National Library of Energy BETA

Sample records for groundwater treatment system

  1. Hanford's Groundwater Treatment System Expands Already Impressive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of uranium." The uranium in the groundwater targeted by this system primarily came from U Plant, a facility used to recover uranium from waste sludge stored in underground tanks....

  2. Installation of reactive metals groundwater collection and treatment systems

    SciTech Connect (OSTI)

    Hopkins, J.K.; Primrose, A.L.; Vogan, J.; Uhland, J.

    1998-07-01

    Three groundwater plumes contaminated with volatile organic compounds (VOCs) and radionuclides at the Rocky Flats Environmental Technology Site are scheduled for remediation by 1999 based on the Rocky Flats Cleanup Agreement (RFCA) (DOE, 1996). These three plumes are among the top 20 environmental cleanup sites at Rocky Flats. One of these plumes, the Mound Site Plume, is derived from a previous drum storage area, and daylights as seeps near the South Walnut Creek drainage. Final design for remediation of the Mound Site Plume has been completed based on use of reactive metals to treat the contaminated groundwater, and construction is scheduled for early 1998. The two other plumes, the 903 Pad/Ryan`s Pit and the East Trenches Plumes, are derived from VOCs either from drums that leaked or that were disposed of in trenches. These two plumes are undergoing characterization and conceptual design in 1998 and construction is scheduled in 1999. The contaminants of concern in these plumes are tetrachloroethene, trichloroethene, carbon tetrachloride and low levels of uranium and americium.

  3. Situ treatment of contaminated groundwater

    DOE Patents [OSTI]

    McNab, Jr., Walt W. (Concord, CA); Ruiz, Roberto (Tracy, CA); Pico, Tristan M. (Livermore, CA)

    2001-01-01

    A system for treating dissolved halogenated organic compounds in groundwater that relies upon electrolytically-generated hydrogen to chemically reduce the halogenated compounds in the presence of a suitable catalyst. A direct current is placed across at least a pair, or an array, of electrodes which are housed within groundwater wells so that hydrogen is generated at the cathode and oxygen at the anode. A pump is located within the well housing in which the cathode(s) is(are) located and draws in groundwater where it is hydrogenated via electrolysis, passes through a well-bore treatment unit, and then transported to the anode well(s) for reinjection into the ground. The well-bore treatment involves a permeable cylinder located in the well bore and containing a packed bed of catalyst material that facilitates the reductive dehalogenation of the halogenated organic compounds by hydrogen into environmentally benign species such as ethane and methane. Also, electro-osmatic transport of contaminants toward the cathode also contributes to contaminant mass removal. The only above ground equipment required are the transfer pipes and a direct circuit power supply for the electrodes. The electrode wells in an array may be used in pairs or one anode well may be used with a plurality of cathode wells. The DC current flow between electrode wells may be periodically reversed which controls the formation of mineral deposits in the alkaline cathode well-bore water, as well as to help rejuvenate the catalysis.

  4. Unconventional Groundwater System Proves Effective in Reducing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unconventional Groundwater System Proves Effective in Reducing Contamination at West Valley Demonstration Project Unconventional Groundwater System Proves Effective in Reducing...

  5. New Groundwater Treatment Facility Begins Operation: Boost in...

    Office of Environmental Management (EM)

    Efficiency, Reduces Costs in Hanford Site Groundwater Treatment Recovery Act Funds Expand Groundwater Treatment at Hanford Site: Contractor CH2M HILL drills record number of wells...

  6. Impact of speciation on behaviour of uranium in a solar powered membrane system for treatment of brackish groundwater 

    E-Print Network [OSTI]

    Rossiter, Helfrid M.A.; Graham, Margaret C.; Schäfer, Andrea

    2010-01-01

    Factors affecting uranium removal from brackish groundwater using a direct solar powered ultrafiltration-nanofiltration/reverse osmosis membrane system were investigated during a field trial in the Australian outback. ...

  7. Groundwater monitoring system

    DOE Patents [OSTI]

    Ames, Kenneth R. (Pasco, WA); Doesburg, James M. (Richland, WA); Eschbach, Eugene A. (Richland, WA); Kelley, Roy C. (Kennewick, WA); Myers, David A. (Richland, WA)

    1987-01-01

    A groundwater monitoring system includes a bore, a well casing within and spaced from the bore, and a pump within the casing. A water impermeable seal between the bore and the well casing prevents surface contamination from entering the pump. Above the ground surface is a removable operating means which is connected to the pump piston by a flexible cord. A protective casing extends above ground and has a removable cover. After a groundwater sample has been taken, the cord is disconnected from the operating means. The operating means is removed for taking away, the cord is placed within the protective casing, and the cover closed and locked. The system is thus protected from contamination, as well as from damage by accident or vandalism.

  8. Oxidative particle mixtures for groundwater treatment

    DOE Patents [OSTI]

    Siegrist, Robert L. (Boulder, CO); Murdoch, Lawrence C. (Clemson, SC)

    2000-01-01

    The invention is a method and a composition of a mixture for degradation and immobilization of contaminants in soil and groundwater. The oxidative particle mixture and method includes providing a material having a minimal volume of free water, mixing at least one inorganic oxidative chemical in a granular form with a carrier fluid containing a fine grained inorganic hydrophilic compound and injecting the resulting mixture into the subsurface. The granular form of the inorganic oxidative chemical dissolves within the areas of injection, and the oxidative ions move by diffusion and/or advection, therefore extending the treatment zone over a wider area than the injection area. The organic contaminants in the soil and groundwater are degraded by the oxidative ions, which form solid byproducts that can sorb significant amounts of inorganic contaminants, metals, and radionuclides for in situ treatment and immobilization of contaminants. The method and composition of the oxidative particle mixture for long-term treatment and immobilization of contaminants in soil and groundwater provides for a reduction in toxicity of contaminants in a subsurface area of contamination without the need for continued injection of treatment material, or for movement of the contaminants, or without the need for continuous pumping of groundwater through the treatment zone, or removal of groundwater from the subsurface area of contamination.

  9. Treatment Resin Reduces Costs, Materials in Hanford Groundwater...

    Office of Environmental Management (EM)

    Treatment Resin Reduces Costs, Materials in Hanford Groundwater Cleanup - Efficiency delivered more than 6 million in cost savings, 3 million in annual savings Treatment Resin...

  10. Original article Modelling herbicide treatment impact on groundwater

    E-Print Network [OSTI]

    Boyer, Edmond

    Original article Modelling herbicide treatment impact on groundwater quality in a central Italy of different weed control strategies on groundwater quality in a Central Italy area (Umbria) where the drinking and twenty-two weed control strategies were tested for their groundwater concentrations. Two maps reporting

  11. Recovery Act Supports Construction of Site's Largest Groundwater Treatment Facility

    Broader source: Energy.gov [DOE]

    Construction of the largest groundwater treatment facility at the Hanford Site – a major American Recovery and Reinvestment Act project – is on schedule and more than 70 percent...

  12. Assessment of Groundwater Contamination, In Situ Treatment, and Disposal of Treatment

    E-Print Network [OSTI]

    Scanlon, Bridget R.

    Assessment of Groundwater Contamination, In Situ Treatment, and Disposal of Treatment Residuals in the Vicinity of Lubbock, Texas Report Prepared for Texas Commission on Environmental Quality Austin Texas ........................................................................................................ 2 GIS Analysis of Groundwater Quality Using Available Data

  13. Bioremediation: a study of genotoxicity of soil and groundwater from a former wood treatment facility 

    E-Print Network [OSTI]

    Gomez, Cristi Lea Rysc

    2002-01-01

    may be due to the sensitivity of the assay or genotoxic properties created by complex mixtures. Groundwater samples gave positive or cytotoxic responses in the Salmonella/microsome assay before treatment in the bioreactor system and negative responses...

  14. Field evaluation of a horizontal well recirculation system for groundwater treatment: Field demonstration at X-701B Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    SciTech Connect (OSTI)

    Korte, N.; Muck, M.; Kearl, P.; Siegrist, R.; Schlosser, R.; Zutman, J.; Houk, T.

    1998-08-01

    This report describes the field-scale demonstration performed as part of the project, In Situ Treatment of Mixed Contaminants in Groundwater. This project was a 3{1/2} year effort comprised of laboratory work performed at Oak Ridge National Laboratory and fieldwork performed at the US Department of Energy (DOE) Portsmouth Gaseous Diffusion Plant (PORTS). The overall goal of the project was to evaluate in situ treatment of groundwater using horizontal recirculation coupled with treatment modules. Specifically, horizontal recirculation was tested because of its application to thin, interbedded aquifer zones. Mixed contaminants were targeted because of their prominence at DOE sites and because they cannot be treated with conventional methods. The project involved several research elements, including treatment process evaluation, hydrodynamic flow and transport modeling, pilot testing at an uncontaminated site, and full-scale testing at a contaminated site. This report presents the results of the work at the contaminated site, X-701B at PORTS. Groundwater contamination at X-701B consists of trichloroethene (TCE) (concentrations up to 1800 mg/L) and technetium-998 (Tc{sup 99}) (activities up to 926 pCi/L).

  15. Passive treatment of wastewater and contaminated groundwater

    DOE Patents [OSTI]

    Phifer, Mark A.; Sappington, Frank C.; Millings, Margaret R.; Turick, Charles E.; McKinsey, Pamela C.

    2006-12-12

    A bioremediation system using inorganic oxide-reducing microbial consortia for the treatment of, inter alia coal mine and coal yard runoff uses a containment vessel for contaminated water and a second, floating phase for nutrients. Biodegradable oils are preferred nutrients.

  16. Passive treatment of wastewater and contaminated groundwater

    DOE Patents [OSTI]

    Phifer, Mark A. (N. Augusta, SC); Sappington, Frank C. (Dahlonega, GA); Millings, Margaret R. (N. Augusta, SC); Turick, Charles E. (Aiken, SC); McKinsey, Pamela C. (Aiken, SC)

    2007-11-06

    A bioremediation system using inorganic oxide-reducing microbial consortia for the treatment of, inter alia coal mine and coal yard runoff uses a containment vessel for contaminated water and a second, floating phase for nutrients. Biodegradable oils are preferred nutrients.

  17. In situ treatment of mixed contaminants in groundwater: Application of zero-valence iron and palladized iron for treatment of groundwater contaminated with trichloroethene and technetium-99

    SciTech Connect (OSTI)

    Korte, N.E.; Muck, M.T.; Zutman, J.L.; Schlosser, R.M. [Oak Ridge National Lab., Grand Junction, CO (United States); Liang, L.; Gu, B. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Siegrist, R.L. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; [Colorado School of Mines, Golden, CO (United States); Houk, T.C. [Portsmouth Gaseous Diffusion Plant, Piketon, OH (United States); Fernando, Q. [Univ. of Arizona, Tucson, AZ (United States)

    1997-04-01

    The overall goal of this portion of the project was to package one or more unit processes, as modular components in vertical and/or horizontal recirculation wells, for treatment of volatile organic compounds (VOCs) [e.g., trichloroethene (TCE)] and radionuclides [e.g., technetium (Tc){sup 99}] in groundwater. The project was conceived, in part, because the coexistence of chlorinated hydrocarbons and radionuclides has been identified as the predominant combination of groundwater contamination in the US Department of Energy (DOE) complex. Thus, a major component of the project was the development of modules that provide simultaneous treatment of hydrocarbons and radionuclides. The project objectives included: (1) evaluation of horizontal wells for inducing groundwater recirculation, (2) development of below-ground treatment modules for simultaneous removal of VOCs and radionuclides, and (3) demonstration of a coupled system (treatment module with recirculation well) at a DOE field site where both VOCs and radionuclides are present in the groundwater. This report is limited to the innovative treatment aspects of the program. A report on pilot testing of the horizontal recirculation system was the first report of the series (Muck et al. 1996). A comprehensive report that focuses on the engineering, cost and hydrodynamic aspects of the project has also been prepared (Korte et al. 1997a).

  18. Final construction and testing of an experimental sprinkler/groundwater treatment system for proposed use by the village of Utica, Nebraska.

    SciTech Connect (OSTI)

    NONE

    2005-06-17

    The testing described above demonstrates that the experimental sprinkler designed by Argonne could be successfully, and safely, used by the Village of Utica for irrigation of the town's playing fields, using contaminated (by carbon tetrachloride) groundwater from the shallow aquifer beneath the town. Routine operation of the sprinkler within the range of parameters identified by the testing program would effectively reduce carbon tetrachloride concentrations in the discharged spray reaching the ground to levels below the MCL (5 {micro}g/l). CCC/USDA and Argonne propose to test use of the experimental sprinkler by the Village of Utica during the next (Summer 2001) growing season, under Argonne supervision. Water will be supplied from the well to the sprinkler drive unit using a temporary, flexible (high-pressure hose) connection. Argonne will provide training to Village staff in the setup and use of the sprinkler, and will conduct periodic monitoring (proposed biweekly, initially) of the watering operations and sampling and analysis of the spray discharge from the unit, to ensure that the specified groundwater cleanup performance of the sprinkler system (to carbon tetrachloride values <5 {micro}g/L) is maintained. If testing of the sprinkler in this manner proves successful during 2001, CCC/USDA will seek to permanently transfer ownership and operation responsibilities for the sprinkler to the Utica Village Board.

  19. Environmental Aspects of Two Volatile Organic Compound Groundwater Treatment Designs at the Rocky Flats Site - 13135

    SciTech Connect (OSTI)

    Michalski, Casey C.; DiSalvo, Rick; Boylan, John

    2013-07-01

    DOE's Rocky Flats Site in Colorado is a former nuclear weapons production facility that began operations in the early 1950's. Because of releases of hazardous substances to the environment, the federally owned property and adjacent offsite areas were placed on the CERCLA National Priorities List in 1989. The final remedy was selected in 2006. Engineered components of the remedy include four groundwater treatment systems that were installed before closure as CERCLA-accelerated actions. Two of the systems, the Mound Site Plume Treatment System and the East Trenches Plume Treatment System, remove low levels of volatile organic compounds using zero-valent iron media, thereby reducing the loading of volatile organic compounds in surface water resulting from the groundwater pathway. However, the zero-valent iron treatment does not reliably reduce all volatile organic compounds to consistently meet water quality goals. While adding additional zero-valent iron media capacity could improve volatile organic compound removal capability, installation of a solar powered air-stripper has proven an effective treatment optimization in further reducing volatile organic compound concentrations. A comparison of the air stripper to the alternative of adding additional zero-valent iron capacity to improve Mound Site Plume Treatment System and East Trenches Plume Treatment System treatment based on several key sustainable remediation aspects indicates the air stripper is also more 'environmentally friendly'. These key aspects include air pollutant emissions, water quality, waste management, transportation, and costs. (authors)

  20. Pajarito Plateau Groundwater Flow and Transport Modeling Process-Level and Systems Models of Groundwater Flow and

    E-Print Network [OSTI]

    Lu, Zhiming

    Pajarito Plateau Groundwater Flow and Transport Modeling 1 Process-Level and Systems Models of Groundwater Flow and Transport Beneath the Pajarito Plateau: Migration of High Explosives from Technical Area Groundwater Modeling Project Systems Model Vadose Zone Model Regional Aquifer Model #12;Pajarito Plateau

  1. In-situ remediation system for groundwater and soils

    DOE Patents [OSTI]

    Corey, J.C.; Kaback, D.S.; Looney, B.B.

    1991-01-01

    The present invention relates to a system for in-situ remediation of contaminated groundwater and soil. In particular the present invention relates to stabilizing toxic metals in groundwater and soil. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  2. New Resin Improves Efficiency, Reduces Costs in Hanford Site Groundwater Treatment

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – A new resin EM, the Richland Operations Office, and contractor CH2M HILL Plateau Remediation Company are using in contaminated groundwater treatment is expected to increase...

  3. IMPROVING THE EFFICIENCY OF AN EXISTING GROUNDWATER REMEDIATION SYSTEM

    E-Print Network [OSTI]

    Illinois at Urbana-Champaign, University of

    Took advantage of available rebates to install solar panels ­ Southern Solar Array: 60 panel system (11.7 kilowatt total) 13 #12;GROUNDWATER SYSTEM ENERGY IMPROVEMENTS ­ Northern Solar Array: 56 panel system (10.9 kilowatt total) 14 #12;ENERGY IMPROVEMENT BENEFITS 15 #12;RETURN ON INVESTMENT: SOLAR PANELS 16 #12

  4. Hanford's Groundwater Treatment System Expands Already Impressive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing ProgramsDepartment of Energy Hanford

  5. 2005 ASHRAE. 109 Groundwater heat pump systems using standing column

    E-Print Network [OSTI]

    borehole that is filled with groundwater up to the level of the water table. Water is circulated from in growing numbers since the advent of geothermal heat pump systems and are recently receiving much more benefits, low maintenance, etc., as other forms of geothermal heat pump systems. The heat exchange rate

  6. Cleaning Up Groundwater in Areas South and Southeast of Brookhaven National Laboratory

    E-Print Network [OSTI]

    Cleaning Up Groundwater in Areas South and Southeast of Brookhaven National Laboratory This pamphlet summarizes the questions you or your neighbors raised about groundwater treatment systems National Laboratory have been listening to the concerns of the community about groundwater

  7. Siphons for Geosiphon{trademark} Treatment Systems

    SciTech Connect (OSTI)

    Phifer, M.A.

    2001-07-26

    GeoSiphon{trademark} systems (patent pending) induce contaminated groundwater flow through permeable treatment media by utilizing a siphon between two points of hydraulic head difference. A siphon is a closed conduit that conveys liquid from a point of higher hydraulic head to one of lower head after raising it to a higher intermediate elevation, at sub-atmospheric conditions (negative gauge pressures or vacuum), without external power input. All surface waters and groundwaters contain dissolved gases, which degas within a siphon due to the vacuum and temperature within the siphon. Bubbles form, and if not properly managed will accumulate in the siphon, gradually reducing the flow rate until the system is ultimately shut down. Therefore appropriate management of gas within a siphon is the primary factor that must be considered to maintain continuous siphon flow. This report provides an overview of GeoSiphon technology and generic details concerning de-gassing in siphons and associated gas management methods.

  8. Portable treatment systems study

    SciTech Connect (OSTI)

    Sherick, M.J.; Schwinkendorf, W.E.; Bechtold, T.E.; Cole, L.T.

    1997-03-01

    In developing their Site Treatment Plans (STPs), many of the Department of Energy installations identified some form of portable treatment, to facilitate compliant disposition of select mixed low-level wastestreams. The Environmental Management Office of Science and Technology requested that a systems study be performed to better define the potential role of portable treatment with respect to mixed low-level waste, highlight obstacles to implementation, and identify opportunities for future research and development emphasis. The study was performed by first establishing a representative set of mixed waste, then formulating portable treatment system concepts to meet the required processing needs for these wastes. The portable systems that were conceptualized were evaluated and compared to a fixed centralized treatment alternative. The system evaluations include a life-cycle cost analysis and an assessment of regulatory, institutional, and technical issues associated with the potential use of portable systems. The results of this study show that when all costs are included, there are no significant cost differences between portable systems and fixed systems. However, it is also emphasized that many uncertainties exist that could impact the cost of implementing portable treatment systems. Portable treatment could be made more attractive through private sector implementation, although there is little economic incentive for a commercial vendor to develop small, specialized treatment capabilities with limited applicability. Alternatively, there may also be valid reasons why fixed units cannot be used for some problematic wastestreams. In any event, there are some site-specific problems that still need to be addressed, and there may be some opportunity for research and development to make a positive impact in these areas.

  9. Tide-induced groundwater fluctuation in a coastal leaky confined aquifer system extending under the sea

    E-Print Network [OSTI]

    Jiao, Jiu Jimmy

    Tide-induced groundwater fluctuation in a coastal leaky confined aquifer system extending under, China Abstract. This paper presents the analytical solution of groundwater response to tidal fluctuation length, dimensionless leakage, and tidal efficiency on the groundwater level fluctuations in the inland

  10. Experimental and numerical investigation of saltwater intrusion dynamics in flux-controlled groundwater systems

    E-Print Network [OSTI]

    Clement, Prabhakar

    -controlled groundwater systems Sun Woo Chang1 and T. Prabhakar Clement1 Received 13 March 2012; revised 25 June 2012; accepted 12 July 2012; published 19 September 2012. [1] Sea level rise and reduction of groundwater fluxes change­induced hydrological variables, groundwater flux, on saltwater intrusion process. We have

  11. Groundwater Contamination

    Office of Environmental Management (EM)

    Trichloroethylene, Technetium-99 Groundwater collection and treatment via building sumps ongoing since 1989. Removal of source areas in 1998 and 2001. Additional potential...

  12. A Guide for Using the Transient Ground-Water Flow Model of the Death Valley Regional Ground-Water Flow System, Nevada and California

    SciTech Connect (OSTI)

    Joan B. Blainey; Claudia C. Faunt, and Mary C. Hill

    2006-05-16

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  13. Onsite Wastewater Treatment Systems: Aerobic Treatment Unit 

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2008-10-31

    Aerobic units treat wastewater using the same process, only scaled down, as municipal wastewater treatment systems. This publication explains how aerobic units work, what their design requirements are, and how to maintain them....

  14. Tritium monitoring in groundwater and evaluation of model predictions for the Hanford Site 200 Area Effluent Treatment Facility

    SciTech Connect (OSTI)

    Barnett, D.B.; Bergeron, M.P.; Cole, C.R.; Freshley, M.D.; Wurstner, S.K.

    1997-08-01

    The Effluent Treatment Facility (ETF) disposal site, also known as the State-Approved Land Disposal Site (SALDS), receives treated effluent containing tritium, which is allowed to infiltrate through the soil column to the water table. Tritium was first detected in groundwater monitoring wells around the facility in July 1996. The SALDS groundwater monitoring plan requires revision of a predictive groundwater model and reevaluation of the monitoring well network one year from the first detection of tritium in groundwater. This document is written primarily to satisfy these requirements and to report on analytical results for tritium in the SALDS groundwater monitoring network through April 1997. The document also recommends an approach to continued groundwater monitoring for tritium at the SALDS. Comparison of numerical groundwater models applied over the last several years indicate that earlier predictions, which show tritium from the SALDS approaching the Columbia River, were too simplified or overly robust in source assumptions. The most recent modeling indicates that concentrations of tritium above 500 pCi/L will extend, at most, no further than {approximately}1.5 km from the facility, using the most reasonable projections of ETF operation. This extent encompasses only the wells in the current SALDS tritium-tracking network.

  15. Edible Aquifers Activity Steps 1. Review what groundwater is, the geology of groundwater hydrologic systems, and

    E-Print Network [OSTI]

    Lawrence, Deborah

    , sprinkles; a top soil layer: 7. Pour clear soda onto the soil (precipitation) & observe water percolation the decline in the water table. 9. Add pollutants to the top soil (food coloring, concentrated juiceQ.com) Groundwater is any water found below the land surface. It is found as soil moisture, in aquifers in the pore

  16. Oil and Gas CDT Quantifying the role of groundwater in hydrocarbon systems using noble gas

    E-Print Network [OSTI]

    Henderson, Gideon

    Oil and Gas CDT Quantifying the role of groundwater in hydrocarbon systems using noble gas isotopes by groundwater (or oil) degassing. Other natural gas fields may have been produced in-situ or migrated as a free expert academics from across the CDT and also experienced oil and gas industry professionals

  17. In situ treatment of mixed contaminants in groundwater: Review of candidate processes

    SciTech Connect (OSTI)

    Korte, N.E. [ed.] [Oak Ridge National Lab., Grand Junction, CO (United States)] [ed.; Oak Ridge National Lab., Grand Junction, CO (United States); Siegrist, R.L. [ed.] [Oak Ridge National Lab., TN (United States)] [ed.; Oak Ridge National Lab., TN (United States); Ally, M. [and others] [and others

    1994-10-01

    This document describes the screening and preliminary evaluation of candidate treatment for use in treating mixed contaminants volatile organic compounds (VOCs) and radionuclides in groundwater. Treating mixed contaminants presents unusual difficulties. Typically, VOCs are the most abundant contaminants, but the presence of radionuclides results in additional health concerns that must be addressed, usually by a treatment approach different from that used for VOCs. Furthermore, the presence of radionuclides may yield mixed solid wastes if the VOCs are treated by conventional means. These issues were specifically addressed in the evaluation of candidate treatment processes for testing in this program. Moreover, because no research or early development of a particular process would be performed, the technology review also focused on technologies that could be readily adapted and integrated for use with mixed contaminants. The objective is to couple emerging or available processes into treatment modules for use in situ. The three year project, to be completed in September 1996, includes a full-scale field demonstration. The findings reported in this document encompass all activities through the treatment process evaluations.

  18. Permafrost thaw in a nested groundwater-flow system Jeffrey M. McKenzie & Clifford I. Voss

    E-Print Network [OSTI]

    McKenzie, Jeffrey M.

    Groundwater flow in cold regions containing permafrost accelerates climate-warming-driven thaw and changesPermafrost thaw in a nested groundwater-flow system Jeffrey M. McKenzie & Clifford I. Voss Abstract controls the groundwater/surface-water-geomorphology system; hence, prediction and mitigation of impacts

  19. LITERATURE SURVEY FOR GROUNDWATER TREATMENT OPTIONS FOR NITRATE IODINE-129 AND URANIUM 200-ZP-1 OPERABLE UNIT HANFORD SITE

    SciTech Connect (OSTI)

    BYRNES ME

    2008-06-05

    This literature review presents treatment options for nitrate, iodine-129, and uranium, which are present in groundwater at the 200-ZP-I Groundwater Operable Unit (OU) within the 200 West Area of the Hanford Site. The objective of this review is to determine available methods to treat or sequester these contaminants in place (i.e., in situ) or to pump-and-treat the groundwater aboveground (i.e., ex situ). This review has been conducted with emphasis on commercially available or field-tested technologies, but theoretical studies have, in some cases, been considered when no published field data exist. The initial scope of this literature review included only nitrate and iodine-I 29, but it was later expanded to include uranium. The focus of the literature review was weighted toward researching methods for treatment of nitrate and iodine-129 over uranium because of the relatively greater impact of those compounds identified at the 200-ZP-I OU.

  20. TREATMENT SYSTEMS AN INTEGRATED APPROACH

    E-Print Network [OSTI]

    for on-site management and treatment of effluent and solid waste 3. Provide for surface water attenuationECOLOGICAL TREATMENT SYSTEMS AN INTEGRATED APPROACH TO THE TREATMENT OF WASTE AND WASTE WATER In nature there is no waste, because the waste of one organism is food for another Inherent

  1. NUMERICAL MODEL FOR LAND SUBSIDENCE IN SHALLOW GROUNDWATER SYSTEMS

    E-Print Network [OSTI]

    Narasimhan, T.N.

    2010-01-01

    and R. L. Klausing, 1969, Land subsidence due to groundwater7612-10874 Fig. S. Land subsidence at Pixley, California:Symposium on Land Subsidence, Anaheim, CA, December 10-

  2. Reactive barrier technologies for treatment of contaminated groundwater at Rocky Flats

    SciTech Connect (OSTI)

    Marozas, D.C.; Bujewski, G.E.; Castaneda, N.

    1997-12-31

    The U.S. Department of Energy (DOE) Office of Science and Technology Subsurface Contaminants Focus Area is supporting the investigation of reactive barrier technologies to mitigate the risks associated with mixed organic/radioactive waste at several DOE sites. Groundwater from a small contaminated plume at the Rocky Flats Environmental Technology Site (RFETS) is being used to evaluate passive reactive material treatment. Permeable reactive barriers which intercept contaminants and destroy the VOC component while containing radionuclides are attractive for a number of reasons relating to public and regulatory acceptance. In situ treatment keeps contaminants away from the earth`s surface, there is no above-ground treatment equipment that could expose workers and the public and operational costs are expected to be lower than currently used technologies. This paper will present results from preliminary site characterization and in-field small-scale column testing of reactive materials at RFETS. Successful demonstration is expected to lead to full-scale implementation of the technology at several DOE sites, including Rocky Flats.

  3. Electrical characterization of non-Fickian transport in groundwater and hyporheic systems

    E-Print Network [OSTI]

    Singha, Kamini

    Electrical characterization of non-Fickian transport in groundwater and hyporheic systems Kamini be quantified by combining electrical geophysical methods and electrically conductive tracers. Whereas direct geochemical measurements of solute preferentially sample the mobile domain, electrical geophysical methods

  4. The Application of Frequency-Conversion Technology in Groundwater Source Heat Pump System Reconstruction 

    E-Print Network [OSTI]

    Dai, X.; Song, S.

    2006-01-01

    Deep well pump power is relatively ubiquitous in the groundwater heat pump air-conditioning system in some hotels in Hunan, and the heat pump usually meets the change of the load by throttling. Therefore, frequency conversion technology is proposed...

  5. Effect of dissolved CO2 on a shallow groundwater system: A controlled...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Effect of dissolved CO2 on a shallow groundwater system: A controlled release experiment Citation Details In-Document Search Title: Effect of dissolved CO2 on a...

  6. In-situ remediation system for groundwater and soils

    DOE Patents [OSTI]

    Corey, J.C.; Kaback, D.S.; Looney, B.B.

    1993-11-23

    A method and system are presented for in-situ remediation of contaminated groundwater and soil where the contaminants, such as toxic metals, are carried in a subsurface plume. The method comprises selection and injection into the soil of a fluid that will cause the contaminants to form stable, non-toxic compounds either directly by combining with the contaminants or indirectly by creating conditions in the soil or changing the conditions of the soil so that the formation of stable, non-toxic compounds between the contaminants and existing substances in the soil are more favorable. In the case of non-toxic metal contaminants, sulfides or sulfates are injected so that metal sulfides or sulfates are formed. Alternatively, an inert gas may be injected to stimulate microorganisms in the soil to produce sulfides which, in turn, react with the metal contaminants. Preferably, two wells are used, one to inject the fluid and one to extract the unused portion of the fluid. The two wells work in combination to create a flow of the fluid across the plume to achieve better, more rapid mixing of the fluid and the contaminants. 4 figures.

  7. In-situ remediation system for groundwater and soils

    DOE Patents [OSTI]

    Corey, John C. (212 Lakeside Dr., Aiken, SC 29803); Kaback, Dawn S. (1932 Cottonwood Dr., Aiken, SC 29803); Looney, Brian B. (1135 Ridgemont Dr., Aiken, SC 29803)

    1993-01-01

    A method and system for in-situ remediation of contaminated groundwater and soil where the contaminants, such as toxic metals, are carried in a subsurface plume. The method comprises selection and injection into the soil of a fluid that will cause the contaminants to form stable, non-toxic compounds either directly by combining with the contaminants or indirectly by creating conditions in the soil or changing the conditions of the soil so that the formation of stable, non-toxic compounds between the contaminants and existing substances in the soil are more favorable. In the case of non-toxic metal contaminants, sulfides or sulfates are injected so that metal sulfides or sulfates are formed. Alternatively, an inert gas may be injected to stimulate microorganisms in the soil to produce sulfides which, in turn, react with the metal contaminants. Preferably, two wells are used, one to inject the fluid and one to extract the unused portion of the fluid. The two wells work in combination to create a flow of the fluid across the plume to achieve better, more rapid mixing of the fluid and the contaminants.

  8. Changes to the groundwater system, from 1888 to present, in a highly-urbanized coastal area in Hong Kong, China

    E-Print Network [OSTI]

    Jiao, Jiu Jimmy

    Changes to the groundwater system, from 1888 to present, in a highly-urbanized coastal area in Hong Kong, China Jiu Jimmy Jiao & Chi-man Leung & Guoping Ding Abstract Historical groundwater levels to reveal changes to the groundwater regime over the last century. The coastal springs and seeps have

  9. Integrated nonthermal treatment system study

    SciTech Connect (OSTI)

    Biagi, C.; Bahar, D.; Teheranian, B.; Vetromile, J. [Morrison Knudsen Corp. (United States); Quapp, W.J. [Nuclear Metals (United States); Bechtold, T.; Brown, B.; Schwinkendorf, W. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States); Swartz, G. [Swartz and Associates (United States)

    1997-01-01

    This report presents the results of a study of nonthermal treatment technologies. The study consisted of a systematic assessment of five nonthermal treatment alternatives. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The alternatives considered were innovative nonthermal treatments for organic liquids and sludges, process residue, soil and debris. Vacuum desorption or various washing approaches are considered for treatment of soil, residue and debris. Organic destruction methods include mediated electrochemical oxidation, catalytic wet oxidation, and acid digestion. Other methods studied included stabilization technologies and mercury separation of treatment residues. This study is a companion to the integrated thermal treatment study which examined 19 alternatives for thermal treatment of MLLW waste. The quantities and physical and chemical compositions of the input waste are based on the inventory database developed by the US Department of Energy. The Integrated Nonthermal Treatment Systems (INTS) systems were evaluated using the same waste input (2,927 pounds per hour) as the Integrated Thermal Treatment Systems (ITTS). 48 refs., 68 figs., 37 tabs.

  10. Complex groundwater flow systems as traveling agent models

    E-Print Network [OSTI]

    López-Corona, Oliver; Escolero, Oscar; González, Tomás; Morales-Casique, Eric

    2014-01-01

    Analyzing field data from pumping tests, we show that as with many other natural phenomena, groundwater flow exhibits a complex dynamics described by 1/f power spectrum. This result is theoretically studied within an agent perspective. Using a traveling agent model, we prove that this statistical behavior emerges when the medium is complex. Some heuristic reasoning is provided to justify both spatial and dynamic complexity, as the result of the superposition of an infinite number of stochastic processes. Even more, we show that this implies that non-Kolmogorovian probability is needed for its study, and provide a set of new partial differential equations for groundwater flow.

  11. Beneficial effects of groundwater entry into liquid-dominated geothermal systems

    SciTech Connect (OSTI)

    Lippmann, M.J. ); Truesdell, A.H. )

    1990-04-01

    In all active liquid-dominated geothermal systems there is continuous circulation of mass and transfer of heat, otherwise they would slowly cool and fade away. In the natural state these systems are in dynamic equilibrium with the surrounding colder groundwater aquifers. The ascending geothermal fluids cool conductively, boil, or mix with groundwaters, and ultimately may discharge at the surface as fumaroles or hot springs. With the start of fluid production and the lowering of reservoir pressure, the natural equilibrium is disrupted and cooler groundwater tends to enter the reservoir. Improperly constructed or damaged wells, and wells located near the margins of the geothermal system, exhibit temperature reductions (and possibly scaling from mixing of chemically distinct fluids) as the cooler-water moves into the reservoir. These negative effects, especially in peripheral wells are, however, compensated by the maintenance of reservoir pressure and a reduction in reservoir boiling that might result in mineral precipitation in the formation pores and fractures. The positive effect of cold groundwater entry on the behavior of liquid-dominated system is illustrated by using simple reservoir models. The simulation results show that even though groundwater influx into the reservoir causes cooling of fluids produced from wells located near the cold-water recharge area, it also reduces pressure drawdown and boiling in the exploited zone, and sweeps the heat stored in the reservoir rocks toward production wells, thus increasing the productive life of the wells and field. 9 refs.

  12. Update to the Ground-Water Withdrawals Database for the Death Valley REgional Ground-Water Flow System, Nevada and California, 1913-2003

    SciTech Connect (OSTI)

    Michael T. Moreo; and Leigh Justet

    2008-07-02

    Ground-water withdrawal estimates from 1913 through 2003 for the Death Valley regional ground-water flow system are compiled in an electronic database to support a regional, three-dimensional, transient ground-water flow model. This database updates a previously published database that compiled estimates of ground-water withdrawals for 1913–1998. The same methodology is used to construct each database. Primary differences between the 2 databases are an additional 5 years of ground-water withdrawal data, well locations in the updated database are restricted to Death Valley regional ground-water flow system model boundary, and application rates are from 0 to 1.5 feet per year lower than original estimates. The lower application rates result from revised estimates of crop consumptive use, which are based on updated estimates of potential evapotranspiration. In 2003, about 55,700 acre-feet of ground water was pumped in the DVRFS, of which 69 percent was used for irrigation, 13 percent for domestic, and 18 percent for public supply, commercial, and mining activities.

  13. Method and device for removing a non-aqueous phase liquid from a groundwater system

    DOE Patents [OSTI]

    Looney, Brian B. (Aiken, SC); Rossabi, Joseph (Aiken, SC); Riha, Brian D. (Augusta, GA)

    2002-01-01

    A device for removing a non-aqueous phase liquid from a groundwater system includes a generally cylindrical push-rod defining an internal recess therein. The push-rod includes first and second end portions and an external liquid collection surface. A liquid collection member is detachably connected to the push-rod at one of the first and second end portions thereof. The method of the present invention for removing a non-aqueous phase liquid from a contaminated groundwater system includes providing a lance including an external hydrophobic liquid collection surface, an internal recess, and a collection chamber at the bottom end thereof. The lance is extended into the groundwater system such that the top end thereof remains above the ground surface. The liquid is then allowed to collect on the liquid collection surface, and flow downwardly by gravity into the collection chamber to be pumped upwardly through the internal recess in the lance.

  14. In-situ remediation system and method for contaminated groundwater

    DOE Patents [OSTI]

    Corey, John C. (Aiken, SC); Looney, Brian B. (Aiken, SC); Kaback, Dawn S. (Aiken, SC)

    1989-01-01

    A system for removing volatile contaminants from a subsurface plume of contamination comprising two sets of wells, a well for injecting a fluid into a saturated zone on one side of the plume and an extracting well for collecting the fluid together with volatilized contaminants from the plume on the other side of the plume. The fluid enables the volatile contaminants to be volatilized and carried therewith through the ground to the extracting well. Injecting and extracting wells are preferably horizontal wells positioned below the plume in the saturated zone and above the plume in the vadose zone, respectively. The fluid may be air or other gas or a gas and liquid mixture depending on the type of contaminant to be removed and may be preheated to facilitate volatilization. Treatment of the volatilized contamination may be by filtration, incineration, atmospheric dispersion or the like.

  15. In-situ remediation system and method for contaminated groundwater

    DOE Patents [OSTI]

    Corey, J.C.; Looney, B.B.; Kaback, D.S.

    1989-05-23

    A system for removing volatile contaminants from a subsurface plume of contamination comprising two sets of wells, a well for injecting a fluid into a saturated zone on one side of the plume and an extracting well for collecting the fluid together with volatilized contaminants from the plume on the other side of the plume. The fluid enables the volatile contaminants to be volatilized and carried therewith through the ground to the extracting well. Injecting and extracting wells are preferably horizontal wells positioned below the plume in the saturated zone and above the plume in the vadose zone, respectively. The fluid may be air or other gas or a gas and liquid mixture depending on the type of contaminant to be removed and may be preheated to facilitate volatilization. Treatment of the volatilized contamination may be by filtration, incineration, atmospheric dispersion or the like. 3 figs.

  16. Research project on CO2 geological storage and groundwater resources: Large-scale hydrological evaluation and modeling of impact on groundwater systems

    E-Print Network [OSTI]

    Birkholzer, Jens; Zhou, Quanlin; Rutqvist, Jonny; Jordan, Preston; Zhang, K.; Tsang, Chin-Fu

    2008-01-01

    storage on shallow groundwater and pressure-controlled72 5.2. Modeling of Regional Groundwater2 Geological Storage and Groundwater Resources Large-Scale

  17. Lockheed Martin Energy Systems, Inc., Groundwater Program Office. Annual report for fiscal year 1994

    SciTech Connect (OSTI)

    NONE

    1994-09-30

    This edition of the Lockheed Martin Energy Systems, Inc., (Energy Systems) Groundwater Program Annual Report summarizes the work carried out by the Energy Systems Groundwater Program Office (GWPO) for fiscal year (FY) 1994. The GWPO is responsible for coordination and oversight for all components of the groundwater programs at the three Oak Ridge facilities [Oak Ridge National Laboratory (ORNL), the Oak Ridge Y-12 Plant, and the Oak Ridge K-25 Site], as well as the Paducah and Portsmouth Gaseous Diffusion Plants (PGDP and PORTS, respectively.) This report describes the administrative framework of the GWPO including staffing, organization, and funding sources. In addition, summaries are provided of activities involving the Technical Support staff at the five facilities. Finally, the results of basic investigations designed to improve our understanding of the major processes governing groundwater flow and contaminant migration on the Oak Ridge Reservation (ORR) are reported. These investigations are conducted as part of the Oak Ridge Reservation Hydrology and Geology Studies (ORRHAGS) program. The relevance of these studies to the overall remediation responsibilities of Energy Systems is discussed.

  18. Onsite Wastewater Treatment Systems: Constructed Wetlands 

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2008-10-23

    A constructed wetland system for domestic wastewater treatment is designed to mimic the natural wetland treatment process of Mother Nature. This publication explains the treatment, design, operation and maintenance of constructed wetlands....

  19. In situ treatment of arsenic contaminated groundwater by aquifer iron coating: Experimental Study

    SciTech Connect (OSTI)

    Xie, Xianjun; Wang, Yanxin; Pi, Kunfu; Liu, Chongxuan; Li, Junxia; Liu, Yaqing; Wang, Zhiqiang; Duan, Mengyu

    2015-09-15

    In situ arsenic removal from groundwater by an iron coating method has great potential to be a cost effective and simple groundwater remediation technique, especially in rural and remote areas where groundwater is used as the main source of drinking water. The in situ arsenic removal technique was first optimized by simulating arsenic removal in various quartz sand columns under anoxic conditions., Its effectiveness was then evaluated in an actual high-arsenic groundwater environment. The mechanism of arsenic removal by the iron coating was investigated under different conditions using scanning electron microscopy (SEM)/X-ray absorption spectroscopy, an electron microprobe, and Fourier transformation infrared spectroscopy. A 4-step alternative cycle aquifer iron coating method was developed. A continuous injection of 5 mmol/L FeSO4 and 2.5 mmol/L NaClO for 96 hours can create a uniform coating of crystalline goethite on the surface of quartz sand in the columns without causing clogging. At a flow rate of 0.45 cm/min of the injection reagents (vi), the time for arsenic (as Na2HAsO4) to pass through the iron-coated quartz sand column was approximately 35 hours, which was much longer than that for tracer fluorescein sodium (approximately 2 hours). The retardation factor of arsenic was 23, and its adsorption capacity was 0.11 mol As per mol Fe, leading to an excellent arsenic removal. In situ arsenic removal from groundwater in an aquifer was achieved by simultaneous injections of As (V) and Fe (II) reagents. When the arsenic content in the groundwater was 233 ?g/L, the aqueous phase arsenic was completely removed with an arsenic adsorption of 0.05 mol As per mol Fe. Arsenic fixation resulted from a process of adsorption/co-precipitation, in which arsenic and iron likely formed the arsenic-bearing iron mineral phases with poor crystallinity by way of bidentate binuclear complexes. Thus, the high arsenic removal efficiency of the technique likely resulted from the expanded specific iron oxide/hydroxide surface area with poor crystallinity and from coprecipitation.

  20. 4, 11331151, 2007 Groundwater

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    HESSD 4, 1133­1151, 2007 Groundwater vulnerability assessment and WFD K. Berkhoff Title Page are under open-access review for the journal Hydrology and Earth System Sciences Groundwater vulnerability@em.uni-frankfurt.de) 1133 #12;HESSD 4, 1133­1151, 2007 Groundwater vulnerability assessment and WFD K. Berkhoff Title Page

  1. Recovery Act Funds Expand Groundwater Treatment at Hanford Site: Contractor CH2M HILL drills record number of wells

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – Workers at the Hanford Site have surpassed goals for drilling wells to detect and remove contamination from groundwater.

  2. Supplemental Assessment of the Y-12 Groundwater Protection Program Using Monitoring and Remediation Optimization System Software

    SciTech Connect (OSTI)

    Elvado Environmental LLC; GSI Environmental LLC

    2009-01-01

    A supplemental quantitative assessment of the Groundwater Protection Program (GWPP) at the Y-12 National Security Complex (Y-12) in Oak Ridge, TN was performed using the Monitoring and Remediation Optimization System (MAROS) software. This application was previously used as part of a similar quantitative assessment of the GWPP completed in December 2005, hereafter referenced as the 'baseline' MAROS assessment (BWXT Y-12 L.L.C. [BWXT] 2005). The MAROS software contains modules that apply statistical analysis techniques to an existing GWPP analytical database in conjunction with hydrogeologic factors, regulatory framework, and the location of potential receptors, to recommend an improved groundwater monitoring network and optimum sampling frequency for individual monitoring locations. The goal of this supplemental MAROS assessment of the Y-12 GWPP is to review and update monitoring network optimization recommendations resulting from the 2005 baseline report using data collected through December 2007. The supplemental MAROS assessment is based on the findings of the baseline MAROS assessment and includes only the groundwater sampling locations (wells and natural springs) currently granted 'Active' status in accordance with the Y-12 GWPP Monitoring Optimization Plan (MOP). The results of the baseline MAROS assessment provided technical rationale regarding the 'Active' status designations defined in the MOP (BWXT 2006). One objective of the current report is to provide a quantitative review of data collected from Active but infrequently sampled wells to confirm concentrations at these locations. This supplemental MAROS assessment does not include the extensive qualitative evaluations similar to those presented in the baseline report.

  3. Onsite Wastewater Treatment Systems: Liquid Chlorination 

    E-Print Network [OSTI]

    Weaver, Richard; Lesikar, Bruce J.; Richter, Amanda; O'Neill, Courtney

    2008-10-23

    This publication explains the process, components, legal requirements, factors affecting performance, and maintenance needs of liquid chlorination systems for onsite wastewater treatment....

  4. Hydrogeologic evaluation and numerical simulation of the Death Valley regional ground-water flow system, Nevada and California

    SciTech Connect (OSTI)

    D`Agnese, F.A.; Faunt, C.C.; Turner, A.K.; Hill, M.C.

