2010 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofs o u t h e aTheLessonLessons37890

  7. Lessons Learned Quarterly Report, December 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofs o u t h e2 LessonsLessons

  8. Lessons Learned Quarterly Report, June 1996 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofs o u t h e2 LessonsLessons1996

  9. Lessons Learned Quarterly Report, June 2009 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofs o u t h e2 LessonsLessons199609

  10. Lessons Learned Quarterly Report, June 2010 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofs o u t h e2 LessonsLessons1996090

  11. Lessons Learned Quarterly Report, March 2013 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofs o u t h e22 Lessons3 Lessons

  12. Lessons Learned Quarterly Report, March 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofs o u t h e22 Lessons3 Lessons4

  13. Lessons Learned Quarterly Report, September 2006 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofs o u t h e22 Lessons36 Lessons

  14. Lessons Learned Quarterly Report, September 2008 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofs o u t h e22 Lessons36 Lessons8

  15. Lessons Learned Quarterly Report, September 2009 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofs o u t h e22 Lessons36 Lessons809

  16. Lessons Learned Quarterly Report, September 2011 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofs o u t h e22 Lessons361 Lessons

  17. Lessons Learned Quarterly Report, September 2012 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofs o u t h e22 Lessons361 Lessons2

  18. Lessons Learned from Prior Attempts at National Security Reform The Project on National Security Reform

    E-Print Network [OSTI]

    Lewis, Robert Michael

    Lessons Learned from Prior Attempts at National Security Reform The Project on National Security Reform Overarching Issues Working Group Drew Cramer & Grant Mullins Thomas Jefferson Program in Public battles that ensue when attempting to change the national security apparatus can hinder effective reform

  19. Hydrogen Fuel Cell Analysis: Lessons Learned from Stationary Power Generation Final Report

    SciTech Connect (OSTI)

    Scott E. Grasman; John W. Sheffield; Fatih Dogan; Sunggyu Lee; Umit O. Koylu; Angie Rolufs

    2010-04-30T23:59:59.000Z

    This study considered opportunities for hydrogen in stationary applications in order to make recommendations related to RD&D strategies that incorporate lessons learned and best practices from relevant national and international stationary power efforts, as well as cost and environmental modeling of pathways. The study analyzed the different strategies utilized in power generation systems and identified the different challenges and opportunities for producing and using hydrogen as an energy carrier. Specific objectives included both a synopsis/critical analysis of lessons learned from previous stationary power programs and recommendations for a strategy for hydrogen infrastructure deployment. This strategy incorporates all hydrogen pathways and a combination of distributed power generating stations, and provides an overview of stationary power markets, benefits of hydrogen-based stationary power systems, and competitive and technological challenges. The motivation for this project was to identify the lessons learned from prior stationary power programs, including the most significant obstacles, how these obstacles have been approached, outcomes of the programs, and how this information can be used by the Hydrogen, Fuel Cells & Infrastructure Technologies Program to meet program objectives primarily related to hydrogen pathway technologies (production, storage, and delivery) and implementation of fuel cell technologies for distributed stationary power. In addition, the lessons learned address environmental and safety concerns, including codes and standards, and education of key stakeholders.

  20. Preservation Decisions: Terms and Conditions Apply Challenges, Misperceptions and Lessons Learned in Preservation Planning

    E-Print Network [OSTI]

    , Management, Measurement, Performance 1. INTRODUCTION Decision making in digital preservation is a delicate is-depth knowledge of operational details. At the core of digital preservation is the question of infor- mationPreservation Decisions: Terms and Conditions Apply Challenges, Misperceptions and Lessons Learned

  1. Realizing Clean Energy's Potential: Lessons Learned in the U.S. West (Technical Report)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01T23:59:59.000Z

    NREL Analysis Insights connects the dots between NREL studies, pulling big picture insights from a larger body of work. In the premiere issue of our new periodical Analysis Insights, we explore lessons learned from experience in the U.S. West for realizing clean energy's potential.

  2. Lessons Learned from Net Zero Energy Assessments and Renewable Energy Projects at Military Installations

    SciTech Connect (OSTI)

    Callahan, M.; Anderson, K.; Booth, S.; Katz, J.; Tetreault, T.

    2011-09-01T23:59:59.000Z

    Report highlights the increase in resources, project speed, and scale that is required to achieve the U.S. Department of Defense (DoD) energy efficiency and renewable energy goals and summarizes the net zero energy installation assessment (NZEI) process and the lessons learned from NZEI assessments and large-scale renewable energy projects implementations at DoD installations.

  3. AN ALERT MANAGEMENT APPROACH TO DATA QUALITY: LESSONS LEARNED FROM THE

    E-Print Network [OSTI]

    Grossman, Robert

    AN ALERT MANAGEMENT APPROACH TO DATA QUALITY: LESSONS LEARNED FROM THE VISA DATA AUTHORITY PROGRAM, Alert Management Systems INTRODUCTION There is now a relatively mature model, which is usually called of the time and costs involved, the framework we introduce directly manages data quality alerts and associated

  4. ADVANTAGES, DISADVANTAGES, AND LESSONS LEARNED FROM MULTI-REACTOR DECOMMISSIONING PROJECTS

    SciTech Connect (OSTI)

    Morton, M.R.; Nielson, R.R.; Trevino, R.A.

    2003-02-27T23:59:59.000Z

    This paper discusses the Reactor Interim Safe Storage (ISS) Project within the decommissioning projects at the Hanford Site and reviews the lessons learned from performing four large reactor decommissioning projects sequentially. The advantages and disadvantages of this multi-reactor decommissioning project are highlighted.

  5. Interactive Story Generation for Writers: Lessons Learned from the Wide Ruled Authoring Tool

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Interactive Story Generation for Writers: Lessons Learned from the Wide Ruled Authoring Tool James multi-disciplinary background in computational and narrative theory. Wide Ruled is an authoring tool be realized if we can create tools that open their authoring to a much wider audience. Typically, creating

  6. Lessons Learned From Previous SSL/TLS Attacks A Brief Chronology Of Attacks And Weaknesses

    E-Print Network [OSTI]

    Lessons Learned From Previous SSL/TLS Attacks A Brief Chronology Of Attacks And Weaknesses in 1994 the Secure Socket Layer (SSL) protocol (later renamed to Transport Layer Security (TLS)) evolved to the de facto standard for securing the transport layer. SSL/TLS can be used for ensuring data

  7. Summary audit report on lessons learned from the Superconducting Super Collider Project

    SciTech Connect (OSTI)

    NONE

    1996-04-23T23:59:59.000Z

    In October 1993, the Congress decided to terminate the Superconducting Super Collider (SSC) project after expending about $1.57 billion on the project. While both internal and external factors contributed to the demise of the project, its cancellation offers the Department a unique opportunity to analyze what went wrong, correct the mistakes, and apply the lessons learned to future large-scale projects.

  8. SANBA Tool: Knowledge Capitalisation and Lessons Learned on Dams and their Safety

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    SANBA Tool: Knowledge Capitalisation and Lessons Learned on Dams and their Safety C. Curt 1 , H Aubire Cedex, France E-mail: corinne.curt@irstea.fr Summary Much is known about dam design, construction for dam design, construction and failure and degradation modes (domain knowledge), coupled with a case

  9. Lessons Learned Using the Insertable Robotic Effector Platform (IREP) for Single Port Access Surgery

    E-Print Network [OSTI]

    Simaan, Nabil

    ]. Design requirements included the coverage of a workspace of at least 50 mm in each Cartesian directionLessons Learned Using the Insertable Robotic Effector Platform (IREP) for Single Port Access towards achieving this goal, our team has developed the Insertable Robotic Effector Platform (IREP

  10. Special nuclear materials cutoff exercise: Issues and lessons learned. Volume 3

    SciTech Connect (OSTI)

    Libby, R.A.; Segal, J.E.; Stanbro, W.D.; Davis, C.

    1995-08-01T23:59:59.000Z

    This document is appendices D-J for the Special Nuclear Materials Cutoff Exercise: Issues and Lessons Learned. Included are discussions of the US IAEA Treaty, safeguard regulations for nuclear materials, issue sheets for the PUREX process, and the LANL follow up activity for reprocessing nuclear materials.

  11. Cloud-Climate Feedback: Lessons Learned From Two El nio Events

    E-Print Network [OSTI]

    Zhang, Minghua

    Cloud-Climate Feedback: Lessons Learned From Two El nio Events Minghua Zhang Institute - ABSTRACT Monthly ERBE and CERES measurements are used to study the response of cloud radiative forcing that the response of cloud forcing to SST over the whole tropics is very different from that to local SST changes

  12. LESSONS

    E-Print Network [OSTI]

    Bunker, G.

    2012-01-01T23:59:59.000Z

    - Target not made explicit in design brief - Tacit knowledge gap, poor design detailing gbunker@dmu.ac.uk Example ? Cottesmore Road Leicester (EMHA) ? Refurbishment, Retrofit for the future, improved infiltration and insulation gbunker...@dmu.ac.ukInsights ? Loss of floor area due to new internal insulation ? Lessons - Pod installation in attic to address floor area loss - MMC solution - Requires good communication between contractor and client gbunker@dmu.ac.uk Example ? Meden Vale Notts (Nottingham...

  13. Games, Role-Playing, Tools and Models as a Learning Process to Simulate Groundwater Management Negotiation

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Games, Role-Playing, Tools and Models as a Learning Process to Simulate Groundwater Management in answering this question at a local level. A negotiation support simulator for a regional project is proposed which includes the numerous actors involved in water resource management projects. This simulator

  14. ULO Course Learning Outcome Assessment Method Pedagogy 01-01 Students will write effective lesson plans (for

    E-Print Network [OSTI]

    Barrash, Warren

    ED-LTCY346 ULO Course Learning Outcome Assessment Method Pedagogy 01-01 Students will write effective lesson plans (for using children's literature) for a variety of audiences including peers, mentor for the writing piece ; Written lesson plans will be assessed for conventions and effectiveness of professional

  15. Lessons learned by the DOE complex from recent earthquakes

    SciTech Connect (OSTI)

    Eli, M.W.

    1993-07-01T23:59:59.000Z

    Recent earthquake damage investigations at various industrial facilities have resulted in providing the DOE complex with reminders of practical lessons for structures, systems, and components (SSCs) involving: confinement of hazardous materials; continuous, safe operations; occupant safety; and protection of DOE investments and mission-dependent items. Recent assessments are summarized, showing examples of damage caused by the 1992 California Earthquakes (Cape Mendocino, Landers, and Big Bear) and the 1991 Costa Rica Earthquake (Valle de la Estrella). These lessons if applied along with the new DOE NPH Standards (1020--92 Series) can help assure that DOE facilities will meet the intent of the seismic requirements in the new DOE NPH Order 5480.28.

  16. Lessons Learned at the Nevada National Security Site Implementing the EFCOG Activity-level Work Planning and Control Guide

    Broader source: Energy.gov [DOE]

    Slide Presentation by Steele Coddington, Work Planning Manager, National Security Technologies, Nevada National Security Site. Lessons Learned Implementing Work Planning & Control. 6 Step Process for improving WP&C.

  17. DOEs Save Energy Now Assessments Results and Lessons Learned from 450 Assessments Conducted in 2006-2007

    E-Print Network [OSTI]

    Martin, M.; Wright, A.

    2008-01-01T23:59:59.000Z

    DOE?s Save Energy Now Assessments ? Results and Lessons Learned from 450 Assessments Conducted in 2006 ? 2007 ABSTRACT Michaela Martin, martinma@ornl.gov Anthony Wright, wrightal@ornl.gov Oak Ridge National Laboratory, Oak Ridge, TN...

  18. Compile lessons learned and good practices from ongoing and previous...

    Open Energy Info (EERE)

    plans Previous Step Next Step 2.2 Resources on existing programs, studies, and data Best practicelessons learned documents and related programs Center for Climate...

  19. asp lessons learned: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mars would have needed to maintain the liquid water Students learn about Mars past and present before exploring the pressure and greenhouse strength needed Mojzsis, Stephen J. 107...

  20. arthroplasty lessons learned: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Economics Stanford be learned about electricity market design and regulating energy markets from the California California at Berkeley. University of 172 Programs and...

  1. amendment lessons learned: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Economics Stanford be learned about electricity market design and regulating energy markets from the California California at Berkeley. University of 168 Programs and...

  2. assay lessons learned: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Economics Stanford be learned about electricity market design and regulating energy markets from the California California at Berkeley. University of 167 Programs and...

  3. accident lessons learned: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Economics Stanford be learned about electricity market design and regulating energy markets from the California California at Berkeley. University of 176 Programs and...

  4. Lessons Learned Quarterly Report Archive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofs o u t h e aTheLesson 8

  5. Lessons Learned Quarterly Report Archive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofs o u t h e aTheLesson 8December

  6. Lessons Learned Quarterly Report Archive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofs o u t h e aTheLesson

  7. Lessons Learned Quarterly Report, December 2013 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofs o u t h e2 Lessons

  8. Lessons Learned Quarterly Report, March 2012 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofs o u t h e22 Lessons

  9. Lessons Learned Quarterly Report, September 2002 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofs o u t h e22 Lessons3

  10. Lessons Learned Quarterly Report, September 2010 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofs o u t h e22 Lessons36

  11. Lessons Learned Quarterly Report, September 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofs o u t h e22 Lessons361

  12. Lessons Learned by Lawrence Livermore National Laboratory Activity-level

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofs o u t h e22 Lessons361Work

  13. Lessons Learned Quarterly Report, June 2015 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732on ArmedManufacturingJune 17,Department ofLessons

  14. Spent Nuclear Fuel Trasportation: An Examination of Potential Lessons Learned From Prior Shipping Campaigns

    SciTech Connect (OSTI)

    M. Keister; K, McBride

    2006-08-28T23:59:59.000Z

    The Nuclear Waste Policy Act of 1982 (NWPA), as amended, assigned the Department of Energy (DOE) responsibility for developing and managing a Federal system for the disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The Office of Civilian Radioactive Waste Management (OCRWM) is responsible for accepting, transporting, and disposing of SNF and HLW at the Yucca Mountain repository (if licensed) in a manner that protects public health, safety, and the environment; enhances national and energy security; and merits public confidence. OCRWM faces a near-term challenge--to develop and demonstrate a transportation system that will sustain safe and efficient shipments of SNF and HLW to a repository. To better inform and improve its current planning, OCRWM has extensively reviewed plans and other documents related to past high-visibility shipping campaigns of SNF and other radioactive materials within the United States. This report summarizes the results of this review and, where appropriate, lessons learned. The objective of this lessons learned study was to identify successful, best-in-class trends and commonalities from past shipping campaigns, which OCRWM could consider when planning for the development and operation of a repository transportation system. Note: this paper is for analytical and discussion purposes only, and is not an endorsement of, or commitment by, OCRWM to follow any of the comments or trends. If OCRWM elects to make such commitments at a future time, they will be appropriately documented in formal programmatic policy statements, plans and procedures. Reviewers examined an extensive study completed in 2003 by DOE's National Transportation Program (NTP), Office of Environmental Management (EM), as well as plans and documents related to SNF shipments since issuance of the NTP report. OCRWM examined specific planning, business, institutional and operating practices that have been identified by DOE, its transportation contractors, and stakeholders as important issues that arise repeatedly. In addition, the review identifies lessons learned or activities/actions which were found not to be productive to the planning and conduct of SNF shipments (i.e., negative impacts). This paper is a 'looking back' summary of lessons learned across multiple transportation campaigns. Not all lessons learned are captured here, and participants in some of the campaigns have divergent opinions and perspectives about which lessons are most critical. This analysis is part of a larger OCRWM benchmarking effort to identify best practices to consider in future transportation of radioactive materials ('looking forward'). Initial findings from this comprehensive benchmarking analysis are expected to be available in late fall 2006.

  15. Safeguard By Design Lessons Learned from DOE Experience Integrating Safety into Design

    SciTech Connect (OSTI)

    Hockert, John; Burbank, Roberta L.

    2010-04-13T23:59:59.000Z

    This paper identifies the lessons to be learned for the institutionalization of Safeguards by Design (SBD) from the Department of Energy (DOE) experience developing and implementing DOE-STD-1189-2008, Integration of Safety into the Design Process. The experience is valuable because of the similarity of the challenges of integrating safety and safeguards into the design process. The paper reviews the content and development of DOE-STD-1189-2008 from its initial concept in January 2006 to its issuance in March 2008. Lessons learned are identified in the areas of the development and structure of requirements for the SBD process; the target audience for SBD requirements and guidance, the need for a graded approach to SBD, and a possible strategy for development and implementation of SBD within DOE.

  16. Lessons learned from commercial experience with nuclear plant decontamination to safe storage

    SciTech Connect (OSTI)

    Fischer, S.R.; Partain, W.L.; Sype, T.

    1995-12-31T23:59:59.000Z

    The Department of Energy (DOE) has successfully performed decontamination and decommissioning (D&D) on many production reactors it. DOE now has the challenge of performing D&D on a wide variety of other nuclear facilities. Because so many facilities are being closed, it is necessary to place many of them into a safe-storage status before conducting D&D-for perhaps as much as 20 yr. The challenge is to achieve this safe-storage condition in a cost-effective manner while remaining in compliance with applicable regulations. The DOE Office of Environmental Management, Office of Transition and Management, commissioned a lessons learned study of commercial experience with safe storage and transition to D&D. Although the majority of the commercial experience has been with reactors, many of the lessons learned presented in this paper are directly applicable to transitioning the DOE Weapons Complex.

  17. Nevada Test Site Decontamination and Decommissioning Program History, Regulatory Framework, and Lessons Learned

    SciTech Connect (OSTI)

    Michael R. Kruzic, Bechtel Nevada; Patrick S. Morris, Bechtel Nevada; Jerel G. Nelson, Polestar Applied Technology, Inc.

    2005-08-07T23:59:59.000Z

    Decontamination and Decommissioning (D&D) of radiologically and/or chemically contaminated facilities at the Nevada Test Site (NTS) are the responsibility of the Environmental Restoration (ER) Project. Facilities identified for D&D are listed in the Federal Facilities Agreement and Consent Order (FFACO) and closed under the Resource Conservation and Recovery Act process. This paper discusses the NTS D&D program, including facilities history, D&D regulatory framework, and valuable lessons learned.

  18. Coal contracting: Lessons utilities are learning from the pricing of their services

    SciTech Connect (OSTI)

    Lively, M.B.

    1996-12-31T23:59:59.000Z

    The lessons that electric and gas utilities are learning from the pricing of their services are discussed. The utilities will have accountants look at their operations, determine quantities and costs, and set prices so that the quantities sold will produce revenue equal to costs, or even greater than costs so the company can make a profit. The demand side of the business and the diversification going on in the industry are described.

  19. LESSONS LEARNED - STARTUP AND TRANSITION TO OPERATIONS AT THE 200 WEST PUMP AND TREAT FACILITY

    SciTech Connect (OSTI)

    FINK DE; BERGQUIST GG; BURKE SP

    2012-10-03T23:59:59.000Z

    This document lists key Lessons Learned from the Startup Team for the 200 West Pump and Treat Facility Project. The Startup Team on this Project was an integrated, multi-discipline team whose scope was Construction Acceptance Testing (CAT), functional Acceptance Testing Procedures (ATP), and procedure development and implementation. Both maintenance and operations procedures were developed. Included in the operations procedures were the process unit operations. In addition, a training and qualification program was also part of the scope.

  20. Lessons Learned from Sloan Digital Sky Survey Operations

    E-Print Network [OSTI]

    S. J. Kleinman; J. E. Gunn; B. Boroski; D. Long; S. Snedden; A. Nitta; J. Krzesi?ski; M. Harvanek; E. Neilsen; B. Gillespie; J. C. Barentine; A. Uomoto; D. Tucker; D. York; S. Jester

    2008-10-15T23:59:59.000Z

    Astronomy is changing. Large projects, large collaborations, and large budgets are becoming the norm. The Sloan Digital Sky Survey (SDSS) is one example of this new astronomy, and in operating the original survey, we put in place and learned many valuable operating principles. Scientists sometimes have the tendency to invent everything themselves but when budgets are large, deadlines are many, and both are tight, learning from others and applying it appropriately can make the difference between success and failure. We offer here our experiences well as our thoughts, opinions, and beliefs on what we learned in operating the SDSS.

