Powered by Deep Web Technologies
Note: This page contains sample records for the topic "groundwater treatment system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Hanford Site Creates One-Touch Wonder for Groundwater Treatment Systems |  

Broader source: Energy.gov (indexed) [DOE]

Creates One-Touch Wonder for Groundwater Treatment Creates One-Touch Wonder for Groundwater Treatment Systems Hanford Site Creates One-Touch Wonder for Groundwater Treatment Systems April 29, 2013 - 12:00pm Addthis The interior of a pump-and-treat system along the Columbia River at the Hanford Site. With the push of a button, workers can now power the site’s five systems along the river that are working to extract and treat contaminated groundwater. The interior of a pump-and-treat system along the Columbia River at the Hanford Site. With the push of a button, workers can now power the site's five systems along the river that are working to extract and treat contaminated groundwater. RICHLAND, Wash. - Engineers and operators supporting the Richland Operations Office at the Hanford site found a way to start and stop

2

Hanford Site Creates One-Touch Wonder for Groundwater Treatment Systems |  

Broader source: Energy.gov (indexed) [DOE]

Hanford Site Creates One-Touch Wonder for Groundwater Treatment Hanford Site Creates One-Touch Wonder for Groundwater Treatment Systems Hanford Site Creates One-Touch Wonder for Groundwater Treatment Systems April 29, 2013 - 12:00pm Addthis The interior of a pump-and-treat system along the Columbia River at the Hanford Site. With the push of a button, workers can now power the site’s five systems along the river that are working to extract and treat contaminated groundwater. The interior of a pump-and-treat system along the Columbia River at the Hanford Site. With the push of a button, workers can now power the site's five systems along the river that are working to extract and treat contaminated groundwater. RICHLAND, Wash. - Engineers and operators supporting the Richland Operations Office at the Hanford site found a way to start and stop

3

Installation of reactive metals groundwater collection and treatment systems  

SciTech Connect (OSTI)

Three groundwater plumes contaminated with volatile organic compounds (VOCs) and radionuclides at the Rocky Flats Environmental Technology Site are scheduled for remediation by 1999 based on the Rocky Flats Cleanup Agreement (RFCA) (DOE, 1996). These three plumes are among the top 20 environmental cleanup sites at Rocky Flats. One of these plumes, the Mound Site Plume, is derived from a previous drum storage area, and daylights as seeps near the South Walnut Creek drainage. Final design for remediation of the Mound Site Plume has been completed based on use of reactive metals to treat the contaminated groundwater, and construction is scheduled for early 1998. The two other plumes, the 903 Pad/Ryan`s Pit and the East Trenches Plumes, are derived from VOCs either from drums that leaked or that were disposed of in trenches. These two plumes are undergoing characterization and conceptual design in 1998 and construction is scheduled in 1999. The contaminants of concern in these plumes are tetrachloroethene, trichloroethene, carbon tetrachloride and low levels of uranium and americium.

Hopkins, J.K.; Primrose, A.L. [Rocky Mountain Remediation Services, LLC, Golden, CO (United States). Rocky Flats Environmental Technology Site; Vogan, J. [EnviroMetal Technologies, Inc., Guelph, Ontario (Canada); Uhland, J. [Kaiser-Hill, LLC, Golden, CO (United States). Rocky Flats Environmental Technology Site

1998-07-01T23:59:59.000Z

4

Evolution of a Groundwater Treatment System-Rocky Flats, Colorado...  

Energy Savers [EERE]

the treatment cells (which are made of plastic, so they're more fragile than concrete tanks) and hauled away for disposal. Due to the past nuclear weapons-related mission of...

5

Situ treatment of contaminated groundwater  

DOE Patents [OSTI]

A system for treating dissolved halogenated organic compounds in groundwater that relies upon electrolytically-generated hydrogen to chemically reduce the halogenated compounds in the presence of a suitable catalyst. A direct current is placed across at least a pair, or an array, of electrodes which are housed within groundwater wells so that hydrogen is generated at the cathode and oxygen at the anode. A pump is located within the well housing in which the cathode(s) is(are) located and draws in groundwater where it is hydrogenated via electrolysis, passes through a well-bore treatment unit, and then transported to the anode well(s) for reinjection into the ground. The well-bore treatment involves a permeable cylinder located in the well bore and containing a packed bed of catalyst material that facilitates the reductive dehalogenation of the halogenated organic compounds by hydrogen into environmentally benign species such as ethane and methane. Also, electro-osmatic transport of contaminants toward the cathode also contributes to contaminant mass removal. The only above ground equipment required are the transfer pipes and a direct circuit power supply for the electrodes. The electrode wells in an array may be used in pairs or one anode well may be used with a plurality of cathode wells. The DC current flow between electrode wells may be periodically reversed which controls the formation of mineral deposits in the alkaline cathode well-bore water, as well as to help rejuvenate the catalysis.

McNab, Jr., Walt W. (Concord, CA); Ruiz, Roberto (Tracy, CA); Pico, Tristan M. (Livermore, CA)

2001-01-01T23:59:59.000Z

6

In situ Groundwater Remediation Using Treatment Walls  

Science Journals Connector (OSTI)

Development of treatment wall technology for the clean up of contaminated ground-water resources has expanded in the past few...ex situ and other in situ ground-water remediation approaches is reduced operation a...

Radisav D. Vidic; Frederick G. Pohland

2002-01-01T23:59:59.000Z

7

Unconventional Groundwater System Proves Effective in Reducing  

Broader source: Energy.gov (indexed) [DOE]

Unconventional Groundwater System Proves Effective in Reducing Unconventional Groundwater System Proves Effective in Reducing Contamination at West Valley Demonstration Project Unconventional Groundwater System Proves Effective in Reducing Contamination at West Valley Demonstration Project July 22, 2013 - 12:00pm Addthis In the two years prior to the operation of the permeable treatment wall, pictured here, WVDP conducted extensive engineering and planning to ensure it would effectively remove strontium-90. In the two years prior to the operation of the permeable treatment wall, pictured here, WVDP conducted extensive engineering and planning to ensure it would effectively remove strontium-90. This 2009 photo shows a trenching machine, which is capable of cutting a continuous trench up to 30 feet deep and 3 feet wide. The machine was used in a pilot study to evaluate the effectiveness of zeolite placement as the trench was dug. This ensured a consistent depth and width for the zeolite placement along the entire length of the permeable treatment wall.

8

Recovery Act Supports Construction of Site's Largest Groundwater Treatment  

Broader source: Energy.gov (indexed) [DOE]

Supports Construction of Site's Largest Groundwater Supports Construction of Site's Largest Groundwater Treatment Facility Recovery Act Supports Construction of Site's Largest Groundwater Treatment Facility Construction of the largest groundwater treatment facility at the Hanford Site – a major American Recovery and Reinvestment Act project – is on schedule and more than 70 percent complete. Recovery Act workers with DOE contractor CH2M HILL Plateau Remediation Company are on pace to finish construction of the 200 West Groundwater Treatment Facility this year. Recovery Act Supports Construction of Site's Largest Groundwater Treatment Facility More Documents & Publications Hanford Treats Record Amount of Groundwater Recovery Act Invests in Cleanup, Preservation of Hanford Site Locomotives,

9

Recovery Act Supports Construction of Site's Largest Groundwater Treatment Facility  

Broader source: Energy.gov (indexed) [DOE]

June 7, 2011 June 7, 2011 Recovery Act Supports Construction of Site's Largest Groundwater Treatment Facility RICHLAND, Wash. - Construction of the largest ground- water treatment facility at the Hanford Site - a major American Recovery and Reinvestment Act project - is on schedule and more than 70 percent complete. Recovery Act workers with DOE contractor CH2M HILL Plateau Remediation Company are on pace to finish con- struction of the 200 West Groundwater Treatment Facil- ity this year. Funding for the project comes from the $1.6 billion the Richland Operations Office received from the Recovery Act. The 52,000-square-foot facility will pump contaminated water from the ground, remove contaminants with a combination of treatment technologies, and return clean water to the aquifer. The system will have the capacity to

10

Literature research and review of groundwater quality and treatment systems for basin F Rocky Mountain Arsenal. Final engineering report  

SciTech Connect (OSTI)

The purposes of this report are to review applicable literature and previous RMA studies and recommend a ground water treatment system for Basin F that can treat organics using activated carbon and/or an alternative and is capable of removing Cl and F. The technologies are compared for ability to meet treatment goals; capital and operating costs; and treatment flexibility. Findings and recommendations include best alternative to GAC for removal of organics is UV-catalyzed ozonation; best method for the removal of Cl and F appears to be electrodialysis followed by vapor compression evaporation; and Basin F interim response ground water treatment system should include lime softening and Mn removal for pretreatment and UV-ozone and GAC for organic.

NONE

1987-06-01T23:59:59.000Z

11

New Resin Brings Efficiencies to Groundwater Treatment along Columbia River  

Broader source: Energy.gov (indexed) [DOE]

Resin Brings Efficiencies to Groundwater Treatment along Resin Brings Efficiencies to Groundwater Treatment along Columbia River at Hanford Site New Resin Brings Efficiencies to Groundwater Treatment along Columbia River at Hanford Site June 1, 2012 - 12:00pm Addthis Dean Neshem, a pump-and-treat operations and maintenance engineer, observes operations at one of the Hanford site's five groundwater treatment facilities. Based on technical recommendations from DOE, CH2M HILL engineers tested and compared multiple resins to determine the products capable of removing contaminants from the groundwater. Dean Neshem, a pump-and-treat operations and maintenance engineer, observes operations at one of the Hanford site's five groundwater treatment facilities. Based on technical recommendations from DOE, CH2M HILL engineers tested and compared multiple resins to determine the products

12

New Groundwater Treatment Facility Begins Operation: Boost in Cleanup  

Broader source: Energy.gov (indexed) [DOE]

New Groundwater Treatment Facility Begins Operation: Boost in New Groundwater Treatment Facility Begins Operation: Boost in Cleanup Accelerated by Recovery Act Funding New Groundwater Treatment Facility Begins Operation: Boost in Cleanup Accelerated by Recovery Act Funding January 19, 2011 - 12:00pm Addthis Media Contacts Andre Armstrong, CH2M HILL (509)376-6773 Andre_L_Armstrong@rl.gov Geoff Tyree, DOE (509) 376-4171 Geoffrey.Tyree@rl.doe.gov RICHLAND, WASH. - The U.S. Department of Energy (DOE) is boosting its capacity for treating groundwater to remove chromium near the Columbia River by 40 percent with the recent completion of a new treatment facility. Contractor CH2M HILL Plateau Remediation Company (CH2M HILL) finished building and started operating the new 100-DX groundwater treatment facility in December. The facility is located near the D and DR Reactors on

13

Recovery Act Funds Expand Groundwater Treatment at Hanford Site: Contractor  

Broader source: Energy.gov (indexed) [DOE]

Funds Expand Groundwater Treatment at Hanford Site: Funds Expand Groundwater Treatment at Hanford Site: Contractor CH2M HILL drills record number of wells Recovery Act Funds Expand Groundwater Treatment at Hanford Site: Contractor CH2M HILL drills record number of wells May 26, 2011 - 12:00pm Addthis Media Contacts Andre Armstrong CH2M HILL Plateau Remediation Company (509) 376-6773 Andre_L_Armstrong@rl.gov Geoff Tyree, DOE (509) 376-4171 Geoffrey.Tyree@rl.doe.gov RICHLAND, Wash. - Workers at the Hanford Site have surpassed goals for drilling wells to detect and remove contamination from groundwater. The groundwater was contaminated by radioactive waste and chemicals generated during decades of producing plutonium for the Cold War at the Hanford Site in southeast Washington State. The Department of Energy (DOE) had set a goal for its contractor, CH2M HILL

14

Treatment Resin Reduces Costs, Materials in Hanford Groundwater Cleanup -  

Broader source: Energy.gov (indexed) [DOE]

Treatment Resin Reduces Costs, Materials in Hanford Groundwater Treatment Resin Reduces Costs, Materials in Hanford Groundwater Cleanup - Efficiency delivered more than $6 million in cost savings, $3 million in annual savings Treatment Resin Reduces Costs, Materials in Hanford Groundwater Cleanup - Efficiency delivered more than $6 million in cost savings, $3 million in annual savings June 4, 2013 - 12:00pm Addthis Media Contacts Geoff Tyree, DOE Geoffrey.Tyree@rl.doe.gov (509) 376-4171 Dee Millikin, CHPRC Dee_Millikin@rl.gov (509) 376-1297 RICHLAND, Wash. - U.S. Department of Energy (DOE) contractor CH2M HILL Plateau Remediation Company is using a treatment material that has delivered more than $6 million in cost savings to date and is delivering more than $3 million in annual cost savings and efficiencies in treatment

15

Groundwater Treatment at the Fernald Preserve: Status and Path Forward for the Water Treatment Facility - 12320  

SciTech Connect (OSTI)

Operating a water treatment facility at the Fernald Preserve in Cincinnati, Ohio-to support groundwater remediation and other wastewater treatment needs-has become increasingly unnecessary. The Fernald Preserve became a U.S. Department of Energy Office of Legacy Management (LM) site in November 2006, once most of the Comprehensive Environmental Response, Compensation, and Liability Act environmental remediation and site restoration had been completed. Groundwater remediation is anticipated to continue beyond 2020. A portion of the wastewater treatment facility that operated during the CERCLA cleanup continued to operate after the site was transferred to LM, to support the remaining groundwater remediation effort. The treatment facility handles the site's remaining water treatment needs (for groundwater, storm water, and wastewater) as necessary, to ensure that uranium discharge limits specified in the Operable Unit 5 Record of Decision are met. As anticipated, the need to treat groundwater to meet uranium discharge limits has greatly diminished over the last several years. Data indicate that the groundwater treatment facility is no longer needed to support the ongoing aquifer remediation effort. (authors)

Powel, J. [U.S. Department of Energy Office of Legacy Management, Harrison, Ohio (United States); Hertel, B.; Glassmeyer, C.; Broberg, K. [S.M. Stoller Corporation, Harrison, Ohio (United States)

2012-07-01T23:59:59.000Z

16

Evaluation of a multiport groundwater monitoring system  

SciTech Connect (OSTI)

In 1988 and 1989, Pacific Northwest Laboratory installed a multiport groundwater monitoring system in two wells on the Hanford Site: one near the 216-B-3 Pond in the center of the Hanford Site and one just north of the 300 Area near the Columbia River. The system was installed to provide the US Department of Energy with needed three-dimensional data on the vertical distribution of contaminants and hydraulic heads on the Hanford Site. This study evaluates the ability of the multiport system to obtain hydrogeologic data at multiple points vertically in a single borehole, and addresses the representativeness of the data. Data collected from the two wells indicate that the multiport system is well suited for groundwater monitoring networks requiring three-dimensional characterization of the hydrogeologic system. A network of these systems could provide valuable information on the hydrogeologic environment. However, the advantages of the multiport system diminish when the system is applied to long-term monitoring networks (30+ years) and to deeper wells (<300 ft). For shallow wells, the multiport system provides data in a cost-effective manner that would not be reasonably obtainable with the conventional methods currently in use at the Hanford Site. 17 refs., 28 figs., 6 tabs.

Gilmore, T.J.; Hall, S.H.; Olsen, K.B.; Spane, F.A. Jr.

1991-03-01T23:59:59.000Z

17

In-situ remediation system for groundwater and soils  

DOE Patents [OSTI]

The present invention relates to a system for in-situ remediation of contaminated groundwater and soil. In particular the present invention relates to stabilizing toxic metals in groundwater and soil. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

Corey, J.C.; Kaback, D.S.; Looney, B.B.

1991-01-01T23:59:59.000Z

18

Flow and Storage in Groundwater Systems  

Science Journals Connector (OSTI)

...groundwater removed from storage today was recharged...result of water pumped from wells that...Herrera, Eds., Seawater Intrusion in Coastal...conductivity, specific storage, and thickness...groundwater removed from storage today was recharged...result of water pumped from wells that...

William M. Alley; Richard W. Healy; James W. LaBaugh; Thomas E. Reilly

2002-06-14T23:59:59.000Z

19

IMPROVING THE EFFICIENCY OF AN EXISTING GROUNDWATER REMEDIATION SYSTEM  

E-Print Network [OSTI]

.9 kilowatt total) 14 #12;ENERGY IMPROVEMENT BENEFITS 15 #12;RETURN ON INVESTMENT: SOLAR PANELS 16 #12 of grid energy with solar panel arrays Long-term operations and maintenance costs were significantly.7 kilowatt total) 13 #12;GROUNDWATER SYSTEM ENERGY IMPROVEMENTS ­ Northern Solar Array: 56 panel system (10

Illinois at Urbana-Champaign, University of

20

Flow and Storage in Groundwater Systems  

Science Journals Connector (OSTI)

...a static reservoir. Even specialists...measure of permeability, can range...conductivity, and porosity of the system...Fractured-rock systems in...regional low-permeability unit. The...conductivity, and porosity of the system...Fractured-rock systems in...regional low-permeability unit, the...law by a porosity (n) of...11. Rock Fractures...

William M. Alley; Richard W. Healy; James W. LaBaugh; Thomas E. Reilly

2002-06-14T23:59:59.000Z

Note: This page contains sample records for the topic "groundwater treatment system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Groundwater Remediation Systems Quarterly Operations Report  

E-Print Network [OSTI]

.......................................... 5-1 6. OU III Carbon Tetrachloride Pump and Treat System ........................................ 6 = ethylene dibromide * System dismantlement for the Carbon Tetrachloride system was completed in 2010. ** EDB% NA 180 Industrial Park Recirculation/ In-Well (AS/Carbon) VOC 7 Operate- 14 Standby-

22

Groundwater Remediation Systems Quarterly Operations Report  

E-Print Network [OSTI]

.......................................... 5-1 6. OU III Carbon Tetrachloride Pump and Treat System........................................ 6 = ethylene dibromide * System dismantlement for the Carbon Tetrachloride system was completed in 2010. ** EDB Standby NA 180 Industrial Park Recirculation/ In-Well (AS/Carbon) VOC 7 Operate- 14 Standby- 1 100% 1 1063

23

Groundwater Remediation Systems Quarterly Operations Report  

E-Print Network [OSTI]

.......................................... 5-1 6. OU III Carbon Tetrachloride Pump and Treat System ........................................ 6 = ethylene dibromide * System dismantlement for the Carbon Tetrachloride system was completed in 2010. ** EDB Standby NA 180 Industrial Park Recirculation/ In-Well (AS/Carbon) VOC 7 Operate- 14 Standby- 1 Standby NA

24

Groundwater Remediation Systems Quarterly Operations Report  

E-Print Network [OSTI]

.......................................... 5-1 6. OU III Carbon Tetrachloride Pump and Treat System........................................ 6 = ethylene dibromide * System dismantlement for the Carbon Tetrachloride system was completed in 2010. ** EDB Standby NA 180 Industrial Park Recirculation/ In-Well (AS/Carbon) VOC 7 Operate- 14 Standby- 1 30% NA 1062

25

Evaluation of Background Mercury Concentrations in the SRS Groundwater System  

SciTech Connect (OSTI)

Mercury analyses associated with the A-01 Outfall have highlighted the importance of developing an understanding of mercury in the Savannah River Site groundwater system and associated surface water streams. This activity is critical based upon the fact that the EPA Ambient Water Quality Criteria (AWQC) for this constituent is 0.012mg/L, a level that is well below conventional detection limits of 0.1 to 0.2 mg/L. A first step in this process is obtained by utilizing the existing investment in groundwater mercury concentrations (20,242 records) maintained in the SRS geographical information management system (GIMS) database. Careful use of these data provides a technically defensible initial estimate for total recoverable mercury in background and contaminated SRS wells.

Looney, B.B.

1999-03-03T23:59:59.000Z

26

Groundwater Remediation Systems Quarterly Operations Report  

E-Print Network [OSTI]

.......................................... 5-1 6. OU III Carbon Tetrachloride Pump and Treat System ........................................ 6 for the Carbon Tetrachloride system was completed in 2010. ** EDB has only been detected in the influent at trace and Recirculate Tritium 4 Operate- 9 Standby- 7 100% NA 180 Industrial Park Recirculation/ In-Well (AS/Carbon) VOC

27

Onsite Wastewater Treatment Systems: Aerobic Treatment Unit  

E-Print Network [OSTI]

wastewater treatment systems use. They remove 85 to 98 percent of the organic matter and solids from the wastewater, producing effluent as clean as that from munici- pal wastewater treatment plants, and cleaner than that from conventional septic tanks.... Onsite wastewater treatment systems Single-compartment trash tank Chlorinator Aerobic treatment unit Spray heads Pump tank Bruce Lesikar Professor and Extension Agricultural Engineer The Texas A&M System Aerobic treatment units, which are certified...

Lesikar, Bruce J.

2008-10-31T23:59:59.000Z

28

Heat Transport in Groundwater Systems--Finite Element Model  

E-Print Network [OSTI]

into groundwater aquifers for long term energy storage. Analytical solutions are available that predict water temperatures as hot water is injected into a groundwater aquifer, but little field and laboratory data are available to verify these models. The objectives...

Grubaugh, E. K.; Reddell, D. L.

29

New Resin Improves Efficiency, Reduces Costs in Hanford Site Groundwater  

Broader source: Energy.gov (indexed) [DOE]

The new resin was installed at the 100-DX Groundwater Treatment Facility, where it operated over one year without a single resin change. The new resin was installed at the 100-DX Groundwater Treatment Facility, where it operated over one year without a single resin change. The new resin was installed at the 100-DX Groundwater Treatment Facility, where it operated over one year without a single resin change. An operator tests the resin at a 100K Area pump-andtreat system to determine how much hexavelent chromium contamination it has gathered from the groundwater. An operator tests the resin at a 100K Area pump-andtreat system to determine how much hexavelent chromium contamination it has gathered from the groundwater. ResinTech SIR-700 is being implemented at groundwater treatment systems along the Columbia River to increase efficiency and reduce costs. ResinTech SIR-700 is being implemented at groundwater treatment systems

30

Automated Monitoring System for Waste Disposal Sites and Groundwater  

SciTech Connect (OSTI)

A proposal submitted to the U.S. Department of Energy (DOE), Office of Science and Technology, Accelerated Site Technology Deployment (ASTD) program to deploy an automated monitoring system for waste disposal sites and groundwater, herein referred to as the ''Automated Monitoring System,'' was funded in fiscal year (FY) 2002. This two-year project included three parts: (1) deployment of cellular telephone modems on existing dataloggers, (2) development of a data management system, and (3) development of Internet accessibility. The proposed concept was initially (in FY 2002) to deploy cellular telephone modems on existing dataloggers and partially develop the data management system at the Nevada Test Site (NTS). This initial effort included both Bechtel Nevada (BN) and the Desert Research Institute (DRI). The following year (FY 2003), cellular modems were to be similarly deployed at Sandia National Laboratories (SNL) and Los Alamos National Laboratory (LANL), and the early data management system developed at the NTS was to be brought to those locations for site-specific development and use. Also in FY 2003, additional site-specific development of the complete system was to be conducted at the NTS. To complete the project, certain data, depending on site-specific conditions or restrictions involving distribution of data, were to made available through the Internet via the DRI/Western Region Climate Center (WRCC) WEABASE platform. If the complete project had been implemented, the system schematic would have looked like the figure on the following page.

S. E. Rawlinson

2003-03-01T23:59:59.000Z

31

Groundwater Protection, Brookhaven National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Groundwater Groundwater placeholder DOE, BNL, elected officials, and community leaders mark the opening of the first off-site groundwater treatment system. From the outset, the Department of Energy (DOE) and the Brookhaven National Laboratory (BNL) considered the protection of human health to be the most important goal of the cleanup program. Because exposure to groundwater contamination had the greatest potential to impact human health, the focus was to ensure that local drinking water supplies were clean and safe. Early efforts concentrated on determining the locations of the contamination, installing treatment systems to clean up the groundwater, and remediating sources of contamination like landfills and underground tanks. DOE and the Lab are committed to protecting Long Island's sole-source aquifer, a vital natural resource.

32

Oil and Gas CDT Quantifying the role of groundwater in hydrocarbon systems using noble gas  

E-Print Network [OSTI]

Oil and Gas CDT Quantifying the role of groundwater in hydrocarbon systems using noble gas isotopes by groundwater (or oil) degassing. Other natural gas fields may have been produced in-situ or migrated as a free expert academics from across the CDT and also experienced oil and gas industry professionals

Henderson, Gideon

33

Strontium isotope geochemistry of alluvial groundwater: a tracer for groundwater resources characterisation Hydrology and Earth System Sciences, 8(5), 959972 (2004) EGU  

E-Print Network [OSTI]

Strontium isotope geochemistry of alluvial groundwater: a tracer for groundwater resources characterisation 959 Hydrology and Earth System Sciences, 8(5), 959972 (2004) © EGU Strontium isotope geochemistry for corresponding author : p.negrel@brgm.fr Abstract This study presents strontium isotope and major ion data

Paris-Sud XI, Université de

34

In situ treatment of mixed contaminants in groundwater: Review of candidate processes  

SciTech Connect (OSTI)

This document describes the screening and preliminary evaluation of candidate treatment for use in treating mixed contaminants volatile organic compounds (VOCs) and radionuclides in groundwater. Treating mixed contaminants presents unusual difficulties. Typically, VOCs are the most abundant contaminants, but the presence of radionuclides results in additional health concerns that must be addressed, usually by a treatment approach different from that used for VOCs. Furthermore, the presence of radionuclides may yield mixed solid wastes if the VOCs are treated by conventional means. These issues were specifically addressed in the evaluation of candidate treatment processes for testing in this program. Moreover, because no research or early development of a particular process would be performed, the technology review also focused on technologies that could be readily adapted and integrated for use with mixed contaminants. The objective is to couple emerging or available processes into treatment modules for use in situ. The three year project, to be completed in September 1996, includes a full-scale field demonstration. The findings reported in this document encompass all activities through the treatment process evaluations.

Korte, N.E. [ed.] [Oak Ridge National Lab., Grand Junction, CO (United States)] [ed.; Oak Ridge National Lab., Grand Junction, CO (United States); Siegrist, R.L. [ed.] [Oak Ridge National Lab., TN (United States)] [ed.; Oak Ridge National Lab., TN (United States); Ally, M. [and others] [and others

1994-10-01T23:59:59.000Z

35

LITERATURE SURVEY FOR GROUNDWATER TREATMENT OPTIONS FOR NITRATE IODINE-129 AND URANIUM 200-ZP-1 OPERABLE UNIT HANFORD SITE  

SciTech Connect (OSTI)

This literature review presents treatment options for nitrate, iodine-129, and uranium, which are present in groundwater at the 200-ZP-I Groundwater Operable Unit (OU) within the 200 West Area of the Hanford Site. The objective of this review is to determine available methods to treat or sequester these contaminants in place (i.e., in situ) or to pump-and-treat the groundwater aboveground (i.e., ex situ). This review has been conducted with emphasis on commercially available or field-tested technologies, but theoretical studies have, in some cases, been considered when no published field data exist. The initial scope of this literature review included only nitrate and iodine-I 29, but it was later expanded to include uranium. The focus of the literature review was weighted toward researching methods for treatment of nitrate and iodine-129 over uranium because of the relatively greater impact of those compounds identified at the 200-ZP-I OU.

BYRNES ME

2008-06-05T23:59:59.000Z

36

The Application of Frequency-Conversion Technology in Groundwater Source Heat Pump System Reconstruction  

E-Print Network [OSTI]

Deep well pump power is relatively ubiquitous in the groundwater heat pump air-conditioning system in some hotels in Hunan, and the heat pump usually meets the change of the load by throttling. Therefore, frequency conversion technology is proposed...

Dai, X.; Song, S.

2006-01-01T23:59:59.000Z

37

Distribution of the catabolic transposon Tn5271 in a groundwater bioremediation system.  

Science Journals Connector (OSTI)

...Toluene metabolism Water Microbiology georef...chemical waste ground water Hyde Park Site...pollutants pollution remediation sediments sludge...A GROUNDWATER REMEDIATION SYSTEM 89 b...gene sequences in ground- water and SBR samples...

R C Wyndham; C Nakatsu; M Peel; A Cashore; J Ng; F Szilagyi

1994-01-01T23:59:59.000Z

38

In-situ remediation system for groundwater and soils  

DOE Patents [OSTI]

A method and system for in-situ remediation of contaminated groundwater and soil where the contaminants, such as toxic metals, are carried in a subsurface plume. The method comprises selection and injection into the soil of a fluid that will cause the contaminants to form stable, non-toxic compounds either directly by combining with the contaminants or indirectly by creating conditions in the soil or changing the conditions of the soil so that the formation of stable, non-toxic compounds between the contaminants and existing substances in the soil are more favorable. In the case of non-toxic metal contaminants, sulfides or sulfates are injected so that metal sulfides or sulfates are formed. Alternatively, an inert gas may be injected to stimulate microorganisms in the soil to produce sulfides which, in turn, react with the metal contaminants. Preferably, two wells are used, one to inject the fluid and one to extract the unused portion of the fluid. The two wells work in combination to create a flow of the fluid across the plume to achieve better, more rapid mixing of the fluid and the contaminants.

Corey, John C. (212 Lakeside Dr., Aiken, SC 29803); Kaback, Dawn S. (1932 Cottonwood Dr., Aiken, SC 29803); Looney, Brian B. (1135 Ridgemont Dr., Aiken, SC 29803)

1993-01-01T23:59:59.000Z

39

In-situ remediation system for groundwater and soils  

DOE Patents [OSTI]

A method and system are presented for in-situ remediation of contaminated groundwater and soil where the contaminants, such as toxic metals, are carried in a subsurface plume. The method comprises selection and injection into the soil of a fluid that will cause the contaminants to form stable, non-toxic compounds either directly by combining with the contaminants or indirectly by creating conditions in the soil or changing the conditions of the soil so that the formation of stable, non-toxic compounds between the contaminants and existing substances in the soil are more favorable. In the case of non-toxic metal contaminants, sulfides or sulfates are injected so that metal sulfides or sulfates are formed. Alternatively, an inert gas may be injected to stimulate microorganisms in the soil to produce sulfides which, in turn, react with the metal contaminants. Preferably, two wells are used, one to inject the fluid and one to extract the unused portion of the fluid. The two wells work in combination to create a flow of the fluid across the plume to achieve better, more rapid mixing of the fluid and the contaminants. 4 figures.

Corey, J.C.; Kaback, D.S.; Looney, B.B.

1993-11-23T23:59:59.000Z

40

Reactive barrier technologies for treatment of contaminated groundwater at Rocky Flats  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Office of Science and Technology Subsurface Contaminants Focus Area is supporting the investigation of reactive barrier technologies to mitigate the risks associated with mixed organic/radioactive waste at several DOE sites. Groundwater from a small contaminated plume at the Rocky Flats Environmental Technology Site (RFETS) is being used to evaluate passive reactive material treatment. Permeable reactive barriers which intercept contaminants and destroy the VOC component while containing radionuclides are attractive for a number of reasons relating to public and regulatory acceptance. In situ treatment keeps contaminants away from the earth`s surface, there is no above-ground treatment equipment that could expose workers and the public and operational costs are expected to be lower than currently used technologies. This paper will present results from preliminary site characterization and in-field small-scale column testing of reactive materials at RFETS. Successful demonstration is expected to lead to full-scale implementation of the technology at several DOE sites, including Rocky Flats.