    1997-12-31

    Yucca Mountain is being studied as a potential site for a high-level radioactive waste repository. In cooperation with the U.S. Department of Energy, the U.S. Geological Survey is evaluating the geologic and hydrologic characteristics of the ground-water system. The study area covers approximately 100,000 square kilometers between lat 35{degrees}N., long 115{degrees}W and lat 38{degrees}N., long 118{degrees}W and encompasses the Death Valley regional ground-water flow system. Hydrology in the region is a result of both the and climatic conditions and the complex described as dominated by interbasinal flow and may be conceptualized as having two main components: a series of relatively shallow and localized flow paths that are superimposed on deeper regional flow paths. A significant component of the regional ground-water flow is through a thick Paleozoic carbonate rock sequence. Throughout the regional flow system, ground-water flow is probably controlled by extensive and prevalent structural features that result from regional faulting and fracturing. Hydrogeologic investigations over a large and hydrogeologically complex area impose severe demands on data management. This study utilized geographic information systems and geoscientific information systems to develop, store, manipulate, and analyze regional hydrogeologic data sets describing various components of the ground-water flow system.

  5. Onsite Wastewater Treatment Systems: Ultraviolet Light Disinfection 

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2008-10-02

    Some onsite wastewater treatment systems include a disinfection component. This publication explains how homeowners can disinfect wastewater with ultraviolet light, what the components of such a system are, what factors affect the performance of a...

  6. Groundwater and Terrestrial Water Storage, 

    E-Print Network [OSTI]

    Rodell, M; Chambers, D P; Famiglietti, J S

    2011-01-01

    T. E. Reilly, 2002: Flow and storage in groundwater systems.Estimating ground water storage changes in the Mississippistorage..

  7. Onsite Wastewater Treatment Systems: Spray Distribution System 

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2008-10-23

    Spray distribution systems for wastewater are much like lawn sprinkler systems, in that they spray treated wastewater over the surface of a yard. This publication explains how spray distribution systems work, what their design requirements are...

  8. System and process for biomass treatment

    DOE Patents [OSTI]

    Dunson, Jr., James B; Tucker, III, Melvin P; Elander, Richard T; Lyons, Robert C

    2013-08-20

    A system including an apparatus is presented for treatment of biomass that allows successful biomass treatment at a high solids dry weight of biomass in the biomass mixture. The design of the system provides extensive distribution of a reactant by spreading the reactant over the biomass as the reactant is introduced through an injection lance, while the biomass is rotated using baffles. The apparatus system to provide extensive assimilation of the reactant into biomass using baffles to lift and drop the biomass, as well as attrition media which fall onto the biomass, to enhance the treatment process.

  9. Onsite Wastewater Treatment Systems: Operation and Maintenance 

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2008-10-23

    Two-compartment septic tank Perforated pipe for effluent disposal Sand/loam soil Gravel Geotextile fabric Onsite wastewater treatment systems Operation and maintenance L-5347 8-08 Figure 1: A septic tank and soil absorption field system. I f your home or business uses... system or consult manufactur- ers? literature. A conventional septic system ?the most common onsite wastewa- ter treatment system?consists of a septic tank and a soil absorption field. Wastewater from a home or busi- ness first goes to the septic tank...

  10. Renewable Energy Powered Water Treatment Systems 

    E-Print Network [OSTI]

    Richards, Bryce S.; Schäfer, Andrea

    2009-01-01

    There are many motivations for choosing renewable energy technologies to provide the necessary energy to power water treatment systems for reuse and desalination. These range from the lack of an existing electricity grid, ...

  11. Onsite Wastewater Treatment Systems: Sand Filters 

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2008-10-23

    Sand filters are beds of granular material, or sand, drained from underneath so that pretreated wastewater can be treated, collected and distributed to a land application system. This publication explains the treatment, design, operation...

  12. TREATMENT TESTS FOR EX SITU REMOVAL OF CHROMATE & NITRATE & URANIUM (VI) FROM HANFORD (100-HR-3) GROUNDWATER FINAL REPORT

    SciTech Connect (OSTI)

    BECK MA; DUNCAN JB

    1994-01-03

    This report describes batch and ion exchange column laboratory scale studies investigating ex situ methods to remove chromate (chromium [VI]), nitrate (NO{sub 3}{sup -}) and uranium (present as uranium [VI]) from contaminated Hanford site groundwaters. The technologies investigated include: chemical precipitation or coprecipitation to remove chromate and uranium; and anion exchange to remove chromate, uranium and nitrate. The technologies investigated were specified in the 100-HR-3 Groundwater Treatability Test Plan. The method suggested for future study is anion exchange.

  13. Wellbottom fluid implosion treatment system

    DOE Patents [OSTI]

    Brieger, Emmet F. (HC 67 Box 58, Nogal, NM 88341)

    2001-01-01

    A system for inducing implosion shock forces on perforation traversing earth formations with fluid pressure where an implosion tool is selected relative to a shut in well pressure and a tubing pressure to have a large and small area piston relationship in a well tool so that at a predetermined tubing pressure the pistons move a sufficient distance to open an implosion valve which permits a sudden release of well fluid pressure into the tubing string and produces an implosion force on the perforations. A pressure gauge on the well tool records tubing pressure and well pressure as a function of time.

  14. 2, 939970, 2005 Groundwater com-

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    HESSD 2, 939­970, 2005 Groundwater com- partmentalisation E. A. Mohamed and R. H. Worden Title Page-access review for the journal Hydrology and Earth System Sciences Groundwater compartmentalisation is licensed under a Creative Commons License. 939 #12;HESSD 2, 939­970, 2005 Groundwater com

  15. On-Site Wastewater Treatment Systems: Graywater 

    E-Print Network [OSTI]

    Melton, Rebecca; Lesikar, Bruce J.; Smith, David; O'Neill, Courtney

    2008-04-03

    . meet plant water requirements during peak-water-use months. However, such sizing can follow the guidelines for the soil-absorption component of an onsite wastewater treatment system. These sizing guidelines are based on type of soil accepting... State Soil and Water Conservation Board USEPA 319(h) Program Texas On-Site Wastewater Treatment Research Council Texas AgriLife Extension Service Texas Commission on Environmental Quality Texas AgriLife Research USDA Water Quality Demonstration...

  16. Method to remove uranium/vanadium contamination from groundwater

    DOE Patents [OSTI]

    Metzler, Donald R. (DeBeque, CO); Morrison, Stanley (Grand Junction, CO)

    2004-07-27

    A process for removing uranium/vanadium-based contaminants from groundwater using a primary in-ground treatment media and a pretreatment media that chemically adjusts the groundwater contaminant to provide for optimum treatment by the primary treatment media.

  17. Method to Remove Uranium/Vanadium Contamination from Groundwater

    DOE Patents [OSTI]

    Metzler, Donald R.; Morrison Stanley

    2004-07-27

    A process for removing uranium/vanadium-based contaminants from groundwater using a primary in-ground treatment media and a pretreatment media that chemically adjusts the groundwater contaminant to provide for optimum treatment by the primary treatment media.

  18. On-Site Wastewater Treatment Systems: Mound System 

    E-Print Network [OSTI]

    Lesikar, B.; Waynard, V.

    2002-01-01

    system is generally a septic tank, which re- moves the settleable and floatable solids from the wastewater. Advanced pretreatment systems, such as aerobic treatment units or media filters, can also be used to remove additional solids and organic matter..., New For Sale Only $1 The On-Site Wastewater Treatment Systems series of publications is a result of collaborative efforts of various agencies, organizations and funding sources. We would like to acknowledge the following collaborators: Texas State Soil...

  19. Northwest Plume Groundwater System Green-sand Media Removal and Waste Packaging Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    Troutman, M.T.; Richards, C.J.; Tarantino, J.J. [CDM Federal Programs Corporation, 325 Kentucky Avenue, Kevil, KY 42053 (United States)

    2006-07-01

    The Northwest Plume Groundwater System (NWPGS) was temporarily shut down due to high differential pressures across the green-sand filters. Increased levels of suspended solids were introduced into the system from monitoring well development water, equipment decontamination water, and secondary containment water. These waters were treated for suspended solids through a groundwater pretreatment system but were suspected of causing the high differential pressures in the green-sand filters. Prior to the system being shutdown, the NWPGS had been experiencing increasingly shorter run times between filter backwashes indicating that the normal backwash cycle was not adequately removing the fines. This condition led to the removal and replacement of green-sand media from two filter vessels. Discussions include problems with the removal process, waste packaging specifications, requirements for the disposition of green-sand media, and lessons learned. (authors)

  20. CE 473/573 Groundwater Course information

    E-Print Network [OSTI]

    Rehmann, Chris

    CE 473/573 Groundwater Fall 2011 Course information Instructor: Prof. Chris Rehmann rehmann of water and contaminants in groundwater systems to solve problems of groundwater resource evaluation and groundwater contamination, to develop thinking skills, to communicate effectively and function on teams

  1. CE 473/573 Groundwater Course information

    E-Print Network [OSTI]

    Rehmann, Chris

    CE 473/573 Groundwater Fall 2009 Course information Instructor: Prof. Chris Rehmann rehmann of water and contaminants in groundwater systems to solve problems of groundwater resource evaluation and groundwater contamination, to develop thinking skills, to communicate effectively and function on teams

  2. Onsite Wastewater Treatment Systems: Understanding and Maintaining your Septic System 

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Mechell, Justin; Alexander, Rachel

    2008-10-23

    could fill the system, leaving no room for wastewater. Design landscaping to carry runoff water around the soil treatment area. Health considerations Maintain the disinfection com- ? ponent of your system. Add the appropriate chlorine product... in water bod- ies. The level of treatment is selected to match the receiving environment and the intended use of the effluent. The quantity of contaminants must be reduced to a level the soil can ac- cept and treat. Wastewater pretreatment com- ponents...

  3. In-tank recirculating arsenic treatment system

    DOE Patents [OSTI]

    Brady, Patrick V. (Albuquerque, NM); Dwyer, Brian P. (Albuquerque, NM); Krumhansl, James L. (Albuquerque, NM); Chwirka, Joseph D. (Tijeras, NM)

    2009-04-07

    A low-cost, water treatment system and method for reducing arsenic contamination in small community water storage tanks. Arsenic is removed by using a submersible pump, sitting at the bottom of the tank, which continuously recirculates (at a low flow rate) arsenic-contaminated water through an attached and enclosed filter bed containing arsenic-sorbing media. The pump and treatment column can be either placed inside the tank (In-Tank) by manually-lowering through an access hole, or attached to the outside of the tank (Out-of-Tank), for easy replacement of the sorption media.

  4. Development and chemical quality of a ground-water system in cast overburden as the Gibbons Creek Lignite Mine 

    E-Print Network [OSTI]

    Borbely, Evelyn Susanna

    1988-01-01

    Hydrogeochemistry of Reclaimed Spoil RESEARCH METHODOLOGY Field Methods Monitoring Well Locations Drilling and Spoil Sampling Installation and Development of Monitoring Wells Ground-Water Sampling Hydraulic Conductivity Testing Page V1 1X X111 14 21 22... . . . . . . . . . . . . . . 4 Locations of research stations in reclaimed portions of the A and B surface mining pits Distribution of Texas near-surface lignite (Kaiser et al. , 1974) Fayette fluvial-delta system and dip profile, Jackson Group, central and East Texas...

  5. Treatment tests for ex situ removal of chromate, nitrate, and uranium (VI) from Hanford (100-HR-3) groundwater. Final report

    SciTech Connect (OSTI)

    Beck, M.A.; Duncan, J.B.

    1993-11-15

    This report describes batch and anion exchange column laboratory-scale studies investigating ex situ methods to remove chromate (chromium [VI]), nitrate (NO{sub 3}), and uranium (present as uranyl (uranium [VI]) carbonato anionic species) from contaminated Hanford Site groundwaters. The technologies investigated include chemical precipitation or coprecipitation to remove chromate and uranium, and anion exchange to remove chromate, uranium, and nitrate. The technologies investigated were specified in the 100-HR-3 Groundwater Treatability Test Plan (DOE-RL 1993). The goal of these tests was to determine the best method to remove selected contaminants to below the concentration of the project performance goals. The raw data and observations made during these tests can be found in the Westinghouse Hanford Company (WHC) laboratory notebooks (Beck 1992, Herting 1993). The method recommended for future study is anion exchange with Dowex 21K resin.

  6. High throughput chemical munitions treatment system

    DOE Patents [OSTI]

    Haroldsen, Brent L. (Manteca, CA); Stofleth, Jerome H. (Albuquerque, NM); Didlake, Jr., John E. (Livermore, CA); Wu, Benjamin C-P (San Ramon, CA)

    2011-11-01

    A new High-Throughput Explosive Destruction System is disclosed. The new system is comprised of two side-by-side detonation containment vessels each comprising first and second halves that feed into a single agent treatment vessel. Both detonation containment vessels further comprise a surrounding ventilation facility. Moreover, the detonation containment vessels are designed to separate into two half-shells, wherein one shell can be moved axially away from the fixed, second half for ease of access and loading. The vessels are closed by means of a surrounding, clam-shell type locking seal mechanisms.

  7. The deep hydrogeologic flow system underlying the Oak Ridge Reservation -- Assessing the potential for active groundwater flow and origin of the brine

    SciTech Connect (OSTI)

    Nativ, R.; Halleran, A.; Hunley, A.

    1997-08-01

    The deep hydrogeologic system underlying the Oak Ridge Reservation (ORR) contains contaminants such as radionuclides, heavy metals, nitrates, and organic compounds. The groundwater in the deep system is saline and has been considered to be stagnant in previous studies. This study was designed to address the following questions: is groundwater in the deep system stagnant; is contaminant migration controlled by diffusion only or is advection a viable mechanism; where are the potential outlet points? On the basis of existing and newly collected data, the nature of saline groundwater flow and potential discharge into shallow, freshwater systems was assessed. Data used for this purpose included (1) spatial and temporal pressures and hydraulic heads measured in the deep system, (2) hydraulic parameters of the formations in question, (3) spatial and temporal temperature variations at depth, and (4) spatial and temporal chemical and isotopic composition of the saline groundwater. The observations suggest that the saline water contained at depth is old but not isolated (in terms of recharge and discharge) from the overlying active, freshwater-bearing units. Influx of recent water does occur. Groundwater volumes involved in this flow are likely to be small. The origin of the saline groundwater was assessed by using existing and newly acquired chemical and isotopic data. The proposed model that best fits the data is modification of residual brine from which halite has been precipitated. Other models, such as ultrafiltration and halite dissolution, were also evaluated.

  8. CHLORINATED SOLVENTS TRANSPORT AND NATURAL ATTENUATION MODELING IN GROUNDWATER

    E-Print Network [OSTI]

    Boyer, Edmond

    CHLORINATED SOLVENTS TRANSPORT AND NATURAL ATTENUATION MODELING IN GROUNDWATER F. QUIOT1 , C.Goblet@ensmp.fr Keywords : numerical model, groundwater contamination, chlorinated solvents, natural atténuation atténuation models to predict transport and fate of chlorinated solvents in saturated groundwater Systems

  9. Effect of Dissolved CO2 on a Shallow Groundwater System: A Controlled Release Field Experiment

    E-Print Network [OSTI]

    (EES-14), Los Alamos, New Mexico 87545, United States *S Supporting Information ABSTRACT: Capturing. Sequestering CO2 underground has its own set of environmental risks, including the potential migration of CO2 through leakage pathways if they exist. Migration of brine into potable groundwater has the potential

  10. Economical Analysis of a Groundwater Source Heat Pump with Water Thermal Storage System 

    E-Print Network [OSTI]

    Zhou, Z.; Xu, W.; Li, J.; Zhao, J.; Niu, L.

    2006-01-01

    The paper is based on a chilled and heat source for the building which has a total area of 140000m2 in the suburb of Beijing. By comparing the groundwater source heat pump of water thermal storage (GHPWTS) with a conventional chilled and heat source...

  11. On-Site Wastewater Treatment Systems: Selecting and Permitting (Spanish) 

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2005-04-30

    This publication explains how to select and obtain a permit for an on-site wastewater treatment system in Texas....

  12. Medical waste treatment and decontamination system

    DOE Patents [OSTI]

    Wicks, George G. (Aiken, SC); Schulz, Rebecca L. (Aiken, SC); Clark, David E. (Gainesville, FL)

    2001-01-01

    The invention discloses a tandem microwave system consisting of a primary chamber in which hybrid microwave energy is used for the controlled combustion of materials. A second chamber is used to further treat the off-gases from the primary chamber by passage through a susceptor matrix subjected to additional hybrid microwave energy. The direct microwave radiation and elevated temperatures provide for significant reductions in the qualitative and quantitative emissions of the treated off gases. The tandem microwave system can be utilized for disinfecting wastes, sterilizing materials, and/or modifying the form of wastes to solidify organic or inorganic materials. The simple design allows on-site treatment of waste by small volume waste generators.

  13. 1 INTRODUCTION The modular finitedifference groundwater flow

    E-Print Network [OSTI]

    Russell, Thomas F.

    1 INTRODUCTION The modular finite­difference ground­water flow model (MODFLOW) developed by the U­dimensional ground­water systems (McDonald & Harbaugh, 1988, Harbaugh & McDonald, 1996). MOC3D is a solute is optimal for advection­ dominated systems, which are typical of many field problems involving ground­water

  14. In situ groundwater bioremediation

    E-Print Network [OSTI]

    Hazen, Terry C.

    2010-01-01

    degradation of phenols in groundwater. J Contam. Hydrol.Bioimmobilization of Cr(VI) in Groundwater Using Hydrogenof bacterial activity in groundwater containing petroleum

  15. Hanford’s 200 West Pump and Treat System Garners Worldwide Attention

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – A groundwater treatment system at the Hanford site is in the international spotlight and is being called a technological marvel.

  16. Modeling Onsite Wastewater Treatment Systems in the Dickinson Bayou Watershed 

    E-Print Network [OSTI]

    Forbis-Stokes, Aaron

    2012-10-19

    Onsite wastewater treatment systems (OWTSs) are a commonly used means of wastewater treatment in the Dickinson Bayou watershed which is located between Houston and Galveston. The Dickinson Bayou is classified as "impaired" by the Texas Commission...

  17. 3, 18091850, 2006 groundwater-surface

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    HESSD 3, 1809­1850, 2006 Measuring groundwater-surface water interactions: a review E. Kalbus et al System Sciences Measuring methods for groundwater, surface water and their interactions: a review E;HESSD 3, 1809­1850, 2006 Measuring groundwater-surface water interactions: a review E. Kalbus et al

  18. A three-dimensional numerical model of predevelopment conditions in the Death Valley regional ground-water flow system, Nevada and California

    SciTech Connect (OSTI)

    D'Agnese, F.A.; O'Brien, G.M.; Faunt, C.C.; Belcher, W.R.; San Juan, Carma

    2002-11-22

    In the early 1990's, two numerical models of the Death Valley regional ground-water flow system were developed by the U.S. Department of Energy. In general, the two models were based on the same basic hydrogeologic data set. In 1998, the U.S. Department of Energy requested that the U.S. Geological Survey develop and maintain a ground-water flow model of the Death Valley region in support of U.S. Department of Energy programs at the Nevada Test Site. The purpose of developing this ''second-generation'' regional model was to enhance the knowledge and understanding of the ground-water flow system as new information and tools are developed. The U.S. Geological Survey also was encouraged by the U.S. Department of Energy to cooperate to the fullest extent with other Federal, State, and local entities in the region to take advantage of the benefits of their knowledge and expertise. The short-term objective of the Death Valley regional ground-water flow system project was to develop a steady-stat e representation of the predevelopment conditions of the ground-water flow system utilizing the two geologic interpretations used to develop the previous numerical models. The long-term objective of this project was to construct and calibrate a transient model that simulates the ground-water conditions of the study area over the historical record that utilizes a newly interpreted hydrogeologic conceptual model. This report describes the result of the predevelopment steady-state model construction and calibration.

  19. Work plan for the Oak Ridge National Laboratory groundwater program: Continuous groundwater collection

    SciTech Connect (OSTI)

    NONE

    1995-08-01

    The continuous collection of groundwater data is a basic and necessary part of Lockeheed Martin Energy Systems` ORNL Environmental Restoration Area-Wide Groundwater Program. Continuous groundwater data consist primarily of continually recorded groundwater levels, and in some instances, specific conductivity, pH, and/or temperature measurements. These data will be collected throughout the ORNL site. This Work Plan (WP) addresses technical objectives, equipment requirements, procedures, documentation requirements, and technical instructions for the acquisition of the continuous groundwater data. Intent of this WP is to provide an approved document that meets all the necessary requirements while retaining the flexibility necessary to effectively address ORNL`s groundwater problems.

  20. UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Quantifying the role of groundwater in hydrocarbon systems using noble gas

    E-Print Network [OSTI]

    Henderson, Gideon

    UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Quantifying the role of groundwater in hydrocarbon systems using noble gas isotopes (EARTH-15-CB1) Host institution biodegradation of oil can remove its value ­ but what controls the biodegradation? The deep biosphere plays a key

  1. Onsite Wastewater Treatment Systems: Homeowner's Guide to Evaluating Service Contracts 

    E-Print Network [OSTI]

    Lesikar, Bruce J.; O'Neill, Courtney; Deal, Nancy; Loomis, George; Gustafson, David; Lindbo, David

    2008-10-23

    This guide helps homeowners who are seeking maintenance services for their onsite wastewater treatment systems (such as septic systems). Included are definitions of common terms used in service contracts, types of service contracts available...

  2. Onsite Wastewater Treatment Systems: Septic Tank/Soil Absorption Field 

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2008-10-23

    For septic tank and soil absorption systems to work properly, homeowners must choose the right kind of system for their household size and soil type, and they must maintain them regularly. This publication explains the treatment, design, operation...

  3. Groundwater 7-1 7. Groundwater

    E-Print Network [OSTI]

    Pennycook, Steve

    Groundwater 7-1 7. Groundwater S. B. Jones and R. S. Loffman Abstract Most residents in the Oak Ridge area do not rely on groundwater for potable supplies, although suitable water is available. Local groundwater provides some domestic, municipal, farm, irrigation, and industrial uses, however, and must

  4. Hanford Site Creates One-Touch Wonder for Groundwater Treatment Systems |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide to TappingWORK BREAKDOWN STRUCTURE HANDBOOKShows

  5. Evolution of a Groundwater Treatment System-Rocky Flats, Colorado, Site |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 InfographiclighbulbsDepartmentDeveloping

  6. On-Site Wastewater Treatment Systems: Gravel-less Pipe 

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2000-04-10

    absorption field Gravel-less pipe On-site wastewater treatment systems Gravel-less pipe Bruce Lesikar and Russell Persyn Extension Agricultural Engineering Specialist, Extension Assistant-Water Conservation The Texas A&M University System L-5343 1-00 Figure... are surrounded by geotextile fabric instead of gravel. A gravel-less pipe system includes: 3 A treatment device, generally a septic tank, but it can be an advanced treatment system. 3 Gravel-less pipe, which is made of corrugated, perforated polyeth- ylene...

  7. Drought resilience of the California Central Valley surface-groundwater-conveyance system

    SciTech Connect (OSTI)

    Miller, N.L.; Dale, L.L.; Brush, C.; Vicuna, S.; Kadir, T.N.; Dogrul, E.C.; Chung, F.I.

    2009-05-15

    A series of drought simulations were performed for the California Central Valley using computer applications developed by the California Department of Water Resources and historical datasets representing a range of droughts from mild to severe for time periods lasting up to 60 years. Land use, agricultural cropping patterns, and water demand were held fixed at the 2003 level and water supply was decreased by amounts ranging between 25 and 50%, representing light to severe drought types. Impacts were examined for four hydrologic subbasins, the Sacramento Basin, the San Joaquin Basin, the Tulare Basin, and the Eastside Drainage. Results suggest the greatest impacts are in the San Joaquin and Tulare Basins, regions that are heavily irrigated and are presently overdrafted in most years. Regional surface water diversions decrease by as much as 70%. Stream-to-aquifer flows and aquifer storage declines were proportional to drought severity. Most significant was the decline in ground water head for the severe drought cases, where results suggest that under these scenarios the water table is unlikely to recover within the 30-year model-simulated future. However, the overall response to such droughts is not as severe as anticipated and the Sacramento Basin may act as ground-water insurance to sustain California during extended dry periods.

  8. TWO WELL STORAGE SYSTEMS FOR COMBINED HEATING AND AIRCONDITIONING BY GROUNDWATER HEATPUMPS IN SHALLOW AQUIFERS

    E-Print Network [OSTI]

    Pelka, Walter

    2010-01-01

    obtained for a two well storage system as illustrated inthe extended two-well storage system shown in Figure 8 canSECTION . TWO WELL STORAGE SYSTEMS FOR COMBINED HEATING AND

  9. Hanford Site Groundwater Monitoring for Fiscal Year 2000

    SciTech Connect (OSTI)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2001-03-01

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2000 on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the central part of the Site. Hexavalent chromium is present in smaller plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath each of the reactor areas, and technetium-99 and uranium are present in the 200 Areas. RCRA groundwater monitoring continued during fiscal year 2000. Vadose zone monitoring, characterization, remediation, and several technical demonstrations were conducted in fiscal year 2000. Soil gas monitoring at the 618-11 burial ground provided a preliminary indication of the location of tritium in the vadose zone and in groundwater. Groundwater modeling efforts focused on 1) identifying and characterizing major uncertainties in the current conceptual model and 2) performing a transient inverse calibration of the existing site-wide model. Specific model applications were conducted in support of the Hanford Site carbon tetrachloride Innovative Treatment Remediation Technology; to support the performance assessment of the Immobilized Low-Activity Waste Disposal Facility; and in development of the System Assessment Capability, which is intended to predict cumulative site-wide effects from all significant Hanford Site contaminants.

  10. Compendium of ordinances for groundwater protection

    SciTech Connect (OSTI)

    Not Available

    1990-08-01

    Groundwater is an extremely important resource in the Tennessee Valley. Nearly two-thirds of the Tennessee Valley's residents rely, at least in part, on groundwater supplies for drinking water. In rural areas, approximately ninety-five percent of residents rely on groundwater for domestic supplies. Population growth and economic development increase the volume and kinds of wastes requiring disposal which can lead to groundwater contamination. In addition to disposal which can lead to groundwater contamination. In addition to disposal problems associated with increases in conventional wastewater and solid waste, technological advancements in recent decades have resulted in new chemicals and increased usage in agriculture, industry, and the home. Unfortunately, there has not been comparable progress in identifying the potential long-term effects of these chemicals, in managing them to prevent contamination of groundwater, or in developing treatment technologies for removing them from water once contamination has occurred. The challenge facing residence of the Tennessee Valley is to manage growth and economic and technological development in ways that will avoid polluting the groundwater resource. Once groundwater has been contaminated, cleanup is almost always very costly and is sometimes impractical or technically infeasible. Therefore, prevention of contamination -- not remedial treatment--is the key to continued availability of usable groundwater. This document discusses regulations to aid in this prevention.

  11. Essays on Groundwater

    E-Print Network [OSTI]

    Luoma, Samuel N.; Moore, Johnnie N.

    2015-01-01

    2015 EDITORIAL Essays on Groundwater Samuel N. Luoma 1 ,the Bay–Delta watershed. Groundwater is one of the pillarsunderstanding of how much groundwater we use and how long it

  12. Onsite Wastewater Treatment Systems: Responding to Electrical Power Outages

    E-Print Network [OSTI]

    1 Onsite Wastewater Treatment Systems: Responding to Electrical Power Outages and Floods Bruce The Texas A&M University System Electrical power outages and floods can affect you and your residential power outages and flooding. System Components To properly respond to a disaster, homeowners need to know

  13. On-Site Wastewater Treatment Systems: Selecting and Permitting 

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2005-04-30

    This publication explains factors to consider when choosing an on-site wastewater treatment system and lists the nine steps required to obtain a permit for one. It includes addresses and phone numbers of Texas Natural Resource Conservation...

  14. 300 Area waste acid treatment system closure plan. Revision 1

    SciTech Connect (OSTI)

    NONE

    1996-03-01

    This section provides a description of the Hanford Site, identifies the proposed method of 300 Area Waste Acid Treatment System (WATS) closure, and briefly summarizes the contents of each chapter of this plan.

  15. Optimizing Aeration in Pulp Mill Secondary Treatment Systems 

    E-Print Network [OSTI]

    Mahmood, T.; Banerjee, S.; Welsh, J. T.; Sackellares, R. W.

    1997-01-01

    With better spill control and lower carbon loads to the treatment system, there is excess aeration occurring at the lagoon. This leads to unnecessary power costs, especially during peak demand summer periods. A study was conducted to determine...

  16. Groundwater Flow Systems at the Nevada Test Site, Nevada: A Synthesis of Potentiometric Contours, Hydrostratigraphy, and Geologic Structures

    SciTech Connect (OSTI)

    Fenelon, Joseph M.; Sweetkind, Donald S.; Laczniak, Randell J.

    2010-01-25

    Contaminants introduced into the subsurface of the Nevada Test Site by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. The potential for contaminant movement away from the underground test areas and into the accessible environment is greatest by groundwater transport. The primary hydrologic control on this transport is evaluated and examined through a series of contour maps developed to represent the hydraulic-head distribution within each of the major aquifers underlying the area. Aquifers were identified and their extents delineated by merging and analyzing multiple hydrostratigraphic framework models developed by other investigators from existing geologic information. A map of the hydraulic-head distribution in each major aquifer was developed from a detailed evaluation and assessment of available water-level measurements. Multiple spreadsheets that accompany this report provide pertinent water-level and geologic data by well or drill hole. Aquifers are mapped and discussed in general terms as being one of two types: alluvial-volcanic, or carbonate. Both aquifer types are subdivided and mapped as independent regional and local aquifers, based on the continuity of their component rock. Groundwater-flow directions, approximated from potentiometric contours that were developed from the hydraulic-head distribution, are indicated on the maps and discussed for each of the regional aquifers and for selected local aquifers. Hydraulic heads vary across the study area and are interpreted to range in altitude from greater than 5,000 feet in a regional alluvial-volcanic aquifer beneath a recharge area in the northern part of the study area to less than 2,300 feet in regional alluvial-volcanic and carbonate aquifers in the southwestern part of the study area. Flow directions throughout the study area are dominantly south-southwest with some local deviations. Vertical hydraulic gradients between aquifer types are downward throughout most of the study area; however, flow from the alluvial-volcanic aquifer into the underlying carbonate aquifer, where both aquifers are present, is believed to be minor because of an intervening confining unit. Limited exchange of water between aquifer types occurs by diffuse flow through the confining unit, by focused flow along fault planes, or by direct flow where the confining unit is locally absent. Interflow between regional aquifers is evaluated and mapped to define major flow paths. These flow paths delineate tributary flow systems, which converge to form intermediate and regional flow systems. The implications of these flow systems in controlling transport of radionuclides away from the underground test areas at the Nevada Test Site are briefly discussed. Additionally, uncertainties in the delineation of aquifers, the development of potentiometric contours, and the identification of flow systems are identified and evaluated. Eleven tributary flow systems and three larger flow systems are mapped in the Nevada Test Site area. Flow systems within the alluvial-volcanic aquifer dominate the western half of the study area, whereas flow systems within the carbonate aquifer are most prevalent in the southeastern half of the study area. Most of the flow in the regional alluvial-volcanic aquifer that moves through the underground testing area on Pahute Mesa is discharged to the land surface at springs and seeps in Oasis Valley. Flow in the regional carbonate aquifer is internally compartmentalized by major geologic structures, primarily thrust faults, which constrain flow into separate corridors. Contaminants that reach the regional carbonate aquifer from testing areas in Yucca and Frenchman Flats flow toward downgradient discharge areas through the Alkali Flat-Furnace Creek Ranch or Ash Meadows flow systems and their tributaries.

  17. Groundwater Monitoring Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Groundwater Monitoring Network Groundwater Monitoring Network The network includes 92 natural sources, 102 regional aquifer wells, 41 intermediate-depth wells and springs, and 67...

  18. Groundwater Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-Dose Lowï‚— We wantInvestigationsMeasurementGroundwater

  19. On-Site Wastewater Treatment Systems: Mound System 

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2002-04-22

    A mound system is a soil absorption system placed above the natural surface of the ground. The system distributes treated wastewater into the soil. This publication discusses the design and maintenance of mound systems....

  20. Acid mine water aeration and treatment system

    DOE Patents [OSTI]

    Ackman, Terry E. (Finleyville, PA); Place, John M. (Bethel Park, PA)

    1987-01-01

    An in-line system is provided for treating acid mine drainage which basically comprises the combination of a jet pump (or pumps) and a static mixer. The jet pump entrains air into the acid waste water using a Venturi effect so as to provide aeration of the waste water while further aeration is provided by the helical vanes of the static mixer. A neutralizing agent is injected into the suction chamber of the jet pump and the static mixer is formed by plural sections offset by 90 degrees.

  1. Analysis of Aquifer Response, Groundwater Flow, and PlumeEvolution at Site OU 1, Former Fort Ord, California

    SciTech Connect (OSTI)

    Jordan, Preston D.; Oldenburg, Curtis M.; Su, Grace W.

    2005-02-24

    This report presents a continuation from Oldenburg et al. (2002) of analysis of the hydrogeology, In-Situ Permeable Flow Sensor (ISPFS) results, aquifer response, and changes in the trichloroethylene (TCE) groundwater plume at Operational Unit 1 (OU 1) adjacent to the former Fritzsche Army Airfield at the former Fort Ord Army Base, located on Monterey Bay in northern Monterey County. Fuels and solvents were burned on a portion of OU 1 called the Fire Drill Area (FDA) during airport fire suppression training between 1962 and 1985. This activity resulted in soil and groundwater contamination in the unconfined A-aquifer. In the late 1980's, soil excavation and bioremediation were successful in remediating soil contamination at the site. Shortly thereafter, a groundwater pump, treat, and recharge system commenced operation. This system has been largely successful at remediating groundwater contamination at the head of the groundwater plume. However, a trichloroethylene (TCE) groundwater plume extends approximately 3000 ft (900 m) to the northwest away from the FDA. In the analyses presented here, we augment our prior work (Oldenburg et al., 2002) with new information including treatment-system totalizer data, recent water-level and chemistry data, and data collected from new wells to discern trends in contaminant migration and groundwater flow that may be useful for ongoing remediation efforts. Some conclusions from the prior study have been modified based on these new analyses, and these are pointed out clearly in this report.

  2. FRAMES-2.0 Software System: Linking to the Groundwater Modeling System (GMS) RT3D and MT3DMS Models

    SciTech Connect (OSTI)

    Whelan, Gene; Castleton, Karl J.; Pelton, Mitch A.

    2007-08-08

    Linkages to the Groundwater Modeling System have been developed at Pacific Northwest National Laboratory to enable the Nuclear Regulatory Commission (NRC) to more realistically assess the risk to the public of radioactive contaminants at NRC-licensed sites. Common software tools presently in use are limited in that they cannot assess contaminant migration through complex natural environments. The purpose of this initiative is to provide NRC with a licensing safety-analysis tool with sufficient power, flexibility, and utility that it can serve as the primary software platform for analyzing the hazards associated with licensing actions at those “complex” sites at which the traditional tools are inappropriate. As a tool designed to realistically approximate prospective doses to the public, this initiative addresses NRC’s safety-performance goal by confirming that licensing actions do not result in undue risk to the public.

  3. Onsite Wastewater Treatment Systems: Responding to Power Outages and Floods 

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Mechell, Justin; Alexander, Rachel

    2008-10-23

    People and the environment can be harmed if a home's onsite wastewater treatment system does not work properly after a flood or power outage. This publication explains the steps to take after such an event to get the system back into service. 4 pp...

  4. 2, 135, 2005 groundwater

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    BGD 2, 1­35, 2005 Submarine groundwater discharge inferred from radon and salinity J. Crusius et al Biogeosciences Discussions is the access reviewed discussion forum of Biogeosciences Submarine groundwater(s). This work is licensed under a Creative Commons License. 1 #12;BGD 2, 1­35, 2005 Submarine groundwater

  5. Groundwater Everybody's Resource

    E-Print Network [OSTI]

    Groundwater Everybody's Resource Everybody's Responsibility Take Action Now! Michigan Groundwater Stewardship Program Check Inside I Water Cycle . . . . . . . 2 I Groundwater Quiz . . 3 I Risky Practice/ Safe for the benefit of people today and tomorrow. Groundwater is the water that fills spaces between rocks and soil

  6. FULLYDISCRETE FINITE ELEMENT ANALYSIS OF MULTIPHASE FLOW IN GROUNDWATER HYDROLOGY

    E-Print Network [OSTI]

    Ewing, Richard E.

    FULLY­DISCRETE FINITE ELEMENT ANALYSIS OF MULTIPHASE FLOW IN GROUNDWATER HYDROLOGY Zhangxin Chen element method for a nonlinear differential system for describing an air­water system in groundwater experiments using the present approach for modeling groundwater flow in porous media are reported. Key words

  7. Numerical Simulation of Inter-basin Groundwater Flow into Northern Yucca Flat, Nevada National Security Site, Using the Death Valley Regional Flow System Model

    SciTech Connect (OSTI)

    Pohlmann Karl,Ye Ming

    2012-03-01

    Models of groundwater flow for the Yucca Flat area of the Nevada National Security Site (NNSS) are under development by the U.S. Department of Energy (DOE) for corrective action investigations of the Yucca Flat-Climax Mine Corrective Action Unit (CAU). One important aspect of these models is the quantity of inter-basin groundwater flow from regional systems to the north. This component of flow, together with its uncertainty, must be properly accounted for in the CAU flow models to provide a defensible regional framework for calculations of radionuclide transport that will support determinations of the Yucca Flat-Climax Mine contaminant boundary. Because characterizing flow boundary conditions in northern Yucca Flat requires evaluation to a higher level of detail than the scale of the Yucca Flat-Climax Mine CAU model can efficiently provide, a study more focused on this aspect of the model was required.

  8. Two well storage systems for combined heating and airconditioning by groundwater heatpumps in shallow aquifers

    SciTech Connect (OSTI)

    Pelka, W.

    1980-07-01

    The use of soil and ground water as an energy source and heat storage systems for heat pumps in order to conserve energy in heating and air conditioning buildings is discussed. Information is included on heat pump operation and performance, aquifer characteristics, soil and ground water temperatures, and cooling and heating demands. Mathematical models are used to calculate flow and temperature fields in the aquifer. It is concluded that two well storage systems with ground water heat pumps are desirable, particularly in northern climates. (LCL)

  9. POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    V. King

    2000-06-19

    The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of the Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous radiological monitoring of the pool water. The Pool Water Treatment and Cooling System interfaces with the Waste Handling Building System, Site-Generated Radiological Waste Handling System, Site Radiological Monitoring System, Waste Handling Building Electrical System, Site Water System, and the Monitored Geologic Repository Operations Monitoring and Control System.

  10. Process modeling for the Integrated Thermal Treatment System (ITTS) study

    SciTech Connect (OSTI)

    Liebelt, K.H.; Brown, B.W.; Quapp, W.J.

    1995-09-01

    This report describes the process modeling done in support of the integrated thermal treatment system (ITTS) study, Phases 1 and 2. ITTS consists of an integrated systems engineering approach for uniform comparison of widely varying thermal treatment technologies proposed for treatment of the contact-handled mixed low-level wastes (MLLW) currently stored in the U.S. Department of Energy complex. In the overall study, 19 systems were evaluated. Preconceptual designs were developed that included all of the various subsystems necessary for a complete installation, from waste receiving through to primary and secondary stabilization and disposal of the processed wastes. Each system included the necessary auxiliary treatment subsystems so that all of the waste categories in the complex were fully processed. The objective of the modeling task was to perform mass and energy balances of the major material components in each system. Modeling of trace materials, such as pollutants and radioactive isotopes, were beyond the present scope. The modeling of the main and secondary thermal treatment, air pollution control, and metal melting subsystems was done using the ASPEN PLUS process simulation code, Version 9.1-3. These results were combined with calculations for the remainder of the subsystems to achieve the final results, which included offgas volumes, and mass and volume waste reduction ratios.

  11. The Well-Group Distribution of Groundwater Source Heat Pump System Optimized Research 

    E-Print Network [OSTI]

    Liu, Z.; Lu, L.; Yoshida, H.

    2006-01-01

    It is the key question that how does the well group arrange for application of GWSHP system. Based on the fact that the water movement is the important factor of heat transfer on aquifer, this paper presents two steps analysis method and analyze...

  12. Groundwater age, life expectancy and transit time distributions in advective-dispersive systems: 1. Generalized reservoir theory

    E-Print Network [OSTI]

    Cornaton, F; 10.1016/j.advwatres.2005.10.009

    2011-01-01

    We present a methodology for determining reservoir groundwater age and transit time probability distributions in a deterministic manner, considering advective-dispersive transport in steady velocity fields. In a first step, we propose to model the statistical distribution of groundwater age at aquifer scale by means of the classical advection-dispersion equation for a conservative and nonreactive tracer, associated to proper boundary conditions. The evaluated function corresponds to the density of probability of the random variable age, age being defined as the time elapsed since the water particles entered the aquifer. An adjoint backward model is introduced to characterize the life expectancy distribution, life expectancy being the time remaining before leaving the aquifer. By convolution of these two distributions, groundwater transit time distributions, from inlet to outlet, are fully defined for the entire aquifer domain. In a second step, an accurate and efficient method is introduced to simulate the tr...

  13. Regional Groundwater Evapotranspiration in Illinois

    E-Print Network [OSTI]

    Yeh, Pat J-F.; Famiglietti, J. S

    2009-01-01

    characteristics of groundwater outflow and baseflow fromtween precipitation and shallow groundwater in Illinois. J.Coauthors, 2006: Groundwater-supported evapo- transpiration

  14. Status of understanding of the saturated-zone ground-water flow system at Yucca Mountain, Nevada, as of 1995

    SciTech Connect (OSTI)

    Luckey, R.R.; Tucci, P.; Faunt, C.C.; Ervin, E.M.

    1996-12-31

    Yucca Mountain, which is being studied extensively because it is a potential site for a high-level radioactive-waste repository, consists of a thick sequence of volcanic rocks of Tertiary age that are underlain, at least to the southeast, by carbonate rocks of Paleozoic age. Stratigraphic units important to the hydrology of the area include the alluvium, pyroclastic rocks of Miocene age (the Timber Mountain Group; the Paintbrush Group; the Calico Hills Formation; the Crater Flat Group; the Lithic Ridge Tuff; and older tuffs, flows, and lavas beneath the Lithic Ridge Tuff), and sedimentary rocks of Paleozoic age. The saturated zone generally occurs in the Calico Hills Formation and stratigraphically lower units. The saturated zone is divided into three aquifers and two confining units. The flow system at Yucca Mountain is part of the Alkali Flat-Furnace Creek subbasin of the Death Valley groundwater basin. Variations in the gradients of the potentiometric surface provided the basis for subdividing the Yucca Mountain area into zones of: (1) large hydraulic gradient where potentiometric levels change at least 300 meters in a few kilometers; (2) moderate hydraulic gradient where potentiometric levels change about 45 meters in a few kilometers; and (3) small hydraulic gradient where potentiometric levels change only about 2 meters in several kilometers. Vertical hydraulic gradients were measured in only a few boreholes around Yucca Mountain; most boreholes had little change in potentiometric levels with depth. Limited hydraulic testing of boreholes in the Yucca Mountain area indicated that the range in transmissivity was more than 2 to 3 orders of magnitude in a particular hydrogeologic unit, and that the average values for the individual hydrogeologic units generally differed by about 1 order of magnitude. The upper volcanic aquifer seems to be the most permeable hydrogeologic unit, but this conclusion was based on exceedingly limited data.

  15. Catalytic destruction of groundwater contaminants in reactive extraction wells

    DOE Patents [OSTI]

    McNab, Jr., Walt W. (Concord, CA); Reinhard, Martin (Stanford, CA)

    2002-01-01

    A system for remediating groundwater contaminated with halogenated solvents, certain metals and other inorganic species based on catalytic reduction reactions within reactive well bores. The groundwater treatment uses dissolved hydrogen as a reducing agent in the presence of a metal catalyst, such a palladium, to reduce halogenated solvents (as well as other substituted organic compounds) to harmless species (e.g., ethane or methane) and immobilize certain metals to low valence states. The reactive wells function by removing water from a contaminated water-bearing zone, treating contaminants with a well bore using catalytic reduction, and then reinjecting the treated effluent into an adjacent water-bearing zone. This system offers the advantages of a compact design with a minimal surface footprint (surface facilities) and the destruction of a broad suite of contaminants without generating secondary waste streams.

  16. Proactive investigation of hydrocarbons released into a linked groundwater-surfacewater hydrologic system: Chevron Estero Marine Terminal

    SciTech Connect (OSTI)

    Tormey, D.; Waldron, J.; Culbertson, D.

    1996-12-31

    When regulatory concern is high, it is critical to address potential ecological impacts early, and hence {open_quotes}close the door{close_quotes} on further unnecessary studies, as illustrated by the Chevron Estero Marine Terminal case study. Cutter stock (diesel-like hydrocarbons) leaked from a facility sump, reached the water table, and migrated laterally an unknown distance. Media reports led to heightened public and regulatory concern, and the information gap led to worst-case assumptions about the extent and impact of the release to the biota of a nearby creek (Toro Creek). Chevron undertook a rapid assessment with two goals: define the extent of cutter stock in soil and groundwater, and close the door on expensive biological studies of Toro Creek. The assessment consisted of installing a large number of small-diameter soil borings and temporary well points, monitor wells, and analyzing soil, groundwater, and hydraulic gradient. The information gap was very rapidly filled with the following comprehensive picture: (1) the cutter stock had mixed with heavy crude oil, was highly adsorptive to soil and practically insoluble in water; (2) the cutter stock had not reached Toro Creek; (3) Toro Creek is always a losing stream, hydraulically connected to groundwater beneath the Chevron facility; (4) the groundwater basin is isolated by bedrock boundaries. Early attention to Toro Creek and the Pacific Ocean, and open communication with concerned agencies effectively limited the investigation to soil and water.

  17. CLASSIFICATION OF THE MGR WASTE TREATMENT BUILDING VENTILATION SYSTEM

    SciTech Connect (OSTI)

    S.E. Salzman

    1999-08-31

    The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) waste treatment building ventilation system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998).