  1. Promoting system-level learning from project-level lessons

    SciTech Connect (OSTI)

    Jong, Amos A. de, E-mail: amosdejong@gmail.com [Innovation Management, Utrecht (Netherlands); Runhaar, Hens A.C., E-mail: h.a.c.runhaar@uu.nl [Section of Environmental Governance, Utrecht University, Utrecht (Netherlands); Runhaar, Piety R., E-mail: piety.runhaar@wur.nl [Organisational Psychology and Human Resource Development, University of Twente, Enschede (Netherlands); Kolhoff, Arend J., E-mail: Akolhoff@eia.nl [The Netherlands Commission for Environmental Assessment, Utrecht (Netherlands); Driessen, Peter P.J., E-mail: p.driessen@geo.uu.nl [Department of Innovation and Environment Sciences, Utrecht University, Utrecht (Netherlands)

    2012-02-15T23:59:59.000Z

    A growing number of low and middle income nations (LMCs) have adopted some sort of system for environmental impact assessment (EIA). However, generally many of these EIA systems are characterised by a low performance in terms of timely information dissemination, monitoring and enforcement after licencing. Donor actors (such as the World Bank) have attempted to contribute to a higher performance of EIA systems in LMCs by intervening at two levels: the project level (e.g. by providing scoping advice or EIS quality review) and the system level (e.g. by advising on EIA legislation or by capacity building). The aims of these interventions are environmental protection in concrete cases and enforcing the institutionalisation of environmental protection, respectively. Learning by actors involved is an important condition for realising these aims. A relatively underexplored form of learning concerns learning at EIA system-level via project level donor interventions. This 'indirect' learning potentially results in system changes that better fit the specific context(s) and hence contribute to higher performances. Our exploratory research in Ghana and the Maldives shows that thus far, 'indirect' learning only occurs incidentally and that donors play a modest role in promoting it. Barriers to indirect learning are related to the institutional context rather than to individual characteristics. Moreover, 'indirect' learning seems to flourish best in large projects where donors achieved a position of influence that they can use to evoke reflection upon system malfunctions. In order to enhance learning at all levels donors should thereby present the outcomes of the intervention elaborately (i.e. discuss the outcomes with a large audience), include practical suggestions about post-EIS activities such as monitoring procedures and enforcement options and stimulate the use of their advisory reports to generate organisational memory and ensure a better information dissemination.

  2. Lesson Learned by CHPRC at Hanford Activity-level Work Planning and Control Using EFCOG Work Planning and Control Guideline Document

    Broader source: Energy.gov [DOE]

    Slide Presentation by Jim Hoffman, CH2M HILL Plateau Remediation Company. Major Process Revision of WP&C Lessons Learned.

  3. Driving Demand: Lessons From Vermont

    Broader source: Energy.gov [DOE]

    Describes the Efficiency Vermont program and provides lessons learned in marketing and development of creative strategies.

  4. Learning from Physics Education Research: Lessons for Economics Education

    E-Print Network [OSTI]

    Simkins, Scott P

    2008-01-01T23:59:59.000Z

    We believe that economists have much to learn from educational research practices and related pedagogical innovations in other disciplines, in particular physics education. In this paper we identify three key features of physics education research that distinguish it from economics education research - (1) the intentional grounding of physics education research in learning science principles, (2) a shared conceptual research framework focused on how students learn physics concepts, and (3) a cumulative process of knowledge-building in the discipline - and describe their influence on new teaching pedagogies, instructional activities, and curricular design in physics education. In addition, we highlight four specific examples of successful pedagogical innovations drawn from physics education - context-rich problems, concept tests, just-in-time teaching, and interactive lecture demonstrations - and illustrate how these practices can be adapted for economic education.

  5. Lessons Learned From The 200 West Pump And Treatment Facility Construction Project At The US DOE Hanford Site - A Leadership For Energy And Environmental Design (LEED) Gold-Certified Facility

    SciTech Connect (OSTI)

    Dorr, Kent A. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Ostrom, Michael J. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Freeman-Pollard, Jhivaun R. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

    2012-11-14T23:59:59.000Z

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy's (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built in an accelerated manner with American Recovery and Reinvestment Act (ARRA) funds and has attained Leadership in Energy and Environmental Design (LEED) GOLD certification, which makes it the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award. There were many contractual, technical, configuration management, quality, safety, and LEED challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility. This paper will present the Project and LEED accomplishments, as well as Lessons Learned by CHPRC when additional ARRA funds were used to accelerate design, procurement, construction, and commissioning of the 200 West Groundwater Pump and Treatment (2W P&T) Facility to meet DOE's mission of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012.

  6. Designing and Operating for Safeguards: Lessons Learned From the Rokkasho Reprocessing Plant (RRP)

    SciTech Connect (OSTI)

    Johnson, Shirley J.; Ehinger, Michael

    2010-08-07T23:59:59.000Z

    This paper will address the lessons learned during the implementation of International Atomic Energy Agency (IAEA) safeguards at the Rokkasho Reprocessing Plant (RRP) which are relevant to the issue of safeguards by design. However, those lessons are a result of a cumulative history of international safeguards experiences starting with the West Valley reprocessing plant in 1969, continuing with the Barnwell plant, and then with the implementation of international safeguards at WAK in Germany and TRP in Japan. The design and implementation of safeguards at RRP in Japan is the latest and most challenging that the IAEA has faced. This paper will discuss the work leading up to the development of a safeguards approach, the design and operating features that were introduced to improve or aid in implementing the safeguards approach, and the resulting recommendations for future facilities. It will provide an overview of how safeguardability was introduced into RRP.

  7. State Support for Clean Energy Deployment: Lessons Learned for Potential Future Policy

    SciTech Connect (OSTI)

    Kubert, C.; Sinclair, M.

    2011-04-01T23:59:59.000Z

    Proposed federal clean energy initiatives and climate legislation have suggested significant increases to federal funding for clean energy deployment and investment. Many states and utilities have over a decade of experience and spend billions of public dollars every year to support EE/RE deployment through programs that reduce the cost of technologies, provide financing for EE/RE projects, offer technical assistance, and educate market participants. Meanwhile, constraints on public expenditures at all levels of government continue to call upon such programs to demonstrate their value. This report reviews the results of these programs and the specific financial incentives and financing tools used to encourage clean energy investment. Lessons from such programs could be used to inform the future application of EE/RE incentives and financing tools. These lessons learned apply to use of distributed resources and the historical focus of these EE/RE programs.

  8. Lessons Learned from Alternative Transportation Fuels: Modeling Transition Dynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -ofLearningLensless4

  9. Lessons Learned Quarterly Report 1st Quarter FY 1996

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »of EnergyLearning &LegacySecurityLeslie3 -7 -8

  10. Lessons Learned Quarterly Report Archive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »of EnergyLearning &LegacySecurityLeslie3 -7

  11. Lessons Learned Quarterly Report Cumulative Index | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »of EnergyLearning &LegacySecurityLeslie3

  12. Lessons Learned Quarterly Report, December 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »of EnergyLearning &LegacySecurityLeslie3December

  13. Lessons Learned Quarterly Report, June 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »of EnergyLearning

  14. Audience/Panel Discussion: Sites Lesson Learned about Activity-level Work Planning and Control Using EFCOG Work Planning and Control Guideline

    Broader source: Energy.gov [DOE]

    Slide Presentation by Donna J. Governor, Deputy Dept Mgr for Planning & Integration, Lawrence Livermore National Laboratory. Lawrence Livermore National Laboratory work planning and control lessons learned and audience/panel discussion on site's lessons learned about Activity-level Work Planning and Control using EFCOG Work Planning and Control Guideline Document.

  15. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Broader source: Energy.gov (indexed) [DOE]

    Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen On April...

  16. Compact Fluorescent Lighting in America: Lessons Learned on the Way to Market

    SciTech Connect (OSTI)

    Sandahl, Linda J.; Gilbride, Theresa L.; Ledbetter, Marc R.; Steward, Heidi E.; Calwell, Chris

    2006-05-22T23:59:59.000Z

    This report describes the history of compact fluorescent lamps (CFLs) in America. CFLs were introduced in the 1970s; however, it has taken more than 20 years for them to gain widespread recognition in the U.S. residential lighting market. This report reviews the development of CFLs, efforts to increase market acceptance of them, and barriers to that acceptance. Lessons to be learned from this study of CFLs are identified in hopes of assisting future market introduction efforts for other promising energy-efficient technologies. This report was prepared by the Pacific Northwest National Laboratory for the U.S. Department of Energys Office of Building Technologies, Emerging Technologies Program.

  17. Crowdfunding Astronomy Outreach Projects: Lessons Learned from the UNAWE Crowdfunding Campaign

    E-Print Network [OSTI]

    Ashton, Abi J; Heenatigala, Thilina

    2014-01-01T23:59:59.000Z

    In recent years, crowdfunding has become a popular method of funding new technology or entertainment products, or artistic projects. The idea is that people or projects ask for many small donations from individuals who support the proposed work, rather than a large amount from a single source. Crowdfunding is usually done via an online portal or platform which handles the financial transactions involved. The Universe Awareness (UNAWE) programme decided to undertake a Kickstarter crowdfunding campaign centring on the resource Universe in a Box2. In this article we present the lessons learned and best practices from that campaign.

  18. Community water systems recovering from the drought: Lessons learned; plans made

    E-Print Network [OSTI]

    Wythe, Kathy

    2011-01-01T23:59:59.000Z

    Story by Kathy Wythe Community water systems recovering from the drought LESSONS LEARNED; PLANS MADE Summer 2012 tx H2O 7 ] An East Texas water supply reservoir was so low that water was unable to be withdrawn using the normal...;,#18;#24;#24; was about three weeks away from running out of water. With the entire state experiencing exceptional or extreme drought for most of #25;#24;#23;#23;, Groesbeck stood out as a warning to other Texas communities about what they could experience...

  19. Community water systems recovering from the drought: Lessons learned; plans made

    E-Print Network [OSTI]

    Wythe, Kathy

    2011-01-01T23:59:59.000Z

    Story by Kathy Wythe Community water systems recovering from the drought LESSONS LEARNED; PLANS MADE Summer 2012 tx H2O 7 ] An East Texas water supply reservoir was so low that water was unable to be withdrawn using the normal...;,#18;#24;#24; was about three weeks away from running out of water. With the entire state experiencing exceptional or extreme drought for most of #25;#24;#23;#23;, Groesbeck stood out as a warning to other Texas communities about what they could experience...

  20. Lessons Learned: Guidance based on Early Experiences of Implementing ISO 5001 and SEP

    E-Print Network [OSTI]

    Monaghan, P. F.

    2014-01-01T23:59:59.000Z

    they manufacture and to prove it o Target 15% savings over 3 years SEP Platinum 16.4% achieved 2014 ISO 13485 quality for medical devices o Decision to use Enerit software for all ISO systems. ESL-IE-14-05-25 Proceedings of the Thrity...Lessons Learned: Guidance based on Early Experiences of Implementing ISO 50001 & SEP Paul F Monaghan PhD, CEO Enerit the ISO 50001/SEP software company ESL-IE-14-05-25 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New...

  1. SSL Early Lessons Learned on the Way to the Market | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG - ORDER 2913||Sys.pdfEarly Lessons Learned on the

  2. Report on Lessons Learned from the NP 2010 Early Site Permit Program FINAL REPORT

    SciTech Connect (OSTI)

    none,

    2008-03-26T23:59:59.000Z

    This report provides a summary of lessons learned from the demonstration of the licensing process for three Early Site Permit (ESP) applications supported as part of the Department of Energys (DOE) Nuclear Power 2010 (NP 2010) program. The ESP process was established by the Nuclear Regulatory Commission (NRC) to enable completion of the site evaluation component of nuclear power plant licensing under 10 CFR Part 52 before a utility makes a decision to build a plant. Early Site Permits are valid for 10 to 20 years and can be renewed for an additional 10 to 20 years. NRC review of an ESP application addresses site safety issues, environmental protection issues, and plans for coping with emergencies. Successful completion of the ESP process will establish that a site is suitable for possible future construction and operation of a nuclear power plant. Most importantly, an ESP resolves significant site-related safety and environmental issues early in the decision process and helps achieve acceptance by the public. DOE competitively selected Dominion Nuclear Energy North Anna, LLC (Dominion); System Energy Resources, Inc. (an Entergy subsidiary); and Exelon Generation Company, LLC (Exelon) in 2002 to demonstrate the ESP process and provided cost-shared support through the NP 2010 program. Dominion pursued an ESP for the North Anna site in Virginia; System Energy Resources, Inc. pursued an ESP for the Grand Gulf site in Mississippi; and Exelon pursued an ESP for the Clinton site in Illinois. After successfully demonstrating the process, the NRC issued an ESP for Clinton on March 17, 2007; Grand Gulf on April 5, 2007; and North Anna on November 27, 2007. As with all successful projects, there are lessons to be learned from the NP 2010 early site permitting demonstration that can help improve future implementation guidance documents and regulatory review standards. In general, these lessons pertain to the effectiveness of the regulatory process, experience related to guidance for developing and reviewing ESP applications, issues involving ESP plant parameters, and suggestions for future ESP applicants. The development, submittal, and issuance of these first ESPs under DOEs NP 2010 program started the momentum to exercise NRCs new 10 CFR Part 52 licensing process. Several key questions that define critical issues regarding the effectiveness of regulations pertaining to ESPs have been identified and summarized in this report. However, the final resolution of whether the ESP component of the Part 52 process significantly contributes to the predictability in nuclear power plant licensing requires more experience and time, such as the completion of the ongoing combined Construction and Operating License (COL) process for the North Anna and Grand Gulf sites. The three ESP project participants prepared and submitted to DOE lessons learned reports from their experience in developing, submitting, and receiving an ESP. This document summarizes these reports, which are appended hereto. The Nuclear Energy Institute (http://www.nei.org/) and NRC (http://www.nrc.gov/) have also prepared reports regarding their perspectives on lessons learned during the ESP process. Their documents can be accessed on their respective web sites. Following is a summary of the lessons learned from the NP 2010 ESP projects. Effectiveness of the ESP Process: In general, the ESP process is expected (subject to demonstration of the ESP finality provisions in the North Anna and Grand Gulf ESPs) to provide high value for applicants as a site banking and risk mitigation strategy. However, several aspects of the initial process, such as NRC hearings and determining an acceptable approach to the NRCs Emergency Planning requirements, proved challenging for the applicants. Project Execution: Initial regulatory and industry guidance for planning and executing an ESP application program proved to be insufficient to address NRCs document review expectations. However, continuous communication between NRC and the applicants helped establish an acceptable framework

  3. Lessons Learned Following the Successful Decommissioning of a Reaction Vessel Containing Lime Sludge and Technetium-99

    SciTech Connect (OSTI)

    Dawson, P. M.; Watson, D. D.; Hylko, J. M.

    2002-02-25T23:59:59.000Z

    This paper documents how WESKEM, LLC utilized available source term information, integrated safety management, and associated project controls to safely decommission a reaction vessel and repackage sludge containing various Resource Conservation and Recovery Act constituents and technetium-99 (Tc-99). The decommissioning activities were segmented into five separate stages, allowing the project team to control work related decisions based on their knowledge, experience, expertise, and field observations. The information and experience gained from each previous stage and rehearsals contributed to modifying subsequent entries, further emphasizing the importance of developing hold points and incorporating lessons learned. The hold points and lessons learned, such as performing detailed personal protective equipment (PPE) inspections during sizing and repackaging operations, and using foam-type piping insulation to prevent workers from cutting or puncturing their PPE on sharp edge s or small shards generated during sizing operations, minimized direct contact with the Tc-99. To prevent the spread of contamination, the decommissioning activities were performed inside a containment enclosure connected to negative air machines. After performing over 235 individual entries totaling over 285 project hours, only one first aid was recorded during this five-stage project.

  4. Lessons Learned on Benchmarking from the International Human Reliability Analysis Empirical Study

    SciTech Connect (OSTI)

    Ronald L. Boring; John A. Forester; Andreas Bye; Vinh N. Dang; Erasmia Lois

    2010-06-01T23:59:59.000Z

    The International Human Reliability Analysis (HRA) Empirical Study is a comparative benchmark of the prediction of HRA methods to the performance of nuclear power plant crews in a control room simulator. There are a number of unique aspects to the present study that distinguish it from previous HRA benchmarks, most notably the emphasis on a method-to-data comparison instead of a method-to-method comparison. This paper reviews seven lessons learned about HRA benchmarking from conducting the study: (1) the dual purposes of the study afforded by joining another HRA study; (2) the importance of comparing not only quantitative but also qualitative aspects of HRA; (3) consideration of both negative and positive drivers on crew performance; (4) a relatively large sample size of crews; (5) the use of multiple methods and scenarios to provide a well-rounded view of HRA performance; (6) the importance of clearly defined human failure events; and (7) the use of a common comparison language to translate the results of different HRA methods. These seven lessons learned highlight how the present study can serve as a useful template for future benchmarking studies.

  5. Multi-unit Operations in Non-Nuclear Systems: Lessons Learned for Small Modular Reactors

    SciTech Connect (OSTI)

    OHara J. M.; Higgins, J.; DAgostino, A.

    2012-01-17T23:59:59.000Z

    The nuclear-power community has reached the stage of proposing advanced reactor designs to support power generation for decades to come. Small modular reactors (SMRs) are one approach to meet these energy needs. While the power output of individual reactor modules is relatively small, they can be grouped to produce reactor sites with different outputs. Also, they can be designed to generate hydrogen, or to process heat. Many characteristics of SMRs are quite different from those of current plants and may be operated quite differently. One difference is that multiple units may be operated by a single crew (or a single operator) from one control room. The U.S. Nuclear Regulatory Commission (NRC) is examining the human factors engineering (HFE) aspects of SMRs to support licensing reviews. While we reviewed information on SMR designs to obtain information, the designs are not completed and all of the design and operational information is not yet available. Nor is there information on multi-unit operations as envisioned for SMRs available in operating experience. Thus, to gain a better understanding of multi-unit operations we sought the lesson learned from non-nuclear systems that have experience in multi-unit operations, specifically refineries, unmanned aerial vehicles and tele-intensive care units. In this paper we report the lessons learned from these systems and the implications for SMRs.

  6. Toward the Holy Grail of Perfect Information: Lessons Learned Implementing an Energy Information System in a Commercial Building

    E-Print Network [OSTI]

    Diamond, Richard

    detection to inform retro- commissioning, and feedback to occupants to encourage shifts in behavior. Energy Residential and commercial buildings are responsible for 40% of US primary energy consumption, 701 Toward the Holy Grail of Perfect Information: Lessons Learned Implementing an Energy Information

  7. University Reactor Conversion Lessons Learned Workshop for the University of Florida

    SciTech Connect (OSTI)

    Eric C. Woolstenhulme; Dana M. Meyer

    2007-04-01T23:59:59.000Z

    The Department of Energys (DOE) Idaho National Laboratory (INL), under its programmatic responsibility for managing the University Research Reactor Conversions, has completed the conversion of the reactor at the University of Florida. This project was successfully completed through an integrated and collaborative effort involving the INL, Argonne National Laboratory (ANL), DOE (Headquarters and Field Office), the Nuclear Regulatory Commission, the Universities, and contractors involved in analyses, fuel design and fabrication, and SNF shipping and disposition. With the work completed with these two universities, and in anticipation of other impending conversion projects, INL convened and engaged the project participants in a structured discussion to capture lessons learned. The objectives of this meeting were to capture the observations, insights, issues, concerns, and ideas of those involved in the reactor conversions so that future efforts can be conducted with greater effectiveness, efficiency, and with fewer challenges.

  8. Spent Nuclear Fuel Transportation: An Examination of Potential Lessons Learned From Prior Shipping Campaigns

    SciTech Connect (OSTI)

    Marsha Keister; Kathryn McBride

    2006-08-01T23:59:59.000Z

    The Nuclear Waste Policy Act of 1982 (NWPA), as amended, assigned the Department of Energy (DOE) responsibility for developing and managing a Federal system for the disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The Office of Civilian Radioactive Waste Management (OCRWM) is responsible for accepting, transporting, and disposing of SNF and HLW at the Yucca Mountain repository in a manner that protects public health, safety, and the environment; enhances national and energy security; and merits public confidence. OCRWM faces a near-term challengeto develop and demonstrate a transportation system that will sustain safe and efficient shipments of SNF and HLW to a repository. To better inform and improve its current planning, OCRWM has extensively reviewed plans and other documents related to past high-visibility shipping campaigns of SNF and other radioactive materials within the United States. This report summarizes the results of this review and, where appropriate, lessons learned.

  9. Lessons learned enhancing EPICS CA for LANSCE timed and flavored data

    SciTech Connect (OSTI)

    Hill, Jeffrey O [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    A previous paper described an upgrade to EPICS enabling client side tools at LANSCE to receive subscription updates filtered selectively to match a logical configuration of LANSCE beam gates, as configured by the control room. The upgrade required fundamental changes in the EPICS core components. First, the event queue in the EPICS server was upgraded to buffer record (function block) and device specific parameters accessed generically via software interfaces for introspection of 3rd party data. In contrast, event queues in previous versions of EPICS were strictly limited to buffering only value, timestamp, and alarm status tuples. Second, the Channel Access server is being upgraded to filter subscription updates. In this follow on paper some necessary design changes mid-project and the lessons learned during the software development will be described.