Marozas, D.C.; Bujewski, G.E. [Sandia National Labs., Albuquerque, NM (United States); Castaneda, N. [Rocky Flats Field Office, Golden, CO (United States)

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "groundwater treatment system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

A mixed groundwater system at Midway, UT: discriminating superimposed local and regional discharge  

Science Journals Connector (OSTI)

Mixed thermal and cold water groundwater occurs in the Midway area, UT. Midway is located in the western Heber Valley, an alluvial-filled intermontane basin behind the crest of the Wasatch Mountains. In addition to streams and thermal springs, groundwater discharges from alluvium, bedrock, and karstified tufa. Evaluation of the thermal system reveals that it has been circulated to depths of ?2km and temperatures of ?150C. Most groundwater characteristics of the area can be explained by subsurface mixing between isotopically depleted, Pleistocene-aged thermal water and isotopically enriched, cold, modern, low TDS groundwater. Because the entire system exhibits evidence of mixing, it is possible to define the regional extent of upwelling of thermal water, as well as mixing fractions between the two end-members. The subsurface mixing of thermal and non-thermal waters is highly controlled by the superimposition of local irrigation recharge.

Concepcin Carren-Diazconti; Stephen T. Nelson; Alan L. Mayo; David G. Tingey; Maren Smith

2003-01-01T23:59:59.000Z

42

GRR/Section 14-MT-e - Groundwater Pollution Control System | Open Energy  

Open Energy Info (EERE)

MT-e - Groundwater Pollution Control System MT-e - Groundwater Pollution Control System < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-MT-e - Groundwater Pollution Control System 14MTEGroundwaterPollutionControlSystemPermit (1).pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Regulations & Policies Water Quality Act (Montana Codes Annotated 75-5-101 et seq.) Administrative Rules of Montana 17.30.1001 et seq. Triggers None specified Click "Edit With Form" above to add content 14MTEGroundwaterPollutionControlSystemPermit (1).pdf 14MTEGroundwaterPollutionControlSystemPermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

43

Identification and treatment of lithium as the primary toxicant in a groundwater treatment facility effluent  

SciTech Connect (OSTI)

{sup 6}Li is used in manufacturing nuclear weapons, shielding, and reactor control rods. Li compounds have been used at DOE facilities and Li-contaminated waste has historically been land disposed. Seep water from burial grounds near Y-12 contain small amounts of chlorinated hydrocarbons, traces of PCBs, and 10-19 mg/L Li. Seep treatment consists of oil-water separation, filtration, air stripping, and carbon adsorption. Routine biomonitoring tests using fathead minnows and {ital Ceriodaphnia}{ital dubia} are conducted. Evaluation of suspected contaminants revealed that toxicity was most likely due to Li. Laboratory tests showed that 1 mg Li/L reduced the survival of both species; 0.5 mg Li/L reduced {ital Ceriodaphnia} reproduction and minnow growth. However, the toxicity was greatly reduced in presence of sodium (up to 4 mg Li/L, Na can fully negate the toxic effect of Li). Because of the low Na level discharged from the treatment facility, Li removal from the ground water was desired. SuperLig{reg_sign} columns were used (Li-selective organic macrocycle bonded to silica gel). Bench-scale tests showed that the material was very effective for removing Li from the effluent, reducing the toxicity.

Kszos, L.A. [Oak Ridge National Lab., TN (United States); Crow, K.R. [Oak Ridge Y-12 Plant, TN (United States)

1996-10-01T23:59:59.000Z

44

Integrated nonthermal treatment system study  

SciTech Connect (OSTI)

This report presents the results of a study of nonthermal treatment technologies. The study consisted of a systematic assessment of five nonthermal treatment alternatives. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The alternatives considered were innovative nonthermal treatments for organic liquids and sludges, process residue, soil and debris. Vacuum desorption or various washing approaches are considered for treatment of soil, residue and debris. Organic destruction methods include mediated electrochemical oxidation, catalytic wet oxidation, and acid digestion. Other methods studied included stabilization technologies and mercury separation of treatment residues. This study is a companion to the integrated thermal treatment study which examined 19 alternatives for thermal treatment of MLLW waste. The quantities and physical and chemical compositions of the input waste are based on the inventory database developed by the US Department of Energy. The Integrated Nonthermal Treatment Systems (INTS) systems were evaluated using the same waste input (2,927 pounds per hour) as the Integrated Thermal Treatment Systems (ITTS). 48 refs., 68 figs., 37 tabs.

Biagi, C.; Bahar, D.; Teheranian, B.; Vetromile, J. [Morrison Knudsen Corp. (United States); Quapp, W.J. [Nuclear Metals (United States); Bechtold, T.; Brown, B.; Schwinkendorf, W. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States); Swartz, G. [Swartz and Associates (United States)

1997-01-01T23:59:59.000Z

45

In-situ remediation system and method for contaminated groundwater  

DOE Patents [OSTI]

A system for removing volatile contaminants from a subsurface plume of contamination comprising two sets of wells, a well for injecting a fluid into a saturated zone on one side of the plume and an extracting well for collecting the fluid together with volatilized contaminants from the plume on the other side of the plume. The fluid enables the volatile contaminants to be volatilized and carried therewith through the ground to the extracting well. Injecting and extracting wells are preferably horizontal wells positioned below the plume in the saturated zone and above the plume in the vadose zone, respectively. The fluid may be air or other gas or a gas and liquid mixture depending on the type of contaminant to be removed and may be preheated to facilitate volatilization. Treatment of the volatilized contamination may be by filtration, incineration, atmospheric dispersion or the like. 3 figs.

Corey, J.C.; Looney, B.B.; Kaback, D.S.

1989-05-23T23:59:59.000Z

46

Surface altered zeolites as permeable barriers for in situ treatment of contaminated groundwater  

SciTech Connect (OSTI)

The authors characterized surfactant-modified zeolite (SMZ) for its ability to sorb organic and inorganic contaminants from water. The ultimate objective is to use SMZ as a permeable barrier to prevent migration of contaminants in groundwater. This report summarizes results under Phase 1 of a three-phase project leading to a full-scale field demonstration of SMZ permeable- barrier technology.

NONE

1996-11-01T23:59:59.000Z

47

Rocky Flats Site Expands Solar Power for Treating Groundwater | Department  

Broader source: Energy.gov (indexed) [DOE]

Rocky Flats Site Expands Solar Power for Treating Groundwater Rocky Flats Site Expands Solar Power for Treating Groundwater Rocky Flats Site Expands Solar Power for Treating Groundwater April 17, 2013 - 1:26pm Addthis Subcontractor personnel install solar panels and other infrastructure on a 40-foot conex box that houses the batteries and control equipment for the 6 kilowatt photovoltaic system that powers the ETPTS groundwater treatment system. Subcontractor personnel install solar panels and other infrastructure on a 40-foot conex box that houses the batteries and control equipment for the 6 kilowatt photovoltaic system that powers the ETPTS groundwater treatment system. DOE was able to minimize impacts to the habitat of a federally protected mouse and provide the potential for relatively easy relocation by mounting the solar panels on the side of the conex box that houses the batteries and other system equipment.

48

Rocky Flats Site Expands Solar Power for Treating Groundwater | Department  

Broader source: Energy.gov (indexed) [DOE]

Rocky Flats Site Expands Solar Power for Treating Groundwater Rocky Flats Site Expands Solar Power for Treating Groundwater Rocky Flats Site Expands Solar Power for Treating Groundwater April 17, 2013 - 1:26pm Addthis Subcontractor personnel install solar panels and other infrastructure on a 40-foot conex box that houses the batteries and control equipment for the 6 kilowatt photovoltaic system that powers the ETPTS groundwater treatment system. Subcontractor personnel install solar panels and other infrastructure on a 40-foot conex box that houses the batteries and control equipment for the 6 kilowatt photovoltaic system that powers the ETPTS groundwater treatment system. DOE was able to minimize impacts to the habitat of a federally protected mouse and provide the potential for relatively easy relocation by mounting the solar panels on the side of the conex box that houses the batteries and other system equipment.

49

Groundwater in the Great Plains  

E-Print Network [OSTI]

7 The importance of conservation 7 What is Groundwater? The Hydrologic Cycle 8 Groundwater flow patterns 9 Saturated and unsaturated zones 9 Aquifers 10 Sole source aquifers 10 Water wells 12 Groundwater Quality Contamination and pollution, measuring... The High Plains Aquifer 22 Population served by groundwater 23 Competing uses for a limited resource 23 Groundwater declines 24 Contamination and Health Issues Water Testing 26 Regulatory Standards, Treatment Options 27 Table of Contents 3 Public...

Jensen, R.

2003-01-01T23:59:59.000Z

50

Wastewater and Wastewater Treatment Systems (Oklahoma)  

Broader source: Energy.gov [DOE]

The Oklahoma Department of Environmental Quality administers regulations for waste water and waste water treatment systems. Construction of a municipal treatment work, non-industrial waste water...

51

Performance assessment of a zeolite treatment wall for removing Sr-90 from groundwater  

Science Journals Connector (OSTI)

Laboratory and modeling studies were conducted to assess the potential performance of a permeable reactive barrier constructed of a natural zeolite material at the West Valley Demonstration Project in western New York State. The results of laboratory column tests indicated that the barrier material would be effective at removing strontium from groundwater under natural gradient conditions. Two one-dimensional contaminant transport models were developed to interpret the data. A single-solute retardation factor model provided good agreement with the column test data, but time-consuming extraction and analysis of the zeolite material was required to parameterize the model. A preliminary six-solute model was also developed based on the assumption of competitive cation exchange as the primary removal mechanism. Both models yielded similar predictions of the long-term performance of the barrier, but the cation exchange model predicted higher effluent concentrations during the first 1000 pore volumes of operation. The cation exchange framework has several advantages, including the ability to calibrate the model using only data from column effluent samples, and the ability to account for site-specific differences in the groundwater cation composition. However, additional laboratory work is needed to develop a suitably robust model.

Alan J. Rabideau; John Van Benschoten; Amita Patel; Karl Bandilla

2005-01-01T23:59:59.000Z

52

Animal Waste Treatment System Loan Program (Missouri)  

Broader source: Energy.gov [DOE]

The purpose of the Animal Waste Treatment System Loan Program is to finance animal waste treatment systems for independent livestock and poultry producers at below conventional interest rates. Loan...

53

Biofouling of groundwater distribution systems by Thiothrix spp.  

SciTech Connect (OSTI)

Thiothrix spp., sulfide oxidizing filamentous bacteria, were found to be the main bacterial component of aquatic biofilms causing biofouling in selected municipal water storage tanks, private wells, and drip irrigation systems in Florida. The water originated from the upper Floridan aquifer and associated aquifers in Central and North Florida. Samples were examined where visible biofilms had a white, slimy, filamentous appearance indicative of Thiothrix spp. The detection of Thiothrix spp. was confirmed by enzyme-liked immunosorbent assay (ELISA). These observations confirm that these bacteria and associated extracellular material play an important role in formation of biofilms, which in turn may induce physical changes leading to significant biofouling. These studies suggest that Thiothrix spp.-associated biofouling occurs at an interface where reduced sulfide-containing water contacts aerated water and a surface or substrate is available for attachment.

Brigmon, R.L. [Westinghouse Savannah River Co., Aiken, SC (United States); Martin, H.W. [National Spleological Society, Greenville, DE (United States); Aldrich, H.C. [Florida Univ., Gainesville, FL (United States). Dept. of Microbiology & Cell Science

1995-12-01T23:59:59.000Z

54

New EM Facility Treats Groundwater at Oak Ridge | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

New EM Facility Treats Groundwater at Oak Ridge New EM Facility Treats Groundwater at Oak Ridge New EM Facility Treats Groundwater at Oak Ridge January 30, 2013 - 12:00pm Addthis Chromium Water Treatment System Facility Manager Matt Finley stands near one of the facility’s ground wells. Chromium Water Treatment System Facility Manager Matt Finley stands near one of the facility's ground wells. The Chromium Water Treatment System, located within the footprint of the older Central Neutralization Facility, serves a vital need by treating groundwater and achieving substantial savings for Oak Ridge’s EM program. The Chromium Water Treatment System, located within the footprint of the older Central Neutralization Facility, serves a vital need by treating groundwater and achieving substantial savings for Oak Ridge's EM program.

55

New EM Facility Treats Groundwater at Oak Ridge | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

EM Facility Treats Groundwater at Oak Ridge EM Facility Treats Groundwater at Oak Ridge New EM Facility Treats Groundwater at Oak Ridge January 30, 2013 - 12:00pm Addthis Chromium Water Treatment System Facility Manager Matt Finley stands near one of the facility’s ground wells. Chromium Water Treatment System Facility Manager Matt Finley stands near one of the facility's ground wells. The Chromium Water Treatment System, located within the footprint of the older Central Neutralization Facility, serves a vital need by treating groundwater and achieving substantial savings for Oak Ridge’s EM program. The Chromium Water Treatment System, located within the footprint of the older Central Neutralization Facility, serves a vital need by treating groundwater and achieving substantial savings for Oak Ridge's EM program.

56

Permanent scatterer InSAR reveals seasonal and long-term aquifer-system response to groundwater pumping and artificial  

E-Print Network [OSTI]

and precisely measuring long-term and seasonal aquifer-system response to pumping and recharge. In contrast this methodology can be utilized in heavily pumped groundwater basins to analyze aquifer-system response to long characterize the storage properties of an aquifer system with a high degree of spatial resolution. Citation

Amelung, Falk

57

An optimized groundwater extraction system for the toxic burning pits area of J-Field, Aberdeen Proving Ground, Maryland  

SciTech Connect (OSTI)

Testing and disposal of chemical warfare agents, munitions, and industrial chemicals at the J-Field area of the Aberdeen Proving Ground (APG) have resulted in contamination of soil and groundwater. The discharge of contaminated groundwater to on-site marshes and adjacent estuaries poses a potential risk to ecological receptors. The Toxic Burning Pits (TBP) area is of special concern because of its disposal history. This report describes a groundwater modeling study conducted at J-Field that focused on the TBP area. The goal of this modeling effort was optimization of the groundwater extraction system at the TBP area by applying linear programming techniques. Initially, the flow field in the J-Field vicinity was characterized with a three-dimensional model that uses existing data and several numerical techniques. A user-specified border was set near the marsh and used as a constraint boundary in two modeled remediation scenarios: containment of the groundwater and containment of groundwater with an impermeable cap installed over the TBP area. In both cases, the objective was to extract the minimum amount of water necessary while satisfying the constraints. The smallest number of wells necessary was then determined for each case. This optimization approach provided two benefits: cost savings, in that the water to be treated and the well installation costs were minimized, and minimization of remediation impacts on the ecology of the marsh.

Quinn, J.J.; Johnson, R.L.; Patton, T.L.; Martino, L.E.

1996-06-01T23:59:59.000Z

58

Peak Treatment Systems | Open Energy Information  

Open Energy Info (EERE)

Agreement Partnership Year 1998 Link to project description http:www.nrel.govnewspress199804licns.html Peak Treatment Systems is a company located in Golden, CO....

59

Onsite Wastewater Treatment Systems: Liquid Chlorination  

E-Print Network [OSTI]

This publication explains the process, components, legal requirements, factors affecting performance, and maintenance needs of liquid chlorination systems for onsite wastewater treatment....

Weaver, Richard; Lesikar, Bruce J.; Richter, Amanda; O'Neill, Courtney

2008-10-23T23:59:59.000Z

60

Onsite Wastewater Treatment Systems: Ultraviolet Light Disinfection  

E-Print Network [OSTI]

Some onsite wastewater treatment systems include a disinfection component. This publication explains how homeowners can disinfect wastewater with ultraviolet light, what the components of such a system are, what factors affect the performance of a...

Lesikar, Bruce J.

2008-10-02T23:59:59.000Z

Note: This page contains sample records for the topic "groundwater treatment system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Onsite Wastewater Treatment Systems: Graywater Safety  

E-Print Network [OSTI]

irrigation and decr,ease the amount of wastewater entering sewers or onsite wastewater treatment systems. Onsite wastewater treatment systems However, homeowners who irrigate their lawns with graywater need to understand the risks and safety issues.... Residential wastewater can be classified as either blackwater (sew- age containing fecal matter or food wastes) or graywater. If graywater is collected separately from blackwater, it can be dispersed as irrigation water with less treatment than...

Melton, Rebecca; Lesikar, Bruce J.

2008-10-23T23:59:59.000Z

62

AUTOMATING GROUNDWATER SAMPLING AT HANFORD  

SciTech Connect (OSTI)

Until this past October, Fluor Hanford managed Hanford's integrated groundwater program for the U.S. Department of Energy (DOE). With the new contract awards at the Site, however, the CH2M HILL Plateau Remediation Company (CHPRC) has assumed responsibility for the groundwater-monitoring programs at the 586-square-mile reservation in southeastern Washington State. These programs are regulated by the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). The purpose of monitoring is to track existing groundwater contamination from past practices, as well as other potential contamination that might originate from RCRA treatment, storage, and disposal (TSD) facilities. An integral part of the groundwater-monitoring program involves taking samples of the groundwater and measuring the water levels in wells scattered across the site. More than 1,200 wells are sampled each year. Historically, field personnel or 'samplers' have been issued pre-printed forms that have information about the well(s) for a particular sampling evolution. This information is taken from the Hanford Well Information System (HWIS) and the Hanford Environmental Information System (HEIS)--official electronic databases. The samplers used these hardcopy forms to document the groundwater samples and well water-levels. After recording the entries in the field, the samplers turned the forms in at the end of the day and the collected information was posted onto a spreadsheet that was then printed and included in a log book. The log book was then used to make manual entries of the new information into the software application(s) for the HEIS and HWIS databases. This is a pilot project for automating this tedious process by providing an electronic tool for automating water-level measurements and groundwater field-sampling activities. The automation will eliminate the manual forms and associated data entry, improve the accuracy of the information recorded, and enhance the efficiency and sampling capacity of field personnel. The goal of the effort is to eliminate 100 percent of the manual input to the database(s) and replace the management of paperwork by the field and clerical personnel with an almost entirely electronic process. These activities will include the following: scheduling the activities of the field teams, electronically recording water-level measurements, electronically logging and filing Groundwater Sampling Reports (GSR), and transferring field forms into the site-wide Integrated Document Management System (IDMS).

CONNELL CW; HILDEBRAND RD; CONLEY SF; CUNNINGHAM DE

2009-01-16T23:59:59.000Z

63

Groundwater Sampling | Open Energy Information  

Open Energy Info (EERE)

Groundwater Sampling Groundwater Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Groundwater Sampling Details Activities (3) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Water Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Water composition and source of fluids. Determination of mixing ratios between different fluid end-members. Determination of fluid recharge rates and residence times. Thermal: Water temperature. Dictionary.png Groundwater Sampling: Groundwater sampling is done to characterize the chemical, thermal, or hydrological properties of subsurface aqueous systems. Groundwater sampling

64

Experimental and numerical investigation of saltwater intrusion dynamics in flux-controlled groundwater systems  

E-Print Network [OSTI]

evidence that cli- mate change could decrease the net freshwater input to groundwater resources [Feseker in Bangladesh, threatening to physically displ

Clement, Prabhakar

65

Onsite Wastewater Treatment Systems: Spray Distribution System  

E-Print Network [OSTI]

Spray distribution systems for wastewater are much like lawn sprinkler systems, in that they spray treated wastewater over the surface of a yard. This publication explains how spray distribution systems work, what their design requirements are...

Lesikar, Bruce J.

2008-10-23T23:59:59.000Z

66

Onsite Wastewater Treatment Systems: Constructed Wetlands  

E-Print Network [OSTI]

Two-compartment septic tank Soil absorption field Constructed wetland Onsite wastewater treatment systems Constructed wetlands Natural wetlands generally have visible water in the system. However, for those at homes, the water flows beneath... the media surface, which limits contact between residents and wastewater. The constructed wetland waste- water treatment system has three main components that work together to purify wastewater: ? A septic tank, which is an en- closed watertight...

Lesikar, Bruce J.

2008-10-23T23:59:59.000Z

67

Incorporation of groundwater losses and well level data in rainfall-runoff models illustrated using the PDM Hydrology and Earth System Sciences, 6(1), 2538 (2002) EGS  

E-Print Network [OSTI]

groundwater storage under the influence of pumped abstractions, spring flows and underflows. This model the PDM 25 Hydrology and Earth System Sciences, 6(1), 25­38 (2002) © EGS Incorporation of groundwater there are pumped abstractions to water supply. Many rainfall-runoff models are not formulated so as to represent

Boyer, Edmond

68

Renewable Energy Powered Water Treatment Systems  

E-Print Network [OSTI]

There are many motivations for choosing renewable energy technologies to provide the necessary energy to power water treatment systems for reuse and desalination. These range from the lack of an existing electricity grid, ...

Richards, Bryce S.; Schfer, Andrea

2009-01-01T23:59:59.000Z

69

INTEGRATED WATER TREATMENT SYSTEM PERFORMANCE EVALUATION  

SciTech Connect (OSTI)

This document describes the results of an evaluation of the current Integrated Water Treatment System (IWTS) operation against design performance and a determination of short term and long term actions recommended to sustain IWTS performance.

SEXTON RA; MEEUWSEN WE

2009-03-12T23:59:59.000Z

70

Onsite Wastewater Treatment Systems: Sand Filters  

E-Print Network [OSTI]

Sand filters are beds of granular material, or sand, drained from underneath so that pretreated wastewater can be treated, collected and distributed to a land application system. This publication explains the treatment, design, operation...

Lesikar, Bruce J.

2008-10-23T23:59:59.000Z

71

Hanford Treatment Facility Achieves First Gold Ranking for Sustainable  

Broader source: Energy.gov (indexed) [DOE]

Treatment Facility Achieves First Gold Ranking for Treatment Facility Achieves First Gold Ranking for Sustainable Design in EM Complex: New groundwater treatment facility will be Hanford's largest, greenest pump-and-treat system Hanford Treatment Facility Achieves First Gold Ranking for Sustainable Design in EM Complex: New groundwater treatment facility will be Hanford's largest, greenest pump-and-treat system May 1, 2012 - 12:00pm Addthis Workers use a lift to access part of the 200 West Groundwater Treatment Facility. Workers use a lift to access part of the 200 West Groundwater Treatment Facility. Pump-and-treat construction managers David Fink (left) and Delise Pargmann (right) review information for the LEED gold certification of the main process building for the 200 West Groundwater Treatment Facility.

72

Method to Remove Uranium/Vanadium Contamination from Groundwater  

DOE Patents [OSTI]

A process for removing uranium/vanadium-based contaminants from groundwater using a primary in-ground treatment media and a pretreatment media that chemically adjusts the groundwater contaminant to provide for optimum treatment by the primary treatment media.

Metzler, Donald R.; Morrison Stanley

2004-07-27T23:59:59.000Z

73

Field Performance of Air-Sparging System for Removing TCE from Groundwater  

Science Journals Connector (OSTI)

The removal of volatile organic compounds from groundwater by air sparging (AS) is well-established, although reliable methods for predicting the time required to reach site closure have not been established. To develop an improved understanding of mass ...

Alan J. Rabideau; James M. Blayden; Chandragupta Ganguly

1998-11-12T23:59:59.000Z

74

On-Site Wastewater Treatment Systems: Mound System  

E-Print Network [OSTI]

Septic tank Pump tank Distribution pipe Sand Gravel Geotextile fabric On-site wastewater treatment systems Mound system Bruce Lesikar and Vance Weynand Associate Professor and Extension Agricultural Engineering Specialist, Extension Assistant... The Texas A&M University System L-5414 4-02 Figure 1: A mound system for distributing treated wastewater to the soil. A mound system for wastewater is a soil absorption system placed above the natural surface of the ground. Mound systems are used...

Lesikar, B.; Waynard, V.

75

Enhanced integrated nonthermal treatment system study  

SciTech Connect (OSTI)

The purpose of the Enhanced Nonthermal Treatment Systems (ENTS) study is to evaluate alternative configurations of one of the five systems evaluated in the Integrated Nonthermal Treatment Systems (INTS) study. Five alternative configurations are evaluated. Each is designed to enhance the final waste form performance by replacing grout with improved stabilization technologies, or to improve system performance by improving the destruction efficiency for organic contaminants. AU enhanced systems are alternative configurations of System NT-5, which has the following characteristics: Nonthermal System NT-5: (1) catalytic wet oxidation (CWO) to treat organic material including organic liquids, sludges, and soft (or combustible) debris, (2) thermal desorption of inorganic sludge and process residue, (3) washing of soil and inorganic debris with treatment by CWO of removed organic material, (4) metal decontamination by abrasive blasting, (5) stabilization of treated sludge, soil, debris, and untreated debris with entrained contamination in grout, and (6) stabilization of inorganic sludge, salts and secondary waste in polymer. System NT-5 was chosen because it was designed to treat combustible debris thereby minimizing the final waste form volume, and because it uses grout for primary stabilization. The enhanced nonthermal systems were studied to determine the cost and performance impact of replacing grout (a commonly used stabilization agent in the DOE complex) with improved waste stabilization methods such as vitrification and polymer.

Biagi, C.; Schwinkendorf, B.; Teheranian, B.

1997-02-01T23:59:59.000Z

76

CHP and Bioenergy Systems for Landfills and Wastewater Treatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems for Landfills and Wastewater Treatment Plants CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants There are important issues to consider when selecting...

77

Groundwater Database | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Groundwater Database Groundwater Database Groundwater Database DOE has one of the largest ground water contamination problems and subsequent cleanup responsibilities for a single entity in the world, in terms of the sheer volume of affected groundwater, number of plumes, range of hydrogeologic settings, and diversity of contaminant types. The Groundwater Database was developed to provide a centralized location for information relating to groundwater flow, contamination, and remedial approaches across the DOE complex. The database provides DOE management and other interested parties with an easily accessible, high level understanding of the type of contamination, magnitude of contamination, and dynamics of groundwater systems at DOE sites. It also identifies remedial approaches, exit strategies, long-term stewardship requirements, regulatory

78

On-Site Wastewater Treatment Systems: Graywater  

E-Print Network [OSTI]

-6176 3-08 Figure 1: A diagram of separate blackwater and graywater plumbing systems. W ith water reuse gaining popularity, people increasingly consider graywater from their residences as a resource to be separated from the wastewater stream... and reused in their landscapes. Such reuse of graywater reduces the amount of wastewater entering sewers or onsite wastewater treatment systems, reduces demands to use potable water for other residential uses like irrigation and helps preserve limited...

Melton, Rebecca; Lesikar, Bruce J.; Smith, David; O'Neill, Courtney

2008-04-03T23:59:59.000Z

79

In-tank recirculating arsenic treatment system  

DOE Patents [OSTI]

A low-cost, water treatment system and method for reducing arsenic contamination in small community water storage tanks. Arsenic is removed by using a submersible pump, sitting at the bottom of the tank, which continuously recirculates (at a low flow rate) arsenic-contaminated water through an attached and enclosed filter bed containing arsenic-sorbing media. The pump and treatment column can be either placed inside the tank (In-Tank) by manually-lowering through an access hole, or attached to the outside of the tank (Out-of-Tank), for easy replacement of the sorption media.

Brady, Patrick V. (Albuquerque, NM); Dwyer, Brian P. (Albuquerque, NM); Krumhansl, James L. (Albuquerque, NM); Chwirka, Joseph D. (Tijeras, NM)

2009-04-07T23:59:59.000Z

80

Economical Analysis of a Groundwater Source Heat Pump with Water Thermal Storage System  

E-Print Network [OSTI]

The paper is based on a chilled and heat source for the building which has a total area of 140000m2 in the suburb of Beijing. By comparing the groundwater source heat pump of water thermal storage (GHPWTS) with a conventional chilled and heat source...

Zhou, Z.; Xu, W.; Li, J.; Zhao, J.; Niu, L.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "groundwater treatment system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Testing of a benchscale Reverse Osmosis/Coupled Transport system for treating contaminated groundwater  

SciTech Connect (OSTI)

The Reverse Osmosis/Coupled Transport process is a innovative means of removing radionuclides from contaminated groundwater at the Hanford Site. Specifically, groundwater in the 200 West Area of the Hanford Site has been contaminated with uranium, technetium, and nitrate. Investigations are proceeding to determine the most cost effective method to remove these contaminants. The process described in this paper combines three different membrane technologies (reverse osmosis, coupled transport, and nanofiltration to purify the groundwater while extracting and concentrating uranium, technetium, and nitrate into separate solutions. This separation allows for the future use of the radionuclides, if needed, and reduces the amount of waste that will need to be disposed of. This process has the potential to concentrate the contaminants into solutions with volumes in a ratio of 1/10,000 of the feed volume. This compares to traditional volume reductions of 10 to 100 for ion exchange and stand-alone reverse osmosis. The successful demonstration of this technology could result in significant savings in the overall cost of decontaminating the groundwater.

Hodgson, K.M.; Lunsford, T.R.; Panjabi, G.

1994-01-01T23:59:59.000Z

82

Lability of groundwater DON from pristine vs. anthropogenically influenced systems on Cape Cod, Massachusetts  

E-Print Network [OSTI]

that the composition and lability of DON varies with the land use history of its source. We collected groundwater from of bacterial productivity (0.16 µmol C L-1 day-1 ), and the highest productivity per cell. The Washburn Island 1991). Anthropogenic sources of nitrogen, such as fertilizer, wastewater disposal, and the fossil fuel

Vallino, Joseph J.

83

High throughput chemical munitions treatment system  

SciTech Connect (OSTI)

A new High-Throughput Explosive Destruction System is disclosed. The new system is comprised of two side-by-side detonation containment vessels each comprising first and second halves that feed into a single agent treatment vessel. Both detonation containment vessels further comprise a surrounding ventilation facility. Moreover, the detonation containment vessels are designed to separate into two half-shells, wherein one shell can be moved axially away from the fixed, second half for ease of access and loading. The vessels are closed by means of a surrounding, clam-shell type locking seal mechanisms.

Haroldsen, Brent L. (Manteca, CA); Stofleth, Jerome H. (Albuquerque, NM); Didlake, Jr., John E. (Livermore, CA); Wu, Benjamin C-P (San Ramon, CA)

2011-11-01T23:59:59.000Z

84

On-Site Wastewater Treatment Systems: Mound System  

E-Print Network [OSTI]

oxygen demand (BOD 5 ), which is the amount of oxygen used by microorganisms to break down waste material. The maximum BOD 5 of pretreate waste- The On-Site Wastewater Treatment Systems series of publications is a result of collaborative efforts... Extension Service Texas Natural Resource Conservation Commission Texas Agricultural Experiment Station USDA Water Quality Demonstration Projects Texas On-Site Wastewater Association Consortium of Institutes for Decentralized Wastewater Treatment USDA Natural...

Lesikar, Bruce J.