  18. Contribution of global groundwater depletion since 1900 to sealevel rise

    E-Print Network [OSTI]

    of water from terrestrial subsurface storage is a natural consequence of groundwater withdrawals] The extracted groundwater can subsequently follow any number of pathways through the hydrologic cycle, and most pathways that don't involve a return to the groundwater system have relatively short travel times

  19. THE RECOVERY OF AN ANISOTROPIC CONDUCTIVITY IN GROUNDWATER MODELLING

    E-Print Network [OSTI]

    Knowles, Ian W.

    THE RECOVERY OF AN ANISOTROPIC CONDUCTIVITY IN GROUNDWATER MODELLING IAN KNOWLES AND AIMIN YAN Abstract. In order to model groundwater flow e#ectively, one is faced inevitably with the problem groundwater system may be modelled by the parabolic equation Q(x) #w #t = # · (P (x)#w) +R(x, t) (1) over x

  20. THE RECOVERY OF AN ANISOTROPIC CONDUCTIVITY IN GROUNDWATER MODELLING

    E-Print Network [OSTI]

    Knowles, Ian W.

    THE RECOVERY OF AN ANISOTROPIC CONDUCTIVITY IN GROUNDWATER MODELLING IAN KNOWLES AND AIMIN YAN Abstract. In order to model groundwater flow effectively, one is faced inevitably with the problem groundwater system may be modelled by the parabolic equation Q(x) w t = · (P (x) w) + R(x, t)(1) over x

  1. Groundwater resources of Uzbekistan: an environmental and operational overview

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Groundwater resources of Uzbekistan: an environmental and operational overview Shavkat hydraulically related groundwater has been affected too. Excessive irrigation has lead to land salinization systems have been practiced with respect to groundwater use and management. The aim of this paper

  2. On-Site Wastewater Treatment Systems: Alternative Collection Systems 

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2000-08-30

    Rural Texas communities have new options for wastewater management infrastructure that are cost effective but still protect human health and environmental quality. Such communities now can combine different kinds of systems in a new approach called...

  3. INTEC CPP-603 Basin Water Treatment System Closure: Process Design

    SciTech Connect (OSTI)

    Kimmitt, Raymond Rodney; Faultersack, Wendell Gale; Foster, Jonathan Kay; Berry, Stephen Michael

    2002-09-01

    This document describes the engineering activities that have been completed in support of the closure plan for the Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603 Basin Water Treatment System. This effort includes detailed assessments of methods and equipment for performing work in four areas: 1. A cold (nonradioactive) mockup system for testing equipment and procedures for vessel cleanout and vessel demolition. 2. Cleanout of process vessels to meet standards identified in the closure plan. 3. Dismantlement and removal of vessels, should it not be possible to clean them to required standards in the closure plan. 4. Cleanout or removal of pipelines and pumps associated with the CPP-603 basin water treatment system. Cleanout standards for the pipes will be the same as those used for the process vessels.

  4. The Hanford Story: Groundwater

    Broader source: Energy.gov [DOE]

    This second chapter of The Hanford Story explains how more than 100 square miles of groundwater under the Hanford Site became contaminated and what workers are doing to restore groundwater to its highest beneficial use.

  5. Effluent treatment options for nuclear thermal propulsion system ground tests

    SciTech Connect (OSTI)

    Shipers, L.R.; Brockmann, J.E.

    1992-10-16

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the strengths and weaknesses of different methods to handle effluent from nuclear thermal propulsion system ground tests.

  6. Implementation of Treatment Systems for Low and Intermediate Radioactive Waste at Site Radwaste Treatment Facility (SRTF), PR China - 12556

    SciTech Connect (OSTI)

    Lohmann, Peter; Nasarek, Ralph; Aign, Joerg

    2012-07-01

    The AP1000 reactors being built in the People's Republic of China require a waste treatment facility to process the low and intermediate radioactive waste produced by these nuclear power stations. Westinghouse Electric Germany GmbH was successful in being awarded a contract as to the planning, delivery and commissioning of such a waste treatment facility. The Site Radwaste Treatment Facility (SRTF) is a waste treatment facility that can meet the AP1000 requirements and it will become operational in the near future. The SRTF is situated at the location of Sanmen, People's Republic of China, next to one of the AP1000 and is an adherent building to the AP1000 comprising different waste treatment processes for radioactive spent filter cartridges, ion-exchange resins and radioactive liquid and solid waste. The final product of the SRTF-treatment is a 200 l drum with cemented waste or grouted waste packages for storage in a local storage facility. The systems used in the SRTF are developed for these special requirements, based on experience from similar systems in the German nuclear industry. The main waste treatment systems in the SRTF are: - Filter Cartridge Processing System (FCS); - HVAC-Filter and Solid Waste Treatment Systems (HVS); - Chemical Liquid Treatment Systems (CTS); - Spent Resin Processing Systems (RES); - Mobile Treatment System (MBS). (authors)

  7. GROUNDWATER QUALITY PROTECTION PRACTICES

    E-Print Network [OSTI]

    #12;GROUNDWATER QUALITY PROTECTION PRACTICES Submitted to: Environment Canada 224 West Esplanade.............................................................................................1 2.0 GROUNDWATER RESOURCES WITHIN THE FRASER BASIN.................3 2.1 Lower Fraser Region..............................................................................5 3.0 COMMON SOURCES OF GROUNDWATER CONTAMINATION ...............6 3.1 Category 1 - Sources Designed

  8. Bioremediation of contaminated groundwater

    DOE Patents [OSTI]

    Hazen, T.C.; Fliermans, C.B.

    1995-01-24

    An apparatus and method are described for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid is selected to stimulate the growth and reproduction of indigenous subsurface microorganisms that are capable of degrading the contaminants. An oxygenated fluid is selected to create a generally aerobic environment for these microorganisms to degrade the contaminants, leaving only pockets that are anaerobic. The nutrient fluid is injected periodically while the oxygenated fluid is injected continuously and both are extracted so that both are drawn across the plume. The nutrient fluid stimulates microbial colony growth. Withholding it periodically forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is reduced to an acceptable, preselected level. The nutrient fluid can be methane and the oxygenated fluid air for stimulating production of methanotrophs to break down chlorohydrocarbons, especially trichloroethylene (TCE) and tetrachloroethylene. 3 figures.

  9. Bioremediation of contaminated groundwater

    DOE Patents [OSTI]

    Hazen, Terry C. (Augusta, GA); Fliermans, Carl B. (Augusta, GA)

    1995-01-01

    An apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid is selected to stimulate the growth and reproduction of indigenous subsurface microorganisms that are capable of degrading the contaminants; an oxygenated fluid is selected to create a generally aerobic environment for these microorganisms to degrade the contaminants, leaving only pockets that are anaerobic. The nutrient fluid is injected periodically while the oxygenated fluid is injected continuously and both are extracted so that both are drawn across the plume. The nutrient fluid stimulates microbial colony growth; withholding it periodicially forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is reduced to an acceptable, preselected level. The nutrient fluid can be methane and the oxygenated fluid air for stimulating production of methanotrophs to break down chlorohydrocarbons, especially trichloroethylene (TCE) and tetrachloroethylene.

  10. Bioremediation of contaminated groundwater

    DOE Patents [OSTI]

    Hazen, T.C.; Fliermans, C.B.

    1994-01-01

    Disclosed is an apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid (NF) is selected to simulated the growth and reproduction of indigenous subsurface microorganisms capable of degrading the contaminants; an oxygenated fluid (OF) is selected to create an aerobic environment with anaerobic pockets. NF is injected periodically while OF is injected continuously and both are extracted so that both are drawn across the plume. NF stimulates microbial colony growth; withholding it periodically forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is acceptable. NF can be methane and OF be air, for stimulating production of methanotrophs to break down chlorohydrocarbons, especially TCE and tetrachloroethylene.

  11. Westinghouse Cementation Facility of Solid Waste Treatment System - 13503

    SciTech Connect (OSTI)

    Jacobs, Torsten; Aign, Joerg

    2013-07-01

    During NPP operation, several waste streams are generated, caused by different technical and physical processes. Besides others, liquid waste represents one of the major types of waste. Depending on national regulation for storage and disposal of radioactive waste, solidification can be one specific requirement. To accommodate the global request for waste treatment systems Westinghouse developed several specific treatment processes for the different types of waste. In the period of 2006 to 2008 Westinghouse awarded several contracts for the design and delivery of waste treatment systems related to the latest CPR-1000 nuclear power plants. One of these contracts contains the delivery of four Cementation Facilities for waste treatment, s.c. 'Follow on Cementations' dedicated to three locations, HongYanHe, NingDe and YangJiang, of new CPR-1000 nuclear power stations in the People's Republic of China. Previously, Westinghouse delivered a similar cementation facility to the CPR-1000 plant LingAo II, in Daya Bay, PR China. This plant already passed the hot functioning tests successfully in June 2012 and is now ready and released for regular operation. The 'Follow on plants' are designed to package three 'typical' kind of radioactive waste: evaporator concentrates, spent resins and filter cartridges. The purpose of this paper is to provide an overview on the Westinghouse experience to design and execution of cementation facilities. (authors)

  12. Stakeholder Quotes for USGS Circulars 1352-1360 on Water Quality of the Nation's Groundwater

    E-Print Network [OSTI]

    of the Nation's Groundwater Examples of How USGS Science is Informing Groundwater Quality Management of groundwater quality in the High Plains aquifer will be invaluable for local and statewide management toward sustainable groundwater resources of this important aquifer system."--Jim Goeke, Professor and Research

  13. Groundwater Data Package for Hanford Assessments

    SciTech Connect (OSTI)

    Thorne, Paul D.; Bergeron, Marcel P.; Williams, Mark D.; Freedman, Vicky L.

    2006-01-31

    This report presents data and interpreted information that supports the groundwater module of the System Assessment Capability (SAC) used in Hanford Assessments. The objective of the groundwater module is to predict movement of radioactive and chemical contaminants through the aquifer to the Columbia River or other potential discharge locations. This data package is being revised as part of the deliverables under the Characterization of Systems Project (#49139) aimed at providing documentation for assessments being conducted under the Hanford Assessments Project (#47042). Both of these projects are components of the Groundwater Remediation and Closure Assessments Projects, managed by the Management and Integration Project (#47043).

  14. Strategies for automatic online treatment plan reoptimization using clinical treatment planning system: A planning parameters study

    SciTech Connect (OSTI)

    Li, Taoran; Wu, Qiuwen; Zhang, You; Vergalasova, Irina; Lee, W. Robert; Yin, Fang-Fang; Wu, Q. Jackie

    2013-11-15

    Purpose: Adaptive radiation therapy for prostate cancer using online reoptimization provides an improved control of interfractional anatomy variations. However, the clinical implementation of online reoptimization is currently limited by the low efficiency of current strategies and the difficulties associated with integration into the current treatment planning system. This study investigates the strategies for performing fast (?2 min) automatic online reoptimization with a clinical fluence-map-based treatment planning system; and explores the performance with different input parameters settings: dose-volume histogram (DVH) objective settings, starting stage, and iteration number (in the context of real time planning).Methods: Simulated treatments of 10 patients were reoptimized daily for the first week of treatment (5 fractions) using 12 different combinations of optimization strategies. Options for objective settings included guideline-based RTOG objectives, patient-specific objectives based on anatomy on the planning CT, and daily-CBCT anatomy-based objectives adapted from planning CT objectives. Options for starting stages involved starting reoptimization with and without the original plan's fluence map. Options for iteration numbers were 50 and 100. The adapted plans were then analyzed by statistical modeling, and compared both in terms of dosimetry and delivery efficiency.Results: All online reoptimized plans were finished within ?2 min with excellent coverage and conformity to the daily target. The three input parameters, i.e., DVH objectives, starting stage, and iteration number, contributed to the outcome of optimization nearly independently. Patient-specific objectives generally provided better OAR sparing compared to guideline-based objectives. The benefit in high-dose sparing from incorporating daily anatomy into objective settings was positively correlated with the relative change in OAR volumes from planning CT to daily CBCT. The use of the original plan fluence map as the starting stage reduced OAR dose at the mid-dose region, but increased the monitor units by 17%. Differences of only 2cc or less in OAR V50%/V70Gy/V76Gy were observed between 100 and 50 iterations.Conclusions: It is feasible to perform automatic online reoptimization in ?2 min using a clinical treatment planning system. Selecting optimal sets of input parameters is the key to achieving high quality reoptimized plans, and should be based on the individual patient's daily anatomy, delivery efficiency, and time allowed for plan adaptation.

  15. A Hydrostratigraphic System for Modeling Groundwater Flow and Radionuclide Migration at the Corrective Action Unit Scale, Nevada Test Site and Surrounding Areas, Clark, Lincoln, and Nye Counties, Nevada

    SciTech Connect (OSTI)

    Prothro, Lance; Drellack Jr., Sigmund; Mercadante, Jennifer

    2009-01-31

    Underground Test Area (UGTA) corrective action unit (CAU) groundwater flow and contaminant transport models of the Nevada Test Site (NTS) and vicinity are built upon hydrostratigraphic framework models (HFMs) that utilize the hydrostratigraphic unit (HSU) as the fundamental modeling component. The delineation and three-dimensional (3-D) modeling of HSUs within the highly complex geologic terrain that is the NTS requires a hydrostratigraphic system that is internally consistent, yet flexible enough to account for overlapping model areas, varied geologic terrain, and the development of multiple alternative HFMs. The UGTA CAU-scale hydrostratigraphic system builds on more than 50 years of geologic and hydrologic work in the NTS region. It includes 76 HSUs developed from nearly 300 stratigraphic units that span more than 570 million years of geologic time, and includes rock units as diverse as marine carbonate and siliciclastic rocks, granitic intrusives, rhyolitic lavas and ash-flow tuffs, and alluvial valley-fill deposits. The UGTA CAU-scale hydrostratigraphic system uses a geology-based approach and two-level classification scheme. The first, or lowest, level of the hydrostratigraphic system is the hydrogeologic unit (HGU). Rocks in a model area are first classified as one of ten HGUs based on the rock’s ability to transmit groundwater (i.e., nature of their porosity and permeability), which at the NTS is mainly a function of the rock’s primary lithology, type and degree of postdepositional alteration, and propensity to fracture. The second, or highest, level within the UGTA CAU-scale hydrostratigraphic system is the HSU, which is the fundamental mapping/modeling unit within UGTA CAU-scale HFMs. HSUs are 3-D bodies that are represented in the finite element mesh for the UGTA groundwater modeling process. HSUs are defined systematically by stratigraphically organizing HGUs of similar character into larger HSUs designations. The careful integration of stratigraphic information in the development of HSUs is important to assure individual HSUs are internally consistent, correlatable, and mappable throughout all the model areas.

  16. RCRA ground-water monitoring: Draft technical guidance

    SciTech Connect (OSTI)

    Not Available

    1992-11-01

    The manual was prepared to provide guidance for implementing the ground-water monitoring regulations for regulated units contained in 40 CFR Part 264 Subpart F and the permitting standards of 40 CFR Part 270. The manual also provides guidance to owners and operators of treatment, storage, and disposal facilities (TSDFs) that are required to comply with the requirements of 40 CFR Part 264 Subparts J (Tank Systems), K (Surface Impoundments), L (Waste Piles), N (Landfills), and X (Miscellaneous Units). This document updates technical information contained in other sources of U.S. EPA guidance, such as chapter eleven of SW-846 (Revision O, September 1986) and the Technical Enforcement Guidance Document (TEGD).

  17. Biotreatment of groundwater contaminated with MTBE: interaction of common environmental co-contaminants

    E-Print Network [OSTI]

    Biotreatment of groundwater contaminated with MTBE: interaction of common environmental co of groundwater with the gasoline additive methyl tert-butyl ether (MTBE) is often accompanied by many aromatic, a laboratory-scale biotrickling filter for groundwater treatment inoculated with a microbial consortium

  18. Kauai Groundwater Flow Model

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicole Lautze

    2015-01-01

    Groundwater flow model for Kauai. Data is from the following sources: Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014.; and Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume IV – Island of Kauai Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2015.

  19. Treatability Test for Removing Technetium-99 from 200-ZP-1 Groundwater, Hanford Site

    SciTech Connect (OSTI)

    Byrnes, M.E.; Petersen, S.W. [Fluor Hanford, Inc., Soil and Groundwater Remediation Project, Richland, WA (United States); Tortoso, A. [U.S. Department of Energy, Richland Operations Office, Richland, WA (United States); Elliott, W.S. [Environmental Quality Management, Inc., Richland, WA (United States)

    2008-07-01

    The 200-ZP-1 Groundwater Operable Unit (OU) is one of two groundwater OUs located within the 200 West groundwater aggregate area of the Hanford Site. The primary risk-driving contaminants within the 200-ZP-1 OU include carbon tetrachloride and technetium-99 (Tc-99). A pump-and-treat system for this OU was initially installed in 1995 to control the 0.002 kg /m{sup 3} (2000 {mu}g/L) contour of the carbon tetrachloride plume. Carbon tetrachloride is removed from groundwater with the assistance of an air-stripping tower. Ten extraction wells and three injection wells operate at a combined rate of approximately 0.017m{sup 3}/s (17.03 L/s). In 2005, groundwater from two of the extraction wells (299-W15-765 and 299-W15-44) began to show concentrations greater than twice the maximum contaminant level (MCL) of Tc-99 (33,309 beq/m{sup 3} or 900 pCi/L). The Tc-99 groundwater concentrations from all ten of the extraction wells when mixed were more than one-half of the MCL and were slowly increasing. If concentrations continued to rise and the water remained untreated for Tc-99, there was concern that the water re-injected into the aquifer could exceed the MCL standard. Multiple treatment technologies were reviewed for selectively removing Tc-99 from the groundwater. Of the treatment technologies, only ion exchange was determined to be highly selective, commercially available, and relatively low in cost. Through research funded by the U.S. Department of Energy, the ion-exchange resin Purolite{sup R} A-530E1 was found to successfully remove Tc-99 from groundwater, even in the presence of competing anions. For this and other reasons, Purolite{sup R} A-530E ion exchange resin was selected for treatability testing. The treatability test required installing resin columns on the discharge lines from extraction wells 299-W15-765 and 299-W15-44. Preliminary test results have concluded that the Purolite{sup R} A-530E1 resin is effective at removing Tc-99 from groundwater to below detection limits even in the presence of competing anions (e.g., nitrate and sulfate) at concentrations five to six magnitudes higher than Tc-99. (authors)

  20. Groundwater Contamination Potential from Stormwater

    E-Print Network [OSTI]

    Clark, Shirley E.

    1 Groundwater Contamination Potential from Stormwater Infiltration Robert Pitt, University (CSOs). Introduction (cont.) · Scattered information is available addressing groundwater impacts cities · EPA 1983 NURP work on groundwater beneath Fresno and Long Island infiltration basins · NRC 1994

  1. An investigation of the effect of diffusivity on the transport and spread of contaminants in groundwater systems

    SciTech Connect (OSTI)

    Nutter, D.; Stewart, M.; Muyshondt, A.

    1997-07-01

    Contaminant transport in groundwater is modeled using an advection diffusion equation. The diffusion component of the model is due to molecular diffusion and advection through the flow passages in the soil matrix which are smaller than the resolvable length scales. In addition to the physical diffusion, the advection/diffusion equation requires a certain amount of diffusion for the governing equations to be stable. If there is insufficient physical diffusion the cell Peclet number is less than 2 and oscillations in the solution occur. Balance numerical diffusion must be supplied for a stable solution. Numerical simulations of contaminant transport in groundwater flows must therefore include accurate models of as many of three forms of diffusion. One represents the subscale fluid path diffusion (either tensor, vector, or scalar in form), another is the scalar molecular diffusion (scalar), and the numerical stabilizing diffusion (again either tensor, vector, or scalar in form). The final result must reasonably model contaminant spread and transport for the predictions to be useful. In the literature, measurements of contaminant diffusivity are usually made using one dimensional experiments. Because of the dependence on higher level models to capture all of the physics in contaminant transport, it is to validate these models using realistic multidimensional geometries with comparisons to experimental data. Here, the effects of different diffusion models are examined and compared for two important cases. The first is a contaminant plume originating at the surface and extracted at a drain. The second case is an isolated region of contamination which is advected and diffused towards the drain. In the second case, qualitative comparisons can be made with limited visualization data. These results will eventually be used with a comprehensive experimental program to validate models of diffusion transport.

  2. Protection of the Groundwater Resource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protection of the Groundwater Resource Protection of the Groundwater Resource Monitoring wells act as sentinels between suspected LANL contamination and the water supply. August 1,...

  3. Groundwater recharge from Long Lake, Indiana Dunes National Lakeshore

    SciTech Connect (OSTI)

    Isiorho, S.A.; Beeching, F.M. (Indiana Univ., Fort Wayne, IN (United States). Geosciences Dept.); Whitman, R.L.; Stewart, P.M. (National Park Services, Porter, IN (United States). Indiana Dunes National Lakeshore); Gentleman, M.A.

    1992-01-01

    Long Lake, located between Lake Michigan and the Dune-complexes of Indiana Dunes, was formed during Pleistocene and Holocene epochs. The lake is currently being studied to understand the detailed hydrology. One of the objective of the study is to understand the hydrologic relationship between the lake and a water treatment holding pond to the northeast. Understanding the water movement between the two bodies of water, if any, would be very important in the management and protection of nature preserves in the area. Seepage measurement and minipiezometric tests indicate groundwater recharge from Long Lake. The groundwater recharge rate is approximately 1.40 to 22.28 x 10[sup [minus]4] m/day. An estimate of the amount of recharge of 7.0 x 10[sup 6] m[sup 3]/y may be significant in terms of groundwater recharge of the upper aquifer system of the Dunes area. The water chemistry of the two bodies of water appears to be similar, however, the pH of the holding pond is slightly alkaline (8.5) while that of Long Lake is less alkaline (7.7). There appears to be no direct contact between the two bodies of water (separated by approximately six meters of clay rich sediment). The geology of the area indicates a surficial aquifer underlying Long Lake. The lake should be regarded as a recharge area and should be protected from pollutants as the degradation of the lake would contaminate the underlying aquifer.

  4. Groundwater remediation at a former oil service site 

    E-Print Network [OSTI]

    Han, Liping

    2005-08-29

    As an intern with URS Corporation, I participated in several remediation and wastewater treatment projects during the year 2004. A groundwater remediation project was selected to present in this record of study for my Doctor of Engineering degree...

  5. Evapotranspiration And Geochemical Controls On Groundwater Plumes At Arid Sites: Toward Innovative Alternate End-States For Uranium Processing And Tailings Facilities

    SciTech Connect (OSTI)

    Looney, Brian B.; Denham, Miles E.; Eddy-Dilek, Carol A.; Millings, Margaret R.; Kautsky, Mark

    2014-01-08

    Management of legacy tailings/waste and groundwater contamination are ongoing at the former uranium milling site in Tuba City AZ. The tailings have been consolidated and effectively isolated using an engineered cover system. For the existing groundwater plume, a system of recovery wells extracts contaminated groundwater for treatment using an advanced distillation process. The ten years of pump and treat (P&T) operations have had minimal impact on the contaminant plume – primarily due to geochemical and hydrological limits. A flow net analysis demonstrates that groundwater contamination beneath the former processing site flows in the uppermost portion of the aquifer and exits the groundwater as the plume transits into and beneath a lower terrace in the landscape. The evaluation indicates that contaminated water will not reach Moenkopi Wash, a locally important stream. Instead, shallow groundwater in arid settings such as Tuba City is transferred into the vadose zone and atmosphere via evaporation, transpiration and diffuse seepage. The dissolved constituents are projected to precipitate and accumulate as minerals such as calcite and gypsum in the deep vadose zone (near the capillary fringe), around the roots of phreatophyte plants, and near seeps. The natural hydrologic and geochemical controls common in arid environments such as Tuba City work together to limit the size of the groundwater plume, to naturally attenuate and detoxify groundwater contaminants, and to reduce risks to humans, livestock and the environment. The technical evaluation supports an alternative beneficial reuse (“brownfield”) scenario for Tuba City. This alternative approach would have low risks, similar to the current P&T scenario, but would eliminate the energy and expense associated with the active treatment and convert the former uranium processing site into a resource for future employment of local citizens and ongoing benefit to the Native American Nations.

  6. Detecting appropriate groundwater-level trends for safe groundwater development

    E-Print Network [OSTI]

    Sohoni, Milind

    Detecting appropriate groundwater-level trends for safe groundwater development Rahul Gokhale-monsoon Groundwater(GW) levels are important for the periodic categorisation of regions in India according to their GW-safety. A specific procedure has been recommended by the Groundwater Estimation Committee, 1997(GEC'97), constituted

  7. Groundwater Resources Program A New Tool to Assess Groundwater Resources

    E-Print Network [OSTI]

    Groundwater Resources Program A New Tool to Assess Groundwater Resources in the Mississippi CAROLINA GEORGIA LOUISIANA Mississippi River Groundwater flow Well a quifer Alluvial aquifer Middle alluvial aquifer is the primary source of groundwater for irriga- tion in the largely agricultural region

  8. Groundwater 7-1 7. Groundwater

    E-Print Network [OSTI]

    Pennycook, Steve

    level and the pressures exerted on it by wells. surrounding water. Because hydraulic head is not Water Aquifer. Yields of some wells penetrating larger solution conduits are reported to exceed 1000 gal groundwater flow in the aquitards occurs through fractures. The typical yield of a well in the aquitards

  9. Groundwater under stress: the importance of management

    E-Print Network [OSTI]

    Vaux, Henry

    2011-01-01

    static or decline. Groundwater will be uniquely attractiveThe need to manage groundwater ef?ciently and effectively asthe aquifer. Most methods of groundwater management involve

  10. In situ heat treatment process utilizing a closed loop heating system

    DOE Patents [OSTI]

    Vinegar, Harold J. (Bellaire, TX); Nguyen, Scott Vinh (Houston, TX)

    2010-12-07

    Systems and methods for an in situ heat treatment process that utilizes a circulation system to heat one or more treatment areas are described herein. The circulation system may use a heated liquid heat transfer fluid that passes through piping in the formation to transfer heat to the formation. In some embodiments, the piping may be positioned in at least two of the wellbores.

  11. Modeling the reactive inorganic solute distributions in the groundwater flow systems of the Hanford Site using inverse analytical modeling techniques 

    E-Print Network [OSTI]

    Adamski, Mark Robert

    1993-01-01

    Inverse analytical techniques were used to model solute distributions and determine transport parameters for two flow systems in the Yakima Basalt subgroup at the Hanford Site in Washington state. Previous studies of these flow systems used...

  12. Groundwater Modeling in ArcView: by integrating ArcView, MODFLOW and

    E-Print Network [OSTI]

    Sengupta, Raja

    Groundwater Modeling in ArcView: by integrating ArcView, MODFLOW and MODPATH Abstract Modeling. This paper addresses groundwater modeling which is one of the many entities in environmental modeling in ArcView 3.2a. The objective was to create an integrated system where a user could do groundwater

  13. Predictive Simulations to Assess Potential Effect of Mining Activities on Groundwater

    E-Print Network [OSTI]

    Netoff, Theoden

    Predictive Simulations to Assess Potential Effect of Mining Activities on Groundwater Resource Effect of Mining Activities on Groundwater April 23, 2010 Table of Contents 1.0 Introduction ............................................................................................................................................1 2.0 Effect of Mining Operations on the Groundwater Flow System

  14. Laboratory test plan in-well vapor stripping system

    SciTech Connect (OSTI)

    Koegler, K.J

    1994-07-01

    This test plan describes the activities that will be conducted as a part of the laboratory testing of a full-scale mockup of the Stanford in-well vapor stripping system. These tests will be conducted to delineate design parameters for the in-well vapor stripping unit and to identify and quantify variables that are sensitive to the dynamic hydraulic effects induced by operation of the system. No radioactive materials are involved in this test. In-well vapor stripping has been used successfully as an alternative to conventional pump-and-treat technology for remediation of volatile organic compound (VOC) contaminated groundwater in Europe and more recently in the United States. In-well vapor stripping permits in situ remediation of VOC-contaminated groundwater by combining an in-well vapor stripping system with a treatment well is used to extract and discharge groundwater simultaneously, resulting in the establishment of a vertical circulation groundwater flow cell in the aquifer. Groundwater extracted from the aquifer via the lower screened interval is treated for VOCs by in-well vapor stripping within the treatment well. This stripping causes aqueous phase VOCs to partition preferentially into a vapor phase. Treated groundwater is discharged back to the aquifer via the upper screened interval of the treatment well, while the vapor phase VOCs are simultaneously removed from the well bore and contained at the surface with a vacuum extraction system. Groundwater entrained into the vertical circulation flow cell becomes sequentially cleaned of VOC contamination in an efficient manner without the need for surface treatment and handling of contaminated groundwater. An added benefit of in-well vapor stripping is the ability to perform vadose zone vapor extraction concurrently with groundwater remediation. This uses the vacuum extraction capabilities of the in-well vapor stripping configured with the upper screened interval placed into the vadose zone above the water table.

  15. Thermal treatment wall

    DOE Patents [OSTI]

    Aines, Roger D. (Livermore, CA); Newmark, Robin L. (Livermore, CA); Knauss, Kevin G. (Livermore, CA)

    2000-01-01

    A thermal treatment wall emplaced to perform in-situ destruction of contaminants in groundwater. Thermal destruction of specific contaminants occurs by hydrous pyrolysis/oxidation at temperatures achievable by existing thermal remediation techniques (electrical heating or steam injection) in the presence of oxygen or soil mineral oxidants, such as MnO.sub.2. The thermal treatment wall can be installed in a variety of configurations depending on the specific objectives, and can be used for groundwater cleanup, wherein in-situ destruction of contaminants is carried out rather than extracting contaminated fluids to the surface, where they are to be cleaned. In addition, the thermal treatment wall can be used for both plume interdiction and near-wellhead in-situ groundwater treatment. Thus, this technique can be utilized for a variety of groundwater contamination problems.

  16. In-situ method to remove iron and other metals from solution in groundwater down gradient from permeable reactive barrier

    DOE Patents [OSTI]

    Carpenter, Clay E. (Grand Junction, CO); Morrison, Stanley J. (Grand Junction, CO)

    2001-07-03

    This invention is directed to a process for treating the flow of anaerobic groundwater through an aquifer with a primary treatment media, preferably iron, and then passing the treated groundwater through a second porous media though which an oxygenated gas is passed in order to oxygenate the dissolved primary treatment material and convert it into an insoluble material thereby removing the dissolved primary treatment material from the groundwater.

  17. Boiler System Efficiency Improves with Effective Water Treatment 

    E-Print Network [OSTI]

    Bloom, D.

    1999-01-01

    efficiency. Condensate which is contaminated with corrosion products or process chemicals, however, is ill fit for reuse; and steam which leaks from piping, valves, traps and connections cannot be recovered. Effective chemical treatment, in conjunction...

  18. On-Site Wastewater Treatment Systems: Evapotranspiration Bed 

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    1999-09-01

    Evapotranspiration (ET) beds treat wastewater in the soil by evaporation and by transpiration from plants growing there. This publication explains the treatment, design, operation and maintenance of ET beds....

  19. System Modeling, Analysis, and Optimization Methodology for Diesel Exhaust After-treatment Technologies

    E-Print Network [OSTI]

    de Weck, Olivier L.

    System Modeling, Analysis, and Optimization Methodology for Diesel Exhaust After;System Modeling, Analysis, and Optimization Methodology for Diesel Exhaust After-treatment Technologies Developing new aftertreatment technologies to meet emission regulations for diesel engines is a growing

  20. Miamisburg Environmental Management Project Archived Soil & Groundwate...

    Office of Environmental Management (EM)

    Miamisburg Environmental Management Project Archived Soil & Groundwater Master Reports Miamisburg Environmental Management Project Archived Soil & Groundwater Master Reports...

  1. Fernald Environmental Management Project Archived Soil & Groundwater...

    Office of Environmental Management (EM)

    Fernald Environmental Management Project Archived Soil & Groundwater Master Reports Fernald Environmental Management Project Archived Soil & Groundwater Master Reports Fernald...

  2. Dosimetric evaluation of PLATO and Oncentra treatment planning systems for High Dose Rate (HDR) brachytherapy gynecological treatments

    SciTech Connect (OSTI)

    Singh, Hardev; De La Fuente Herman, Tania; Showalter, Barry; Thompson, Spencer J.; Syzek, Elizabeth J.; Herman, Terence; Ahmad, Salahuddin [Department of Radiation Oncology, Peggy and Charles Stephenson Oklahoma Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 (United States)

    2012-10-23

    This study compares the dosimetric differences in HDR brachytherapy treatment plans calculated with Nucletron's PLATO and Oncentra MasterPlan treatment planning systems (TPS). Ten patients (1 T1b, 1 T2a, 6 T2b, 2 T4) having cervical carcinoma, median age of 43.5 years (range, 34-79 years) treated with tandem and ring applicator in our institution were selected retrospectively for this study. For both Plato and Oncentra TPS, the same orthogonal films anterior-posterior (AP) and lateral were used to manually draw the prescription and anatomical points using definitions from the Manchester system and recommendations from the ICRU report 38. Data input for PLATO was done using a digitizer and Epson Expression 10000XL scanner was used for Oncentra where the points were selected on the images in the screen. The prescription doses for these patients were 30 Gy to points right A (RA) and left A (LA) delivered in 5 fractions with Ir-192 HDR source. Two arrangements: one dwell position and two dwell positions on the tandem were used for dose calculation. The doses to the patient points right B (RB) and left B (LB), and to the organs at risk (OAR), bladder and rectum for each patient were calculated. The mean dose and the mean percentage difference in dose calculated by the two treatment planning systems were compared. Paired t-tests were used for statistical analysis. No significant differences in mean RB, LB, bladder and rectum doses were found with p-values > 0.14. The mean percent difference of doses in RB, LB, bladder and rectum are found to be less than 2.2%, 1.8%, 1.3% and 2.2%, respectively. Dose calculations based on the two different treatment planning systems were found to be consistent and the treatment plans can be made with either system in our department without any concern.

  3. Combined Microbial-Fe(0) Treatment Systems 1 1058-8337/00/$.50

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    Combined Microbial-Fe(0) Treatment Systems 1 1058-8337/00/$.50 © 2000 by Battelle Memorial Institute Bioremediation Journal 4(1):0­0 (2000) Combined Microbial-Fe(0) Treatment System to Remove Nitrate this energy source to autotrophic denitrifying bacteria. Research with hydrogenotrophic, anaerobic bac- teria

  4. On-Site Wastewater Treatment Systems: Spray Distribution (Spanish) 

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Enciso, Juan

    1999-08-12

    Spray distribution systems for wastewater treated on site are much like lawn irrigation systems. This publication explains the advantages, disadvantages, maintenance steps and estimated costs of spray distribution systems.

  5. On-Site Wastewater Treatment Systems: Subsurface Drip Distribution 

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    1999-09-06

    A subsurface drip system distributes wastewater to the lawn through a system of tubing installed below the ground. This publication explains the advantages and disadvantages of subsurface drip distribution systems, as well ...

  6. Expediting Groundwater Sampling at Hanford and Making It Safer - 13158

    SciTech Connect (OSTI)

    Connell, Carl W. Jr.; Conley, S.F.; Carr, Jennifer S.; Schatz, Aaron L. [CH2M HILL Plateau Remediation Company, P.O. Box 1600, Richland, WA 99352 (United States)] [CH2M HILL Plateau Remediation Company, P.O. Box 1600, Richland, WA 99352 (United States); Brown, W.L. [Lockheed Martin Systems Information, P.O. Box 950, Richland, WA 99352 (United States)] [Lockheed Martin Systems Information, P.O. Box 950, Richland, WA 99352 (United States); Hildebrand, R. Douglas [Department of Energy - Richland Operations Office, 825 Jadwin Ave., Richland, WA 99352 (United States)] [Department of Energy - Richland Operations Office, 825 Jadwin Ave., Richland, WA 99352 (United States)

    2013-07-01

    The CH2M HILL Plateau Remediation Company (CHPRC) manages the groundwater monitoring programs at the Department of Energy's 586-square-mile Hanford site in southeastern Washington state. These programs are regulated by the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response Compensation and Liability Act (CERCLA), and the Atomic Energy Act (AEA). The purpose of monitoring is to track existing groundwater contamination from past practices, as well as other potential contamination that might originate from RCRA treatment, storage, and disposal (TSD) facilities. An integral part of the groundwater-monitoring program involves taking samples of the groundwater and measuring the water levels in wells scattered across the site. Each year, more than 1,500 wells are accessed for a variety of reasons. Historically, the monitoring activities have been very 'people intensive'. Field personnel or 'samplers' have been issued pre-printed forms showing information about the well(s) for a particular sampling evolution. This information is taken from two official electronic databases: the Hanford Well Information System (HWIS) and the Hanford Environmental Information System (HEIS). The samplers traditionally used these hardcopy forms to document the groundwater samples and well water-levels. After recording the entries in the field, the samplers turned the forms in at the end of the day and other personnel posted the collected information. In Automating Groundwater Sampling at Hanford (HNF-38542-FP Revision 0, Presented at Waste Management 2009 Conference, March 1 - March 5, 2009, Phoenix, AZ), we described the methods, tools, and techniques that would be used in automating the activities associated with measuring water levels. The Field Logging and Electronic Data Gathering (FLEDG) application/database that automates collecting the water-level measurement data has now been implemented at Hanford. In addition to eliminating the need to print out documents, the system saves three-to-four man days each month for the field personnel taking the measurements and the scientists and administrators managing the data and the documentation. After the information has received technical review, FLEDG automatically updates the database for water-level measurements and loads the document management system with the completed sampling report. Due to safety considerations, access to wells is conditional. A spreadsheet with appropriate data not only lists the wells that are cleared for work, but also the safety personnel who must be present before work can start. This spreadsheet is used in planning daily activities. Daily plans are structured to ensure that the wells to be sampled are cleared for work and the appropriate safety personnel have been assigned and are present before the work starts. Historically, the spreadsheets have been prepared manually, and as a result, are potentially subject to human error. However, a companion database application has been developed to work with FLEDG - making the entire sampling process more efficient and safer for personnel. The Well Access List - Electronic, WAL-E, is a database that contains much the same information that was previously manually loaded into the spread sheet. In addition, WAL-E contains a managed work-flow application that shows the access requirements and allows for appropriate reviews of the compiled well. Various CHPRC organizations, including Industrial Hygiene, RADCON, and Well Maintenance and Sample Administration are able to enter and review the wells added or deleted from the WAL-E database. The FLEDG system then accesses this database information to identify appropriate support personnel and provide safety requirements to field personnel. In addition, WAL-E offers the assurance that wells have appropriate locks and are correctly labeled and electrically grounded as required, before well activities begin. This feature is an extremely important aspect of the FLEDG/WAL-E system because it adds another safety check to the work evolution and reduces the pote

  7. ICDP Complex Groundwater Monitoring Plan REV 5

    SciTech Connect (OSTI)

    Cahn, L. S.

    2007-08-09

    This Groundwater Monitoring Plan, along with the Quality Assurance Project Plan for Waste Area Groups 1, 2, 3, 4, 5, 6, 7, 10, and Removal Actions, constitutes the sampling and analysis plan for groundwater and perched water monitoring at the Idaho CERCLA Disposal Facility (ICDF). A detection monitoring system was installed in the Snake River Plan Aquifer to comply with substantive requirements of "Releases from Solid Waste Management Units" of the Resource Conservation and Recovery Act. This detection monitoring wells constructed in the Snake River Plain Aquifer.

  8. In situ groundwater bioremediation

    SciTech Connect (OSTI)

    Hazen, Terry C.

    2009-02-01

    In situ groundwater bioremediation of hydrocarbons has been used for more than 40 years. Most strategies involve biostimulation; however, recently bioaugmentation have been used for dehalorespiration. Aquifer and contaminant profiles are critical to determining the feasibility and strategy for in situ groundwater bioremediation. Hydraulic conductivity and redox conditions, including concentrations of terminal electron acceptors are critical to determine the feasibility and strategy for potential bioremediation applications. Conceptual models followed by characterization and subsequent numerical models are critical for efficient and cost effective bioremediation. Critical research needs in this area include better modeling and integration of remediation strategies with natural attenuation.

  9. Gradual Variation Analysis for Groundwater Flow

    E-Print Network [OSTI]

    Chen, Li

    2010-01-01

    Groundwater flow in Washington DC greatly influences the surface water quality in urban areas. The current methods of flow estimation, based on Darcy's Law and the groundwater flow equation, can be described by the diffusion equation (the transient flow) and the Laplace equation (the steady-state flow). The Laplace equation is a simplification of the diffusion equation under the condition that the aquifer has a recharging boundary. The practical way of calculation is to use numerical methods to solve these equations. The most popular system is called MODFLOW, which was developed by USGS. MODFLOW is based on the finite-difference method in rectangular Cartesian coordinates. MODFLOW can be viewed as a "quasi 3D" simulation since it only deals with the vertical average (no z-direction derivative). Flow calculations between the 2D horizontal layers use the concept of leakage. In this project, we have established a mathematical model based on gradually varied functions for groundwater data volume reconstruction. T...

  10. Groundwater Data Analysis Lalit Kumar

    E-Print Network [OSTI]

    Sohoni, Milind

    Groundwater Data Analysis Lalit Kumar (10305073) Guide: Prof. Milind Sohoni Department of Computer BombayGroundwater Data Analysis Oct 25, 2011 1 / 23 #12;Outline Motivation Objective Terminology Case Sohoni (Department of Computer Science and EngineeringIndian Institute of Technology BombayGroundwater

  11. GROUNDWATER REMEDIATION DESIGN USING SIMULATED

    E-Print Network [OSTI]

    Mays, Larry W.

    CHAPTER 8 GROUNDWATER REMEDIATION DESIGN USING SIMULATED ANNEALING Richard L. Skaggs Pacific? There has been an emergence in the use of combinatorial methods such as simulated annealing in groundwater for groundwater management applications. The algorithm incor- porates "directional search" and "memory

  12. Topological groundwater hydrodynamics Garrison Sposito

    E-Print Network [OSTI]

    Chen, Yiling

    Topological groundwater hydrodynamics Garrison Sposito Department of Civil and Environmental; received in revised form 10 November 2000; accepted 15 November 2000 Abstract Topological groundwater, the topological characteristics of groundwater ¯ows governed by the Darcy law are studied. It is demonstrated that

  13. On-Site Wastewater Treatment Systems: Subsurface Drip Distribution (Spanish) 

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Enciso, Juan

    1999-08-12

    A subsurface drip system distributes wastewater to the lawn through a system of tubing installed below the ground surface. This publication explains the advantages, disadvantages, maintenance steps and estimated costs of ...

  14. On-Site Wastewater Treatment Systems: Spray Distribution 

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    1999-09-06

    A spray distribution system is very similar to a lawn irrigation system. Spray heads are used to distribute treated wastewater to the surface of the yard. This publication explains the advantages and disadvantages of spray ...

  15. Advanced Mixed Waste Treatment Project melter system preliminary design technical review meeting

    SciTech Connect (OSTI)

    Eddy, T.L.; Raivo, B.D.; Soelberg, N.R.; Wiersholm, O.

    1995-02-01

    The Idaho National Engineering Laboratory Advanced Mixed Waste Treatment Project sponsored a plasma are melter technical design review meeting to evaluate high-temperature melter system configurations for processing heterogeneous alpha-contaminated low-level radioactive waste (ALLW). Thermal processing experts representing Department of Energy contractors, the Environmental Protection Agency, and private sector companies participated in the review. The participants discussed issues and evaluated alternative configurations for three areas of the melter system design: plasma torch melters and graphite arc melters, offgas treatment options, and overall system configuration considerations. The Technical Advisory Committee for the review concluded that graphite arc melters are preferred over plasma torch melters for processing ALLW. Initiating involvement of stakeholders was considered essential at this stage of the design. For the offgas treatment system, the advisory committee raised the question whether to a use wet-dry or a dry-wet system. The committee recommended that the waste stream characterization, feed preparation, and the control system are essential design tasks for the high-temperature melter treatment system. The participants strongly recommended that a complete melter treatment system be assembled to conduct tests with nonradioactive surrogate waste material. A nonradioactive test bed would allow for inexpensive design and operational changes prior to assembling a system for radioactive waste treatment operations.

  16. Update on the aquifer/wetlands restoration project at Utica, Nebraska, with recommendations for remapping of the carbon tetrachloride contamination in groundwater.

    SciTech Connect (OSTI)

    LaFreniere, L. M.; Environmental Science Division

    2010-04-20

    In 1992-1993, Argonne National Laboratory investigated potential carbon tetrachloride contamination that might be linked to the former grain storage facility operated by the Commodity Credit Corporation (CCC) of the U.S. Department of Agriculture (USDA) at Utica, Nebraska. These initial studies identified carbon tetrachloride in a plume of contaminated groundwater, extending approximately 3,500 ft southeastward from the former CCC/USDA facility, within a shallow upper aquifer that had been used previously as a municipal water source by the town (Figure 1.1). A deeper aquifer used as the current municipal water source was found to be free of carbon tetrachloride contamination. Although the shallow aquifer was no longer being used as a source of drinking water at Utica, additional studies indicated that the carbon tetrachloride could pose an unacceptable health threat to potential future residents who might install private wells along the expected downgradient migration pathway of the plume. On the basis of these findings, corrective action was recommended to decrease the carbon tetrachloride concentrations in the upper aquifer to acceptable levels (Argonne 1993a,b, 1995). Initial discussions with the Utica village board indicated that any restoration strategies involving nonbeneficial discharge of treated groundwater in the immediate vicinity of Utica would be unacceptable to the town. To address this concern, the CCC/USDA and Argonne, in cooperation with multiple federal and state regulatory and environmental agencies (Table 1.1) proposed a treatment strategy for the Utica groundwater employing groundwater extraction coupled with the seasonal use of agricultural spray irrigation equipment to simultaneously (1) remove carbon tetrachloride from the groundwater (by volatilization to the atmosphere) and (2) discharge the treated groundwater to enhance the development of wetlands in the North Lake Basin Wildlife Management Area, just north of the town (Argonne 2000). To develop this treatment approach, additional groundwater sampling was conducted to update the distribution of carbon tetrachloride in groundwater identified in the preliminary studies in 1992-1993. In March 1998, detailed mapping of the carbon tetrachloride plume was performed by using the Argonne cone penetrometer (CPT) vehicle to collect groundwater samples for analyses for volatile organic compounds (VOCs) at 13 locations (PS01-PS09, PS12, PS16, PS17, PS19; Figure 1.2). The samples were collected in vertical profiles through the aquifer, at 10-ft intervals. The results of this 1998 study (Table 1.2) demonstrated that the three-dimensional distribution of carbon tetrachloride in the aquifer is complex, with multiple 'hot spots' occurring in the plume at various depths and distances along its length (Argonne 2000). In October 2002, the CCC/USDA requested that Argonne perform targeted groundwater sampling at Utica to document the migration of the carbon tetrachloride plume since the 1998 sampling event. In February 2003, vertical-profile groundwater sampling for VOCs analyses was conducted at 8 selected locations (PS01, PS04-PS07, PS12, PS19, PS20; Figure 1.2 and Table 1.3). The lateral and vertical configuration of the carbon tetrachloride plume, as identified in the 2003 study (Argonne 2003), is illustrated in Figures 1.3-1.7. On the basis of the 2003 groundwater sampling results, a remedial system employing four extraction wells (GWEX 1-GWEX 4), with groundwater treatment by spray irrigation and conventional air stripping, was implemented at Utica, with the concurrence of the CCC/USDA and the agencies identified in Table 1.1. The principal components of the Utica system (shown in Figure 1.8) are described briefly in Section 1.2. Operation of well GWEX4 and the associated air stripper began on October 29, 2004, and routine operation of wells GWEX1-GWEX3 and the spray irrigation treatment units began on November 22, 2004.