  10. HOW BPA/WSUN SCHOOL PV EFFORT WORKED AT ELMIRA HIGH SCHOOL This article reports on lessons learned from installing a

    E-Print Network [OSTI]

    Oregon, University of

    HOW BPA/WSUN SCHOOL PV EFFORT WORKED AT ELMIRA HIGH SCHOOL ABSTRACT This article reports on lessons learned from installing a photovoltaic system at Elmira High School through cooperation between Emerald and the school are reported. However, it will take a while to develop and refine lesson plans to make full use

  11. Building Energy-Efficient Schools in New Orleans: Lessons Learned (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-12-01T23:59:59.000Z

    This case study presents the lessons learned from incorporating energy efficiency in the rebuilding and renovating of New Orleans K-12 schools after Hurricanes Katrina and Rita. Hurricane Katrina was the largest natural disaster in the United States, striking the Gulf Coast on August 29, 2005, and flooding 80% of New Orleans; to make matters worse, the city was flooded again only three weeks later by the effects of Hurricane Rita. Many of the buildings, including schools, were heavily damaged. The devastation of schools in New Orleans from the hurricanes was exacerbated by many years of deferred school maintenance. This case study presents the lessons learned from incorporating energy efficiency in the rebuilding and renovating of New Orleans K-12 schools after Hurricanes Katrina and Rita. The experiences of four new schools-Langston Hughes Elementary School, Andrew H. Wilson Elementary School (which was 50% new construction and 50% major renovation), L.B. Landry High School, and Lake Area High School-and one major renovation, Joseph A. Craig Elementary School-are described to help other school districts and design teams with their in-progress and future school building projects in hot-humid climates. Before Hurricane Katrina, New Orleans had 128 public schools. As part of the recovery planning, New Orleans Public Schools underwent an assessment and planning process to determine how many schools were needed and in what locations. Following a series of public town hall meetings and a district-wide comprehensive facility assessment, a Master Plan was developed, which outlined the renovation or construction of 85 schools throughout the city, which are expected to be completed by 2017. New Orleans Public Schools expects to build or renovate approximately eight schools each year over a 10-year period to achieve 21st century schools district-wide. Reconstruction costs are estimated at nearly $2 billion.

  12. Lessons learned in acquiring new regulations for shipping advanced electric vehicle batteries

    SciTech Connect (OSTI)

    Henriksen, G. [Argonne National Lab., IL (United States); Hammel, C. [National Renewable Energy Lab., Golden, CO (United States); Altemos, E.A. [Winston and Strawn, Washington, DC (United States)

    1994-12-01T23:59:59.000Z

    In 1990, the Electric and Hybrid Propulsion Division of the US Department of Energy established its ad hoc EV Battery Readiness Working Group to identify regulatory barriers to the commercialization of advanced EV battery technologies and facilitate the removal of these barriers. A Shipping Sub-Working Group (SSWG) was formed to address the regulatory issues associated with the domestic and international shipment of these new battery technologies. The SSWG invites major industrial developers of advanced battery technologies to join as members and work closely with appropriate domestic and international regulatory authorities to develop suitable regulations and procedures for the safe transport of these new battery technologies. This paper describes the domestic and international regulatory processes for the transport of dangerous goods; reviews the status of shipping regulations for sodium-beta and lithium batteries; and delineates the lessons learned to date in this process. The sodium-beta battery family was the first category of advanced EV batteries to be addressed by the SSWG. It includes both sodium/sulfur and sodium/metal chloride batteries. Their efforts led to the establishment of a UN number (UN 3292) in the UN Recommendations, for cold cells and batteries, and establishment of a US Department of Transportation general exemption (DOT-E-10917) covering cold and hot batteries, as well as cold cells. The lessons learned for sodium-beta batteries, over the period of 1990--94, are now being applied to the development of regulations for shipping a new generation of lithium battery technologies (lithium-polymer and lithium-aluminum/iron sulfide batteries).

  13. Soil and Groundwater Cleanup - In-Situ Grouting, Lessons Learned (Post

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of Energy Ready,Smart GridAboutWindows andCD-4),

  14. Soil and Groundwater Cleanup - In-Situ Grouting, Lessons Learned (Post

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9MorganYou areInnovation Portal Software0

  15. Finishing and Special Motifs: Lessons Learned from CRISPR Analysis Using Next-Generation Draft Sequences ( 7th Annual SFAF Meeting, 2012)

    ScienceCinema (OSTI)

    Campbell, Catherine [Noblis

    2013-03-22T23:59:59.000Z

    Catherine Campbell on "Finishing and Special Motifs: Lessons learned from CRISPR analysis using next-generation draft sequences" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  16. 618-10 Burial Ground Trench Remediation and 618-10 and 618-11 Burial Ground Nonintrusive Characterization of Vertical Pipe Units Lessons Learned

    SciTech Connect (OSTI)

    Darby, J. W.

    2012-06-28T23:59:59.000Z

    A lessons learned is a noteworthy practice or innovative approach that is captured and shared to promote repeat application, or an adverse work practice/experience that is captured and shared to avoid reoccurrence. This document provides the lessons learned identified by the 618-10 Burial Ground trench remediation and the 618-10 and 618-11 Burial Ground nonintrusive characterization of the vertical pipe units (VPUs).

  17. Lessons learned from an installation perspective for chemical demilitarization plant start-up at four operating incineration sites.

    SciTech Connect (OSTI)

    Motz, L.; Decision and Information Sciences

    2011-02-21T23:59:59.000Z

    This study presents the lessons learned by chemical storage installations as they prepared for the start of chemical demilitarization plant operations at the four current chemical incinerator sites in Alabama, Arkansas, Oregon, and Utah. The study included interviews with persons associated with the process and collection of available documents prepared at each site. The goal was to provide useful information for the chemical weapons storage sites in Colorado and Kentucky that will be going through plant start-up in the next few years. The study is not a compendium of what to do and what not to do. The information has been categorized into ten lessons learned; each is discussed individually. Documents that may be useful to the Colorado and Kentucky sites are included in the appendices. This study should be used as a basis for planning and training.

  18. LESSONS LEARNED IN OPERATING THE HOSE-IN-HOSE SYSTEM FOR TRANSFSERRING SLUDGE AT HANFORDS K-BASINS

    SciTech Connect (OSTI)

    PERES MW

    2008-01-07T23:59:59.000Z

    In May 2007, the Department of Energy and the Fluor Hanford K Basin Closure Project completed transferring sludge from the K East Basin to new containers in the K West Basin using a Hose-in-Hose system. This project presented a number of complex and unique technical, operational, and management challenges that had to be resolved to complete the required transfers and satisfy project milestones. The project team (including DOE; regulators; and Fluor management, operations, maintenance, engineering and all other support organizations) found innovative solutions to each challenge. This paper records lessons learned during the operational phase of the sludge transfer via the Hose-In-Hose system. The subject is limited to the operational phase and does not cover design, development, testing or turnover. A discussion of the situation or problem encountered is provided, along with the lesson learned as applicable to a future program or project.

  19. Lessons Learned from the Photovoltaic Manufacturing Technology/PV Manufacturing R&D and Thin Film PV Partnership Projects

    SciTech Connect (OSTI)

    Margolis, R.; Mitchell, R.; Zweibel, K.

    2006-09-01T23:59:59.000Z

    As the U.S. Department of Energy's (DOE's) Solar Energy Technologies Program initiates new cost-shared solar energy R&D under the Solar America Initiative (SAI), it is useful to analyze the experience gained from cost-shared R&D projects that have been funded through the program to date. This report summarizes lessons learned from two DOE-sponsored photovoltaic (PV) projects: the Photovoltaic Manufacturing Technology/PV Manufacturing R&D (PVMaT/PVMR&D) project and the Thin-Film PV Partnership project. During the past 10-15 years, these two projects have invested roughly $330 million of government resources in cost-shared R&D and leveraged another $190 million in private-sector PV R&D investments. Following a description of key findings and brief descriptions of the PVMaT/PVMR&D and Thin-Film PV Partnership projects, this report presents lessons learned from the projects.

  20. Confidential and Privileged: The President's Foreign Intelligence Advisory Board - Learning Lessons from Its Past to Shape Its Future

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    s Foreign Intelligence Advisory Board: A Special Investigative Panel, Science at its Best, Security at its Worst: A Report on Security Problems at the U.S. Department of Energy (Washington, D.C.: GPO, 1999). The report is also available, as of October 17...confidential and privileged THE PRESIDENTS FOREIGN INTELLIGENCE ADVISORY BOARD Learning Lessons from Its Past to Shape Its Future Kenneth Michael Absher Michael Desch Roman Popadiuk A Report Presented to the Richard Lounsbery Foundation Washington...

  1. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proceedings from the DOE sponsored Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen workshop to understand how lessons from past experiences can...

  2. Lessons Learned from the Pioneers 10/11 for a Mission to Test the Pioneer Anomaly

    E-Print Network [OSTI]

    Slava G. Turyshev; Michael Martin Nieto; John D. Anderson

    2004-09-30T23:59:59.000Z

    Analysis of the radio-metric tracking data from the Pioneer 10/11 spacecraft at distances between 20--70 astronomical units (AU) from the Sun has consistently indicated the presence of an anomalous, small, constant Doppler frequency drift. The drift is a blue-shift, uniformly changing with rate a_t = (2.92 +/- 0.44) x 10^(-18) s/s^2. It can also be interpreted as a constant acceleration of a_P = (8.74 +/- 1.33) x 10^(-8) cm/s^2 directed towards the Sun. Although it is suspected that there is a systematic origin to the effect, none has been found. As a result, the nature of this anomaly has become of growing interest. Here we discuss the details of our recent investigation focusing on the effects both external to and internal to the spacecraft, as well as those due to modeling and computational techniques. We review some of the mechanisms proposed to explain the anomaly and show their inability to account for the observed behavior of the anomaly. We also present lessons learned from this investigation for a potential deep-space experiment that will reveal the origin of the discovered anomaly and also will characterize its properties with an accuracy of at least two orders of magnitude below the anomaly's size. A number of critical requirements and design considerations for such a mission are outlined and addressed.

  3. Lessons learned from bacterial transport research at the South Oyster Site

    SciTech Connect (OSTI)

    Scheibe, T.; Hubbard, S.S.; Onstott, T.C.; DeFlaun, M.F.

    2011-04-01T23:59:59.000Z

    This paper provides a review of bacterial transport experiments conducted by a multi-investigator, multi-institution, multi-disciplinary team of researchers under the auspices of the U. S. Department of Energy (DOE). The experiments were conducted during the time period 1999-2001 at a field site near the town of Oyster, Virginia known as the South Oyster Site, and included four major experimental campaigns aimed at understanding and quantifying bacterial transport in the subsurface environment. Several key elements of the research are discussed here: (1) quantification of bacterial transport in physically, chemically and biologically heterogeneous aquifers, (2) evaluation of the efficacy of conventional colloid filtration theory, (3) scale effects in bacterial transport, (4) development of new methods for microbial enumeration and screening for low adhesion strains, (5) application of novel hydrogeophysical techniques for aquifer characterization, and (6) experiences regarding management of a large field research effort. Lessons learned are summarized in each of these areas. The body of literature resulting from South Oyster Site research has been widely cited and continues to influence research into the controls exerted by aquifer heterogeneity on reactive transport (including microbial transport). It also served as a model (and provided valuable experience) for subsequent and ongoing highly-instrumented field research efforts conducted by DOE-sponsored investigators.

  4. Nuclear power plant Generic Aging Lessons Learned (GALL). Main report and appendix A

    SciTech Connect (OSTI)

    Kaza, K.E.; Diercks, D.R.; Holland, J.W.; Choi, S.U. [and others

    1996-12-01T23:59:59.000Z

    The purpose of this generic aging lessons learned (GALL) review is to provide a systematic review of plant aging information in order to assess materials and component aging issues related to continued operation and license renewal of operating reactors. Literature on mechanical, structural, and thermal-hydraulic components and systems reviewed consisted of 97 Nuclear Plant Aging Research (NPAR) reports, 23 NRC Generic Letters, 154 Information Notices, 29 Licensee Event Reports (LERs), 4 Bulletins, and 9 Nuclear Management and Resources Council Industry Reports (NUMARC IRs) and literature on electrical components and systems reviewed consisted of 66 NPAR reports, 8 NRC Generic Letters, 111 Information Notices, 53 LERs, 1 Bulletin, and 1 NUMARC IR. More than 550 documents were reviewed. The results of these reviews were systematized using a standardized GALL tabular format and standardized definitions of aging-related degradation mechanisms and effects. The tables are included in volume s 1 and 2 of this report. A computerized data base has also been developed for all review tables and can be used to expedite the search for desired information on structures, components, and relevant aging effects. A survey of the GALL tables reveals that all ongoing significant component aging issues are currently being addressed by the regulatory process. However, the aging of what are termed passive components has been highlighted for continued scrutiny. This document is Volume 1, consisting of the executive summary, summary and observations, and an appendix listing the GALL literature review tables.

  5. US Department of Energy natural phenomena design/evaluation guidelines/lessons learned

    SciTech Connect (OSTI)

    Conrads, T.J.

    1991-08-01T23:59:59.000Z

    In the spring of 1988, DOE Order 6430.1A, General Design Criteria (1), was issued for use. This document references UCRL-15910, Design and Evaluation Guidelines for DOE Facilities Subjected to Natural Phenomena Hazards (2), which is to be used as the basis for the design and evaluation of new and existing facilities to natural phenomena loading. Rather than use the historical deterministic methods for computing structural and component loading from potential natural phenomena, UCRL-15910 incorporated the years of hazards studies conducted throughout the US Department of Energy complex into probabilistic-based methods. This paper describes the process used to incorporate US Department of Energy natural phenomena design guidelines into the Hanford Plant Standards -- Standard Design Criteria for Architectural and Civil Standards (3). It also addresses the subsequent use of these criteria during structural assessments of facilities, systems, and components of various vintage in support of updating safety analysis reports. The paper includes comparison of results using these most recent probabilistic-based natural phenomena loading criteria to those obtained from previous assessments, and it addresses the lessons learned from the many structural evaluations of 1940--1960 vintage buildings.

  6. US Department of Energy natural phenomena design/evaluation guidelines/lessons learned

    SciTech Connect (OSTI)

    Conrads, T.J.

    1991-08-01T23:59:59.000Z

    In the spring of 1988, DOE Order 6430.1A, General Design Criteria [1], was issued for use. This document references UCRL-15910, Design and Evaluation Guidelines for DOE Facilities Subjected to Natural Phenomena Hazards [2], which is to be used as the basis for the design and evaluation of new and existing facilities to natural phenomena loading. Rather than use the historical deterministic methods for computing structural and component loading from potential natural phenomena, UCRL-15910 incorporated the years of hazards studies conducted throughout the US Department of Energy complex into probabilistic-based methods. This paper describes the process used to incorporate US Department of Energy natural phenomena design guidelines into the Hanford Plant Standards -- Standard Design Criteria for Architectural and Civil Standards [3]. It also addresses the subsequent use of these criteria during structural assessments of facilities, systems, and components of various vintage in support of updating safety analysis reports. The paper includes comparison of results using these most recent probabilistic-based natural phenomena loading criteria to those obtained from previous assessments, and it addresses the lessons learned from the many structural evaluations of 1940--1960 vintage buildings.

  7. Lessons Learned from Three Mile Island Packaging, Transportation and Disposition that Apply to Fukushima Daiichi Recovery

    SciTech Connect (OSTI)

    Layne Pincock; Wendell Hintze; Dr. Koji Shirai

    2012-07-01T23:59:59.000Z

    Following the massive earthquake and resulting tsunami damage in March of 2011 at the Fukushima Daiichi nuclear power plant in Japan, interest was amplified for what was done for recovery at the Three Mile Island Unit 2 (TMI-2) in the United States following its meltdown in 1979. Many parallels could be drawn between to two accidents. This paper presents the results of research done into the TMI-2 recovery effort and its applicability to the Fukushima Daiichi cleanup. This research focused on three topics: packaging, transportation, and disposition. This research work was performed as a collaboration between Japans Central Research Institute of Electric Power Industry (CRIEPI) and the Idaho National Laboratory (INL). Hundreds of TMI-2 related documents were searched and pertinent information was gleaned from these documents. Other important information was also obtained by interviewing employees who were involved first hand in various aspects of the TMI-2 cleanup effort. This paper is organized into three main sections: (1) Transport from Three Mile Island to Central Facilities Area at INL, (2) Transport from INL Central Receiving Facility to INL Test Area North (TAN) and wet storage at TAN, and (3) Transport from TAN to INL Idaho Nuclear Technology and Engineering Center (INTEC) and Dry Storage at INTEC. Within each of these sections, lessons learned from performing recovery activities are presented and their applicability to the Fukushima Daiichi nuclear power plant cleanup are outlined.

  8. Lessons Learned: The Grand Junction Office Site Transfer to Private Ownership

    SciTech Connect (OSTI)

    none,

    2001-02-01T23:59:59.000Z

    The U.S. Department of Energy Grand Junction Office (DOE?GJO) in Grand Junction, Colorado, has played an integral role within the DOE complex for many years. GJO has a reputation for outstanding quality in the performance of complex environmental restoration projects, utilizing state-of-the-art technology. Many of the GJO missions have been completed in recent years. In 1998, DOE Headquarters directed GJO to reduce its mortgage costs by transferring ownership of the site and to lease space at a reasonable rate for its ongoing work. A local community group and GJO have entered into a sales contract; signing of the Quitclaim Deed is planned for February 16, 2001. Site transfer tasks were organized as a project with a critical-path schedule to track activities and a Site Transition Decision Plan was prepared that included a decision process flow chart, key tasks, and responsibilities. Specifically, GJO identified the end state with affected parties early on, successfully dealt with site contamination issues, and negotiated a lease-back arrangement, resulting in an estimated savings of more than 60 percent of facility maintenance costs annually. Lessons learned regarding these transition activities could be beneficial to many other sites.

  9. An industry perspective of the CFC phaseout: Cost impacts and lessons learned

    SciTech Connect (OSTI)

    Vogelsberg, F.A. [DuPont Fluoroproducts, Wilmington, DE (United States)

    1997-01-01T23:59:59.000Z

    More than 20 years since stratospheric ozone was first suggested as a hypothesis, the world is on the verge of a global environmental success story now that it is a scientific fact that CFCs are in decline. However, it could be premature to claim victory as there are still several critical details that must be pursued to ensure elimination of the ozone hole over the Antarctic and recovery to the ozone layer by the middle of the next century. The economic costs are high, with many yet to accrue (tens of billions of dollars), and there are significant loopholes and illegal activities to content with before the provisions and intent of the Montreal Protocol and its amendments are achieved. Nonetheless, it is fitting to consider the lessons men have learned thus far, both positive and negative, along with the overall phaseout costs, both past and future, for the purpose of ensuring successful closure on the CFC/ozone issue. Attention is focused on the refrigeration and air conditioning sector.

  10. Lessons Learned in the Update of a Safety Limit for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Cook, David Howard [ORNL

    2009-01-01T23:59:59.000Z

    A recent unreviewed safety question (USQ) regarding a portion of the High Flux Isotope Reactor (HFIR) transient decay heat removal analysis focused on applicability of a heat transfer correlation at the low flow end of reactor operations. During resolution of this issue, review of the correlations used to establish the safety limit (SL) on reactor flux-to-flow ratio revealed the need to change the magnitude of the SL at the low flow end of reactor operations and the need to update the hot spot fuel damage criteria to incorporate current knowledge involving parallel channel flow stability. Because of the original safety design strategy for the reactor, resolution of the issues for the flux-to-flow ratio involved reevaluation of all key process variable SLs and limiting control settings (LCSs) using the current version of the heat transfer analysis code for the reactor. Goals of the work involved updating and upgrading the SL analysis where necessary, while preserving the safety design strategy for the reactor. Changes made include revisions to the safety design criteria at low flows to address the USQ, update of the process- and analysis input-variable uncertainty considerations, and upgrade of the safety design criteria at high flow. The challenges faced during update/upgrade of this SL and LCS are typical of the problems found in the integration of safety into the design process for a complex facility. In particular, the problems addressed in the area of instrument uncertainties provide valuable lessons learned for establishment and configuration control of SLs for large facilities.

  11. The independent verification process in decommissioning, decontamination, and reutilization activities - description, benefits, and lessons learned

    SciTech Connect (OSTI)

    Egidi, P.V.

    1997-06-01T23:59:59.000Z

    Oak Ridge National Laboratory Environmental Technology Section has been performing Independent Verification (IV) activities for U.S. DOE sites since 1986. DOE has successfully used IV in the Uranium Mill Tailings Remedial Action Program, Decontamination and Decommissioning projects, and Formerly Utilized Sites Remedial Action Projects/Surplus Facilities Management Program. Projects that have undergone IV range from small residential properties to large, industrial sites. The IV process provides a third-party review conducted by an independent organization. The purpose is to verify accuracy and completeness of contractor field measurements and final documentation, evaluate the credibility of procedures, and independently assess post-cleanup conditions versus decommissioning project plans and release criteria. Document reviews of plans, dose models, procedures, and reports are some IV activities undertaken. Independent measurements are also collected during field visits to confirm the contractor`s findings. Corrective actions for discrepancies are suggested if necessary. Finally, archival and reporting of the final site environmental conditions for project closeout and certification are completed. The IV contractor reports to DOE headquarters and acts as a quality assurance feedback mechanism. An IV also provides additional assurance that projects are planned, carried out, and documented properly. Decommissioning projects benefit from the IV process by: (1) cost and time savings from early identification of potential problems, (2) assurance that cleanup meets regulatory guidelines, and (3) technical reviews and consultation with experts in field instrumentation, sampling strategy, etc. Some lessons learned from the IV process include avoiding: (1) improper survey techniques, (2) reporting data in units not comparable with guideline values, (3) premature release of surfaces, (4) poor decommissioning project planning, (5) misapplication of release guidelines. 20 refs.