2002-04-22T23:59:59.000Z

85

Treatment of model inland brackish groundwater reverse osmosis concentrate with electrodialysis Part III: Sensitivity to composition and hydraulic recovery  

Science Journals Connector (OSTI)

Abstract The objective of this research was to investigate the sensitivity of electrodialysis performance to variations in voltage application and membrane type when treating brackish water reverse osmosis (BWRO) concentrate waste, which typically exceeds multiple salt solubility limits. Synthetic BWRO concentrates from Arizona, Texas, and Florida of 789018,600mg/L total dissolved solids were prepared with 610mg/L of poly-phosphonate antiscalants. Experimentation was performed using a laboratory-scale electrodialyzer a nominal transfer area of 64cm2 per membrane. Flow, pressure, conductivity, temperature, and pH were measured continuously, and periodic process samples were analyzed for anion and cation concentrations. The three BWRO concentrates were successfully treated with stack voltage applications of 1.01.5V/cell-pair with initial current densities of 200600A/m2 and final salinity removal ratios up to 98%. This paper shows consistent specific energy consumption (approximately 0.03kWh/m3 per Volt/cell-pair applied per meq/L separated) for electrodialysis treatment for several concentrates across a range of salinity and composition. Successive electrodialysis treatment recovered more than 78% of BWRO concentrate without precipitation, corresponding to calcite and dolomite saturation ratios of 15. These results demonstrate that electrodialysis processes can effectively minimize concentrate waste from BWRO processes, with simulated system recoveries up to 95%.

W. Shane Walker; Younggy Kim; Desmond F. Lawler

2014-01-01T23:59:59.000Z

86

Computer program design for land treatment systems  

SciTech Connect (OSTI)

Municipal Sludge Land Application expert System (MuSLAXS)is as expert system developed for site assessment and design analysis of municipal sludge application on agricultural land. The system has knowledge on the technical and regulatory aspects of sludge land application and understanding of soil-plant systems for South Carolina. It can be effectively used outside South Carolina with modifications to incorporate specific regulations on land treatment and soil and crop database. A database supports this expert system and provides appropriate default values for sludge and soil characteristics, and fertilizer recommendations for crops commonly grown in South Carolina. Information on the sludge characteristics is gathered from the user, if it is available, or it is retrieved from the sludge database. Based on the recommendations by the EPA and the expert, a list of 22 constituents, for which the sludge should be analyzed is developed. This list includes: total solids, volatile solids, total nitrogen (TNK), ammonia-nitrogen, organic-nitrogen, phosphorus, potassium, sulfur, cadmium, copper, lead, nickel, zinc, PCBs, calcium, magnesium, chromium, boron, arsenic, aluminum, cobalt, and molybdenum.

White, R.K. (Clemson Univ. SC (USA)); Jantrania, A.

1989-10-01T23:59:59.000Z

87

Medical waste treatment and decontamination system  

DOE Patents [OSTI]

The invention discloses a tandem microwave system consisting of a primary chamber in which hybrid microwave energy is used for the controlled combustion of materials. A second chamber is used to further treat the off-gases from the primary chamber by passage through a susceptor matrix subjected to additional hybrid microwave energy. The direct microwave radiation and elevated temperatures provide for significant reductions in the qualitative and quantitative emissions of the treated off gases. The tandem microwave system can be utilized for disinfecting wastes, sterilizing materials, and/or modifying the form of wastes to solidify organic or inorganic materials. The simple design allows on-site treatment of waste by small volume waste generators.

Wicks, George G. (Aiken, SC); Schulz, Rebecca L. (Aiken, SC); Clark, David E. (Gainesville, FL)

2001-01-01T23:59:59.000Z

88

On-Site Wastewater Treatment Systems: Selecting and Permitting (Spanish)  

E-Print Network [OSTI]

This publication explains how to select and obtain a permit for an on-site wastewater treatment system in Texas....

Lesikar, Bruce J.

2005-04-30T23:59:59.000Z

89

K West integrated water treatment system subproject safety analysis document  

SciTech Connect (OSTI)

This Accident Analysis evaluates unmitigated accident scenarios, and identifies Safety Significant and Safety Class structures, systems, and components for the K West Integrated Water Treatment System.

SEMMENS, L.S.

1999-02-24T23:59:59.000Z

90

Modeling Onsite Wastewater Treatment Systems in the Dickinson Bayou Watershed  

E-Print Network [OSTI]

Bayou watershed. HYDRUS was used to simulate conventional septic systems with soil absorption fields, aerobic treatment units (ATUs) with spray dispersal systems, and mound systems. Results found that the simulated conventional systems fail due to high...

Forbis-Stokes, Aaron

2012-10-19T23:59:59.000Z

91

Biological stability of groundwater  

SciTech Connect (OSTI)

Conventional (e.g., coagulation, flocculation, and filtration) or membrane filtration treatment trains were used to remove organic compounds from groundwater. For the conventional train with sand-anthracite columns, the assimilable organic carbon (AOC) of the groundwater was reduced from 349 {+-} 127 {micro}g/L C to 54 {+-} 51 {micro}g/L C. For the membrane filtration train, there was no statistical difference between the AOC of the raw water influent (388 {+-} 126 {micro}g C) and that of the membrane permeate (334 {+-} 156 {micro}g/L C), suggesting that this treatment produced biologically unstable water. Similar results were obtained using the heterotrophic growth response (HGR) method. Comparison of the biostability methods showed that HGR was positively correlated with AOC (r = 0.52; P < 0.0001; n = 156), indicating that AOC only partially explains the ability of heterotrophic bacteria to grow in water samples.

Noble, P.A. [Univ. of Maryland Biotechnology Inst., Baltimore, MD (United States). Center of Marine Biotechnology; Clark, D.L. [Irvine Ranch Water District, CA (United States); Olson, B.H. [Univ. of California, Irvine, CA (United States). School of Social Ecology, Environmental Analysis, and Design

1996-05-01T23:59:59.000Z

92

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Quantifying the role of groundwater in hydrocarbon systems using noble gas  

E-Print Network [OSTI]

UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Quantifying the role of groundwater in hydrocarbon systems using noble gas isotopes (EARTH-15-CB1) Host institution biodegradation of oil can remove its value ­ but what controls the biodegradation? The deep biosphere plays a key

Henderson, Gideon

93

Drought resilience of the California Central Valley surface-groundwater-conveyance system  

SciTech Connect (OSTI)

A series of drought simulations were performed for the California Central Valley using computer applications developed by the California Department of Water Resources and historical datasets representing a range of droughts from mild to severe for time periods lasting up to 60 years. Land use, agricultural cropping patterns, and water demand were held fixed at the 2003 level and water supply was decreased by amounts ranging between 25 and 50%, representing light to severe drought types. Impacts were examined for four hydrologic subbasins, the Sacramento Basin, the San Joaquin Basin, the Tulare Basin, and the Eastside Drainage. Results suggest the greatest impacts are in the San Joaquin and Tulare Basins, regions that are heavily irrigated and are presently overdrafted in most years. Regional surface water diversions decrease by as much as 70%. Stream-to-aquifer flows and aquifer storage declines were proportional to drought severity. Most significant was the decline in ground water head for the severe drought cases, where results suggest that under these scenarios the water table is unlikely to recover within the 30-year model-simulated future. However, the overall response to such droughts is not as severe as anticipated and the Sacramento Basin may act as ground-water insurance to sustain California during extended dry periods.

Miller, N.L.; Dale, L.L.; Brush, C.; Vicuna, S.; Kadir, T.N.; Dogrul, E.C.; Chung, F.I.

2009-05-15T23:59:59.000Z

94

Flexible hybrid membrane treatment systems for tailored nutrient management: A new paradigm in urban wastewater treatment  

E-Print Network [OSTI]

in urban wastewater treatment D. Vuono a , J. Henkel a , J. Benecke a , T.Y. Cath a , T. Reid b , L: Sequencing batch reactor Membrane bioreactor Water reclamation Distributed wastewater treatment Tailored, decentralized, and satellite wastewater treatment systems into existing urban water infrastructure

95

On-Site Wastewater Treatment Systems: Constructed Wetland Media  

E-Print Network [OSTI]

This publication explains the functions, characteristics, choices, configurations and maintenance needs for constructed wetland media in on-site wastewater treatment systems....

Lesikar, Bruce J.; Weaver, Richard; Richter, Amanda; O'Neill, Courtney

2005-02-19T23:59:59.000Z

96

LM to Meet Energy Metering Goals Through Enhanced Data Collection at Groundwater Treatment Systems  

Broader source: Energy.gov [DOE]

The federal government, including the U.S. Department of Energy (DOE) Office of Legacy Management (LM), has been challenged by Executive and DOE orders to reach two goals related to energy usage...

97

Hanford Site Groundwater Monitoring for Fiscal Year 2000  

SciTech Connect (OSTI)

This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2000 on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the central part of the Site. Hexavalent chromium is present in smaller plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath each of the reactor areas, and technetium-99 and uranium are present in the 200 Areas. RCRA groundwater monitoring continued during fiscal year 2000. Vadose zone monitoring, characterization, remediation, and several technical demonstrations were conducted in fiscal year 2000. Soil gas monitoring at the 618-11 burial ground provided a preliminary indication of the location of tritium in the vadose zone and in groundwater. Groundwater modeling efforts focused on 1) identifying and characterizing major uncertainties in the current conceptual model and 2) performing a transient inverse calibration of the existing site-wide model. Specific model applications were conducted in support of the Hanford Site carbon tetrachloride Innovative Treatment Remediation Technology; to support the performance assessment of the Immobilized Low-Activity Waste Disposal Facility; and in development of the System Assessment Capability, which is intended to predict cumulative site-wide effects from all significant Hanford Site contaminants.

Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

2001-03-01T23:59:59.000Z

98

Onsite Wastewater Treatment Systems: Septic Tank/Soil Absorption Field  

E-Print Network [OSTI]

For septic tank and soil absorption systems to work properly, homeowners must choose the right kind of system for their household size and soil type, and they must maintain them regularly. This publication explains the treatment, design, operation...

Lesikar, Bruce J.

2008-10-23T23:59:59.000Z

99

Onsite Wastewater Treatment Systems: Homeowner's Guide to Evaluating Service Contracts  

E-Print Network [OSTI]

This guide helps homeowners who are seeking maintenance services for their onsite wastewater treatment systems (such as septic systems). Included are definitions of common terms used in service contracts, types of service contracts available...

Lesikar, Bruce J.; O'Neill, Courtney; Deal, Nancy; Loomis, George; Gustafson, David; Lindbo, David

2008-10-23T23:59:59.000Z

100

The relationship of the Yucca Mountain repository block to the regional ground-water system: A geochemical model  

SciTech Connect (OSTI)

Yucca Mountain, in southern Nevada, is being studied by the Department of Energy and the State of Nevada as the site of a high-level nuclear waste repository. Geochemical and isotopic modeling were used in this study to define the relationship of the volcanic tuff aquifers and aquitards to the underlying regional carbonate ground-water system. The chemical evolution of a ground water as it passes through a hypothetical tuffaceous aquifer was developed using computer models PHREEQE, WATEQDR and BALANCE. The tuffaceous system was divided into five parts, with specific mineralogies, reaction steps and temperatures. The initial solution was an analysis of a soil water from Rainier Mesa. The ending solution in each part became the initial solution in the next part. Minerals consisted of zeolites, smectites, authigenic feldspars and quartz polymorphs from described diagentic mineral zones. Reaction steps were ion exchange with zeolites. The solution from the final zone, Part V, was chosen as most representative, in terms of pH, element molalities and mineral solubilities, of tuffaceous water. This hypothetical volcanic water from Part V was mixed with water from the regional carbonate aquifer, and the results compared to analyses of Yucca Mountain wells. Mixing and modeling attempts were conducted on wells in which studies indicated upward flow.

Matuska, N.A.; Hess, J.W. [Nevada Univ., Reno, NV (United States). Water Resources Center

1989-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "groundwater treatment system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

On-Site Wastewater Treatment Systems: Trickling Filter  

E-Print Network [OSTI]

Soil absorption field Septic tank Clarifier/Dosing tank Trickling filter On-site wastewater treatment systems Trickling filter Bruce Lesikar and Russell Persyn Extension Agricultural Engineering Specialist, Extension Assistant-Water Conservation... municipal wastewater before cities began using activated sludge aeration systems. Now, homes and businesses use trickling filters in on-site wastewater treatment systems. Each trickling filter system has several components: 3 A septic tank, which removes...

Lesikar, Bruce J.

2000-02-04T23:59:59.000Z

102

Groundwater impact assessment report for the 100-D Ponds  

SciTech Connect (OSTI)

The 183-D Water Treatment Facility (WTF) discharges effluent to the 120-0-1 Ponds (100-D Ponds) located north of the 100-D Area perimeter fence. This report satisfies one of the requirements of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-17-00B as agreed by the US Department of Energy, Washington State Department of Ecology, and the US Environmental Protection Agency. Tri-Party Agreement Milestone M-17-00B includes a requirement to assess impacts to groundwater from disposal of the 183-D WTF effluent to the 100-D Ponds. In addition, the 100-D Ponds are a Resource Conservation and Recovery Act of 1976 treatment, storage, and disposal facility covered by the 100-D Ponds Closure Plan (DOE-RL 1993a). There is evidence of groundwater contamination, primarily nitrate, tritium, and chromium, in the unconfined aquifer beneath the 100-D Area and 100 Areas in general. The contaminant plumes are area wide and are a result of past-practice reactor and disposal operations in the 100-D Area currently being investigated as part of the 100-DR-1 and 100-HR-3 Operable Units (DOE-RL 1992b, 1992a). Based on current effluent conditions, continued operation of the 100-D Ponds will not adversely affect the groundwater quality in the 100-D Area. Monitoring wells near the pond have slightly higher alkaline pH values than wells in the rest of the area. Concentrations of known contaminants in these wells are lower than ambient 100-D Area groundwater conditions and exhibit a localized dilution effect associated with discharges to the pond. Hydraulic impact to the local groundwater system from these discharges is minor. The groundwater monitoring well network for the 100-D Ponds is adequate.

Alexander, D.J.

1993-07-01T23:59:59.000Z

103

Integrated thermal treatment system sudy: Phase 2, Results  

SciTech Connect (OSTI)

This report presents the second phase of a study on thermal treatment technologies. The study consists of a systematic assessment of nineteen thermal treatment alternatives for the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the MLLW. The alternatives considered in Phase 2 were innovative thermal treatments with nine types of primary processing units. Other variations in the study examined the effect of combustion gas, air pollution control system design, and stabilization technology for the treatment residues. The Phase 1 study, the results of which have been published as an interim report, examined ten initial thermal treatment alternatives. The Phase 2 systems were evaluated in essentially the same manner as the Phase 2 systems. The assumptions and methods were the same as for the Phase 1 study. The quantities, and physical and chemical compositions, of the input waste used in he Phase 2 systems differ from those in the Phase 1 systems, which were based on a preliminary waste input database developed at the onset of the Integrated Thermal Treatment System study. The inventory database used in the Phase 2 study incorporates the latest US Department of Energy information. All systems, both primary treatment systems and subsystem inputs, have now been evaluated using the same waste input (2,927 lb/hr).

Feizollahi, F.; Quapp, W.J.

1995-08-01T23:59:59.000Z

104

Groundwater Flow Systems at the Nevada Test Site, Nevada: A Synthesis of Potentiometric Contours, Hydrostratigraphy, and Geologic Structures  

SciTech Connect (OSTI)

Contaminants introduced into the subsurface of the Nevada Test Site by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. The potential for contaminant movement away from the underground test areas and into the accessible environment is greatest by groundwater transport. The primary hydrologic control on this transport is evaluated and examined through a series of contour maps developed to represent the hydraulic-head distribution within each of the major aquifers underlying the area. Aquifers were identified and their extents delineated by merging and analyzing multiple hydrostratigraphic framework models developed by other investigators from existing geologic information. A map of the hydraulic-head distribution in each major aquifer was developed from a detailed evaluation and assessment of available water-level measurements. Multiple spreadsheets that accompany this report provide pertinent water-level and geologic data by well or drill hole. Aquifers are mapped and discussed in general terms as being one of two types: alluvial-volcanic, or carbonate. Both aquifer types are subdivided and mapped as independent regional and local aquifers, based on the continuity of their component rock. Groundwater-flow directions, approximated from potentiometric contours that were developed from the hydraulic-head distribution, are indicated on the maps and discussed for each of the regional aquifers and for selected local aquifers. Hydraulic heads vary across the study area and are interpreted to range in altitude from greater than 5,000 feet in a regional alluvial-volcanic aquifer beneath a recharge area in the northern part of the study area to less than 2,300 feet in regional alluvial-volcanic and carbonate aquifers in the southwestern part of the study area. Flow directions throughout the study area are dominantly south-southwest with some local deviations. Vertical hydraulic gradients between aquifer types are downward throughout most of the study area; however, flow from the alluvial-volcanic aquifer into the underlying carbonate aquifer, where both aquifers are present, is believed to be minor because of an intervening confining unit. Limited exchange of water between aquifer types occurs by diffuse flow through the confining unit, by focused flow along fault planes, or by direct flow where the confining unit is locally absent. Interflow between regional aquifers is evaluated and mapped to define major flow paths. These flow paths delineate tributary flow systems, which converge to form intermediate and regional flow systems. The implications of these flow systems in controlling transport of radionuclides away from the underground test areas at the Nevada Test Site are briefly discussed. Additionally, uncertainties in the delineation of aquifers, the development of potentiometric contours, and the identification of flow systems are identified and evaluated. Eleven tributary flow systems and three larger flow systems are mapped in the Nevada Test Site area. Flow systems within the alluvial-volcanic aquifer dominate the western half of the study area, whereas flow systems within the carbonate aquifer are most prevalent in the southeastern half of the study area. Most of the flow in the regional alluvial-volcanic aquifer that moves through the underground testing area on Pahute Mesa is discharged to the land surface at springs and seeps in Oasis Valley. Flow in the regional carbonate aquifer is internally compartmentalized by major geologic structures, primarily thrust faults, which constrain flow into separate corridors. Contaminants that reach the regional carbonate aquifer from testing areas in Yucca and Frenchman Flats flow toward downgradient discharge areas through the Alkali Flat-Furnace Creek Ranch or Ash Meadows flow systems and their tributaries.

Fenelon, Joseph M.; Sweetkind, Donald S.; Laczniak, Randell J.

2010-01-25T23:59:59.000Z

105

Onsite Wastewater Treatment Systems: Operation and Maintenance  

E-Print Network [OSTI]

To prevent health hazards to people and pollution in the environment, septic tank systems must be operated and maintained properly. This publication explains how septic systems work and how to keep them running properly....

Lesikar, Bruce J.

2008-10-23T23:59:59.000Z

106

E-Print Network 3.0 - arsenic groundwater system Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& AGOGINO Design Strategies and Preliminary Prototype for a Low- Summary: - Cost Arsenic Removal System for Rural Bangladesh Johanna L. Mathieu,*,** Ashok J. Gadgil,*,***...

107

Results of groundwater monitoring at Everest, Kansas, in April 2008.  

SciTech Connect (OSTI)

On September 7, 2005, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) presented a Scoping Memo (Argonne 2005) for preliminary consideration by the Kansas Department of Health and Environment (KDHE), suggesting possible remedial options for the carbon tetrachloride contamination in groundwater at Everest, Kansas. The suggested approaches were discussed by representatives of the KDHE, the CCC/USDA, and Argonne at the KDHE office in Topeka on September 8-9, 2005, along with other technical and logistic issues related to the Everest site. In response to these discussions, the KDHE recommended (KDHE 2005) evaluation of several remedial processes, either alone or in combination, as part of a Corrective Action Study (CAS) for Everest. The primary remedial processes suggested by the KDHE were the following: Hydraulic control by groundwater extraction with aboveground treatment; Air sparging (AS) coupled with soil vapor extraction (SVE) in large-diameter boreholes (LDBs); and Phytoremediation. As a further outcome of the 2005 meeting and as a precursor to development of a possible CAS, the CCC/USDA completed the following supplemental investigations at Everest to address several specific technical concerns discussed with the KDHE: (1) Construction of interpretive cross sections at strategic locations selected by the KDHE along the main plume migration pathway, to depict the hydrogeologic characteristics affecting groundwater flow and contaminant movement (Argonne 2006a). (2) A field investigation in early 2006 (Argonne 2006b), as follows: (a) Installation and testing of a production well and associated observation points, at locations approved by the KDHE, to determine the response of the Everest aquifer to groundwater extraction near the Nigh property. (b) Groundwater sampling for the analysis of volatile organic compounds (VOCs) and the installation of additional permanent monitoring points at locations selected by the KDHE, to further constrain the existing contaminant plume. (c) Resampling of all existing permanent monitoring points for VOCs and biodegradation parameter analyses, at the request of the KDHE. On the basis of these studies (Argonne 2006a,b) and the CCC/USDA's past investigations at Everest (Argonne 2006c), the CCC/USDA concluded that groundwater extraction is not an effective remedial option for the main body of the groundwater plume, and the KDHE concurred (KDHE 2006); the KDHE later noted, however (KDHE 2007a), that this and other technologies might represent viable remedial options in the event of further downgradient migration of the plume toward the intermittent creek. In February 2007, the CCC/USDA presented preliminary analyses of (1) the AS-SVE remedial alternative, incorporating the use of LDBs, and (2) the risks to human health and the environment posed by the observed carbon tetrachloride plume in groundwater (Argonne 2007a). The results of these analyses demonstrated the following: (1) Neither groundwater extraction nor AS-SVE in LDBs represents a practical approach for effective remediation of the groundwater contamination at Everest (near the Nigh property). (2) Periodic sampling and analyses for VOCs conducted by the CCC/USDA documented that the areal extent and range of carbon tetrachloride concentrations detected in the groundwater plume at Everest had changed relatively little from 2000 to 2006. (3) Estimates of groundwater flow and contaminant migration times, based on the hydrogeologic properties of the groundwater flow system identified at Everest (Argonne 2003, 2006b,c), indicated that, at minimum, approximately 4 years would be required for the carbon tetrachloride plume (in the subsurface) to reach the vicinity of the intermittent creek directly west of the Nigh property, and more than 20 years would be required for the contamination to reach the identified groundwater discharge area southwest of the Nigh property. (4) The existing (January-March 2006) plume posed no immediate danger of contamination to the surface waters of the intermittent creek. In lig

LaFreniere, L. M.; Environmental Science Division

2008-11-05T23:59:59.000Z

108

Water Treatment System Cleans Marcellus Shale Wastewater | Department of  

Broader source: Energy.gov (indexed) [DOE]

Water Treatment System Cleans Marcellus Shale Wastewater Water Treatment System Cleans Marcellus Shale Wastewater Water Treatment System Cleans Marcellus Shale Wastewater April 13, 2011 - 1:00pm Addthis Washington, DC - A water treatment system that can turn wastewater into clean water has been shown to reduce potential environmental impacts associated with producing natural gas from shale formations in the Appalachian basin. Altela Inc.'s AltelaRain® 4000 water desalination system was tested at BLX, Inc.'s Sleppy well site in Indiana County, Pa. as part of a National Energy Technology Laboratory (NETL)-sponsored demonstration. During nine continuous months of operation, the unit successfully treated 77 percent of the water stream onsite, providing distilled water as the product. The average treated water cost per barrel over the demonstration period was

109

Water Treatment System Cleans Marcellus Shale Wastewater | Department of  

Broader source: Energy.gov (indexed) [DOE]

Water Treatment System Cleans Marcellus Shale Wastewater Water Treatment System Cleans Marcellus Shale Wastewater Water Treatment System Cleans Marcellus Shale Wastewater April 13, 2011 - 1:00pm Addthis Washington, DC - A water treatment system that can turn wastewater into clean water has been shown to reduce potential environmental impacts associated with producing natural gas from shale formations in the Appalachian basin. Altela Inc.'s AltelaRain® 4000 water desalination system was tested at BLX, Inc.'s Sleppy well site in Indiana County, Pa. as part of a National Energy Technology Laboratory (NETL)-sponsored demonstration. During nine continuous months of operation, the unit successfully treated 77 percent of the water stream onsite, providing distilled water as the product. The average treated water cost per barrel over the demonstration period was

110

Remediation of Groundwater Contaminated with Organics and Radionuclides - An Innovative Approach Eases Traditional Hurdles  

SciTech Connect (OSTI)

Traditional approaches to the remediation of contaminated groundwater, such as pump-and-treat, have been used for many years for the treatment of groundwater contaminated with various organics. However the treatment of groundwater contaminated with organics and radionuclides has been considerably more challenging. Safety and Ecology Corporation (SEC) was recently faced with these challenges while designing a remediation system for the remediation of TCE-contaminated groundwater and soil at the RMI Extrusion Plant in Ashtabula, OH. Under contract with RMI Environmental Services (RMIES), SEC teamed with Regenesis, Inc. to design, implement, and execute a bioremediation system to remove TCE and associated organics from groundwater and soil that was also contaminated with uranium and technetium. The SEC-Regenesis system involved the injection of Hydrogen Release Compound (HRC), a natural attenuation accelerant that has been patented, designed, and produced by Regenesis, to stimulate the reductive dechlorination and remediation of chlorinated organics in subsurface environments. The compound was injected using direct-push Geoprobe rods over a specially designed grid system through the zone of contaminated groundwater. The innovative approach eliminated the need to extract contaminated groundwater and bypassed the restrictive limitations listed above. The system has been in operation for roughly six months and has begun to show considerable success at dechlorinating and remediating the TCE plume and in reducing the radionuclides into insoluble precipitants. The paper will provide an overview of the design, installation, and initial operation phase of the project, focusing on how traditional design challenges of remediating radiologically contaminated groundwater were overcome. The following topics will be specifically covered: a description of the mechanics of the HRC technology; an assessment of the applicability of the HRC technology to contaminated groundwater plumes and other potential remediation opportunities; a discussion of how the implementation of the HRC technology eased permitting issues and other challenges of remediating groundwater contaminated with radionuclides and organics; an overview of the remedial design and installation of the design including the inputs required to design the remediation system; a summary of results achieved to date and a forecast of future results; and a discussion of future needs and lessons learned.

Scott, J.; Case, N.; Coltman, K.

2003-02-25T23:59:59.000Z

111

Numerical Simulation of Inter-basin Groundwater Flow into Northern Yucca Flat, Nevada National Security Site, Using the Death Valley Regional Flow System Model  

SciTech Connect (OSTI)

Models of groundwater flow for the Yucca Flat area of the Nevada National Security Site (NNSS) are under development by the U.S. Department of Energy (DOE) for corrective action investigations of the Yucca Flat-Climax Mine Corrective Action Unit (CAU). One important aspect of these models is the quantity of inter-basin groundwater flow from regional systems to the north. This component of flow, together with its uncertainty, must be properly accounted for in the CAU flow models to provide a defensible regional framework for calculations of radionuclide transport that will support determinations of the Yucca Flat-Climax Mine contaminant boundary. Because characterizing flow boundary conditions in northern Yucca Flat requires evaluation to a higher level of detail than the scale of the Yucca Flat-Climax Mine CAU model can efficiently provide, a study more focused on this aspect of the model was required.

Pohlmann Karl,Ye Ming

2012-03-01T23:59:59.000Z

112

300 Area waste acid treatment system closure plan  

SciTech Connect (OSTI)

The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to the General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999.

LUKE, S.N.

1999-05-17T23:59:59.000Z

113

The Well-Group Distribution of Groundwater Source Heat Pump System Optimized Research  

E-Print Network [OSTI]

It is the key question that how does the well group arrange for application of GWSHP system. Based on the fact that the water movement is the important factor of heat transfer on aquifer, this paper presents two steps analysis method and analyze...

Liu, Z.; Lu, L.; Yoshida, H.

2006-01-01T23:59:59.000Z

114

Optimal Well-Group Distribution of a Groundwater Source Heat Pump System  

E-Print Network [OSTI]

It is critical to determine how the well group arranges for application of the GWSHP system. Based on the fact that water movement is the most important factor influencing heat transfer in an aquifer, this paper presents a two-step analysis method...

Liu, Z.; Lu, L.; Yoshida, H.

2006-01-01T23:59:59.000Z

115

Metropolitan Groundwater Plans (Minnesota) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Groundwater Plans (Minnesota) Groundwater Plans (Minnesota) Metropolitan Groundwater Plans (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Minnesota Program Type Environmental Regulations This section gives metropolitan counties the authority to prepare and adopt groundwater plans, or to grant this responsibility to soil and water

116

On-Site Wastewater Treatment Systems: Evapotranspiration Bed  

E-Print Network [OSTI]

Two-compartment septic tank Loam soil Crushed stone Evapotranspiration bed Wick On-site wastewater treatment systems Evapotranspiration bed Bruce Lesikar Extension Agricultural Engineering Specialist The Texas A&M University System ET systems..., synthetic or concrete liner. A liner is required if the surrounding soil is very permeable, such as in sandy gravel or karst limestone. Unlined systems can be used in highly impermeable soils such as heavy clays. In unlined systems, wastewater is disposed...

Lesikar, Bruce J.

1999-09-01T23:59:59.000Z

117

Idaho waste treatment facility startup testing suspended to evaluate system  

Broader source: Energy.gov (indexed) [DOE]

waste treatment facility startup testing suspended to waste treatment facility startup testing suspended to evaluate system response Idaho waste treatment facility startup testing suspended to evaluate system response June 20, 2012 - 12:00pm Addthis Media Contacts Brad Bugger 208-526-0833 Danielle Miller 208-526-5709 IDAHO FALLS, ID- On Saturday, June 16, startup testing was suspended at the Integrated Waste Treatment Unit (IWTU) located at the U.S. Department of Energy's Idaho Site. Testing and plant heat-up was suspended to allow detailed evaluation of a system pressure event observed during testing on Saturday. Facility startup testing has been ongoing for the past month, evaluating system and component operation and response during operating conditions. No radioactive or hazardous waste has been introduced into the facility,

118

Advanced Water Treatment System: Technological and Economic Evaluations  

Science Journals Connector (OSTI)

The supply of potable water from polluted rivers, lakes, unsafe wells, ... most effective methods to obtain low cost drinking water is desalination. In this chapter, an advanced water treatment system, based on electrodialysis

Artak Barseghyan

2011-01-01T23:59:59.000Z

119

JOINT OPTIMISATION OF SEWER SYSTEM AND TREATMENT PLANT CONTROL  

Science Journals Connector (OSTI)

Large cities in most of the cases are equipped with combined sewer systems discharging to waste water treatment plants. This is also the case for the City of Vienna. This city has just extended its Main Treatm...

HELMUT KROISS

2006-01-01T23:59:59.000Z

120

300 Area waste acid treatment system closure plan. Revision 1  

SciTech Connect (OSTI)

This section provides a description of the Hanford Site, identifies the proposed method of 300 Area Waste Acid Treatment System (WATS) closure, and briefly summarizes the contents of each chapter of this plan.

NONE

1996-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "groundwater treatment system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

On-Site Wastewater Treatment Systems: Selecting and Permitting  

E-Print Network [OSTI]

This publication explains factors to consider when choosing an on-site wastewater treatment system and lists the nine steps required to obtain a permit for one. It includes addresses and phone numbers of Texas Natural Resource Conservation...

Lesikar, Bruce J.