  17. Tracing And Quantifying Magmatic Carbon Discharge In Cold Groundwaters...

    Open Energy Info (EERE)

    an estimated 2.5107 m3yr of recharge, suggesting that sample coverage of the groundwater system was essentially complete. Some of the waters contain magmatic helium with...

  18. CHP and Bioenergy Systems for Landfills and Wastewater Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the following CHP technologies: Reciprocating Engine, Microturbine, Combustion Turbines, Stirling Engine, and Fuel Cell. CHP and Bioenergy Systems for Landfills and Wastewater...

  19. Pedestrian Timing Treatment for Coordinated Signal Systems Zong Z. Tian1

    E-Print Network [OSTI]

    Tian, Zong Z.

    Pedestrian Timing Treatment for Coordinated Signal Systems Zong Z. Tian1 Tom Urbanik2 Kent K. Kacir3 Mark A. Vandehey4 Howard Long5 ABSTRACT: Pedestrian timing has always been one of the major issues treatments on pedestrian timings: timing based on pedestrian minimums where the required pedestrian crossing

  20. Waste Isolation Pilot Plant Groundwater Protection Management Program Plan

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services

    2005-07-01

    The DOE established the Groundwater Monitoring Program (GMP) (WP 02-1) to monitor groundwater resources at WIPP. In the past, the GMP was conducted to establish background data of existing conditions of groundwater quality and quantity in the WIPP vicinity, and to develop and maintain a water quality database as required by regulation. Today the GMP is conducted consistent with 204.1.500 NMAC (New MexicoAdministrative Code), "Adoption of 40 CFR [Code of Federal Regulations] Part 264,"specifically 40 CFR §264.90 through §264.101. These sections of 20.4.1 NMAC provide guidance for detection monitoring of groundwater that is, or could be, affected by waste management activities at WIPP. Detection monitoring at WIPP is designed to detect contaminants in the groundwater long before the general population is exposed. Early detection will allow cleanup efforts to be accomplished before any exposure to the general population can occur. Title 40 CFR Part 264, Subpart F, stipulates minimum requirements of Resource Conservation and Recovery Act of 1976 (42 United States Code [U.S.C.] §6901 et seq.) (RCRA) groundwater monitoring programs including the number and location of monitoring wells; sampling and reporting schedules; analytical methods and accuracy requirements; monitoring parameters; and statistical treatment of monitoring data. This document outlines how WIPP intends to protect and preserve groundwater within the WIPP Land Withdrawal Area (WLWA). Groundwater protection is just one aspect of the WIPP environmental protection effort. An overview of the entire environmental protection effort can be found in DOE/WIPP 99-2194, Waste Isolation Pilot Plant Environmental Monitoring Plan. The WIPP GMP is designed to statistically determine if any changes are occurring in groundwater characteristics within and surrounding the WIPP facility. If a change is noted, the cause will then be determined and the appropriate corrective action(s) initiated.

  1. On-Site Wastewater Treatment Systems: Leaching Chambers 

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2000-02-04

    Leaching chambers distribute treated wastewater into the soil. This publication lists the advantages and disadvantages of leaching chamber systems, explains how to maintain them and gives estimates of costs....

  2. Review of the integrated thermal and nonthermal treatment system studies. Final report

    SciTech Connect (OSTI)

    NONE

    1996-10-01

    This report contains a review and evaluation of three systems analysis studies performed by LITCO on integrated thermal treatment systems and integrated nonthermal treatment systems for the remediation of mixed low-level waste stored throughout the US Department of Energy weapons complex. The review was performed by an independent team of nine researchers from the Energy and Environmental Research Center, Science Applications International Corporation, the Waste Policy Institute, and Virginia Tech. The three studies reviewed were as follows: Integrated Thermal Treatment System Study, Phase 1 -- issued July 1994; Integrated Thermal Treatment System Study, Phase 2 -- issued February 1996; and Integrated Nonthermal Treatment System Study -- drafted March 1996. The purpose of this review was to (1) determine whether the assumptions of the studies were adequate to produce an unbiased review of both thermal and nonthermal systems, (2) to identify the critical areas of the studies that would benefit from further investigation, and (3) to develop a standard template that could be used in future studies to assure a sound application of systems engineering.

  3. Isotopic Survey of Lake Davis and the Local Groundwater

    SciTech Connect (OSTI)

    Ridley, M N; Moran, J E; Singleton, M J

    2007-08-21

    In September 2007, California Fish and Game (CAFG) plans to eradicate the northern pike from Lake Davis. As a result of the eradication treatment, local residents have concerns that the treatment might impact the local groundwater quality. To address the concerns of the residents, Lawrence Livermore National Laboratory (LLNL) recommended measuring the naturally occurring stable oxygen isotopes in local groundwater wells, Lake Davis, and the Lake Davis tributaries. The purpose of these measurements is to determine if the source of the local groundwater is either rain/snowmelt, Lake Davis/Big Grizzly Creek water or a mixture of Lake Davis/Big Grizzly Creek and rain/snowmelt. As a result of natural evaporation, Lake Davis and the water flowing into Big Grizzly Creek are naturally enriched in {sup 18}oxygen ({sup 18}O), and if a source of a well's water is Lake Davis or Big Grizzly Creek, the well water will contain a much higher concentration of {sup 18}O. This survey will allow for the identification of groundwater wells whose water source is Lake Davis or Big Grizzly Creek. The results of this survey will be useful in the development of a water-quality monitoring program for the upcoming Lake Davis treatment. LLNL analyzed 167 groundwater wells (Table 1), 12 monthly samples from Lake Davis (Table 2), 3 samples from Lake Davis tributaries (Table 2), and 8 Big Grizzly Creek samples (Table 2). Of the 167 groundwater wells sampled and analyzed, only 2 wells contained a significant component of evaporated water, with an isotope composition similar to Lake Davis water. The other 163 groundwater wells have isotope compositions which indicate that their water source is rain/snowmelt.

  4. West Maui Groundwater Flow Model

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Nicole Lautze

    2015-01-01

    Groundwater flow model for West Maui. Data is from the following sources: Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014; and Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume V – Island of Maui Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008.

  5. Groundwater: Recharge is Not the Whole Story

    E-Print Network [OSTI]

    Bredehoeft, John

    2015-01-01

    J. 1962. A theory of groundwater motion in stream drainageOn modeling philosophies. Groundwater 44(4):496–498. doi:on a nearby stream. Groundwater 46(1):23–29. doi: http://

  6. 1.72 Groundwater Hydrology, Fall 2004

    E-Print Network [OSTI]

    Harvey, Charles

    Fundamentals of subsurface flow and transport, emphasizing the role of groundwater in the hydrologic cycle, the relation of groundwater flow to geologic structure, and the management of contaminated groundwater. Topics ...

  7. Questions about Groundwater Conservation Districts in Texas 

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Silvy, Valeen

    2008-09-22

    Groundwater conservation districts (GCDs) are being created in many parts of Texas to allow local citizens to manage and protect their groundwater. This publication answers frequently asked questions about groundwater and GCDs....

  8. Groundwater Recharge Simulator M. Tech. Thesis

    E-Print Network [OSTI]

    Sohoni, Milind

    Groundwater Recharge Simulator M. Tech. Thesis by Dharmvir Kumar Roll No: 07305902 Guide: Prof;Contents 1 Introduction 1 1.1 Groundwater Theory.1.5 Groundwater Flow Equation . . . . . . . . . . . . . . . . . . . . . . 11 1.2 Numerical Solvers and Boundary

  9. Future waste treatment and energy systems – examples of joint scenarios

    SciTech Connect (OSTI)

    Münster, M., E-mail: maem@dtu.dk [System Analysis Division, DTU Management Engineering, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde (Denmark); Finnveden, G. [KTH Royal Institute of Technology, School of Architecture and the Built Environment, Department of Planning and Environment, Division of Environmental Strategies Research – fms, 100 44 Stockholm (Sweden); Wenzel, H. [Institute of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Niels Bohrs Allé 1, 5230 Odense M (Denmark)

    2013-11-15

    Highlights: • Approach for use of scenarios dealing with both waste management and energy issues. • Overall scenarios for the common project and sub-scenarios in parts of the project. • Combining different types of scenarios to the tools of different disciplines. • Use of explorative external scenarios based on marginals for consequential LCA. - Abstract: Development and use of scenarios for large interdisciplinary projects is a complicated task. This article provides practical examples of how it has been carried out in two projects addressing waste management and energy issues respectively. Based on experiences from the two projects, recommendations are made for an approach concerning development of scenarios in projects dealing with both waste management and energy issues. Recommendations are given to develop and use overall scenarios for the project and leave room for sub-scenarios in parts of the project. Combining different types of scenarios is recommended, too, in order to adapt to the methods and tools of different disciplines, such as developing predictive scenarios with general equilibrium tools and analysing explorative scenarios with energy system analysis tools. Furthermore, as marginals identified in differing future background systems determine the outcomes of consequential life cycle assessments (LCAs), it is considered advisable to develop and use explorative external scenarios based on possible marginals as a framework for consequential LCAs. This approach is illustrated using an on-going Danish research project.

  10. Environmental Sciences Division Groundwater Program Office. Annual report, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-09-30

    This first edition of the Martin Marietta Energy Systems, Inc., (Energy Systems) Groundwater Program Annual Report summarizes the work carried out by the Energy Systems GWPO for fiscal year (FY) 1993. This introductory section describes the GWPO`s staffing, organization, and funding sources. The GWPO is responsible for coordination and oversight for all components of the groundwater program at the three Oak Ridge facilities [ORNL, the Oak Ridge Y-12 Plant, and the Oak Ridge K-25 Site], and the PGDP and PORTS, respectively. Several years ago, Energy systems senior management recognized that the manner in which groundwater activities were conducted at the five facilities could result in unnecessary duplication of effort, inadequate technical input to decisions related to groundwater issues, and could create a perception within the regulatory agencies of a confusing and inconsistent approach to groundwater issues at the different facilities. Extensive interactions among management from Environmental Compliance, Environmental Restoration (ER), Environmental Sciences Division, Environmental Safety and Health, and the five facilities ultimately led to development of a net technical umbrella organization for groundwater. On April 25, 1991, the GWPO was authorized to be set up within ORNL thereby establishing a central coordinating office that would develop a consistent technical and administrative direction for the groundwater programs of all facilities and result in compliance with all relevant U.S. Environmental Protection Agency (EPA) regulations such as RCRA and Comprehensive Environmental Restoration, Compensation and Liability Act (CERCLA) as well as U.S. Department of Energy (DOE) regulations and orders. For example, DOE Order 5400.1, issued on November 9, 1988, called for each DOE facility to develop an environmental monitoring program for all media (e.g., air, surface water, and groundwater).

  11. Least-Cost Groundwater Remediation Design Using Uncertain Hydrogeological Information

    SciTech Connect (OSTI)

    Pinder, George F.

    1999-06-01

    The research conducted by at the Research Center for Groundwater Remediation Design at the University of Vermont funded by the Department of Energy continues to focus on the implementation of a new method of including uncertainty into the optimal design of groundwater remediation systems. The uncertain parameter is the hydraulic conductivity of an aquifer. The optimization method utilized for this project is called robust optimization. The uncertainty of the hydraulic conductivity is described by a probability density function, PDF.

  12. A Wireless Sensor System for Biopotential Recording in the Treatment of Sleep Apnea

    E-Print Network [OSTI]

    Tang, Wendy

    A Wireless Sensor System for Biopotential Recording in the Treatment of Sleep Apnea Disorder Lei a wireless system capable of recording from a large number of electrodes (map human bodies' biopotentials for a project called "Sleep Apnea BioPotential Imager" based on Crossbow sensor network product [4]; (2

  13. Geologic mapping for groundwater resource protection and assessment

    SciTech Connect (OSTI)

    Shafer, J.M. (Univ. of South Carolina, Columbia, SC (United States). Earth Sciences and Resources Inst.); Berg, R.C. (Illinois State Geological Survey, Champaign, IL (United States))

    1993-03-01

    Groundwater is a vital natural resource in the US and around the world. In order to manage and protect this often threatened resource one must better understand its occurrence, extent, and susceptibility to contamination. Geologic mapping is a fundamental approach to developing more detailed and accurate assessments of groundwater resources. The stratigraphy and lithology of earth materials provide the framework for groundwater systems, whether they are deep confined aquifers or shallow, water table environments. These same earth materials control, in large part, the rates of migration of water and contaminants into and through groundwater systems thus establishing the potential yields of the systems and their vulnerability to contamination. Geologic mapping is used to delineate and display the vertical sequencing of earth materials either in cross-section or over lateral areas as in the stack-unit geologic map. These geologic maps, along with supportive hydrogeologic information, are used to identify the three-dimensional positioning and continuity of aquifer and non-aquifer earth materials. For example, detailed stack-unit mapping to a depth of 30 meters has been completed for a portion of a northern Illinois county. Groundwater contamination potentials were assigned to various vertical sequences of materials. Where aquifers are unconfined, groundwater contamination potentials are greatest. Conversely, other considerations being equal, the thicker the confining unit, the lower the contamination potential. This information is invaluable for land use decision-making; water supply assessment, development, and management; and environmental protection planning.

  14. 300 Area Process Trenches Groundwater Monitoring Plan

    SciTech Connect (OSTI)

    Lindberg, Jonathan W.; Chou, Charissa J.

    2001-08-13

    This document is a proposed groundwater monitoring plan for the 300 Area process trenches to comply with RCRA final status, corrective action groundwater monitoring.

  15. Hanford Treats Record Amount of Groundwater

    Office of Environmental Management (EM)

    September 13, 2011 Hanford Treats Record Amount of Groundwater RICHLAND, Wash. - Workers have treated more than 800 million gallons of groundwater at the Hanford Site so far this...

  16. Groundwater - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFESOpportunitiesNERSCGrid-based Production Grid-basedGroundwater

  17. Tank waste remediation system optimized processing strategy with an altered treatment scheme

    SciTech Connect (OSTI)

    Slaathaug, E.J.

    1996-03-01

    This report provides an alternative strategy evolved from the current Hanford Site Tank Waste Remediation System (TWRS) programmatic baseline for accomplishing the treatment and disposal of the Hanford Site tank wastes. This optimized processing strategy with an altered treatment scheme performs the major elements of the TWRS Program, but modifies the deployment of selected treatment technologies to reduce the program cost. The present program for development of waste retrieval, pretreatment, and vitrification technologies continues, but the optimized processing strategy reuses a single facility to accomplish the separations/low-activity waste (LAW) vitrification and the high-level waste (HLW) vitrification processes sequentially, thereby eliminating the need for a separate HLW vitrification facility.

  18. EES 1001 Lab 9 Groundwater

    E-Print Network [OSTI]

    Li, X. Rong

    is groundwater. The water table is the top of the saturated zone, and is the target for well drillers that want, specifically if the water table is below the potentiometric surface. Manmade wells and natural springs flowingEES 1001 ­ Lab 9 Groundwater Water that seeps into the ground, and is pulled down by gravity

  19. Monitoring probe for groundwater flow

    DOE Patents [OSTI]

    Looney, Brian B. (Aiken, SC); Ballard, Sanford (Albuquerque, NM)

    1994-01-01

    A monitoring probe for detecting groundwater migration. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow.

  20. Monitoring probe for groundwater flow

    DOE Patents [OSTI]

    Looney, B.B.; Ballard, S.

    1994-08-23

    A monitoring probe for detecting groundwater migration is disclosed. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow. 4 figs.

  1. Waste management system alternatives for treatment of wastes from spent fuel reprocessing

    SciTech Connect (OSTI)

    McKee, R.W.; Swanson, J.L.; Daling, P.M.; Clark, L.L.; Craig, R.A.; Nesbitt, J.F.; McCarthy, D.; Franklin, A.L.; Hazelton, R.F.; Lundgren, R.A.

    1986-09-01

    This study was performed to help identify a preferred TRU waste treatment alternative for reprocessing wastes with respect to waste form performance in a geologic repository, near-term waste management system risks, and minimum waste management system costs. The results were intended for use in developing TRU waste acceptance requirements that may be needed to meet regulatory requirements for disposal of TRU wastes in a geologic repository. The waste management system components included in this analysis are waste treatment and packaging, transportation, and disposal. The major features of the TRU waste treatment alternatives examined here include: (1) packaging (as-produced) without treatment (PWOT); (2) compaction of hulls and other compactable wastes; (3) incineration of combustibles with cementation of the ash plus compaction of hulls and filters; (4) melting of hulls and failed equipment plus incineration of combustibles with vitrification of the ash along with the HLW; (5a) decontamination of hulls and failed equipment to produce LLW plus incineration and incorporation of ash and other inert wastes into HLW glass; and (5b) variation of this fifth treatment alternative in which the incineration ash is incorporated into a separate TRU waste glass. The six alternative processing system concepts provide progressively increasing levels of TRU waste consolidation and TRU waste form integrity. Vitrification of HLW and intermediate-level liquid wastes (ILLW) was assumed in all cases.

  2. Technical analysis of advanced wastewater-treatment systems for coal-gasification plants

    SciTech Connect (OSTI)

    Not Available

    1981-03-31

    This analysis of advanced wastewater treatment systems for coal gasification plants highlights the three coal gasification demonstration plants proposed by the US Department of Energy: The Memphis Light, Gas and Water Division Industrial Fuel Gas Demonstration Plant, the Illinois Coal Gasification Group Pipeline Gas Demonstration Plant, and the CONOCO Pipeline Gas Demonstration Plant. Technical risks exist for coal gasification wastewater treatment systems, in general, and for the three DOE demonstration plants (as designed), in particular, because of key data gaps. The quantities and compositions of coal gasification wastewaters are not well known; the treatability of coal gasification wastewaters by various technologies has not been adequately studied; the dynamic interactions of sequential wastewater treatment processes and upstream wastewater sources has not been tested at demonstration scale. This report identifies key data gaps and recommends that demonstration-size and commercial-size plants be used for coal gasification wastewater treatment data base development. While certain advanced treatment technologies can benefit from additional bench-scale studies, bench-scale and pilot plant scale operations are not representative of commercial-size facility operation. It is recommended that coal gasification demonstration plants, and other commercial-size facilities that generate similar wastewaters, be used to test advanced wastewater treatment technologies during operation by using sidestreams or collected wastewater samples in addition to the plant's own primary treatment system. Advanced wastewater treatment processes are needed to degrade refractory organics and to concentrate and remove dissolved solids to allow for wastewater reuse. Further study of reverse osmosis, evaporation, electrodialysis, ozonation, activated carbon, and ultrafiltration should take place at bench-scale.

  3. Groundwater surveillance plan for the Oak Ridge Reservation

    SciTech Connect (OSTI)

    Forstrom, J.M.; Smith, E.D.; Winters, S.L.; Haase, C.S.; King, H.L.; McMaster, W.M.

    1994-07-01

    US Department of Energy (DOE) Order 5400.1 requires the preparation of environmental monitoring plans and implementation of environmental monitoring programs for all DOE facilities. The order identifies two distinct components of environmental monitoring, namely effluent monitoring and environmental surveillance. In general, effluent monitoring has the objectives of characterizing contaminants and demonstrating compliance with applicable standards and permit requirements, whereas environmental surveillance has the broader objective of monitoring the effects of DOE activities on on- and off-site environmental and natural resources. The purpose of this document is to support the Environmental Monitoring Plan for the Oak Ridge Reservation (ORR) by describing the groundwater component of the environmental surveillance program for the DOE facilities on the ORR. The distinctions between groundwater effluent monitoring and groundwater surveillance have been defined in the Martin Marietta Energy Systems, Inc., Groundwater Surveillance Strategy. As defined in the strategy, a groundwater surveillance program consists of two parts, plant perimeter surveillance and off-site water well surveillance. This document identifies the sampling locations, parameters, and monitoring frequencies for both of these activities on and around the ORR and describes the rationale for the program design. The program was developed to meet the objectives of DOE Order 5400.1 and related requirements in DOE Order 5400.5 and to conform with DOE guidance on environmental surveillance and the Energy Systems Groundwater Surveillance Strategy.

  4. Time and motion study for alternative mixed low-level waste treatment systems

    SciTech Connect (OSTI)

    Biagi, C.; Vetromile, J.; Teheranian, B.

    1997-02-01

    The time and motion study was developed to look at time-related aspects of the technologies and systems studied in the Integrated Thermal Treatment Systems (ITTS) and Integrated Nonthermal Treatment Systems (INTS) studies. The INTS and ITTS studies combined technologies into systems and subsystems for evaluation. The system approach provides DOE a method of measuring advantages and disadvantages of the many technologies currently being researched. For example, technologies which are more likely to create secondary waste or require extensive pretreatment handling may be less desirable than technologies which require less support from other processes. The time and motion study was designed to address the time element in the INTS and ITTS systems studies. Previous studies have focused on material balance, cost, technical effectiveness, regulatory issues, community acceptance, and operability. This study looks at system dynamics by estimating the treatment time required for a unit of waste, from receipt to certification for shipping. Labor estimates are also developed, based on the time required to do each task for each process. This focus on time highlights critical path processes and potential bottlenecks in the INTS and ITTS systems.

  5. Quasi-three dimensional ground-water modeling of the hydrologic influence of paleozoic rocks on the ground-water table at Yucca Mountain, Nevada 

    E-Print Network [OSTI]

    Lee, Si-Yong

    1994-01-01

    The proposed high-level radioactive waste repository site at Yucca Mountain, Nevada, has created a need to understand the, ground-water system at the site. One of the important hydrologic characteristics is a steep gradient on the ground-water table...

  6. Examples of Department of Energy Successes for Remediation of Contaminated Groundwater: Permeable Reactive Barrier and Dynamic Underground Stripping ASTD Projects

    SciTech Connect (OSTI)

    Purdy, C.; Gerdes, K.; Aljayoushi, J.; Kaback, D.; Ivory, T.

    2002-02-27

    Since 1998, the Department of Energy's (DOE) Office of Environmental Management has funded the Accelerated Site Technology Deployment (ASTD) Program to expedite deployment of alternative technologies that can save time and money for the environmental cleanup at DOE sites across the nation. The ASTD program has accelerated more than one hundred deployments of new technologies under 76 projects that focus on a broad spectrum of EM problems. More than 25 environmental restoration projects have been initiated to solve the following types of problems: characterization of the subsurface using chemical, radiological, geophysical, and statistical methods; treatment of groundwater contaminated with DNAPLs, metals, or radionuclides; and other projects such as landfill covers, purge water management systems, and treatment of explosives-contaminated soils. One of the major goals of the ASTD Program is to deploy a new technology or process at multiple DOE sites. ASTD projects are encouraged to identify subsequent deployments at other sites. Some of the projects that have successfully deployed technologies at multiple sites focusing on cleanup of contaminated groundwater include: Permeable Reactive Barriers (Monticello, Rocky Flats, and Kansas City), treating uranium and organics in groundwater; and Dynamic Underground Stripping (Portsmouth, and Savannah River), thermally treating DNAPL source zones. Each year more and more new technologies and approaches are being used at DOE sites due to the ASTD program. DOE sites are sharing their successes and communicating lessons learned so that the new technologies can replace the baseline or standard approaches at DOE sites, thus expediting cleanup and saving money.

  7. Waste treatment capacity of raft hydroponic lettuce production in an integrated fish culture system and the contribution of lettuce to treatment capacity 

    E-Print Network [OSTI]

    Gloger, Kelly C

    1995-01-01

    Two experiments were conducted to determine: 1.) the waste treatment capacity of raft hydroponic lettuce production in an integrated fish culture system and 2.) the contribution of lettuce plants, Lactuca saliva, cv. Paris ...

  8. GROUNDWATER MAPPING AND ASSESSMENT IN BRITISH COLUMBIA

    E-Print Network [OSTI]

    #12;r GROUNDWATER MAPPING AND ASSESSMENT IN BRITISH COLUMBIA VOLUME I: Review and Recommendations and Turner Groundwater Consultants P.O. Box 43001 Victoria, B.C. V8X 3G2 October 1993 #12;DISCLAIMER of Groundwater Information in British Columbia 6 2.1 Sources of Groundwater Mapping and Assessment Information 6

  9. GROUNDWATER ASSESSMENT METHODOLOGY C. P. Kumar

    E-Print Network [OSTI]

    Kumar, C.P.

    1 GROUNDWATER ASSESSMENT METHODOLOGY C. P. Kumar Scientist `F', National Institute of Hydrology is groundwater resources. Due to uneven distribution of rainfall both in time and space, the surface water on development of groundwater resources. The simultaneous development of groundwater, specially through dug wells

  10. CE 473/573 Groundwater Learning objectives

    E-Print Network [OSTI]

    Rehmann, Chris

    CE 473/573 Groundwater Fall 2011 Learning objectives While the goals of the class are quite general. Identify contemporary issues involving groundwater; explain how solutions that use knowledge of groundwater of piezometric head. Define groundwater divide and compute its properties. Explain how to determine whether

  11. Groundwater Flow in the Ganges Delta

    E-Print Network [OSTI]

    Entekhabi, Dara

    Groundwater Flow in the Ganges Delta Basu et al. (1) reported that 2 1011 m3 /year of groundwater groundwater than in Ganges-Brahmaputra river water. The flow could also have impli- cations for the origin and fate of other groundwater constituents in the Ganges delta that could be flushed by such rapid regional

  12. SLUDGE TREATMENT PROJECT ENGINEERED CONTAINER RETRIEVAL AND TRANSFER SYSTEM PRELIMINARY DESIGN HAZARD ANALYSIS SUPPLEMENT 1

    SciTech Connect (OSTI)

    FRANZ GR; MEICHLE RH

    2011-07-18

    This 'What/If' Hazards Analysis addresses hazards affecting the Sludge Treatment Project Engineered Container Retrieval and Transfer System (ECRTS) NPH and external events at the preliminary design stage. In addition, the hazards of the operation sequence steps for the mechanical handling operations in preparation of Sludge Transport and Storage Container (STSC), disconnect STSC and prepare STSC and Sludge Transport System (STS) for shipping are addressed.

  13. Combined Microbial-Fe(0) Treatment Systems 1 1058-8337/00/$.50

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    produces cathodic H2 when corroded by water. The preferential colonization of Fe(0) suggests- valent iron (Fe(0)) is submerged in anoxic water, hydro- gen gas is produced via cathodic depolarizationCombined Microbial-Fe(0) Treatment Systems 1 1058-8337/00/$.50 © 2000 by Battelle Memorial

  14. K West Basin Integrated Water Treatment System (IWTS) E-F Annular Filter Vessel Accident Calculations

    SciTech Connect (OSTI)

    PIEPHO, M.G.

    2000-01-10

    Four bounding accidents postulated for the K West Basin integrated water treatment system are evaluated against applicable risk evaluation guidelines. The accidents are a spray leak during fuel retrieval, spray leak during backflushing a hydrogen explosion, and a fire breaching filter vessel and enclosure. Event trees and accident probabilities are estimated. In all cases, the unmitigated dose consequences are below the risk evaluation guidelines.

  15. K West Basin Integrated Water Treatment System (IWTS) E-F Annular Filter Vessel Accident Calculations

    SciTech Connect (OSTI)

    RITTMANN, P.D.

    1999-10-07

    Three bounding accidents postdated for the K West Basin integrated water treatment system are evaluated against applicable risk evaluation guidelines. The accidents are a spray leak during fuel retrieval, spray leak during backflushing, and a hydrogen explosion. Event trees and accident probabilities are estimated. In all cases, the unmitigated dose consequences are below the risk evaluation guidelines.

  16. Preliminary design report for the K basins integrated water treatment system

    SciTech Connect (OSTI)

    Pauly, T.R., Westinghouse Hanford

    1996-08-12

    This Preliminary Design Report (PDR) provides a revised concept for the K Basins Integrated Water Treatment Systems (IWTS). This PDR incorporates the 11 recommendations made in a May 1996 Value Engineering session into the Conceptual Design, and provides new flow diagrams, hazard category assessment, cost estimate, and schedule for the IWTS Subproject.

  17. Hanford Site groundwater monitoring for fiscal year 1996

    SciTech Connect (OSTI)

    Hartman, M.J.; Dresel, P.E.; Borghese, J.V. [eds.] [and others] [eds.; and others

    1997-02-01

    This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1996 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that affected groundwater quality on the site. Characterization and monitoring of the vadose zone during FY 1996 comprised primarily spectral gamma logging, soil-gas monitoring, and electrical resistivity tomography. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1995 and June 1996. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Smaller plumes of strontium-90, technetium-99, and plutonium also were present at levels above the U.S. Environmental Protection Agency or State of Washington interim drinking water standards. Uranium concentrations greater than the proposed drinking water standard were also observed. Nitrate, fluoride, chromium, carbon tetrachloride, chloroform, trichloroethylene, and cis-1,2-dichlomethylene were present in groundwater samples at levels above their U.S. Environmental Protection Agency or State of Washington maximum contaminant levels. The nitrate plume is the most extensive. Three-dimensional, numerical, groundwater models were applied to the Hanford Site to predict contaminant-flow paths and the impact of operational changes on site groundwater conditions. Other models were applied to assess the performance of three separate pump-and-treat systems.

  18. Expediting Groundwater Sampling at Hanford and Making It Safer

    SciTech Connect (OSTI)

    Connell, Carl W. Jr.; Carr, Jennifer S.; Hildebrand, R. Douglas; Schatz, Aaron L.; Conley, S. F.; Brown, W. L.

    2013-01-22

    The CH2M HILL Plateau Remediation Company (CHPRC) manages the groundwatermonitoring programs at the Department of Energy's 586-square-mile Hanford site in southeastern Washington state. These programs are regulated by the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response Compensation and Liability Act (CERCLA), and the Atomic Energy Act (AEA). The purpose of monitoring is to track existing groundwater contamination from past practices, as well as other potential contamination that might originate from RCRA treatment, storage, and disposal (TSD) facilities. An integral part of the groundwater-monitoring program involves taking samples of the groundwater and measuring the water levels in wells scattered across the site. Each year, more than 1,500 wells are accessed for a variety of reasons.

  19. Groundwater contaminant plume ranking. [UMTRA Project

    SciTech Connect (OSTI)

    Not Available

    1988-08-01

    Containment plumes at Uranium Mill Tailings Remedial Action (UMTRA) Project sites were ranked to assist in Subpart B (i.e., restoration requirements of 40 CFR Part 192) compliance strategies for each site, to prioritize aquifer restoration, and to budget future requests and allocations. The rankings roughly estimate hazards to the environment and human health, and thus assist in determining for which sites cleanup, if appropriate, will provide the greatest benefits for funds available. The rankings are based on the scores that were obtained using the US Department of Energy's (DOE) Modified Hazard Ranking System (MHRS). The MHRS and HRS consider and score three hazard modes for a site: migration, fire and explosion, and direct contact. The migration hazard mode score reflects the potential for harm to humans or the environment from migration of a hazardous substance off a site by groundwater, surface water, and air; it is a composite of separate scores for each of these routes. For ranking the containment plumes at UMTRA Project sites, it was assumed that each site had been remediated in compliance with the EPA standards and that relict contaminant plumes were present. Therefore, only the groundwater route was scored, and the surface water and air routes were not considered. Section 2.0 of this document describes the assumptions and procedures used to score the groundwater route, and Section 3.0 provides the resulting scores for each site. 40 tabs.

  20. Groundwater Report Goes Online, Interactive

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – EM’s Richland Operations Office (RL) has moved its 1,200-page annual report on groundwater monitoring to a fully online and interactive web application.

  1. Karlsruhe Database for Radioactive Wastes (KADABRA) - Accounting and Management System for Radioactive Waste Treatment - 12275

    SciTech Connect (OSTI)

    Himmerkus, Felix; Rittmeyer, Cornelia [WAK Rueckbau- und Entsorgungs- GmbH, 76339 Eggenstein-Leopoldshafen (Germany)

    2012-07-01

    The data management system KADABRA was designed according to the purposes of the Cen-tral Decontamination Department (HDB) of the Wiederaufarbeitungsanlage Karlsruhe Rueckbau- und Entsorgungs-GmbH (WAK GmbH), which is specialized in the treatment and conditioning of radioactive waste. The layout considers the major treatment processes of the HDB as well as regulatory and legal requirements. KADABRA is designed as an SAG ADABAS application on IBM system Z mainframe. The main function of the system is the data management of all processes related to treatment, transfer and storage of radioactive material within HDB. KADABRA records the relevant data concerning radioactive residues, interim products and waste products as well as the production parameters relevant for final disposal. Analytical data from the laboratory and non destructive assay systems, that describe the chemical and radiological properties of residues, production batches, interim products as well as final waste products, can be linked to the respective dataset for documentation and declaration. The system enables the operator to trace the radioactive material through processing and storage. Information on the actual sta-tus of the material as well as radiological data and storage position can be gained immediately on request. A variety of programs accessed to the database allow the generation of individual reports on periodic or special request. KADABRA offers a high security standard and is constantly adapted to the recent requirements of the organization. (authors)

  2. Oak Ridge National Lebroatory Liquid&Gaseous Waste Treatment System Strategic Plan

    SciTech Connect (OSTI)

    Van Hoesen, S.D.

    2003-09-09

    Excellence in Laboratory operations is one of the three key goals of the Oak Ridge National Laboratory (ORNL) Agenda. That goal will be met through comprehensive upgrades of facilities and operational approaches over the next few years. Many of ORNL's physical facilities, including the liquid and gaseous waste collection and treatment systems, are quite old, and are reaching the end of their safe operating life. The condition of research facilities and supporting infrastructure, including the waste handling facilities, is a key environmental, safety and health (ES&H) concern. The existing infrastructure will add considerably to the overhead costs of research due to increased maintenance and operating costs as these facilities continue to age. The Liquid Gaseous Waste Treatment System (LGWTS) Reengineering Project is a UT-Battelle, LLC (UT-B) Operations Improvement Program (OIP) project that was undertaken to develop a plan for upgrading the ORNL liquid and gaseous waste systems to support ORNL's research mission.

  3. Different Strategies for Biological Remediation of Perchlorate Contaminated Groundwater

    E-Print Network [OSTI]

    Wang, Yue

    2012-01-01

    Perchlorate Contamination in Groundwater: Legal, Chemical,of Perchlorate-Contaminated Groundwater. Federal Facilitiesof perchlorate from groundwater by activated carbon tailored

  4. Submarine Groundwater and Its Influence on Beach Pollution

    E-Print Network [OSTI]

    Boehm, Alexandria; Payton, Adina

    2007-01-01

    Submarine Groundwater and Its Influence on Beach Pollutioncounts are linked to groundwater flowing a few feet beneaththe sand. Groundwater discharging to the coast may be as

  5. Groundwater Discharge of Mercury to California Coastal Waters

    E-Print Network [OSTI]

    Flegal, Russell; Paytan, Adina; Black, Frank

    2009-01-01

    R. 2009. Submarine groundwater discharge of total mercuryof nutrient-enriched fresh groundwater at Stinson Beach,Priya Ganguli collects groundwater at Elkhorn Slough. Coal-

  6. In-Situ Bioremediation of Perchlorate in Groundwater and Soil

    E-Print Network [OSTI]

    Jin, Liyan

    2012-01-01

    OF PERCHLORATE IN GROUNDWATER: AN OVERVIEW. SERDP ESTCPof perchlorate from groundwater by activated carbon tailoredof perchlorate from groundwater by the polyelectolyte-

  7. Notes on Groundwater Age in Forward and Inverse Modeling

    E-Print Network [OSTI]

    Ginn, Timothy R.; Haeri, Hanieh; Massoudieh, Arash; Foglia, Laura

    2009-01-01

    from radiocarbon dating of groundwater and numerical ?ow andReply to “Comment on groundwater age, life expectancy andanalysis of regional groundwater ?ow. 2. Effect of water-

  8. Nitrate Distribution in Soil Moisture and Groundwater with Intensive Plantation Management on Abandoned Agricultural Land

    SciTech Connect (OSTI)

    Williams, T.M.

    1998-01-01

    Paper outlines nitrate leaching results of loblolly pine and sweet gum that were grown with irrigation, continuous fertilization and insect pest control on a year old abandoned peanut field. Wells and tension lysimeters were used to measure nitrate in soil moisture and groundwater on three replicate transects for two years. Groundwater nitrate concentration beneath the minimum treatment was much higher than the maximum treatment and old field. All three treatments often exceeded the drinking water standard. Forest and lake edge had low levels while the soil moisture nitrate concentrations in the two plantations treatments were much higher than the old field.

  9. Flow calculations for Yucca Mountain groundwater travel time (GWTT-95)

    SciTech Connect (OSTI)

    Altman, S.J.; Arnold, B.W.; Barnard, R.W.; Barr, G.E.; Ho, C.K.; McKenna, S.A.; Eaton, R.R.

    1996-09-01

    In 1983, high-level radioactive waste repository performance requirements related to groundwater travel time were defined by NRC subsystem regulation 10 CFR 60.113. Although DOE is not presently attempting to demonstrate compliance with that regulation, understanding of the prevalence of fast paths in the groundwater flow system remains a critical element of any safety analyses for a potential repository system at Yucca Mountain, Nevada. Therefore, this analysis was performed to allow comparison of fast-path flow against the criteria set forth in the regulation. Models developed to describe the conditions for initiation, propagation, and sustainability of rapid groundwater movement in both the unsaturated and saturated zones will form part of the technical basis for total- system analyses to assess site viability and site licensability. One of the most significant findings is that the fastest travel times in both unsaturated and saturated zones are in the southern portion of the potential repository, so it is recommended that site characterization studies concentrate on this area. Results support the assumptions regarding the importance of an appropriate conceptual model of groundwater flow and the incorporation of heterogeneous material properties into the analyses. Groundwater travel times are sensitive to variation/uncertainty in hydrologic parameters and in infiltration flux at upper boundary of the problem domain. Simulated travel times are also sensitive to poorly constrained parameters of the interaction between flow in fractures and in the matrix.

  10. Hanford Site Groundwater Monitoring for Fiscal Year 2005

    SciTech Connect (OSTI)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2006-02-28

    This report is one of the major products and deliverables of the Groundwater Remediation and Closure Assessment Projects detailed work plan for FY 2006, and reflects the requirements of The Groundwater Performance Assessment Project Quality Assurance Plan (PNNL-15014). This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2005 on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes in groundwater are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. The largest portions of these plumes are migrating from the central Hanford Site to the southeast, toward the Columbia River. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the west-central part of the Hanford Site. Hexavalent chromium is present in plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath all but one of the reactor areas. Technetium-99 and uranium plumes exceeding standards are present in the 200 Areas. A uranium plume underlies the 300 Area. Minor contaminant plumes with concentrations greater than standards include carbon-14, cesium-137, cis-1,2-dichloroethene, cyanide, fluoride, plutonium, and trichloroethene. Monitoring for the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 is conducted in 11 groundwater operable units. The purpose of this monitoring is to define and track plumes and to monitor the effectiveness of interim remedial actions. Interim groundwater remediation in the 100 Areas continued with the goal of reducing the amount of chromium (100-K, 100-D, and 100-H) and strontium-90 (100-N) reaching the Columbia River. The objective of two interim remediation systems in the 200 West Area is to prevent the spread of carbon tetrachloride and technetium-99/uranium plumes. Resource Conservation and Recovery Act of 1976 groundwater monitoring continued at 25 waste management areas during fiscal year 2005: 15 under interim or final status detection programs and data indicate that they are not adversely affecting groundwater, 8 under interim status groundwater quality assessment programs to assess contamination, and 2 under final status corrective-action programs. During calendar year 2005, drillers completed 27 new monitoring wells, and decommissioned (filled with grout) 115 unneeded wells. Vadose zone monitoring, characterization, and remediation continued in fiscal year 2005. Remediation and associated monitoring continued at a soil-vapor extraction system in the 200 West Area, which removes gaseous carbon tetrachloride from the vadose zone. DOE uses geophysical methods to monitor potential movement of contamination beneath former waste sites.

  11. New Pump and Treat Facility Remedial Action Work Plan for Test Area North (TAN) Final Groundwater Remediation, Operable Unit 1-07B

    SciTech Connect (OSTI)

    L. O. Nelson

    2003-09-01

    This operations and maintenance plan supports the New Pump and Treat Facility (NPTF) remedial action work plan and identifies the approach and requirements for the operations and maintenance activities specific to the final medical zone treatment remedy. The NPTF provides the treatment system necessary to remediate the medical zone portion of the OU 1-07B contaminated groundwater plume. Design and construction of the New Pump and Treat Facility is addressed in the NPTF remedial action work plan. The scope of this operation and maintenance plan includes facility operations and maintenance, remedy five-year reviews, and the final operations and maintenance report for the NPTF.

  12. On-Site Wastewater Treatment Systems: Low-Pressure Dosing System (Spanish) 

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    1999-08-12

    A low-pressure dosing system treats wastewater and then pumps it into the soil several times daily. This publication explains the advantages, disadvantages, maintenance steps and estimated costs of low-pressure dosing systems.

  13. On-Site Wastewater Treatment Systems: Low-Pressure Dosing System 

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    1999-09-06

    A low-pressure dosing system treats wastewater and then pumps it into the soil several times daily. This publication explains the advantages and disadvantages of low-pressure dosing systems as well as estimated costs and ...

  14. Quarterly report of RCRA groundwater monitoring data for period October 1 through December 31, 1994

    SciTech Connect (OSTI)

    1995-04-01

    Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs as defined in the Resource Conservation and Recovery Act of 1976 (RCRA); and {open_quotes}Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities{close_quotes} (Title 40 Code of Federal Regulations [CFR] Part 265), as amended. Compliance with the 40 CFR 265 regulations is required by the Washington Administrative Code (WAC) 173-303. This report contains data from Hanford Site groundwater monitoring projects. The location of each facility is shown. Westinghouse Hanford Company (WHC) manages the RCRA groundwater monitoring projects for federal facilities on the Hanford Site. Performing project management, preparing groundwater monitoring plans, well network design and installation, specifying groundwater data needs, performing quality control (QC) oversight, data management, and preparing project sampling schedules are all parts of this responsibility. Pacific Northwest Laboratory (PNL) administers the contract for analytical services and provides groundwater sampling services to WHC for the RCRA groundwater monitoring program. This quarterly report contains data received between October and December 1994, which are the cutoff dates for this reporting period. This report may contain not only data from the October through December quarter, but also data from earlier sampling events that were not previously reported.

  15. LLW Processing and Operational Experience using a Plasma ARC Centrifugal Treatment (PACT{sup TM}) System

    SciTech Connect (OSTI)

    Shuey, M.W.; Ottmer, P.P.

    2006-07-01

    After several years of development, a commercially available high-temperature treatment system has been developed, licensed, and installed that treats heterogeneous low-level radioactive waste. High temperature plasma processing, unique torch design and operating features make it feasible to achieve a volume reduced, permanent, high integrity waste form while eliminating the personnel exposure and costs associated with conventional sorting, characterizing and handling. The Plasma Arc Centrifugal Treatment system or PACT{sup TM} manufactured by Retech Systems LLC is a licensed thermal plasma system that processes and consolidates low level radioactive wastes. The first PACT{sup TM} thermal plasma system to be licensed was at ZWILAG (Zwischenlager Wuerenlingen AG, Switzerland) in May 2004, and the second is utilized by the Japan Atomic Power Company (JAPC) in Tsuruga, Japan in March 2005. ZWILAG uses a drum feeder that processes the 200-liter drums from storage horizontally and pours the molten slag into molds. The drums contain organic and inorganic wastes (mixed waste), and by processing the drums directly lowers exposure to processing personnel. ZWILAG production data mid-2004 through mid-June 2005 has fed 9.4 E+10 Bq of mixed waste and stabilized 8.5 E+10 Bq in slag with a mean activity of 2.1 E+09 Bq/drum. The operational experience demonstrated by ZWILAG and JAPC has been a testament to the success of thermal plasma and their unique status has proven the real benefits of using the PACT{sup TM} system. (authors)

  16. System Description for the KW Basin Integrated Water Treatment System (IWTS) (70.3)

    SciTech Connect (OSTI)

    DERUSSEAU, R.R.

    2000-04-18

    This is a description of the system that collects and processes the sludge and radioactive ions released by the spent nuclear fuel (SNF) processing operations conducted in the 105 KW Basin. The system screens, settles, filters, and conditions the basin water for reuse. Sludge and most radioactive ions are removed before the water is distributed back to the basin pool. This system is part of the Spent Nuclear Fuel Project (SNFP).