  12. The Decovalex III Project: A Summary of Activities and LessonsLearned

    SciTech Connect (OSTI)

    Tsang, Chin-Fu; Jing, Lanru; Stephansson, Ove; Kautsky, Fritz

    2005-03-21T23:59:59.000Z

    Initiated in 1992, the DECOVALEX project is an international collaboration for advancing the understanding and modeling of coupled thermo-hydro-mechanical (THM) processes in geologic systems. The project has made important scientific achievements through three stages and is progressing in its fourth stage. It has played a key role in the development of mathematical modeling and in situ testing of coupled THM processes in fractured rock and buffer/backfill materials, a subject of importance for performance assessment of radioactive waste geologic repositories. This paper summarizes studies under the most recent stage of the project, DECOVALEX III (2000-2003). These studies include those of two major field experiments: (a) the FEBEX experiment at Grimsel, Switzerland, investigating coupled THM processes in a crystalline rock-bentonite system, and (b) the Drift Scale Test (DST) experiment at Yucca Mountain, Nevada, investigating coupled THM processes in unsaturated tuff. These are two of the largest multiyear heater tests undertaken to date for the study of coupled THM processes in geological systems. In addition, three so-called benchmark tests are also studied to evaluate the impact of coupled THM processes under different scenarios and geometries. Within the DECOVALEX project, multiple research teams participated in each of the studies, using different approaches and computer codes. Comparisons of results have provided insight into coupled THM processes, which in turn has stimulated further development of our modeling capabilities. Lessons learned from these studies are discussed. The scientific advances and enhanced insight gained through this kind of international cooperation illustrate the effectiveness of the DECOVALEX project.

  13. ISO 50001 for Commercial Buildings: Lessons Learned From U.S. DOE Pilot Project: Preprint

    SciTech Connect (OSTI)

    Deru, M.; Field, K.; Punjabi, S.

    2014-08-01T23:59:59.000Z

    In the U.S., the ISO 50001 Standard, which establishes energy management systems (EnMSs) and processes, has shown uptake primarily in the industrial sector. The U.S. Department of Energy (DOE) undertook a pilot program to explore ISO 50001 implementation in commercial buildings. Eight organizations participated as pilots, with technical assistance provided by DOE, the National Renewable Energy Laboratory (NREL), the Lawrence Berkeley National Laboratory (LBNL), and the Georgia Institute of Technology (Georgia Tech). This paper shares important lessons learned from the pilot. Staff time was the most critical resource required to establish effective EnMSs in commercial buildings. The pilot also revealed that technical support and template/example materials were essential inputs. Crucial activities included evaluating performance, identifying goals, making connections, communicating operational controls, and tracking/reviewing progress. Benefits realized included enhanced intra-organizational connections, greater energy awareness, increased process efficiencies, and improved ability to make business cases. Incremental benefits for ISO 50001 certification were greater accountability, assurance of best practices, public relations opportunities, and potential to unlock verified savings credits or incentive money. Incremental certification costs included more staff/consultant time, money for certification, and a tendency to limit EnMS scope in order to ensure favorable audit results. Five best practices were identified - utilizing expert technical assistance, training, and other resources; focusing on implementation over documentation; keeping top management involved; considering organizational structure when selecting EnMS scope; and matching the implementation level to an EnMS's scope and scale. The last two practices are particularly relevant to the commercial buildings sector.

  14. A site-wide approach to water conservation: Procedures, results and lessons learned

    SciTech Connect (OSTI)

    Sullivan, G.P.; Elliott, D.B.; Hostick, D.J.; Lamb, J.F.

    1997-06-01T23:59:59.000Z

    In response to Executive Order 12902, {open_quotes}Energy Efficiency and Water Conservation at Federal Facilities,{close_quotes} the U.S. Army Forces Command commissioned Pacific Northwest National Laboratory (PNNL) to conduct a sitewide water efficiency assessment at Fort Dix, located in Fort Dix, New Jersey. This analysis assessed more than 900 base and family housing buildings for cost-effective water resource opportunities (WROs). The analysis proved challenging due to variations in building age, size, occupancy (seasonally varying), and fixture use. Furthermore, metered water consumption data were available only at the point of treatment, prior to distribution. The approach used by PNNL included site visits to audit base buildings for fixture counts and types. Where possible flow measurements were performed on existing fixtures. Aggregations of base buildings into representative building sets were completed based on building and water-fixture type, age, and use. A spreadsheet model was developed to evaluate baseline water use and to calculate savings potential and life-cycle cost economics. This model includes a number of exogenous parameters to facilitate input changes and allow for sensitivity analysis on variables such as water cost, occupancy, and fixture densities. This paper discusses the methodology used to evaluate water use and savings at large federal facilities. It also presents the cost-effective WROs and accompanying economics. At Fort Dix, the cost-effective WROs are estimated to save 36.3 million gallons per year, or about 23% of the water use analyzed. Lessons learned included the need for an initial screening to prioritize water use, the need to develop accurate age-based water fixture characteristics and densities by building type, and the importance of the marginal cost of water for facilities producing their own water.

  15. Geothermal heat pump energy savings performance contract at Fort Polk, LA: Lessons learned

    SciTech Connect (OSTI)

    Shonder, J.A.; Hughes, P.J. [Oak Ridge National Lab., TN (United States); Gordon, R. [Applied Energy Management Techniques, Corvallis, OR (United States); Giffin, T. [SAIC/The Fleming Group, East Syracuse, NY (United States)

    1997-08-01T23:59:59.000Z

    At Fort Polk, LA the space conditioning systems of 4,003 military family housing units have been converted to geothermal heat pumps (GHP) under an energy savings performance contract (ESPC). At the same time, other efficiency measures, such as compact fluorescent lights (CFLs), low-flow shower heads, and attic insulation, were installed. An independent evaluation of the Fort Polk ESPC was carried out. Findings indicate that the project has resulted in a 25.6 million kWh savings in electrical energy use, or 32.4% of the pre-retrofit electrical consumption in family housing, for a typical meteorological year. Peak electrical demand has also been reduced by 6,541 kW, which is 39.6% of the pre-retrofit peak demand. Natural gas savings are about 260,000 therms per year. In addition, the ESPC has allowed the Army to effectively cap its future expenditures for family housing HVAC maintenance at about 77% of its previous costs. Given these successful results, the Fort Polk ESPC can provide a model for other ESPCs in both the public and the private sectors. The purpose of this paper is to outline the method by which the ESPC was engineered and implemented, both from the standpoint of the facility owner (the US Army) and the energy services company (ESCO) which is carrying out the contract. The lessons learned from this experience should be useful to other owners, ESCOs and investors in the implementation of future ESPCs. It should be noted that the energy savings presented in this document are the apparent energy savings observed in the monitored data, and are not to be confused with the contracted energy savings used as the basis for payments. To determine the contracted energy savings, the apparent energy savings may require adjustments for such things as changes in indoor temperature performance criteria, additions of ceiling fans, and other factors.

  16. Gschwind B., Mnard L., Albuisson M., Wald L., 2005. Three years of experience with the SoDa web service delivering solar radiation information: lessons learned and perspectives. In Proceedings of the 19th

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    service delivering solar radiation information: lessons learned and perspectives. In Proceedings of the 19 of experience with the SoDa web service delivering solar radiation information: lessons learned and perspectives Benoît Gschwind, Lionel Ménard, Michel Albuisson and Lucien Wald1 Abstract Information on solar radiation

  17. The Development of a Human Systems Simulation Laboratory at Idaho National Laoboratory: Progress, Requirements and Lessons Learned

    SciTech Connect (OSTI)

    David I Gertman; Katya L. LeBlanc; William phoenix; Alan R Mecham

    2010-11-01T23:59:59.000Z

    Next generation nuclear power plants and digital upgrades to the existing nuclear fleet introduce potential human performance issues in the control room. Safe application of new technologies calls for a thorough understanding of how those technologies affect human performance and in turn, plant safety. In support of advancing human factors for small modular reactors and light water reactor sustainability, the Idaho National Laboratory (INL) has developed a reconfigurable simulation laboratory capable of testing human performance in multiple nuclear power plant (NPP) control room simulations. This paper discusses the laboratory infrastructure and capabilities, the laboratory s staffing requirements, lessons learned, and the researchers approach to measuring human performance in the simulation lab.

  18. Text-Alternative Version: Solid-State Lighting Early Lessons Learned Webinar

    Broader source: Energy.gov [DOE]

    Linda Sandahl: Welcome, ladies and gentlemen. I'm Linda Sandahl with the Pacific Northwest National Laboratory, and I'd like to welcome you to today's webcast, Solid-State Lighting: Early Lessons...

  19. Session: Bat ecology related to wind development and lessons learned about impacts on bats from wind development

    SciTech Connect (OSTI)

    Johnson, Greg; Kunz, Thomas

    2004-09-01T23:59:59.000Z

    This session at the Wind Energy and Birds/Bats workshop consisted of two paper presentations followed by a discussion/question and answer period. It was the first of the sessions to shift the focus to the issue of wind energy development's impacts specifically to bats. The presentations discussed lessons that have been learned regarding direct and indirect impacts on bats and strategies planned to address such issues. Presenters addressed what the existing science demonstrates about land-based wind turbine impacts on bats, including: mortality, avoidance, direct habitat impacts, species and numbers killed, per turbine rates/per MW generated, and impacts on threatened and endangered species. They discussed whether there is sufficient data for wind turbines and bat impacts for projects in the eastern US, especially on ridge tops. Finally, the subject of offshore impacts on bats was briefly addressed, including what lessons have been learned in Europe and how these can be applied in the U S. Paper one, by Greg Johnson, was titled ''A Review of Bat Impacts at Wind Farms in the US''. Paper two, by Thomas Kunz, was titled ''Wind Power: Bats and Wind Turbines''.

  20. Lessons Learned in the Design and Use of IP1 / IP2 Flexible Packaging - 13621

    SciTech Connect (OSTI)

    Sanchez, Mike [VP Global Sales, PacTec, Inc. (United States)] [VP Global Sales, PacTec, Inc. (United States); Reeves, Wendall [National Sales Manager, PacTec, Inc. (United States)] [National Sales Manager, PacTec, Inc. (United States); Smart, Bill [Nuclear Sales Director, PacTec, Inc. (United States)] [Nuclear Sales Director, PacTec, Inc. (United States)

    2013-07-01T23:59:59.000Z

    For many years in the USA, Low Level Radioactive Waste (LLW), contaminated soils and construction debris, have been transported, interim stored, and disposed of, using IP1 / IP2 metal containers. The performance of these containers has been more than adequate, with few safety occurrences. The containers are used under the regulatory oversight of the US Department of Transportation (DOT), 49 Code of Federal Regulations (CFR). In the late 90's the introduction of flexible packaging for the transport, storage, and disposal of low level contaminated soils and construction debris was introduced. The development of flexible packaging came out of a need for a more cost effective package, for the large volumes of waste generated by the decommissioning of many of the US Department of Energy (DOE) legacy sites across the US. Flexible packaging had to be designed to handle a wide array of waste streams, including soil, gravel, construction debris, and fine particulate dust migration. The design also had to meet all of the IP1 requirements under 49CFR 173.410, and be robust enough to pass the IP2 testing 49 CFR 173.465 required for many LLW shipments. Tens of thousands of flexible packages have been safely deployed and used across the US nuclear industry as well as for hazardous non-radioactive applications, with no recorded release of radioactive materials. To ensure that flexible packages are designed properly, the manufacturer must use lessons learned over the years, and the tests performed to provide evidence that these packages are suitable for transporting low level radioactive wastes. The design and testing of flexible packaging for LLW, VLLW and other hazardous waste streams must be as strict and stringent as the design and testing of metal containers. The design should take into consideration the materials being loaded into the package, and should incorporate the right materials, and manufacturing methods, to provide a quality, safe product. Flexible packaging can be shown to meet the criteria for safe and fit for purpose packaging, by meeting the US DOT regulations, and the IAEA Standards for IP-1 and IP-2 including leak tightness. (authors)

  1. Transitioning to High Performance Homes: Successes and Lessons Learned From Seven Builders

    SciTech Connect (OSTI)

    Widder, Sarah H.; Kora, Angela R.; Baechler, Michael C.; Fonorow, Ken; Jenkins, David W.; Stroer, Dennis

    2013-03-01T23:59:59.000Z

    As homebuyers are becoming increasingly concerned about rising energy costs and the impact of fossil fuels as a major source of greenhouse gases, the returning new home market is beginning to demand energy-efficient and comfortable high-performance homes. In response to this, some innovative builders are gaining market share because they are able to market their homes comfort, better indoor air quality, and aesthetics, in addition to energy efficiency. The success and marketability of these high-performance homes is creating a builder demand for house plans and information about how to design, build, and sell their own low-energy homes. To help make these and other builders more successful in the transition to high-performance construction techniques, Pacific Northwest National Laboratory (PNNL) partnered with seven interested builders in the hot humid and mixed humid climates to provide technical and design assistance through two building science firms, Florida Home Energy and Resources Organization (FL HERO) and Calcs-Plus, and a designer that offers a line of stock plans designed specifically for energy efficiency, called Energy Smart Home Plans (ESHP). This report summarizes the findings of research on cost-effective high-performance whole-house solutions, focusing on real-world implementation and challenges and identifying effective solutions. The ensuing sections provide project background, profile each of the builders who participated in the program, and describe their houses construction characteristics, key challenges the builders encountered during the construction and transaction process); and present primary lessons learned to be applied to future projects. As a result of this technical assistance, 17 homes have been built featuring climate-appropriate efficient envelopes, ducts in conditioned space, and correctly sized and controlled heating, ventilation, and air-conditioning systems. In addition, most builders intend to integrate high-performance features into most or all their homes in the future. As these seven builders have demonstrated, affordable, high-performance homes are possible, but require attention to detail and flexibility in design to accommodate specific regional geographic or market-driven constraints that can increase cost. With better information regarding how energy-efficiency trade-offs or design choices affect overall home performance, builders can make informed decisions regarding home design and construction to minimize cost without sacrificing performance and energy savings.

  2. Lessons learned from the tokamak Advanced Reactor Innovation and Evaluation Study (ARIES)

    SciTech Connect (OSTI)

    Krakowski, R.A.; Bathke, C.G.; Miller, R.L.; Werley, K.A.

    1994-07-01T23:59:59.000Z

    Lessons from the four-year ARIES (Advanced Reactor Innovation and Evaluation Study) investigation of a number of commercial magnetic-fusion-energy (MFE) power-plant embodiments of the tokamak are summarized. These lessons apply to physics, engineering and technology, and environmental, safety, and health (ES&H) characteristics of projected tokamak power plants. Summarized herein are the composite conclusions and lessons developed in the course of four conceptual tokamak power-plant designs. A general conclusion from this extensive investigation of the commercial potential of tokamak power plants is the need for combined, symbiotic advances in both physics, engineering, and materials before economic competitiveness with developing advanced energy sources can be realized. Advances in materials are also needed for the exploitation of environmental advantages otherwise inherent in fusion power.

  3. Groundwater Modeling (Geological Sciences 16:460:528:01) Purpose: Learn to build a groundwater flow and transport model using Visual MODFLOW

    E-Print Network [OSTI]

    and Groundwater Modeling, by Nevin Kresic Applied Groundwater Model, by Mary P. Anderson and William W. Woessner://envsci.rutgers.edu/~yreinfelder/GEOL_528/Anderson-Chapters.pdf Material: PC laptop (or Mac running Windows) If using lab computer, a flash Ingredients of Final Report Anderson Chapters 7.7, 7.8, 17, ASTMGuide Catch up on Project Catch

  4. Introduction of section II and overview of dose reconstruction: lessons learned from studies in the U.S.

    SciTech Connect (OSTI)

    Anspaugh, L. R, LLNL

    1997-01-01T23:59:59.000Z

    The purpose of this presentation is to provide an overview of dose reconstruction with an emphasis on the lessons learned from work in the United States. Several major dose reconstructions have been undertaken in the United States, particularly in reference to Department of Energy (DOE) facilities. Some of these activities have now been completed and these are indicated in the upper part of Table 2. The first major activity took place at the Nevada Test Site (NTS),where researchers have considered several different specific populations. The activities began with an analysis of hypothetical individuals, which was followed by an analysis of the collective dose to all exposed individuals within the surrounding region. Later, the University of Utah undertook some specific epidemiologic studies and calculated doses to specific individuals. The Hanford Environmental Dose Reconstruction Study has completed its results for hypothetical individuals. The Hanford researchers did not report collective dose. Long-Term Radiation Contamination in Chelyabinsk, Russia

  5. Lessons learned from new construction utility demand side management programs and their implications for implementing building energy codes

    SciTech Connect (OSTI)

    Wise, B.K.; Hughes, K.R.; Danko, S.L.; Gilbride, T.L.

    1994-07-01T23:59:59.000Z

    This report was prepared for the US Department of Energy (DOE) Office of Codes and Standards by the Pacific Northwest Laboratory (PNL) through its Building Energy Standards Program (BESP). The purpose of this task was to identify demand-side management (DSM) strategies for new construction that utilities have adopted or developed to promote energy-efficient design and construction. PNL conducted a survey of utilities and used the information gathered to extrapolate lessons learned and to identify evolving trends in utility new-construction DSM programs. The ultimate goal of the task is to identify opportunities where states might work collaboratively with utilities to promote the adoption, implementation, and enforcement of energy-efficient building energy codes.

  6. Operating experience and lessons learned at Alabama Electric Cooperative`s 110-MW 26-hour CAES plant

    SciTech Connect (OSTI)

    Andersson, L.; Davis, L.; Schainker, R.

    1995-12-31T23:59:59.000Z

    Energy storage options for utilities technologies using hydrostatic-head-, compressed air-, battery-, superconducting-magnet-, and flywheel-based power generation. Among these technologies, compressed-air energy storage (CAES) offers specific cost advantage in its range of capacity and stored energy. Partly because of this cost advantage, Alabama Electric Cooperative (AEC), with assistance from the Electric Power Research Institute (EPRI), now operates the first CAES power plant in the United States. This 110-MW, 26-hour CAES plant is located on top of the McIntosh salt dome, approximately 40 miles north of Mobile, Alabama. Energy Storage and Power Consultants, Inc. (ESPC) is Technical Engineering Support Contractor to EPRI on the project. This paper addresses operating statistics, narrates problems that influenced power generation, and provides selected lessons learned. Unit availability and reliability are noted and major events that affected them identified.

  7. Lessons learned -- a comparison of the proposed on-site waste management facilities at the various Department of Energy sites

    SciTech Connect (OSTI)

    Ciocco, J. [Dept. of Energy, Germantown, MD (United States); Singh, D. [Booz Allen and Hamilton, Germantown, MD (United States); Survochak, S. [DOE RFETS, Golden, CO (United States); Elo, M. [Burns and Roe, Germantown, MD (United States)

    1996-12-31T23:59:59.000Z

    The Department of Energy Sites (DOE) are faced with the challenge of managing several categories of waste generated from past or future cleanup activities, such as 11(e)2 byproduct material, low-level radioactive (LL), low-level radioactive mixed (LLM), transuranic (TRU), high level radioactive (HL), and hazardous waste (HW). DOE must ensure safe and efficient management of these wastes while complying with all applicable federal and state laws. Proposed waste management strategies for the EM-40 Environmental Restoration (ER) program at these sites indicate that on-site disposal is becoming a viable option. For purposes of this paper, on-site disposal cells managed by the EM-40 program at Hanford, Weldon Spring, Fernald Environmental Management Project (FEMP) and Rocky Flats were compared. Programmatic aspects and design features were evaluated to determine what comparisons can be made, and to identify benefits lessons learned that may be applicable to other sites. Based on comparative analysis, it can be concluded that the DOE EM-40 disposal cells are very unique. Stakeholders played a major role in the decision to locate the various DOE on-site disposal facilities. The disposal cells will be used to manage 11(e)2 by-product materials, LL, LLM, and/or HLW. The analysis further suggests that the design criteria are comparable. Lessons learned relative to the public involvement activities at Weldon Spring, and the design approach at Hanford should be considered when planning future on-site disposal facilities at DOE sites. Further, a detailed analysis of progress made at Hanford should be evaluated for application at sites such as Rocky Flats that are currently planning on-site disposal facilities.

  8. University Reactor Conversion Lessons Learned Workshop for Texas A&M University Nuclear Science Center Reactor

    SciTech Connect (OSTI)

    Eric C. Woolstenhulme; Dana M. Meyer

    2007-04-01T23:59:59.000Z

    The objectives of this meeting were to capture the observations, insights, issues, concerns, and ideas of those involved in the Texas A&M University Nuclear Science Center (TAMU NSC) TRIGA Reactor Conversion so that future efforts can be conducted with greater effectiveness, efficiency, and with fewer challenges. This workshop was held in conjunction with a similar workshop for the University of Florida Reactor Conversion. Some of the generic lessons from that workshop are included in this report for completeness.