2005-04-30T23:59:59.000Z

122

Integrated thermal treatment system study -- Phase 2 results. Revision 1  

SciTech Connect (OSTI)

This report presents the second phase of a study on thermal treatment technologies. The study consists of a systematic assessment of nineteen thermal treatment alternatives for the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the MLLW. The alternatives considered in Phase 2 were innovative thermal treatments with nine types of primary processing units. Other variations in the study examined the effect of combustion gas, air pollution control system design, and stabilization technology for the treatment residues. The Phase 1 study examined ten initial thermal treatment alternatives. The Phase 2 systems were evaluated in essentially the same manner as the Phase 1 systems. The alternatives evaluated were: rotary kiln, slagging kiln, plasma furnace, plasma gasification, molten salt oxidation, molten metal waste destruction, steam gasification, Joule-heated vitrification, thermal desorption and mediated electrochemical oxidation, and thermal desorption and supercritical water oxidation. The quantities, and physical and chemical compositions, of the input waste used in the Phase 2 systems differ from those in the Phase 1 systems, which were based on a preliminary waste input database developed at the onset of the Integrated Thermal Treatment System study. The inventory database used in the Phase 2 study incorporates the latest US Department of Energy information. All systems, both primary treatment systems and subsystem inputs, have now been evaluated using the same waste input (2,927 lb/hr). 28 refs., 88 figs., 41 tabs.

Feizollahi, F.; Quapp, W.J.

1996-02-01T23:59:59.000Z

123

Review of the integrated thermal and nonthermal treatment system studies  

SciTech Connect (OSTI)

This report contains a review and evaluation of three systems analysis studies performed by LITCO on integrated thermal treatment systems and integrated nonthermal treatment systems for the remediation of mixed low-level waste stored throughout the US Department of Energy weapons complex. The review was performed by an independent team of nine researchers from the Energy and Environmental Research Center, Science Applications International Corporation, the Waste Policy Institute, and Virginia Tech. The three studies reviewed were as follows: Integrated Thermal Treatment System Study, Phase 1--issued July 1994; Integrated Thermal Treatment System Study, Phase 2--issued February 1996; and Integrated Nonthermal Treatment System Study--drafted March 1996. The purpose of this review was to (1) determine whether the assumptions of the studies were adequate to produce an unbiased review of both thermal and nonthermal systems, (2) to identify the critical areas of the studies that would benefit from further investigation, and (3) to develop a standard template that could be used in future studies to assure a sound application of systems engineering.

NONE

1996-08-01T23:59:59.000Z

124

Groundwater Cleanup Progresses at Paducah Site | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Cleanup Progresses at Paducah Site Cleanup Progresses at Paducah Site Groundwater Cleanup Progresses at Paducah Site October 30, 2013 - 12:00pm Addthis Workers drill holes for installation of electrodes as part of a heating system to help clean up contamination. Workers drill holes for installation of electrodes as part of a heating system to help clean up contamination. A crane lifts the carbon treatment system into place. This technology treats vapor pumped to the surface by the belowground heating system. A crane lifts the carbon treatment system into place. This technology treats vapor pumped to the surface by the belowground heating system. The belowground heating system operates in front of the C-400 Cleaning Building. The belowground heating system operates in front of the C-400 Cleaning

125

Acid mine water aeration and treatment system  

DOE Patents [OSTI]

An in-line system is provided for treating acid mine drainage which basically comprises the combination of a jet pump (or pumps) and a static mixer. The jet pump entrains air into the acid waste water using a Venturi effect so as to provide aeration of the waste water while further aeration is provided by the helical vanes of the static mixer. A neutralizing agent is injected into the suction chamber of the jet pump and the static mixer is formed by plural sections offset by 90 degrees.

Ackman, Terry E. (Finleyville, PA); Place, John M. (Bethel Park, PA)

1987-01-01T23:59:59.000Z

126

Catalytic destruction of groundwater contaminants in reactive extraction wells  

DOE Patents [OSTI]

A system for remediating groundwater contaminated with halogenated solvents, certain metals and other inorganic species based on catalytic reduction reactions within reactive well bores. The groundwater treatment uses dissolved hydrogen as a reducing agent in the presence of a metal catalyst, such a palladium, to reduce halogenated solvents (as well as other substituted organic compounds) to harmless species (e.g., ethane or methane) and immobilize certain metals to low valence states. The reactive wells function by removing water from a contaminated water-bearing zone, treating contaminants with a well bore using catalytic reduction, and then reinjecting the treated effluent into an adjacent water-bearing zone. This system offers the advantages of a compact design with a minimal surface footprint (surface facilities) and the destruction of a broad suite of contaminants without generating secondary waste streams.

McNab, Jr., Walt W. (Concord, CA); Reinhard, Martin (Stanford, CA)

2002-01-01T23:59:59.000Z

127

Onsite Wastewater Treatment Systems: Responding to Power Outages and Floods  

E-Print Network [OSTI]

People and the environment can be harmed if a home's onsite wastewater treatment system does not work properly after a flood or power outage. This publication explains the steps to take after such an event to get the system back into service. 4 pp...

Lesikar, Bruce J.; Mechell, Justin; Alexander, Rachel

2008-10-23T23:59:59.000Z

128

POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT  

SciTech Connect (OSTI)

The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of the Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous radiological monitoring of the pool water. The Pool Water Treatment and Cooling System interfaces with the Waste Handling Building System, Site-Generated Radiological Waste Handling System, Site Radiological Monitoring System, Waste Handling Building Electrical System, Site Water System, and the Monitored Geologic Repository Operations Monitoring and Control System.

V. King

2000-06-19T23:59:59.000Z

129

Process modeling for the Integrated Thermal Treatment System (ITTS) study  

SciTech Connect (OSTI)

This report describes the process modeling done in support of the integrated thermal treatment system (ITTS) study, Phases 1 and 2. ITTS consists of an integrated systems engineering approach for uniform comparison of widely varying thermal treatment technologies proposed for treatment of the contact-handled mixed low-level wastes (MLLW) currently stored in the U.S. Department of Energy complex. In the overall study, 19 systems were evaluated. Preconceptual designs were developed that included all of the various subsystems necessary for a complete installation, from waste receiving through to primary and secondary stabilization and disposal of the processed wastes. Each system included the necessary auxiliary treatment subsystems so that all of the waste categories in the complex were fully processed. The objective of the modeling task was to perform mass and energy balances of the major material components in each system. Modeling of trace materials, such as pollutants and radioactive isotopes, were beyond the present scope. The modeling of the main and secondary thermal treatment, air pollution control, and metal melting subsystems was done using the ASPEN PLUS process simulation code, Version 9.1-3. These results were combined with calculations for the remainder of the subsystems to achieve the final results, which included offgas volumes, and mass and volume waste reduction ratios.

Liebelt, K.H.; Brown, B.W.; Quapp, W.J.

1995-09-01T23:59:59.000Z

130

Performance evaluation of granular activated carbon system at Pantex: Rapid small-scale column tests to simulate removal of high explosives from contaminated groundwater  

SciTech Connect (OSTI)

A granular activated carbon (GAC) system is now in operation at Pantex to treat groundwater from the perched aquifer that is contaminated with high explosives. The main chemicals of concern are RDX and HMX. The system consists of two GAC columns in series. Each column is charged with 10,000 pounds of Northwestern LB-830 GAC. At the design flow rate of 325 gpm, the hydraulic loading is 6.47 gpm/ft{sup 2}, and the empty bed contact time is 8.2 minutes per column. Currently, the system is operating at less than 10% of its design flow rate, although flow rate increases are expected in the relatively near future. This study had several objectives: Estimate the service life of the GAC now in use at Pantex; Screen several GACs to provide a recommendation on the best GAC for use at Pantex when the current GAC is exhausted and is replaced; Determine the extent to which natural organic matter in the Pantex groundwater fouls GAC adsorption sites, thereby decreasing the adsorption capacity for high explosives; and Determine if computer simulation models could match the experimental results, thereby providing another tool to follow system performance.

Henke, J.L.; Speitel, G.E. [Univ. of Texas, Austin, TX (United States). Dept. of Civil Engineering] [Univ. of Texas, Austin, TX (United States). Dept. of Civil Engineering

1998-08-01T23:59:59.000Z

131

The Hanford Story: Groundwater  

Broader source: Energy.gov [DOE]

This second chapter of The Hanford Story explains how more than 100 square miles of groundwater under the Hanford Site became contaminated and what workers are doing to restore groundwater to its highest beneficial use.

132

Integrated thermal treatment system study: Phase 1 results. Volume 1  

SciTech Connect (OSTI)

An integrated systems engineering approach is used for uniform comparison of widely varying thermal treatment technologies proposed for management of contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. Ten different systems encompassing several incineration design options are studied. All subsystems, including facilities, equipment, and methods needed for integration of each of the ten systems are identified. Typical subsystems needed for complete treatment of MLLW are incoming waste receiving and preparation (characterization, sorting, sizing, and separation), thermal treatment, air pollution control, primary and secondary stabilization, metal decontamination, metal melting, mercury recovery, lead recovery, and special waste and aqueous waste treatment. The evaluation is performed by developing a preconceptual design package and planning life-cycle cost (PLCC) estimates for each system. As part of the preconceptual design process, functional and operational requirements, flow sheets and mass balances, and conceptual equipment layouts are developed for each system. The PLCC components estimated are technology development, production facility construction, pre-operation, operation and maintenance, and decontamination and decommissioning. Preconceptual design data and other technology information gathered during the study are examined and areas requiring further development, testing, and evaluation are identified and recommended. Using a qualitative method, each of the ten systems are ranked.

Feizollahi, F.; Quapp, W.J.; Hempill, H.G.; Groffie, F.J.

1994-07-01T23:59:59.000Z

133

Process waste treatment system upgrades: Clarifier startup at the nonradiological wastewater treatment plant  

SciTech Connect (OSTI)

The Waste Management Operations Division at Oak Ridge National Laboratory recently modified the design of a reactor/clarifier at the Nonradiological Wastewater Treatment Plant, which is now referred to as the Process Waste Treatment Complex--Building 3608, to replace the sludge-blanket softener/clarifier at the Process Waste Treatment Plant, now referred to as the Process Waste Treatment Complex-Building 3544 (PWTC-3544). This work was conducted because periodic hydraulic overloads caused poor water-softening performance in the PWTC-3544 softener, which was detrimental to the performance and operating costs of downstream ion-exchange operations. Over a 2-month time frame, the modified reactor/clarifier was tested with nonradiological wastewater and then with radioactive wastewater to optimize softening performance. Based on performance to date, the new system has operated more effectively than the former one, with reduced employee radiological exposure, less downtime, lower costs, and improved effluent quality.

Lucero, A.J.; McTaggart, D.R.; Van Essen, D.C.; Kent, T.E.; West, G.D.; Taylor, P.A.

1998-07-01T23:59:59.000Z

134

X-701B Groundwater Remedy Portsmouth Ohio  

Broader source: Energy.gov (indexed) [DOE]

X-701B Groundwater Remediation X-701B Groundwater Remediation ETR Report Date: December 2008 ETR-20 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the X-701B Groundwater Remedy, Portsmouth, Ohio Why DOE-EM Did This Review The Department of Energy (DOE) Portsmouth Paducah Project Office (PPPO) has responsibility for remediation of the X-701B ground water plume with the key contaminant of trichloroethene (TCE). The remedy has been divided into four phases: Phase I- Initial Source Area Treatment, Phase II-Expanded Source Area Treatment, Phase III-Evaluation and Reporting, and Phase IV- Downgradient Remediation and Confirmation of Source Area Treatment. Phase II treatment has injected

135

Bioremediation of contaminated groundwater  

DOE Patents [OSTI]

Disclosed is an apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid (NF) is selected to simulated the growth and reproduction of indigenous subsurface microorganisms capable of degrading the contaminants; an oxygenated fluid (OF) is selected to create an aerobic environment with anaerobic pockets. NF is injected periodically while OF is injected continuously and both are extracted so that both are drawn across the plume. NF stimulates microbial colony growth; withholding it periodically forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is acceptable. NF can be methane and OF be air, for stimulating production of methanotrophs to break down chlorohydrocarbons, especially TCE and tetrachloroethylene.

Hazen, T.C.; Fliermans, C.B.

1994-01-01T23:59:59.000Z

136

Bioremediation of contaminated groundwater  

DOE Patents [OSTI]

An apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid is selected to stimulate the growth and reproduction of indigenous subsurface microorganisms that are capable of degrading the contaminants; an oxygenated fluid is selected to create a generally aerobic environment for these microorganisms to degrade the contaminants, leaving only pockets that are anaerobic. The nutrient fluid is injected periodically while the oxygenated fluid is injected continuously and both are extracted so that both are drawn across the plume. The nutrient fluid stimulates microbial colony growth; withholding it periodicially forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is reduced to an acceptable, preselected level. The nutrient fluid can be methane and the oxygenated fluid air for stimulating production of methanotrophs to break down chlorohydrocarbons, especially trichloroethylene (TCE) and tetrachloroethylene.

Hazen, Terry C. (Augusta, GA); Fliermans, Carl B. (Augusta, GA)

1995-01-01T23:59:59.000Z

137

Hanford Groundwater Contamination Areas Shrink as EM Exceeds Cleanup Goals  

Broader source: Energy.gov (indexed) [DOE]

Groundwater Contamination Areas Shrink as EM Exceeds Groundwater Contamination Areas Shrink as EM Exceeds Cleanup Goals Hanford Groundwater Contamination Areas Shrink as EM Exceeds Cleanup Goals June 26, 2013 - 12:00pm Addthis The 200 West Pump and Treat System is Hanford’s largest facility for treating contaminated groundwater. The 200 West Pump and Treat System is Hanford's largest facility for treating contaminated groundwater. A graphic showing the 200 West Pump and Treat plumes and well network. A graphic showing the 200 West Pump and Treat plumes and well network. The 200 West Pump and Treat System is Hanford's largest facility for treating contaminated groundwater. A graphic showing the 200 West Pump and Treat plumes and well network. RICHLAND, Wash. - Workers supporting groundwater cleanup for EM's

138

Summary of comparative results integrated nonthermal treatment and integrated thermal treatment systems studies  

SciTech Connect (OSTI)

In July 1994, the Idaho National Engineering Laboratory (INEL), under a contract from U.S. Department of Energy`s (DOE) Environment Management Office of Science and Technology (OST, EM-50) published a report entitled {open_quotes}Integrated Thermal Treatment System Study - Phase 1 Results{close_quotes} (EGG-MS-11211). This report was the culmination of over a year of analysis involving scientists and engineers within the DOE complex and from private industry. The purpose of that study was {open_quotes}to conduct a systematic engineering evaluation of a variety of mixed low level waste (MLLW) treatment system alternatives.{close_quotes} The study also {open_quotes}identified the research and development, demonstrations, and testing and evaluation needed to assure unit operability in the most promising alternative system.{close_quotes} This study evaluated ten primary thermal treatment technologies, organized into complete {open_quotes}cradle-to-grave{close_quotes} systems (including complete engineering flow sheets), to treat DOE MLLW and calculated mass balances and 20-year total life cycle costs (TLCC) for all systems. The waste input used was a representative heterogenous mixture of typical DOE MLLW. An additional study was conducted, and then, based on response to these studies, additional work was started to investigate and evaluate non-thermal treatment options on a footing comparable to the effort devoted to thermal options. This report attempts to present a summary overview of the thermal and non-thermal treatment technologies which were examined in detail in the process of the above mentioned reviews.

NONE

1996-12-01T23:59:59.000Z

139

On-Site Wastewater Treatment Systems: Alternative Collection Systems  

E-Print Network [OSTI]

Rural Texas communities have new options for wastewater management infrastructure that are cost effective but still protect human health and environmental quality. Such communities now can combine different kinds of systems in a new approach called...

Lesikar, Bruce J.

2000-08-30T23:59:59.000Z

140

Amchitka Archived Soil & Groundwater Master Reports | Department...  

Office of Environmental Management (EM)

Archived Soil & Groundwater Master Reports Miscellaneous Archived Soil & Groundwater Master Reports Rocky Flats Environmental Technology Site Archived Soil & Groundwater Master...

Note: This page contains sample records for the topic "groundwater treatment system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Groundwater Data Package for Hanford Assessments  

SciTech Connect (OSTI)

This report presents data and interpreted information that supports the groundwater module of the System Assessment Capability (SAC) used in Hanford Assessments. The objective of the groundwater module is to predict movement of radioactive and chemical contaminants through the aquifer to the Columbia River or other potential discharge locations. This data package is being revised as part of the deliverables under the Characterization of Systems Project (#49139) aimed at providing documentation for assessments being conducted under the Hanford Assessments Project (#47042). Both of these projects are components of the Groundwater Remediation and Closure Assessments Projects, managed by the Management and Integration Project (#47043).

Thorne, Paul D.; Bergeron, Marcel P.; Williams, Mark D.; Freedman, Vicky L.

2006-01-31T23:59:59.000Z

142

On-Site Wastewater Treatment Systems: Soil Particle Analysis Procedure  

E-Print Network [OSTI]

Soil is an important component of an on-site wastewater treatment system. This publication explains the composition of soils, the sizing of soil particles, and the ways soil particles are analyzed to determine whether a site is suitable for a...

Lesikar, Bruce J.

2005-08-18T23:59:59.000Z

143

GIS Techniques for Mapping Groundwater Contamination Risk  

Science Journals Connector (OSTI)

The groundwater contamination risk map of a samplealluvial area was produced by using the IlwisGeographical Information System (GIS) to construct andto overlay thematic maps. The risk map has beenderived from the...

Daniela Ducci

1999-11-01T23:59:59.000Z

144

AMEC GEOMATRIX/ARA GROUNDWATER REMEDIAITON TRIP REPORT  

SciTech Connect (OSTI)

City of Rialto, Well No.3 Demonstration System Integration Project, and Baldwin Park Operable Unit, Baldwin Park, California. The groundwater remediation contractors are AMEC Geomatrix and ARA. The sites were visited on July 22, 2008. Fluor Hanford and the U.S. Department of Energy are currently looking at a variety of alternatives to capture carbon tetrachloride, nitrates, and other COCs from 200-ZP-l groundwater. A few of the more important objectives of our visits were to: (1) Evaluate the treatment systems being used by AMEC Geomatrix to address VOCs, perchlorate, NDMA, 1,4,-Dioxane, and 1,2,3 TCP in a drinking water source; (2) Evaluate how effective these treatment methods have been; (3) Determine the types of problems they have encountered with these treatment systems and how they addressed these problems; (4) Determine the types of secondary wastes being generated by the system; (5) Determine how clean of an operation these companies run; and (6) Determine if the site is worth being visited by DOE-RL at a later date.

SIMMONS SA

2008-08-07T23:59:59.000Z

145

Groundwater Protection Plan (West Virginia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Groundwater Protection Plan (West Virginia) Groundwater Protection Plan (West Virginia) Groundwater Protection Plan (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Siting and Permitting Provider Department of Environmental Protection Groundwater Protection Plans (GPPs) are required for all facilities having the potential to impact groundwater. They are "preventive maintenance"

146

STATUS REPORT: Onsite Wastewater Treatment Systems in California jointly presented by:  

E-Print Network [OSTI]

, adequately managed decentralized (onsite) wastewater treatment systems can be a cost effective and long

California Wastewater

147

A Hydrostratigraphic System for Modeling Groundwater Flow and Radionuclide Migration at the Corrective Action Unit Scale, Nevada Test Site and Surrounding Areas, Clark, Lincoln, and Nye Counties, Nevada  

SciTech Connect (OSTI)

Underground Test Area (UGTA) corrective action unit (CAU) groundwater flow and contaminant transport models of the Nevada Test Site (NTS) and vicinity are built upon hydrostratigraphic framework models (HFMs) that utilize the hydrostratigraphic unit (HSU) as the fundamental modeling component. The delineation and three-dimensional (3-D) modeling of HSUs within the highly complex geologic terrain that is the NTS requires a hydrostratigraphic system that is internally consistent, yet flexible enough to account for overlapping model areas, varied geologic terrain, and the development of multiple alternative HFMs. The UGTA CAU-scale hydrostratigraphic system builds on more than 50 years of geologic and hydrologic work in the NTS region. It includes 76 HSUs developed from nearly 300 stratigraphic units that span more than 570 million years of geologic time, and includes rock units as diverse as marine carbonate and siliciclastic rocks, granitic intrusives, rhyolitic lavas and ash-flow tuffs, and alluvial valley-fill deposits. The UGTA CAU-scale hydrostratigraphic system uses a geology-based approach and two-level classification scheme. The first, or lowest, level of the hydrostratigraphic system is the hydrogeologic unit (HGU). Rocks in a model area are first classified as one of ten HGUs based on the rocks ability to transmit groundwater (i.e., nature of their porosity and permeability), which at the NTS is mainly a function of the rocks primary lithology, type and degree of postdepositional alteration, and propensity to fracture. The second, or highest, level within the UGTA CAU-scale hydrostratigraphic system is the HSU, which is the fundamental mapping/modeling unit within UGTA CAU-scale HFMs. HSUs are 3-D bodies that are represented in the finite element mesh for the UGTA groundwater modeling process. HSUs are defined systematically by stratigraphically organizing HGUs of similar character into larger HSUs designations. The careful integration of stratigraphic information in the development of HSUs is important to assure individual HSUs are internally consistent, correlatable, and mappable throughout all the model areas.

Lance Prothro, Sigmund Drellack Jr., Jennifer Mercadante

2009-01-31T23:59:59.000Z

148

Hanford Exceeds Annual Goal for Cleaning up Groundwater near...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

River that are treating contaminated groundwater. Nuclear Chemical Operator Mike Fish monitors operations of a pump-and-treat system at the Hanford site. Nuclear Chemical...

149

Groundwater Protection Act (Iowa) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Groundwater Protection Act (Iowa) Groundwater Protection Act (Iowa) Groundwater Protection Act (Iowa) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Buying & Making Electricity Home Weatherization Water Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Iowa Program Type Environmental Regulations Provider Iowa Department of Natural Resources The Commissioner of the Iowa Department of Natural Resources is required to

150

Westinghouse Cementation Facility of Solid Waste Treatment System - 13503  

SciTech Connect (OSTI)

During NPP operation, several waste streams are generated, caused by different technical and physical processes. Besides others, liquid waste represents one of the major types of waste. Depending on national regulation for storage and disposal of radioactive waste, solidification can be one specific requirement. To accommodate the global request for waste treatment systems Westinghouse developed several specific treatment processes for the different types of waste. In the period of 2006 to 2008 Westinghouse awarded several contracts for the design and delivery of waste treatment systems related to the latest CPR-1000 nuclear power plants. One of these contracts contains the delivery of four Cementation Facilities for waste treatment, s.c. 'Follow on Cementations' dedicated to three locations, HongYanHe, NingDe and YangJiang, of new CPR-1000 nuclear power stations in the People's Republic of China. Previously, Westinghouse delivered a similar cementation facility to the CPR-1000 plant LingAo II, in Daya Bay, PR China. This plant already passed the hot functioning tests successfully in June 2012 and is now ready and released for regular operation. The 'Follow on plants' are designed to package three 'typical' kind of radioactive waste: evaporator concentrates, spent resins and filter cartridges. The purpose of this paper is to provide an overview on the Westinghouse experience to design and execution of cementation facilities. (authors)

Jacobs, Torsten; Aign, Joerg [Westinghouse Electric Germany GmbH, Global Waste Management, Tarpenring 6, D- 22419 Hamburg (Germany)] [Westinghouse Electric Germany GmbH, Global Waste Management, Tarpenring 6, D- 22419 Hamburg (Germany)

2013-07-01T23:59:59.000Z

151

A system for EPID-based real-time treatment delivery verification during dynamic IMRT treatment  

SciTech Connect (OSTI)

Purpose: To design and develop a real-time electronic portal imaging device (EPID)-based delivery verification system for dynamic intensity modulated radiation therapy (IMRT) which enables detection of gross treatment delivery errors before delivery of substantial radiation to the patient.Methods: The system utilizes a comprehensive physics-based model to generate a series of predicted transit EPID image frames as a reference dataset and compares these to measured EPID frames acquired during treatment. The two datasets are using MLC aperture comparison and cumulative signal checking techniques. The system operation in real-time was simulated offline using previously acquired images for 19 IMRT patient deliveries with both frame-by-frame comparison and cumulative frame comparison. Simulated error case studies were used to demonstrate the system sensitivity and performance.Results: The accuracy of the synchronization method was shown to agree within two control points which corresponds to approximately ?1% of the total MU to be delivered for dynamic IMRT. The system achieved mean real-time gamma results for frame-by-frame analysis of 86.6% and 89.0% for 3%, 3 mm and 4%, 4 mm criteria, respectively, and 97.9% and 98.6% for cumulative gamma analysis. The system can detect a 10% MU error using 3%, 3 mm criteria within approximately 10 s. The EPID-based real-time delivery verification system successfully detected simulated gross errors introduced into patient plan deliveries in near real-time (within 0.1 s).Conclusions: A real-time radiation delivery verification system for dynamic IMRT has been demonstrated that is designed to prevent major mistreatments in modern radiation therapy.

Fuangrod, Todsaporn [Faculty of Engineering and Built Environment, School of Electrical Engineering and Computer Science, the University of Newcastle, NSW 2308 (Australia)] [Faculty of Engineering and Built Environment, School of Electrical Engineering and Computer Science, the University of Newcastle, NSW 2308 (Australia); Woodruff, Henry C.; OConnor, Daryl J. [Faculty of Science and IT, School of Mathematical and Physical Sciences, the University of Newcastle, NSW 2308 (Australia)] [Faculty of Science and IT, School of Mathematical and Physical Sciences, the University of Newcastle, NSW 2308 (Australia); Uytven, Eric van; McCurdy, Boyd M. C. [Division of Medical Physics, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba R3E 0V9 (Canada) [Division of Medical Physics, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba R3E 0V9 (Canada); Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); Department of Radiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); Kuncic, Zdenka [School of Physics, University of Sydney, Sydney, NSW 2006 (Australia)] [School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Greer, Peter B. [Faculty of Science and IT, School of Mathematical and Physical Sciences, the University of Newcastle, NSW 2308, Australia and Department of Radiation Oncology, Calvary Mater Newcastle Hospital, Locked Bag 7, Hunter region Mail Centre, Newcastle, NSW 2310 (Australia)] [Faculty of Science and IT, School of Mathematical and Physical Sciences, the University of Newcastle, NSW 2308, Australia and Department of Radiation Oncology, Calvary Mater Newcastle Hospital, Locked Bag 7, Hunter region Mail Centre, Newcastle, NSW 2310 (Australia)

2013-09-15T23:59:59.000Z

152

Threatened groundwater resources in rural India : an example of monitoring  

E-Print Network [OSTI]

in rural areas. Therefore, quality and quantity aspects of groundwater management constitute acute issues the villages, and pollution plumes downgradient of the main inhabited areas. The absence of sewage or solid waste collection and treatment facilities threatens groundwater quality by increasing its chloride

Paris-Sud XI, Université de

153

Onsite Wastewater Treatment Systems: Graywater Use and Water Quality  

E-Print Network [OSTI]

their homes in their landscapes. This reuse of graywater can reduce the amount of wastewater entering sewers or treatment systems, reduce the amount of fresh water used on landscapes and help preserve limited fresh water supplies. Onsite wastewater...-washing machines ? The code excludes water that has washed materials soiled with human waste, such as diapers, and water that has been in contact with toilet waste. This water, known as blackwater, includes flush water from toilets and urinals and wastewater...

Lesikar, Bruce J.; Mechell, Justin; Alexander, Rachel

2008-08-28T23:59:59.000Z

154

Groundwater and Wells (Nebraska)  

Broader source: Energy.gov [DOE]

This section describes regulations relating to groundwater protection, water wells, and water withdrawals, and requires the registration of all water wells in the state.

155

Groundwater Remediation and Modeling  

Science Journals Connector (OSTI)

Because of the authors vantage point, this chapter is necessarily based on experience in ground-water remediation in the United States. Much of that...

Peter Shanahan

1995-01-01T23:59:59.000Z

156

System Modeling, Analysis, and Optimization Methodology for Diesel Exhaust After-treatment Technologies  

E-Print Network [OSTI]

System Modeling, Analysis, and Optimization Methodology for Diesel Exhaust After;System Modeling, Analysis, and Optimization Methodology for Diesel Exhaust After-treatment Technologies, analyzing, and optimizing of complex diesel exhaust after-treatment systems. The methodology presented

de Weck, Olivier L.

157

New Resin Improves Efficiency, Reduces Costs in Hanford Site Groundwater  

Broader source: Energy.gov (indexed) [DOE]

Resin Improves Efficiency, Reduces Costs in Hanford Site Resin Improves Efficiency, Reduces Costs in Hanford Site Groundwater Treatment New Resin Improves Efficiency, Reduces Costs in Hanford Site Groundwater Treatment March 1, 2012 - 12:00pm Addthis RICHLAND, Wash. - A new resin EM, the Richland Operations Office, and contractor CH2M HILL Plateau Remediation Company are using in contaminated groundwater treatment is expected to increase efficiency and reduce costs in the operation of pump-and-treat facilities along the Columbia River at the Hanford site. The higher performance resin, SIR-700, is expected to reduce DOE's estimated operation and maintenance costs over the lifetime of the 100-DX Groundwater Treatment Facility by approximately $20 million. In comparison to this expected cost savings, the construction cost for the treatment

158

Modeling the effects of atmospheric emissions on groundwater composition  

SciTech Connect (OSTI)

A composite model of atmospheric, unsaturated and groundwater transport is developed to evaluate the processes determining the distribution of atmospherically derived contaminants in groundwater systems and to test the sensitivity of simulated contaminant concentrations to input parameters and model linkages. One application is to screen specific atmospheric emissions for their potential in determining groundwater age. Temporal changes in atmospheric emissions could provide a recognizable pattern in the groundwater system. The model also provides a way for quantifying the significance of uncertainties in the tracer source term and transport parameters on the contaminant distribution in the groundwater system, an essential step in using the distribution of contaminants from local, point source atmospheric emissions to examine conceptual models of groundwater flow and transport.

Brown, T.J.

1994-12-31T23:59:59.000Z

159

Hydraulisk och termisk grundvattenmodellering av ett geoenergilager i Stockholmssen; Hydraulic and thermal groundwater modelling of a geothermal energy system in the Stockholmesker.  