  17. Groundwater Reactive Transport Models, 2012, 141-159 141 Fan Zhang, Gour-Tsyh (George) Yeh, Jack C. Parker and Xiaonan Shi (Eds)

    E-Print Network [OSTI]

    Mills, Richard

    Groundwater Reactive Transport Models, 2012, 141-159 141 Fan Zhang, Gour-Tsyh (George) Yeh, Jack C--simulating groundwater flow and solute transport, with basic chemical reactions such as aqueous complexing, mineral systems [1]. Although these simplified groundwater models are still in wide use, advances in subsurface

  18. The integrated melter off-gas treatment systems at the West Valley Demonstration Project

    SciTech Connect (OSTI)

    Vance, R.F.

    1991-12-01

    The West Valley Demonstration project was established by an act of Congress in 1980 to solidify the high level radioactive liquid wastes produced from operation of the Western New York Nuclear Services Center from 1966 to 1972. The waste will be solidified as borosilicate glass. This report describes the functions, the controlling design criteria, and the resulting design of the melter off-gas treatment systems.

  19. GROUNDWATER RADIOIODINE: PREVALENCE, BIOGEOCHEMISTRY, AND POTENTIAL REMEDIAL APPROACHES

    SciTech Connect (OSTI)

    Denham, M.; Kaplan, D.; Yeager, C.

    2009-09-23

    Iodine-129 ({sup 129}I) has not received as much attention in basic and applied research as other contaminants associated with DOE plumes. These other contaminants, such as uranium, plutonium, strontium, and technetium are more widespread and exist at more DOE facilities. Yet, at the Hanford Site and the Savannah River Site {sup 129}I occurs in groundwater at concentrations significantly above the primary drinking water standard and there is no accepted method for treating it, other than pump-and-treat systems. With the potential arrival of a 'Nuclear Renaissance', new nuclear power facilities will be creating additional {sup 129}I waste at a rate of 1 Ci/gigawatts energy produced. If all 22 proposed nuclear power facilities in the U.S. get approved, they will produce more {sup 129}I waste in seven years than presently exists at the two facilities containing the largest {sup 129}I inventories, ({approx}146 Ci {sup 129}I at the Hanford Site and the Savannah River Site). Hence, there is an important need to fully understand {sup 129}I behavior in the environment to clean up existing plumes and to support the expected future expansion of nuclear power production. {sup 129}I is among the key risk drivers at all DOE nuclear disposal facilities where {sup 129}I is buried, because of its long half-life (16 million years), high toxicity (90% of the body's iodine accumulates in the thyroid), high inventory, and perceived high mobility in the subsurface environment. Another important reason that {sup 129}I is a key risk driver is that there is the uncertainty regarding its biogeochemical fate and transport in the environment. We typically can define {sup 129}I mass balance and flux at sites, but can not accurately predict its response to changes in the environment. This uncertainty is in part responsible for the low drinking water standard, 1 pCi/L {sup 129}I, and the low permissible inventory limits (Ci) at the Savannah River Site, Hanford Site, and the former Yucca Mountain disposal facilities. The objectives of this report are to: (1) compile the background information necessary to understand behavior of {sup 129}I in the environment, (2) discuss sustainable remediation approaches to {sup 129}I contaminated groundwater, and (3) identify areas of research that will facilitate remediation of {sup 129}I contaminated areas on DOE sites. Lines of scientific inquiry that would significantly advance the goals of basic and applied research programs for accelerating {sup 129}I environmental remediation and reducing uncertainty associated with disposal of {sup 129}I waste are: (1) Evaluation of amendments or other treatment systems that can sequester subsurface groundwater {sup 129}I. (2) Develop analytical techniques for measurement of total {sup 129}I that eliminate the necessity of collecting and shipping large samples of groundwater. (3) Develop and evaluate ways to manipulate areas with organic-rich soil, such as wetlands, to maximize {sup 129}I sorption, minimizing releases during anoxic conditions. (4) Develop analytical techniques that can identify the various {sup 129}I species in the subsurface aqueous and solid phases at ambient concentrations and under ambient conditions. (5) Identify the mechanisms and factors controlling iodine-natural organic matter interactions at appropriate environmental concentrations. (6) Understand the biological processes that transform iodine species throughout different compartments of subsurface waste sites and the role that these processes have on {sup 129}I flux.

  20. Groundwater Protection 7 2007 Site environmental report7-

    E-Print Network [OSTI]

    Groundwater Protection 7 2007 Site environmental report7- DRAFT Brookhaven National Laboratory's (BNL) Groundwater Protection Management Program is made up of four elements: prevention, monitoring to protect groundwater resources. An extensive groundwater monitoring well network is used to verify

  1. 2011 Mound Site Groundwater Plume Rebound Exercise and Follow-Up - 13440

    SciTech Connect (OSTI)

    Hooten, Gwendolyn [Mound Site Manager, U.S. Department of Energy Office of Legacy Management, Harrison, Ohio (United States)] [Mound Site Manager, U.S. Department of Energy Office of Legacy Management, Harrison, Ohio (United States); Cato, Rebecca; Lupton, Greg [S.M. Stoller Company, contractor to the U.S. Department of Energy Office of Legacy Management (United States)] [S.M. Stoller Company, contractor to the U.S. Department of Energy Office of Legacy Management (United States)

    2013-07-01

    The Mound Site facility near Miamisburg, Ohio, opened in 1948 to support early atomic weapons programs. It grew into a research, development, and production facility performing work in support of the U.S. Department of Energy (DOE) weapons and energy programs. The plant was in operation until 1995. During the course of operation, an onsite landfill was created. The landfill was located over a finger of a buried valley aquifer, which is a sole drinking water source for much of the Miami Valley. In the 1980's, volatile organic compounds (VOCs) were discovered in groundwater at the Mound site. The site was placed on the National Priorities List on November 21, 1989. DOE signed a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Federal Facility Agreement with the U.S. Environmental Protection Agency (EPA) and the Ohio Environmental Protection Agency. The agreement became effective in October 1990. The area that included the landfill was designated Operational Unit 1 (OU-1). In 1995, a Record of Decision was signed that called for the installation and operation of a pump and treatment (P and T) system in order to prevent the VOCs in OU-1 groundwater from being captured by the onsite water production wells. In addition to the P and T system, a soil vapor extraction (SVE) system was installed in 1997 to accelerate removal of VOCs from groundwater in the OU-1 area. The SVE system was successful in removing large amounts of VOCs and continued to operate until 2007, when the amount of VOCs removed became minimal. A rebound study was started in February 2003 to determine how the groundwater system and contaminants would respond to shutting down the P and T system. The rebound test was stopped in February 2004 because predetermined VOC threshold concentrations were exceeded down-gradient of the landfill. The P and T and SVE systems were restarted after the termination of the rebound test. In 2006, the remediation of the Mound site was completed and the site was declared to be protective of human health and the environment, as long as the institutional controls are observed. The institutional controls that apply to the OU-1 area include provisions that no soil be allowed to leave the site, no wells be installed for drinking water, and the site may be approved only for industrial use. The onsite landfill with the operating CERCLA remedy remained. However, the Mound Development Corporation lobbied Congress for funds to remediate the remaining onsite landfill to allow for property reuse. In 2007 DOE received funding from Congress to perform non-CERCLA removal actions at OU-1 to excavate the site sanitary landfill. In 2009, DOE received American Recovery and Reinvestment Act funding to complete the project. Excavation of the landfill occurred intermittently from 2006 through 2010 and the majority of the VOC source was removed; however, VOC levels near the P and T system remained greater than the EPA maximum contaminant levels (MCLs). Presently, groundwater is contained using two extraction wells to create a hydraulic barrier to prevent down-gradient migration of VOC-impacted groundwater. Since the primary contamination source has been removed, the feasibility of moving away from containment to a more passive remedy, namely monitored natural attenuation (MNA), is being considered. A second rebound study was started in June 2011. If contaminant and groundwater behavior met specific conditions during the study, MNA would be evaluated and considered as a viable alternative for the groundwater in the OU-1 area. From June through December 2011, the second rebound study evaluated the changes in VOC concentrations in groundwater when the P and T system was not in operation. As the study progressed, elevated concentrations of VOCs that exceeded predetermined trigger values were measured along the down-gradient boundary of the study area, and so the P and T system was restarted. It was determined that a discrete area with VOC concentrations greater than the MCLs was present in groundwater down-gradient of the extracti

  2. Simulation of integrated pollutant removal (IPR) water-treatment system using ASPEN Plus

    SciTech Connect (OSTI)

    Harendra, Sivaram; Oryshcyhn, Danylo [U.S. DOE Ochs, Thomas [U.S. DOE Gerdemann, Stephen; Clark, John

    2013-01-01

    Capturing CO2 from fossil fuel combustion provides an opportunity for tapping a significant water source which can be used as service water for a capture-ready power plant and its peripherals. Researchers at the National Energy Technology Laboratory (NETL) have patented a process—Integrated Pollutant Removal (IPR®)—that uses off-the-shelf technology to produce a sequestration ready CO2 stream from an oxy-combustion power plant. Water condensed from oxy-combustion flue gas via the IPR system has been analyzed for composition and an approach for its treatment—for in-process reuse and for release—has been outlined. A computer simulation model in ASPEN Plus has been developed to simulate water treatment of flue gas derived wastewater from IPR systems. At the field installation, water condensed in the IPR process contains fly ash particles, sodium (largely from spray-tower buffering) and sulfur species as well as heavy metals, cations, and anions. An IPR wastewater treatment system was modeled using unit operations such as equalization, coagulation and flocculation, reverse osmosis, lime softening, crystallization, and pH correction. According to the model results, 70% (by mass) of the inlet stream can be treated as pure water, the other 20% yields as saleable products such as gypsum (CaSO4) and salt (NaCl) and the remaining portion is the waste. More than 99% of fly ash particles are removed in the coagulation and flocculation unit and these solids can be used as filler materials in various applications with further treatment. Results discussed relate to a slipstream IPR installation and are verified experimentally in the coagulation/flocculation step.

  3. Groundwater Monitoring Well Installation Work Plan

    E-Print Network [OSTI]

    Groundwater Monitoring Well Installation Work Plan CSMRI Site Prepared for: Colorado School;CSMRI Site Groundwater Monitoring Well Installation Work Plan December 6, 2006 Page ii Table of Contents

  4. Groundwater is not a Common-Pool resource: Ordering sustainability issues of groundwater use

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Groundwater is not a Common-Pool resource: Ordering sustainability issues of groundwater use linked to groundwater use. First, it shows that the debate on the traditional indicator to assess and ecological impacts happen before stock impacts that reduce availability of groundwater for current and future

  5. Probabilistic evaluation of shallow groundwater resources at...

    Office of Scientific and Technical Information (OSTI)

    of Publication: United States Language: English Subject: Groundwater resources; risk assessment; integrated MC simulation; heterogeneity; unconfined aquifer; plume volume...

  6. Groundwater Pollution David W. Watkins, Jr.

    E-Print Network [OSTI]

    Morton, David

    II 21 Mor 2003/10/14 page 391 i i i i i i i i Chapter 21 Groundwater Pollution Control David W pollution has resulted from the use of agricultural chemicals, and localized pollution has resulted from is frequently used to address groundwater pollution problems. In par- ticular, numerical groundwater simulation

  7. Spatial Inference of Nitrate Concentrations in Groundwater

    E-Print Network [OSTI]

    Woodard, Dawn B.

    Spatial Inference of Nitrate Concentrations in Groundwater DAWN B. WOODARD, ROBERT L. WOLPERT in groundwater over the mid-Atlantic states, using measurements gathered during a pe- riod of ten years. A map- trations in air, pesticide concentrations in groundwater, or any other quantity that varies over

  8. GROUNDWATER FLOW MODELS C. P. Kumar

    E-Print Network [OSTI]

    Kumar, C.P.

    GROUNDWATER FLOW MODELS C. P. Kumar Scientist `E1' National Institute of Hydrology Roorkee ­ 247667 (Uttaranchal) 1.0 INTRODUCTION The use of groundwater models is prevalent in the field of environmental science, groundwater models are being applied to predict the transport of contaminants for risk evaluation. In general

  9. Groundwater Remediation Strategy Using Global Optimization Algorithms

    E-Print Network [OSTI]

    Neumaier, Arnold

    Groundwater Remediation Strategy Using Global Optimization Algorithms Shreedhar Maskey1 ; Andreja Jonoski2 ; and Dimitri P. Solomatine3 Abstract: The remediation of groundwater contamination by pumping as decision variables. Groundwater flow and particle-tracking models MODFLOW and MODPATH and a GO tool GLOBE

  10. CE 473/573 Groundwater Learning objectives

    E-Print Network [OSTI]

    Rehmann, Chris

    CE 473/573 Groundwater Fall 2009 Learning objectives While the goals of the class are quite general for various soil types and explain how sorting affects porosity. Explain how results from a groundwater model. Sketch and explain profiles of piezometric head. 7. Define groundwater divide and compute its properties

  11. Modification ofregional groundwater regimes by land reclamation

    E-Print Network [OSTI]

    Jiao, Jiu Jimmy

    Modification ofregional groundwater regimes by land reclamation Jiu Jimmy Jiao Department of groundwater regime, in tum causing similar problems. This paper represents the first attempt to address the impact ofreclamation on groundwater regimes. It will be demonstrated that large-scale of reclamation

  12. Groundwater use and salinization with grassland afforestation

    E-Print Network [OSTI]

    Nacional de San Luis, Universidad

    Groundwater use and salinization with grassland afforestation E S T E B A N G . J O B B A´ G Y *w salinization of groundwater and soils in afforested plots was associated with increased evapotranspiration and groundwater consumption by trees, with maximum salinization occurring on intermediately textured soils

  13. GROUNDWATER MAPPING AND ASSESSMENT IN BRITISH COLUMBIA

    E-Print Network [OSTI]

    #12;GROUNDWATER MAPPING AND ASSESSMENT IN BRITISH COLUMBIA VOLUME II: Criteria and Guidelines DOE and Turner Groundwater Consultants P.O. Box 43001 Victoria, B.C. V8X 3G2 October 1993 #12;DISCLAIMER 3H7 #12;TABLE OF CONTENTS Chapter 1 Introduction 1 Chapter 2 Basic Groundwater Concepts

  14. Chemical Composition of Anthropogenically Influenced Groundwater

    E-Print Network [OSTI]

    Vallino, Joseph J.

    Chemical Composition of Anthropogenically Influenced Groundwater Jacqueline Gordon Brandeis of Biology 1 #12;ABSTRACT I examined the oxygen and nitrogen components of groundwater. I looked at groundwater from a pristine site, a human impacted site, and Title V treated wastewater. All of the water

  15. groundwater nitrogen source identification and remediation

    E-Print Network [OSTI]

    groundwater nitrogen source identification and remediation The Seymour Aquifer is a shallow aquifer, the Seymour Aquifer has the highest groundwater pollution potential of all the major aqui- fers in Texas drinking water standards. Potential sources of nitrate in groundwater include atmospheric deposi- tion

  16. Cone Beam Computed Tomography Image Guidance System for a Dedicated Intracranial Radiosurgery Treatment Unit

    SciTech Connect (OSTI)

    Ruschin, Mark; Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario ; Komljenovic, Philip T.; Ansell, Steve; Menard, Cynthia; Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario ; Bootsma, Gregory; Cho, Young-Bin; Chung, Caroline; Jaffray, David; Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario

    2013-01-01

    Purpose: Image guidance has improved the precision of fractionated radiation treatment delivery on linear accelerators. Precise radiation delivery is particularly critical when high doses are delivered to complex shapes with steep dose gradients near critical structures, as is the case for intracranial radiosurgery. To reduce potential geometric uncertainties, a cone beam computed tomography (CT) image guidance system was developed in-house to generate high-resolution images of the head at the time of treatment, using a dedicated radiosurgery unit. The performance and initial clinical use of this imaging system are described. Methods and Materials: A kilovoltage cone beam CT system was integrated with a Leksell Gamma Knife Perfexion radiosurgery unit. The X-ray tube and flat-panel detector are mounted on a translational arm, which is parked above the treatment unit when not in use. Upon descent, a rotational axis provides 210 Degree-Sign of rotation for cone beam CT scans. Mechanical integrity of the system was evaluated over a 6-month period. Subsequent clinical commissioning included end-to-end testing of targeting performance and subjective image quality performance in phantoms. The system has been used to image 2 patients, 1 of whom received single-fraction radiosurgery and 1 who received 3 fractions, using a relocatable head frame. Results: Images of phantoms demonstrated soft tissue contrast visibility and submillimeter spatial resolution. A contrast difference of 35 HU was easily detected at a calibration dose of 1.2 cGy (center of head phantom). The shape of the mechanical flex vs scan angle was highly reproducible and exhibited <0.2 mm peak-to-peak variation. With a 0.5-mm voxel pitch, the maximum targeting error was 0.4 mm. Images of 2 patients were analyzed offline and submillimeter agreement was confirmed with conventional frame. Conclusions: A cone beam CT image guidance system was successfully adapted to a radiosurgery unit. The system is capable of producing high-resolution images of bone and soft tissue. The system is in clinical use and provides excellent image guidance without invasive frames.

  17. Lead Groundwater Contamination of Groundwater in the Northeast ...

    E-Print Network [OSTI]

    2001-03-12

    historical data with a, groundwater contamination sampling for water quality ... constructed the hydraulic conductivity field, which was used run in a ..... F reundlich curve-f it in the study of Cu, Cd and P b ads or ption on taiwan s oils, J. Soil.

  18. Groundwater Protection 7 2003 SITE ENVIRONMENTAL REPORT7-1

    E-Print Network [OSTI]

    Homes, Christopher C.

    that plans for groundwater protection, management, monitoring, and restoration are fully defined, integrated's program helps to fulfill the environmental monitoring requirements outlined in U.S. Department of Energy and implement an Environmental Management System (EMS), which was finalized when BNL received ISO 14001

  19. Groundwater Consumption by Phreatophytes in Mid-Continent

    E-Print Network [OSTI]

    Hernes, Peter J.

    content in vadose zone monitored biweekly during growing season using neutron probe · Data collected at 6Groundwater Consumption by Phreatophytes in Mid-Continent Stream-Aquifer Systems Gerard Kluitenberg measurements Water Level Monitoring #12;· PVC access tubes with sealed bottoms installed near wells · Water

  20. Waveform tomography at a groundwater contamination site: Surface reflection data

    E-Print Network [OSTI]

    Pratt, R. Gerhard

    acoustic-waveform tomography to 45 2D seismic profiles to image the 3D geometry of a buried pale- ochannel the shallowest groundwater system in the study area. The 2D profiles were extracted from a 3D surface reflection the channel showed marked vertical and lat- eral velocity heterogeneity. Traveltime tomography and waveform

  1. Theoretical foundation for measuring the groundwater age distribution.

    SciTech Connect (OSTI)

    Gardner, William Payton; Arnold, Bill Walter

    2014-01-01

    In this study, we use PFLOTRAN, a highly scalable, parallel, flow and reactive transport code to simulate the concentrations of 3H, 3He, CFC-11, CFC-12, CFC-113, SF6, 39Ar, 81Kr, 4He and themean groundwater age in heterogeneous fields on grids with an excess of 10 million nodes. We utilize this computational platform to simulate the concentration of multiple tracers in high-resolution, heterogeneous 2-D and 3-D domains, and calculate tracer-derived ages. Tracer-derived ages show systematic biases toward younger ages when the groundwater age distribution contains water older than the maximum tracer age. The deviation of the tracer-derived age distribution from the true groundwater age distribution increases with increasing heterogeneity of the system. However, the effect of heterogeneity is diminished as the mean travel time gets closer the tracer age limit. Age distributions in 3-D domains differ significantly from 2-D domains. 3D simulations show decreased mean age, and less variance in age distribution for identical heterogeneity statistics. High-performance computing allows for investigation of tracer and groundwater age systematics in high-resolution domains, providing a platform for understanding and utilizing environmental tracer and groundwater age information in heterogeneous 3-D systems. Groundwater environmental tracers can provide important constraints for the calibration of groundwater flow models. Direct simulation of environmental tracer concentrations in models has the additional advantage of avoiding assumptions associated with using calculated groundwater age values. This study quantifies model uncertainty reduction resulting from the addition of environmental tracer concentration data. The analysis uses a synthetic heterogeneous aquifer and the calibration of a flow and transport model using the pilot point method. Results indicate a significant reduction in the uncertainty in permeability with the addition of environmental tracer data, relative to the use of hydraulic measurements alone. Anthropogenic tracers and their decay products, such as CFC11, 3H, and 3He, provide significant constraint oninput permeability values in the model. Tracer data for 39Ar provide even more complete information on the heterogeneity of permeability and variability in the flow system than the anthropogenic tracers, leading to greater parameter uncertainty reduction.

  2. Hanford Site Groundwater Monitoring for Fiscal Year 2003

    SciTech Connect (OSTI)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2004-04-12

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2003 (October 2002 through September 2003) on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes in groundwater are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. The largest portions of these plumes are migrating from the central Hanford Site to the southeast, toward the Columbia River. Concentrations of tritium, nitrate, and some other contaminants continued to exceed drinking water standards in groundwater discharging to the river in some locations. However, contaminant concentrations in river water remained low and were far below standards. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the central part of the Hanford Site. Hexavalent chromium is present in smaller plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath all but one of the reactor areas, and technetium-99 and uranium are present in the 200 Areas. Uranium exceeds standards in the 300 Area in the south part of the Hanford Site. Minor contaminant plumes with concentrations greater than standards include carbon-14, cesium-137, cis-1,2-dichloroethene, cyanide, fluoride, plutonium, and trichloroethene. Monitoring for the ''Comprehensive Environmental Response, Compensation, and Liability Act'' is conducted in 11 groundwater operable units. The purpose of this monitoring is to define and track plumes and to monitor the effectiveness of interim remedial actions. Interim groundwater remediation in the 100 Areas continued with the goal of reducing the amount of chromium (100-K, 100-D, and 100-H) and strontium-90 (100-N) reaching the Columbia River. The objective of two interim remediation systems in the 200 West Area is to prevent the spread of carbon tetrachloride and technetium-99/uranium plumes. ''Resource Conservation and Recovery Act'' groundwater monitoring continued at 24 waste management areas during fiscal year 2003: 15 under interim or final status detection programs and data indicate that they are not adversely affecting groundwater; 7 under interim status groundwater quality assessment programs to assess contamination; and 2 under final status corrective-action programs. During calendar year 2003, drillers completed seven new RCRA monitoring wells, nine wells for CERCLA, and two wells for research on chromate bioremediation. Vadose zone monitoring, characterization, and remediation continued in fiscal year 2003. Remediation and associated monitoring continued at a soil-vapor extraction system in the 200 West Area, which removes gaseous carbon tetrachloride from the vadose zone. Soil vapor also was sampled to locate carbon tetrachloride sites with the potential to impact groundwater in the future. DOE uses geophysical methods to monitor potential movement of contamination beneath single-shell tank farms. During fiscal year 2003, DOE monitored selected boreholes within each of the 12 single-shell tank farms. In general, the contaminated areas appeared to be stable over time. DOE drilled new boreholes at the T Tank Farm to characterize subsurface contamination near former leak sites. The System Assessment Capability is a set of computer modules simulating movement of contaminants from waste sites through the vadose zone and groundwater. In fiscal year 2003, it was updated with the addition of an atmospheric transport module and with newer versions of models including an updated groundwater flow and transport model.

  3. TREATABILITY TEST REPORT FOR THE REMOVAL OF CHROMIUM FROM GROUNDWATER AT 100-D AREA USING ELECTROCOAGULATION

    SciTech Connect (OSTI)

    PETERSEN SW

    2009-09-24

    The U.S. Department of Energy (DOE) has committed to accelerate cleanup of contaminated groundwater along the Columbia River. The current treatment approach was driven by a series of Interim Action Records of Decision (IAROD) issued in the mid-1990s. Part of the approach for acceleration involves increasing the rate of groundwater extraction for the chromium plume north of the 100-D Reactor and injecting the treated water in strategic locations to hydraulically direct contaminated groundwater toward the extraction wells. The current treatment system uses ion exchange for Cr(VI) removal, with off-site regeneration of the ion exchange resins. Higher flow rates will increase the cost and frequency of ion exchange resin regeneration; therefore, alternative technologies are being considered for treatment at high flow rates. One of these technologies, electrocoagulation (EC), was evaluated through a pilot-scale treatability test. The primary purpose of the treatability study was to determine the effectiveness of Cr(VI) removal and the robustness/implementability of an EC system. Secondary purposes of the study were to gather information about derivative wastes and to obtain data applicable to scaling the process from the treatability scale to full-scale. The treatability study work plan identified a performance objective and four operational objectives. The performance objective for the treatability study was to determine the efficiency (effectiveness) of hexavalent chromium removal from the groundwater, with a desired concentration of {le} 20 micrograms per liter ({micro}g/L) Cr(VI) in the effluent prior to re-injection. Influent and effluent total chromium and hexavalent chromium data were collected using a field test kit for multiple samples per week, and from off-site laboratory analysis of samples collected approximately monthly. These data met all data quality requirements. Two of three effluent chromium samples analyzed in the off-site (that is, fixed) laboratory met the performance objective during the continuous operational testing. Effluent hexavalent chromium analyzed by the field laboratory met the performance goal in over 90 percent of the samples. All effluent hexavalent chromium samples during the batch testing with high influent hexavalent chromium concentrations ({approx}2000 {micro}g/L) met the performance objective. Although the EC system was able to meet the performance goal, it must be noted that it was not uncommon for the system to be operated in recycle mode to achieve the performance goal. The EC unit was sometimes, but not always, capable of a single pass treatment efficiency high enough to meet the performance goal, and recycling water for multiple treatment passes was effective. An operational objective was to determine the volume and composition of the waste streams to enable proper waste designation. The toxicity characteristic leaching procedure (TCLP) concentrations, pH, and free liquids were determined for solid material from the EC electrodes (mechanically removed scale), the filter press, and the tank bottoms for the effluent and waste collector tanks. These data met all data quality requirements. All solid-phase secondary waste streams were found to be below the TCLP limits for the toxicity characteristic, and a pH value within the limits for the corrosivity characteristic. Out of three samples, two (one of scale from the EC unit and one from filter press solids) failed the free liquid (paint filter) test, which is one of the acceptability criteria for Hanford's Environmental Restoration Disposal Facility (ERDF). The solid-phase waste generation rate was about 0.65-gallon of solid waste per 100 gallons of water treated. It is concluded that the solid-phase secondary waste generated from this technology under the conditions at the test site will meet the toxicity and corrosivity criteria for disposal. It is also concluded that with engineering and/or operational improvements, a solid-phase secondary waste could be produced that would meet the free liquid disposal requirements. The second oper

  4. Removing High Explosives from Groundwater

    Broader source: Energy.gov [DOE]

    LOS ALAMOS, N.M. – In an initiative supported by EM, Los Alamos National Laboratory’s Corrective Actions Program is addressing high explosive contamination in surface water and groundwater at a location this summer in the forests surrounding the laboratory.

  5. Sanitary landfill groundwater monitoring data

    SciTech Connect (OSTI)

    Thompson, C.Y.

    1992-05-01

    This report for first quarter 1992 contains sanitary landfill groundwater monitoring data for the Savannah River Plant. The data tables presented in this report are copies of draft analytical results and therefore do contain errors. These errors will be corrected when the finalized data is received from the laboratory.

  6. 13 In Situ: Groundwater Bioremediation

    E-Print Network [OSTI]

    Hazen, Terry

    attenuation. 1 Introduction A patent for in situ bioremediation of groundwater contaminated with gasoline in the last 20 years, especially by companies trying to establish themselves with a proprietary edge, has lead were nearly all done by companies trying to do the study for (1) clients, who usually wanted to remain

  7. Updated Conceptual Model for the 300 Area Uranium Groundwater Plume

    SciTech Connect (OSTI)

    Zachara, John M.; Freshley, Mark D.; Last, George V.; Peterson, Robert E.; Bjornstad, Bruce N.

    2012-11-01

    The 300 Area uranium groundwater plume in the 300-FF-5 Operable Unit is residual from past discharge of nuclear fuel fabrication wastes to a number of liquid (and solid) disposal sites. The source zones in the disposal sites were remediated by excavation and backfilled to grade, but sorbed uranium remains in deeper, unexcavated vadose zone sediments. In spite of source term removal, the groundwater plume has shown remarkable persistence, with concentrations exceeding the drinking water standard over an area of approximately 1 km2. The plume resides within a coupled vadose zone, groundwater, river zone system of immense complexity and scale. Interactions between geologic structure, the hydrologic system driven by the Columbia River, groundwater-river exchange points, and the geochemistry of uranium contribute to persistence of the plume. The U.S. Department of Energy (DOE) recently completed a Remedial Investigation/Feasibility Study (RI/FS) to document characterization of the 300 Area uranium plume and plan for beginning to implement proposed remedial actions. As part of the RI/FS document, a conceptual model was developed that integrates knowledge of the hydrogeologic and geochemical properties of the 300 Area and controlling processes to yield an understanding of how the system behaves and the variables that control it. Recent results from the Hanford Integrated Field Research Challenge site and the Subsurface Biogeochemistry Scientific Focus Area Project funded by the DOE Office of Science were used to update the conceptual model and provide an assessment of key factors controlling plume persistence.

  8. RCRA groundwater monitoring data. Quarterly report, April 1, 1995--June 30, 1995

    SciTech Connect (OSTI)

    1995-10-01

    Nineteen Resource Conservation and Recovery Act of 1976 (RCRA) groundwater monitoring projects are conducted at the Hanford Site. These projects include treatment, storage, and disposal facilities for both solid and liquid waste. The groundwater monitoring programs described in this report comply with the interim-status federal (Title 40 Code of Federal Regulation [CFR] Part 265) and state (Washington Administrative Code [WAC] 173-303-400) regulations. The RCRA projects are monitored under one of three programs: background monitoring, indicator parameter evaluation, or groundwater quality assessment. Westinghouse Hanford Company (WHC) manages the RCRA groundwater monitoring projects on the Hanford Site. Performing project management, preparing groundwater monitoring plans, well network design and installation, specifying groundwater data needs, performing quality control (QC) oversight, data management, and preparing project sampling schedules are all parts of this responsibility. Pacific Northwest Laboratory (PNL) administers the contract for analytical services to WHC for the RCRA groundwater monitoring program. This quarterly report contains data received between April and June 1995, which are the cutoff dates for this reporting period. This report may contain not only data from the April through June quarter, but also data from earlier sampling events that were not previously reported.

  9. Annual report for RCRA groundwater monitoring projects at Hanford Site facilities for 1993

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    This report presents the annual hydrogeologic evaluation of 20 Resource Conservation and Recovery Act of 1976 groundwater monitoring projects and 1 nonhazardous waste facility at the US Department of Energy`s Hanford Site. Most of the projects no longer receive dangerous waste; a few projects continue to receive dangerous waste constituents for treatment, storage, or disposal. The 20 RCRA projects comprise 30 waste management units. Ten of the units are monitored under groundwater quality assessment status because of elevated levels of indicator parameters. The impact of those units on groundwater quality, if any, is being investigated. If dangerous waste or waste constituents have entered groundwater, their concentration, distribution, and rate of migration are evaluated. Groundwater is monitored at the other 20 units to detect contamination, should it occur. This report provides an interpretation of groundwater data collected at the waste management units between October 1992 and September 1993. Recent groundwater quality is also described for the 100, 200, 300, and 600 Areas and for the entire Hanford Site. Widespread contaminants include nitrate, chromium, carbon tetrachloride, tritium, and other radionuclides.

  10. Model Reduction via Proper Orthogonal Decomposition of Transient Confined and Unconfined Groundwater-Flow

    E-Print Network [OSTI]

    Boyce, Scott Elliott

    2015-01-01

    to solve unconfined groundwater flow. Advances in Waterreduction of transient groundwater flow models: Applicationreduction of transient groundwater flow models: Application

  11. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    SciTech Connect (OSTI)

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    2015-06-11

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the full FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.

  12. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    2015-06-11

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the fullmore »FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.« less

  13. Copyright Awwa Research Foundation 2006 Advanced Water Treatment Impacts onAdvanced Water Treatment Impacts on

    E-Print Network [OSTI]

    Keller, Arturo A.

    , brackish groundwater, produced water, etc.produced water, etc. Advanced treatmentAdvanced treatment Water© Copyright Awwa Research Foundation 2006 Advanced Water Treatment Impacts onAdvanced Water Treatment Impacts on EnergyEnergy--Water LinkagesWater Linkages (The Water Utility Perspective)(The Water

  14. Verification and validation of the decision analysis model for assessment of tank waste remediation system waste treatment strategies

    SciTech Connect (OSTI)

    Awadalla, N.G.; Eaton, S.C.F.

    1996-09-04

    This document is the verification and validation final report for the Decision Analysis Model for Assessment of Tank Waste Remediation System Waste Treatment Strategies. This model is also known as the INSIGHT Model.

  15. Inducing Mineral Precipitation in Groundwater by Addition of Phosphate

    SciTech Connect (OSTI)

    Karen E. Wright; Yoshiko Fujita; Thomas Hartmann; Mark Conrad

    2011-10-01

    Induced precipitation of phosphate minerals to scavenge trace metals and radionuclides from groundwater is a potential remediation approach for contaminated aquifers. Phosphate minerals can sequester trace elements by primary mineral formation, solid solution formation and/or adsorption, and they are poorly soluble under many environmental conditions, making them attractive for long-term sustainable remediation. The success of such engineered schemes will depend on the particular mineral phases generated, their rates of formation, and their long term stability. The purpose of this study was to examine the precipitation of calcium phosphate minerals under conditions representative of a natural groundwater. Because microorganisms are present in groundwater, and because some proposed schemes for induced phosphate mineral precipitation rely on the stimulation of native groundwater populations, we also tested the effect of bacterial cells (initial densities of 105 and 107 ml-1) within the precipitation medium. We also tested the effect of a trace mixture of propionic, isovaleric, formic and butyric acids (total concentration 0.035 mM). The experiments showed that the general progression of mineral precipitation was similar under all of the conditions, with initial formation of amorphous calcium carbonate, and transformation to poorly crystalline hydroxyapatite (HAP) by the end of the week-long experiments. The presence of the bacterial cells appeared to delay precipitation, although by the end of 7 days the overall extent of precipitation was similar for all of the treatments. The stoichiometry of the final precipitates as well as results of Rietveld refinement of x-ray diffraction data indicated that the treatments including organic acids and bacterial cells resulted in increased distortion of the HAP crystal lattice, with the higher concentration of cells resulting in the greatest distortion. Uptake of Sr into the phosphate minerals was decreased in the treatments with cells and organic acids, compared to the control. The results of the experiments enable a greater understanding of the challenges associated with phosphate-based remediation schemes for contaminated environments.

  16. Prediction of postmine ground-water quality at a Texas surface lignite mine 

    E-Print Network [OSTI]

    Wise, Clifton Farrell

    1995-01-01

    The prediction Of postmine ground-water quality is encumbered with many complications resulting from the complex hydrologic system found in mine spoils. Current analytical methods such as acid/base accounting have only had limited success...

  17. Rapid extraction of dissolved inorganic carbon from seawater and groundwater samples for radiocarbon dating

    E-Print Network [OSTI]

    Gospodinova, Kalina Doneva

    2012-01-01

    The focus of this thesis is the design and development of a system for rapid extraction of dissolved inorganic carbon from seawater and groundwater samples for radiocarbon dating. The Rapid Extraction of Dissolved Inorganic ...

  18. 7-1 2002 SITE ENVIRONMENTAL REPORT CHAPTER 7: GROUNDWATER PROTECTION

    E-Print Network [OSTI]

    Homes, Christopher C.

    an Environmental Management System (EMS), which was finalized when BNL received ISO 14001 certification in 2001 management practices designed to protect groundwater. Examples include upgrading under- ground storage tanks

  19. Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants

    SciTech Connect (OSTI)

    P. Alan Mays; Bert R. Bock; Gregory A. Brodie; L. Suzanne Fisher; J. Devereux Joslin; Donald L. Kachelman; Jimmy J. Maddox; N. S. Nicholas; Larry E. Shelton; Nick Taylor; Mark H. Wolfe; Dennis H. Yankee; John Goodrich-Mahoney

    2005-08-30

    The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. The CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by 2025. Other potential benefits of the demonstration include developing a passive technology for water treatment for trace metal and nutrient release reductions, using power plant by-products to improve coal mine land reclamation and carbon sequestration, developing wildlife habitat and green-space around production facilities, generating Total Maximum Daily Load (TMDL) credits for the use of process water, and producing wood products for use by the lumber and pulp and paper industry. Project activities conducted during the five year project period include: Assessing tree cultivation and other techniques used to sequester carbon; Project site assessment; Greenhouse studies to determine optimum plant species and by-product application; Designing, constructing, operating, monitoring, and evaluating the CCWESTRS system; and Reporting (ongoing). The ability of the system to sequester carbon will be the primary measure of effectiveness, measured by accessing survival and growth response of plants within the CCWESTRS. In addition, costs associated with design, construction, and monitoring will be evaluated and compared to projected benefits of other carbon sequestration technologies. The test plan involves the application of three levels each of two types of power plant by-products--three levels of FGD gypsum mulch, and three levels of ash pond irrigation water. This design produces nine treatment levels which are being tested with two species of hardwood trees (sweet gum and sycamore). The project is examining the effectiveness of applications of 0, 8-cm, and 15-cm thick gypsum mulch layers and 0, 13 cm, and 25 cm of coal fly ash water for irrigation. Each treatment combination is being replicated three times, resulting in a total of 54 treatment plots (3 FGD gypsum levels X 3 irrigation water levels x 2 tree species x 3 replicates). Survival and growth response of plant species in terms of sequestering carbon in plant material and soil will be the primary measure of effectiveness of each treatment. Additionally, the ability of the site soils and unsaturated zone subsurface m

  20. Lumbar Spinal Stenosis Minimally Invasive Treatment with Bilateral Transpedicular Facet Augmentation System

    SciTech Connect (OSTI)

    Masala, Salvatore; Tarantino, Umberto; Nano, Giovanni; Iundusi, Riccardo; Fiori, Roberto Da Ros, Valerio Simonetti, Giovanni

    2013-06-15

    Purpose. The purpose of this study was to evaluate the effectiveness of a new pedicle screw-based posterior dynamic stabilization device PDS Percudyn System Trade-Mark-Sign Anchor and Stabilizer (Interventional Spine Inc., Irvine, CA) as alternative minimally invasive treatment for patients with lumbar spine stenosis. Methods. Twenty-four consecutive patients (8 women, 16 men; mean age 61.8 yr) with lumbar spinal stenosis underwent implantation of the minimally invasive pedicle screw-based device for posterior dynamic stabilization. Inclusion criteria were lumbar stenosis without signs of instability, resistant to conservative treatment, and eligible to traditional surgical posterior decompression. Results. Twenty patients (83 %) progressively improved during the 1-year follow-up. Four (17 %) patients did not show any improvement and opted for surgical posterior decompression. For both responder and nonresponder patients, no device-related complications were reported. Conclusions. Minimally invasive PDS Percudyn System Trade-Mark-Sign has effectively improved the clinical setting of 83 % of highly selected patients treated, delaying the need for traditional surgical therapy.

  1. Fate of As, Se, and Hg in a Passive Integrated System for Treatment of Fossil Plant Wastewater

    SciTech Connect (OSTI)

    Terry Yost; Paul Pier; Gregory Brodie

    2007-12-31

    TVA is collaborating with EPRI and DOE to demonstrate a passive treatment system for removing SCR-derived ammonia and trace elements from a coal-fired power plant wastewater stream. The components of the integrated system consist of trickling filters for ammonia oxidation, reaction cells containing zero-valent iron (ZVI) for trace contaminant removal, a settling basin for storage of iron hydroxide floc, and anaerobic vertical-flow wetlands for biological denitrification. The passive integrated treatment system will treat up to 0.25 million gallons per day (gpd) of flue gas desulfurization (FGD) pond effluent, with a configuration requiring only gravity flow to obviate the need for pumps. The design of the system will enable a comparative evaluation of two parallel treatment trains, with and without the ZVI extraction trench and settling/oxidation basin components. One of the main objectives is to gain a better understanding of the chemical transformations that species of trace elements such as arsenic, selenium, and mercury undergo as they are treated in passive treatment system components with differing environmental conditions. This progress report details the design criteria for the passive integrated system for treating fossil power plant wastewater as well as performance results from the first several months of operation. Engineering work on the project has been completed, and construction took place during the summer of 2005. Monitoring of the passive treatment system was initiated in October 2005 and continued until May 18 2006. The results to date indicate that the treatment system is effective in reducing levels of nitrogen compounds and trace metals. Concentrations of both ammonia and trace metals were lower than expected in the influent FGD water, and additions to increase these concentrations will be done in the future to further test the removal efficiency of the treatment system. In May 2006, the wetland cells were drained of FGD water, refilled with less toxic ash pond water, and replanted due to low survival rates from the first planting the previous summer. The goals of the TVA-EPRI-DOE collaboration include building a better understanding of the chemical transformations that trace elements such as arsenic, selenium, and mercury undergo as they are treated in a passive treatment system, and to evaluate the performance of a large-scale replicated passive treatment system to provide additional design criteria and economic factors.

  2. Groundwater in the Great Plains 

    E-Print Network [OSTI]

    Jensen, R.

    2003-01-01

    - cide study. Results suggest that roughly 33% of the counties in the United States have both high pesticide use and high groundwater vulnerabil- ity, including a large section of Texas, Ne- braska, Kansas and Oklahoma that potentially could be especially... laboratories, local health depart- ments, and state and county agencies. Check with your local officials to determine who can test water in your area. Tests for pesticides and organic chemicals are usually more expensive than those for minerals and bacteria...

  3. Remedial Investigation/Feasibility Study Work Plan for the 200-UP-1 Groundwater Operable Unit, Hanford Site, Richland, Washington. Revision

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    This work plan identifies the objectives, tasks, and schedule for conducting a Remedial Investigation/Feasibility Study for the 200-UP-1 Groundwater Operable Unit in the southern portion of the 200 West Groundwater Aggregate Area of the Hanford Site. The 200-UP-1 Groundwater Operable Unit addresses contamination identified in the aquifer soils and groundwater within its boundary, as determined in the 200 West Groundwater Aggregate Area Management Study Report (AAMSR) (DOE/RL 1992b). The objectives of this work plan are to develop a program to investigate groundwater contaminants in the southern portion of the 200 West Groundwater Aggregate Area that were designated for Limited Field Investigations (LFIs) and to implement Interim Remedial Measures (IRMs) recommended in the 200 West Groundwater AAMSR. The purpose of an LFI is to evaluate high priority groundwater contaminants where existing data are insufficient to determine whether an IRM is warranted and collect sufficient data to justify and implement an IRM, if needed. A Qualitative Risk Assessment (QRA) will be performed as part of the LFI. The purpose of an IRM is to develop and implement activities, such as contaminant source removal and groundwater treatment, that will ameliorate some of the more severe potential risks of groundwater contaminants prior to the RI and baseline Risk Assessment (RA) to be conducted under the Final Remedy Selection (FRS) at a later date. This work plan addresses needs of a Treatability Study to support the design and implementation of an interim remedial action for the Uranium-{sup 99}{Tc}-Nitrate multi-contaminant IRM plume identified beneath U Plant.

  4. Documentation on currently operating low-level radioactive waste treatment systems: National Low-Level Waste Management Program

    SciTech Connect (OSTI)

    Not Available

    1987-11-01

    In May 1985, the US Department of Energy issued a Program Research and Development Announcement requesting documentation on currently operating low-level radioactive waste treatment systems. Six grants were awarded to support that documentation. Final reports for the following grants and grantees are compiled in this document: Shredder/Compactor Report by Impell Corp., Volume Reduction and Solidification System for Low-Level Radwaste Treatment by Waste Chem Corp., Low-Level Radioactive Waste Treatment Systems in Northern Europe by Pacific Nuclear Services/Nuclear Packaging Inc., The University of Missouri Research Reactor Facility Can Melter System by the University of Missouri, Drying of Ion-Exchange Resin and Filter Media by Nuclear Packaging Inc., and Operational Experience with Selective Ion-Exchange Media in Sluiceable Pressurized Demineralizers at Nuclear Power Plants by Analytical Resources Inc. 65 refs., 4 figs., 7 tabs.