  9. MA15910 Lesson 27 Notes (part 1 of section 5.4) This lesson covers ...

    E-Print Network [OSTI]

    Bailey, Charlotte M

    2014-11-06T23:59:59.000Z

    learning of the previous lessons and will allow a student to feel more comfortable about the calculus learned so far. GUIDELINES FOR SKETCHING CURVES. 1.

  10. New Orleans Education Reform: A Guide for Cities or a Warning for Communities? (Grassroots Lessons Learned, 2005-2012)

    E-Print Network [OSTI]

    Buras, Kristen L.; Urban South Grassroots Research Collective, Members

    2013-01-01T23:59:59.000Z

    the [i3] requirement that grantees disseminate the lessonsi3) requirement that grantees disseminate the lessons of

  11. Office of Enterprise Assessments Lessons Learned from the 2014 Emergency Management Review - April 2015

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM PolicyOf Environmental ManagementRollout -Summary Lessons

  12. Lessons Learned from a Hero I/O Run on Hopper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest Newsbiomass to fuel Cellulose requiresLessons

  13. Lessons Learned: A review of utility experience with conservation and load management programs for commercial and industrial customers

    SciTech Connect (OSTI)

    Nadel, S.

    1990-10-01T23:59:59.000Z

    This report examines utility experience with conservation and load management (C LM) programs of commercial and industrial (C I) customers in order to summarize the lessons learned from program experiences to date and what these teach us about how to operate successful programs in the future. This analysis was motivated by a desire to learn about programs which achieve high participation rates and high electricity savings while remaining cost effective. Also, we wanted to review the very latest experiences with innovative program approaches -- approaches that might prove useful to utilities as they scale up their C LM activities. Specific objectives of this phase of the study are threefold: (1) To disseminate information on utility C LM experience to a nationwide audience. (2) To review current New York State utility programs and make suggestions on how these programs can be improved. (3) To collect data for the final phase of the American Council for an Energy-Efficient Economy/New York State Energy Research and Development Authority project, which will examine the savings that are achievable if C LM programs are pushed to the limit'' of current knowledge on how to structure and run cost-effective C LM programs. 19 tabs.

  14. Release of UF/sub 6/ from a ruptured model 48Y cylinder at Sequoyah Fuels Corporation Facility: lessons-learned report

    SciTech Connect (OSTI)

    Not Available

    1986-08-01T23:59:59.000Z

    The uranium hexafluoride (UF/sub 6/) release of January 4, 1986, at the Sequoyah Fuels Corporation facility has been reviewed by a NRC Lessons-Learned Group. A Model 48Y cylinder containing UF/sub 6/ ruptured upon being heated after it was grossly overfilled. The UF/sub 6/ released upon rupture of the cylinder reacted with airborne moisture to produce hydrofluoric acid (HF) and uranyl fluoride (UO/sub 2/F/sub 2/). One individual died from exposure to airborne HF and several others were injured. There were no significant immediate effects from exposure to uranyl fluoride. This supplement report contains NRC's response to the recommendations made in NUREG-1198 by the Lessons Learned Group. In developing a response to each of the recommendations, the staff considered actions that should be taken: (1) for the restart of the Sequoyah Fuels Facility; (2) to make near-term improvement; and (3) to improve the regulatory framework.

  15. American ProcessAlpena Biorefinery Lessons

    Broader source: Energy.gov [DOE]

    Breakout Session 1DBuilding Market Confidence and Understanding I: Integrated Biorefinery (Lessons Learned and Best Practices) American ProcessAlpena Biorefinery Lessons Theodora Retsina, Chief Executive Officer, America Process Inc.

  16. Cost-effective facility disposition planning with safety and health lessons learned and good practices from the Oak Ridge Decontamination and Decommissioning Program

    SciTech Connect (OSTI)

    NONE

    1998-05-01T23:59:59.000Z

    An emphasis on transition and safe disposition of DOE excess facilities has brought about significant challenges to managing worker, public, and environmental risks. The transition and disposition activities involve a diverse range of hazardous facilities that are old, poorly maintained, and contain radioactive and hazardous substances, the extent of which may be unknown. In addition, many excess facilities do not have historical facility documents such as operating records, plant and instrumentation diagrams, and incident records. The purpose of this report is to present an overview of the Oak Ridge Decontamination and Decommissioning (D and D) Program, its safety performance, and associated safety and health lessons learned and good practices. Illustrative examples of these lessons learned and good practices are also provided. The primary focus of this report is on the safety and health activities and implications associated with the planning phase of Oak Ridge facility disposition projects. Section 1.0 of this report provides the background and purpose of the report. Section 2.0 presents an overview of the facility disposition activities from which the lessons learned and good practices discussed in Section 3.0 were derived.

  17. Lesson Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -ofLearningLensless4 Lensless Lesson 16 -What

  18. Lesson Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -ofLearningLensless4 Lensless Lesson 16

  19. Lesson Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -ofLearningLensless4 Lensless Lesson 16Current

  20. Lesson Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -ofLearningLensless4 Lensless Lesson

  1. Lesson Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -ofLearningLensless4 Lensless Lesson9-12 Rate

  2. Lesson Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -ofLearningLensless4 Lensless Lesson9-12

  3. Lesson Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -ofLearningLensless4 Lensless Lesson9-12When

  4. Lessons Learned from a Decade of Sudden Oak Death in California: Evaluating Local Management

    E-Print Network [OSTI]

    Alexander, Janice; Lee, Christopher A.

    2010-01-01T23:59:59.000Z

    1215 Cohn JP (2008) Citizen science: can volunteers do realrecent focus on collaborative learning and citizen science.The growing trend of citizen science, or using volunteers to

  5. RFID implementations : business process and technology lessons learned, recommendations and best practices for new adopters

    E-Print Network [OSTI]

    Chan, Rida

    2006-01-01T23:59:59.000Z

    This thesis focuses on documenting learnings from a RFID data exchange pilot in the fast moving consumer goods industry. The pilot we studied is a collaborative effort between two of the largest retailers in the world and ...

  6. Proceedings for air quality management programs: A workshop on lessons learned

    SciTech Connect (OSTI)

    Streit, G.E. [comp.

    1993-06-01T23:59:59.000Z

    The coordinators of this project at Los Alamos National Laboratory and the Instituto Mexicano del Petroleo proposed a workshop to bring together an international group of experts to present both the lessons of history and the current practices in air quality management around the world. The workshop would also serve as a forum for presenting the accomplishments and plans of this project and for receiving comments from the assembled group. The workshop was favored with an outstanding set of speakers who represented a broad spectrum of experience. Their papers are presented in this volume. The total attendance was forty-four (see List of Participants) with representation from numerous interested Mexican institutions. Individual reports are processed separately for the database.

  7. Executive summary of major NuMI lessons learned: a review of relevant meetings of Fermilab's DUSEL Beamline Working Group

    SciTech Connect (OSTI)

    Andrews, Mike; Appel, Jeffrey A.; Bogert, Dixon; Childress, Sam; Cossairt, Don; Griffing, William; Grossman, Nancy; Harding, David; Hylen, Jim; Kuchler, Vic; Laughton, Chris; /Fermilab /Argonne /Brookhaven /LBL, Berkeley

    2009-05-01T23:59:59.000Z

    We have gained tremendous experience with the NuMI Project on what was a new level of neutrino beams from a high power proton source. We expect to build on that experience for any new long baseline neutrino beam. In particular, we have learned about some things which have worked well and/or where the experience is fairly directly applicable to the next project (e.g., similar civil construction issues including: tunneling, service buildings, outfitting, and potential claims/legal issues). Some things might be done very differently (e.g., decay pipe, windows, target, beam dump, and precision of power supply control/monitoring). The NuMI experience does lead to identification of critical items for any future such project, and what issues it will be important to address. The DUSEL Beamline Working Group established at Fermilab has been meeting weekly to collect and discuss information from that NuMI experience. This document attempts to assemble much of that information in one place. In this Executive Summary, we group relevant discussion of some of the major issues and lessons learned under seven categories: (1) Differences Between the NuMI Project and Any Next Project; (2) The Process of Starting Up the Project; (3) Decision and Review Processes; (4) ES&H: Environment, Safety, and Health; (5) Local Community Buy-In; (6) Transition from Project Status to Operation; and (7) Some Lessons on Technical Elements. We concentrate here on internal project management issues, including technical areas that require special attention. We cannot ignore, however, two major external management problems that plagued the NuMI project. The first problem was the top-down imposition of an unrealistic combination of scope, cost, and schedule. This situation was partially corrected by a rebaselining. However, the full, desirable scope was never achievable. The second problem was a crippling shortage of resources. Critical early design work could not be done in a timely fashion, leading to schedule delays, inefficiencies, and corrective actions. The Working Group discussions emphasized that early planning and up-front appreciation of the problems ahead are very important for minimizing the cost and for the greatest success of any such project. Perhaps part of the project approval process should re-enforce this need. The cost of all this up-front work is now reflected in the DOE cost of any project we do. If we are being held to an upper limit on the project cost, the only thing available for compromise is the eventual project scope.

  8. Cost Estimating for Decommissioning of a Plutonium Facility--Lessons Learned From The Rocky Flats Building 771 Project

    SciTech Connect (OSTI)

    Stevens, J. L.; Titus, R.; Sanford, P. C.

    2002-02-26T23:59:59.000Z

    The Rocky Flats Closure Site is implementing an aggressive approach in an attempt to complete Site closure by 2006. The replanning effort to meet this goal required that the life-cycle decommissioning effort for the Site and for the major individual facilities be reexamined in detail. As part of the overall effort, the cost estimate for the Building 771 decommissioning project was revised to incorporate both actual cost data from a recently-completed similar project and detailed planning for all activities. This paper provides a brief overview of the replanning process and the original estimate, and then discusses the modifications to that estimate to reflect new data, methods, and planning rigor. It provides the new work breakdown structure and discusses the reasons for the final arrangement chosen. It follows with the process used to assign scope, cost, and schedule elements within the new structure, and development of the new code of accounts. Finally, it describes the project control methodology used to track the project, and provides lessons learned on cost tracking in the decommissioning environment.

  9. Lessons Learned at the Idaho National Laboratory for the Entry into Force of the U.S. Additional Protocol

    SciTech Connect (OSTI)

    Jeffrey C. Joe; Shauna A. Hoiland

    2009-07-01T23:59:59.000Z

    For a number of years, the Idaho National Laboratory (INL) has been preparing for the entry into force of the U.S. Additional Protocol (AP). These preparations included attending training, participating in tabletop exercises, preparing draft declarations, developing INL-specific guidance documents, preparing for and hosting a mock complementary access visit, and preparing declarations for official submittal. All of these activities, the training materials, and software developed by other U.S. DOE national laboratories (PNNL, ORNL, LANL, and BNL) were very helpful in preparing for the entry into force of the AP. As with any endeavor of this size and complexity, however, there are always instances where even the best preparations and advanced planning do not anticipate every challenge. As the DOE's lead nuclear energy research and development facility, the INL faced many unique challenges. The majority of research conducted at the INL is nuclear fuel cycle related, most of which is not protected by the National Security Exclusion. This paper describes the lessons learned from the INLs experience of preparing for the entry into force of the AP, specifically how translating and implementing general principles into actual activities proved to be one of many challenges, and provides general suggestions on how to respond effectively and efficiently to routine annual data calls and other AP requests.

  10. The IceCube Data Acquisition Software: Lessons Learned during Distributed, Collaborative, Multi-Disciplined Software Development.

    SciTech Connect (OSTI)

    Beattie, Keith S; Beattie, Keith; Day Ph.D., Christopher; Glowacki, Dave; Hanson Ph.D., Kael; Jacobsen Ph.D., John; McParland, Charles; Patton Ph.D., Simon

    2007-09-21T23:59:59.000Z

    In this experiential paper we report on lessons learned during the development ofthe data acquisition software for the IceCube project - specifically, how to effectively address the unique challenges presented by a distributed, collaborative, multi-institutional, multi-disciplined project such as this. While development progress in software projects is often described solely in terms of technical issues, our experience indicates that non- and quasi-technical interactions play a substantial role in the effectiveness of large software development efforts. These include: selection and management of multiple software development methodologies, the effective useof various collaborative communication tools, project management structure and roles, and the impact and apparent importance of these elements when viewed through the differing perspectives of hardware, software, scientific and project office roles. Even in areas clearly technical in nature, success is still influenced by non-technical issues that can escape close attention. In particular we describe our experiences on software requirements specification, development methodologies and communication tools. We make observations on what tools and techniques have and have not been effective in this geographically disperse (including the South Pole) collaboration and offer suggestions on how similarly structured future projects may build upon our experiences.

  11. Lessons Learned: Using Low Cost, Uncooled Infrared Cameras for the Rapid Liquid Level Assessment of Chemical UXO and Storage Vessels

    SciTech Connect (OSTI)

    Young, Kevin Larry

    2002-09-01T23:59:59.000Z

    During the fall of 2001, the U.S. Army used low-cost infrared cameras provided by the INEEL to image 3190 aging ton shipping containers to determine if any contained liquid, possibly trace amounts of hazardous mustard agent. The purpose of the scan was to provide quick, "hands-off" assessment of the water-heater-sized containers before moving them with a crane. If the thermal images indicated a possible liquid level, extra safety precautions would be taken prior to moving the container. The technique of using infrared cameras to determine liquid levels in large storage tanks is well documented, but the application of this technique to ton shipping containers (45 to 1036 liters) and even smaller individual chemical munitions (2 to 4 liters) is unique and presents some interesting challenges. This paper describes the lessons learned, problems encountered and success rates associated with using low-cost infrared cameras to look for liquid levels within ton shipping containers and individual chemical munitions.

  12. Toward the Holy Grail of Perfect Information: Lessons Learned Implementing an Energy Information System in a Commercial Building

    SciTech Connect (OSTI)

    Kircher, Kevin; Ghatikar, Girish; Greenberg, Steve; Watson, Dave; Diamond, Rick; Sartor, Dale; Federspiel, Cliff; McEachern, Alex; Owen, Tom

    2010-05-14T23:59:59.000Z

    Energy information systems (real-time acquisition, analysis, and presentation of information from energy end-uses) in commercial buildings have demonstrated value as tools for improving energy efficiency and thermal comfort. These improvements include characterization through benchmarking, identification of retrofit opportunities, anomaly detection to inform retro-commissioning, and feedback to occupants to encourage shifts in behavior. Energy information systems can play a vital role in achieving a variety of ambitious sustainability goals for the existing stock of commercial buildings, but their implementation is often fraught with pitfalls. In this paper, we present a case study of an EIS and sub-metering project executed in a representative commercial office building. We describe the building, highlight a few of its problems, and detail the hardware and software technologies we employed to address them. We summarize the difficulties encountered and lessons learned, and suggest general guidelines for future EIS projects to improve performance and save energy in the commercial building fleet. These guidelines include measurement criteria, monitoring strategies, and analysis methods. In particular, we propose processes for: - Defining project goals, - Selecting end-use targets and depth of metering, - Selecting contractors and software vendors, - Installing and networking measurement devices, - Commissioning and using the energy information system.

  13. Lessons Learned during Creation of the I-65 Biofuels Corridor (White Paper)

    SciTech Connect (OSTI)

    Not Available

    2009-06-01T23:59:59.000Z

    A team of Clean Cities coalitions and state agencies worked together to create a biofuels corridor along I-65 between Indiana and Alabama. The team built relationships with stakeholders and learned the value of strong partnerships, good communication, marketing, and preparation.

  14. Lesson 9

    E-Print Network [OSTI]

    2014-09-25T23:59:59.000Z

    Section 5 (cont.): Variance and Standard. Deviation; Chebyshev's Inequality. October 2nd, 2014. Lesson 9. Page 2. In the previous lesson, we introduced an...

  15. U.S. Department of Energy Office of Legacy Management Legacy Uranium Mine Site Reclamation - Lessons Learned - 12384

    SciTech Connect (OSTI)

    Kilpatrick, Laura E. [U.S. Department of Energy Office of Legacy Management, Westminster, Colorado 80021 (United States); Cotter, Ed [S.M. Stoller Corporation, Grand Junction, Colorado 81503 (United States)

    2012-07-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Office of Legacy Management is responsible for administering the DOE Uranium Leasing Program (ULP) and its 31 uranium lease tracts located in the Uravan Mineral Belt of southwestern Colorado (see Figure 1). In addition to administering the ULP for the last six decades, DOE has also undertaken the significant task of reclaiming a large number of abandoned uranium (legacy) mine sites and associated features located throughout the Uravan Mineral Belt. In 1995, DOE initiated a 3-year reconnaissance program to locate and delineate (through extensive on-the-ground mapping) the legacy mine sites and associated features contained within the historically defined boundaries of its uranium lease tracts. During that same time frame, DOE recognized the lack of regulations pertaining to the reclamation of legacy mine sites and contacted the U.S. Bureau of Land Management (BLM) concerning the reclamation of legacy mine sites. In November 1995, The BLM Colorado State Office formally issued the United States Department of the Interior, Colorado Bureau of Land Management, Closure/Reclamation Guidelines, Abandoned Uranium Mine Sites as a supplement to its Solid Minerals Reclamation Handbook (H-3042-1). Over the next five-and-one-half years, DOE reclaimed the 161 legacy mine sites that had been identified on DOE withdrawn lands. By the late 1990's, the various BLM field offices in southwestern Colorado began to recognize DOE's experience and expertise in reclaiming legacy mine sites. During the ensuing 8 years, BLM funded DOE (through a series of task orders) to perform reclamation activities at 182 BLM mine sites. To date, DOE has reclaimed 372 separate and distinct legacy mine sites. During this process, DOE has learned many lessons and is willing to share those lessons with others in the reclamation industry because there are still many legacy mine sites not yet reclaimed. DOE currently administers 31 lease tracts (11,017 ha) that collectively contain over 220 legacy (abandoned) uranium mine sites. This contrasts to the millions of hectares administered by the BLM, the U.S. Forest Service, and other federal, tribal, and state agencies that contain thousands of such sites. DOE believes that the processes it has used provide a practical and cost-effective approach to abandoned uranium mine-site reclamation. Although the Federal Acquisition Regulations preclude DOE from competing with private industry, DOE is available to assist other governmental and tribal agencies in their reclamation efforts. (authors)

  16. Decommissioning Nuclear Facilities: First lessons Learned from UP1, Marcoule, France

    SciTech Connect (OSTI)

    Chabeuf, Jean-Michel; Boya, Didier [AREVA, AREVA NC Marcoule, 30130 Bagnols sur Ceze (France); CEA, Marcoule, 30130 Bagnols sur Ceze (France)

    2008-01-15T23:59:59.000Z

    On September 30, 1997, UP1, Marcoule Fuel reprocessing facility, dissolved its last spent Fuel rod. Final shutdown and stage 1 decommissioning began immediately after, under the supervision of CODEM , a consortium composed of The French Atomic Energy Commission, COGEMA, France fuel Cycle Company and EDF, the French Electricity Utility. The goal of the decommissioning program was to achieve stage 2 decommissioning , as per IAEA standards, within a period of about 15 years. 10 years later, a significant amount of decontamination and decommissioning works has been conducted with success. The contractual structure under which the program was launched has been profoundly modified, and the capacity of The French Atomic Energy Commission (CEA) and AREVA NC to complete full decommissioning programs has been confirmed. In the present document, we propose to examine the main aspects involved in the management of such decommissioning programs, and highlight, with significant examples, the main lessons learnt. In conclusion: As of 2007, UP1 decommissioning program proves to be a success. The choice of early decommissioning, the partnership launched between the French Atomic Energy Commission as owner of the site and decommissioning fund, with AREVA NC as operator and main contractor of the decommissioning works has been a success. The French Atomic Energy commission organized a contractual framework ensuring optimal safety conditions and work completion, while AREVA NC gained a unique experience at balancing the various aspects involved in the conduction of complete decommissioning programs. Although such a framework may not be applicable to all situations and facilities, it provides a positive example of a partnership combining institutional regulations and industrial efficiency.