E-Print Network [OSTI]

?? Geothermal energy can be extracted from an aquifer, where the groundwater is used as heat exchange medium while heat and cold are stored in (more)

Landstrm, Carolin

2014-01-01T23:59:59.000Z

160

Strategies for automatic online treatment plan reoptimization using clinical treatment planning system: A planning parameters study  

SciTech Connect (OSTI)

Purpose: Adaptive radiation therapy for prostate cancer using online reoptimization provides an improved control of interfractional anatomy variations. However, the clinical implementation of online reoptimization is currently limited by the low efficiency of current strategies and the difficulties associated with integration into the current treatment planning system. This study investigates the strategies for performing fast (?2 min) automatic online reoptimization with a clinical fluence-map-based treatment planning system; and explores the performance with different input parameters settings: dose-volume histogram (DVH) objective settings, starting stage, and iteration number (in the context of real time planning).Methods: Simulated treatments of 10 patients were reoptimized daily for the first week of treatment (5 fractions) using 12 different combinations of optimization strategies. Options for objective settings included guideline-based RTOG objectives, patient-specific objectives based on anatomy on the planning CT, and daily-CBCT anatomy-based objectives adapted from planning CT objectives. Options for starting stages involved starting reoptimization with and without the original plan's fluence map. Options for iteration numbers were 50 and 100. The adapted plans were then analyzed by statistical modeling, and compared both in terms of dosimetry and delivery efficiency.Results: All online reoptimized plans were finished within ?2 min with excellent coverage and conformity to the daily target. The three input parameters, i.e., DVH objectives, starting stage, and iteration number, contributed to the outcome of optimization nearly independently. Patient-specific objectives generally provided better OAR sparing compared to guideline-based objectives. The benefit in high-dose sparing from incorporating daily anatomy into objective settings was positively correlated with the relative change in OAR volumes from planning CT to daily CBCT. The use of the original plan fluence map as the starting stage reduced OAR dose at the mid-dose region, but increased the monitor units by 17%. Differences of only 2cc or less in OAR V50%/V70Gy/V76Gy were observed between 100 and 50 iterations.Conclusions: It is feasible to perform automatic online reoptimization in ?2 min using a clinical treatment planning system. Selecting optimal sets of input parameters is the key to achieving high quality reoptimized plans, and should be based on the individual patient's daily anatomy, delivery efficiency, and time allowed for plan adaptation.

Li, Taoran; Wu, Qiuwen; Zhang, You; Vergalasova, Irina; Lee, W. Robert; Yin, Fang-Fang; Wu, Q. Jackie [Duke Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States)] [Duke Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 and Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States)

2013-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "groundwater treatment system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Innovative wastewater treatment using reversing anaerobic upflow system (RAUS)  

SciTech Connect (OSTI)

Anaerobic processes are widely popular in the treatment of a variety of industrial wastewaters since the development of such high rate treatment processes like upflow anaerobic sludge blanket (UASB), anaerobic filter, and the fluidized-bed process. In order to devise a low cost/high technology system so that it would provide an economical solution to environmentally sound pollution control, the Reversing Anaerobic Upflow System (RAUS) was developed. The system consists of two anaerobic reactors connected to each other. At the beginning, one reactor is fed upwards with wastewater while the other acts as a settling tank. After a set interval of time, the flow is reversed such that the second reactor is fed with wastewater and the first one acts as the settler. This particular feeding pattern had shown improved settling characteristics and granulation of methanogenic biomass from research carried out at the Hannover University with different wastewaters. The biological reaction vessels to which wastewater is introduced intermittently functions basically as a sludge blanket type reactor although the costly integrated settling devices present in a typical UASB system are avoided. The RAUS combines three principle reactor configurations: (1) conventional with sludge recycling; (2) fill and draw or sequential batch, inflow maintained constant during feeding; (3) upflow anaerobic sludge blanket. A pilot scale RAUS was operated for 400 days using distillery wastewater consisting of molasses slop and bottle washing water mixed in the ratio 1:1. This paper discusses the results of pilot scale experiments.

Basu, S.K. [Univ. of Manitoba, Winnipeg, Manitoba (Canada). Environmental Engineering Div.

1996-11-01T23:59:59.000Z

162

Leachate treatment system using constructed wetlands, Town of Fenton sanitary landfill, Broome County, New York. Final report  

SciTech Connect (OSTI)

Municipal sanitary landfills generate leachate that New York State regulations require to be collected and treated to avoid contaminating surface water and groundwater. One option for treating leachate is to haul it to municipal wastewater treatment facility. This option may be expensive, may require excessive energy for transportation, and may require pretreatment to protect the receiving facility`s processes. An alternative is on-site treatment and discharge. Personnel from the Town of Fenton, New York; Hawk Engineering, P.C.; Cornell University; and Ithaca College designed, built, and operated a pilot constructed wetland for treating leachate at the Town of Fenton`s municipal landfill. The system, consisting of two overland flow beds and two subsurface flow beds has been effective for 18 months in reducing levels of ammonia (averaging 85% removal by volatilization and denitrification) and total iron (averaging 95% removal by precipitation and sedimentation), two key constituents of the Fenton landfill`s leachate. The system effects these reductions with zero chemical and energy inputs and minimal maintenance. A third key constituent of the leachate, manganese, apparently passes through the beds with minimal removal. Details and wetland considerations are described.

Not Available

1993-11-01T23:59:59.000Z

163

Hydraulic Containment of TCE Contaminated Groundwater at the DOE Portsmouth Gaseous Diffusion Plant  

SciTech Connect (OSTI)

This paper will describe the progress of a groundwater remedial action at the Portsmouth Gaseous Diffusion Plant (PORTS), a Department of Energy (DOE) facility that enriched uranium from the early 1950's until 2000. The X-749 southern boundary hydraulic containment system, combining a four-well extraction system with a previously constructed subsurface barrier wall, has been employed at PORTS. The hydraulic containment project has been implemented as part of containment and remediation of the X-749/X-120 area trichloroethylene (TCE) contaminant. The X-749/X-120 groundwater contaminant plume is located in the south central section (Quadrant I) of the PORTS facility. The plume is associated with the former X-120 Goodyear Training Facility and a landfill known as the X-749 Contaminated Materials Disposal Facility. The principal contaminants of concern are chlorinated solvents (primarily TCE) and technetium-99 (Tc-99). A subsurface barrier wall (X-749 South Barrier Wall) was completed in 1994 at the PORTS southern reservation boundary as an interim remedial measure to slow the advancement of the leading edge of the contaminated groundwater plume or to prevent the plume from migrating off DOE property. Remedial measures identified by Ohio Environmental Protection Agency (Ohio EPA) included installation of a barrier wall around the eastern and southern portions of the X-749 landfill to provide source control and installation of a phyto-remediation system to help contain groundwater flow and remove volatile organic compounds. Previous remedial measures that were implemented as elements of 'closures' on the X-749 landfill included a multimedia cap, barrier walls, and a groundwater collection system. Despite these measures, the X-749/X-120 groundwater plume has migrated beyond the southern DOE property boundary. Current TCE concentrations in off-site groundwater monitoring wells are below the preliminary remediation goal and drinking water maximum contaminant level for TCE of 5 {mu}g/kg, but continue to increase. Hydraulic containment was selected as the method for controlling the plume at the southern DOE property boundary. Recent borings and pumping tests indicate that approximately a 400-foot section of the existing subsurface barrier wall near the DOE property boundary may been improperly keyed into the Sunbury Shale bedrock which underlies the unconsolidated uppermost Gallia sand and gravel aquifer (Gallia). This gap is reported to be as much as 4 vertical feet. In addition, the X-749 groundwater plume is migrating around the western end of the X-749 South Barrier Wall. Four groundwater extraction wells were installed at the DOE property boundary to provide hydraulic control of the plume currently flowing under and around the existing subsurface barrier wall. Placement of the new extraction wells was based on groundwater modeling and data collected from pumping tests in the area. The extracted groundwater is being sent to the on-site X-622 Groundwater Treatment Facility via subsurface piping. The hydraulic containment system began operation in June 2007. The preliminary water elevations from monitoring wells in the vicinity of two of the four extraction wells demonstrate a significant decrease in groundwater potentiometric head in the southern boundary area. The current extraction rates should be adequate to contain the leading edge of the contaminant plume. Monitoring wells in the area will continue to be sampled on a quarterly basis. (authors)

Lewis, A.C.; Rieske, D.P.G.; Baird, D.R.P.E. [CDM, Piketon, OH (United States)

2008-07-01T23:59:59.000Z

164

A pilot plant to treat chromium-contaminated groundwater  

SciTech Connect (OSTI)

The groundwater at a site in California is contaminated with hexavalent chromium. Different treatment options were tested. The options tested included: carbon adsorption, ion exchange, chemical treatment, reverse osmosis, and in-place fixation. Electrochemical treatment was the treatment of choice. Treatment operations were designed with turn down flexibility to allow operation at variable flow rates. Metal reduction is the first treatment step after collection of the groundwater and lowering of the pH to 3 in an on-line acid tank. Soluble ferrous ions are produced in an off-line electrochemical cell using sacrificial electrodes.

El-Shoubary, Y.; Speizer, N.; Seth, S.; Savoia, H. [Merck Mfg. Div., Somerset, NJ (United States)

1998-12-31T23:59:59.000Z

165

Groundwater Cleanup Operational Changes Are Being Implemented at Fernald Preserve  

Broader source: Energy.gov [DOE]

Uranium contamination in the Great Miami Aquiferat the Fernald Preserve, Ohio, Siteis being removed from the groundwater through a pump-and-treatment operation, which until this year, involved...

166

Evapotranspiration And Geochemical Controls On Groundwater Plumes At Arid Sites: Toward Innovative Alternate End-States For Uranium Processing And Tailings Facilities  

SciTech Connect (OSTI)

Management of legacy tailings/waste and groundwater contamination are ongoing at the former uranium milling site in Tuba City AZ. The tailings have been consolidated and effectively isolated using an engineered cover system. For the existing groundwater plume, a system of recovery wells extracts contaminated groundwater for treatment using an advanced distillation process. The ten years of pump and treat (P&T) operations have had minimal impact on the contaminant plume primarily due to geochemical and hydrological limits. A flow net analysis demonstrates that groundwater contamination beneath the former processing site flows in the uppermost portion of the aquifer and exits the groundwater as the plume transits into and beneath a lower terrace in the landscape. The evaluation indicates that contaminated water will not reach Moenkopi Wash, a locally important stream. Instead, shallow groundwater in arid settings such as Tuba City is transferred into the vadose zone and atmosphere via evaporation, transpiration and diffuse seepage. The dissolved constituents are projected to precipitate and accumulate as minerals such as calcite and gypsum in the deep vadose zone (near the capillary fringe), around the roots of phreatophyte plants, and near seeps. The natural hydrologic and geochemical controls common in arid environments such as Tuba City work together to limit the size of the groundwater plume, to naturally attenuate and detoxify groundwater contaminants, and to reduce risks to humans, livestock and the environment. The technical evaluation supports an alternative beneficial reuse (brownfield) scenario for Tuba City. This alternative approach would have low risks, similar to the current P&T scenario, but would eliminate the energy and expense associated with the active treatment and convert the former uranium processing site into a resource for future employment of local citizens and ongoing benefit to the Native American Nations.

Looney, Brian B.; Denham, Miles E.; Eddy-Dilek, Carol A.; Millings, Margaret R.; Kautsky, Mark

2014-01-08T23:59:59.000Z

167

TECHNICAL EVALUATION OF THE INTERACTION OF GROUNDWATER WITH THE COLUMBIA RIVER AT THE DEPARTMENT OF ENERGY HANFORD SITE 100-D AREA  

SciTech Connect (OSTI)

Groundwater beneath much of Hanford's 100 Areas is contaminated with hexavalent chromium (Cr{sup +6}) as a consequence of treating reactor cooling water to prevent corrosion. Several treatment systems are in place to remove Cr{sup +6} from the groundwater; however, these systems currently do not reduce Cr{sup +6} to concentrations below aquatic standards. Of concern is the transport of Cr{sup +6} to areas within the channel of the river, as sensitive species inhabit the river and its associated transition zone. The aquatic standard for Cr{sup +6} is currently 11 ug/l under the Record of Decision (ROD) for Interim Action and Department of Energy (DOE) currently plans to pursue remediation of the groundwater to achieve the 11 ug/l standard. Because the compliance wells used to monitor the current remediation systems are located some distance from the river, they may not provide an accurate indication of Cr{sup +6} concentrations in the water that reaches the riverbed. In addition, because salmon spawning areas are considered a high priority for protection from Hanford contaminants, it would be advantageous to understand (1) to what extent Cr{sup +6} discharged to the near-shore or river ecosystems is diluted or attenuated and (2) mechanisms that could mitigate the exposure of the river ecosystems to the discharging Cr{sup +6}. The current concentration target for Cr{sup +6} at near-river groundwater monitoring locations is 20 {micro}g/L; it is assumed that this groundwater mixes with river water that contains virtually no chromium to meet Washington Department of Ecology's (Ecology) water quality standard of 10 {micro}g/L in the river environment. This dynamic mixing process is believed to be driven by daily and seasonal changes in river stage and groundwater remediation system operations, and has been validated using analytical data from numerous groundwater samples obtained adjacent to and within the banks of the river. Although the mean mixing factor of river water and site groundwater in this zone has been estimated to be equal parts of groundwater and river water, a wide range of mixing ratios likely occurs at various times of the day and year. The degree of mixing and dilution appears to be greatly influenced by the river stage and other groundwater/surface water interaction. The extent of mixing, thus, has implications for the design and operation of the groundwater remediation systems. Improved understanding of this 'dilution' mechanism is needed to design an optimum 'systems approach' to accelerate remediation of the near-shore contaminant plumes. More information on the pathway from near-river mapped plumes to riverbed receptor locations is also needed to develop a defensible proposed plan for a future ROD for final remedial action of contaminated groundwater. In April 2008, an expert panel of scientists was convened to review existing information and provide observations and suggestions to improve the current understanding of groundwater surface water interactions in the 100 Areas (primarily focusing on 100-D Area), and to identify what additional analyses or approaches may provide critical information needed to design and implement remediation systems that will minimize impacts to river aquatic systems. Specific objectives provided to the panel included: (1) comment on approaches and methods to improve the current understanding of groundwater-surface water interactions, specifically how contaminated groundwater enters the riverbed and how this relates to remediation of chromate in the groundwater in the 100 Areas; (2) evaluate past and current data collection methods, data analysis techniques, assumptions, and groundwater transport and mixing mechanisms; (3) evaluate the current monitoring network (monitoring wells, aquifer tubes, and shoreline/river monitoring); (4) evaluate the role played by modeling; and (5) suggest additional research to fill data gaps and perform modeling.

PETERSEN SW

2008-11-05T23:59:59.000Z

168

ENVIRONMENTAL ASSESSMENT FOR WASTE WATER TREATMENT MODIFICATIONS  

Broader source: Energy.gov (indexed) [DOE]

WASTE WATER TREATMENT MODIFICATIONS WASTE WATER TREATMENT MODIFICATIONS FOR IMPROVED EFFLUENT COMPLIANCE BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK BROOKHAVEN SITE OFFICE JUNE 24, 2011 DOE/EA-1854 i Table of Contents 1.0 INTRODUCTION ............................................................................................................... 1 2.0 SUMMARY ........................................................................................................................ 1 3.0 PURPOSE AND NEED ....................................................................................................17 4.0 ALTERNATIVES ..............................................................................................................17 4.1 Alternative 1 - Groundwater Recharge System (Preferred Alternative) .............. 17

169

Local Board of Health Guide to On-Site Wastewater Treatment Systems  

E-Print Network [OSTI]

Local Board of Health Guide to On-Site Wastewater Treatment Systems ©2006 National Association Side of Cover and is Blank #12;Local Board of Health Guide to On-Site Wastewater Treatment Systems............................................................................................................. 9 WHAT IS WASTEWATER

170

The Groundwater Performance Assessment Project Quality Assurance Plan  

SciTech Connect (OSTI)

U.S. Department of Energy (DOE) has monitored groundwater on the Hanford Site since the 1940s to help determine what chemical and radiological contaminants have made their way into the groundwater. As regulatory requirements for monitoring increased in the 1980s, there began to be some overlap between various programs. DOE established the Groundwater Performance Assessment Project (groundwater project) in 1996 to ensure protection of the public and the environment while improving the efficiency of monitoring activities. The groundwater project is designed to support all groundwater monitoring needs at the site, eliminate redundant sampling and analysis, and establish a cost-effective hierarchy for groundwater monitoring activities. This document provides the quality assurance guidelines that will be followed by the groundwater project. This QA Plan is based on the QA requirements of DOE Order 414.1C, Quality Assurance, and 10 CFR 830, Subpart A--General Provisions/Quality Assurance Requirements as delineated in Pacific Northwest National Laboratorys Standards-Based Management System. In addition, the groundwater project is subject to the Environmental Protection Agency (EPA) Requirements for Quality Assurance Project Plans (EPA/240/B-01/003, QA/R-5). The groundwater project has determined that the Hanford Analytical Services Quality Assurance Requirements Documents (HASQARD, DOE/RL-96-68) apply to portions of this project and to the subcontractors. HASQARD requirements are discussed within applicable sections of this plan.

Luttrell, Stuart P.

2006-05-11T23:59:59.000Z

171

Groundwater abstraction impacts on spring flow and base flow in the Hillsborough River Basin, Florida, USA  

Science Journals Connector (OSTI)

Groundwater abstraction has resulted in spring flow and groundwater base-flow declines in the Hillsborough River system of central Florida, USA. These declines have resulted in reduction of inflows to the Tamp...

Kenneth A. Weber; Robert G. Perry

2006-11-01T23:59:59.000Z

172

E-Print Network 3.0 - air treatment system Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Last Updated: 41702 Summary: , including refrigeration, air conditioning, heating systems, ventilating fans, roof ventilators, exhaust fans... , water treatment equipment,...

173

Impact of Onsite Wastewater Treatment Systems on Nitrogen and Baseflow in Urban Watersheds of Metropolitan Atlanta  

E-Print Network [OSTI]

Impact of Onsite Wastewater Treatment Systems on Nitrogen and Baseflow in Urban Watersheds 2401, Miller Plant Sciences Building Onsite wastewater treatment systems (OWTS) are widely used Septic Wastewater-Treatment Systems on Base Flow in Selected Watersheds in Gwinnett County, Georgia

Arnold, Jonathan

174

Hierarchical predictive control of integrated wastewater treatment systems  

Science Journals Connector (OSTI)

The paper proposes an approach to designing the control structure and algorithms for optimising control of integrated wastewater treatment plant-sewer systems (IWWTS) under a full range of disturbance inputs. The optimised control of IWWTS allows for significant cost savings, fulfilling the effluent discharge limits over a long period and maintaining the system in sustainable operation. Due to the specific features of a wastewater system a hierarchical control structure is applied. The functional decomposition leads to three control layers: supervisory, optimising and follow-up. A temporal decomposition that is applied in order to efficiently accommodate the system's multiple time scales leads to further decomposition of the optimising control layer into three control sublayers: slow, medium, and fast. An extended Kalman Filter is used to carry out an estimation of needed but not measured plant states in real time. The robustly feasible model predictive controller produces manipulated variable trajectories based on a dedicated grey box (GB) model of the biological processes and drawing its physical reality from the well known \\{ASM2d\\} model. The GB model parameters are dependant on the plant operating point and therefore are continuously estimated. As it is impossible to efficiently control the plant under all influent conditions that may occur by using one universal control strategy, different control strategies are designed. Recently developed mechanisms for soft switching between the MPC control strategies are applied in order to smooth the state and control transient processes during the switching. The methodologies and algorithms proposed in the paper are validated by simulation based on real data records from a wastewater system located in Kartuzy, northern Poland. The control system was implemented at the case-study site to generate in real time the control actions that were assessed by the plant operators and verified by simulation based on a calibrated plant model.

M.A. Brdys; M. Grochowski; T. Gminski; K. Konarczak; M. Drewa

2008-01-01T23:59:59.000Z

175

Nebraska Groundwater Management and Protection Act (Nebraska) | Department  

Broader source: Energy.gov (indexed) [DOE]

Nebraska Groundwater Management and Protection Act (Nebraska) Nebraska Groundwater Management and Protection Act (Nebraska) Nebraska Groundwater Management and Protection Act (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Nebraska Program Type Siting and Permitting Provider Natural Resources This section defines broad policy goals concerning the utilization and management of groundwater, and encourages local implementation of these

176

Georgia Groundwater Use Act (Georgia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Groundwater Use Act (Georgia) Groundwater Use Act (Georgia) Georgia Groundwater Use Act (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The purpose of the Georgia Groundwater Use Act is to establish procedures

177

Technology Evaluation for the Big Spring Water Treatment System at the Y-12 National Security Complex, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The Y-12 National Security Complex (Y-12 Complex) is an active manufacturing and developmental engineering facility that is located on the U.S. Department of Energy (DOE) Oak Ridge Reservation. Building 9201-2 was one of the first process buildings constructed at the Y-12 Complex. Construction involved relocating and straightening of the Upper East Fork Poplar Creek (UEFPC) channel, adding large quantities of fill material to level areas along the creek, and pumping of concrete into sinkholes and solution cavities present within the limestone bedrock. Flow from a large natural spring designated as ''Big Spring'' on the original 1943 Stone & Webster Building 9201-2 Field Sketch FS6003 was captured and directed to UEFPC through a drainpipe designated Outfall 51. The building was used from 1953 to 1955 for pilot plant operations for an industrial process that involved the use of large quantities of elemental mercury. Past operations at the Y-12 Complex led to the release of mercury to the environment. Significant environmental media at the site were contaminated by accidental releases of mercury from the building process facilities piping and sumps associated with Y-12 Complex mercury handling facilities. Releases to the soil surrounding the buildings have resulted in significant levels of mercury in these areas of contamination, which is ultimately transported to UEFPC, its streambed, and off-site. Bechtel Jacobs Company LLC (BJC) is the DOE-Oak Ridge Operations prime contractor responsible for conducting environmental restoration activities at the Y-12 Complex. In order to mitigate the mercury being released to UEFPC, the Big Spring Water Treatment System will be designed and constructed as a Comprehensive Environmental Response, Compensation, and Liability Act action. This facility will treat the combined flow from Big Spring feeding Outfall 51 and the inflow now being processed at the East End Mercury Treatment System (EEMTS). Both discharge to UEFPC adjacent to Bldg. 9201-2. The EEMTS treats mercury-contaminated groundwater that collects in sumps in the basement of Bldg. 9201-2. A pre-design study was performed to investigate the applicability of various treatment technologies for reducing mercury discharges at Outfall 51 in support of the design of the Big Spring Water Treatment System. This document evaluates the results of the pre-design study for selection of the mercury removal technology for the treatment system.

Becthel Jacobs Company LLC

2002-11-01T23:59:59.000Z

178

Hanford Site Treating Record Amount of Contaminated Groundwater |  

Broader source: Energy.gov (indexed) [DOE]

Treating Record Amount of Contaminated Groundwater Treating Record Amount of Contaminated Groundwater Hanford Site Treating Record Amount of Contaminated Groundwater July 15, 2013 - 12:00pm Addthis Media Contacts Geoff Tyree, DOE (509) 376-4171 Geoffrey.Tyree@rl.doe.gov Tania Reyes, CHPRC (509) 373-6828 Tania_Reyes@rl.gov Department of Energy goal for fiscal year 2013 met early Note: Photos and graphics are available for downloading on our website link: http://ow.ly/mO5cT RICHLAND, Wash. - U.S. Department of Energy (DOE) contractor CH2M HILL Plateau Remediation Company (CH2M HILL) has exceeded this year's goal for treating 1.4 billion gallons of contaminated groundwater at the Hanford Site in Washington state. "In the last few years, DOE built three new groundwater treatment facilities, and now we are seeing the results," said Briant Charboneau,

179

Hanford Site Treating Record Amount of Contaminated Groundwater |  

Broader source: Energy.gov (indexed) [DOE]

Hanford Site Treating Record Amount of Contaminated Groundwater Hanford Site Treating Record Amount of Contaminated Groundwater Hanford Site Treating Record Amount of Contaminated Groundwater July 15, 2013 - 12:00pm Addthis Media Contacts Geoff Tyree, DOE (509) 376-4171 Geoffrey.Tyree@rl.doe.gov Tania Reyes, CHPRC (509) 373-6828 Tania_Reyes@rl.gov Department of Energy goal for fiscal year 2013 met early Note: Photos and graphics are available for downloading on our website link: http://ow.ly/mO5cT RICHLAND, Wash. - U.S. Department of Energy (DOE) contractor CH2M HILL Plateau Remediation Company (CH2M HILL) has exceeded this year's goal for treating 1.4 billion gallons of contaminated groundwater at the Hanford Site in Washington state. "In the last few years, DOE built three new groundwater treatment facilities, and now we are seeing the results," said Briant Charboneau,

180

Arsenic Removal from Groundwater Using Iron Electrocoagulation: Effect of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Arsenic Removal from Groundwater Using Iron Electrocoagulation: Effect of Arsenic Removal from Groundwater Using Iron Electrocoagulation: Effect of Charge Dosage Rate Title Arsenic Removal from Groundwater Using Iron Electrocoagulation: Effect of Charge Dosage Rate Publication Type Journal Article Refereed Designation Refereed LBNL Report Number LBNL-6221E Year of Publication 2013 Authors Amrose, Susan, Ashok J. Gadgil, Venkat Srinivasan, Kristin Kowolik, Marc Muller, Jessica Huang, and Robert Kostecki Journal Joournal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering Volume 48 Issue 9 Pagination 1019-1030 Date Published 04/2013 Keywords arsenic, bangladesh, Cambodia, dosage rate, electrocoagulation, india, water treatment Abstract We demonstrate that electrocoagulation (EC) using iron electrodes can reduce arsenic below 10 μg/L in synthetic Bangladesh groundwater and in real groundwater from Bangladesh and Cambodia while investigating the effect of operating parameters that are often overlooked, such as charge dosage rate. We measure arsenic removal performance

Note: This page contains sample records for the topic "groundwater treatment system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Modeling and assessment of flow and transport in the Hueco Bolson, a transboundary groundwater system: the El Paso / Cuidad Juarez case  

E-Print Network [OSTI]

. Additionally, historical, current, and future stresses on the Hueco Bolson alluvial aquifer in the El Paso/Ciudad Juarez area due to excessive groundwater withdrawal can affect contaminant migration in the area. In the current study, an updated and improved...

Nwaneshiudu, Okechukwu

2009-05-15T23:59:59.000Z

182

Ion exchange technology in the remediation of uranium contaminated groundwater at Fernald  

SciTech Connect (OSTI)

Using pump and treat methodology, uranium contaminated groundwater is being removed from the Great Miami Aquifer at the Fernald Environmental Management Project (FEMP) per the FEMP Record of Decision (ROD) that defines groundwater cleanup. Standard extraction wells pump about 3900 gallons-per-minute (gpm) from the aquifer through five ion exchange treatment systems. The largest treatment system k the Advanced Wastewater Treatment (AWWT) Expansion System with a capacity of 1800 gpm, which consists of three trains of two vessels. The trains operate in parallel treating 600 gpm each, The two vessels in each train operate in series, one in lead and one in lag. Treated groundwater is either reinfected back into the aquifer to speed up the aquifer cleanup processor discharged to the Great Miami River. The uranium regulatory ROD limit for discharge to the river is 20 parts per billion (ppb), and the FEMP uranium administrative action level for reinfection is 10 ppb. Spent (i.e., a resin that no longer adsorbs uranium) ion exchange resins must either be replaced or regenerated. The regeneration of spent ion exchange resins is considerably more cost effective than their replacement. Therefore, a project was undertaken to learn how best to regenerate the resins in the groundwater vessels. At the outset of this project, considerable uncertainty existed as to whether a spent resin could be regenerated successfully enough so that it performed as well as new resin relative to achieving very low uranium concentrations in the effluent. A second major uncertain y was whether the operational lifetime of a regenerated resin would be similar to that of a new resin with respect to uranium loading capacity and effluent concentration behavior. The project was successful in that a method for regenerating resins has been developed that is operationally efficient, that results in regenerated resins yielding uranium concentrations much lower than regulatory limits, and that results in regenerated resins with operational lifetimes comparable to new resins.

Chris Sutton; Cathy Glassmeyer; Steve Bozich

2000-09-29T23:59:59.000Z

183

Groundwater Protection 7 2007 Site environmental report7-  

E-Print Network [OSTI]

by cleaning up contaminated soil and ground- water, and 4) communicating with stakeholders on groundwater monitoring wells during 2,289 individual sampling events. Twelve groundwater remediation systems removed 198 pounds of volatile organic compounds and returned approximately 1.2 billion gallons of treated water

184

Groundwater Protection 7 2006 Site environmental report7-  

E-Print Network [OSTI]

contaminated soil and ground- water, and 4) communicating with stakeholders on groundwater protection issues and restoration efforts are working. Ground- water monitoring is focused on two general ar during 2,337 individual sampling events. Eleven groundwater remediation systems removed 372 pounds

185

Groundwater Protection 7 2004 SITE ENVIRONMENTAL REPORT7-1  

E-Print Network [OSTI]

) communicating with stakeholders on ground- water protection issues. BNL is committed to protecting groundwater remediation systems removed 652 pounds of volatile organic compounds and returned approximately 1.5 billion gallons of treated water to the Upper Glacial aquifer. Since the beginning of active groundwater

186

Groundwater Protection 7 2005 Site environmental report7-  

E-Print Network [OSTI]

contaminated soil and ground- water, and 4) communicating with stakeholders on groundwater protection issues during 2,567 individual sampling events. Twelve groundwater remediation systems removed 472 pounds of volatile organic compounds and returned approximately 1.7 billion gallons of treated water to the Upper

187

Optimized groundwater containment using linear programming  

SciTech Connect (OSTI)

Groundwater extraction systems are typically installed to contain contaminant plumes. These systems are expensive to install and maintain. A traditional approach to designing such a wellfield is to use a series of trial-and-error simulations to test the effects of various well locations and pump rates. However, optimal locations and pump rates of extraction wells are difficult to determine when the objectives of the potential pumping scheme and the site hydrogeology are considered. This paper describes a case study of an application of linear programming theory to determine optimal well placement and pump rates. Calculations were conducted by using ModMan to link a calibrated MODFLOW flow model with LINDO, a linear programming package. Past activities at the site under study included disposal of contaminants in pits. Several groundwater plumes have been identified, and others may be present. The area of concern is bordered on three sides by a wetland, which receives a portion of its input water budget as groundwater discharge from the disposal area. The objective function of the optimization was to minimize the rate of groundwater extraction while preventing discharge to the marsh across a user-specified boundary. In this manner, the optimization routine selects well locations and pump rates to produce a groundwater divide along this boundary.

Quinn, J.J.; Johnson, R.L.; Durham, L.A.

1998-07-01T23:59:59.000Z

188

Boiler System Efficiency Improves with Effective Water Treatment  

E-Print Network [OSTI]

Water treatment is an important aspect of boiler operation which can affect efficiency or result in damage if neglected. Without effective water treatment, scale can form on boiler tubes, reducing heat transfer, and causing a loss of boiler...

Bloom, D.

189

Modeling the reactive inorganic solute distributions in the groundwater flow systems of the Hanford Site using inverse analytical modeling techniques.  

E-Print Network [OSTI]

??Inverse analytical techniques were used to model solute distributions and determine transport parameters for two flow systems in the Yakima Basalt subgroup at the Hanford (more)

Adamski, Mark Robert

2012-01-01T23:59:59.000Z

190

Lead Groundwater Contamination of Groundwater in the Northeast ...  

E-Print Network [OSTI]

The detailed description of the migration of pollutants is fundamental for the groundwater monitoring and it ... historical data with a, groundwater contamination sampling for water quality analyses ... can be toxic to living organisms. Lead can...