  5. Validation Analysis of the Shoal Groundwater Flow and Transport Model

    SciTech Connect (OSTI)

    A. Hassan; J. Chapman

    2008-11-01

    Environmental restoration at the Shoal underground nuclear test is following a process prescribed by a Federal Facility Agreement and Consent Order (FFACO) between the U.S. Department of Energy, the U.S. Department of Defense, and the State of Nevada. Characterization of the site included two stages of well drilling and testing in 1996 and 1999, and development and revision of numerical models of groundwater flow and radionuclide transport. Agreement on a contaminant boundary for the site and a corrective action plan was reached in 2006. Later that same year, three wells were installed for the purposes of model validation and site monitoring. The FFACO prescribes a five-year proof-of-concept period for demonstrating that the site groundwater model is capable of producing meaningful results with an acceptable level of uncertainty. The corrective action plan specifies a rigorous seven step validation process. The accepted groundwater model is evaluated using that process in light of the newly acquired data. The conceptual model of ground water flow for the Project Shoal Area considers groundwater flow through the fractured granite aquifer comprising the Sand Springs Range. Water enters the system by the infiltration of precipitation directly on the surface of the mountain range. Groundwater leaves the granite aquifer by flowing into alluvial deposits in the adjacent basins of Fourmile Flat and Fairview Valley. A groundwater divide is interpreted as coinciding with the western portion of the Sand Springs Range, west of the underground nuclear test, preventing flow from the test into Fourmile Flat. A very low conductivity shear zone east of the nuclear test roughly parallels the divide. The presence of these lateral boundaries, coupled with a regional discharge area to the northeast, is interpreted in the model as causing groundwater from the site to flow in a northeastward direction into Fairview Valley. Steady-state flow conditions are assumed given the absence of groundwater withdrawal activities in the area. The conceptual and numerical models were developed based upon regional hydrogeologic investigations conducted in the 1960s, site characterization investigations (including ten wells and various geophysical and geologic studies) at Shoal itself prior to and immediately after the test, and two site characterization campaigns in the 1990s for environmental restoration purposes (including eight wells and a year-long tracer test). The new wells are denoted MV-1, MV-2, and MV-3, and are located to the northnortheast of the nuclear test. The groundwater model was generally lacking data in the north-northeastern area; only HC-1 and the abandoned PM-2 wells existed in this area. The wells provide data on fracture orientation and frequency, water levels, hydraulic conductivity, and water chemistry for comparison with the groundwater model. A total of 12 real-number validation targets were available for the validation analysis, including five values of hydraulic head, three hydraulic conductivity measurements, three hydraulic gradient values, and one angle value for the lateral gradient in radians. In addition, the fracture dip and orientation data provide comparisons to the distributions used in the model and radiochemistry is available for comparison to model output. Goodness-of-fit analysis indicates that some of the model realizations correspond well with the newly acquired conductivity, head, and gradient data, while others do not. Other tests indicated that additional model realizations may be needed to test if the model input distributions need refinement to improve model performance. This approach (generating additional realizations) was not followed because it was realized that there was a temporal component to the data disconnect: the new head measurements are on the high side of the model distributions, but the heads at the original calibration locations themselves have also increased over time. This indicates that the steady-state assumption of the groundwater model is in error. To test the robustness of the model d

  6. Isobaric groundwater well

    DOE Patents [OSTI]

    Hubbell, Joel M. (Idaho Falls, ID); Sisson, James B. (Idaho Falls, ID)

    1999-01-01

    A method of measuring a parameter in a well, under isobaric conditions, including such parameters as hydraulic gradient, pressure, water level, soil moisture content and/or aquifer properties the method as presented comprising providing a casing having first and second opposite ends, and a length between the ends, the casing supporting a transducer having a reference port; placing the casing lengthwise into the well, second end first, with the reference port vented above the water table in the well; and sealing the first end. A system is presented for measuring a parameter in a well, the system comprising a casing having first and second opposite ends, and a length between the ends and being configured to be placed lengthwise into a well second end first; a transducer, the transducer having a reference port, the reference port being vented in the well above the water table, the casing being screened across and above the water table; and a sealing member sealing the first end. In one embodiment, the transducer is a tensiometer transducer and in other described embodiments, another type transducer is used in addition to a tensiometer.

  7. The Savannah River Site's Groundwater Monitoring Program

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During fourth quarter 1989 (October--December), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. An explanation of flagging criteria for the fourth quarter is presented in the Flagging Criteria section of this document. All analytical results from fourth quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  8. Hanford Treats Record Amount of Groundwater

    Broader source: Energy.gov [DOE]

    Workers have treated more than 800 million gallons of groundwater at the Hanford Site so far this year, a record annual amount.

  9. Demolition, Groundwater Cleanup Highlight Paducah's 2013 Accomplishmen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    remove two aging, inactive structures and clean up a leading source of groundwater contamination marked the top 2013 accomplishments for the EM program at the Paducah site. In...

  10. Agency of Natural Resources Groundwater Withdrawal Reporting...

    Open Energy Info (EERE)

    Agency of Natural Resources Groundwater Withdrawal Reporting and Permitting Rules Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  11. Energy Boom andEnergy Boom and Groundwater BustGroundwater Bust

    E-Print Network [OSTI]

    Keller, Arturo A.

    Energy Boom andEnergy Boom and Groundwater BustGroundwater Bust MexicoMexico''s Waters Water electricity demand, e.g., in Mexico 10% in Sonora state 17% in Chihuahua state 30% in Zacatecas state #12 and PolicySustainability and Policy Behind groundwater boom-bust cycles (e.g., Mexico) are energy supply

  12. Significant coherence for groundwater and Rayleigh waves: Evidence in spectral response of groundwater level in Taiwan

    E-Print Network [OSTI]

    Wu, Yih-Min

    Significant coherence for groundwater and Rayleigh waves: Evidence in spectral response of groundwater level in Taiwan using 2011 Tohoku earthquake, Japan David Ching-Fang Shih a, , Yih-Min Wu b-in-Chief, with the assistance of Fritz Stauffer, Associate Editor Keywords: Groundwater Seismic Earthquake Rayleigh waves

  13. GEOL4850 (GEOL5850) Groundwater Hydrology University of North Texas

    E-Print Network [OSTI]

    Pan, Feifei

    GEOL4850 (GEOL5850) Groundwater Hydrology University of North Texas Department of Geography Spring characteristics, homogeneity and isotropy 4. Soil moisture and groundwater recharge ---soil moisture, unsaturated flow, infiltration, evapotranspiration and recharge 5. Principles of groundwater flow ---hydraulic head

  14. A UNIFIED NUMERICAL MODEL FOR SATURATED-UNSATURATED GROUNDWATER FLOW

    E-Print Network [OSTI]

    Narasimhan, T.N.

    2011-01-01

    Saturated-Unsaturated Groundwater Flow Ph.D. Dissertation in~ " Fundamental principles of groundwater flow uv e in Flowunsaturated flow in a groundwater basi.n 11 9 Hater

  15. Model Reduction and Parameter Estimation in Groundwater Modeling

    E-Print Network [OSTI]

    Siade, Adam

    2012-01-01

    Uncon?ned Groundwater Model Reduction via Proper Orthogonalvi List of Figures One-dimensional groundwater ?owQuadratic Programming 3.1 Con?ned aquifer groundwater ?ow

  16. Guidance for Environmental Background Analysis Volume III: Groundwater

    E-Print Network [OSTI]

    Guidance for Environmental Background Analysis Volume III: Groundwater Prepared for: Naval This guidance document provides instructions for characterizing groundwater background conditions and comparing datasets representing groundwater impacted by an actual or potential chemical release to appropriate

  17. TRANSBOUNDARY GROUNDWATER AND INTERNATIONAL LAW: PAST PRACTICES AND CURRENT IMPLICATIONS

    E-Print Network [OSTI]

    Wolf, Aaron

    TRANSBOUNDARY GROUNDWATER AND INTERNATIONAL LAW: PAST PRACTICES AND CURRENT IMPLICATIONS By Kyoko........................................................................................................................................ 1 2. The Notion of Transboundary Groundwater................................................................................... 3 3. Evolution of International Groundwater Management in Environmental Law

  18. Groundwater Protection 7 2008 Site environmental report7-

    E-Print Network [OSTI]

    Groundwater Protection 7 2008 Site environmental report7- The Brookhaven National Laboratory Groundwater Protection Program is made up of four elements: prevention, monitoring, restoration, and communication. The Laboratory has implemented aggressive pollution prevention measures to protect groundwater

  19. Groundwater Protection 7 2009 Site environmental report7-

    E-Print Network [OSTI]

    Groundwater Protection 7 2009 Site environmental report7- DRAFT The Brookhaven National Laboratory Groundwater Protection Program is made up of four elements: prevention, monitoring, restoration, and communication. The Laboratory has implemented aggressive pollution prevention measures to protect groundwater

  20. Groundwater Protection 7 2005 Site environmental report7-

    E-Print Network [OSTI]

    Groundwater Protection 7 2005 Site environmental report7- Brookhaven National Laboratory's Groundwater Protection Management Program is made up of four elements: prevention, monitoring, restoration, and communication. The Laboratory has implemented aggressive pollution prevention measures to protect groundwater

  1. Groundwater Protection 7 2012 SITE ENVIRONMENTAL REPORT7-1

    E-Print Network [OSTI]

    Groundwater Protection 7 2012 SITE ENVIRONMENTAL REPORT7-1 Brookhaven National Laboratory has implemented aggressive pollution prevention measures to protect groundwater resources. An extensive groundwater monitoring well network is used to verify that prevention and restoration activities are effective

  2. Coupling Groundwater Modeling with Biology to Identify Strategic Water Resources

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Coupling Groundwater Modeling with Biology to Identify Strategic Water Resources Didier Graillot 1 ABSTRACT The identification of hydraulic interactions between rivers and groundwater is part and parcel hinders groundwater modeling everywhere and simulating water management scenarios in every place

  3. Groundwater Resources Assessment under the Pressures of Humanity

    E-Print Network [OSTI]

    1 GRAPHIC GRAPHIC Groundwater Resources Assessment under the Pressures of Humanity and Climate Changes Aframeworkdocument GRAPHICSeriesN°2 .................. #12;2 Groundwater Resources Assessment groundwater management considering projected climate change and linked human effects. GRAPHIC provides

  4. Groundwater Protection 7 2013 SITE ENVIRONMENTAL REPORT7-1

    E-Print Network [OSTI]

    Groundwater Protection 7 2013 SITE ENVIRONMENTAL REPORT7-1 Brookhaven National Laboratory has implemented aggressive pollution prevention measures to protect groundwater resources. An extensive groundwater monitoring well network is used to verify that prevention and restoration activities are effective

  5. Groundwater Protection 7 2006 Site environmental report7-

    E-Print Network [OSTI]

    Groundwater Protection 7 2006 Site environmental report7- DRAFT Brookhaven National Laboratory's Groundwater Protection Management Program is made up of four elements: prevention, monitoring, restoration, and communication. The Laboratory has implemented aggressive pollution prevention measures to protect groundwater

  6. Groundwater Protection 7 2011 Site environmental report7-1

    E-Print Network [OSTI]

    Groundwater Protection 7 2011 Site environmental report7-1 Brookhaven National Laboratory has implemented aggressive pollution prevention measures to protect groundwater resources. An extensive groundwater monitoring well network is used to verify that prevention and restoration activities are effective

  7. Quarterly report of RCRA groundwater monitoring data for period October 1, 1993--December 31, 1993

    SciTech Connect (OSTI)

    Jungers, D.K.

    1994-04-01

    Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs as defined in the Resource Conservation and Recovery Act of 1976 (RCRA); and Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities, as amended (40 Code of Federal Regulations [CFR] 265). Compliance with the 40 CFR 265 regulations is required by the Washington Administrative Code (WAC) 173-303. This report contains data from Hanford Site groundwater monitoring projects. Westinghouse Hanford Company (WHC) manages the RCRA groundwater monitoring projects for federal facilities on the Hanford Site. Project management, specifying data needs, performing quality control (QC) oversight, managing data, and preparing project sampling schedules are all parts of this responsibility. Pacific Northwest Laboratory (PNL) administers the contract for analytical services and provides groundwater sampling services to WHC for the RCRA groundwater monitoring program. This quarterly report contains data received between November 20 and February 25, 1994, which are the cutoff dates for this reporting period. This report may contain not only data from the October through December quarter but also data from earlier sampling events that were not previously reported.

  8. Transacting generation attributes across market boundaries: Compatible information systems and the treatment of imports and exports

    E-Print Network [OSTI]

    Grace, Robert; Wiser, Ryan

    2002-01-01

    Treatment of Imports and Exports Robert Grace Sustainableand Exports 31 AlternativeImports and Exports 34 Geographic

  9. One System Integrated Project Team Progress in Coordinating Hanford Tank Farms and the Waste Treatment Plant

    SciTech Connect (OSTI)

    Skwarek, Raymond J.; Harp, Ben J.; Duncan, Garth M.

    2013-12-18

    The One System Integrated Project Team (IPT) was formed at the Hanford Site in late 2011 as a way to improve coordination and itegration between the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and the Tank Operations Contractor (TOC) on interfaces between the two projects, and to eliminate duplication and exploit opportunities for synergy. The IPT is composed of jointly staffed groups that work on technical issues of mutal interest, front-end design and project definition, nuclear safety, plant engineering system integration, commissioning, planning and scheduling, and environmental, safety, health and quality (ESH&Q) areas. In the past year important progress has been made in a number of areas as the organization has matured and additional opportunities have been identified. Areas covered in this paper include: Support for development of the Office of Envirnmental Management (EM) framework document to progress the Office of River Protection's (ORP) River Protection Project (RPP) mission; Stewardship of the RPP flowsheet; Collaboration with Savannah River Site (SRS), Savannah River National Laboratory (SRNL), and Pacific Northwest National Laboratory (PNNL); Operations programs integration; and, Further development of the waste acceptance criteria.

  10. Portsmouth Gaseous Diffusion Plant- Quadrant I Groundwater Investigative (5-Unit) Area Plume

    Broader source: Energy.gov [DOE]

    Groundwater Database Report - Portsmouth Gaseous Diffusion Plant - Quadrant I Groundwater Investigative (5-Unit) Area Plume

  11. Potential effects of the Hawaii geothermal project on ground-water resources on the Island of Hawaii

    SciTech Connect (OSTI)

    Sorey, M.L.; Colvard, E.M.

    1994-07-01

    This report provides data and information on the quantity and quality of ground-water resources in and adjacent to proposed geothermal development areas on the Island of Hawaii Geothermal project for the development of as much as 500 MW of electric power from the geothermal system in the East Rift Zone of Kilauea Volcano. Data presented for about 31 wells and 8 springs describe the chemical, thermal, and hydraulic properties of the ground-water system in and adjacent to the East Rift Zone. On the basis of this information, potential effects of this geothermal development on drawdown of ground-water levels and contamination of ground-water resources are discussed. Significant differences in ground-water levels and in the salinity and temperature of ground water within the study area appear to be related to mixing of waters from different sources and varying degrees of ground-water impoundment by volcanic dikes. Near Pahoa and to the east, the ground-water system within the rift is highly transmissive and receives abundant recharge from precipitation; therefore, the relatively modest requirements for fresh water to support geothermal development in that part of the east rift zone would result in minimal effects on ground-water levels in and adjacent to the rift. To the southwest of Pahoa, dike impoundment reduces the transmissivity of the ground-water system to such an extent that wells might not be capable of supplying fresh water at rates sufficient to support geothermal operations. Water would have to be transported to such developments from supply systems located outside the rift or farther downrift. Contaminant migration resulting from well accidents could be rapid because of relatively high ground-water velocities in parts of the region. Hydrologic monitoring of observation wells needs to be continued throughout development of geothermal resources for the Hawaii Geothermal Project to enable the early detection of leakage and migration of geothermal fluids.

  12. Fukushima Nuclear Crisis Recovery: A Modular Water Treatment System Deployed in Seven Weeks - 12489

    SciTech Connect (OSTI)

    Denton, Mark S.; Mertz, Joshua L. [Kurion, Inc., P.O. Box 5901, Oak Ridge, Tennessee 37831 (United States); Bostick, William D. [Materials and Chemistry Laboratory, Inc. (MCL) ETTP, Building K-1006, 2010 Highway 58, Suite 1000, Oak Ridge, Tennessee 37830 (United States)

    2012-07-01

    On March 11, 2011, the magnitude 9.0 Great East Japan earthquake, Tohoku, hit off the Fukushima coast of Japan. This was one of the most powerful earthquakes in recorded history and the most powerful one known to have hit Japan. The ensuing tsunami devastated a huge area resulting in some 25,000 persons confirmed dead or missing. The perfect storm was complete when the tsunami then found the four reactor, Fukushima-Daiichi Nuclear Station directly in its destructive path. While recovery systems admirably survived the powerful earthquake, the seawater from the tsunami knocked the emergency cooling systems out and did extensive damage to the plant and site. Subsequent hydrogen generation caused explosions which extended this damage to a new level and further flooded the buildings with highly contaminated water. Some 2 million people were evacuated from a fifty mile radius of the area and evaluation and cleanup began. Teams were assembled in Tokyo the first week of April to lay out potential plans for the immediate treatment of some 63 million gallons (a number which later exceeded 110 million gallons) of highly contaminated water to avoid overflow from the buildings as well as supply the desperately needed clean cooling water for the reactors. A system had to be deployed with a very brief cold shake down and hot startup before the rainy season started in early June. Joined by team members Toshiba (oil removal system), AREVA (chemical precipitation system) and Hitachi-GE (RO system), Kurion (cesium removal system following the oil separator) proposed, designed, fabricated, delivered and started up a one of a kind treatment skid and over 100 metric tons of specially engineered and modified Ion Specific Media (ISM) customized for this very challenging seawater/oil application, all in seven weeks. After a very short cold shake down, the system went into operation on June 17, 2011 on actual waste waters far exceeding 1 million Bq/mL in cesium and many other isotopes. One must remember that, in addition to attempting to do isotope removal in the competition of seawater (as high as 18,000 ppm sodium due to concentration), some 350,000 gallons of turbine oil was dispersed into the flooded buildings as well. The proposed system consisted of a 4 guard vessel skid for the oil and debris, 4 skids containing 16 cesium towers in a lead-lag layout with removable vessels (sent to an interim storage facility), and a 4 polishing vessel skid for iodine removal and trace cesium levels. At a flow rate of at least 220 gallons per minute, the system has routinely removed over 99% of the cesium, the main component of the activity, since going on line. To date, some 50% of the original activity has been removed and stabilized and cold shutdown of the plant was announced on December 10, 2011. In March and April alone, 10 cubic feet of Engineered Herschelite was shipped to Seabrook Nuclear Power Plant, NPP, to support the April 1, 2011 outage cleanup; 400 cubic feet was shipped to Oak Ridge National Laboratory (ORNL) for strontium (Sr-90) ground water remediation; and 6000 cubic feet (100 metric tons, MT, or 220,400 pounds) was readied for the Fukushima Nuclear Power Station with an additional 100 MT on standby for replacement vessels. This experience and accelerated media production in the U.S. bore direct application to what was to soon be used in Fukushima. How such a sophisticated and totally unique system and huge amount of media could be deployable in such a challenging and changing matrix, and in only seven weeks, is outlined in this paper as well as the system and operation itself. As demonstrated herein, all ten major steps leading up to the readiness and acceptance of a modular emergency technology recovery system were met and in a very short period of time, thus utilizing three decades of experience to produce and deliver such a system literally in seven weeks: - EPRI - U.S. Testing and Experience Leading to Introduction to EPRI - Japan and Subsequently TEPCO Emergency Meetings - Three Mile Island (TMI) Media and Vitrification Experience

  13. Dependence of groundwater recharge in the Niles Cone Groundwater Basin on climate variability and inter-basin water transfers

    E-Print Network [OSTI]

    Balakrishnan, Krishnachandran

    2012-01-01

    Morris, B L, et al. 2003. Groundwater and its susceptibilityG. et al. 2007. Groundwater Use in a Global Perspective –management of the state’s Groundwater Resources, Report from

  14. TREATMENT OF PRODUCED WATERS USING A SURFACTANT MODIFIED ZEOLITE/VAPOR PHASE BIOREATOR SYSTEM

    SciTech Connect (OSTI)

    LYNN E. KATZ; KERRY A. KINNEY; R.S. BOWMAN; E.J. SULLIVAN

    2003-10-01

    Co-produced water from the oil and gas industry is by some estimates the largest single waste stream in the country, aside from nonhazardous industrial wastes. Characteristics of produced water include high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component, and chemicals added during the oil-production process. While most of the produced water is disposed via reinjection, some of them must be treated to remove organic constituents before the water is discharged. An efficient, cost-effective treatment technology is needed to remove these constituents. Surfactant-modified zeolite (SMZ) has been used successfully to treat contaminated ground water for organic and inorganic constituents. In addition, the low cost of natural zeolites makes their use attractive in water-treatment applications. Our previous DOE research work (DE-AC26-99BC15221) demonstrated that SMZ could successfully remove BTEX compounds from the produced water. In addition, SMZ could be regenerated through a simple air sparging process. The primary goal of this project is to develop a robust SMZ/VPB treatment system to efficiently remove the organic constituents from produced water in a cost-effective manner. This report summarizes work of this project from March 2003 through September 2003. We have continued our investigation of SMZ regeneration from our previous DOE project. Ten saturation/stripping cycles have been completed for SMZ columns saturated with BTEX compounds. The results suggest that BTEX sorption capacity is not lost after ten saturation/regeneration cycles. The composition of produced water from a site operated by Crystal Solutions Ltd. in Wyoming has been characterized and was used to identify key semi-volatile components. Isotherms with selected semi-volatile components have been initiated and preliminary results have been obtained. The experimental vapor phase bioreactors for this project have been designed and assembled to treat the off-gas from the SMZ regeneration process. These columns will be used both in the laboratory and in the proposed field testing to be conducted next year. Innocula for the columns that degrade all of the BTEX columns have been developed.

  15. SU-E-T-73: Commissioning of a Treatment Planning System for Proton Spot Scanning

    SciTech Connect (OSTI)

    Saini, J; Kang, Y; Schultz, L; Nicewonger, D; Herrera, M; Wong, T; Bowen, S; Bloch, C

    2014-06-01

    Purpose: A treatment planning system (TPS) was commissioned for clinical use with a fixed beam line proton delivery system. An outline of the data collection, modeling, and verification is provided. Methods: Beam data modeling for proton spot scanning in CMS Xio TPS requires the following measurements: (i) integral depth dose curves (IDDCs); (ii) absolute dose calibration; and (iii) beam spot characteristics. The IDDCs for 18 proton energies were measured using an integrating detector in a single spot field in a water phantom. Absolute scaling of the IDDCs were performed based on ion chamber measurements in mono-energetic 10×10 cm{sup 2} fields in water. Beam spot shapes were measured in air using a flat panel scintillator detector at multiple planes. For beam model verification, more than 45 uniform dose phantom and patient plans were generated. These plans were used to measure range, point dose, and longitudinal and lateral profiles. Tolerances employed for verification are: point dose and longitudinal profiles, ±2%; range, ±1 mm; FWHM for lateral profiles, ±2 mm; and patient plan dose distribution, gamma index of >90% at 3%/3 mm criteria. Results: More than 97% of the point dose measurements out of 115 were within +/-2% with maximum deviation of 3%. 98% of the ranges measured were within 1 mm with maximum deviation of 1.4mm. The normalized depth doses were within 2% at all depths. The maximum error in FWHM of lateral profiles was found to be less than 2mm. For 5 patient plans representing different anatomic sites, a total of 38 planes for 12 beams were analyzed for gamma index with average value of 99% and minimum of 94%. Conclusions: The planning system is successfully commissioned and can be safely deployed for clinical use. Measurements of IDDCs on user beam are highly recommended instead of using standard beam IDDCs.

  16. Structure and Groundwater Flow in the Espanola Basin Near Rio...

    Office of Environmental Management (EM)

    Structure and Groundwater Flow in the Espanola Basin Near Rio Grande and Buckman Wellfield Structure and Groundwater Flow in the Espanola Basin Near Rio Grande and Buckman...

  17. Oak Ridge Removes Laboratory's Greatest Source of Groundwater...

    Energy Savers [EERE]

    Removes Laboratory's Greatest Source of Groundwater Contamination Oak Ridge Removes Laboratory's Greatest Source of Groundwater Contamination May 1, 2012 - 12:00pm Addthis Workers...

  18. Portsmouth Gaseous Diffusion Plant - Quadrant I Groundwater Investigat...

    Office of Environmental Management (EM)

    Portsmouth Gaseous Diffusion Plant - Quadrant I Groundwater Investigative (5-Unit) Area Plume Portsmouth Gaseous Diffusion Plant - Quadrant I Groundwater Investigative (5-Unit)...

  19. Rocky Flats Environmental Technology Site Archived Soil & Groundwater...

    Office of Environmental Management (EM)

    Rocky Flats Environmental Technology Site Archived Soil & Groundwater Master Reports Rocky Flats Environmental Technology Site Archived Soil & Groundwater Master Reports Rocky...

  20. LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming...

    Office of Environmental Management (EM)

    Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in Response to 2010 Flood LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in Response to 2010...

  1. Soil and Groundwater Cleanup - In-Situ Grouting, Lessons Learned...

    Energy Savers [EERE]

    Soil and Groundwater Cleanup - In-Situ Grouting, Lessons Learned (Post CD-4), Environmental Management Cleanup, May 2011 Soil and Groundwater Cleanup - In-Situ Grouting, Lessons...

  2. Hanford Groundwater Contamination Areas Shrink as EM Exceeds...

    Office of Environmental Management (EM)

    Groundwater Contamination Areas Shrink as EM Exceeds Cleanup Goals Hanford Groundwater Contamination Areas Shrink as EM Exceeds Cleanup Goals June 26, 2013 - 12:00pm Addthis The...

  3. Recommendation 222: Recommendations on Additional Off-site Groundwater...

    Office of Environmental Management (EM)

    2: Recommendations on Additional Off-site Groundwater Migration Studies Recommendation 222: Recommendations on Additional Off-site Groundwater Migration Studies ORSSAB recommends...

  4. Groundwater Resources Assessment under the Pressures of Humanity...

    Open Energy Info (EERE)

    Groundwater Resources Assessment under the Pressures of Humanity and Climate Change (GRAPHIC) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Groundwater Resources...

  5. Calendar year 1994 groundwater quality report for the Upper East Fork Poplar Creek Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee: 1994 groundwater quality data and calculated rate of contaminant migration

    SciTech Connect (OSTI)

    NONE

    1995-02-01

    This annual groundwater quality report (GWQR) contains groundwater and surface water quality data obtained during the 1994 calendar year (CY) at several waste-management facilities and a petroleum fuel underground storage tank (UST) site associated with the US Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. The sites addressed by this document are located within the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime). The East Fork Regime, which is one of three hydrogeologic regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant, encompasses the Y-12 Plant. The regime extends west from a surface water and shallow groundwater divide located near the west end of the plant to Scarboro Road (directions in this report are in reference to the Y-12 Plant grid system unless otherwise noted). The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Organization manages the groundwater monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The purpose of the GWPP is to characterize the hydrogeology and to monitor groundwater quality at the Y-12 Plant and surrounding area to provide for protection of groundwater resources consistent with federal, state, and local requirements and in accordance with DOE Orders and Energy Systems corporate policy.

  6. Groundwater Conservation Districts: Success Stories 

    E-Print Network [OSTI]

    Porter, Dana; Persyn, Russell A.; Enciso, Juan

    1999-09-06

    Plains UWCD No. 1 7 Sandy Land UWCD 8 South Plains UWCD 9 Garza County U and Fresh WCD 10 Salt Fork UWCD 11 Mesa UWCD 12 Permian Basin UWCD 13 Hudspeth County UWCD No. 1 14 Glasscock County UWCD 15 Sterling UWCD 16 Coke County UWCD 17 Santa... Activities Groundwater Conservation Districts vary in size, from partial county or single county districts to multiple county districts. Staffing levels vary from one part-time position to several full-time positions, depending upon the goals of the Boards...

  7. groundwater | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th Annual ConferenceFall 2001, $$" .FindGroundwater

  8. Hydrogeology and groundwater modeling of a Calvert Bluff aquifer 

    E-Print Network [OSTI]

    Lawrence, James

    1989-01-01

    of the Wilcox/Carrizo Aquifer System 15 16 17 18 SITE DESCRIPTION. 21 Site Physiography and Climate. . Site Geology Site Hydrogeology. 21 21 25 TABLE OF CONTENTS (CONTINUED) PAGE INVESTIGATION OF THE STUDY SAND. 29 Method: Delineating the Study... HYDROGEOLOGY AND GROUNDWATER MODELING OF A CALVERT BLUFF AQUIFER A Thesis by JAMES LAWRENCE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE...

  9. Hanford Site Groundwater Monitoring for Fiscal Year 1998

    SciTech Connect (OSTI)

    Hartman, M.J.

    1999-03-24

    This report presents the results of groundwater and vadose-zone monitoring and remediation for fiscal year (FY) 1998 on the Word Site, Washington. Soil-vapor extraction in the 200-West Area removed 777 kg of carbon tetrachloride in FY 1998, for a total of 75,490 kg removed since remediation began in 1992. Spectral gamma logging and evaluation of historical gross gamma logs near tank farms and liquid-disposal sites in the 200 Areas provided information on movement of contaminants in the vadose zone. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1997 and June 1998. The most widespread radiological contaminant plumes in groundwater were tritium and iodine-129. Concentrations of technetium-99, uranium, strontium-90, and carbon-14 also exceeded drinking water standards in smaller plumes. Plutonium and cesium-137 exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in U.S. Department of Energy Order 5400.5 were exceeded for tritium, uranium, strontium-90, and plutonium in small plumes or single wells. One well completed in the basalt-confined aquifer beneath the 200-East Area exceeded the drinking water standard for technetium-99. Nitrate is the most extensive chemical contaminant. Carbon tetrachloride, chloroform, chromium, cis-l, Z-dichloroethylene, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Cyanide concentrations were elevated in one area but were below the maximum contaminant level. Tetrachloroethylene exceeded its maximum contaminant level in several wells in the 300 Area for the first time since the 1980s. Metals such as aluminum, cadmium, iron, manganese, and nickel exceeded their maximum contaminant levels in filtered samples from numerous wells; they are believed to represent natural components of groundwater. Resource Conservation and Recovery Act of 1976 groundwater monitoring continued at 25 waste management areas during FY 1998: 17 under detection programs and data indicate that they are not adversely affecting groundwater, 6 under interim-status groundwater-quality-assessment programs to assess possible contamination, and 2 under final-status corrective-action programs. Groundwater remediation in the 100 Areas continued to reduce the amount of strontium-90 (100-N) and chromium (100-K, D, and H) reaching the Columbia River. Two systems in the 200-West Area operated to prevent the spread of carbon tetrachloride and technetide uranium plumes. Groundwater monitoring continued at these sites and at other sites where there is no active remediation. A three-dimensional, numerical groundwater model was applied to simulate radionuclide movement from sources in the 200 Areas following site closure in 2050. Contaminants will continue to move toward the southeast and north (through Gable Gap), but the areas with levels exceeding drinking water standards will diminish.

  10. Treatment of Produced Waters Using a Surfactant Modified Zeolite/Vapor Phase Bioreactor System

    SciTech Connect (OSTI)

    Soondong Kwon; Elaine B. Darby; Li-Jung Chen; Lynn E. Katz; Kerry A. Kinney; R. S. Bowman; E. J. Sullivan

    2005-03-11

    This report summarizes work performed on this project from October 2004 through March 2005. In previous work, a surfactant modified zeolite (SMZ) was shown to be an effective system for removing BTEX contaminants from produced water. Additional work on this project demonstrated that a compost-based biofilter could biodegrade the BTEX contaminants found in the SMZ regeneration waste gas stream. However, it was also determined that the BTEX concentrations in the waste gas stream varied significantly during the regeneration period and the initial BTEX concentrations were too high for the biofilter to handle effectively. A series of experiments were conducted to determine the feasibility of using a passive adsorption column placed upstream of the biofilter to attenuate the peak gas-phase VOC concentrations delivered to the biofilter during the SMZ regeneration process. In preparation for the field test of the SMZ/VPB treatment system in New Mexico, a pilot-scale SMZ system was also designed and constructed during this reporting period. Finally, a cost and feasibility analysis was also completed. To investigate the merits of the passive buffering system during SMZ regeneration, two adsorbents, SMZ and granular activated carbon (GAC) were investigated in flow-through laboratory-scale columns to determine their capacity to handle steady and unsteady VOC feed conditions. When subjected to a toluene-contaminated air stream, the column containing SMZ reduced the peak inlet 1000 ppmv toluene concentration to 630 ppmv at a 10 second contact time. This level of buffering was insufficient to ensure complete removal in the downstream biofilter and the contact time was longer than desired. For this reason, using SMZ as a passive buffering system for the gas phase contaminants was not pursued further. In contrast to the SMZ results, GAC was found to be an effective adsorbent to handle the peak contaminant concentrations that occur early during the SMZ regeneration process. At a one second residence time, the GAC bed reduced peak contaminant concentrations by 97%. After the initial peak, the inlet VOC concentration in the SMZ regeneration gas stream drops exponentially with time. During this period, the contaminants on the GAC subsequently desorbed at a nearly steady rate over the next 45 hours resulting in a relatively steady effluent concentration of approximately 25 ppm{sub v}. This lower concentration is readily degradable by a downstream vapor phase biofilter (VPB) and the steady nature of the feed stream will prevent the biomass in the VPB from enduring starvation conditions between SMZ regeneration cycles. Repetitive sorption and desorption cycles that would be expected in the field were also investigated. It was determined that although the GAC initially lost some VOC sorption capacity, the adsorption and desorption profiles stabilized after approximately 6 cycles indicating that a GAC bed should be suitable for continuous operation. In preparation for the pilot field testing of the SMZ/VPB system, design, ''in-house'' construction and testing of the field system were completed during this project period. The design of the SMZ system for the pilot test was based on previous investigations by the PI's in Wyoming, 2002 and on analyses of the produced water at the field site in New Mexico. The field tests are scheduled for summer, 2005. A cost survey, feasibility of application and cost analyses were completed to investigate the long term effectiveness of the SMZ/VPB system as a method of treating produced water for re-use. Several factors were investigated, including: current costs to treat and dispose of produced water, end-use water quality requirements, and state and federal permitting requirements.

  11. Procedures for ground-water investigations

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water monitoring procedures are developed and used in accordance with the PNL Quality Assurance Program.

  12. PARAMETER ESTIMATION IN PETROLEUM AND GROUNDWATER MODELING

    E-Print Network [OSTI]

    Ewing, Richard E.

    PARAMETER ESTIMATION IN PETROLEUM AND GROUNDWATER MODELING R.E. Ewing, M.S. Pilant, J.G. Wade on grand challenge problems. In today's petroleum industry, reservoir simulators are routinely used parameters in petroleum and groundwater models. It is not intended to be exhaustive, but rather to give

  13. Monitoring Plan for RCRA Groundwater Assessment at the 216-U-12 Crib

    SciTech Connect (OSTI)

    Williams, Bruce A.; Chou, Charissa J.

    2005-09-20

    This document contains a revised and updated monitoring plan for RCRA interim status groundwater assessment, site hydrogeology, and a conceptual model of the RCRA treatment, storage, and disposal unit. Monitoring under interim status is expected to continue until the 216-U-12 crib is incorporated as a chapter into the Hanford Facility RCRA Permit or administratively closed as proposed to EPA and Ecology.

  14. SU-E-T-555: A Protontherapy Inverse Treatment Planning System Prototype with Linear Energy Transfer (LET) Optimization

    SciTech Connect (OSTI)

    Sanchez-Parcerisa, D; Carabe-Fernandez, A

    2014-06-01

    Purpose: Develop and benchmark an inverse treatment planning system (TPS) for proton radiotherapy integrating fast analytical dose and LET calculations in patient geometries and a dual objective function with both dose and LET components, enabling us to apply optimization techniques to improve the predicted outcome of treatments based on radiobiological models. Methods: The software package was developed in MATLAB and implements a fluence-dose calculation technique based on a pencil beam model for dose calculations and a 3D LET model based on the extension of the LET in the radial direction as a function of the predicted radiological pathway. Both models were benchmarked against commissioning data from our institution, dose calculations performed with a commercial treatment planning system and Monte Carlo simulations. The optimization is based on the adaptive simulated annealing approach . Results: The dose and LET calculations were tested in a water phantom and several real patient treatments. The pass rate for the gamma index analysis (3%/3mm) test was above 90% for all test cases analyzed, and the calculation time was of the order of seconds. The inverse planning module produced plans with a significantly higher mean LET in the target compared to traditional plans, without any loss of target coverage. The clinical relevance of this improvement is under consideration . Conclusion: The developed treatment planning system is a valuable clinical and research tool that enables us to incorporate LET effects into proton radiotherapy planning in a streamlined fashion.

  15. Partitioning planning studies: Preliminary evaluation of metal and radionuclide partitioning the high-temperature thermal treatment systems

    SciTech Connect (OSTI)

    Liekhus, K.; Grandy, J.; Chambers, A.

    1997-03-01

    A preliminary study of toxic metals and radionuclide partitioning during high-temperature processing of mixed waste has been conducted during Fiscal Year 1996 within the Environmental Management Technology Evaluation Project. The study included: (a) identification of relevant partitioning mechanisms that cause feed material to be distributed between the solid, molten, and gas phases within a thermal treatment system; (b) evaluations of existing test data from applicable demonstration test programs as a means to identify and understand elemental and species partitioning; and, (c) evaluation of theoretical or empirical partitioning models for use in predicting elemental or species partitioning in a thermal treatment system. This preliminary study was conducted to identify the need for and the viability of developing the tools capable of describing and predicting toxic metals and radionuclide partitioning in the most applicable mixed waste thermal treatment processes. This document presents the results and recommendations resulting from this study that may serve as an impetus for developing and implementing these predictive tools.

  16. Defining manganese(II) removal processes in passive coal mine drainage treatment systems through laboratory incubation experiments

    E-Print Network [OSTI]

    Burgos, William

    Defining manganese(II) removal processes in passive coal mine drainage treatment systems through Building, University Park, PA 16802, USA b Smithsonian Institution, PO Box 37012, MRC 119, Washington, DC for the passive removal of Mn(II) from coal mine drainage (CMD). Aqueous Mn(II) is removed via oxidative

  17. Treatment of Produced Water Using a Surfactant Modified Zeolite/Vapor Phase Bioreactor System

    SciTech Connect (OSTI)

    Lynn E. Katz; Kerry A. Kinney; Robert S. Bowman; Enid J. Sullivan; Soondong Kwon; Elaine B. Darby; Li-Jung Chen; Craig R. Altare

    2006-01-31

    Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. Produced waters typically contain a high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component as well as chemicals added during the oil-production process. It has been estimated that a total of 14 billion barrels of produced water were generated in 2002 from onshore operations (Veil, 2004). Although much of this produced water is disposed via reinjection, environmental and cost considerations can make surface discharge of this water a more practical means of disposal. In addition, reinjection is not always a feasible option because of geographic, economic, or regulatory considerations. In these situations, it may be desirable, and often necessary from a regulatory viewpoint, to treat produced water before discharge. It may also be feasible to treat waters that slightly exceed regulatory limits for re-use in arid or drought-prone areas, rather than losing them to reinjection. A previous project conducted under DOE Contract DE-AC26-99BC15221 demonstrated that surfactant modified zeolite (SMZ) represents a potential treatment technology for produced water containing BTEX. Laboratory and field experiments suggest that: (1) sorption of benzene, toluene, ethylbenzene and xylenes (BTEX) to SMZ follows linear isotherms in which sorption increases with increasing solute hydrophobicity; (2) the presence of high salt concentrations substantially increases the capacity of the SMZ for BTEX; (3) competitive sorption among the BTEX compounds is negligible; and, (4) complete recovery of the SMZ sorption capacity for BTEX can be achieved by air sparging the SMZ. This report summarizes research for a follow on project to optimize the regeneration process for multiple sorption/regeneration cycles, and to develop and incorporate a vapor phase bioreactor (VPB) system for treatment of the off-gas generated during air sparging. To this end, we conducted batch and column laboratory SMZ and VPB experiments with synthetic and actual produced waters. Based on the results of the laboratory testing, a pilot scale study was designed and conducted to evaluate the combined SMZ/VPB process. An economic and regulatory feasibility analysis was also completed as part of the current study to assess the viability of the process for various water re-use options.

  18. SLUDGE TREATMENT PROJECT ENGINEERED CONTAINER RETRIEVAL AND TRANSFER SYSTEM PRELMINARY DESIGN HAZARD AND OPERABILITY STUDY

    SciTech Connect (OSTI)

    CARRO CA

    2011-07-15

    This Hazard and Operability (HAZOP) study addresses the Sludge Treatment Project (STP) Engineered Container Retrieval and Transfer System (ECRTS) preliminary design for retrieving sludge from underwater engineered containers located in the 105-K West (KW) Basin, transferring the sludge as a sludge-water slurry (hereafter referred to as 'slurry') to a Sludge Transport and Storage Container (STSC) located in a Modified KW Basin Annex, and preparing the STSC for transport to T Plant using the Sludge Transport System (STS). There are six, underwater engineered containers located in the KW Basin that, at the time of sludge retrieval, will contain an estimated volume of 5.2 m{sup 3} of KW Basin floor and pit sludge, 18.4 m{sup 3} of 105-K East (KE) Basin floor, pit, and canister sludge, and 3.5 m{sup 3} of settler tank sludge. The KE and KW Basin sludge consists of fuel corrosion products (including metallic uranium, and fission and activation products), small fuel fragments, iron and aluminum oxide, sand, dirt, operational debris, and biological debris. The settler tank sludge consists of sludge generated by the washing of KE and KW Basin fuel in the Primary Clean Machine. A detailed description of the origin of sludge and its chemical and physical characteristics can be found in HNF-41051, Preliminary STP Container and Settler Sludge Process System Description and Material Balance. In summary, the ECRTS retrieves sludge from the engineered containers and hydraulically transfers it as a slurry into an STSC positioned within a trailer-mounted STS cask located in a Modified KW Basin Annex. The slurry is allowed to settle within the STSC to concentrate the solids and clarify the supernate. After a prescribed settling period the supernate is decanted. The decanted supernate is filtered through a sand filter and returned to the basin. Subsequent batches of slurry are added to the STSC, settled, and excess supernate removed until the prescribed quantity of sludge is collected. The sand filter is then backwashed into the STSC. The STSC and STS cask are then inerted and transported to T Plant.

  19. Development of one-dimensional computational fluid dynamics code 'GFLOW' for groundwater flow and contaminant transport analysis

    SciTech Connect (OSTI)

    Rahatgaonkar, P. S.; Datta, D.; Malhotra, P. K.; Ghadge, S. G. [Nuclear Power Corporation of India Ltd., R-2, Ent. Block, Nabhikiya Urja Bhavan, Anushakti Nagar, Mumbai - 400 094 (India)

    2012-07-01

    Prediction of groundwater movement and contaminant transport in soil is an important problem in many branches of science and engineering. This includes groundwater hydrology, environmental engineering, soil science, agricultural engineering and also nuclear engineering. Specifically, in nuclear engineering it is applicable in the design of spent fuel storage pools and waste management sites in the nuclear power plants. Ground water modeling involves the simulation of flow and contaminant transport by groundwater flow. In the context of contaminated soil and groundwater system, numerical simulations are typically used to demonstrate compliance with regulatory standard. A one-dimensional Computational Fluid Dynamics code GFLOW had been developed based on the Finite Difference Method for simulating groundwater flow and contaminant transport through saturated and unsaturated soil. The code is validated with the analytical model and the benchmarking cases available in the literature. (authors)

  20. The Savannah River Site's Groundwater Monitoring Program, first quarter 1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During first quarter 1989 (January--March), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the first quarter is presented in the Flagging Criteria section of this document. All analytical results from first quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  1. The Savannah River Site's Groundwater Monitoring Program, second quarter 1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During second quarter 1989 (April--June), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the second quarter is presented in the Flagging Criteria section of this document. All analytical results from second quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  2. The Savannah River Site's Groundwater Monitoring Program, third quarter 1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During third quarter 1989 (July--September), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the third quarter is presented in the Flagging Criteria section of this document. All analytical results from third quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  3. Treatment and prevention systems for acid mine drainage and halogenated contaminants

    DOE Patents [OSTI]

    Jin, Song (Fort Collins, CO); Fallgren, Paul H. (Laramie, WY); Morris, Jeffrey M. (Laramie, WY)

    2012-01-31

    Embodiments include treatments for acid mine drainage generation sources (10 perhaps by injection of at least one substrate (11) and biologically constructing a protective biofilm (13) on acid mine drainage generation source materials (14). Further embodiments include treatments for degradation of contaminated water environments (17) with substrates such as returned milk and the like.

  4. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerial of Groundwater Treatment Facility Aerial of Groundwater Treatment Facility Groundwater Treatment Facility Groundwater Treatment Facility Groundwater Treatment Facility...

  5. Hanford Site Groundwater Monitoring for Fiscal Year 1999

    SciTech Connect (OSTI)

    MJ Hartman; LF Morasch; WD Webber

    2000-05-10

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 1999 on the US. Department of Energy's Hanford Site, Washington. Water-level monitoring was performed to evaluate groundwater flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Measurements for site-wide maps were conducted in June in past years and are now measured in March to reflect conditions that are closer to average. Water levels over most of the Hanford Site continued to decline between June 1998 and March 1999. The most widespread radiological contaminant plumes in groundwater were tritium and iodine-129. Concentrations of carbon-14, strontium-90, technetium-99, and uranium also exceeded drinking water standards in smaller plumes. Cesium-137 and plutonium exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in US Department of Energy Order 5400.5 were exceeded for plutonium, strontium-90, tritium, and uranium in small plumes or single wells. Nitrate and carbon tetrachloride are the most extensive chemical contaminants. Chloroform, chromium, cis-1,2dichloroethylene, cyanide, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Metals such as aluminum, cadmium, iron, manganese, and nickel exceeded their maximum contaminant levels in filtered samples from numerous wells; however, in most cases, they are believed to represent natural components of groundwater. ''Resource Conservation and Recovery Act of 1976'' groundwater monitoring continued at 25 waste management areas during fiscal year 1999: 16 under detection programs and data indicate that they are not adversely affecting groundwater; 6 under interim status groundwater quality assessment programs to assess contamination; and 2 under final status corrective-action programs. Another site, the 120-D-1 ponds, was clean closed in fiscal year 1999, and monitoring is no longer required. Groundwater remediation in the 100 Areas continued with the goal of reducing the amount of chromium (100 K, D, and H) and strontium-90 (100 N) reaching the Columbia River. The objective of two remediation systems in the 200 West Area is to prevent the spread of carbon tetrachloride and technetium-99/uranium plumes. Groundwater monitoring continued at these sites and at other sites where there is no active remediation. Subsurface source characterization and vadose zone monitoring, soil-vapor monitoring, sediment sampling and characterization, and vadose zone remediation were conducted in fiscal year 1999. Baseline spectral gamma-ray logging at two single-shell tank farms was completed, and logging of zones at tank farms with the highest count rate was initiated. Spectral gamma-ray logging also occurred at specific retention facilities in the 200 East Area. These facilities are some of the most significant potential sources of remaining vadose zone contamination. Finally, remediation and monitoring of carbon tetradoride in the 200 West Area continued, with an additional 972 kilograms of carbon tetrachloride removed from the vadose zone in fiscal year 1999.