  17. Review of LCA studies of solid waste management systems Part I: Lessons learned and perspectives

    SciTech Connect (OSTI)

    Laurent, Alexis, E-mail: alau@dtu.dk [Division for Quantitative Sustainability Assessment, Department of Management Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Bakas, Ioannis [Division for Quantitative Sustainability Assessment, Department of Management Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Clavreul, Julie [Residual Resources Engineering, Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Bernstad, Anna [Water and Environmental Engineering, Department of Chemical Engineering, Lund University, 221 00 Lund (Sweden); Niero, Monia [Division for Quantitative Sustainability Assessment, Department of Management Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); ECO Ecosystems and Environmental Sustainability, Department of Chemical and Biochemical Engineering, Technical University of Denmark, 4000 Roskilde (Denmark); Gentil, Emmanuel [Copenhagen Resource Institute, 1215 Copenhagen K (Denmark); Hauschild, Michael Z. [Division for Quantitative Sustainability Assessment, Department of Management Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Christensen, Thomas H. [Residual Resources Engineering, Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark)

    2014-03-01T23:59:59.000Z

    Highlights: We perform a critical review of 222 LCA studies of solid waste management systems. Studies mainly concentrated in Europe with little application in developing countries. Assessments of relevant waste types apart from household waste have been overlooked. Local specificities of systems prevent a meaningful generalisation of the LCA results. LCA should support recommendations representative of the local conditions. - Abstract: The continuously increasing solid waste generation worldwide calls for management strategies that integrate concerns for environmental sustainability. By quantifying environmental impacts of systems, life cycle assessment (LCA) is a tool, which can contribute to answer that call. But how, where and to which extent has it been applied to solid waste management systems (SWMSs) until now, and which lessons can be learnt from the findings of these LCA applications? To address these questions, we performed a critical review of 222 published LCA studies of SWMS. We first analysed the geographic distribution and found that the published studies have primarily been concentrated in Europe with little application in developing countries. In terms of technological coverage, they have largely overlooked application of LCA to waste prevention activities and to relevant waste types apart from household waste, e.g. construction and demolition waste. Waste management practitioners are thus encouraged to abridge these gaps in future applications of LCA. In addition to this contextual analysis, we also evaluated the findings of selected studies of good quality and found that there is little agreement in the conclusions among them. The strong dependence of each SWMS on local conditions, such as waste composition or energy system, prevents a meaningful generalisation of the LCA results as we find it in the waste hierarchy. We therefore recommend stakeholders in solid waste management to regard LCA as a tool, which, by its ability of capturing the local specific conditions in the modelling of environmental impacts and benefits of a SWMS, allows identifying critical problems and proposing improvement options adapted to the local specificities.

  18. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California fry.pdf More Documents &...

  19. Lessons Learned and Best Practices in Savannah River Site Saltstone and

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12Approvedof6, 1945:Laura SmithLearningLeon BakerJune4

  20. Lessons Learned by Environmental Management Complex-wide Activity-level Work Planning and Control

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12Approvedof6, 1945:Laura SmithLearningLeon BakerJune4

  1. Large-Scale Urban Decontamination; Developments, Historical Examples and Lessons Learned

    SciTech Connect (OSTI)

    Rick Demmer

    2007-02-01T23:59:59.000Z

    Recent terrorist threats and actual events have lead to a renewed interest in the technical field of large scale, urban environment decontamination. One of the driving forces for this interest is the real potential for the cleanup and removal of radioactive dispersal device (RDD or dirty bomb) residues. In response the U. S. Government has spent many millions of dollars investigating RDD contamination and novel decontamination methodologies. Interest in chemical and biological (CB) cleanup has also peaked with the threat of terrorist action like the anthrax attack at the Hart Senate Office Building and with catastrophic natural events such as Hurricane Katrina. The efficiency of cleanup response will be improved with these new developments and a better understanding of the old reliable methodologies. Perhaps the most interesting area of investigation for large area decontamination is that of the RDD. While primarily an economic and psychological weapon, the need to cleanup and return valuable or culturally significant resources to the public is nonetheless valid. Several private companies, universities and National Laboratories are currently developing novel RDD cleanup technologies. Because of its longstanding association with radioactive facilities, the U. S. Department of Energy National Laboratories are at the forefront in developing and testing new RDD decontamination methods. However, such cleanup technologies are likely to be fairly task specific; while many different contamination mechanisms, substrate and environmental conditions will make actual application more complicated. Some major efforts have also been made to model potential contamination, to evaluate both old and new decontamination techniques and to assess their readiness for use. Non-radioactive, CB threats each have unique decontamination challenges and recent events have provided some examples. The U. S. Environmental Protection Agency (EPA), as lead agency for these emergency cleanup responses, has a sound approach for decontamination decision-making that has been applied several times. The anthrax contamination at the U. S. Hart Senate Office Building and numerous U. S. Post Office facilities are examples of employing novel technical responses. Decontamination of the Hart Office building required development of a new approach for high level decontamination of biological contamination as well as techniques for evaluating the technology effectiveness. The World Trade Center destruction also demonstrated the need for, and successful implementation of, appropriate cleanup methodologies. There are a number of significant lessons that can be gained from a look at previous large scale cleanup projects. Too often we are quick to apply a costly package and dispose method when sound technological cleaning approaches are available. Understanding historical perspectives, advanced planning and constant technology improvement are essential to successful decontamination.

  2. The Gunite and Associated Tanks Remediation Project Tank Waste Retrieval Performance and Lessons Learned, vol. 2 [of 2

    SciTech Connect (OSTI)

    Lewis, BE

    2003-10-07T23:59:59.000Z

    The Gunite and Associated Tanks (GAAT) Remediation Project was the first of its kind performed in the United States. Robotics and remotely operated equipment were used to successfully transfer almost 94,000 gal of remote-handled transuranic sludge containing over 81,000 Ci of radioactive contamination from nine large underground storage tanks at the Oak Ridge National Laboratory (ORNL). The sludge was transferred with over 439,000 gal of radioactive waste supernatant and {approx}420,500 gal of fresh water that was used in sluicing operations. The GAATs are located in a high-traffic area of ORNL near a main thoroughfare. Volume 1 provides information on the various phases of the project and describes the types of equipment used. Volume 1 also discusses the tank waste retrieval performance and the lessons learned during the remediation effort. Volume 2 consists of the following appendixes, which are referenced in Vol. 1: A--Background Information for the Gunite and Associated Tanks Operable Unit; B--Annotated Bibliography; C--GAAT Equipment Matrix; D--Comprehensive Listing of the Sample Analysis Data from the GAAT Remediation Project; and E--Vendor List for the GAAT Remediation Project. The remediation of the GAATs was completed {approx}5.5 years ahead of schedule and {approx}$120,435K below the cost estimated in the Remedial Investigation/Feasibility Study for the project. These schedule and cost savings were a direct result of the selection and use of state-of-the-art technologies and the dedication and drive of the engineers, technicians, managers, craft workers, and support personnel that made up the GAAT Remediation Project Team.

  3. THE INTEGRATION OF ENGINEERED AND INSTITUTIONAL CONTROLS: A CASE STUDY APPROACH WITH LESSONS LEARNED FROM PREVIOUSLY CLOSED SITES

    SciTech Connect (OSTI)

    Kevin M. Kostelnik; James H. Clarke; Jerry L. Harbour

    2005-02-01T23:59:59.000Z

    Environmental remediation efforts that are underway at hundreds of contaminated sites in the United States will not be able to remediate large portions of those sites to conditions that would permit unrestricted access. Rather, large volumes of waste materials, contaminated soils and cleanup residuals will have to be isolated either in place or in new, often on-site, disposal cells with long term monitoring, maintenance and institutional control needs. The challenge continues to be to provide engineering systems and controls that can ensure the protection of public health and the environment over very long time horizons (hundreds to perhaps thousands of years) with minimal intervention. Effective long term management of legacy hazardous and nuclear waste requires an integrated approach that addresses both the engineered containment and control system itself and the institutional controls and other responsibilities that are needed. Decisions concerning system design, monitoring and maintenance, and the institutional controls that will be employed are best done through a "risk-nformed, performance-based" approach. Such an approach should incorporate an analysis of potential "failure" modes and consequences for all important system features, together with lessons learned from experience with systems already in place. The authors will present the preliminary results of a case study approach that included several sites where contamination isolation systems including institutional controls have been implemented. The results are being used together with failure trees and logic diagrams that have been developed for both the engineered barriers and the institutional controls. The use of these analytical tools to evaluate the potential for different levels of failure and associated consequences will be discussed. Of special interest is the robustness of different approaches to providing long-term protection through redundancy and defense in depth.

  4. LESSONS LEARNED IN DEVELOPMENT OF THE HANFORD SWOC MASTER DOCUMENTED SAFETY ANALYSIS (MDSA) & IMPLEMENTATION VALIDATION REVIEW (IVR)

    SciTech Connect (OSTI)

    MORENO, M.R.

    2004-04-02T23:59:59.000Z

    DOE set clear expectations on a cost-effective approach for achieving compliance with the Nuclear Safety Management requirements (20 CFR 830, Nuclear Safety Rule), which ensured long-term benefit to Hanford, via issuance of a nuclear safety strategy in February 2003. To facilitate implementation of these expectations, tools were developed to streamline and standardize safety analysis and safety document development with the goal of a shorter and more predictable DOE approval cycle. A Hanford Safety Analysis and Risk Assessment Handbook (SARAH) was approved to standardize methodologies for development of safety analyses. A Microsoft Excel spreadsheet (RADIDOSE) was approved for the evaluation of radiological consequences for accident scenarios often postulated at Hanford. Standard safety management program chapters were approved for use as a means of compliance with the programmatic chapters of DOE-STD-3009, ''Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports''. An in-process review was developed between DOE and the Contractor to facilitate DOE approval and provide early course correction. The new Documented Safety Analysis (DSA) developed to address the operations of four facilities within the Solid Waste Operations Complex (SWOC) necessitated development of an Implementation Validation Review (IVR) process. The IVR process encompasses the following objectives: safety basis controls and requirements are adequately incorporated into appropriate facility documents and work instructions, facility personnel are knowledgeable of controls and requirements, and the DSA/TSR controls have been implemented. Based on DOE direction and safety analysis tools, four waste management nuclear facilities were integrated into one safety basis document. With successful completion of implementation of this safety document, lessons-learned from the in-process review, safety analysis tools and IVR process were documented for future action and consideration at other DOE sites.

  5. LESSONS LEARNED FROM CLEANING OUT THE SLUDGE FROM THE SPENT FUEL STORAGE BASINS AT HANFORD ICEM-07

    SciTech Connect (OSTI)

    KNOLLMEYER PM

    2007-08-31T23:59:59.000Z

    Until 2004, the K Basins at Hanford, in southeastern Washington State, held the largest collection of spent nuclear fuel in the United States Department of Energy (DOE) complex. The K East and K West Basins are massive pools each holding more than 4 million liters of water - that sit less than 450 meters from the Columbia River. In a significant multi-year campaign that ended in 2004, Fluor Hanford removed all of the fuel from the two Basins, over 2,300 metric tons (4.6 million pounds), dried it, and then placed it into dry storage in a specially designed facility away from the River. Removing the fuel, however, did not finish the cleanup work at the K Basins. The years of underwater storage had corroded the metallic uranium fuel, leaving behind a thick and sometimes hard-packed layer of sludge that coated the walls, floors and equipment inside the Basins. In places, the depth of the sludge was measured in feet rather than inches, and its composition was definitely not uniform. Together the Basins held an estimated 50 cubic meters of sludge (42 cubic meters in K East and 8 cubic meters in K West). The K East sludge retrieval and transfer work was completed in May 2007. Vacuuming up the sludge into large underwater containers in each of the Basins and then consolidating it all in containers in the K West Basin have presented significant challenges, some unexpected. This paper documents some of those challenges and presents the lessons learned so that other nuclear cleanup projects can benefit from the experience at Hanford.

  6. Lessons Learned from the Decommissioning of Nuclear Facilities and the Safe Termination of Nuclear Activities. Outcomes of the International Conference, 11-15 December 2006, Athens, Greece

    SciTech Connect (OSTI)

    Batandjieva, B.; Laraia, M. [International Atomic Energy Agency, Vienna (Austria)

    2008-01-15T23:59:59.000Z

    Full text of publication follows: decommissioning activities are increasing worldwide covering wide range of facilities - from nuclear power plant, through fuel cycle facilities to small laboratories. The importance of these activities is growing with the recognition of the need for ensuring safe termination of practices and reuse of sites for various purposes, including the development of new nuclear facilities. Decommissioning has been undertaken for more than forty years and significant knowledge has been accumulated and lessons have been learned. However the number of countries encountering decommissioning for the first time is increasing with the end of the lifetime of the facilities around the world, in particular in countries with small nuclear programmes (e.g. one research reactor) and limited human and financial resources. In order to facilitate the exchange of lessons learned and good practices between all Member States and to facilitate and improve safety of the planned, ongoing and future decommissioning projects, the IAEA in cooperation with the Nuclear Energy Agency to OECD, European Commission and World Nuclear Association organised the international conference on Lessons Learned from the Decommissioning of Nuclear Facilities and the Safe Termination of Nuclear Activities, held in Athens, Greece. The conference also highlighted areas where future cooperation at national and international level is required in order to improve decommissioning planning and safety during decommissioning and to facilitate decommissioning by selecting appropriate strategies and technologies for decontamination, dismantling and management of waste. These and other aspects discussed at the conference are presented in this paper, together with the planned IAEA measures for amendment and implementation of the International Action Plan on Decommissioning of Nuclear Facilities and its future programme on decommissioning.

  7. Lessons learned during the training exercise for the entry into force of the U.S. additional protocol in the DOE complex

    SciTech Connect (OSTI)

    Boyer, Brian D [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    In 2008 in anticipation of the United States bringing into force the Additional Protocol in early 2009 DOE/NNSA planned and executed training exercises in the conduct of Additional Protocol complementary access activities. Brookhaven National Laboratory and Los Alamos National Laboratory together produced the exercises designed to prepare the following types of DOE laboratories for complementary access - weapons laboratories, nuclear engineering laboratories, and science laboratories. This panel provides a forum to discuss and summarize the results and lessons learned from the 2008 exercise.

  8. Eliciting Public Attitudes Regarding Bioremediation Cleanup Technologies: Lessons Learned from a Consensus Workshop in Idaho

    SciTech Connect (OSTI)

    Denise Lach, Principle Investigator; Stephanie Sanford, Co-P.I.

    2003-03-01T23:59:59.000Z

    During the summer of 2002, we developed and implemented a ''consensus workshop'' with Idaho citizens to elicit their concerns and issues regarding the use of bioremediation as a cleanup technology for radioactive nuclides and heavy metals at Department of Energy (DOE) sites. The consensus workshop is a derivation of a technology assessment method designed to ensure dialogue between experts and lay people. It has its origins in the United States in the form of ''consensus development conferences'' used by the National Institutes of Health (NIH) to elicit professional knowledge and concerns about new medical treatments. Over the last 25 years, NIH has conducted over 100 consensus development conferences. (Jorgensen 1995). The consensus conference is grounded in the idea that technology assessment and policy needs to be socially negotiated among many different stakeholders and groups rather than narrowly defined by a group of experts. To successfully implement new technology, the public requires access to information that addresses a full complement of issues including understanding the organization proposing the technology. The consensus conference method creates an informed dialogue, making technology understandable to the general public and sets it within perspectives and priorities that may differ radically from those of the expert community. While specific outcomes differ depending on the overall context of a conference, one expected outcome is that citizen panel members develop greater knowledge of the technology during the conference process and, sometimes, the entire panel experiences a change in attitude toward the technology and/or the organization proposing its use (Kluver 1995). The purpose of this research project was to explore the efficacy of the consensus conference model as a way to elicit the input of the general public about bioremediation of radionuclides and heavy metals at Department of Energy sites. Objectives of the research included: (1) defining the range of concerns of the public toward different bioremediation strategies and long-term stewardship; (2) creating materials and delivery methods that address bioremediation issues; and (3) assessing the effectiveness of the consensus workshop in identifying concerns about bioremediation and involving the public in a dialogue about their use. After a brief description of the Idaho workshop, we discuss the range of concerns articulated by the participants about bioremediation, discuss the materials and delivery methods used to communicate information about bioremediation, and assess the effectiveness of the consensus workshop. In summary we found that panel members in general: understood complex technical issues, especially when given enough time in a facilitated discussion with experts; are generally accepting of in situ bioremediation, but concerned about costs, safety, and effectiveness of the technology; are concerned equally about technology and decision processes; and liked the consensus workshop approach to learning about bioremediation.

  9. Release of UF/sub 6/ from a ruptured Model 48Y cylinder at Sequoyah Fuels Corporation Facility: lessons-learned report

    SciTech Connect (OSTI)

    Not Available

    1986-06-01T23:59:59.000Z

    The uranium hexafluoride (UF/sub 6/) release of January 4, 1986, at the Sequoyah Fuels Corporation facility has been reviewed by a NRC Lessons-Learned Group. A Model 48Y cylinder containing UF/sub 6/ ruptured upon being heated after it was grossly overfilled. The Uf/sub 6/ released upon rupture of the cylinder reacted with airborne moisture to produce hydrofluoric acid (HF) and uranyl fluoride (UO/sub 2/F/sub 2/). One individual died from exposure to airborne HF and several others were injured. There were no significant immediate effects from exposure to uranyl fluoride. This report of the Lessons-Learned Group presents discussions and recommendations on the process, operation and design of the facility, as well as on the responses of the licensee, NRC, and other local, state and federal agencies to the incident. It also provides recommendations in the areas of NRC licensing and inspection of fuel facility and certain other NMSS licensees. The implementation of some recommendations will depend on decisions to be made regarding the scope of NRC responsibilities with respect to those aspects of the design and operation of such facilities that are not directly related to radiological safety.

  10. The Gunite and Associated Tanks Remediation Project Tank Waste Retrieval Performance and Lessons Learned, vol. 1 [of 2

    SciTech Connect (OSTI)

    Lewis, BE

    2003-10-07T23:59:59.000Z

    The Gunite and Associated Tanks (GAAT) Remediation Project was the first of its kind performed in the United States. Robotics and remotely operated equipment were used to successfully transfer almost 94,000 gal of remote-handled transuranic sludge containing over 81,000 Ci of radioactive contamination from nine large underground storage tanks at the Oak Ridge National Laboratory (ORNL). The sludge was transferred with over 439,000 gal of radioactive waste supernatant and {approx}420,500 gal of fresh water that was used in sluicing operations. The GAATs are located in a high-traffic area of ORNL near a main thoroughfare. A phased and integrated approach to waste retrieval operations was used for the GAAT Remediation Project. The project promoted safety by obtaining experience from low-risk operations in the North Tank Farm before moving to higher-risk operations in the South Tank Farm. This approach allowed project personnel to become familiar with the tanks and waste, as well as the equipment, processes, procedures, and operations required to perform successful waste retrieval. By using an integrated approach to tank waste retrieval and tank waste management, the project was completed years ahead of the original baseline schedule, which resulted in avoiding millions of dollars in associated costs. This report is organized in two volumes. Volume 1 provides information on the various phases of the GAAT Remediation Project. It also describes the different types of equipment and how they were used. The emphasis of Volume 1 is on the description of the tank waste retrieval performance and the lessons learned during the GAAT Remediation Project. Volume 2 provides the appendixes for the report, which include the following information: (A) Background Information for the Gunite and Associated Tanks Operable Unit; (B) Annotated Bibliography; (C) Comprehensive Listing of the Sample Analysis Data from the GAAT Remediation Project; (D) GAAT Equipment Matrix; and (E) Vendor List for the GAAT Remediation Project. The remediation of the GAATs was completed {approx}5.5 years ahead of schedule and {approx}$120,435,000 below the cost estimated in the Remedial Investigation/Feasibility Study for the project. These schedule and cost savings were a direct result of the selection and use of state-of-the-art technologies and the dedication and drive of the engineers, technicians, managers, craft workers, and support personnel that made up the GAAT Remediation Project Team.

  11. Safeguards Culture: Lessons Learned

    SciTech Connect (OSTI)

    Frazar, Sarah L.; Mladineo, Stephen V.

    2010-06-01T23:59:59.000Z

    Today, safeguards culture can be a useful tool for measuring nonproliferation postures, but so far its impact on the international safeguards regime has been underappreciated. There is no agreed upon definition for safeguards culture nor agreement on how it should be measured. This paper argues that safeguards culture as an indicator of a countrys nonproliferation posture can be a useful tool.

  12. NEPA Lessons Learned Questionnaire

    Broader source: Energy.gov [DOE]

    A questionnaire to help aid the Office of NEPA Policy and Compliance in meeting its responsibility to foster continuing improvement of the Department of Energy's National Environmental Policy Act process.

  13. Project Management Lessons Learned

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-08-05T23:59:59.000Z

    The guide supports DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, and aids the federal project directors and integrated project teams in the execution of projects.

  14. SYSTEM DESIGN Lessons Learned

    E-Print Network [OSTI]

    Autothermal Guard Desulfurizer / Low Regenerable Reformer High Temperature Temperature Desulfurizer(s) Shift

  15. Early Lessons Learned

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract ManagementDiscoveringESnet Update WinterEXPLANATION

  16. Groundwater contamination near the Hoe Creek UCG experiments

    SciTech Connect (OSTI)

    Wang, F.T.; Mead, S.W.; Stuermer, D.H.

    1981-01-01T23:59:59.000Z

    It has been shown that underground coal gasification (UCG) may introduce a broad range of residual gasification products into the groundwater of a coal aquifer. Sorption of many contaminants by the coal itself is an important factor in restricting the migration of these contaminants in the groundwater. However, our field studies, conducted at Lawrence Livermore National Laboratory's Hoe Creek site, have shown that sorption of organic compounds by coal is not as effective as expected, perhaps because the coal surface area is limited. Furthermore, if severe roof collapse has taken place during gasification, non-coal aquifers located above the gasified coal seam may be interconnected with the coal aquifer, and contaminants may enter these non-coal aquifers, in which sorption is even less effective. The Hoe Creek II and III experiments have provided us with opportunities to study the contamination of a sand aquifer located above a gasified coal seam in a hydrological recharge area. Our preliminary results indicate that the water in the overlying sand aquifer is much less contaminated with organic compounds than the water in the gasified coal aquifer. In conducting these field investigations, we have also learned valuable lessons concerning groundwater monitoring. A suggested monitoring strategy will be discussed.