2001-03-12T23:59:59.000Z

191

Buying, Selling and Exporting Groundwater: Implications for Groundwater Conservation Districts  

E-Print Network [OSTI]

in a Sales/ Lease Agreement, by Sandra Burns. Regulation of Exportation of Underground Water, by Doug Caroom. Roberts County Transportation Permits, by C.E. Williams. Export Fees: A Groundwater District Limits and Uses, by Jace Houston. The report also... in Texas, by Ronald Kaiser. Groundwater Transactions: Buyers Perspective, by Russell Johnson. Purchasing Groundwater for Export: The Kinney County Proposal, by Lynn Sherman. Model Lease of Groundwater Rights, by Ned Meister. Protecting Your Land and Water...

Kaiser, Ronald; Lesikar, Bruce A.; Silvey, Valeen

192

ICDP Complex Groundwater Monitoring Plan REV 5  

SciTech Connect (OSTI)

This Groundwater Monitoring Plan, along with the Quality Assurance Project Plan for Waste Area Groups 1, 2, 3, 4, 5, 6, 7, 10, and Removal Actions, constitutes the sampling and analysis plan for groundwater and perched water monitoring at the Idaho CERCLA Disposal Facility (ICDF). A detection monitoring system was installed in the Snake River Plan Aquifer to comply with substantive requirements of "Releases from Solid Waste Management Units" of the Resource Conservation and Recovery Act. This detection monitoring wells constructed in the Snake River Plain Aquifer.

Cahn, L. S.

2007-08-09T23:59:59.000Z

193

In situ heat treatment process utilizing a closed loop heating system  

DOE Patents [OSTI]

Systems and methods for an in situ heat treatment process that utilizes a circulation system to heat one or more treatment areas are described herein. The circulation system may use a heated liquid heat transfer fluid that passes through piping in the formation to transfer heat to the formation. In some embodiments, the piping may be positioned in at least two of the wellbores.

Vinegar, Harold J. (Bellaire, TX); Nguyen, Scott Vinh (Houston, TX)

2010-12-07T23:59:59.000Z

194

Degradation Of Selected Organic Agrochemicals In Artificial Soil Slurry Systems By Anodic Fenton Treatment .  

E-Print Network [OSTI]

??This thesis investigated the application of anodic Fenton treatment to the degradation of several probe agrochemicals in model soil slurry systems. A kinetic model, called (more)

Ye, Peng

2009-01-01T23:59:59.000Z

195

Modeling the reactive inorganic solute distributions in the groundwater flow systems of the Hanford Site using inverse analytical modeling techniques  

E-Print Network [OSTI]

Wallula Gap Row Sand Hallow Flows Sliver Fans Flo Ginkgo Flows Palause Falls Flow Vantage Intarbad Undifferent a e 0 s Rocky Coulee Flow Levering Flow Cohaeeet Row Unnamed Flow Birkett Flow Undifferentiated Flows McCoy Canyon Flow Unnamed... penetrate and have provided water samples for the flow systems in the Frenchman Springs and Rocky Coulee flows are: Ford, McGee, Enyeart, DB-11, RRL-2, DC-16, DC-19, DC-2, DB-15, DC-7, and DC-15. Based on the hydraulic data obtained from these wells...

Adamski, Mark Robert

1993-01-01T23:59:59.000Z

196

An investigation into positron emission tomography contouring methods across two treatment planning systems  

SciTech Connect (OSTI)

Positron emission tomography (PET) imaging has been used to provide additional information regarding patient tumor location, size, and staging for radiotherapy treatment planning purposes. This additional information reduces interobserver variability and produces more consistent contouring. It is well recognized that different contouring methodology for PET data results in different contoured volumes. The goal of this study was to compare the difference in PET contouring methods for 2 different treatment planning systems using a phantom dataset and a series of patient datasets. Contouring methodology was compared on the ADAC Pinnacle Treatment Planning System and the CMS XiO Treatment Planning System. Contours were completed on the phantom and patient datasets using a number of PET contouring methodsthe standardized uptake value 2.5 method, 30%, 40%, and 50% of the maximum uptake method and the signal to background ratio method. Differences of >15% were observed for PET-contoured volumes between the different treatment planning systems for the same data and the same PET contouring methodology. Contoured volume differences between treatment planning systems were caused by differences in data formatting and display and the different contouring tools available. Differences in treatment planning system as well as contouring methodology should be considered carefully in dose-volume contouring and reporting, especially between centers that may use different treatment planning systems or those that have several different treatment planning systems.

Young, Tony, E-mail: Tony.Young@sswahs.nsw.gov.au [Liverpool and Macarthur Cancer Therapy Centres, New South Wales (Australia); Som, Seu [Department of Nuclear Medicine and PET, Liverpool Hospital, New South Wales (Australia); South Western Sydney Clinical School, University of New South Wales, New South Wales (Australia); Sathiakumar, Chithradevi [Department of Nuclear Medicine and PET, Liverpool Hospital, New South Wales (Australia); Holloway, Lois [Liverpool and Macarthur Cancer Therapy Centres, New South Wales (Australia); Institute of Medical Physics, University of Sydney, New South Wales (Australia); Center for Medical Radiation Physics, University of Wollongong, New South Wales (Australia)

2013-04-01T23:59:59.000Z

197

Ground-Water Table and Chemical Changes in an Alluvial Aquifer During  

Broader source: Energy.gov (indexed) [DOE]

Ground-Water Table and Chemical Changes in an Alluvial Aquifer Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells More Documents & Publications Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium

198

Ground-Water Table and Chemical Changes in an Alluvial Aquifer During  

Broader source: Energy.gov (indexed) [DOE]

Ground-Water Table and Chemical Changes in an Alluvial Aquifer Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells More Documents & Publications Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium

199

Electrodialysis in Water Treatment  

Science Journals Connector (OSTI)

This chapter focuses on the uses of electrodialysis and specially electrodialysis reversal for the treatment of brackish and groundwater to produce drinking water. Over the last 1015years,...

Andra Moura Bernardes; Marco A. S. Rodrigues

2014-01-01T23:59:59.000Z

200

Construction Summary and As-Built Report for Ground Water Treatment System  

Broader source: Energy.gov (indexed) [DOE]

Construction Summary and As-Built Report for Ground Water Treatment Construction Summary and As-Built Report for Ground Water Treatment System Monticello, Utah, Permeable Reactive Barrier Site Construction Summary and As-Built Report for Ground Water Treatment System Monticello, Utah, Permeable Reactive Barrier Site Construction Summary and As-Built Report for Ground Water Treatment System Monticello, Utah, Permeable Reactive Barrier Site Construction Summary and As-Built Report for Ground Water Treatment System Monticello, Utah, Permeable Reactive Barrier Site More Documents & Publications Dispersivity Testing of Zero-Valent Iron Treatment Cells: Monticello, Utah, November 2005 Through February 2008 Third (March 2006) Coring and Analysis of Zero-Valent Iron Permeable Reactive Barrier, Monticello, Utah Performance Assessment and Recommendations for Rejuvenation of a Permeable

Note: This page contains sample records for the topic "groundwater treatment system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

MODIFIED REVERSE OSMOSIS SYSTEM FOR TREATMENT OF PRODUCED WATERS  

SciTech Connect (OSTI)

This final report of ''Modified Reverse Osmosis System for Treatment of Produced Water,'' DOE project No. DE-FC26-00BC15326 describes work performed in the third year of the project. Several good results were obtained, which are documented in this report. The compacted bentonite membranes were replaced by supported bentonite membranes, which exhibited the same salt rejection capability. Unfortunately, it also inherited the clay expansion problem due to water invasion into the interlayer spaces of the compacted bentonite membranes. We noted that the supported bentonite membrane developed in the project was the first of its kind reported in the literature. An {alpha}-alumina-supported MFI-type zeolite membrane synthesized by in-situ crystallization was fabricated and tested. Unlike the bentonite clay membranes, the zeolite membranes maintained stability and high salt rejection rate even for a highly saline solution. Actual produced brines from gas and oil fields were then tested. For gas fields producing brine, the 18,300 ppm TDS (total dissolved solids) in the produced brine was reduced to 3060 ppm, an 83.3% rejection rate of 15,240 ppm salt rejection. For oilfield brine, while the TDS was reduced from 181,600 ppm to 148,900 ppm, an 18% rejection rate of 32,700 ppm reduction, the zeolite membrane was stable. Preliminary results show the dissolved organics, mainly hydrocarbons, did not affect the salt rejection. However, the rejection of organics was inconclusive at this point. Finally, the by-product of this project, the {alpha}-alumina-supported Pt-Co/Na Y catalytic zeolite membrane was developed and demonstrated for overcoming the two-step limitation of nonoxidation methane (CH{sub 4}) conversion to higher hydrocarbons (C{sub 2+}) and hydrogen (H{sub 2}). Detailed experiments to obtain quantitative results of H{sub 2} generation for various conditions are now being conducted. Technology transfer efforts included five manuscripts submitted to peer-reviewed journals and five conference presentations.

Robert L. Lee; Junghan Dong

2004-06-03T23:59:59.000Z

202

Dosimetric evaluation of PLATO and Oncentra treatment planning systems for High Dose Rate (HDR) brachytherapy gynecological treatments  

SciTech Connect (OSTI)

This study compares the dosimetric differences in HDR brachytherapy treatment plans calculated with Nucletron's PLATO and Oncentra MasterPlan treatment planning systems (TPS). Ten patients (1 T1b, 1 T2a, 6 T2b, 2 T4) having cervical carcinoma, median age of 43.5 years (range, 34-79 years) treated with tandem and ring applicator in our institution were selected retrospectively for this study. For both Plato and Oncentra TPS, the same orthogonal films anterior-posterior (AP) and lateral were used to manually draw the prescription and anatomical points using definitions from the Manchester system and recommendations from the ICRU report 38. Data input for PLATO was done using a digitizer and Epson Expression 10000XL scanner was used for Oncentra where the points were selected on the images in the screen. The prescription doses for these patients were 30 Gy to points right A (RA) and left A (LA) delivered in 5 fractions with Ir-192 HDR source. Two arrangements: one dwell position and two dwell positions on the tandem were used for dose calculation. The doses to the patient points right B (RB) and left B (LB), and to the organs at risk (OAR), bladder and rectum for each patient were calculated. The mean dose and the mean percentage difference in dose calculated by the two treatment planning systems were compared. Paired t-tests were used for statistical analysis. No significant differences in mean RB, LB, bladder and rectum doses were found with p-values > 0.14. The mean percent difference of doses in RB, LB, bladder and rectum are found to be less than 2.2%, 1.8%, 1.3% and 2.2%, respectively. Dose calculations based on the two different treatment planning systems were found to be consistent and the treatment plans can be made with either system in our department without any concern.

Singh, Hardev; De La Fuente Herman, Tania; Showalter, Barry; Thompson, Spencer J.; Syzek, Elizabeth J.; Herman, Terence; Ahmad, Salahuddin [Department of Radiation Oncology, Peggy and Charles Stephenson Oklahoma Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 (United States)

2012-10-23T23:59:59.000Z

203

Waste Isolation Pilot Plant Groundwater Protection Management Program Plan  

SciTech Connect (OSTI)

The DOE established the Groundwater Monitoring Program (GMP) (WP 02-1) to monitor groundwater resources at WIPP. In the past, the GMP was conducted to establish background data of existing conditions of groundwater quality and quantity in the WIPP vicinity, and to develop and maintain a water quality database as required by regulation. Today the GMP is conducted consistent with 204.1.500 NMAC (New MexicoAdministrative Code), "Adoption of 40 CFR [Code of Federal Regulations] Part 264,"specifically 40 CFR 264.90 through 264.101. These sections of 20.4.1 NMAC provide guidance for detection monitoring of groundwater that is, or could be, affected by waste management activities at WIPP. Detection monitoring at WIPP is designed to detect contaminants in the groundwater long before the general population is exposed. Early detection will allow cleanup efforts to be accomplished before any exposure to the general population can occur. Title 40 CFR Part 264, Subpart F, stipulates minimum requirements of Resource Conservation and Recovery Act of 1976 (42 United States Code [U.S.C.] 6901 et seq.) (RCRA) groundwater monitoring programs including the number and location of monitoring wells; sampling and reporting schedules; analytical methods and accuracy requirements; monitoring parameters; and statistical treatment of monitoring data. This document outlines how WIPP intends to protect and preserve groundwater within the WIPP Land Withdrawal Area (WLWA). Groundwater protection is just one aspect of the WIPP environmental protection effort. An overview of the entire environmental protection effort can be found in DOE/WIPP 99-2194, Waste Isolation Pilot Plant Environmental Monitoring Plan. The WIPP GMP is designed to statistically determine if any changes are occurring in groundwater characteristics within and surrounding the WIPP facility. If a change is noted, the cause will then be determined and the appropriate corrective action(s) initiated.

Washington Regulatory and Environmental Services

2005-07-01T23:59:59.000Z

204

Matlab Tools: An Alternative to Planning Systems in Brachytherapy Treatments  

SciTech Connect (OSTI)

This work proposes the use of the Matlab environment to obtain the treatment dose based on the reported data by Krishnaswamy and Liu et al. The comparison with reported measurements is showed for the Amersham source model. For the 3M source model, measurements with TLDs and a Monte Carlo simulation are compared to the data obtained by Matlab. The difference for the Amersham model is well under the 15% recommended by the IAEA and for the 3M model, although the difference is greater, the results are consistent. The good agreement to the reported data allows the Matlab calculations to be used in daily brachytherapy treatments.

Herrera, Higmar [Departamento de Fisica Medica, Centro Estatal de Cancerologia, 5 de febrero y Norman Fuentes s/n, Durango, 34000 (Mexico); Rodriguez, Mercedes [Instituto de Fisica, UNAM, Circuito de la Investigacion Cientifica s/n, Ciudad Universitaria, Coyoacan, DF, 04510 (Mexico); Rodriguez, Miguel [Departamento de Biofisica, Instituto Nacional de Cancerologia, Av. San Fernando 22, Col. Seccion XVI, Tlalpan, DF, 14080 (Mexico)

2006-09-08T23:59:59.000Z

205

Environmental Groundwater Monitoring Report  

Office of Legacy Management (LM)

-460 -460 Environmental Groundwater Monitoring Report Third Quarter, 1997 October 1997 Approved for public release; further dissemination unlimited. Environmental Restoration U.S. Department of Energy Nevada Operations Office This report has been reproduced directly from the best available copy. 1 - I : ~vailablk to DOE and DOE contractors from the. Office of Scientific - and Technical .Information, P.O. Box 62, Oak Ridge, TN 3783 1 ; prices available from (423) 576-840 1. Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22 16 1, telephone (703) 487-4650. RULISON SITE GROUNDWATER MONITORING REPORT THIRD QUARTER, 1997 DOE Nevada Operations Office Las Vegas, Nevada

206

Questa Baseline and Pre-Mining Ground-Water Quality Investigation. 3. Historical Ground-Water  

E-Print Network [OSTI]

............................................................................................................................................................... 9 Mine history and ground-water development ....................................................................................................................................................... 11 Ground-water quality database.......................................................................................................................................................... 29 Compilation of complete database

207

On-Site Wastewater Treatment Systems: Gravel-less Pipe  

E-Print Network [OSTI]

Gravel-less pipe systems distribute treated wastewater into the soil. This publication lists the advantages and disadvantages of gravel-less pipe systems, explains how to maintain them and gives estimates of costs....

Lesikar, Bruce J.

2000-04-10T23:59:59.000Z

208

MODIFIED REVERSE OSMOSIS SYSTEM FOR TREATMENT OF PRODUCED WATERS  

SciTech Connect (OSTI)

This report describes work performed during the second year of the project ''Modified reverse osmosis system for treatment of produced waters.'' We performed two series of reverse osmosis experiments using very thin bentonite clay membranes compacted to differing degrees. The first series of 10 experiments used NaCl solutions with membranes that ranged between 0.041 and 0.064mm in thickness. Our results showed compaction of such ultra-thin clay membranes to be problematic. The thickness of the membranes was exceeded by the dimensional variation in the machined experimental cell and this is believed to have resulted in local bypassing of the membrane with a resultant decrease in solute rejection efficiency. In two of the experiments, permeate flow was varied as a percentage of the total flow to investigate results of changing permeate flow on solute rejection. In one experiment, the permeate flow was varied between 2.4 and 10.3% of the total flow with no change in solute rejection. In another experiment, the permeate flow was varied between 24.6 and 52.5% of the total flow. In this experiment, the solute rejection rate decreased as the permeate occupied greater fractions of the total flow. This suggests a maximum solute rejection efficiency for these clay membranes for a permeate flow of between 10.3 and 24.6% of the total; flow. Solute rejection was found to decrease with increasing salt concentration and ranged between 62.9% and 19.7% for chloride and between 61.5 and 16.8% for sodium. Due to problems with the compaction procedure and potential membrane bypassing, these rejection rates are probably not the upper limit for NaCl rejection by bentonite membranes. The second series of four reverse osmosis experiments was conducted with a 0.057mm-thick bentonite membrane and dilutions of a produced water sample with an original TDS of 196,250 mg/l obtained from a facility near Loco Hill, New Mexico, operated by an independent. These experiments tested the separation efficiency of the bentonite membrane for each of the dilutions. We found that membrane efficiency decreased with increasing solute concentration and with increasing TDS. The rejection of SO{sub 4}{sup 2-} was greater than Cl{sup -}. This may be because the SO{sub 4}{sup 2-} concentration was much lower than the Cl{sup -} concentration in the waters tested. The cation rejection sequence varied with solute concentration and TDS. The solute rejection sequence for multi-component solutions is difficult to predict for synthetic membranes; it may not be simple for clay membranes either. The permeate flows in our experiments were 4.1 to 5.4% of the total flow. This suggests that very thin clay membranes may be useful for some separations. Work on development of a spiral-wound clay membrane module found that it is difficult to maintain compaction of the membrane if the membrane is rolled and then inserted in the outer tube. A different design was tried using a cylindrical clay membrane and this also proved difficult to assemble with adequate membrane compaction. The next step is to form the membrane in place using hydraulic pressure on a thin slurry of clay in either water or a nonpolar organic solvent such as ethanol. Technology transfer efforts included four manuscripts submitted to peer-reviewed journals, two abstracts, and chairing a session on clays as membranes at the Clay Minerals Society annual meeting.

T.M. Whitworth; Liangxiong Li

2002-09-15T23:59:59.000Z

209

Surface Water and Groundwater Use and Protection (Mississippi) | Department  

Broader source: Energy.gov (indexed) [DOE]

Surface Water and Groundwater Use and Protection (Mississippi) Surface Water and Groundwater Use and Protection (Mississippi) Surface Water and Groundwater Use and Protection (Mississippi) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Mississippi Program Type Environmental Regulations Siting and Permitting

210

Sulfate Reduction in Groundwater: Characterization and Applications for Remediation  

SciTech Connect (OSTI)

Sulfate is ubiquitous in groundwater, with both natural and anthropogenic sources. Sulfate reduction reactions play a significant role in mediating redox conditions and biogeochemical processes for subsurface systems. They also serve as the basis for innovative in-situ methods for groundwater remediation. An overview of sulfate reduction in subsurface environments is provided, with a specific focus on implications for groundwater remediation. A case study presenting the results of a pilot-scale ethanol injection test illustrates the advantages and difficulties associated with the use of electron-donor amendments for sulfate remediation.

Miao, Z.; Brusseau, M. L.; Carroll, Kenneth C.; Carreon-Diazconti, C.; Johnson, B.

2012-06-01T23:59:59.000Z

211

Optimized remedial groundwater extraction using linear programming  

SciTech Connect (OSTI)

Groundwater extraction systems are typically installed to remediate contaminant plumes or prevent further spread of contamination. These systems are expensive to install and maintain. A traditional approach to designing such a wellfield uses a series of trial-and-error simulations to test the effects of various well locations and pump rates. However, the optimal locations and pump rates of extraction wells are difficult to determine when objectives related to the site hydrogeology and potential pumping scheme are considered. This paper describes a case study of an application of linear programming theory to determine optimal well placement and pump rates. The objectives of the pumping scheme were to contain contaminant migration and reduce contaminant concentrations while minimizing the total amount of water pumped and treated. Past site activities at the area under study included disposal of contaminants in pits. Several groundwater plumes have been identified, and others may be present. The area of concern is bordered on three sides by a wetland, which receives a portion of its input budget as groundwater discharge from the pits. Optimization of the containment pumping scheme was intended to meet three goals: (1) prevent discharge of contaminated groundwater to the wetland, (2) minimize the total water pumped and treated (cost benefit), and (3) avoid dewatering of the wetland (cost and ecological benefits). Possible well locations were placed at known source areas. To constrain the problem, the optimization program was instructed to prevent any flow toward the wetland along a user-specified border. In this manner, the optimization routine selects well locations and pump rates so that a groundwater divide is produced along this boundary.

Quinn, J.J.

1995-12-31T23:59:59.000Z

212

GROUNDWATER PROTECTION MANAGEMENT PROGRAM DESCRIPTION.  

SciTech Connect (OSTI)

THE DEPARTMENT OF ENERGY ORDER 5400.1, GENERAL ENVIRONMENTAL PROTECTION PROGRAM, REQUIRES THE DEVELOPMENT AND IMPLEMENTATION OF A GROUNDWATER PROTECTION PROGRAM. THE BNL GROUNDWATER PROTECTION MANAGEMENT PROGRAM DESCRIPTION PROVIDES AN OVERVIEW OF HOW THE LABORATORY ENSURES THAT PLANS FOR GROUNDWATER PROTECTION, MONITORING, AND RESTORATION ARE FULLY DEFINED, INTEGRATED, AND MANAGED IN A COST EFFECTIVE MANNER THAT IS CONSISTENT WITH FEDERAL, STATE, AND LOCAL REGULATIONS.

PAQUETTE,D.E.; BENNETT,D.B.; DORSCH,W.R.; GOODE,G.A.; LEE,R.J.; KLAUS,K.; HOWE,R.F.; GEIGER,K.

2002-05-31T23:59:59.000Z

213

groundwater | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Groundwater Monitoring at NETL-Albany Contact NETL Key Staff Mission and Overview History Organization Awards & Recognition Education Site Enviromental Quality Visiting NETL Ground...

214

Attached growth fungal system for corn wet milling wastewater treatment.  

E-Print Network [OSTI]

??High organic strength food-processing wastewaters are typically treated with conventional aerobic systems such as an activated sludge process that produces substantial quantities of low value (more)

Jasti, Nagapadma

2006-01-01T23:59:59.000Z

215

Questions about Groundwater Conservation Districts in Texas  

E-Print Network [OSTI]

Groundwater conservation districts (GCDs) are being created in many parts of Texas to allow local citizens to manage and protect their groundwater. This publication answers frequently asked questions about groundwater and GCDs....

Lesikar, Bruce J.; Silvy, Valeen

2008-09-22T23:59:59.000Z

216

Assessment of an ultrafiltration pre-treatment system for a seawater reverse osmosis plant  

Science Journals Connector (OSTI)

The seawater reverse osmosis system requires extensive pre-treatment in order to ensure reliable performance. The conventional pre-treatment system involves dosing of chemicals, which requires frequent monitoring of raw water quality, and also involves adjusting the dosage. Besides being cumbersome, there is a lot of time lag involved in carrying out these measures. This calls for pre-treatment systems based on physicochemical mechanisms. During the last few years, Ultrafiltration (UF) has emerged as a leading unit operation in order to render raw seawater compatible with reverse osmosis operations. In this context, the Desalination Division of BARC has already installed an operational UF pre-treatment system. In this paper, we examine the role of UF in the overall operations of the seawater reverse osmosis system.

S.A. Tiwari; D. Goswami; S. Prabhakar; P.K. Tewari

2006-01-01T23:59:59.000Z

217

On-Site Wastewater Treatment Systems: Leaching Chambers  

E-Print Network [OSTI]

Leaching chambers distribute treated wastewater into the soil. This publication lists the advantages and disadvantages of leaching chamber systems, explains how to maintain them and gives estimates of costs....

Lesikar, Bruce J.

2000-02-04T23:59:59.000Z

218

Groundwater Discharge Permit and Registration (New Hampshire)  

Broader source: Energy.gov [DOE]

The Groundwater Discharge Permitting and Registration Program seeks to protect groundwater quality by establishing standards, criteria, and procedures for wastewater discharges. The program...

219

Anatomy of a Groundwater Uranium Plume  

Broader source: Energy.gov [DOE]

Groundwater containing legacy contaminants (pollutants that remain after their sources have been controlled) moves through aquifers in response to the hydraulic gradient. As the groundwater moves,...

220

Most modern wastewater treatment systems rely on microbial processes to remove contaminants. This makes wastewater  

E-Print Network [OSTI]

Most modern wastewater treatment systems rely on microbial processes to remove contaminants. This makes wastewater treatment one of the largest biotechnology industries in the world. In New Zealand alone, about 1.5 billion litres of treated domestic wastewater is discharged each day

Auckland, University of

Note: This page contains sample records for the topic "groundwater treatment system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Modeling of recycling oxic and anoxic treatment system for swine wastewater using neural networks  

Science Journals Connector (OSTI)

A recycling reactor system operated under sequential anoxic and oxic conditions for the treatment of swine wastewater has been developed, in which piggery slurry ... treated and then part of the effluent is recycled

Jung-Hye Choi; Jun-Il Sohn; Hyun-Sook Yang

2000-10-01T23:59:59.000Z

222

Reverse-Osmosis Filtration Based Water Treatment and Special Water Purification for Nuclear Power Systems  

Science Journals Connector (OSTI)

This paper is devoted to the development and operation of specialized water treatment and water purification systems, based on the principle of reverse-osmosis filtration of water, for the operation of ... P. Ale...

V. N. Epimakhov; M. S. Oleinik; L. N. Moskvin

2004-04-01T23:59:59.000Z

223

Tomorrow`s energy today for cities and counties -- Alternative wastewater treatment: Advanced Integrated Pond systems  

SciTech Connect (OSTI)

This report provides a discussion of the design, construction, operation, and maintenance of the Advanced Integrated Pond System as an alternative for other more costly municipal waste water treatment plants.

Not Available

1993-10-01T23:59:59.000Z

224

REMOVAL AND FATE OF SPECIFIC MICROBIAL PATHOGENS WITHIN ON-SITE WASTEWATER TREATMENT SYSTEMS  

E-Print Network [OSTI]

and retention of Salmonella spp., Cryptosporidium parvum oocysts, fecal coliforms, fecal streptococci and colimale-specific coliphages in a septic tank, aerobic treatment unit, sand filter and constructed wetland that are receiving domestic wastewater. 2.... An aerobic treatment unit was installed during the course of this project at a nearby community center. Sand filter/Subsurface Drip Application System The sand filter/subsurface drip application system was constructed at a two- bedroom residence...

Pillai, Suresh D.; Lesikar, Bruce A.

225

Review of the integrated thermal and nonthermal treatment system studies. Final report  

SciTech Connect (OSTI)

This report contains a review and evaluation of three systems analysis studies performed by LITCO on integrated thermal treatment systems and integrated nonthermal treatment systems for the remediation of mixed low-level waste stored throughout the US Department of Energy weapons complex. The review was performed by an independent team of nine researchers from the Energy and Environmental Research Center, Science Applications International Corporation, the Waste Policy Institute, and Virginia Tech. The three studies reviewed were as follows: Integrated Thermal Treatment System Study, Phase 1 -- issued July 1994; Integrated Thermal Treatment System Study, Phase 2 -- issued February 1996; and Integrated Nonthermal Treatment System Study -- drafted March 1996. The purpose of this review was to (1) determine whether the assumptions of the studies were adequate to produce an unbiased review of both thermal and nonthermal systems, (2) to identify the critical areas of the studies that would benefit from further investigation, and (3) to develop a standard template that could be used in future studies to assure a sound application of systems engineering.

NONE

1996-10-01T23:59:59.000Z

226

STATUS REPORT: Onsite Wastewater Treatment Systems in California jointly presented by:  

E-Print Network [OSTI]

The regulation of onsite wastewater treatment systems will be undergoing significant changes in California in the coming years. Recent legislation has mandated that the State Water Resources Control Board develop and adopt statewide regulations by January 2004. These will be the first statewide regulations governing the use of onsite wastewater treatment in California. There are approximately 1.2 million onsite wastewater treatment systems in California, serving more than 3.5 million people, or 10 % of the states population. Since 1990, ten percent of new housing starts use onsite systems and this trend should continue for the foreseeable future. Onsite/decentralized systems are an integral part of the infrastructure used to support continued growth and development in the state. In April 1997, EPA published its Response to Congress on Use of Decentralized Wastewater Treatment Systems which concluded that, overall, adequately managed decentralized (onsite) wastewater treatment systems can be a cost effective and long-term option for meeting public health and water quality goals, particularly for small, suburban, and rural areas. Our dependence on onsite technologies has led to renewed interest in how they work. The performance of these systems is an important consideration in protecting the public health and water quality in the state. If onsite systems are recharging Californias

California Wastewater

227

Groundwater surveillance plan for the Oak Ridge Reservation  

SciTech Connect (OSTI)

US Department of Energy (DOE) Order 5400.1 requires the preparation of environmental monitoring plans and implementation of environmental monitoring programs for all DOE facilities. The order identifies two distinct components of environmental monitoring, namely effluent monitoring and environmental surveillance. In general, effluent monitoring has the objectives of characterizing contaminants and demonstrating compliance with applicable standards and permit requirements, whereas environmental surveillance has the broader objective of monitoring the effects of DOE activities on on- and off-site environmental and natural resources. The purpose of this document is to support the Environmental Monitoring Plan for the Oak Ridge Reservation (ORR) by describing the groundwater component of the environmental surveillance program for the DOE facilities on the ORR. The distinctions between groundwater effluent monitoring and groundwater surveillance have been defined in the Martin Marietta Energy Systems, Inc., Groundwater Surveillance Strategy. As defined in the strategy, a groundwater surveillance program consists of two parts, plant perimeter surveillance and off-site water well surveillance. This document identifies the sampling locations, parameters, and monitoring frequencies for both of these activities on and around the ORR and describes the rationale for the program design. The program was developed to meet the objectives of DOE Order 5400.1 and related requirements in DOE Order 5400.5 and to conform with DOE guidance on environmental surveillance and the Energy Systems Groundwater Surveillance Strategy.

Forstrom, J.M. [Oak Ridge K-25 Site, TN (United States); Smith, E.D.; Winters, S.L. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Haase, C.S.; King, H.L. [Oak Ridge Y-12 Plant, TN (United States); McMaster, W.M. [McMaster (W.M.), Heiskell, TN (United States)

1994-07-01T23:59:59.000Z

228

Quasi-three dimensional ground-water modeling of the hydrologic influence of paleozoic rocks on the ground-water table at Yucca Mountain, Nevada  

E-Print Network [OSTI]

The proposed high-level radioactive waste repository site at Yucca Mountain, Nevada, has created a need to understand the, ground-water system at the site. One of the important hydrologic characteristics is a steep gradient on the ground-water table...