  6. Unconventional Groundwater System Proves Effective in Reducing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs Search USAJobs Search The jobs listedNuclear1 DOEUmatillaContamination

  7. GEOL4850 (GEOL5850) Groundwater Hydrology University of North Texas

    E-Print Network [OSTI]

    Pan, Feifei

    GEOL4850 (GEOL5850) Groundwater Hydrology University of North Texas Department of Geography Spring and potentiometric surface maps, aquifer characteristics, homogeneity and isotropy 4. Soil moisture and groundwater of groundwater flow ---hydraulic head, Darcy's law, equations of groundwater flow in confined and unconfined

  8. Regionally compartmented groundwater flow on Mars Keith P. Harrison1

    E-Print Network [OSTI]

    Harrison, Keith

    Regionally compartmented groundwater flow on Mars Keith P. Harrison1 and Robert E. Grimm1 Received] Groundwater flow on Mars likely contributed to the formation of several types of morphologic and mineralogic of groundwater flow required for their formation. For groundwater simulation purposes, a global Martian aquifer

  9. GEOL4850 (GEOL5850) Groundwater Hydrology University of North Texas

    E-Print Network [OSTI]

    Pan, Feifei

    GEOL4850 (GEOL5850) Groundwater Hydrology University of North Texas Department of Geography Fall surface maps, aquifer characteristics, homogeneity and isotropy 4. Soil moisture and groundwater recharge of groundwater flow ---hydraulic head, Darcy's law, equations of groundwater flow in confined and unconfined

  10. GROUNDWATER DATA REQUIREMENT AND ANALYSIS C. P. Kumar

    E-Print Network [OSTI]

    Kumar, C.P.

    GROUNDWATER DATA REQUIREMENT AND ANALYSIS C. P. Kumar National Institute of Hydrology Roorkee 1.0 INTRODUCTION Groundwater is used for a variety of purposes, including irrigation, drinking, and manufacturing. Groundwater is also the source of a large percentage of surface water. To verify that groundwater is suited

  11. MANAGEMENT OF GROUNDWATER IN SALT WATER INGRESS COASTAL AQUIFERS

    E-Print Network [OSTI]

    Kumar, C.P.

    MANAGEMENT OF GROUNDWATER IN SALT WATER INGRESS COASTAL AQUIFERS C. P. Kumar Scientist `E1 dealing with exploitation, restoration and management of fresh groundwater in coastal aquifers, the key is disturbed by groundwater withdrawals and other human activities that lower groundwater levels, reduce fresh

  12. The Groundwater Performance Assessment Project Quality Assurance Plan

    SciTech Connect (OSTI)

    Walker, Thomas G.

    2005-01-26

    This document provides the quality assurance guidelines that will be followed by the groundwater project.

  13. Groundwater Protection 7 2004 SITE ENVIRONMENTAL REPORT7-1

    E-Print Network [OSTI]

    Groundwater Protection 7 2004 SITE ENVIRONMENTAL REPORT7-1 DRAFT 7.1 THE BNL GROUNDWATER PROTECTION MANAGEMENT PROGRAM The primary goal of BNL's Groundwater Protection Management Program is to ensure that plans for groundwater protection, man- agement, monitoring, and restoration are fully defined

  14. Lab 13: Groundwater --Water Supplies at Peril Introduction

    E-Print Network [OSTI]

    Chen, Po

    1 Lab 13: Groundwater -- Water Supplies at Peril Introduction Although hidden from view, groundwater like surface water moves under the influence of gravity. Knowing how groundwater moves is important because it helps identify areas were groundwater is recharged and the possible path

  15. GROUNDWATER PROTECTION 1997 BNL Site Environmental Report 8 -1

    E-Print Network [OSTI]

    GROUNDWATER PROTECTION 1997 BNL Site Environmental Report 8 - 1 Chapter 8 GROUNDWATER PROTECTION Groundwater protection at BNL is addressed by both prevention and minimization environmen- tal emissions, and active remediation in areas where past operations have impacted groundwater quality. All remediation work

  16. Conceptual Design of a MEDE Treatment System for Sodium Bonded Fuel

    SciTech Connect (OSTI)

    Carl E. Baily; Karen A. Moore; Collin J. Knight; Peter B. Wells; Paul J. Petersen; Ali S. Siahpush; Matthew T. Weseman

    2008-05-01

    Unirradiated sodium bonded metal fuel and casting scrap material containing highly enriched uranium (HEU) is stored at the Materials and Fuels Complex (MFC) on the Idaho National Laboratory (INL). This material, which includes intact fuel assemblies and elements from the Fast Flux Test Facility (FFTF) and Experimental Breeder Reactor-II (EBR-II) reactors as well as scrap material from the casting of these fuels, has no current use under the terminated reactor programs for both facilities. The Department of Energy (DOE), under the Sodium-Bonded Spent Nuclear Fuel Treatment Record of Decision (ROD), has determined that this material could be prepared and transferred to an off-site facility for processing and eventual fabrication of fuel for commercial nuclear reactors. A plan is being developed to prepare, package and transfer this material to the DOE High Enriched Uranium Disposition Program Office (HDPO), located at the Y-12 National Security Complex in Oak Ridge, Tennessee. Disposition of the sodium bonded material will require separating the elemental sodium from the metallic uranium fuel. A sodium distillation process known as MEDE (Melt-Drain-Evaporate), will be used for the separation process. The casting scrap material needs to be sorted to remove any foreign material or fines that are not acceptable to the HDPO program. Once all elements have been cut and loaded into baskets, they are then loaded into an evaporation chamber as the first step in the MEDE process. The chamber will be sealed and the pressure reduced to approximately 200 mtorr. The chamber will then be heated as high as 650 ºC, causing the sodium to melt and then vaporize. The vapor phase sodium will be driven into an outlet line where it is condensed and drained into a receiver vessel. Once the evaporation operation is complete, the system is de-energized and returned to atmospheric pressure. This paper describes the MEDE process as well as a general overview of the furnace systems, as necessary, to complete the MEDE process.

  17. Burn site groundwater interim measures work plan.

    SciTech Connect (OSTI)

    Witt, Jonathan L. (North Wind, Inc., Idaho Falls, ID); Hall, Kevin A. (North Wind, Inc., Idaho Falls, ID)

    2005-05-01

    This Work Plan identifies and outlines interim measures to address nitrate contamination in groundwater at the Burn Site, Sandia National Laboratories/New Mexico. The New Mexico Environment Department has required implementation of interim measures for nitrate-contaminated groundwater at the Burn Site. The purpose of interim measures is to prevent human or environmental exposure to nitrate-contaminated groundwater originating from the Burn Site. This Work Plan details a summary of current information about the Burn Site, interim measures activities for stabilization, and project management responsibilities to accomplish this purpose.

  18. Nevada Test Site Groundwater Well Rehabilitation Plan

    SciTech Connect (OSTI)

    David B. Hudson

    2006-12-01

    This plan describes actions to improve the utility and credibility of the Nevada Test Site (NTS) interim groundwater monitoring program. The two principal actions are: (1) well maintenance/rehabilitation activities and (2) the deployment of dedicated low-cost and reliable jack-pumps for groundwater sampling from deep monitoring wells. The scope of this proposal is to perform these actions on some number of nine selected wells (Figure 1) to evaluate whether these actions are achievable, practical, cost effective, and result in improved groundwater data quality.

  19. Quarterly report of RCRA groundwater monitoring data for period January 1--March 31, 1995

    SciTech Connect (OSTI)

    1995-07-01

    This quarterly report contains data received between January and March 1995, which are the cutoff dates for this reporting period. This report may contain not only data from the January through March quarter, but also data from earlier sampling events that were not previously reported. Nineteen Resource Conservation and Recovery Act of 1976 (RCRA) groundwater monitoring projects are conducted at the Hanford Site. These projects include treatment, storage, and disposal facilities for both solid and liquid waste. The groundwater monitoring programs described in this report comply with the interim-status federal (Title 40 Code of Federal Regulation [CFR] Part 265) and state (Washington Administrative Code [WAC] 173-303-400) regulations. The RCRA projects are monitored under one of three programs: background monitoring, indicator parameter evaluation, or groundwater quality assessment.

  20. GROUNDWATER FLOW AND TRANSPORT MODELING Application to Submarine Groundwater Discharge, Coastal Wetland Hydrology, and Deep Well Injection

    E-Print Network [OSTI]

    Sukop, Mike

    GROUNDWATER FLOW AND TRANSPORT MODELING Application to Submarine Groundwater Discharge, Coastal, but is also lost to surface water drainage and potential submarine groundwater discharge. There are also to deal with issues such as submarine groundwater discharge and coastal wetland hydrology. SEAWAT also has

  1. Map Shows Groundwater Decline Slowed LINCOLN, Neb. --Groundwater levels in Nebraska slowed their rate of decline and actually

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    Map Shows Groundwater Decline Slowed LINCOLN, Neb. -- Groundwater levels in Nebraska slowed director of the UNL Water Center, said that the groundwater level maps produced annually by SNR, or stable groundwater levels, with oranges and reds indicating declines and greens and blues showing

  2. An integrated system to remote monitor and control anaerobic wastewater treatment plants through the internet

    E-Print Network [OSTI]

    Bernard, Olivier

    controllers that stabilise the treatment plant, meet the depollution requirements and provide a biogas quality to degrade slowly degradable substrates at high #12;concentrations, very low sludge production, low energy

  3. Treatment Resin Reduces Costs, Materials in Hanford Groundwater Cleanup -

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowing YouNeed forUnruhDepartment of Energy -Efficiency

  4. Groundwater Contamination and Treatment at Department of Energy Sites |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRD Report11, SolarMatFermi National Accelerator Laboratory

  5. New Resin Brings Efficiencies to Groundwater Treatment along Columbia River

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartmentNew Jersey is homeAdvanced Stages ofat Hanford Site |

  6. Groundwater Contamination and Treatment at Department of Energy Sites -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,Executive CompensationEnergyGetDepartment1Sustained Pumping at

  7. Groundwater Contamination and Treatment at Department of Energy Sites -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,Executive CompensationEnergyGetDepartment1Sustained Pumping at2009 |

  8. Pilot-scale treatability test plan for the 200-UP-1 groundwater Operable Unit

    SciTech Connect (OSTI)

    Wittreich, C.D.

    1994-05-01

    This document presents the treatability test plan for pilot-scale pump and treat testing at the 200-UP-1 Operable Unit. This treatability test plan has been prepared in response to an agreement between the US Department of Energy, the US Environmental Protection Agency, and the Washington State Department of Ecology, as documented in Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1989a) Change Control Form M-13-93-03 (Ecology et al. 1994). The agreement also requires that, following completion of the activities described in this test plan, a 200-UP-1 Operable Unit interim remedial measure (IRM) proposed plan be developed for use in preparing an interim action record of decision (ROD). The IRM Proposed Plan will be supported by the results of the testing described in this treatability test plan, as well as by other 200-UP-1 Operable Unit activities (e.g., limited field investigation, development of a qualitative risk assessment). Once issued, the interim action ROD will specify the interim action for groundwater contamination at the 200-UP-1 Operable Unit. The approach discussed in this treatability test plan is to conduct a pilot-scale pump and treat test for the contaminant plume associated with the 200-UP-1 Operable Unit. Primary contaminants of concern are uranium and technetium-99; the secondary contaminant of concern is nitrate. The pilot-scale treatability testing presented in this test plan has as its primary purpose to assess the performance of aboveground treatment systems with respect to the ability to remove the primary contaminants in groundwater withdrawn from the contaminant plume.

  9. Nevada National Security Site Integrated Groundwater Sampling Plan, Revision 0

    SciTech Connect (OSTI)

    Marutzky, Sam; Farnham, Irene

    2014-10-01

    The purpose of the Nevada National Security Site (NNSS) Integrated Sampling Plan (referred to herein as the Plan) is to provide a comprehensive, integrated approach for collecting and analyzing groundwater samples to meet the needs and objectives of the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) Underground Test Area (UGTA) Activity. Implementation of this Plan will provide high-quality data required by the UGTA Activity for ensuring public protection in an efficient and cost-effective manner. The Plan is designed to ensure compliance with the UGTA Quality Assurance Plan (QAP). The Plan’s scope comprises sample collection and analysis requirements relevant to assessing the extent of groundwater contamination from underground nuclear testing. This Plan identifies locations to be sampled by corrective action unit (CAU) and location type, sampling frequencies, sample collection methodologies, and the constituents to be analyzed. In addition, the Plan defines data collection criteria such as well-purging requirements, detection levels, and accuracy requirements; identifies reporting and data management requirements; and provides a process to ensure coordination between NNSS groundwater sampling programs for sampling of interest to UGTA. This Plan does not address compliance with requirements for wells that supply the NNSS public water system or wells involved in a permitted activity.

  10. Nevada National Security Site Groundwater Program

    ScienceCinema (OSTI)

    None

    2014-10-28

    From 1951 to 1992, the Unites States government conducted 828 underground nuclear tests at the Nevada National Security Site. About one-third of these tests occurred near, below or within the water table - the very top portion of the groundwater layer where rock and soil are completely saturated with water. As a result, some groundwater was contaminated. The U.S. Department of Energy (DOE) began exploring the effects of groundwater contamination in the 1970s. Though contamination from underground testing has never been detected on public land, the DOE was committed to developing an advanced, reliable monitoring network that ensures the long-term protection of the public. An intensive groundwater investigation program was launched in 1989.

  11. Groundwater: Recharge is Not the Whole Story

    E-Print Network [OSTI]

    Bredehoeft, John

    2015-01-01

    files/documents/ Source_of_Water_Derived_from_Wells.pdf TóthDefinition of selected ground-water terms: revisions andU.S. Geological Survey Water Supply Paper 1988. Washington,

  12. The Savannah River Site's Groundwater Monitoring Program

    SciTech Connect (OSTI)

    Not Available

    1990-10-18

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted in the first quarter of 1990. It includes the analytical data, field data, well activity data, and the other documentation for this program and provides a record of the program's activities and rationale and an official document of the analytical results. The groundwater monitoring program includes the following activities: installation, maintenance, and abandonment of monitoring wells, environmental soil borings, development of the sampling and analytical schedule, collection and analyses of groundwater samples, review of the analytical data and other data, maintenance of the databases containing groundwater monitoring data and related data, quality assurance (QA) evaluations of laboratory performance, and reports of results to waste-site facility custodians and to the Environmental Protection Section (EPS) of EPD.

  13. Predicting Groundwater Contamination beneath Stormwater Infiltration

    E-Print Network [OSTI]

    Clark, Shirley E.

    1 Predicting Groundwater Contamination beneath Stormwater Infiltration Activities Shirley E. Clark, Penn State Harrisburg Robert Pitt, University of Alabama Pollutants of Concern · Classes of stormwaterHighest Observed Concentration Metal Are these waters infiltration quality? Benefits of Urban Stormwater

  14. An Innovative System for the Efficient and Effective Treatment of Non-Traditional Waters for Reuse in Thermoelectric Power Generation

    SciTech Connect (OSTI)

    John Rodgers; James Castle

    2008-08-31

    This study assessed opportunities for improving water quality associated with coal-fired power generation including the use of non-traditional waters for cooling, innovative technology for recovering and reusing water within power plants, novel approaches for the removal of trace inorganic compounds from ash pond effluents, and novel approaches for removing biocides from cooling tower blowdown. This research evaluated specifically designed pilot-scale constructed wetland systems for treatment of targeted constituents in non-traditional waters for reuse in thermoelectric power generation and other purposes. The overall objective of this project was to decrease targeted constituents in non-traditional waters to achieve reuse criteria or discharge limitations established by the National Pollutant Discharge Elimination System (NPDES) and Clean Water Act (CWA). The six original project objectives were completed, and results are presented in this final technical report. These objectives included identification of targeted constituents for treatment in four non-traditional water sources, determination of reuse or discharge criteria for treatment, design of constructed wetland treatment systems for these non-traditional waters, and measurement of treatment of targeted constituents in non-traditional waters, as well as determination of the suitability of the treated non-traditional waters for reuse or discharge to receiving aquatic systems. The four non-traditional waters used to accomplish these objectives were ash basin water, cooling water, flue gas desulfurization (FGD) water, and produced water. The contaminants of concern identified in ash basin waters were arsenic, chromium, copper, mercury, selenium, and zinc. Contaminants of concern in cooling waters included free oxidants (chlorine, bromine, and peroxides), copper, lead, zinc, pH, and total dissolved solids. FGD waters contained contaminants of concern including arsenic, boron, chlorides, selenium, mercury, chemical oxygen demand (COD), and zinc. Similar to FGD waters, produced waters contained contaminants of concern that are predominantly inorganic (arsenic, cadmium, chlorides, chromium, copper, lead, mercury, nickel, sulfide, zinc, total dissolved solids), but also contained some organics (benzene, PAHs, toluene, total organic carbon, total suspended solids, and oil and grease). Constituents of concern that may cause chemical scaling, biofouling and corrosion, such as pH, hardness and ionic strength, and nutrients (P, K, and N) may also be found in all four non-traditional waters. NPDES permits were obtained for these non-traditional waters and these permit limits are summarized in tabular format within this report. These limits were used to establish treatment goals for this research along with toxicity values for Ceriodaphnia dubia, water quality criteria established by the US EPA, irrigation standards established by the United States Department of Agriculture (USDA), and reuse standards focused on minimization of damage to the power plant by treated waters. Constructed wetland treatment systems were designed for each non-traditional water source based on published literature reviews regarding remediation of the constituents of concern, biogeochemistry of the specific contaminants, and previous research. During this study, 4 non-traditional waters, which included ash basin water, cooling water, FGD water and produced water (PW) were obtained or simulated to measure constructed wetland treatment system performance. Based on data collected from FGD experiments, pilot-scale constructed wetland treatment systems can decrease aqueous concentrations of elements of concern (As, B, Hg, N, and Se). Percent removal was specific for each element, including ranges of 40.1% to 77.7% for As, 77.6% to 97.8% for Hg, 43.9% to 88.8% for N, and no measureable removal to 84.6% for Se. Other constituents of interest in final outflow samples should have aqueous characteristics sufficient for discharge, with the exception of chlorides (<2000 mg/L). Based on total dissolved solids, co-

  15. Performance Enhancements to the Hanford Waste Treatment and Immobilization Plant Low-Activity Waste Vitrification System

    SciTech Connect (OSTI)

    Hamel, W. F. [Office of River Protection, U.S. Department of Energy, 2400 Stevens Drive, Richland, WA 99354 (United States); Gerdes, K. [U.S. Department of Energy, 19901 Germantown Road, Germantown, MD 20874 (United States); Holton, L. K. [Pacific Northwest National Laboratory, PO Box 999, Richland, WA 99352 (United States); Pegg, I.L. [Vitreous State Laboratory, The Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064 (United States); Bowan, B.W. [Duratek, Inc., 10100 Old Columbia Road, Columbia, Maryland 21046 (United States)

    2006-07-01

    The U.S Department of Energy Office of River Protection (DOE-ORP) is constructing a Waste Treatment and Immobilization Plant (WTP) for the treatment and vitrification of underground tank wastes stored at the Hanford Site in Washington State. The WTP comprises four major facilities: a pretreatment facility to separate the tank waste into high level waste (HLW) and low-activity waste (LAW) process streams, a HLW vitrification facility to immobilize the HLW fraction; a LAW vitrification facility to immobilize the LAW fraction, and an analytical laboratory to support the operations of all four treatment facilities. DOE has established strategic objectives to optimize the performance of the WTP facilities and the LAW and HLW waste forms to reduce the overall schedule and cost for treatment and vitrification of the Hanford tank wastes. This strategy has been implemented by establishing performance expectations in the WTP contract for the facilities and waste forms. In addition, DOE, as owner-operator of the WTP facilities, continues to evaluate 1) the design, to determine the potential for performance above the requirements specified in the WTP contract; and 2) improvements in production of the LAW and HLW waste forms. This paper reports recent progress directed at improving production of the LAW waste form. DOE's initial assessment, which is based on the work reported in this paper, is that the treatment rate of the WTP LAW vitrification facility can be increased by a factor of 2 to 4 with a combination of revised glass formulations, modest increases in melter glass operating temperatures, and a second-generation LAW melter with a larger surface area. Implementing these improvements in the LAW waste immobilization capability can benefit the LAW treatment mission by reducing the cost of waste treatment. (authors)

  16. Guidance document for groundwater protection needs assessments

    SciTech Connect (OSTI)

    Cobb, R.P.; Berg, R.C.; Wehrmann, H.A.

    1995-01-01

    The purpose of this document is to serve as a guidebook for conducting Groundwater Protection Needs Assessments (GPNA). The intent of a GPNA is to provide a comprehensive evaluation of the groundwater protection measures necessary in order to assure a long-term supply of potable water that is not highly vulnerable to contamination. The Illinois Environmental Protection Agency (IEPA), the Illinois State Geological Survey (ISGS) and the Illinois State Water Survey (ISWS) have developed the approach discussed for undertaking of GPNA.

  17. Sustainable Groundwater Management in the Arid Southwestern US: Coachella Valley, California

    E-Print Network [OSTI]

    Thomas, BF; Famiglietti, JS; Famiglietti, JS; Famiglietti, JS

    2015-01-01

    A critical review of groundwater budget myth, safe yield andbetween precipitation, groundwater fluctuations, and lake2012) Towards sustainable groundwater use: setting long-term

  18. Groundwater Surface Water Interactions in a Gold-mined Floodplain of the Merced River

    E-Print Network [OSTI]

    Sullivan, Lynn Sager

    2013-01-01

    J. A. Cherry, 1979. Groundwater. Prentice-Hall, Englewoodredd site selection, groundwater upwelling, and over-winterprocess between rivers and groundwater. Freshwater Biology.

  19. Valuing Groundwater Services and Water Portfolio in Irrigated Agriculture with a Hedonic Pricing Model

    E-Print Network [OSTI]

    Mukherjee, Monobina

    2013-01-01

    2647-2668. Surface and Groundwater. 2012. U.S. EnvironmentalEstimating the Value of Groundwater in Irrigation, SelectedAgricultural adaptation to groundwater and climate. NBER

  20. Field Evidence for Co-Metabolism of Trichloroethene Stimulated by Addition of Electron Donor to Groundwater

    E-Print Network [OSTI]

    Conrad, Mark E.

    2010-01-01

    trichloroethylene in groundwater through toluene injection.TSF-05) and Surrounding Groundwater Contamination (TSF-23)of Electron Donor to Groundwater Mark E. Conrad 1 , Eoin L.

  1. Remote sensing of groundwater storage changes in Illinois using the Gravity Recovery and Climate Experiment (GRACE)

    E-Print Network [OSTI]

    Yeh, Pat J.-F.; Swenson, S. C; Famiglietti, J. S; Rodell, M.

    2006-01-01

    based monitoring of groundwater storage changes using GRACE:2006 Remote sensing of groundwater storage changes in2006. [ 1 ] Regional groundwater storage changes in Illinois

  2. Soil type, crop and irrigation technique affect nitrogen leaching to groundwater

    E-Print Network [OSTI]

    Letey, John; Vaughan, Peter

    2013-01-01

    Addressing Nitrates in Groundwater. Report to theSources and Loading to Groundwater, Technical Report 2,nitrogen leaching to groundwater by John Letey and Peter

  3. Investigation of Groundwater Flow in Foothill and Mountain regions using Heat Flow measurements

    E-Print Network [OSTI]

    Fogg, Graham E.; Trask, James C

    2009-01-01

    1965) Rates of Vertical Groundwater Movement Estimated fromCrystalline Rocks. Groundwater, Vol. 2, pp. 6-12. Dettinger,horizontal and vertical groundwater flow components. Water

  4. Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE

    E-Print Network [OSTI]

    2007-01-01

    Estimating groundwater storage changes in the Mississippistorage, which includes groundwater, soil moisture, andmay be the only hope for groundwater depletion assessments

  5. Soil suitability index identifies potential areas for groundwater banking on agricultural lands

    E-Print Network [OSTI]

    2015-01-01

    2015. California’s Groundwater Update 2013. A Compilation ofpotential areas for groundwater banking on agriculturaland Mike Walkinshaw Groundwater pumping chronically exceeds

  6. Geochemical characterization of geothermal systems in the Great...

    Open Energy Info (EERE)

    insights into the possible contributions of geothermal systems to groundwater chemistry and development of mitigation strategies for attendant environmental issues....

  7. Non-Incineration Treatment to Reduce Benzene and VOC Emissions from Green Sand Molding Systems

    SciTech Connect (OSTI)

    Fred S. Cannon; Robert C. Voigt

    2002-06-28

    Final report describing laboratory, pilot scale and production scale evaluation of advanced oxidation systems for emissions and cost reduction in metal casting green sand systems.

  8. Development of US Navy Shipboard Systems for solid and liquid waste thermal treatment. Report for July 1995-April 1996

    SciTech Connect (OSTI)

    Gullet, B.K.

    1996-07-01

    The paper describes the U.S. Navy`s shipboard environmental challenges and a few of its research programs for meeting its needs for solid and liquid waste treatment. This objective is particularly important in environmentally sensitive areas, such as the Mediterranean Sea, where fleet deployment time is significant. Prohibitions on ocean dumping and anticipated requirements on effluent discharge quality have led the Navy to continue the research, development, and demonstration of shipboard systems to treat their unpreventable wastes. For solid, non-hazardous wastes, post-minimization efforts are geared toward long-term development of systems to thermally pyrolyze and oxidize the wastes into significantly reduced volume and weight.

  9. Method and apparatus for treating gaseous effluents from waste treatment systems

    DOE Patents [OSTI]

    Flannery, Philip A. (Ramsey, MT); Kujawa, Stephan T. (Butte, MT)

    2000-01-01

    Effluents from a waste treatment operation are incinerated and oxidized by passing the gases through an inductively coupled plasmas arc torch. The effluents are transformed into plasma within the torch. At extremely high plasma temperatures, the effluents quickly oxidize. The process results in high temperature oxidation of the gases without addition of any mass flow for introduction of energy.

  10. Study of Performance of Heat Pump Usage in Sewage Treatment and Fouling Impact on System 

    E-Print Network [OSTI]

    Song, Y.; Yao, Y.; Ma, Z.; Na, W.

    2006-01-01

    A heat pump using disposed sewage as a heat source to heat raw sewage is presented to solve the problem that sewage temperature is low in sewage biologic treatment in cold region. According to the status of one medicine factory in Harbin, China...

  11. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Groundwater Treatment Facility Interior Groundwater Treatment Facility Interior Groundwater Treatment Facility Operations Groundwater Treatment Facility Operations Groundwater...

  12. 40 CFR 265 interim-status ground-water monitoring plan for the 2101-M pond

    SciTech Connect (OSTI)

    Chamness, M.A.; Luttrell, S.P.; Dudziak, S.

    1989-03-01

    This report outlines a ground-water monitoring plan for the 2101-M pond, located in the southwestern part of the 200-East Area on the Hanford Site in south-central Washington State. It has been determined that hazardous materials may have been discharged to the pond. Installation of an interim-status ground-water monitoring system is required under the Resource Conservation and Recovery Act to determine if hazardous chemicals are moving out of the pond. This plan describes the location of new wells for the monitoring system, how the wells are to be completed, the data to be collected, and how those data can be used to determine the source and extent of any ground-water contamination from the 2101-M pond. Four new wells are planned, one upgradient and three downgradient. 35 refs., 12 figs., 9 tabs.

  13. Groundwater Level Status Report for 2005 Los Alamos National Laboratory

    SciTech Connect (OSTI)

    S.P. Allen; R.J. Koch

    2006-05-15

    The status of groundwater level monitoring at Los Alamos National Laboratory (LANL) in 2005 is provided in this report. The Groundwater Level Monitoring Project was instituted in 2005 to provide a framework for the collection and processing of quality controlled groundwater level data. This report summarizes groundwater level data for 137 monitoring wells, including 41 regional aquifer wells, 22 intermediate wells, and 74 alluvial wells. Pressure transducers were installed in 118 monitoring wells for continuous monitoring of groundwater levels. Time-series hydrographs of groundwater level data are presented along with pertinent construction and location information for each well.

  14. SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT

    SciTech Connect (OSTI)

    CRAWFORD TW

    2008-07-17

    This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

  15. Improving Groundwater Predictions Utilizing Seasonal Precipitation Forecasts from General Circulation Models

    E-Print Network [OSTI]

    Arumugam, Sankar

    Improving Groundwater Predictions Utilizing Seasonal Precipitation Forecasts from General. The research reported in this paper evaluates the potential in developing 6-month-ahead groundwater Surface Temperature forecasts. Ten groundwater wells and nine streamgauges from the USGS Groundwater

  16. Groundwater flow in heterogeneous composite C. L. Winter and Daniel M. Tartakovsky

    E-Print Network [OSTI]

    Tartakovsky, Daniel M.

    Groundwater flow in heterogeneous composite aquifers C. L. Winter and Daniel M. Tartakovsky Hydrology: Stochastic processes; 1829 Hydrology: Groundwater hydrology; 1832 Hydrology: Groundwater, upscaled, decomposition 1. Introduction [2] It has become common to quantify uncertainty in groundwater

  17. Tritium monitoring of groundwater and surfaces

    SciTech Connect (OSTI)

    MacArthur, D.; Aamodt, P.; Bounds, J.; Koster, J.

    1999-03-01

    There are numerous facilities, both within the US and in the rest of the world, within the complex of radiation laboratories and production plants where tritium has been released into the environment because of historic or ongoing mission-related operations. Many of environmental restoration projects have detected low levels of tritium contamination in local streams, ponds, and/or ground water. Typically these waters are moving or have the potential to move offsite and are viewed as a potential risk to the public and environment. Los Alamos National Laboratory will modify the well-proven long-range alpha detection (LRAD) technique for detection of ionizing radiation to optimize a system for detecting tritium in groundwater and other surfaces. The LRAD technique relies on detection of ionized air molecules rather than direct detection of ionizing radiation. The detected electrical current is proportional to the number of ionized air molecules present, which is in turn a measure of the amount of contamination present. Although this technique has been used commercially to measure alpha contamination on objects and surfaces, the technique is also ideal for monitoring low-energy beta particles. The authors have demonstrated beta detection using {sup 54}Mn, {sup 14}C, {sup 147}Pm, {sup 99}Tc, {sup 90}Sr, and {sup 36}Cl sources. Thus, the detector technology and detection of beta particles using this technology have both been demonstrated. The extreme short range of tritium beta particles necessitates an optimization of the detector system. In this paper, the authors will discuss these new designs.

  18. Process system evaluation-consolidated letters. Volume 1. Alternatives for the off-gas treatment system for the low-level waste vitrification process

    SciTech Connect (OSTI)

    Peurrung, L.M.; Deforest, T.J; Richards, J.R.

    1996-03-01

    This report provides an evaluation of alternatives for treating off-gas from the low-level waste (LLW) melter. The study used expertise obtained from the commercial nonradioactive off-gas treatment industry. It was assumed that contact maintenance is possible, although the subsequent risk to maintenance personnel was qualitatively considered in selecting equipment. Some adaptations to the alternatives described may be required, depending on the extent of contact maintenance that can be achieved. This evaluation identified key issues for the off-gas system design. To provide background information, technology reviews were assembled for various classifications of off-gas treatment equipment, including off-gas cooling, particulate control, acid gas control, mist elimination, NO{sub x} reduction, and SO{sub 2} removal. An order-of-magnitude cost estimate for one of the off-gas systems considered is provided using both the off-gas characteristics associated with the Joule-heated and combustion-fired melters. The key issues identified and a description of the preferred off-gas system options are provided below. Five candidate treatment systems were evaluated. All of the systems are appropriate for the different melting/feed preparations currently being considered. The lowest technical risk is achieved using option 1, which is similar to designs for high-level waste (HLW) vitrification in the Hanford Waste Vitrification Project (HWVP) and the West Valley. Demonstration Project. Option 1 uses a film cooler, submerged bed scrubber (SBS), and high-efficiency mist eliminator (HEME) prior to NO{sub x} reduction and high-efficiency particulate air (HEPA) filtration. However, several advantages were identified for option 2, which uses high-temperature filtration. Based on the evaluation, option 2 was identified as the preferred alternative. The characteristics of this option are described below.

  19. AUTOMATING GROUNDWATER SAMPLING AT HANFORD THE NEXT STEP

    SciTech Connect (OSTI)

    CONNELL CW; CONLEY SF; HILDEBRAND RD; CUNNINGHAM DE; R_D_Doug_Hildebrand@rl.gov; DeVon_E_Cunningham@rl.gov

    2010-01-21

    Historically, the groundwater monitoring activities at the Department of Energy's Hanford Site in southeastern Washington State have been very "people intensive." Approximately 1500 wells are sampled each year by field personnel or "samplers." These individuals have been issued pre-printed forms showing information about the well(s) for a particular sampling evolution. This information is taken from 2 official electronic databases: the Hanford Well information System (HWIS) and the Hanford Environmental Information System (HEIS). The samplers used these hardcopy forms to document the groundwater samples and well water-levels. After recording the entries in the field, the samplers turned the forms in at the end of the day and other personnel posted the collected information onto a spreadsheet that was then printed and included in a log book. The log book was then used to make manual entries of the new information into the software application(s) for the HEIS and HWIS databases. A pilot project for automating this extremely tedious process was lauched in 2008. Initially, the automation was focused on water-level measurements. Now, the effort is being extended to automate the meta-data associated with collecting groundwater samples. The project allowed electronic forms produced in the field by samplers to be used in a work flow process where the data is transferred to the database and electronic form is filed in managed records - thus eliminating manually completed forms. Elimating the manual forms and streamlining the data entry not only improved the accuracy of the information recorded, but also enhanced the efficiency and sampling capacity of field office personnel.

  20. Hanford Groundwater Contamination Areas Shrink as EM Exceeds Cleanup Goals

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – Workers supporting groundwater cleanup for EM’s Richland Operations Office at the Hanford site have exceeded a fiscal year goal to remove 3,500 pounds of carbon tetrachloride from groundwater under the center of the site.

  1. Oak Ridge Y-12 Plant groundwater protection program management plan

    SciTech Connect (OSTI)

    NONE

    1996-06-01

    The Oak Ridge Y- 1 2 Plant (Y-12 Plant) is owned by the United States Department of Energy (DOE) and managed by Lockheed Martin Energy Systems, Inc. (Energy Systems) under contract No. DE-AC05-84OR21400. The Y-12 Plant Groundwater Protection Program (GWPP), which was initiated in 1975, provides for the protection of groundwater resources consistent with Federal, State, and local regulations, and in accordance with DOE orders and Energy Systems policies and procedures. The Y-12 Plant is located in Anderson County, Tennessee, and is within the corporate limits of the City of Oak Ridge. The Y-12 Plant is one of three major DOE complexes that comprise the 37,000-acre Oak Ridge Reservation (ORR) located in Anderson and Roane counties. The Y-12 Plant is located in Bear Creek Valley at an elevation of about 950 feet (ft) above sea level. Bear Creek Valley is bounded on the northwest and southeast, and is isolated from populated areas of Oak Ridge, by parallel ridges that rise about 300 ft above the valley floor. The Y-12 Plant and its fenced buffer area are about 0.6 mile wide by 3.2 miles long and cover approximately 4,900 acres. The main industrialized section encompasses approximately 800 acres.

  2. Case report of a near medical event in stereotactic radiotherapy due to improper units of measure from a treatment planning system

    SciTech Connect (OSTI)

    Gladstone, D. J.; Li, S.; Jarvis, L. A.; Hartford, A. C.

    2011-07-15

    Purpose: The authors hereby notify the Radiation Oncology community of a potentially lethal error due to improper implementation of linear units of measure in a treatment planning system. The authors report an incident in which a patient was nearly mistreated during a stereotactic radiotherapy procedure due to inappropriate reporting of stereotactic coordinates by the radiation therapy treatment planning system in units of centimeter rather than in millimeter. The authors suggest a method to detect such errors during treatment planning so they are caught and corrected prior to the patient positioning for treatment on the treatment machine. Methods: Using pretreatment imaging, the authors found that stereotactic coordinates are reported with improper linear units by a treatment planning system. The authors have implemented a redundant, independent method of stereotactic coordinate calculation. Results: Implementation of a double check of stereotactic coordinates via redundant, independent calculation is simple and accurate. Use of this technique will avoid any future error in stereotactic treatment coordinates due to improper linear units, transcription, or other similar errors. Conclusions: The authors recommend an independent double check of stereotactic treatment coordinates during the treatment planning process in order to avoid potential mistreatment of patients.

  3. Error Control of Iterative Linear Solvers for Integrated Groundwater Models

    E-Print Network [OSTI]

    Dixon, Matthew; Brush, Charles; Chung, Francis; Dogrul, Emin; Kadir, Tariq

    2010-01-01

    An open problem that arises when using modern iterative linear solvers, such as the preconditioned conjugate gradient (PCG) method or Generalized Minimum RESidual method (GMRES) is how to choose the residual tolerance in the linear solver to be consistent with the tolerance on the solution error. This problem is especially acute for integrated groundwater models which are implicitly coupled to another model, such as surface water models, and resolve both multiple scales of flow and temporal interaction terms, giving rise to linear systems with variable scaling. This article uses the theory of 'forward error bound estimation' to show how rescaling the linear system affects the correspondence between the residual error in the preconditioned linear system and the solution error. Using examples of linear systems from models developed using the USGS GSFLOW package and the California State Department of Water Resources' Integrated Water Flow Model (IWFM), we observe that this error bound guides the choice of a prac...

  4. Maternal dexamethasone treatment alters tissue and circulating components of the renin-angiotensin system in the pregnant ewe and fetus

    E-Print Network [OSTI]

    Forhead, Alison J.; Jellyman, Juanita K.; De Blasio, Miles J.; Johnson, Emma; Giussani, Dino A.; Pipi, Fiona Broughton; Fowden, Abigail L.

    2015-06-03

    in the present study are unlikely to be the consequence of fetal hypoxaemia or hypotension. In the chronically-cath- eterized pregnant ewe and fetus, the same protocol of ma- ternal dexamethasone treatment does not influence fetal blood gas status and causes a... , Richards M. Hart Publishing, 2011; 129–149. 55. Jones OW, Cheung CY, Brace RA. Dose-dependent effects of an- giotensin II on the ovine fetal cardiovascular system. Am J Obstet Gynecol. 1991;165:1524–1533. 56. XuZ, Shi L, Hu F,White R, Stewart L, Yao J...

  5. Hanford Site Groundwater Monitoring for Fiscal Year 2001

    SciTech Connect (OSTI)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2002-02-28

    This report provides information on the status of groundwater monitoring at the Hanford Site during fiscal year 2001.

  6. K Basins Groundwater Monitoring Task, K Basins Closure Project: Report for October, November, and December 2006

    SciTech Connect (OSTI)

    Peterson, Robert E.

    2007-03-22

    This report provides information on groundwater monitoring at the K Basins during October, November, and December 2006. Conditions remained very similar to those reported in the previous quarterly report, with no evidence in monitoring results to suggest groundwater impact from current loss of basin water to the ground. The K Basins monitoring network will be modified in the coming months as a consequence of new wells having been installed near KW Basin as part of a pump-and-treat system for chromium contamination, and new wells installed between the KE Basin and the river to augment long-term monitoring in that area.

  7. Vapor port and groundwater sampling well

    DOE Patents [OSTI]

    Hubbell, J.M.; Wylie, A.H.

    1996-01-09

    A method and apparatus have been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing. 10 figs.

  8. Vapor port and groundwater sampling well

    DOE Patents [OSTI]

    Hubbell, Joel M. (Idaho Falls, ID); Wylie, Allan H. (Idaho Falls, ID)

    1996-01-01

    A method and apparatus has been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing.

  9. K Basins Groundwater Monitoring Task, K Basins Closure Project: Report for April, May, and June 2007

    SciTech Connect (OSTI)

    Peterson, Robert E.

    2007-08-08

    This report provides information on groundwater monitoring near the K Basins during April, May, and June 2007. Conditions remained similar to those reported in the previous quarter’s report, with no evidence in monitoring results to suggest groundwater impact from current loss of shielding water from either basin to the ground. During the current quarter, the first results from two new wells installed between KE Basin and the river became available. Groundwater conditions at each new well are reasonably consistent with adjacent wells and expectations, with the exception of anomalously high chromium concentrations at one of the new wells. The K Basins monitoring network will be modified for FY 2008 to take advantage of new wells recently installed near KW Basin as part of a pump-and-treat system for chromium contamination, and also the new wells recently installed between the KE Basin and the river, which augment long-term monitoring capability in that area.

  10. Basic Ground-Water Hydrology By RALPH C. HEATH

    E-Print Network [OSTI]

    Sohoni, Milind

    #12;Basic Ground-Water Hydrology By RALPH C. HEATH Prepared in cooperation with the North Carolina., 1983, Basic ground-water hydrology: U .S. Geological Survey Water-Supply Paper 2220, 86 p. Library of Congress Cataloging-in-Publications Data Heath, Ralph C . Basic ground-water hydrology (Geological Survey

  11. Optimal Groundwater Remediation Network Design using Selective Membranes

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Optimal Groundwater Remediation Network Design using Selective Membranes Eugenio Bringasa with the optimal synthesis of groundwater remediation networks for the valorization of anionic pollutants by means possible design alternatives are proposed. The aim of this work is to obtain a minimum cost groundwater

  12. Error Control of Iterative Linear Solvers for Integrated Groundwater Models

    E-Print Network [OSTI]

    California at Davis, University of

    Error Control of Iterative Linear Solvers for Integrated Groundwater Models by Matthew F. Dixon1 for integrated groundwater models, which are implicitly coupled to another model, such as surface water models in legacy groundwater modeling packages, resulting in the overall simulation speedups as large as 7

  13. VOCs, Pesticides, Nitrate, and Their Mixtures in Groundwater Used for

    E-Print Network [OSTI]

    VOCs, Pesticides, Nitrate, and Their Mixtures in Groundwater Used for Drinking Water in the United, Rapid City, South Dakota 57702 Samples of untreated groundwater from 1255 domestic drinking-water wells of the groundwater resource and, thus, were distributed geographically across large aquifers, primarily in rural

  14. Groundwater and soil chemical changes under phreatophytic tree plantations

    E-Print Network [OSTI]

    Jackson, Robert B.

    Groundwater and soil chemical changes under phreatophytic tree plantations Esteban G. Jobba´gy1 4 May 2007. [1] The onset of groundwater consumption by plants can initiate a pathway of chemical inputs from aquifers to ecosystems, typically absent in groundwater recharge areas. We explored

  15. Simulation of salt migrations in density dependent groundwater flow

    E-Print Network [OSTI]

    Vuik, Kees

    Simulation of salt migrations in density dependent groundwater flow E.S. van Baaren Master's Thesis for the salt migration in the groundwater underneath the polders near the coast. The problem description of this thesis is to investigate the possibilities of modelling salt migrations in density dependent groundwater

  16. GROUNDWATER NITRATE REMOVAL CAPACITY OF RIPARIAN ZONES IN

    E-Print Network [OSTI]

    Gold, Art

    GROUNDWATER NITRATE REMOVAL CAPACITY OF RIPARIAN ZONES IN URBANIZING WATERSHEDS BY TARA KIMBERLY the watershed, however, is not well understood. Nitrate in groundwater moving through the "biologically active and geomorphology of riparian zones, potentially changing riparian groundwater denitrification capacity. Little work

  17. Methods Note/ Net Recharge vs. Depth to Groundwater

    E-Print Network [OSTI]

    Szilagyi, Jozsef

    Methods Note/ Net Recharge vs. Depth to Groundwater Relationship in the Platte River Valley rates were correlated with depth to groundwater (d) values in the wide alluvial valley of the Platte soils with a shallow groundwater table. The transition depth (dt) between negative and positive values

  18. EULERIANLAGRANGIAN LOCALIZED ADJOINT METHODS FOR REACTIVE TRANSPORT IN GROUNDWATER \\Lambda

    E-Print Network [OSTI]

    Ewing, Richard E.

    EULERIAN­LAGRANGIAN LOCALIZED ADJOINT METHODS FOR REACTIVE TRANSPORT IN GROUNDWATER \\Lambda RICHARD in groundwater flowing through an adsorbing porous medium. These ELLAM schemes are developed for various and discussed. x1. Introduction. In recent years, the contamination and pollution of groundwater resources have

  19. Groundwater Data Analysis M.Tech Thesis Stage I Report

    E-Print Network [OSTI]

    Sohoni, Milind

    Groundwater Data Analysis M.Tech Thesis Stage I Report Submitted in partial fulfillment Institute of Technology Bombay October 2011 #12;Abstract In this project work we did groundwater data(GSDA), Pune. We have analyzed groundwater data of 120 observation wells over the period of 35 years

  20. Integration of Groundwater Transport Models with Wireless Sensor Networks

    E-Print Network [OSTI]

    Han, Qi "Chee"

    Integration of Groundwater Transport Models with Wireless Sensor Networks Kevin Barnhart1 , I.jayasumana@colostate.edu, Fort Collins, CO, USA ABSTRACT Groundwater transport modeling is intended to aid in remediation be conceptualized in the WSN context. INTRODUCTION As groundwater contamination is an established problem with many

  1. Volatile Organic Compounds in Untreated Ambient Groundwater of

    E-Print Network [OSTI]

    Volatile Organic Compounds in Untreated Ambient Groundwater of the United States, 1985-1995 P A U L, ambient groundwater of the conterminous United States was conducted based on samples collected from 2948-chloropropane, which had a reporting level of 1.0 µg/L. Because ambient groundwater was targeted, areas of known

  2. Delivery Vehicles for Zerovalent Metal Nanoparticles in Soil and Groundwater

    E-Print Network [OSTI]

    Delivery Vehicles for Zerovalent Metal Nanoparticles in Soil and Groundwater Bettina Schrick hydrocarbons in groundwater and soils. The transport of Fe/C nanoparticles was studied by elution through and the groundwater level, in some cases reaching the underlying saturated zone. As hydrophobic sparingly soluble

  3. Spatial Models for Groundwater Behavioral Analysis in Regions of Maharashtra

    E-Print Network [OSTI]

    Sohoni, Milind

    Spatial Models for Groundwater Behavioral Analysis in Regions of Maharashtra M.Tech Dissertation In this project we have performed spatial analysis of groundwater data in Thane and Latur districts of Maharashtra Groundwater Survey and Development Agency, Maharashtra), shape files for watershed boundaries and drainage

  4. Groundwater Quality 2010, Zrich, R. Enzenhoefer 1/14

    E-Print Network [OSTI]

    Cirpka, Olaf Arie

    Groundwater Quality 2010, Zürich, 13th - 18th June 2010 R. Enzenhoefer 1/14 Using probabilistic of Hydromechanics and Modeling of Hydrosystems #12;Groundwater Quality 2010, Zürich, 13th - 18th June 2010 R Results & Discussion #12;Groundwater Quality 2010, Zürich, 13th - 18th June 2010 R. Enzenhoefer 3/14 From

  5. Impact of Storm Water Recharge Practices on Boston Groundwater Elevations

    E-Print Network [OSTI]

    Vogel, Richard M.