  17. Archiving Data from New Survey Technologies: Lessons Learned on Enabling Research with High-Precision Data While Preserving Participant Privacy: Preprint

    SciTech Connect (OSTI)

    Gonder, J.; Burton, E.; Murakami, E.

    2014-11-01T23:59:59.000Z

    During the past 15 years, increasing numbers of organizations and planning agencies have begun collecting high-resolution Global Positioning System (GPS) travel data. Despite the significant effort and expense to collect it, privacy concerns often lead to underutilization of the data. To address this dilemma of providing data access while preserving privacy, the National Renewable Energy Laboratory, with support from the U.S. Department of Transportation and U.S. Department of Energy, established the Transportation Secure Data Center (TSDC). Lessons drawn from best-practice examples from other data centers have helped shape the structure and operating procedures for the TSDC, which functions under the philosophy of first and foremost preserving privacy, but doing so in a way that balances security with accessibility and usability of the data for legitimate research. This paper provides details about the TSDC approach toward achieving these goals, which has included creating a secure enclave with no external access for backing up and processing raw data, a publicly accessible website for downloading cleansed data, and a secure portal environment through which approved users can work with detailed spatial data using a variety of tools and reference information. This paper also describes lessons learned from operating the TSDC with respect to improvements in GPS data handling, processing, and user support, along with plans for continual enhancements to better support the needs of both data providers and users and to thus advance the research value derived from such valuable data.

  18. Management and integration of engineering and construction activities: Lessons learned from the AP1000{sup R} nuclear power plant China project

    SciTech Connect (OSTI)

    McCullough, M. C.; Ebeling-Koning, D.; Evans, M. C. [Westinghouse Electric Company LLC, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2012-07-01T23:59:59.000Z

    The lessons learned during the early phase of design engineering and construction activities for the AP1000 China Project can be applied to any project involving multiple disciplines and multiple organizations. Implementation of a first-of-a-kind design to directly support construction activities utilizing resources assigned to design development and design delivery creates challenges with prioritization of activities, successful closure of issues, and communication between site organizations and the home office. To ensure successful implementation, teams were assigned and developed to directly support construction activities including prioritization of activities, site communication and ensuring closure of site emergent issues. By developing these teams, the organization is better suited to meet the demands of the construction schedule while continuing with design evolution of a standard plant and engineering delivery for multiple projects. For a successful project, proper resource utilization and prioritization are key for overcoming obstacles and ensuring success of the engineering organization. (authors)

  19. A review of existing gas-cooled reactor circulators with application of the lessons learned to the new production reactor circulators

    SciTech Connect (OSTI)

    White, L.S.

    1990-07-01T23:59:59.000Z

    This report presents the results of a study of the lessons learned during the design, testing, and operation of gas-cooled reactor coolant circulators. The intent of this study is to identify failure modes and problem areas of the existing circulators so this information can be incorporated into the design of the circulators for the New Production Reactor (NPR)-Modular High-Temperature Gas Cooled Reactor (MHTGR). The information for this study was obtained primarily from open literature and includes data on high-pressure, high-temperature helium test loop circulators as well as the existing gas cooled reactors worldwide. This investigation indicates that trouble free circulator performance can only be expected when the design program includes a comprehensive prototypical test program, with the results of this test program factored into the final circulator design. 43 refs., 7 tabs.

  20. Recorded Lessons Links

    E-Print Network [OSTI]

    math

    2013-04-24T23:59:59.000Z

    17. 18 Lesson 6A PP. Lesson 6B PP. January. Week 3. 21 MLK. No Classes. 22. 23. Lesson 7 PP. 24. 25. Lesson 8 PP. Jan/February. Week 4. 28. Lesson 9 PP.

  1. Dedicated to Sharing Information About Water Management and the Florida LAKEWATCH Program Volume 63 (2013) Groundwater: An Introduction

    E-Print Network [OSTI]

    Watson, Craig A.

    2013-01-01T23:59:59.000Z

    the slack". It now obtains groundwater levels in four Alachua County anyone who is interested in learning about Florida's groundwater resources

  2. accident conditions lessons: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    set of in-class tutorials experience and classroom observations, and present several guidelines for tutorial development Colorado at Boulder, University of 249 Lessons Learned from...

  3. Lessons and Challenges for Early Hydrogen Refueling Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California lessonsmelainafinal.pdf More...

  4. Remediation of Groundwater Contaminated with Organics and Radionuclides - An Innovative Approach Eases Traditional Hurdles

    SciTech Connect (OSTI)

    Scott, J.; Case, N.; Coltman, K.

    2003-02-25T23:59:59.000Z

    Traditional approaches to the remediation of contaminated groundwater, such as pump-and-treat, have been used for many years for the treatment of groundwater contaminated with various organics. However the treatment of groundwater contaminated with organics and radionuclides has been considerably more challenging. Safety and Ecology Corporation (SEC) was recently faced with these challenges while designing a remediation system for the remediation of TCE-contaminated groundwater and soil at the RMI Extrusion Plant in Ashtabula, OH. Under contract with RMI Environmental Services (RMIES), SEC teamed with Regenesis, Inc. to design, implement, and execute a bioremediation system to remove TCE and associated organics from groundwater and soil that was also contaminated with uranium and technetium. The SEC-Regenesis system involved the injection of Hydrogen Release Compound (HRC), a natural attenuation accelerant that has been patented, designed, and produced by Regenesis, to stimulate the reductive dechlorination and remediation of chlorinated organics in subsurface environments. The compound was injected using direct-push Geoprobe rods over a specially designed grid system through the zone of contaminated groundwater. The innovative approach eliminated the need to extract contaminated groundwater and bypassed the restrictive limitations listed above. The system has been in operation for roughly six months and has begun to show considerable success at dechlorinating and remediating the TCE plume and in reducing the radionuclides into insoluble precipitants. The paper will provide an overview of the design, installation, and initial operation phase of the project, focusing on how traditional design challenges of remediating radiologically contaminated groundwater were overcome. The following topics will be specifically covered: a description of the mechanics of the HRC technology; an assessment of the applicability of the HRC technology to contaminated groundwater plumes and other potential remediation opportunities; a discussion of how the implementation of the HRC technology eased permitting issues and other challenges of remediating groundwater contaminated with radionuclides and organics; an overview of the remedial design and installation of the design including the inputs required to design the remediation system; a summary of results achieved to date and a forecast of future results; and a discussion of future needs and lessons learned.

  5. Lessons-Learned from D and D Activities at the Five Gaseous Diffusion Buildings (K-25, K- 27, K-29, K-31 and K-33) East Tennessee Technology Park, Oak Ridge, TN - 13574

    SciTech Connect (OSTI)

    Kopotic, James D. [United States Department of Energy, Oak Ridge Office, P.O. Box 2001, Oak Ridge, TN 37831 (United States)] [United States Department of Energy, Oak Ridge Office, P.O. Box 2001, Oak Ridge, TN 37831 (United States); Ferri, Mark S.; Buttram, Claude [URS - CH2M Oak Ridge LLC, East Tennessee Technology Park, P. O. Box 4699, Oak Ridge, TN 37831 (United States)] [URS - CH2M Oak Ridge LLC, East Tennessee Technology Park, P. O. Box 4699, Oak Ridge, TN 37831 (United States)

    2013-07-01T23:59:59.000Z

    The East Tennessee Technology Park (ETTP) is the site of five former gaseous diffusion plant (GDP) process buildings that were used to enrich uranium from 1945 to 1985. The process equipment in the original two buildings (K-25 and K-27) was used for the production of highly enriched uranium (HEU), while that in the three later buildings (K-29, K-31 and K-33) produced low enriched uranium (LEU). Equipment was contaminated primarily with uranium and to a lesser extent technetium (Tc). Decommissioning of the GDP process buildings has presented several unique challenges and produced many lessons-learned. Among these is the importance of good, up-front characterization in developing the best demolition approach. Also, chemical cleaning of process gas equipment and piping (PGE) prior to shutdown should be considered to minimize the amount of hold-up material that must be removed by demolition crews. Another lesson learned is to maintain shutdown buildings in a dry state to minimize structural degradation which can significantly complicate characterization, deactivation and demolition efforts. Perhaps the most important lesson learned is that decommissioning GDP process buildings is first and foremost a waste logistics challenge. Innovative solutions are required to effectively manage the sheer volume of waste generated from decontamination and demolition (D and D) of these enormous facilities. Finally, close coordination with Security is mandatory to effectively manage Special Nuclear Material (SNM) and classified equipment issues. (authors)

  6. Northwest Plume Groundwater System Green-sand Media Removal and Waste Packaging Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    Troutman, M.T.; Richards, C.J.; Tarantino, J.J. [CDM Federal Programs Corporation, 325 Kentucky Avenue, Kevil, KY 42053 (United States)

    2006-07-01T23:59:59.000Z

    The Northwest Plume Groundwater System (NWPGS) was temporarily shut down due to high differential pressures across the green-sand filters. Increased levels of suspended solids were introduced into the system from monitoring well development water, equipment decontamination water, and secondary containment water. These waters were treated for suspended solids through a groundwater pretreatment system but were suspected of causing the high differential pressures in the green-sand filters. Prior to the system being shutdown, the NWPGS had been experiencing increasingly shorter run times between filter backwashes indicating that the normal backwash cycle was not adequately removing the fines. This condition led to the removal and replacement of green-sand media from two filter vessels. Discussions include problems with the removal process, waste packaging specifications, requirements for the disposition of green-sand media, and lessons learned. (authors)

  7. Hanford Groundwater Contamination Areas Shrink as EM Exceeds...

    Energy Savers [EERE]

    per year. To learn more about groundwater treatment at the Hanford Site, including videos and photos, click here and here. Addthis Related Articles A team of drillers installs...

  8. In situ groundwater bioremediation

    E-Print Network [OSTI]

    Hazen, Terry C.

    2010-01-01T23:59:59.000Z

    degradation of phenols in groundwater. J Contam. Hydrol.Bioimmobilization of Cr(VI) in Groundwater Using Hydrogenof bacterial activity in groundwater containing petroleum

  9. Lessons Learned from the Application of Bulk Characterization to Individual Containers on the Brookhaven Graphite Research Reactor Decommissioning Project at Brookhaven National Laboratory - 12056

    SciTech Connect (OSTI)

    Kneitel, Terri [US DOE, Brookhaven Site Office (United States); Rocco, Diane [Brookhaven National Laboratory (United States)

    2012-07-01T23:59:59.000Z

    When conducting environmental cleanup or decommissioning projects, characterization of the material to be removed is often performed when the material is in-situ. The actual demolition or excavation and removal of the material can result in individual containers that vary significantly from the original bulk characterization profile. This variance, if not detected, can result in individual containers exceeding Department of Transportation regulations or waste disposal site acceptance criteria. Bulk waste characterization processes were performed to initially characterize the Brookhaven Graphite Research Reactor (BGRR) graphite pile and this information was utilized to characterize all of the containers of graphite. When the last waste container was generated containing graphite dust from the bottom of the pile, but no solid graphite blocks, the material contents were significantly different in composition from the bulk waste characterization. This error resulted in exceedance of the disposal site waste acceptance criteria. Brookhaven Science Associates initiated an in-depth investigation to identify the root causes of this failure and to develop appropriate corrective actions. The lessons learned at BNL have applicability to other cleanup and demolition projects which characterize their wastes in bulk or in-situ and then extend that characterization to individual containers. (authors)

  10. November 21, 2000 PV Lesson Plan 3 PV Array Generating Electricity

    E-Print Network [OSTI]

    Oregon, University of

    November 21, 2000 PV Lesson Plan 3 PV Array Generating Electricity Prepared for the Oregon in Arrays: Solar Cells Generating Electricity Lesson Plan Content: In this lesson, students will learn about electricity. Objectives: Students will learn to use a tool called PV WATTS to calculate the output of PV

  11. Lesson 16 - Pinwheel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -ofLearningLensless4 Lensless Lesson 16 -

  12. Lesson 9 - Solar Ovens

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -ofLearningLensless4 Lensless Lesson 16 -

  13. Market transformation lessons learned from an automated demand response test in the Summer and Fall of 2003

    SciTech Connect (OSTI)

    Shockman, Christine; Piette, Mary Ann; ten Hope, Laurie

    2004-08-01T23:59:59.000Z

    A recent pilot test to enable an Automatic Demand Response system in California has revealed several lessons that are important to consider for a wider application of a regional or statewide Demand Response Program. The six facilities involved in the site testing were from diverse areas of our economy. The test subjects included a major retail food marketer and one of their retail grocery stores, financial services buildings for a major bank, a postal services facility, a federal government office building, a state university site, and ancillary buildings to a pharmaceutical research company. Although these organizations are all serving diverse purposes and customers, they share some underlying common characteristics that make their simultaneous study worthwhile from a market transformation perspective. These are large organizations. Energy efficiency is neither their core business nor are the decision makers who will enable this technology powerful players in their organizations. The management of buildings is perceived to be a small issue for top management and unless something goes wrong, little attention is paid to the building manager's problems. All of these organizations contract out a major part of their technical building operating systems. Control systems and energy management systems are proprietary. Their systems do not easily interact with one another. Management is, with the exception of one site, not electronically or computer literate enough to understand the full dimensions of the technology they have purchased. Despite the research team's development of a simple, straightforward method of informing them about the features of the demand response program, they had significant difficulty enabling their systems to meet the needs of the research. The research team had to step in and work directly with their vendors and contractors at all but one location. All of the participants have volunteered to participate in the study for altruistic reasons, that is, to help find solutions to California's energy problems. They have provided support in workmen, access to sites and vendors, and money to participate. Their efforts have revealed organizational and technical system barriers to the implementation of a wide scale program. This paper examines those barriers and provides possible avenues of approach for a future launch of a regional or statewide Automatic Demand Response Program.

  14. Operating Experience and Lessons Learned in the Use of Soft-Sided Packaging for Transportation and Disposal of Low Activity Radioactive Waste

    SciTech Connect (OSTI)

    Kapoor, A. [DOE; Gordon, S. [NSTec; Goldston, W. [Energy Solutions

    2013-07-08T23:59:59.000Z

    This paper describes the operating experience and lessons learned at U.S. Department of Energy (DOE) sites as a result of an evaluation of potential trailer contamination and soft-sided packaging integrity issues related to the disposal of low-level and mixed low-level (LLW/MLLW) radioactive waste shipments. Nearly 4.3 million cubic meters of LLW/MLLW will have been generated and disposed of during fiscal year (FY) 2010 to FY 2015either at commercial disposal sites or disposal sites owned by DOE. The LLW/MLLW is packaged in several different types of regulatory compliant packaging and transported via highway or rail to disposal sites safely and efficiently in accordance with federal, state, and local regulations and DOE orders. In 1999, DOE supported the development of LLW containers that are more volumetrically efficient, more cost effective, and easier to use as compared to metal or wooden containers that existed at that time. The DOE Idaho National Engineering and Environmental Laboratory (INEEL), working in conjunction with the plastic industry, tested several types of soft-sided waste packaging systems that meet U.S. Department of Transportation requirements for transport of low specific activity and surface contaminated objects. Since then, soft-sided packaging of various capacities have been used successfully by the decontamination and decommissioning (D&D) projects to package, transport, and dispose D&D wastes throughout the DOE complex. The joint team of experts assembled by the Energy Facility Contractors Group from DOE waste generating sites, DOE and commercial waste disposal facilities, and soft-sided packaging suppliers conducted the review of soft-sided packaging operations and transportation of these packages to the disposal sites. As a result of this evaluation, the team developed several recommendations and best practices to prevent or minimize the recurrences of equipment contamination issues and proper use of soft-sided packaging for transport and disposal of waste.

  15. Groundwater 7-1 7. Groundwater

    E-Print Network [OSTI]

    Pennycook, Steve

    Groundwater 7-1 7. Groundwater W. K. Jago, R. S. Loffman, and C. A. Motley Abstract Most residents in the Oak Ridge area do not rely on groundwater for potable supplies, although suitable water is available. Local groundwater provides some domestic, municipal, farm, irrigation, and industrial uses, however

  16. Groundwater 7-1 7. Groundwater

    E-Print Network [OSTI]

    Pennycook, Steve

    Groundwater 7-1 7. Groundwater S. B. Jones and R. S. Loffman Abstract Most residents in the Oak Ridge area do not rely on groundwater for potable supplies, although suitable water is available. Local groundwater provides some domestic, municipal, farm, irrigation, and industrial uses, however, and must

  17. Heart Valve Lesson Plan Biomedical Engineering

    E-Print Network [OSTI]

    Provancher, William

    Heart Valve Lesson Plan Biomedical Engineering Objective Introduce students to biomedical Learning Outcomes Students will understand the role and function of heart valves. Students will learn does a heart valve work? Why do we need to replace heart valves? Time Required (Itemized) Lecture

  18. Olympia Oyster Library Research Project With this lesson students learn about the ecology and conservation of an oyster native to Puget

    E-Print Network [OSTI]

    Carrington, Emily

    and conservation of an oyster native to Puget Sound, the Olympia oyster, Ostreola conchaphila. The lesson consists) describing ecology, conservation and restoration of the Olympia oyster in Puget Sound, and students answer

  19. Program of technical assistance to the Organization for the Prohibition of Chemical Weapons - lessons learned from the U.S. program of technical assistance to IAEA safeguards. Final report

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    The Defense Nuclear Agency is sponsoring a technical study of the requirements of a vehicle to meet the OPCW`s future needs for enhanced chemical weapons verification capabilities. This report provides information about the proven mechanisms by which the U.S. provided both short- and long-term assistance to the IAEA to enhance its verification capabilities. Much of the technical assistance has generic application to international organizations verifying compliance with disarmament treaties or conventions. In addition, some of the equipment developed by the U.S. under the existing arrangements can be applied in the verification of other disarmament treaties or conventions. U.S. technical assistance to IAEA safeguards outside of the IAEA`s regular budget proved to be necessary. The U.S. technical assistance was successful in improving the effectiveness of IAEA safeguards for its most urgent responsibilities and in providing the technical elements for increased IAEA {open_quotes}readiness{close_quotes} for the postponed responsibilities deemed important for U.S. policy objectives. Much of the technical assistance was directed to generic subjects and helped to achieve a system of international verification. It is expected that the capabilities of the Organization for the Prohibition of Chemical Weapons (OPCW) to verify a state`s compliance with the {open_quotes}Chemical Weapons Convention{close_quotes} will require improvements. This report presents 18 important lessons learned from the experience of the IAEA and the U.S. Program of Technical Assistance to IAEA Safeguards (POTAS), organized into three tiers. Each lesson is presented in the report in the context of the difficulty, need and history in which the lesson was learned. Only the most important points are recapitulated in this executive summary.

  20. Schedule w/links to video lessons

    E-Print Network [OSTI]

    math

    2015-02-11T23:59:59.000Z

    Click on Lesson ---PP to watch a recorded lesson in YouTube. Some lessons are ... Lesson 2 PP. 15. 16. Lesson 3 PP ... Lesson 28 PP. 31. 1. Lesson 29 PP. 2. 3.

  1. PowerPoints, Video Lessons and Outlines

    E-Print Network [OSTI]

    Lesson 1 Video Lesson 1 Outline ... Lesson 2 Video Lesson 2 Outline. 9/1. Labor Day. No Classes. 9/2. 9/3. Lesson 3 PowerPoint Lesson 3 Video Lesson 3...

  2. Sustaining School Reform: Lessons from Georgia Education Policy and Evaluation Center, College of Education, University of Georgia

    E-Print Network [OSTI]

    Scott, Robert A.

    Sustaining School Reform: Lessons from Georgia Education Policy and Evaluation Center, College addressing lessons learned from two years of evaluation of Comprehensive School Reform (CSR) grant recipients implementing reform initiatives, in general. Background The Comprehensive School Reform (CSR) Program began

  3. CSEM WP 110R Lessons from the California Electricity Crisis

    E-Print Network [OSTI]

    California at Berkeley. University of

    CSEM WP 110R Lessons from the California Electricity Crisis Frank A. Wolak Revised May 2003.ucei.org #12;Lessons from the California Electricity Crisis by Frank A. Wolak Department of Economics Stanford be learned about electricity market design and regulating energy markets from the California

  4. LESSONS LEARNED LEARNED LESSONS N E P A

    Office of Environmental Management (EM)

    Your Contributions to LLQR Send suggestions, comments, and draft articles - especially case studies on successful NEPA practices - by August 1, 2013, to Yardena Mansoor at...