Lee, Si-Yong

2012-06-07T23:59:59.000Z

229

Summary - X-701B Groundwater Remedy, Portsmouth, Ohio  

Broader source: Energy.gov (indexed) [DOE]

X-701B Groundwater Remediation ETR Report Date: December 2008 ETR-20 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the X-701B Groundwater Remedy, Portsmouth, Ohio Why DOE-EM Did This Review The Department of Energy (DOE) Portsmouth Paducah Project Office (PPPO) has responsibility for remediation of the X-701B ground water plume with the key contaminant of trichloroethene (TCE). The remedy has been divided into four phases: Phase I- Initial Source Area Treatment, Phase II-Expanded Source Area Treatment, Phase III-Evaluation and Reporting, and Phase IV- Downgradient Remediation and Confirmation of Source Area Treatment. Phase II treatment has injected catalyzed hydrogen peroxide without meeting the

230

Cost-effective treatment looks at entire production system  

SciTech Connect (OSTI)

The determination of cost-effectiveness is best undertaken after the most advantageous approach to solving the problem is selected. Focusing the approach on the injection well could result in the addition of corrosion inhibitor, paraffin inhibitor, biocide and scale inhibitor, with the possible incorporation of a flotation system and a filter. Alternatively, the approach can focus on treating the problem at the battery. The approach highlighted in this paper focuses on the initial effort on defining and solving the problems occurring at the producing well. Field histories of such programs carried out in the Persian Basin illustrate that this approach reduced the battery workload. The next phase focuses on solving problems that originate at the battery to reduce the injection well load.

Evans, S. (Conoco Inc., Houston, TX (US))

1990-01-01T23:59:59.000Z

231

Classification of groundwater at the Nevada Test Site  

SciTech Connect (OSTI)

Groundwater occurring at the Nevada Test Site (NTS) has been classified according to the ``Guidelines for Ground-Water Classification Under the US Environmental Protection Agency (EPA) Ground-Water Protection Strategy`` (June 1988). All of the groundwater units at the NTS are Class II, groundwater currently (IIA) or potentially (IIB) a source of drinking water. The Classification Review Area (CRA) for the NTS is defined as the standard two-mile distance from the facility boundary recommended by EPA. The possibility of expanding the CRA was evaluated, but the two-mile distance encompasses the area expected to be impacted by contaminant transport during a 10-year period (EPA,s suggested limit), should a release occur. The CRA is very large as a consequence of the large size of the NTS and the decision to classify the entire site, not individual areas of activity. Because most activities are located many miles hydraulically upgradient of the NTS boundary, the CRA generally provides much more than the usual two-mile buffer required by EPA. The CRA is considered sufficiently large to allow confident determination of the use and value of groundwater and identification of potentially affected users. The size and complex hydrogeology of the NTS are inconsistent with the EPA guideline assumption of a high degree of hydrologic interconnection throughout the review area. To more realistically depict the site hydrogeology, the CRA is subdivided into eight groundwater units. Two main aquifer systems are recognized: the lower carbonate aquifer system and the Cenozoic aquifer system (consisting of aquifers in Quaternary valley fill and Tertiary volcanics). These aquifer systems are further divided geographically based on the location of low permeability boundaries.

Chapman, J.B.

1994-08-01T23:59:59.000Z

232

Remediation of the Highland Drive South Ravine, Port Hope, Ontario: Contaminated Groundwater Discharge Management Using Permeable Reactive Barriers and Contaminated Sediment Removal - 13447  

SciTech Connect (OSTI)

The Highland Drive South Ravine (HDSR) is the discharge area for groundwater originating from the Highland Drive Landfill, the Pine Street North Extension (PSNE) roadbed parts of the Highland Drive roadbed and the PSNE Consolidation Site that contain historical low-level radioactive waste (LLRW). The contaminant plume from these LLRW sites contains elevated concentrations of uranium and arsenic and discharges with groundwater to shallow soils in a wet discharge area within the ravine, and directly to Hunt's Pond and Highland Drive South Creek, which are immediately to the south of the wet discharge area. Remediation and environmental management plans for HDSR have been developed within the framework of the Port Hope Project and the Port Hope Area Initiative. The LLRW sites will be fully remediated by excavation and relocation to a new Long-Term Waste Management Facility (LTWMF) as part of the Port Hope Project. It is projected, however, that the groundwater contaminant plume between the remediated LLRW sites and HDSR will persist for several hundreds of years. At the HDSR, sediment remediation within Hunt's Ponds and Highland Drive South Creek, excavation of the existing and placement of clean fill will be undertaken to remove current accumulations of solid-phase uranium and arsenic associated with the upper 0.75 m of soil in the wet discharge area, and permeable reactive barriers (PRBs) will be used for in situ treatment of contaminated groundwater to prevent the ongoing discharge of uranium and arsenic to the area in HDSR where shallow soil excavation and replacement has been undertaken. Bench-scale testing using groundwater from HDSR has confirmed excellent treatment characteristics for both uranium and arsenic using permeable reactive mixtures containing granular zero-valent iron (ZVI). A sequence of three PRBs containing ZVI and sand in backfilled trenches has been designed to intercept the groundwater flow system prior to its discharge to the ground surface and the creek and ponds in the HDSR. The first of the PRBs will be installed immediately up-gradient of the wet discharge area approximately 50 m from the creek, the other two will be installed across the area of shallow soil replacement, and all will extend from ground surface to the base of the water table aquifer through which the impacted groundwater flows. The PRBs have been designed to provide the removal of uranium and arsenic for decades, although the capacity of the treatment mixture for contaminant removal suggests that a longer period of treatment may be feasible. The environmental management plan includes an allowance for on-going monitoring, and replacement of a PRB(s) as might be required. (authors)

Smyth, David; Roos, Gillian [Golder Associates Ltd., 2390 Argentia Road, Mississauga, ON L5N 5Z7 (Canada)] [Golder Associates Ltd., 2390 Argentia Road, Mississauga, ON L5N 5Z7 (Canada); Ferguson Jones, Andrea [MMM Group Ltd., 100 Commerce Valley Drive West, Thornhill, ON L3T 0A1 (Canada)] [MMM Group Ltd., 100 Commerce Valley Drive West, Thornhill, ON L3T 0A1 (Canada); Case, Glenn [AECL Port Hope Area Initiative Management Office, 115 Toronto Road, Port Hope, ON L1A 3S4 (Canada)] [AECL Port Hope Area Initiative Management Office, 115 Toronto Road, Port Hope, ON L1A 3S4 (Canada); Yule, Adam [Public Works and Government Services Canada, 4900 Yonge Street, 11th Floor, Toronto, ON, M2N 6A6 (Canada)] [Public Works and Government Services Canada, 4900 Yonge Street, 11th Floor, Toronto, ON, M2N 6A6 (Canada)

2013-07-01T23:59:59.000Z

233

JGI - Why Sequence Contaminated Groundwater?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contaminated Groundwater? Contaminated Groundwater? Because the majority of microorganisms in nature have never been cultured, little is known about their genetic properties, biochemical functions, and metabolic characteristics. Although the sequence of the microbial community "genome" can now be determined with high-throughput sequencing technology, the complexity and magnitude of most microbial communities make meaningful data acquisition and interpretation difficult. Thus, the sequence determination of a groundwater microbial community with manageable diversity and complexity (~20 phylotypes) is a timely challenge. The samples for this project come from the Natural and Accelerated Bioremediation Research (NABIR) Field Research Center (FRC), Well FW-010. The overall objective is to provide a fundamental and comprehensive

234

Managing Texas Groundwater Resources through Groundwater Conservation Districts  

E-Print Network [OSTI]

This publication gives an overview of Texas water law and the regulations governing groundwater conservation districts. The powers and responsibilities of districts are summarized. Color maps show the coverage of existing conservation and special...

Fipps, Guy

2002-03-01T23:59:59.000Z

235

Hanford Site groundwater monitoring for fiscal year 1996  

SciTech Connect (OSTI)

This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1996 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that affected groundwater quality on the site. Characterization and monitoring of the vadose zone during FY 1996 comprised primarily spectral gamma logging, soil-gas monitoring, and electrical resistivity tomography. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1995 and June 1996. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Smaller plumes of strontium-90, technetium-99, and plutonium also were present at levels above the U.S. Environmental Protection Agency or State of Washington interim drinking water standards. Uranium concentrations greater than the proposed drinking water standard were also observed. Nitrate, fluoride, chromium, carbon tetrachloride, chloroform, trichloroethylene, and cis-1,2-dichlomethylene were present in groundwater samples at levels above their U.S. Environmental Protection Agency or State of Washington maximum contaminant levels. The nitrate plume is the most extensive. Three-dimensional, numerical, groundwater models were applied to the Hanford Site to predict contaminant-flow paths and the impact of operational changes on site groundwater conditions. Other models were applied to assess the performance of three separate pump-and-treat systems.

Hartman, M.J.; Dresel, P.E.; Borghese, J.V. [eds.] [and others] [eds.; and others

1997-02-01T23:59:59.000Z

236

The Savannah River Site's groundwater monitoring program  

SciTech Connect (OSTI)

The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During third quarter 1990 (July through September) EPD/EMS conducted routine sampling of monitoring wells and drinking water locations. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. All analytical results from third quarter 1990 are listed in this report, which is distributed to all site custodians. One or more analytes exceeded Flag 2 in 87 monitoring well series. Analytes exceeded Flat 2 for the first since 1984 in 14 monitoring well series. In addition to groundwater monitoring, EPD/EMS collected drinking water samples from SRS drinking water systems supplied by wells. The drinking water samples were analyzed for radioactive constituents.

Not Available

1991-05-06T23:59:59.000Z

237

Microsoft Word - Groundwater Discharge Permit  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

State Renews Groundwater Discharge Permit for WIPP CARLSBAD, N.M., September 11, 2008 - The New Mexico Environment Department (NMED) has renewed the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) groundwater discharge permit until 2013. The permit regulates the discharge of water from WIPP facilities and operations to lined ponds, which protect groundwater resources. The permit allows WIPP to discharge domestic wastewater, non-hazardous wastewater and storm water into 13 on-site, synthetically-lined ponds. The new permit also provides for increased daily discharge volumes to allow more flexibility in plant operations. "This permit is the result of a positive year-long effort with the New Mexico Groundwater Quality Bureau," said Jody Plum, DOE Carlsbad Field Office Permitting and

238

Groundwater Conservation Districts: Success Stories  

E-Print Network [OSTI]

Demand for water is increasing, so our aquifers must be conserved and protected. The Groundwater Conservation Districts in Texas are carrying out a number of successful programs in the areas of education and public awareness, technical assistance...

Porter, Dana; Persyn, Russell A.; Enciso, Juan

1999-09-06T23:59:59.000Z

239

Illinois Groundwater Protection Act (Illinois)  

Broader source: Energy.gov [DOE]

It is the policy of the State of Illinois to restore, protect, and enhance the groundwaters of the State, as a natural and public resource. The State recognizes the essential and pervasive role of...

240

Hanford Site Groundwater Monitoring for Fiscal Year 2005  

SciTech Connect (OSTI)

This report is one of the major products and deliverables of the Groundwater Remediation and Closure Assessment Projects detailed work plan for FY 2006, and reflects the requirements of The Groundwater Performance Assessment Project Quality Assurance Plan (PNNL-15014). This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2005 on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes in groundwater are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. The largest portions of these plumes are migrating from the central Hanford Site to the southeast, toward the Columbia River. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the west-central part of the Hanford Site. Hexavalent chromium is present in plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath all but one of the reactor areas. Technetium-99 and uranium plumes exceeding standards are present in the 200 Areas. A uranium plume underlies the 300 Area. Minor contaminant plumes with concentrations greater than standards include carbon-14, cesium-137, cis-1,2-dichloroethene, cyanide, fluoride, plutonium, and trichloroethene. Monitoring for the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 is conducted in 11 groundwater operable units. The purpose of this monitoring is to define and track plumes and to monitor the effectiveness of interim remedial actions. Interim groundwater remediation in the 100 Areas continued with the goal of reducing the amount of chromium (100-K, 100-D, and 100-H) and strontium-90 (100-N) reaching the Columbia River. The objective of two interim remediation systems in the 200 West Area is to prevent the spread of carbon tetrachloride and technetium-99/uranium plumes. Resource Conservation and Recovery Act of 1976 groundwater monitoring continued at 25 waste management areas during fiscal year 2005: 15 under interim or final status detection programs and data indicate that they are not adversely affecting groundwater, 8 under interim status groundwater quality assessment programs to assess contamination, and 2 under final status corrective-action programs. During calendar year 2005, drillers completed 27 new monitoring wells, and decommissioned (filled with grout) 115 unneeded wells. Vadose zone monitoring, characterization, and remediation continued in fiscal year 2005. Remediation and associated monitoring continued at a soil-vapor extraction system in the 200 West Area, which removes gaseous carbon tetrachloride from the vadose zone. DOE uses geophysical methods to monitor potential movement of contamination beneath former waste sites.

Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

2006-02-28T23:59:59.000Z

Note: This page contains sample records for the topic "groundwater treatment system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Flow calculations for Yucca Mountain groundwater travel time (GWTT-95)  

SciTech Connect (OSTI)

In 1983, high-level radioactive waste repository performance requirements related to groundwater travel time were defined by NRC subsystem regulation 10 CFR 60.113. Although DOE is not presently attempting to demonstrate compliance with that regulation, understanding of the prevalence of fast paths in the groundwater flow system remains a critical element of any safety analyses for a potential repository system at Yucca Mountain, Nevada. Therefore, this analysis was performed to allow comparison of fast-path flow against the criteria set forth in the regulation. Models developed to describe the conditions for initiation, propagation, and sustainability of rapid groundwater movement in both the unsaturated and saturated zones will form part of the technical basis for total- system analyses to assess site viability and site licensability. One of the most significant findings is that the fastest travel times in both unsaturated and saturated zones are in the southern portion of the potential repository, so it is recommended that site characterization studies concentrate on this area. Results support the assumptions regarding the importance of an appropriate conceptual model of groundwater flow and the incorporation of heterogeneous material properties into the analyses. Groundwater travel times are sensitive to variation/uncertainty in hydrologic parameters and in infiltration flux at upper boundary of the problem domain. Simulated travel times are also sensitive to poorly constrained parameters of the interaction between flow in fractures and in the matrix.

Altman, S.J.; Arnold, B.W.; Barnard, R.W.; Barr, G.E.; Ho, C.K.; McKenna, S.A.; Eaton, R.R.

1996-09-01T23:59:59.000Z

242

Technical analysis of advanced wastewater-treatment systems for coal-gasification plants  

SciTech Connect (OSTI)

This analysis of advanced wastewater treatment systems for coal gasification plants highlights the three coal gasification demonstration plants proposed by the US Department of Energy: The Memphis Light, Gas and Water Division Industrial Fuel Gas Demonstration Plant, the Illinois Coal Gasification Group Pipeline Gas Demonstration Plant, and the CONOCO Pipeline Gas Demonstration Plant. Technical risks exist for coal gasification wastewater treatment systems, in general, and for the three DOE demonstration plants (as designed), in particular, because of key data gaps. The quantities and compositions of coal gasification wastewaters are not well known; the treatability of coal gasification wastewaters by various technologies has not been adequately studied; the dynamic interactions of sequential wastewater treatment processes and upstream wastewater sources has not been tested at demonstration scale. This report identifies key data gaps and recommends that demonstration-size and commercial-size plants be used for coal gasification wastewater treatment data base development. While certain advanced treatment technologies can benefit from additional bench-scale studies, bench-scale and pilot plant scale operations are not representative of commercial-size facility operation. It is recommended that coal gasification demonstration plants, and other commercial-size facilities that generate similar wastewaters, be used to test advanced wastewater treatment technologies during operation by using sidestreams or collected wastewater samples in addition to the plant's own primary treatment system. Advanced wastewater treatment processes are needed to degrade refractory organics and to concentrate and remove dissolved solids to allow for wastewater reuse. Further study of reverse osmosis, evaporation, electrodialysis, ozonation, activated carbon, and ultrafiltration should take place at bench-scale.

Not Available

1981-03-31T23:59:59.000Z

243

Time and motion study for alternative mixed low-level waste treatment systems  

SciTech Connect (OSTI)

The time and motion study was developed to look at time-related aspects of the technologies and systems studied in the Integrated Thermal Treatment Systems (ITTS) and Integrated Nonthermal Treatment Systems (INTS) studies. The INTS and ITTS studies combined technologies into systems and subsystems for evaluation. The system approach provides DOE a method of measuring advantages and disadvantages of the many technologies currently being researched. For example, technologies which are more likely to create secondary waste or require extensive pretreatment handling may be less desirable than technologies which require less support from other processes. The time and motion study was designed to address the time element in the INTS and ITTS systems studies. Previous studies have focused on material balance, cost, technical effectiveness, regulatory issues, community acceptance, and operability. This study looks at system dynamics by estimating the treatment time required for a unit of waste, from receipt to certification for shipping. Labor estimates are also developed, based on the time required to do each task for each process. This focus on time highlights critical path processes and potential bottlenecks in the INTS and ITTS systems.

Biagi, C.; Vetromile, J.; Teheranian, B.

1997-02-01T23:59:59.000Z

244

7-1 1999 SITE ENVIRONMENTAL REPORT CHAPTER 7: GROUNDWATER PROTECTION  

E-Print Network [OSTI]

Ground- water Protection Management Program is to ensure that plans for groundwater protection of the environment by cleaning up contami- nated soil and ground- water, and (4) communicating with interested and one offsite groundwater remediation systems removed approximately 634 pounds of volatile organic

245

A residence-time-based transport approach for the groundwater pathway in performance assessment models  

Science Journals Connector (OSTI)

This paper presents the theoretical development and numerical implementation of a new modeling approach for representing the groundwater pathway in risk assessment or performance assessment model of a contaminant transport system. The model developed ... Keywords: Groundwater pathway, Mixing model, Performance assessment, Residence time distribution

Bruce A. Robinson; Shaoping Chu

2013-03-01T23:59:59.000Z

246

Bikini Atoll groundwater development  

SciTech Connect (OSTI)

Nuclear weapons testing during the 1950's has left the soil and ground water on Bikini Atoll contaminated with cesium-137, and to a lesser extent, strontium-90. Plans currently are underway for the clean-up and resettlement of the atoll by removal of approximately the upper 30 cm of soil. Any large-scale resettlement program must include provisions for water supply. This will be achieved principally by catchment and storage of rain water, however, since rainfall in Bikini is highly seasonal and droughts occur frequently, ground water development must also be considered. The quantity of potable ground water that can be developed is limited by its salinity and radiological quality. The few ground water samples available from Bikini, which have been collected from only about the top meter of the groundwater body, indicate that small bodies of potable ground water exist on Bikini and Eneu, the two principal living islands, but that cesium and strontium in the Bikioni ground water exceed drinking water standards. In order to make a reasonable estimate of the ground water development potential for the atoll, some 40 test boreholes will be drilled during July/August 1985, and a program of water quality monitoring initiated. This paper will describe preliminary results of the drilling and monitoring work.

Peterson, F.L.

1985-01-01T23:59:59.000Z

247

Effectiveness of AOC removal by advanced water treatment systems: a case study  

Science Journals Connector (OSTI)

Recently, the appearance of assimilable organic carbon (AOC) in the water treatment system and effluent of the treatment plant has brought more attention to the environmental engineers. In this study, AOC removal efficiency at the Cheng-Ching Lake water treatment plant (CCLWTP) was evaluated. The main objectives of this study were to: (1) evaluate the treatability of AOC by the advanced treatment system at the CCLWTP, (2) assess the relativity of AOC and the variations of other water quality indicators, (3) evaluate the effects of sodium thiosulfate on AOC analysis, and (4) evaluate the efficiency of biofiltration process using granular activated carbon (GAC) and anthracite as the fillers. Results show that the averaged influent and final effluent AOC concentrations at the CCLWTP were approximately 124 and 30 ?g acetate-C/L, respectively. Thus, the treatment plant had an AOC removal efficiency of about 76%, and the AOC concentrations in the final effluent met the criteria established by the CCLWTP (50 ?g acetate-C/L). Results indicate that the biofiltration process might contribute to the removal of the trace AOC in the GAC filtration process. Moreover, the removal of AOC had a correlation with the decrease in concentrations of other drinking water indicators. Results from a column test show that GAC was a more appropriate material than anthracite for the AOC removal. Results from this study provide us insight into the mechanisms of AOC removal by advanced water treatment processes. These findings would be helpful in designing a modified water treatment system for AOC removal and water quality improvement.

C.C. Chien; C.M. Kao; C.D. Dong; T.Y. Chen; J.Y. Chen

2007-01-01T23:59:59.000Z

248

Quarterly report of RCRA groundwater monitoring data for period October 1 through December 31, 1994  

SciTech Connect (OSTI)

Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs as defined in the Resource Conservation and Recovery Act of 1976 (RCRA); and {open_quotes}Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities{close_quotes} (Title 40 Code of Federal Regulations [CFR] Part 265), as amended. Compliance with the 40 CFR 265 regulations is required by the Washington Administrative Code (WAC) 173-303. This report contains data from Hanford Site groundwater monitoring projects. The location of each facility is shown. Westinghouse Hanford Company (WHC) manages the RCRA groundwater monitoring projects for federal facilities on the Hanford Site. Performing project management, preparing groundwater monitoring plans, well network design and installation, specifying groundwater data needs, performing quality control (QC) oversight, data management, and preparing project sampling schedules are all parts of this responsibility. Pacific Northwest Laboratory (PNL) administers the contract for analytical services and provides groundwater sampling services to WHC for the RCRA groundwater monitoring program. This quarterly report contains data received between October and December 1994, which are the cutoff dates for this reporting period. This report may contain not only data from the October through December quarter, but also data from earlier sampling events that were not previously reported.

NONE

1995-04-01T23:59:59.000Z

249

Statement of work for definitive design of the K basins integrated water treatment system project  

SciTech Connect (OSTI)

This Statement of Work (SOW) identifies the scope of work and schedule requirements for completing definitive design of the K Basins Integrated Water Treatment Systems (IWTS) Subproject. This SOW shall form the contractual basis between WHC and the Design Agent for the Definitive Design.

Pauly, T.R., Westinghouse Hanford

1996-07-16T23:59:59.000Z

250

Preliminary design report for the K basins integrated water treatment system  

SciTech Connect (OSTI)

This Preliminary Design Report (PDR) provides a revised concept for the K Basins Integrated Water Treatment Systems (IWTS). This PDR incorporates the 11 recommendations made in a May 1996 Value Engineering session into the Conceptual Design, and provides new flow diagrams, hazard category assessment, cost estimate, and schedule for the IWTS Subproject.

Pauly, T.R., Westinghouse Hanford

1996-08-12T23:59:59.000Z

251

Drinking water treatment and distribution systems must comply with US EPA water quality regula-  

E-Print Network [OSTI]

Drinking water treatment and distribution systems must comply with US EPA water quality regula trihalomethanes (THMs). Drinking water providers do frequent, costly testing for THMs. Field real-time sensors PROJECT GOALS The goal of this project was to bring a team of experts in drinking water, polymers

Fay, Noah

252

Groundwater Everybody's Resource  

E-Print Network [OSTI]

-SCALE WASTEWATER TREATMENT: TRANSFER GRANT $339,356 MCH 59270 ANTCZAK, DOUGLAS F BAKER INST U OF MINNESOTA GENE-USDA CURRENT KNOWLEDGE OF SOURCES, FATE AND TRANSPORT OF RURAL AND AGRICULTURAL WATERSHED PATHOGENS: A NATIONAL

253

Quasi-three dimensional ground-water modeling of the hydrologic influence of paleozoic rocks on the ground-water table at Yucca Mountain, Nevada.  

E-Print Network [OSTI]

??The proposed high-level radioactive waste repository site at Yucca Mountain, Nevada, has created a need to understand the, ground-water system at the site. One of (more)

Lee, Si-Yong

2012-01-01T23:59:59.000Z

254

Groundwater Quality Standards (Nebraska) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Quality Standards (Nebraska) Quality Standards (Nebraska) Groundwater Quality Standards (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Nebraska Program Type Environmental Regulations Provider Environmental Quality These regulations, promulgated by the Department of Environmental Quality,

255

Dosimetric evaluation of two treatment planning systems for high dose rate brachytherapy applications  

SciTech Connect (OSTI)

Various treatment planning systems are used to design plans for the treatment of cervical cancer using high-dose-rate brachytherapy. The purpose of this study was to make a dosimetric comparison of the 2 treatment planning systems from Varian medical systems, namely ABACUS and BrachyVision. The dose distribution of Ir-192 source generated with a single dwell position was compared using ABACUS (version 3.1) and BrachyVision (version 6.5) planning systems. Ten patients with intracavitary applications were planned on both systems using orthogonal radiographs. Doses were calculated at the prescription points (point A, right and left) and reference points RU, LU, RM, LM, bladder, and rectum. For single dwell position, little difference was observed in the doses to points along the perpendicular bisector. The mean difference between ABACUS and BrachyVision for these points was 1.88%. The mean difference in the dose calculated toward the distal end of the cable by ABACUS and BrachyVision was 3.78%, whereas along the proximal end the difference was 19.82%. For the patient case there was approximately 2% difference between ABACUS and BrachyVision planning for dose to the prescription points. The dose difference for the reference points ranged from 0.4-1.5%. For bladder and rectum, the differences were 5.2% and 13.5%, respectively. The dose difference between the rectum points was statistically significant. There is considerable difference between the dose calculations performed by the 2 treatment planning systems. It is seen that these discrepancies are caused by the differences in the calculation methodology adopted by the 2 systems.

Shwetha, Bondel [Department of Radiation Physics, Kidwai, Memorial Institute of Oncology, Bangalore (India); Ravikumar, Manickam, E-mail: drravikumarm@gmail.com [Department of Radiation Physics, Kidwai, Memorial Institute of Oncology, Bangalore (India); Supe, Sanjay S.; Sathiyan, Saminathan [Department of Radiation Physics, Kidwai, Memorial Institute of Oncology, Bangalore (India); Lokesh, Vishwanath [Department of Radiotherapy, Kidwai, Memorial Institute of Oncology, Bangalore (India); Keshava, Subbarao L. [Department of Radiation Physics, Kidwai, Memorial Institute of Oncology, Bangalore (India)

2012-04-01T23:59:59.000Z

256

Quarterly report of RCRA groundwater monitoring data for period July 1--September 30, 1995  

SciTech Connect (OSTI)

Nineteen RCRA groundwater monitoring projects are conducted at the Hanford site. They include treatment, storage, and disposal facilities for both solid and liquid waste. Groundwater monitoring programs described in this report comply with the interim- and final- status federal and state regulations. The RCRA projects are monitored under one of the following programs: background monitoring, indicator parameter evaluation, or groundwater quality assessment or detection. This quarterly report contains data received between July 1 and Sept. 30, 1995, which are the cutoff dates for this reporting period. This report may contain not only data from the July-Sept. quarter, but also data from earlier sampling events not previously reported.

NONE

1996-01-01T23:59:59.000Z

257

Integrated intra-subassembly treatment in the SASSYS-1 LMR systems analysis code  

SciTech Connect (OSTI)

This report discusses a hot channel treatment which has been added to the SASSYS-1 LMR systems analysis code by providing for a multiple pin treatment of each of one or more subassemblies. This is an explicit calculation of intra-subassembly effects, not a hot-channel adjustment to a calculated average channel. Thus, the code can account for effects such as transient flow redistribution, both within a subassembly and among subassemblies. The code now provides a total integrated thermal hydraulic treatment including a multiple pin treatment within subassemblies, a multi-channel treatment of the whole core, and models for the primary coolant loops, the intermediate coolant loops, the steam generators, and the balance of plant. Currently the multiple-pin option is only implemented for single-phase calculations. It is not applicable after the onset of boiling or pin disruption. The new multiple pin treatment is being verified with detailed temperature data from instrumented subassemblies in EBR-II, both steady-state and transient, with special emphasis on passive safety tests such as SHRT-45. For the SHRT-45 test, excellent agreement is obtained between code predictions and experimental measurements of coolant temperatures.

Dunn, F.

1992-09-01T23:59:59.000Z

258

Integrated intra-subassembly treatment in the SASSYS-1 LMR systems analysis code  

SciTech Connect (OSTI)

This report discusses a hot channel treatment which has been added to the SASSYS-1 LMR systems analysis code by providing for a multiple pin treatment of each of one or more subassemblies. This is an explicit calculation of intra-subassembly effects, not a hot-channel adjustment to a calculated average channel. Thus, the code can account for effects such as transient flow redistribution, both within a subassembly and among subassemblies. The code now provides a total integrated thermal hydraulic treatment including a multiple pin treatment within subassemblies, a multi-channel treatment of the whole core, and models for the primary coolant loops, the intermediate coolant loops, the steam generators, and the balance of plant. Currently the multiple-pin option is only implemented for single-phase calculations. It is not applicable after the onset of boiling or pin disruption. The new multiple pin treatment is being verified with detailed temperature data from instrumented subassemblies in EBR-II, both steady-state and transient, with special emphasis on passive safety tests such as SHRT-45. For the SHRT-45 test, excellent agreement is obtained between code predictions and experimental measurements of coolant temperatures.

Dunn, F.

1992-01-01T23:59:59.000Z

259

Verification of Gamma Knife extend system based fractionated treatment planning using EBT2 film  

SciTech Connect (OSTI)

Purpose: This paper presents EBT2 film verification of fractionated treatment planning with the Gamma Knife (GK) extend system, a relocatable frame system for multiple-fraction or serial multiple-session radiosurgery.Methods: A human head shaped phantom simulated the verification process for fractionated Gamma Knife treatment. Phantom preparation for Extend Frame based treatment planning involved creating a dental impression, fitting the phantom to the frame system, and acquiring a stereotactic computed tomography (CT) scan. A CT scan (Siemens, Emotion 6) of the phantom was obtained with following parameters: Tube voltage110 kV, tube current280 mA, pixel size0.5 0.5 and 1 mm slice thickness. A treatment plan with two 8 mm collimator shots and three sectors blocking in each shot was made. Dose prescription of 4 Gy at 100% was delivered for the first fraction out of the two fractions planned. Gafchromic EBT2 film (ISP Wayne, NJ) was used as 2D verification dosimeter in this process. Films were cut and placed inside the film insert of the phantom for treatment dose delivery. Meanwhile a set of films from the same batch were exposed from 0 to 12 Gy doses for calibration purposes. An EPSON (Expression 10000 XL) scanner was used for scanning the exposed films in transparency mode. Scanned films were analyzed with inhouse written MATLAB codes.Results: Gamma index analysis of film measurement in comparison with TPS calculated dose resulted in high pass rates >90% for tolerance criteria of 1%/1 mm. The isodose overlay and linear dose profiles of film measured and computed dose distribution on sagittal and coronal plane were in close agreement.Conclusions: Through this study, the authors propose treatment verification QA method for Extend frame based fractionated Gamma Knife radiosurgery using EBT2 film.

Natanasabapathi, Gopishankar; Bisht, Raj Kishor [Gamma Knife Unit, Department of Neurosurgery, Neurosciences Centre, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029 (India)] [Gamma Knife Unit, Department of Neurosurgery, Neurosciences Centre, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029 (India)

2013-12-15T23:59:59.000Z

260

Soil & Groundwater Remediation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Soil & Groundwater Soil & Groundwater Remediation Soil & Groundwater Remediation Soil & Groundwater Remediation The U.S. Department of Energy (DOE) manages the largest groundwater and soil remediation effort in the world. The inventory at the DOE sites includes 6.5 trillion liters of contaminated groundwater, an amount equal to about four times the daily U.S. water consumption, and 40 million cubic meters of soil and debris contaminated with radionuclides, metals, and organics. The Office of Groundwater and Soil Remediation is working with DOE site managers around the country regarding specific technical issues. At the large sites such as Hanford, Savannah River, and Oak Ridge, the Office of Groundwater and Soil Remediation has conducted research and demonstration projects to test new technologies and remediation

Note: This page contains sample records for the topic "groundwater treatment system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

On-Site Wastewater Treatment Systems: Low-Pressure Dosing System  

E-Print Network [OSTI]

A low-pressure dosing system treats wastewater and then pumps it into the soil several times daily. This publication explains the advantages and disadvantages of low-pressure dosing systems as well as estimated costs and maintenance requirements....