    Impact of Storm Water Recharge Practices on Boston Groundwater Elevations Brian F. Thomas, S periodically experienced a decline in groundwater elevations and the associated deterioration of untreated wood a groundwater conservation overlay district enforced by city zoning boards to require storm water recharge

  6. Enhanced In Situ Bioremediation of BTEX-Contaminated Groundwater by

    E-Print Network [OSTI]

    Bruns, Tom

    Enhanced In Situ Bioremediation of BTEX-Contaminated Groundwater by Combined Injection of Nitrate. Introduction Remediation by natural attenuation (RNA) is the preferred method (1) for addressing groundwater, at siteswherethenaturalgroundwaterflowisveryslow,intrinsic biodegradation processes can be limited by the rate at which the groundwater supplies

  7. Case Study/ Effects of Groundwater Development on Uranium

    E-Print Network [OSTI]

    Case Study/ Effects of Groundwater Development on Uranium: Central Valley, California, USA Abstract Uranium (U) concentrations in groundwater in several parts of the eastern San Joaquin Valley development during the last 100 years have changed the chemistry and magnitude of groundwater recharge

  8. MODELING OF CHLORINATED SOLVENTS TRANSPORT AND NATURAL ATTENUATION IN GROUNDWATER

    E-Print Network [OSTI]

    Boyer, Edmond

    1 MODELING OF CHLORINATED SOLVENTS TRANSPORT AND NATURAL ATTENUATION IN GROUNDWATER QUIOT Fabrice1 performed by 4 teams (ANTEA, ENSMP, ENVIROS and INERIS) to simulate a contamination of groundwater is the evaluation of the fate of pollutants in groundwaters and soils. This knowledge is based on the result

  9. Introduction Groundwater is a subject of rising social concern,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Introduction Groundwater is a subject of rising social concern, especially in coastal zones where most big cities are located. Due to growing demographic pressure in coastal areas, groundwater the overall challenge of changing groundwater poli- cy to address the emerging problems (Livingston & Gar

  10. Modeling the interaction between land surface and groundwater

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    Modeling the interaction between land surface and groundwater Geng-Xin Ou Xun-Hong Chen School-ground water models Irrigation efficiency Materials and methods Development of SGWM #12;Background Groundwater in Nebraska. #12;Background Groundwater in Nebraska. decline 100 ft by 1980, 40 ft by 1999; 87% population

  11. artesian borehole, Singhida (central Tanzania) Hydrology, weather and groundwater

    E-Print Network [OSTI]

    Stevenson, Paul

    artesian borehole, Singhida (central Tanzania) Hydrology, weather and groundwater NERC EQUIP;protected spring in Kampala (Uganda) · groundwater supplies 50% of world's drinking water Kundzewicz and Döll (2009) #12;maize plantation irrigated by a groundwater-fed pivot, Katwe (Zambia) · and 42

  12. Groundwater Protection 7 2010 SITE ENVIRONMENTAL REPORT7-1

    E-Print Network [OSTI]

    Groundwater Protection 7 2010 SITE ENVIRONMENTAL REPORT7-1 DRAFT Brookhaven National Laboratory has implemented aggressive pollution prevention measures to protect groundwater resources. An extensive groundwater monitoring well network is used to verify that prevention and restoration activities are effective

  13. Groundwater Management Tools: Analytical Procedure and Case Studies

    E-Print Network [OSTI]

    Hickman, Mark

    Groundwater Management Tools: Analytical Procedure and Case Studies MAF Technical Paper No: 2003 and Forestry #12;i Contents Page Executive Summary v Introduction 1 Section A ­ Groundwater Management: Best 2 2.2. Groundwater Budgets 2 2.3. Dynamic Storage 2 3. Scale of Abstraction Effects 3 4. Limitations

  14. Monitoring Groundwater Recharge In the Sierra Nevada Mountains For

    E-Print Network [OSTI]

    Monitoring Groundwater Recharge In the Sierra Nevada Mountains For Impact On Hydrologic Resources The Issue Snowmelt is a significant source of replenishing groundwater resources in the western United States. In addition, this groundwater recharge process is typically a major contributor to streamflow

  15. Activated Peroxygens for Remediation of Contaminated Soil and Groundwater

    E-Print Network [OSTI]

    Hansen, René Rydhof

    i Activated Peroxygens for Remediation of Contaminated Soil and Groundwater Ph.D. thesis Submitted May 2011 #12;ii Activated Peroxygens for Remediation of Contaminated Soil and Groundwater Ph.D. thesis peroxygens for remediation of contaminated soil and groundwater" along with 5 papers describing part

  16. Groundwater and global hydrological change current challenges and new insight

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Groundwater and global hydrological change ­ current challenges and new insight R. TAYLOR1 , L Groundwater Resources Assessment Centre, Utrecht, The Netherlands 11 Federal Institute for Geosciences, groundwater plays a critical role in enabling communities to adapt to freshwater shortages derived from low

  17. A Comparison of Derivative-Free Optimization Methods for Groundwater

    E-Print Network [OSTI]

    Kelley, C. T. "Tim"

    A Comparison of Derivative-Free Optimization Methods for Groundwater Supply and Hydraulic Capture, 244 Wood Street, Lexington, MA 02420-9108 USA Abstract Management decisions involving groundwater-documented community problems are used for illustration purposes: a groundwater supply problem and a hydraulic capture

  18. UNL/OSU Researchers Try Promising Technique to Remove Groundwater

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    UNL/OSU Researchers Try Promising Technique to Remove Groundwater Contamination Under Former Oklahoma State University have joined to test promising new methods of removing longstanding groundwater into specially drilled injection wells, where it mixes with contaminants in the groundwater under the former

  19. Threatened groundwater resources in rural India : an example of monitoring

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Threatened groundwater resources in rural India : an example of monitoring J. C. MARECHAL A,D , S.marechal@brgm.fr (corresponding author) B National Geophysical Research Institute, Indo-French Centre for Groundwater Research-French Centre for Groundwater Research, National Geophysical Research Institute, Uppal Road, 500 007 Hyderabad

  20. In-situ groundwater remediation by selective colloid mobilization

    DOE Patents [OSTI]

    Seaman, John C. (New Ellenton, SC); Bertch, Paul M. (Aiken, SC)

    1998-01-01

    An in-situ groundwater remediation pump and treat technique effective for reclamation of aquifers that have been contaminated with a mixed, metal-containing waste, which promotes selective mobilization of metal oxide colloids with a cationic surfactant, preferably a quaternary alkylammonium surfactant, without significantly reducing formation permeability that often accompanies large-scale colloid dispersion, thus increasing the efficiency of the remediation effort by enhancing the capture of strongly sorbing contaminants associated with the oxide phases. The resulting suspension can be separated from the bulk solution with controlled pH adjustments to destabilize the oxide colloids, and a clear supernatant which results that can be recycled through the injection well without further waste treatment.

  1. In-situ groundwater remediation by selective colloid mobilization

    DOE Patents [OSTI]

    Seaman, J.C.; Bertch, P.M.

    1998-12-08

    An in-situ groundwater remediation pump and treat technique is described which is effective for reclamation of aquifers that have been contaminated with a mixed, metal-containing waste, and which promotes selective mobilization of metal oxide colloids with a cationic surfactant, preferably a quaternary alkylammonium surfactant, without significantly reducing formation permeability that often accompanies large-scale colloid dispersion, thus increasing the efficiency of the remediation effort by enhancing the capture of strongly sorbing contaminants associated with the oxide phases. The resulting suspension can be separated from the bulk solution with controlled pH adjustments to destabilize the oxide colloids, and a clear supernatant which results that can be recycled through the injection well without further waste treatment. 3 figs.

  2. On-Site Wastewater Treatment Systems: Conventional Septic Tank/Drain Field (Spanish) 

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    1999-08-12

    Conventional septic tanks have been the most commonly used technology for treating wastewater. This publication explains the advantages, disadvantages, maintenance steps and estimated costs of septic tank/drain field systems.

  3. On-Site Wastewater Treatment Systems: Conventional Septic Tank/Drain Field 

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    1999-09-06

    Conventional septic systems have traditionally been the most commonly used technology for treating wastewater. This publication explains the advantages and disadvantages of conventional septic tank/drain fields, as well ...

  4. Spirasol : improvements to semi-continuous solar disinfection water treatment systems

    E-Print Network [OSTI]

    Loux, Brian Michael, 1981-

    2005-01-01

    An experimental study was carried out to determine the feasibility of an original point of use solar water disinfection system created by the author and named "Spirasol." The study primarily focused on the comparison of ...

  5. Water treatment process and system for metals removal using Saccharomyces cerevisiae

    DOE Patents [OSTI]

    Krauter, Paula A. W. (Livermore, CA); Krauter, Gordon W. (Livermore, CA)

    2002-01-01

    A process and a system for removal of metals from ground water or from soil by bioreducing or bioaccumulating the metals using metal tolerant microorganisms Saccharomyces cerevisiae. Saccharomyces cerevisiae is tolerant to the metals, able to bioreduce the metals to the less toxic state and to accumulate them. The process and the system is useful for removal or substantial reduction of levels of chromium, molybdenum, cobalt, zinc, nickel, calcium, strontium, mercury and copper in water.

  6. Cross-formational rising groundwater at an artesian karstic basin: the Ayalon Saline Anomaly, Israel

    E-Print Network [OSTI]

    Gvirtzman, Haim

    27 October 2003; revised 6 June 2005; accepted 27 June 2005 Abstract It is proposed that a geothermal groundwater monitoring was carried out at 68 new shallow boreholes in the Ayalon region, accompanied permeable swarms of karstic shafts, serving as an outflow of the artesian geothermal system. The ASA area

  7. 7-1 2001 SITE ENVIRONMENTAL REPORT CHAPTER 7: GROUNDWATER PROTECTION

    E-Print Network [OSTI]

    Homes, Christopher C.

    Protection Management Program is made up of four elements: prevention, monitoring, restoration an Environmental Management System (EMS), which was finalized when BNL received ISO 14001 certification in 2001 Program. 7.1 THE BNL GROUNDWATER PROTECTION MANAGEMENT PROGRAM U.S. Department of Energy Order 5400.1 (DOE

  8. Groundwater Heat Pump with Pumping and Recharging in the Same Well in China 

    E-Print Network [OSTI]

    Ni, L.; Jiang, Y.; Yao, Y.; Ma, Z.

    2006-01-01

    In China, a new-style groundwater heat pump emerged in 2000. In this system, the production well and the injection well is integrated into one well, which is divided into three parts by clapboards: a low pressure (production) space, a seals section...

  9. APPLICATION OF REMOTE SENSING AND GIS FOR GEOLOGICAL INVESTIGATION AND GROUNDWATER POTENTIAL ZONE IDENTIFICATION,

    E-Print Network [OSTI]

    Mege, Daniel

    APPLICATION OF REMOTE SENSING AND GIS FOR GEOLOGICAL INVESTIGATION AND GROUNDWATER POTENTIAL ZONE FOR THE DEGREE OF MASTER OF SCIENCE IN GIS AND REMOTE SENSING BY TEWODROS RANGO GODEBO JULY 2005 #12;INTRODUCTION been done with the absence of the application of Remote Sensing and Geographic Information System (GIS

  10. One System Integrated Project Team: Retrieval And Delivery Of The Hanford Tank Wastes For Vitrification In The Waste Treatment Plant

    SciTech Connect (OSTI)

    Harp, Benton J. [Department of Energy, Office of River Protection, Richland, Washington (United States); Kacich, Richard M. [Bechtel National, Inc., Richland, WA (United States); Skwarek, Raymond J. [Washington River Protection Solutions LLC, Richland, WA (United States)

    2012-12-20

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank wastes and for building and operating the WTP. The tank wastes are the result of Hanford's nearly fifty (50) years of plutonium production. In the intervening years, waste characteristics have been increasingly better understood. However, waste characteristics that are uncertain and will remain as such represent a significant technical challenge in terms of retrieval, transport, and treatment, as well as for design and construction ofWTP. What also is clear is that the longer the waste remains in the tanks, the greater the risk to the environment and the people of the Pacific Northwest. The goal of both projects - tank operations and waste treatment - is to diminish the risks posed by the waste in the tanks at the earliest possible date. About two hundred (200) WTP and TOC employees comprise the IPT. Individual work groups within One System include Technical, Project Integration & Controls, Front-End Design & Project Definition, Commissioning, Nuclear Safety & Engineering Systems Integration, and Environmental Safety and Health and Quality Assurance (ESH&QA). Additional functions and team members will be added as the WTP approaches the operational phase. The team has undertaken several initiatives since its formation to collaborate on issues: (1) alternate scenarios for delivery of wastes from the tank farms to WTP; (2) improvements in managing Interface Control Documents; (3) coordination on various technical issues, including the Defense Nuclear Facilities Nuclear Safety Board's Recommendation 2010-2; (4) deployment of the SmartPlant? Foundation-configuration Management System; and (5) preparation of the joint contract deliverable of the Operational Readiness Support Plan.

  11. Exhaust after-treatment system with in-cylinder addition of unburnt hydrocarbons

    DOE Patents [OSTI]

    Coleman, Gerald N. (Corby, GB); Kesse, Mary L. (Peoria, IL)

    2007-10-30

    Certain exhaust after-treatment devices, at least periodically, require the addition of unburnt hydrocarbons in order to create reductant-rich exhaust conditions. The present disclosure adds unburnt hydrocarbons to exhaust from at least one combustion chamber by positioning, at least partially within a combustion chamber, a mixed-mode fuel injector operable to inject fuel into the combustion chamber in a first spray pattern with a small average angle relative to a centerline of the combustion chamber and a second spray pattern with a large average angle relative to the centerline of the combustion chamber. An amount of fuel is injected in the first spray pattern into a non-combustible environment within the at least one combustion chamber during at least one of an expansion stroke and exhaust stroke. The exhaust with the unburnt amount of fuel is moved into an exhaust passage via an exhaust valve.

  12. Quantum Treatment for Bose-Einstein Condensation in Non-Equilibrium Systems

    E-Print Network [OSTI]

    H. Flayac; I. G. Savenko; M. Möttönen; T. Ala-Nissila

    2015-03-29

    We develop an approach based on stochastic quantum trajectories for an incoherently pumped system of interacting bosons relaxing their energy in a thermal reservoir. Our approach enables the study of the versatile coherence properties of the system. We apply the model to exciton polaritons in a semiconductor microcavity. Our results demonstrate the onset of macroscopic occupation in the lowest-energy mode accompanied by the establishment of both temporal and spatial coherence. We show that temporal coherence exhibits a transition from a thermal to coherent statistics and the spatial coherence reveals off-diagonal long-range order.

  13. Apparatus and process for water treatment

    DOE Patents [OSTI]

    Phifer, Mark A. (North Augusta, SC); Nichols, Ralph L. (North Augusta, SC)

    2001-01-01

    An apparatus is disclosed utilizing permeable treatment media for treatment of contaminated water, along with a method for enhanced passive flow of contaminated water through the treatment media. The apparatus includes a treatment cell including a permeable structure that encloses the treatment media, the treatment cell may be located inside a water collection well, exterior to a water collection well, or placed in situ within the pathway of contaminated groundwater. The passive flow of contaminated water through the treatment media is maintained by a hydraulic connection between a collecting point of greater water pressure head, and a discharge point of lower water pressure head. The apparatus and process for passive flow and groundwater treatment utilizes a permeable treatment media made up of granular metal, bimetallics, granular cast iron, activated carbon, cation exchange resins, and/or additional treatment materials. An enclosing container may have an outer permeable wall for passive flow of water into the container and through the enclosed treatment media to an effluent point. Flow of contaminated water is attained without active pumping of water through the treatment media. Remediation of chlorinated hydrocarbons and other water contaminants to acceptable regulatory concentration levels is accomplished without the costs of pumping, pump maintenance, and constant oversight by personnel.

  14. Probabilistic risk analysis of groundwater remediation strategies

    E-Print Network [OSTI]

    Bolster, Diogo

    Probabilistic risk analysis of groundwater remediation strategies D. Bolster,1 M. Barahona,1 M uncertainty quantification and risk analysis. When these modeling components are ignored, the failure is emerging that risk analysis must be an integral part of decision making in subsurface hydrology, its

  15. The Savannah River Site's Groundwater Monitoring Program

    SciTech Connect (OSTI)

    Not Available

    1992-08-03

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted during the first quarter of 1992. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official document of the analytical results.

  16. The Savannah River Site's groundwater monitoring program

    SciTech Connect (OSTI)

    Not Available

    1991-10-18

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted by EPD/EMS in the first quarter of 1991. In includes the analytical data, field data, data review, quality control, and other documentation for this program, provides a record of the program's activities and rationale, and serves as an official document of the analytical results.

  17. Groundwater Study at Armand Bayou Nature Center 

    E-Print Network [OSTI]

    Morrison, Derek 1990-

    2012-04-23

    This paper describes the research done to determine the hydraulic gradient and direction of groundwater flow in two aquifers at the Armand Bayou wetland. One aquifer is an unconfined aquifer at a depth of approximately 15 ft. and the second aquifer...

  18. Colloid characterization and quantification in groundwater samples

    SciTech Connect (OSTI)

    K. Stephen Kung

    2000-06-01

    This report describes the work conducted at Los Alamos National Laboratory for studying the groundwater colloids for the Yucca Mountain Project in conjunction with the Hydrologic Resources Management Program (HRMP) and the Underground Test Area (UGTA) Project. Colloidal particle size distributions and total particle concentration in groundwater samples are quantified and characterized. Colloid materials from cavity waters collected near underground nuclear explosion sites by HRMP field sampling personnel at the Nevada Test Site (NTS) were quantified. Selected colloid samples were further characterized by electron microscope to evaluate the colloid shapes, elemental compositions, and mineral phases. The authors have evaluated the colloid size and concentration in the natural groundwater sample that was collected from the ER-20-5 well and stored in a 50-gallon (about 200-liter) barrel for several months. This groundwater sample was studied because HRMP personnel have identified trace levels of radionuclides in the water sample. Colloid results show that even though the water sample had filtered through a series of Millipore filters, high-colloid concentrations were identified in all unfiltered and filtered samples. They had studied the samples that were diluted with distilled water and found that diluted samples contained more colloids than the undiluted ones. These results imply that colloids are probably not stable during the storage conditions. Furthermore, results demonstrate that undesired colloids have been introduced into the samples during the storage, filtration, and dilution processes. They have evaluated possible sources of colloid contamination associated with sample collection, filtrating, storage, and analyses of natural groundwaters. The effects of container types and sample storage time on colloid size distribution and total concentration were studied to evaluate colloid stability by using J13 groundwater. The data suggests that groundwater samples should be analyzed for colloid size and concentration shortly after they have been collected. A prolonged waiting period after sampling will affect the colloid size distribution as well as colloid concentration resulting from the changes of water chemical properties. The data also shows that sample containers, filter materials, and labware that are used for colloid analyses should be cleaned by specially treated low-colloid-containing water. Water used for sample dilution should be verified for total colloidal particle concentration. They then analyzed freshly collected groundwater from NTS wells ER-20-5{number_sign}1 and {number_sign}3. Results show that these groundwater samples have similar colloid concentrations and particle size distributions. For the particle size range between 50- and 200-nm, about ten trillion (1E10) colloidal particles per liter are present in these water samples. Most of these colloidal particles are less than 100 mm in size. For example, more than 98% of the colloids are smaller than 100 nm in size in the ER-20-5 {number_sign}1 sample. Furthermore, it was found that the smaller the sizes of colloid, the higher the colloid concentration present in the water. For another site at NTS, Cheshire, they had analyzed two zones of groundwater samples. For water samples collected from the lower water zone (near the underground detonation cavity about 3,700 feet of slanted depth from the surface), the colloid concentration was about 5E12 particles per liter. About 20 times less than the lower zone of total colloids was found in water samples collected from the upper aquifer (around 2,511 feet of slanted depth), although colloid size distributions from these two zones appear to be rather similar.

  19. Research Project on CO2 Geological Storage and Groundwater Resources: Water Quality Effects Caused by CO2 Intrusion into Shallow Groundwater

    E-Print Network [OSTI]

    Birkholzer, Jens

    2008-01-01

    of more than 35,000 groundwater analyses selected from the1994), Geochemistry, Groundwater and Pollution. A.A.Balkema,1995), Estimating 14C groundwater ages in a methanogenic

  20. Evaluating Contaminant Flux from the Vadose Zone to the Groundwater in the Hanford Central Plateau. SX Tank Farms Case Study

    SciTech Connect (OSTI)

    Truex, Michael J.; Oostrom, Martinus; Last, George V.; Strickland, Christopher E.; Tartakovsky, Guzel D.

    2015-09-01

    At the DOE Hanford Site, contaminants were discharged to the subsurface through engineered waste sites in the Hanford Central Plateau. Additional waste was released through waste storage tank leaks. Much of the contaminant inventory is still present within the unsaturated vadose zone sediments. The nature and extent of future groundwater contaminant plumes and the growth or decline of current groundwater plumes beneath the Hanford Central Plateau are a function of the contaminant flux from the vadose zone to the groundwater. In general, contaminant transport is slow through the vadose zone and it is difficult to directly measure contaminant flux in the vadose zone. Predictive analysis, supported by site characterization and monitoring data, was applied using a structured, systems-based approach to estimate the future contaminant flux to groundwater in support of remediation decisions for the vadose zone and groundwater (Truex and Carroll 2013). The SX Tank Farm was used as a case study because of the existing contaminant inventory in the vadose zone, observations of elevated moisture content in portions of the vadose zone, presence of a limited-extent groundwater plume, and the relatively large amount and wide variety of data available for the site. Although the SX Tank Farm case study is most representative of conditions at tank farm sites, the study has elements that are also relevant to other types of disposal sites in the Hanford Central Plateau.

  1. Transacting generation attributes across market boundaries: Compatible information systems and the treatment of imports and exports

    SciTech Connect (OSTI)

    Grace, Robert; Wiser, Ryan

    2002-11-01

    Voluntary markets for ''green'' power, and mandatory policies such as fuel source disclosure requirements and renewables portfolio standards, each rely on the ability to differentiate electricity by the ''attributes'' of the generation. Throughout North America, electricity markets are devising accounting and verification systems for generation ''attributes'': those characteristics of a power plant's production such as fuel source and emissions that differentiate it from undifferentiated (or ''commodity'') electricity. These accounting and verification systems are intended to verify compliance with market mandates, create accurate disclosure labels, substantiate green power claims, and support emissions markets. Simultaneously, interest is growing in transacting (importing or exporting) generation attributes across electricity market borders, with or without associated electricity. Cross-border renewable attribute transactions have advantages and disadvantages. Broad access to markets may encourage more renewable generation at lower cost, but this result may conflict with desires to assure that at least some renewable resources are built locally to achieve either local policy goals or purchaser objectives. This report is intended to serve as a resource document for those interested in and struggling with cross-border renewable attribute transactions. The report assesses the circumstances under which renewable generation attributes from a ''source'' region might be recognized in a ''sink'' region. The report identifies several distinct approaches that might be used to account for and verify attribute import and export transactions, and assesses the suitability of these alternative approaches. Because policymakers have often made systems ''compatibility'' between market areas a pre-requisite to allowing cross-border renewable transactions, this report develops criteria for ''compatible information systems.'' Where fully compatible information systems do not exist, certain cross-border attribute transactions may still be deemed suitably credible and verifiable to be recognized; this report also identifies possible criteria for such ''compatible transactions.'' The importance of credibly addressing imports and exports of renewable energy attributes should be evident. A lack of clarity as to what generation can and cannot be recognized in various markets can paralyze investment in and contracting for renewable generation. The development of rules for imports and exports will also minimize the potential for ''double counting'' of renewable energy attributes, will help define where and at what cost renewable plants will be built, and will directly impact the location of the benefits that renewable generation provides. This report ultimately concludes that the ''correct'' approach to treating renewable energy imports and exports depends on the context and motivations behind the transaction or the mandate, and that the presence of practical constraints or multiple objectives of ten make selecting the best approach difficult. That said, the report urges those creating market rules to move quickly in defining valid cross-border transaction structures and to consider the implications of their decisions on the creation of viable markets for new renewable generation.

  2. Aquifer characterization and groundwater modeling in support of remedial actions at the Weldon Spring Site

    SciTech Connect (OSTI)

    Durham, L.A. [Argonne National Lab., IL (United States); Carman, J.D. [Jacobs Engineering Group, Inc., St. Charles, MO (United States)

    1993-10-01

    Aquifer characterization studies were performed to develop a hydrogeologic understanding of an unconfined shallow aquifer at the Weldon Spring site west of St. Louis, Missouri. The 88-ha site became contaminated because of uranium and thorium processing and disposal activities that took place from the 1940s through the 1960s. Slug and pumping tests provided valuable information on the lateral distribution of hydraulic conductivities, and packer tests and lithologic information were used to determine zones of contrasting hydrologic properties within the aquifer. A three-dimensional, finite- element groundwater flow model was developed and used to simulate the shallow groundwater flow system at the site. The results of this study show that groundwater flow through the system is predominantly controlled by a zone of fracturing and weathering in the upper portion of the limestone aquifer. The groundwater flow model, developed and calibrated from field investigations, improved the understanding of the hydrogeology and supported decisions regarding remedial actions at the site. The results of this study illustrate the value, in support of remedial actions, of combining field investigations with numerical modeling to develop an improved understanding of the hydrogeology at the site.

  3. Reinforcing of QA/QC programs in radiotherapy departments in Croatia: Results of treatment planning system verification

    SciTech Connect (OSTI)

    Jurkovi?, Slaven; Švabi?, Manda; Dikli?, Ana; Smilovi? Radoj?i?, ?eni; Dundara, Dea; Kasabaši?, Mladen; Ivkovi?, Ana; Faj, Dario

    2013-04-01

    Implementation of advanced techniques in clinical practice can greatly improve the outcome of radiation therapy, but it also makes the process much more complex with a lot of room for errors. An important part of the quality assurance program is verification of treatment planning system (TPS). Dosimetric verifications in anthropomorphic phantom were performed in 4 centers where new systems were installed. A total of 14 tests for 2 photon energies and multigrid superposition algorithms were conducted using the CMS XiO TPS. Evaluation criteria as specified in the International Atomic Energy Agency Technical Reports Series (IAEA TRS) 430 were employed. Results of measurements are grouped according to the placement of the measuring point and the beam energy. The majority of differences between calculated and measured doses in the water-equivalent part of the phantom were in tolerance. Significantly more out-of-tolerance values were observed in “nonwater-equivalent” parts of the phantom, especially for higher-energy photon beams. This survey was done as a part of continuous effort to build up awareness of quality assurance/quality control (QA/QC) importance in the Croatian radiotherapy community. Understanding the limitations of different parts of the various systems used in radiation therapy can systematically improve quality as well.

  4. Bescorp soil washing system for lead battery site treatment. Applications analysis report. Project report

    SciTech Connect (OSTI)

    Gaire, R.J.

    1995-01-01

    The Brice Environmental Services Corporation (BESCORP) Soil Washing System (BSWS) and its applicability in remediating lead-contaminated soil at lead battery sites was evaluated. The report presents performance and economic data, developed from the U.S. Environmental Protection Agency Superfund Innovative Technology Evaluation (SITE) demonstration (three test runs) and additional data provided by the developer. The demonstration took place at the Alaskan Battery Enterprises (ABE) site in Fairbanks, Alaska. Economic data for a commercial 20-tph unit processing wastes similar to those treated in the SITE Demonstration, including disposal of waste effluents, project operating costs to be about $165/ton of soil (dry basis) containing 6.6 wt percent moisture. This figure does not reflect any revenue from recycling of metallic lead or cashing chips.

  5. Analysis of road pricing, metering and the priority treatment of high occupancy vehicles using system dynamics. Master's thesis

    SciTech Connect (OSTI)

    Castillo, W.

    1992-01-01

    Transportation Systems Management (TSM) employs various techniques such as road pricing, metering and the priority treatment of high occupancy vehicles (HOVs) in an effort to make more efficient use of existing transportation facilities. Efficiency is improved in terms of moving more people through the facility while simultaneously reducing the number of vehicles using the facility. This report uses a hypothetical toll facility and examines four computer modeling approaches to determine which of the approaches are valid in terms of predicting the behavior of trip makers seeking to use the facility in response to various combinations of TSM techniques. Once an approach has been determined to be valid, seven different combination of TSM techniques, or strategies, are compared to a base strategy to determine what strategy or strategies are most affective in achieving the goals of TSM.

  6. Mobile treatment modules for the Rhode Island environmental training center. Project report

    SciTech Connect (OSTI)

    Herriot, D.

    1994-12-01

    Groundwater pollution can result from many activities, including leaching from landfills and abandoned dump sites, accidental spills of chemicals or waste materials, improper underground injection of liquids, and leakage from faulty septic systems or underground storage tanks. Discoveries of aquifer pollution from man`s waste disposal practices are increasing. A recent trend, is to fast track the remediation process by employing mobile units which can be quickly set up and put into operation to address the contamination problem with the speed and urgency it deserves. The traditional study, design, and construction of a site-specific treatment process simply takes too long. Mobile units can serve as an interim treatment system to expeditiously control migration, and address public health and safety concerns while time and technology work together for a permanent, cost-effective remediation plan.

  7. Purge water management system

    DOE Patents [OSTI]

    Cardoso-Neto, J.E.; Williams, D.W.

    1995-01-01

    A purge water management system is described for effectively eliminating the production of purge water when obtaining a groundwater sample from a monitoring well. In its preferred embodiment, the purge water management system comprises an expandable container, a transportation system, and a return system. The purge water management system is connected to a wellhead sampling configuration, typically permanently installed at the well site. A pump, positioned with the monitoring well, pumps groundwater through the transportation system into the expandable container, which expands in direct proportion with volume of groundwater introduced, usually three or four well volumes, yet prevents the groundwater from coming into contact with the oxygen in the air. After this quantity of groundwater has been removed from the well, a sample is taken from a sampling port, after which the groundwater in the expandable container can be returned to the monitoring well through the return system. The purge water management system prevents the purge water from coming in contact with the outside environment, especially oxygen, which might cause the constituents of the groundwater to oxidize. Therefore, by introducing the purge water back into the monitoring well, the necessity of dealing with the purge water as a hazardous waste under the Resource Conservation and Recovery Act is eliminated.

  8. Purge water management system

    DOE Patents [OSTI]

    Cardoso-Neto, Joao E. (North Augusta, SC); Williams, Daniel W. (Aiken, SC)

    1996-01-01

    A purge water management system for effectively eliminating the production of purge water when obtaining a groundwater sample from a monitoring well. In its preferred embodiment, the purge water management system comprises an expandable container, a transportation system, and a return system. The purge water management system is connected to a wellhead sampling configuration, typically permanently installed at the well site. A pump, positioned with the monitoring well, pumps groundwater through the transportation system into the expandable container, which expands in direct proportion with volume of groundwater introduced, usually three or four well volumes, yet prevents the groundwater from coming into contact with the oxygen in the air. After this quantity of groundwater has been removed from the well, a sample is taken from a sampling port, after which the groundwater in the expandable container can be returned to the monitoring well through the return system. The purge water management system prevents the purge water from coming in contact with the outside environment, especially oxygen, which might cause the constituents of the groundwater to oxidize. Therefore, by introducing the purge water back into the monitoring well, the necessity of dealing with the purge water as a hazardous waste under the Resource Conservation and Recovery Act is eliminated.

  9. Arsenic in Groundwater: A Review of Current Knowledge and Relation to the CALFED Solution Area with Recommendations for Needed Research

    E-Print Network [OSTI]

    Welch, Alan H.; Oremland, Ronald S.; Davis, James A.; Watkins, Sharon A.

    2006-01-01

    situ iron removal from groundwater with trace elements suchPostma. 1993. Geochemistry, groundwater and pollution. A.A.contribu- tion to shallow groundwater in Tulare Lake bed

  10. From the land to the sea: Impacts of submarine groundwater discharge on the coastal ocean of California and Alaska

    E-Print Network [OSTI]

    Lecher, Alanna Louise

    2015-01-01

    2009.  Submarine  groundwater  discharge  of  total  a R. Flegal. 2009. Submarine groundwater discharge of totalInvestigation of submarine groundwater discharge. Hydrol.

  11. Groundwater Chemistry Changes as a Result of CO2 Injection at the ZERT Field Site in Bozeman, Montana

    E-Print Network [OSTI]

    Apps, J.A.

    2010-01-01

    Groundwater Chemistry Changes as a Result of CO 2 Injection9 Test Configuration and Groundwater1994) Geochemistry, groundwater and pollution. A.A.Balkema,

  12. Procedures for ground-water investigations

    SciTech Connect (OSTI)

    Not Available

    1989-09-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water investigations are carried out to fulfill the requirements for the US Department of Energy (DOE) to meet the requirements of DOE Orders. Investigations are also performed for various clients to meet the requirements of the Resource Conservation and Recovery Act of 1976 (RCRA) and the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA). National standards including procedures published by the American Society for Testing and Materials (ASTM) and the US Geological Survey were utilized in developing the procedures contained in this manual.

  13. Modular, multi-level groundwater sampler

    DOE Patents [OSTI]

    Nichols, Ralph L. (812 Plantation Point Dr., N. Augusta, SC 29841); Widdowson, Mark A. (4204 Havana Ct., Columbia, SC 29206); Mullinex, Harry (10 Cardross La., Columbia, SC 29209); Orne, William H. (12 Martha Ct., Sumter, SC 29150); Looney, Brian B. (1135 Ridgemont Dr., Aiken, SC 29803)

    1994-01-01

    Apparatus for taking a multiple of samples of groundwater or pressure measurements from a well simultaneously. The apparatus comprises a series of chambers arranged in an axial array, each of which is dimensioned to fit into a perforated well casing and leave a small gap between the well casing and the exterior of the chamber. Seals at each end of the container define the limits to the axial portion of the well to be sampled. A submersible pump in each chamber pumps the groundwater that passes through the well casing perforations into the gap from the gap to the surface for analysis. The power lines and hoses for the chambers farther down the array pass through each chamber above them in the array. The seals are solid, water-proof, non-reactive, resilient disks supported to engage the inside surface of the well casing. Because of the modular design, the apparatus provides flexibility for use in a variety of well configurations.

  14. Complexity of Groundwater Contaminants at DOE Sites

    SciTech Connect (OSTI)

    Hazen, T.C.; Faybishenko, B.; Jordan, P.

    2010-12-03

    The U.S. Department of Energy (DOE) is responsible for the remediation and long-term stewardship of one of the world's largest groundwater contamination portfolios, with a significant number of plumes containing various contaminants, and considerable total mass and activity. As of 1999, the DOE's Office of Environmental Management was responsible for remediation, waste management, or nuclear materials and facility stabilization at 144 sites in 31 states and one U.S. territory, out of which 109 sites were expected to require long-term stewardship. Currently, 19 DOE sites are on the National Priority List. The total number of contaminated plumes on DOE lands is estimated to be 10,000. However, a significant number of DOE sites have not yet been fully characterized. The most prevalent contaminated media are groundwater and soil, although contaminated sediment, sludge, and surface water also are present. Groundwater, soil, and sediment contamination are present at 72% of all DOE sites. A proper characterization of the contaminant inventory at DOE sites is critical for accomplishing one of the primary DOE missions -- planning basic research to understand the complex physical, chemical, and biological properties of contaminated sites. Note that the definitions of the terms 'site' and 'facility' may differ from one publication to another. In this report, the terms 'site,' 'facility' or 'installation' are used to identify a contiguous land area within the borders of a property, which may contain more than one plume. The term 'plume' is used here to indicate an individual area of contamination, which can be small or large. Even though several publications and databases contain information on groundwater contamination and remediation technologies, no statistical analyses of the contaminant inventory at DOE sites has been prepared since the 1992 report by Riley and Zachara. The DOE Groundwater Data Base (GWD) presents data as of 2003 for 221 groundwater plumes at 60 DOE sites and facilities. Note that Riley and Zachara analyzed the data from only 18 sites/facilities including 91 plumes. In this paper, we present the results of statistical analyses of the data in the GWD as guidance for planning future basic and applied research of groundwater contaminants within the DOE complex. Our analyses include the evaluation of a frequency and ranking of specific contaminants and contaminant groups, contaminant concentrations/activities and total contaminant masses and activities. We also compared the results from analyses of the GWD with those from the 1992 report by Riley and Zachara. The difference between our results and those summarized in the 1992 report by Riley and Zachara could be caused by not only additional releases, but also by the use of modern site characterization methods, which more accurately reveal the extent of groundwater contamination. Contaminated sites within the DOE complex are located in all major geographic regions of the United States, with highly variable geologic, hydrogeologic, soil, and climatic conditions. We assume that the information from the 60 DOE sites included in the GWD are representative for the whole DOE complex. These 60 sites include the major DOE sites and facilities, such as Rocky Flats Environmental Technology Site, Colorado; Idaho National Laboratory, Idaho; Savannah River Site, South Carolina; Oak Ridge Reservation, Tennessee; and Hanford Reservation, Washington. These five sites alone ccount for 71% of the value of the remediation work.

  15. GROUNDWATER MONITORING REPORT GENERATION TOOLS - 12005

    SciTech Connect (OSTI)

    Lopez, N.

    2011-11-21

    Compliance with National and State environmental regulations (e.g. Resource Conservation and Recovery Act (RCRA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) aka SuperFund) requires Savannah River Site (SRS) to extensively collect and report groundwater monitoring data, with potential fines for missed reporting deadlines. Several utilities have been developed at SRS to facilitate production of the regulatory reports which include maps, data tables, charts and statistics. Components of each report are generated in accordance with complex sets of regulatory requirements specific to each site monitored. SRS developed a relational database to incorporate the detailed reporting rules with the groundwater data, and created a set of automation tools to interface with the information and generate the report components. These process improvements enhanced quality and consistency by centralizing the information, and have reduced manpower and production time through automated efficiencies.

  16. 2005 EPA WIPP RECERTIFICATION GROUNDWATER AT WIPP FACT SHEET No. 5

    E-Print Network [OSTI]

    2005 EPA WIPP RECERTIFICATION GROUNDWATER AT WIPP FACT SHEET No. 5 What is Groundwater? as a few are said to be permeable to groundwater. Dockum How Does Groundwater Affect WIPP? DOE scientists have studied groundwater flow and conditions at the WIPP site to determine potential pathways for radioactive

  17. Implementation of Recommendations from the One System Comparative Evaluation of the Hanford Tank Farms and Waste Treatment Plant Safety Bases

    SciTech Connect (OSTI)

    Garrett, Richard L.; Niemi, Belinda J.; Paik, Ingle K.; Buczek, Jeffrey A.; Lietzow, J.; McCoy, F.; Beranek, F.; Gupta, M.

    2013-11-07

    A Comparative Evaluation was conducted for One System Integrated Project Team to compare the safety bases for the Hanford Waste Treatment and Immobilization Plant Project (WTP) and Tank Operations Contract (TOC) (i.e., Tank Farms) by an Expert Review Team. The evaluation had an overarching purpose to facilitate effective integration between WTP and TOC safety bases. It was to provide One System management with an objective evaluation of identified differences in safety basis process requirements, guidance, direction, procedures, and products (including safety controls, key safety basis inputs and assumptions, and consequence calculation methodologies) between WTP and TOC. The evaluation identified 25 recommendations (Opportunities for Integration). The resolution of these recommendations resulted in 16 implementation plans. The completion of these implementation plans will help ensure consistent safety bases for WTP and TOC along with consistent safety basis processes. procedures, and analyses. and should increase the likelihood of a successful startup of the WTP. This early integration will result in long-term cost savings and significant operational improvements. In addition, the implementation plans lead to the development of eight new safety analysis methodologies that can be used at other U.S. Department of Energy (US DOE) complex sites where URS Corporation is involved.

  18. Effect of faulting on ground-water movement in the Death Valley region, Nevada and California

    SciTech Connect (OSTI)

    Faunt, C.C.

    1997-12-31

    This study characterizes the hydrogeologic system of the Death Valley region, an area covering approximately 100,000 square kilometers. The study also characterizes the effects of faults on ground-water movement in the Death Valley region by synthesizing crustal stress, fracture mechanics,a nd structural geologic data. The geologic conditions are typical of the Basin and Range Province; a variety of sedimentary and igneous intrusive and extrusive rocks have been subjected to both compressional and extensional deformation. Faulting and associated fracturing is pervasive and greatly affects ground-water flow patterns. Faults may become preferred conduits or barriers to flow depending on whether they are in relative tension, compression, or shear and other factors such as the degree of dislocations of geologic units caused by faulting, the rock types involved, the fault zone materials, and the depth below the surface. The current crustal stress field was combined with fault orientations to predict potential effects of faults on the regional ground-water flow regime. Numerous examples of fault-controlled ground-water flow exist within the study area. Hydrologic data provided an independent method for checking some of the assumptions concerning preferential flow paths. 97 refs., 20 figs., 5 tabs.

  19. SU-E-T-580: Comparison of Cervical Carcinoma IMRT Plans From Four Commercial Treatment Planning Systems (TPS)

    SciTech Connect (OSTI)

    Cao, Y; Li, R; Chi, Z; Zhu, S

    2014-06-01

    Purpose: Different treatment planning systems (TPS) use different treatment optimization and leaf sequencing algorithms. This work compares cervical carcinoma IMRT plans optimized with four commercial TPSs to investigate the plan quality in terms of target conformity and delivery efficiency. Methods: Five cervical carcinoma cases were planned with the Corvus, Monaco, Pinnacle and Xio TPSs by experienced planners using appropriate optimization parameters and dose constraints to meet the clinical acceptance criteria. Plans were normalized for at least 95% of PTV to receive the prescription dose (Dp). Dose-volume histograms and isodose distributions were compared. Other quantities such as Dmin(the minimum dose received by 99% of GTV/PTV), Dmax(the maximum dose received by 1% of GTV/PTV), D100, D95, D90, V110%, V105%, V100% (the volume of GTV/PTV receiving 110%, 105%, 100% of Dp), conformity index(CI), homogeneity index (HI), the volume of receiving 40Gy and 50 Gy to rectum (V40,V50) ; the volume of receiving 30Gy and 50 Gy to bladder (V30,V50) were evaluated. Total segments and MUs were also compared. Results: While all plans meet target dose specifications and normal tissue constraints, the maximum GTVCI of Pinnacle plans was up to 0.74 and the minimum of Corvus plans was only 0.21, these four TPSs PTVCI had significant difference. The GTVHI and PTVHI of Pinnacle plans are all very low and show a very good dose distribution. Corvus plans received the higer dose of normal tissue. The Monaco plans require significantly less segments and MUs to deliver than the other plans. Conclusion: To deliver on a Varian linear-accelerator, the Pinnacle plans show a very good dose distribution. Corvus plans received the higer dose of normal tissue. The Monaco plans have faster beam delivery.

  20. Italian WEEE management system and treatment of end-of-life cooling and freezing equipments for CFCs removal

    SciTech Connect (OSTI)

    Sansotera, M., E-mail: maurizio.sansotera@polimi.it [Dipartimento di Chimica, Materiali e Ingegneria Chimica, Politecnico di Milano, via Mancinelli 7, I-20131 Milano (Italy); Istituto Nazionale di Scienza e Tecnologia dei Materiali (INSTM), via Giusti 9, I-50121 Firenze (Italy); Navarrini, W. [Dipartimento di Chimica, Materiali e Ingegneria Chimica, Politecnico di Milano, via Mancinelli 7, I-20131 Milano (Italy); Istituto Nazionale di Scienza e Tecnologia dei Materiali (INSTM), via Giusti 9, I-50121 Firenze (Italy); Talaeemashhadi, S.; Venturini, F. [Dipartimento di Chimica, Materiali e Ingegneria Chimica, Politecnico di Milano, via Mancinelli 7, I-20131 Milano (Italy)

    2013-06-15

    Highlights: • Italian data about WEEE management in the period 2005–2010 have been reported. • In 2001–2004 CFC release was monitored and Po Valley resulted as main source region. • The Italian directive on WEEE management was enacted in 2005 but took effect in 2008. • The CFC analytic procedures of the audit assessments have been discussed. - Abstract: This study presents and analyzes the data of the Italian system for take-back and recovery of waste electrical and electronic equipments (WEEEs) in the start-up period 2008–2010. The analysis was focused particularly on the data about the treatment of end-of-life cooling and freezing equipments. In fact, the wastes of cooling and freezing equipments have a high environmental impact. Indeed, in their compressor oil and insulation polyurethane (PU) foams chlorofluorocarbon (CFC) ozone-depleting gases are still present. In the period 2001–2004 Northern Italy resulted the main source in Europe of CFCs. The European Directive on WEEE management was enacted in 2002, but in Italy it was implemented by the legislative Decree in 2005 and it became operational in 2008. Actually, in 2008 the national WEEE Coordination Centre was founded in order to organize the WEEE pick-up process and to control collection, recovery and recycling targets. As a result, in 2010 the average WEEE collection per capita exceeded the threshold of more than 4 kg per inhabitant, as well as cooling and freezing appliances represented more than one fourth of the Italian WEEE collection stream. During the treatment of end-of-life cooling and freezing equipments, CFCs were recovered and disposed principally by burner methods. The analyses of defined specimens collected in the treatment facilities were standardized to reliably determine the amount of recovered CFCs. Samples of alkaline solid salt, alkaline saline solution, polyurethane matrix and compressor oil collected during the audit assessment procedure were analyzed and the results were discussed. In particular, the analysis of PU samples after the shredding and the warm pressing procedures measured a residual CFCs content around 500–1300 mg/kg of CFCs within the foam matrix.