  5. LESSONS LEARNED LEARNED LESSONS N E P A

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLED Lighting Facts LEDLEDs onResearchthird

  6. LESSONS LEARNED LEARNED LESSONS N E P A

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLED Lighting Facts LEDLEDs onResearchthird4

  7. LESSONS LEARNED LEARNED LESSONS N E P A

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLED Lighting Facts LEDLEDs onResearchthird44

  8. LESSONS LEARNED LEARNED LESSONS N E P A

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLED Lighting Facts LEDLEDs

  9. LESSONS LEARNED LEARNED LESSONS N E P A

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLED Lighting Facts LEDLEDsfirst Quarter fy

  10. LESSONS LEARNED LEARNED LESSONS N E P A

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas » MethaneJohnsonKristina Pflanz About UsT8LES'

  11. 2, 135, 2005 groundwater

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    BGD 2, 135, 2005 Submarine groundwater discharge inferred from radon and salinity J. Crusius et al Biogeosciences Discussions is the access reviewed discussion forum of Biogeosciences Submarine groundwater(s). This work is licensed under a Creative Commons License. 1 #12;BGD 2, 135, 2005 Submarine groundwater

  12. Groundwater Everybody's Resource

    E-Print Network [OSTI]

    Groundwater Everybody's Resource Everybody's Responsibility Take Action Now! Michigan Groundwater Stewardship Program Check Inside I Water Cycle . . . . . . . 2 I Groundwater Quiz . . 3 I Risky Practice/ Safe for the benefit of people today and tomorrow. Groundwater is the water that fills spaces between rocks and soil

  13. Examples of Department of Energy Successes for Remediation of Contaminated Groundwater: Permeable Reactive Barrier and Dynamic Underground Stripping ASTD Projects

    SciTech Connect (OSTI)

    Purdy, C.; Gerdes, K.; Aljayoushi, J.; Kaback, D.; Ivory, T.

    2002-02-27T23:59:59.000Z

    Since 1998, the Department of Energy's (DOE) Office of Environmental Management has funded the Accelerated Site Technology Deployment (ASTD) Program to expedite deployment of alternative technologies that can save time and money for the environmental cleanup at DOE sites across the nation. The ASTD program has accelerated more than one hundred deployments of new technologies under 76 projects that focus on a broad spectrum of EM problems. More than 25 environmental restoration projects have been initiated to solve the following types of problems: characterization of the subsurface using chemical, radiological, geophysical, and statistical methods; treatment of groundwater contaminated with DNAPLs, metals, or radionuclides; and other projects such as landfill covers, purge water management systems, and treatment of explosives-contaminated soils. One of the major goals of the ASTD Program is to deploy a new technology or process at multiple DOE sites. ASTD projects are encouraged to identify subsequent deployments at other sites. Some of the projects that have successfully deployed technologies at multiple sites focusing on cleanup of contaminated groundwater include: Permeable Reactive Barriers (Monticello, Rocky Flats, and Kansas City), treating uranium and organics in groundwater; and Dynamic Underground Stripping (Portsmouth, and Savannah River), thermally treating DNAPL source zones. Each year more and more new technologies and approaches are being used at DOE sites due to the ASTD program. DOE sites are sharing their successes and communicating lessons learned so that the new technologies can replace the baseline or standard approaches at DOE sites, thus expediting cleanup and saving money.

  14. Math 13900 Pyramid Project After Lesson 32 Name: Class time ...

    E-Print Network [OSTI]

    User

    2014-08-19T23:59:59.000Z

    Pyramid Project. After Lesson 32. 2014 ... Use the information you have and what you have learned in Math 13900 to find the volume. Do not use a formula from...

  15. Lessons learned: The commercialization process

    SciTech Connect (OSTI)

    Padilla, B.A.; Gritzo, R.E.; Garcia, J.J.

    1996-03-01T23:59:59.000Z

    One successful component of a commercialization strategy includes the implementation of an industrial outreach workshop. This workshop is designed to select an industrial partner with the skills necessary to successfully commercialize a federally-funded, laboratory developed technology. These workshops provide efficiency and effectiveness and, in addition, ensure that all prospective partners receive equal access to the same quality and quantity of information.

  16. Lessons Learned | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Event, injury, temporarypartial disability, significant loss of work timeproductivity, violation of State or Federal law with minor penalties. Blue Alerts - Information,...

  17. Lessons Learned in Renewable Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofs o u t h e22U.S.Table 1

  18. Lessons Learned | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for #SpaceWeek Join us for #SpaceWeekDepartment

  19. Regional Groundwater Evapotranspiration in Illinois

    E-Print Network [OSTI]

    Yeh, Pat J-F.; Famiglietti, J. S

    2009-01-01T23:59:59.000Z

    characteristics of groundwater outflow and baseflow fromtween precipitation and shallow groundwater in Illinois. J.Coauthors, 2006: Groundwater-supported evapo- transpiration

  20. Video Lessons, PowerPoints, and Outlines

    E-Print Network [OSTI]

    POWERPOINT PRESENTATIONS, VIDEO LESSONS AND OUTLINES ... 6/11. Lesson 1 PowerPoint (Part A) Lesson 1 PowerPoint (Part B) Lesson 1 Video.

  1. The Hanford Story: Groundwater

    Broader source: Energy.gov [DOE]

    This second chapter of The Hanford Story explains how more than 100 square miles of groundwater under the Hanford Site became contaminated and what workers are doing to restore groundwater to its highest beneficial use.

  2. 4, 11331151, 2007 Groundwater

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    HESSD 4, 11331151, 2007 Groundwater vulnerability assessment and WFD K. Berkhoff Title Page are under open-access review for the journal Hydrology and Earth System Sciences Groundwater vulnerability@em.uni-frankfurt.de) 1133 #12;HESSD 4, 11331151, 2007 Groundwater vulnerability assessment and WFD K. Berkhoff Title Page

  3. Lessons Learned/Best Practices during the Department of Energy's Implementation of the American Recovery and Reinvestment Act of 2009, OAS-RA-12-03

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofs o u t h e22U.S.Table 1Lessons

  4. Lesson Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -ofLearningLensless4 Lensless

  5. The LLNL Heavy Element Facility -- Facility Management, Authorization Basis, and Readiness Assessment Lessons Learned in the Heavy Element Facility (B251) Transition from Category II Nuclear Facility to Radiological Facility

    SciTech Connect (OSTI)

    Mitchell, M; Anderson, B; Brown, E; Gray, L

    2006-04-10T23:59:59.000Z

    This paper presents Facility Management, Readiness Assessment, and Authorization Basis experience gained and lessons learned during the Heavy Element Facility Risk Reduction Program (RRP). The RRP was tasked with removing contaminated glove boxes, radioactive inventory, and contaminated ventilation systems from the Heavy Element Facility (B251) at Lawrence Livermore National Laboratory (LLNL). The RRP was successful in its goal in April 2005 with the successful downgrade of B251 from a Category II Nuclear Facility to a Radiological Facility. The expertise gained and the lessons learned during the planning and conduct of the RRP included development of unique approaches in work planning/work control (''Expect the unexpected and confirm the expected'') and facility management. These approaches minimized worker dose and resulted in significant safety improvements and operational efficiencies. These lessons learned can help similar operational and management activities at other sites, including facilities restarting operations or new facility startup. B251 was constructed at LLNL to provide research areas for conducting experiments in radiochemistry using transuranic elements. Activities at B251 once included the preparation of tracer sets associated with the underground testing of nuclear devices and basic research devoted to a better understanding of the chemical and nuclear behavior of the transuranic elements. Due to the age of the facility, even with preventative maintenance, facility safety and experimental systems were deteriorating. A variety of seismic standards were used in the facility design and construction, which encompassed eight building increments constructed over a period of 26 years. The cost to bring the facility into compliance with the current seismic and other requirements was prohibitive, and simply maintaining B251 as a Category II nuclear facility posed serious cost considerations under a changing regulatory environment. Considering the high cost of maintenance and seismic upgrades, the RRP was created to mitigate the risk of dispersal of radioactive material during an earthquake by removing the radioactive materials inventory and glove box contamination. LLNL adopted the goal of reducing the hazard categorization of the Facility from a Category II Nuclear Facility to a Radiological Facility. To support the RRP, B251 transitioned from a standby to a fully operational Category II Nuclear Facility, compliant with current regulations. A work control process was developed, procedures were developed, Authorization Basis Documents were created, work plans were written, off-normal drills practiced, a large number of USQ reviews were conducted, and a ''Type II'' Readiness Assessment (RA) was conducted to restart operations. Subsequent RA's focused on specific operations. Finally, a four-step process was followed to reach Radiological Status: (1) Inventory Reduction and D&D activities reduced the inventory and radiological contamination of the facility below the Category III threshold (DOE-STD-1027), (2) Radiological Safety Basis Document (SBD aka HAR) was approved by NNSA, (3) the inventory control system for a Radiological Facility was implemented, and (4) verification by NNSA of radiological status was completed.

  6. Lesson18.doc

    E-Print Network [OSTI]

    Ma 15200 Lesson 18 Section 1.7. I Representing an Inequality. There are 3 ways to represent an inequality. (1) Using the inequality symbol (sometime within...

  7. Groundwater Conservation Districts (Texas)

    Broader source: Energy.gov [DOE]

    Groundwater Conservation Districts, as created following procedures described in Water Code 36, are designed to provide for the conservation, preservation, protection, recharging, and prevention of...

  8. Groundwater and Wells (Nebraska)

    Broader source: Energy.gov [DOE]

    This section describes regulations relating to groundwater protection, water wells, and water withdrawals, and requires the registration of all water wells in the state.

  9. Groundwater Quality Standards (Nebraska)

    Broader source: Energy.gov [DOE]

    These regulations, promulgated by the Department of Environmental Quality, contain groundwater quality standards and classifications, regulations for point sources, and provisions for remedial action.

  10. Groundwater Management Areas (Texas)

    Broader source: Energy.gov [DOE]

    This legislation authorizes the Texas Commission on Environmental Quality and the Texas Water Development Board to establish Groundwater Management Areas to provide for the conservation,...

  11. Groundwater Contamination Potential from Stormwater

    E-Print Network [OSTI]

    Clark, Shirley E.

    1 Groundwater Contamination Potential from Stormwater Infiltration Robert Pitt, University (CSOs). Introduction (cont.) Scattered information is available addressing groundwater impacts cities EPA 1983 NURP work on groundwater beneath Fresno and Long Island infiltration basins NRC 1994

  12. Groundwater Protection Plan (West Virginia)

    Broader source: Energy.gov [DOE]

    Groundwater Protection Plans (GPPs) are required for all facilities having the potential to impact groundwater. They are preventive maintenance documents that cover all processes and materials at...

  13. Groundwater Resources Program A New Tool to Assess Groundwater Resources

    E-Print Network [OSTI]

    Groundwater Resources Program A New Tool to Assess Groundwater Resources in the Mississippi CAROLINA GEORGIA LOUISIANA Mississippi River Groundwater flow Well a quifer Alluvial aquifer Middle alluvial aquifer is the primary source of groundwater for irriga- tion in the largely agricultural region

  14. Detecting appropriate groundwater-level trends for safe groundwater development

    E-Print Network [OSTI]

    Sohoni, Milind

    Detecting appropriate groundwater-level trends for safe groundwater development Rahul Gokhale-monsoon Groundwater(GW) levels are important for the periodic categorisation of regions in India according to their GW-safety. A specific procedure has been recommended by the Groundwater Estimation Committee, 1997(GEC'97), constituted

  15. Lessons Learned from the Alternative Fuels Experience and How They Apply to the Development of a Hydrogen-Fueled Transportation System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -ofLearningLensless4Alternative Fuels

  16. Lessons Learned from the Photovoltaic Manufacturing Technology/PV Manufacturing R&D and Thin-Film PV Partnership Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -ofLearningLensless4Alternative

  17. Risk management and governance for PFI Project : technology policy lessons from the case of Japan

    E-Print Network [OSTI]

    Matsumoto, Takuji, S.M. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    Japan has a long history of Public-Private Partnerships (PPPs); however, it has experienced many failures but learned various lessons from them. The representative example is a management failure of the third sector, which ...

  18. Groundwater Conservation Districts: Success Stories

    E-Print Network [OSTI]

    Porter, Dana; Persyn, Russell A.; Enciso, Juan

    1999-09-06T23:59:59.000Z

    these limited resources is increasing, so our aquifers must be conserved and protected for the benefit of the state?s economy, our natural ecosystems, and our quality of life. The Texas Water Code, Chapter 36, calls for the creation of Groundwater Conservation... groundwater reservoirs or their subdivisions.? In Texas, local deci- sion making through Groundwater Conservation Districts has been the rule and not the exception. In fact, Groundwater Conservation Districts are the state?s preferred method of groundwater...

  19. Lesson 34a: Environment

    E-Print Network [OSTI]

    Pasifiki [Pacific Ocean] Bahari Aktiki [Arctic Ocean] Bahari ya Mediterani [Mediterranean Sea] Bahari yaLesson 34a: Environment Environment [mazingira] bahari / bahari [ocean / sea / oceans / seas / farms] Bahari [ocean / sea] Bahari Hindi [Indian Ocean] Bahari Atlantiki [Atlantic Ocean] Bahari

  20. Groundwater Protection Management Program

    SciTech Connect (OSTI)

    Wells, D.G.

    1999-10-20T23:59:59.000Z

    This document will be a useful reference for those engaged in groundwater protection and management. This document presents a great deal of detail while still addressing the larger issues.

  1. Groundwater under stress: the importance of management

    E-Print Network [OSTI]

    Vaux, Henry

    2011-01-01T23:59:59.000Z

    static or decline. Groundwater will be uniquely attractiveThe need to manage groundwater ef?ciently and effectively asthe aquifer. Most methods of groundwater management involve

  2. MARKET-ORIENTED PROGRAMMING: SOME EARLY LESSONS MICHAEL P. WELLMAN

    E-Print Network [OSTI]

    Wellman, Michael P.

    facing that market. I call this approach \\market-oriented programming".y To support the practice. This leads up to a discussion of the lessons learned from our experience|some guiding principles on allocating a single resource, such as computation time, network bandwidth, or some other particular good

  3. angioplasty network lessons: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forum Lesson Plan Multimedia Project Workbin Library E-Reserves Lesson Plan : SOFTWARE TESTING;3102014 Lesson Plan https:ivle.nus.edu.sgLessonPlanstudent...

  4. Fernald Environmental Management Project Archived Soil & Groundwater...

    Office of Environmental Management (EM)

    Fernald Environmental Management Project Archived Soil & Groundwater Master Reports Fernald Environmental Management Project Archived Soil & Groundwater Master Reports Fernald...

  5. Miamisburg Environmental Management Project Archived Soil & Groundwate...

    Office of Environmental Management (EM)

    Miamisburg Environmental Management Project Archived Soil & Groundwater Master Reports Miamisburg Environmental Management Project Archived Soil & Groundwater Master Reports...

  6. Groundwater and Terrestrial Water Storage,

    E-Print Network [OSTI]

    Rodell, M; Chambers, D P; Famiglietti, J S

    2011-01-01T23:59:59.000Z

    T. E. Reilly, 2002: Flow and storage in groundwater systems.Estimating ground water storage changes in the Mississippistorage..

  7. In situ groundwater bioremediation

    SciTech Connect (OSTI)

    Hazen, Terry C.

    2009-02-01T23:59:59.000Z

    In situ groundwater bioremediation of hydrocarbons has been used for more than 40 years. Most strategies involve biostimulation; however, recently bioaugmentation have been used for dehalorespiration. Aquifer and contaminant profiles are critical to determining the feasibility and strategy for in situ groundwater bioremediation. Hydraulic conductivity and redox conditions, including concentrations of terminal electron acceptors are critical to determine the feasibility and strategy for potential bioremediation applications. Conceptual models followed by characterization and subsequent numerical models are critical for efficient and cost effective bioremediation. Critical research needs in this area include better modeling and integration of remediation strategies with natural attenuation.

  8. 2, 939970, 2005 Groundwater com-

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    HESSD 2, 939970, 2005 Groundwater com- partmentalisation E. A. Mohamed and R. H. Worden Title Page-access review for the journal Hydrology and Earth System Sciences Groundwater compartmentalisation is licensed under a Creative Commons License. 939 #12;HESSD 2, 939970, 2005 Groundwater com

  9. EES 1001 Lab 9 Groundwater

    E-Print Network [OSTI]

    Li, X. Rong

    EES 1001 Lab 9 Groundwater Water that seeps into the ground, and is pulled down by gravity is groundwater. The water table is the top of the saturated zone, and is the target for well drillers that want to pump out the groundwater. *About those voids... Porosity is the volume of void space in a sediment

  10. Groundwater Data Analysis Lalit Kumar

    E-Print Network [OSTI]

    Sohoni, Milind

    Groundwater Data Analysis Lalit Kumar (10305073) Guide: Prof. Milind Sohoni Department of Computer BombayGroundwater Data Analysis Oct 25, 2011 1 / 23 #12;Outline Motivation Objective Terminology Case Sohoni (Department of Computer Science and EngineeringIndian Institute of Technology BombayGroundwater

  11. GROUNDWATER REMEDIATION DESIGN USING SIMULATED

    E-Print Network [OSTI]

    Mays, Larry W.

    CHAPTER 8 GROUNDWATER REMEDIATION DESIGN USING SIMULATED ANNEALING Richard L. Skaggs Pacific? There has been an emergence in the use of combinatorial methods such as simulated annealing in groundwater for groundwater management applications. The algorithm incor- porates "directional search" and "memory

  12. Topological groundwater hydrodynamics Garrison Sposito

    E-Print Network [OSTI]

    Chen, Yiling

    Topological groundwater hydrodynamics Garrison Sposito Department of Civil and Environmental; received in revised form 10 November 2000; accepted 15 November 2000 Abstract Topological groundwater, the topological characteristics of groundwater ows governed by the Darcy law are studied. It is demonstrated that

  13. World Lessons Thomas Turrentine

    E-Print Network [OSTI]

    California at Davis, University of

    Davis Plug-in Hybrid and Electric Vehicle Research Center 2. International Energy Association, Hybrid;8/3/2012 2 Lessons from other fuel transitions Keep fuel price lower than gasoline: Diesel in Europe (30 in Mendrisio, La Rochelle, difficult to maintain ... Cost Savings: Overpromised, under delivered Regulation

  14. Four Corners Wind Resource Center Webinar: Building Utility-Scale Wind: Permitting and Regulation Lessons for County Decision-Makers

    Broader source: Energy.gov [DOE]

    The Four Corners Wind Resource Center will host this webinar exploring lessons learned in the permitting of utility-scale wind projects and the development of ordinances and regulations for...

  15. Cost-effective Lighting Retrofits: Lessons Learned

    E-Print Network [OSTI]

    Fisher, M. D.

    1994-01-01T23:59:59.000Z

    in cramped fixtures. Those who replace lamps are often more likely to replace failed integral units with cheap incandescents again, while with component-type units they tend to replace the failed fluorescent lamp only. - Where incandescent lamps are on a... fixtures, 9 and 13 watt quad tubes may not start in freezing weather. Twin 9be lamps of similar wattages may be a better ioice. Power factor can be quite low on some lagnetic ballasted products, while total ~rmonic distortion can be high on some...

  16. Lessons learned from Milagro Outrigger Detectors

    E-Print Network [OSTI]

    -filled PVC tubing) 2. Cylindrical sides (pre-assembled in two half sections) 3. Top piece that floats ... assembly steps · Liner components: TYVEK, PVC tubing and Ts, cable ties, stainless steel staples · Top penetrations (through smaller 10" access port) PVC tubes cover threaded rods that support/position the PMT John

  17. Lessons Learned from Microgrid Demonstrations Worldwide

    E-Print Network [OSTI]

    Marnay, Chris

    2014-01-01T23:59:59.000Z

    and test systems, Renewable and Sustainable Energy Reviews,around the world-a review, Renewable and Sustainable Energy29 Hachinohe Project (an all-renewable

  18. Lessons Re-learned: The Little Things

    SciTech Connect (OSTI)

    Perez, C., Lewis, T.

    2012-10-22T23:59:59.000Z

    This slide show discusses: connector choices; polishing technique (manual vs. machine); fiber interconnect construction; and deployment of fiber in the field.

  19. Lesson learned from (some) recurrent novae

    E-Print Network [OSTI]

    Mason, Elena

    2013-01-01T23:59:59.000Z

    In this talk we present early decline and nebular spectra of the recurrent novae YY Dor and nova LMC 2009. These and a few other recurrent novae of the same type, share similar spectral characteristics and evolution. We will critically discuss those common features suggesting same white dwarf progenitor and post outburst phases for all of them.

  20. Study of Light Scalars, the learned Lessons

    E-Print Network [OSTI]

    N. N. Achasov

    2011-09-02T23:59:59.000Z

    Attention is paid to the production mechanisms of the light scalars that reveal their nature. In the linear sigma model it is revealed the chiral shielding of the \\sigma(600) meson and shown that the \\sigma field is described by its four-quark component. The \\pi\\pi scattering amplitude is constructed taking into account the \\sigma(600) and f_0(980) mesons, the chiral shielding of \\sigma (600), the \\sigma(600)-f_0(980) mixing, and results, obtained on the base of the chiral expansion and the Roy equations. The data agree with the four-quark nature of \\sigma (600) and f_0(980). It is shown, that the kaon loop mechanism of the $\\phi$ radiative decays into the light scalar mesons, which is ratified by experiment, is the four-quark transition and points to the four-quark nature of the light scalars. It is shown also, that the light scalars are produced in the two photon collisions via four-quark transitions in contrast to the classic P wave tensor q\\bar q mesons, which are produced via two-quark transitions \\gamma\\gamma\\to q\\bar q, that points to the four-quark nature of the light scalar mesons, too. A programme of further investigations is laid down.