Lesikar, Bruce J.

1999-09-06T23:59:59.000Z

262

Innovative systems for mixed waste retrieval and/or treatment in confined spaces  

SciTech Connect (OSTI)

Fernald established operations in 1951 and produced uranium and other metals for use at other DOE facilities. A part of the sitewide remediation effort is the removal, treatment, and disposal of the K-65 wastes from Silos 1 and 2. These silos contain radium-bearing residues from the processing of pitchblende ore. An Engineering Evaluation/Cost Analysis was prepared to evaluate the removal action alternatives using the preliminary characterization data and select a preferred alternative. The selected alternative consisted of covering the K-65 residues and the silo dome. The remediation of the K-65 wastes consists of the retrieval and treatment of the wastes prior to final disposal, which has not yet been determined. Treatment will be performed in a new facility to be built adjacent to the silos. The wastes must be retrieved from silos in an efficient and reliable way and delivered to the treatment facility. The first challenge of covering the wastes with bentonite has been successfully met. The second phase of retrieving the wastes from the silos is not due for a few years. However, conceptual design and configuration of the retrieval system have been developed as part of the Conceptual Design Report. The system is based on the utilization of hydraulic mining techniques, and is based on similar successful applications. This report describes the emplacement of the bentonite grant and the design for the slurry retrieval system.

Fekete, L.J.; Ghusn, A.E. [Parsons Environmental Services, Inc., Fairfield, OH (United States)

1993-03-01T23:59:59.000Z

263

INTEC Groundwater Monitoring Report 2006  

SciTech Connect (OSTI)

This report summarizes 2006 perched water and groundwater monitoring activities at the Idaho Nuclear Technology and Engineering Center (INTEC) located at the Idaho National Laboratory (INL). During 2006, groundwater samples were collected from a total of 22 Snake River Plain Aquifer (SRPA) monitoring wells, plus six aquifer wells sampled for the Idaho CERCLA Disposal Facility (ICDF) monitoring program. In addition, perched water samples were collected from 21 perched wells and 19 suction lysimeters. Groundwater and perched water samples were analyzed for a suite of radionuclides and inorganic constituents. Laboratory results in this report are compared to drinking water maximum contaminant levels (MCLs). Such comparison is for reference only and it should be noted that the Operable Unit 3-13 Record of Decision does not require that perched water comply with drinking water standards.

J. R. Forbes

2007-02-01T23:59:59.000Z

264

Miamisburg Environmental Management Project Archived Soil & Groundwate...  

Office of Environmental Management (EM)

VOCs Miamisburg Environmental Management Project - Tritium More Documents & Publications Rocky Flats Environmental Technology Site Archived Soil & Groundwater Master Reports...

265

Groundwater As mobilization in the Bengal Delta Plain, the use of ferralite as a possible remedial measurea case study  

Science Journals Connector (OSTI)

High As groundwater (501600 ?g l?1) poses the greatest threat to human health in the Holocene alluvial aquifers of the Bengal Delta Plain (BDP) with increasing global concern in recent years. This study deals with groundwater quality and As mobilization vis--vis employing ferralite as a remedial option for removal of As from groundwater. The investigation suggests that Fe-rich As traps undergo degeneration to produce Fe oxyhydroxide (HFO) as coating/precipitation on the fine-grained sediment surface and release redox sensitive species (As, Fe and Mn) as well as PO43? into the groundwater under local reducing conditions. Sediment analysis reveals the presence of AsT (average 17.2 mg/kg), FeT (average 0.93 g/kg) and organic matter (average 7.6 g/kg). Sediment AsT and FeT content cannot validate the presence of high groundwater As/Fe. FeII catalysed FeIII reduction, induced by dissimilatory Fe reducing bacteria liberate the more toxic AsIII than AsV. The release of redox sensitive species (As, Fe and Mn) are the functions of bio-available forms of Fe oxides, concentration and distribution of fresh organic matter and availability of electron donors within the sediment. Further attempt is made to establish the role of ferralite, enriched with natural HFO as an As scavenger. Batch studies demonstrate the competency of the material over the natural/commonly used chemical coagulants generally used for water treatment. The high pHpzc value, 8.5 of ferralite along with the adsorption studies over a wide range of pH elucidate the effectiveness of the material in adsorbing both AsIII and AsV from the well-buffered groundwater. The presence of FeII in the system enhances the As removal process. The Langmuir adsorption isotherm further confirms the merit of ferralite as an efficient As scavenger. The material has been shaped for a fixed bed filter medium to remove As from groundwater (both laboratory and field scale). Ferralite is also cost effective (US$ 8/metric ton of ferralite with a density 1.17 kg/dm3). Transportation cost for ferralite (from ferralitic bed to the affected area) is US$ 16/ton/1000 km whereas US$ 0.6/100 l is required for treatment of contaminated water.

R. Bhattacharyya; J. Jana; B. Nath; S.J. Sahu; D. Chatterjee; G. Jacks

2003-01-01T23:59:59.000Z

266

ALLISON DVORAK CENTRAL VALLEY GROUNDWATER BANK OPERATIONS  

E-Print Network [OSTI]

i ALLISON DVORAK CENTRAL VALLEY GROUNDWATER BANK OPERATIONS: HYDROLOGY, GROUNDWATER OPERATING RULE affect California's SWP (State Water Project) and CVP (Central Valley Project) water supply deliveries-operation of groundwater storage, both north and south of the Delta, can increase long-term average project deliveries

Lund, Jay R.

267

Groundwater Remediation Strategy Using Global Optimization Algorithms  

E-Print Network [OSTI]

. DOI: 10.1061/ ASCE 0733-9496 2002 128:6 431 CE Database keywords: Ground water; Remedial action; Algorithms; Ground-water management. Introduction The contamination of groundwater is a widespread problemGroundwater Remediation Strategy Using Global Optimization Algorithms Shreedhar Maskey1 ; Andreja

Neumaier, Arnold

268

Groundwater Consumption by Phreatophytes in Mid-Continent  

E-Print Network [OSTI]

Groundwater Consumption by Phreatophytes in Mid-Continent Stream-Aquifer Systems Gerard Kluitenberg. · Consumption of ground water by phreatophytes also a factor of potential importance. · Extensive control-water consumption by phreatophytes needed to: Introduction/Background · Clarify factors contributing to low

Hernes, Peter J.

269

Groundwater Protection 7 2008 Site environmental report7-  

E-Print Network [OSTI]

of the soil and into ground- water), and administrative controls (e.g., reduc- ing the toxicity and volume,170individualsampling events. Twelve groundwater remediation systems removed 220 pounds of volatile organic compounds and returned approximately 1.5 billion gallons of treated water to the Upper Glacial aquifer. Since

270

Groundwater Protection 7 2009 Site environmental report7-  

E-Print Network [OSTI]

, and 4) communicating with stakeholders on ground- water protection issues. The Laboratory is committed of the soil and into ground- water), and administrative controls (e.g., reduc- ing the toxicity and volume during 1,800 individual sampling events. Twelve groundwater remediation systems removed 229 pounds

271

System Description for the KW Basin Integrated Water Treatment System (IWTS) (70.3)  

SciTech Connect (OSTI)

This is a description of the system that collects and processes the sludge and radioactive ions released by the spent nuclear fuel (SNF) processing operations conducted in the 105 KW Basin. The system screens, settles, filters, and conditions the basin water for reuse. Sludge and most radioactive ions are removed before the water is distributed back to the basin pool. This system is part of the Spent Nuclear Fuel Project (SNFP).

DERUSSEAU, R.R.

2000-04-18T23:59:59.000Z

272

Hanford Site Groundwater Monitoring for Fiscal Year 2003  

SciTech Connect (OSTI)

This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2003 (October 2002 through September 2003) on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes in groundwater are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. The largest portions of these plumes are migrating from the central Hanford Site to the southeast, toward the Columbia River. Concentrations of tritium, nitrate, and some other contaminants continued to exceed drinking water standards in groundwater discharging to the river in some locations. However, contaminant concentrations in river water remained low and were far below standards. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the central part of the Hanford Site. Hexavalent chromium is present in smaller plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath all but one of the reactor areas, and technetium-99 and uranium are present in the 200 Areas. Uranium exceeds standards in the 300 Area in the south part of the Hanford Site. Minor contaminant plumes with concentrations greater than standards include carbon-14, cesium-137, cis-1,2-dichloroethene, cyanide, fluoride, plutonium, and trichloroethene. Monitoring for the ''Comprehensive Environmental Response, Compensation, and Liability Act'' is conducted in 11 groundwater operable units. The purpose of this monitoring is to define and track plumes and to monitor the effectiveness of interim remedial actions. Interim groundwater remediation in the 100 Areas continued with the goal of reducing the amount of chromium (100-K, 100-D, and 100-H) and strontium-90 (100-N) reaching the Columbia River. The objective of two interim remediation systems in the 200 West Area is to prevent the spread of carbon tetrachloride and technetium-99/uranium plumes. ''Resource Conservation and Recovery Act'' groundwater monitoring continued at 24 waste management areas during fiscal year 2003: 15 under interim or final status detection programs and data indicate that they are not adversely affecting groundwater; 7 under interim status groundwater quality assessment programs to assess contamination; and 2 under final status corrective-action programs. During calendar year 2003, drillers completed seven new RCRA monitoring wells, nine wells for CERCLA, and two wells for research on chromate bioremediation. Vadose zone monitoring, characterization, and remediation continued in fiscal year 2003. Remediation and associated monitoring continued at a soil-vapor extraction system in the 200 West Area, which removes gaseous carbon tetrachloride from the vadose zone. Soil vapor also was sampled to locate carbon tetrachloride sites with the potential to impact groundwater in the future. DOE uses geophysical methods to monitor potential movement of contamination beneath single-shell tank farms. During fiscal year 2003, DOE monitored selected boreholes within each of the 12 single-shell tank farms. In general, the contaminated areas appeared to be stable over time. DOE drilled new boreholes at the T Tank Farm to characterize subsurface contamination near former leak sites. The System Assessment Capability is a set of computer modules simulating movement of contaminants from waste sites through the vadose zone and groundwater. In fiscal year 2003, it was updated with the addition of an atmospheric transport module and with newer versions of models including an updated groundwater flow and transport model.

Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

2004-04-12T23:59:59.000Z

273

Groundwater Sampling At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al.,  

Open Energy Info (EERE)

Groundwater Sampling At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., Groundwater Sampling At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Groundwater Sampling At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Groundwater Sampling Activity Date 1983 Usefulness not indicated DOE-funding Unknown References C. O. Grigsby, J. W. Tester, P. E. Trujillo, D. A. Counce, J. Abbott, C. E. Holley, L. A. Blatz (1983) Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Retrieved from "http://en.openei.org/w/index.php?title=Groundwater_Sampling_At_Fenton_Hill_Hdr_Geothermal_Area_(Grigsby,_Et_Al.,_1983)&oldid=689261"

274

Remediation alternatives for low-level herbicide contaminated groundwater  

SciTech Connect (OSTI)

In early 1995, an evaluation of alternatives for remediation of a shallow groundwater plume containing low-levels of an organic herbicide was conducted at BASF Corporation, a petrochemical facility located in Ascension Parish, Louisiana. The contaminated site is located on an undeveloped portion of property within 1/4 mile of the east bank of the Mississippi River near the community of Geismar. Environmental assessment data indicated that about two acres of the thirty acre site had been contaminated from past waste management practices with the herbicide bentazon. Shallow soils and groundwater between 5 to 15 feet in depth were affected. Maximum concentrations of bentazon in groundwater were less than seven parts per million. To identify potentially feasible remediation alternatives, the environmental assessment data, available research, and cost effectiveness were reviewed. After consideration of a preliminary list of alternatives, only two potentially feasible alternatives could be identified. Groundwater pumping, the most commonly used remediation alternative, followed by carbon adsorption treatment was identified as was a new innovative alternative known as vegetative transpiration. This alternative relies on the natural transpiration processes of vegetation to bioremediate organic contaminants. Advantages identified during screening suggest that the transpiration method could be the best remediation alternative to address both economic and environmental factors. An experiment to test critical factors of the vegetatived transpiration alternative with bentazon was recommended before a final decision on feasibility can be made.

Conger, R.M. [BASF Corp., Geismar, LA (United States)

1995-10-01T23:59:59.000Z

275

High frequency atmospheric cold plasma treatment system for materials surface processing  

Science Journals Connector (OSTI)

The paper presents a new laboratory-made plasma treatment system. The power source which generates the plasma is based on a modern half-bridge type inverter circuit working at a frequency of 4 MHz and giving an output power of about 200 W. The inverter is fed directly from the mains voltage and features high speed protection circuits for both over voltage and over current protection making the system light and easy to operate. The output of the inverter is connected to the resonant circuit formed by a Tesla coil and the dielectric barrier discharge plasma chamber. The plasma is generated at atmospheric pressure in argon helium or mixtures of helium and small quantities of argon. It is a cold discharge (Tgas plasma generates chemically active species especially O and OH which could be important in various applications such as the treatment and processing of materials surfaces.

Cristian D. Tudoran; Vasile Surducan; Sorin D. Anghel

2012-01-01T23:59:59.000Z

276

Removing High Explosives from Groundwater  

Broader source: Energy.gov [DOE]

LOS ALAMOS, N.M. In an initiative supported by EM, Los Alamos National Laboratorys Corrective Actions Program is addressing high explosive contamination in surface water and groundwater at a location this summer in the forests surrounding the laboratory.

277

Phyto remediation groundwater trends at the DOE portsmouth gaseous  

SciTech Connect (OSTI)

This paper describes the progress of a phyto-remediation action being performed at the Department of Energy (DOE) Portsmouth Gaseous Diffusion Plant (PORTS) X-740 Waste Oil Handling Facility to remediate contaminated groundwater under a Resource Conservation and Recovery Act (RCRA) closure action. This action was effected by an Ohio Environmental Protection Agency (OEPA) decision to use phyto-remediation as the preferred remedy for the X-740 groundwater contamination. This remedy was recognized as a cost-effective, low-maintenance, and promising method to remediate groundwater contaminated with volatile organic compounds (VOCs), primarily trichloroethylene (TCE). During 1999, prior to the tree installation at the X-740 Phyto-remediation Area, water level measurements in the area were collected from 10 monitoring wells completed in the Gallia Formation. The Gallia is the uppermost water-bearing zone and contains most of the groundwater contamination at PORTS. During the tree installation which took place during the summer of 1999, four new Gallia monitoring wells were installed at the X-740 Area in addition to the 10 Gallia wells which had been installed in the same area during the early 1990's. Manual water level measurements were collected quarterly from these 14 Gallia monitoring wells between 1998 and 2001. These manual water level measurements were collected to monitor the combined impact of the trees on the groundwater prior to root development. Beginning in 2001, water level measurements were collected monthly during the growing season (April-September) and quarterly during the dormant season (October-March). A total of eight water level measurements were collected annually to monitor the phyto-remediation system's effect on the groundwater in the X- 740 Area. The primary function of the X-740 Phyto-remediation Area is to hydraulically prevent further spreading of the TCE plume. This process utilizes deep-rooted plants, such as poplar trees, to extract large quantities of water from the saturated zone. The focus of any phyto-remediation system is to develop a cone of depression under the entire plantation area. This cone of depression can halt migration of the contaminant plume and can create a hydraulic barrier, thereby maintaining plume capture. While a cone of depression is not yet evident at the X-740 Phyto-remediation Area, water level measurements in 2004 and 2005 differed from measurements taken in previous years, indicating that the now mature trees are influencing groundwater flow direction and gradient at the site. Water level measurements taken from 2003 through 2005 indicate a trend whereby groundwater elevations steadily decreased in the X-740 Phyto-remediation System. During this time, an average groundwater table drop of 0.30 feet was observed. Although the time for the phyto-remediation system to mature had been estimated at two to three years, these monitoring data indicate a period of four to five years for the trees to reach maturity. Although, these trends are not apparent from analysis of the potentiometric surface contours, it does appear that the head gradient across the site is higher during the spring and lower during the fall. It is not clear, however, whether this trend was initiated by the installation of the phyto-remediation system. This paper will present the groundwater data collected to date to illustrate the effects of the trees on the groundwater table. (authors)

Lewis, A.C.; Baird, D.R. [CDM, Piketon, OH (United States)

2007-07-01T23:59:59.000Z

278

Updated Conceptual Model for the 300 Area Uranium Groundwater Plume  

SciTech Connect (OSTI)

The 300 Area uranium groundwater plume in the 300-FF-5 Operable Unit is residual from past discharge of nuclear fuel fabrication wastes to a number of liquid (and solid) disposal sites. The source zones in the disposal sites were remediated by excavation and backfilled to grade, but sorbed uranium remains in deeper, unexcavated vadose zone sediments. In spite of source term removal, the groundwater plume has shown remarkable persistence, with concentrations exceeding the drinking water standard over an area of approximately 1 km2. The plume resides within a coupled vadose zone, groundwater, river zone system of immense complexity and scale. Interactions between geologic structure, the hydrologic system driven by the Columbia River, groundwater-river exchange points, and the geochemistry of uranium contribute to persistence of the plume. The U.S. Department of Energy (DOE) recently completed a Remedial Investigation/Feasibility Study (RI/FS) to document characterization of the 300 Area uranium plume and plan for beginning to implement proposed remedial actions. As part of the RI/FS document, a conceptual model was developed that integrates knowledge of the hydrogeologic and geochemical properties of the 300 Area and controlling processes to yield an understanding of how the system behaves and the variables that control it. Recent results from the Hanford Integrated Field Research Challenge site and the Subsurface Biogeochemistry Scientific Focus Area Project funded by the DOE Office of Science were used to update the conceptual model and provide an assessment of key factors controlling plume persistence.

Zachara, John M.; Freshley, Mark D.; Last, George V.; Peterson, Robert E.; Bjornstad, Bruce N.

2012-11-01T23:59:59.000Z

279

EVALUATION OF ALTERNATE STAINLESS STEEL SURFACE TREATMENTS FOR MASS SPECTROSCOPY AND OTHER TRITIUM SYSTEMS  

SciTech Connect (OSTI)

There are specific components in the SRS Tritium Facilities that are required to introduce as few chemical impurities (such as protium and methane) as possible into the process gas. Two such components are the inlet systems for the mass spectroscopy facilities and hydrogen isotope mix standard containers. Two vendors now passivate stainless steel components for these systems, and both are relatively small businesses whose future viability can be questioned, which creates the need for new sources. Stainless steel containers were designed to evaluate alternate surface treatment vendors for tritium storage and handling for these high purity tritium systems. Five vendors applied their own 'best' surface treatments to two containers each - one was a current vendor, another was a chemical vapor deposited silicon coating, and the other three were electropolishing and chemical cleaning vendors. Pure tritium gas was introduced into all ten containers and the composition was monitored over time. The only observed impurities in the gas were some HT, less CT{sub 4}, and very small amounts of T{sub 2}O in all cases. The currently used vendor treated containers contained the least impurities. The chemical vapor deposited silicon treatment resulted in the highest impurity levels. Sampling one set of containers after about one month of tritium exposure revealed the impurity level to be nearly the same as that after more than a year of exposure - this result suggests that cleaning new stainless steel components by tritium gas contact for about a month may be a worthy operation.

Clark, E.; Mauldin, C.; Neikirk, K.

2012-02-29T23:59:59.000Z

280

Selective Trapping of Volatile Fission Products with an Off-Gas Treatment System  

SciTech Connect (OSTI)

A head-end processing step, termed DEOX for its emphasis on decladding via oxidation, is being developed for the treatment of spent oxide fuel by pyroprocessing techniques. The head-end step employs high temperatures to oxidize UO2 to U3O8 resulting in the separation of fuel from cladding and the removal of volatile fission products. Development of the head-end step is being performed in collaboration with the Korean Atomic Energy Research Institute (KAERI) through an International Nuclear Energy Research Initiative. Following the initial experimentation for the removal of volatile fission products, an off-gas treatment system was designed in conjunction with KAERI to collect specific fission gases. The primary volatile species targeted for trapping were iodine, technetium, and cesium. Each species is intended to be collected in distinct zones of the off-gas system and within those zones, on individual filters. Separation of the volatile off-gases is achieved thermally as well as chemically given the composition of the filter media. A description of the filter media and a basis for its selection will be given along with the collection mechanisms and design considerations. In addition, results from testing with the off-gas treatment system will be presented.

B.R. Westphal; J.J. Park; J.M. Shin; G.I. Park; K.J. Bateman; D.L. Wahlquist

2008-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "groundwater treatment system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Comparison of alternative treatment systems for DOE mixed low-level waste  

SciTech Connect (OSTI)

From 1993 to 1996, the Department of Energy, Environmental Management, Office of Science and Technology (OST), has sponsored a series of systems analyses to guide its future research and development (R&D) programs for the treatment of mixed low-level waste (MLLW) stored in the DOE complex. The two original studies were of 20 mature and innovative thermal systems. As a result of a technical review of these thermal system studies, a similar study of five innovative nonthermal systems was conducted in which unit operations are limited to temperatures less than 350{degrees}C to minimize volatilization of heavy metals and radionuclides, and de novo production of dioxins and furans in the offgas. Public involvement in the INTS study was established through a working group of 20 tribal and stakeholder representatives to provide input to the INTS studies and identify principles against which the systems should be designed and evaluated. Pre-conceptual designs were developed for all systems to treat the same waste input (2927 lbs/hr) in a single centralized facility operating 4032 hours per year for 20 years. This inventory consisted of a wide range of combustible and non-combustible materials such as paper, plastics, metals, concrete, soils, sludges, liquids, etc., contaminated with trace quantities of radioactive materials and RCRA regulated wastes. From this inventory, an average waste profile was developed for simulated treatment using ASPEN PLUS{copyright} for mass balance calculations. Seven representative thermal systems were selected for comparison with the five nonthermal systems. This report presents the comparisons against the TSWG principles, of total life cycle cost (TLCC), and of other system performance indicators such as energy requirements, reagent requirements, land use, final waste volume, aqueous and gaseous effluents, etc.

Schwinkendorf, W.E.

1997-03-01T23:59:59.000Z

282

Control System Development for Integrated Biological Waste Water Treatment Process of a Paper Production Plant  

Science Journals Connector (OSTI)

Abstract A bioreactor, integrated with an anoxic reactor and a settler for waste water treatment from a paper production plant is under investigation to implement a control system for enhancing effluent quality. In order to reveal the operation of the integrated process to achieve a specific goal, a methodology for control system development is proposed. In this paper, preliminary results of some steps of the methodology are presented, in order to address the oxygen uptake rate control. A dynamic model is developed for future analysis for the conceptual design of different generated control configurations.

Alicia Romn-Martnez; Pastor Lanuza-Perez; Margarito Cepeda-Rodrguez; Elvia M. Mata-Padrn

2013-01-01T23:59:59.000Z

283

Annual report for RCRA groundwater monitoring projects at Hanford Site facilities for 1993  

SciTech Connect (OSTI)

This report presents the annual hydrogeologic evaluation of 20 Resource Conservation and Recovery Act of 1976 groundwater monitoring projects and 1 nonhazardous waste facility at the US Department of Energy`s Hanford Site. Most of the projects no longer receive dangerous waste; a few projects continue to receive dangerous waste constituents for treatment, storage, or disposal. The 20 RCRA projects comprise 30 waste management units. Ten of the units are monitored under groundwater quality assessment status because of elevated levels of indicator parameters. The impact of those units on groundwater quality, if any, is being investigated. If dangerous waste or waste constituents have entered groundwater, their concentration, distribution, and rate of migration are evaluated. Groundwater is monitored at the other 20 units to detect contamination, should it occur. This report provides an interpretation of groundwater data collected at the waste management units between October 1992 and September 1993. Recent groundwater quality is also described for the 100, 200, 300, and 600 Areas and for the entire Hanford Site. Widespread contaminants include nitrate, chromium, carbon tetrachloride, tritium, and other radionuclides.

Not Available

1994-02-01T23:59:59.000Z

284

RCRA groundwater monitoring data. Quarterly report, April 1, 1995--June 30, 1995  

SciTech Connect (OSTI)

Nineteen Resource Conservation and Recovery Act of 1976 (RCRA) groundwater monitoring projects are conducted at the Hanford Site. These projects include treatment, storage, and disposal facilities for both solid and liquid waste. The groundwater monitoring programs described in this report comply with the interim-status federal (Title 40 Code of Federal Regulation [CFR] Part 265) and state (Washington Administrative Code [WAC] 173-303-400) regulations. The RCRA projects are monitored under one of three programs: background monitoring, indicator parameter evaluation, or groundwater quality assessment. Westinghouse Hanford Company (WHC) manages the RCRA groundwater monitoring projects on the Hanford Site. Performing project management, preparing groundwater monitoring plans, well network design and installation, specifying groundwater data needs, performing quality control (QC) oversight, data management, and preparing project sampling schedules are all parts of this responsibility. Pacific Northwest Laboratory (PNL) administers the contract for analytical services to WHC for the RCRA groundwater monitoring program. This quarterly report contains data received between April and June 1995, which are the cutoff dates for this reporting period. This report may contain not only data from the April through June quarter, but also data from earlier sampling events that were not previously reported.

NONE

1995-10-01T23:59:59.000Z

285

Monitoring groundwater storage changes in the highly1 seasonal humid tropics: validation of GRACE measurements2  

E-Print Network [OSTI]

systems where ground-based16 records are limited. In the Bengal Basin of Bangladesh, we test the ability in "Water Resources Research 48 (2012) 02508" DOI : 10.1029/2011WR010993 #12;2 Groundwater depletion

Paris-Sud XI, Université de

286

Rapid extraction of dissolved inorganic carbon from seawater and groundwater samples for radiocarbon dating  

E-Print Network [OSTI]

The focus of this thesis is the design and development of a system for rapid extraction of dissolved inorganic carbon from seawater and groundwater samples for radiocarbon dating. The Rapid Extraction of Dissolved Inorganic ...

Gospodinova, Kalina Doneva

2012-01-01T23:59:59.000Z

287

Integration of thematic maps through GIS for identification of groundwater potential zones  

Science Journals Connector (OSTI)

The remote sensing data combined with Geographical Information System (GIS) technique has been proved to be very ... the groundwater potential zones by integrating various thematic maps generated on 1:50,000 scal...

K. S. R. Murthy; E. Amminedu

2003-09-01T23:59:59.000Z

288

Prediction of postmine ground-water quality at a Texas surface lignite mine  

E-Print Network [OSTI]

The prediction Of postmine ground-water quality is encumbered with many complications resulting from the complex hydrologic system found in mine spoils. Current analytical methods such as acid/base accounting have only had limited success...

Wise, Clifton Farrell

1995-01-01T23:59:59.000Z

289

Inducing Mineral Precipitation in Groundwater by Addition of Phosphate  

SciTech Connect (OSTI)

Induced precipitation of phosphate minerals to scavenge trace metals and radionuclides from groundwater is a potential remediation approach for contaminated aquifers. Phosphate minerals can sequester trace elements by primary mineral formation, solid solution formation and/or adsorption, and they are poorly soluble under many environmental conditions, making them attractive for long-term sustainable remediation. The success of such engineered schemes will depend on the particular mineral phases generated, their rates of formation, and their long term stability. The purpose of this study was to examine the precipitation of calcium phosphate minerals under conditions representative of a natural groundwater. Because microorganisms are present in groundwater, and because some proposed schemes for induced phosphate mineral precipitation rely on the stimulation of native groundwater populations, we also tested the effect of bacterial cells (initial densities of 105 and 107 ml-1) within the precipitation medium. We also tested the effect of a trace mixture of propionic, isovaleric, formic and butyric acids (total concentration 0.035 mM). The experiments showed that the general progression of mineral precipitation was similar under all of the conditions, with initial formation of amorphous calcium carbonate, and transformation to poorly crystalline hydroxyapatite (HAP) by the end of the week-long experiments. The presence of the bacterial cells appeared to delay precipitation, although by the end of 7 days the overall extent of precipitation was similar for all of the treatments. The stoichiometry of the final precipitates as well as results of Rietveld refinement of x-ray diffraction data indicated that the treatments including organic acids and bacterial cells resulted in increased distortion of the HAP crystal lattice, with the higher concentration of cells resulting in the greatest distortion. Uptake of Sr into the phosphate minerals was decreased in the treatments with cells and organic acids, compared to the control. The results of the experiments enable a greater understanding of the challenges associated with phosphate-based remediation schemes for contaminated environments.

Karen E. Wright; Yoshiko Fujita; Thomas Hartmann; Mark Conrad

2011-10-01T23:59:59.000Z

290

Modeling the Effects of Groundwater-fed Irrigation on Terrestrial Hydrology over the Conterminous United States  

SciTech Connect (OSTI)

Human alteration of the land surface hydrologic cycle is substantial. Recent studies suggest that local water management practices including groundwater pumping and irrigation could significantly alter the quantity and distribution of water in the terrestrial system, with potential impacts on weather and climate through land-atmosphere feedbacks. In this study, we incorporated a groundwater withdrawal scheme into the Community Land Model version 4 (CLM4). To simulate the impact of irrigation realistically, we calibrated the CLM4 simulated irrigation amount against observations from agriculture census at the county scale over the conterminous United States (CONUS). The water used for irrigation was then removed from the surface runoff and groundwater aquifer according to a ratio determined from the county-level agricultural census data. Based on the simulations, the impact of groundwater withdrawals for irrigation on land surface and subsurface fluxes were investigated. Our results suggest that the impacts of irrigation on latent heat flux and potential recharge when water is withdrawn from surface water alone or from both surface and groundwater are comparable and local to the irrigation areas. However, when water is withdrawn from groundwater for irrigation, greater effects on the subsurface water balance were found, leading to significant depletion of groundwater storage in regions with low recharge rate and high groundwater exploitation rate. Our results underscore the importance of local hydrologic feedbacks in governing hydrologic response to anthropogenic change in CLM4 and the need to more realistically simulate the two-way interactions among surface water, groundwater, and atmosphere to better understand the impacts of groundwater pumping on irrigation efficiency and climate.

Leng, Guoyong; Huang, Maoyi; Tang, Qiuhong; Gao, Huilin; Leung, Lai-Yung R.

2014-06-01T23:59:59.000Z

291

Summary - System Planning for Low-Activity Waste Treatment at Hanford  

Broader source: Energy.gov (indexed) [DOE]

Hanford Hanford EM Project: WTP ETR Report Date: November 2008 ETR-18 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of System Planning for Low-Activity Waste Treatment at Hanford Why DOE-EM Did This Review Construction of the facilities of the Hanford site's Waste Treatment Plant (WTP) are scheduled for completion in 2017, with radioactive waste processing scheduled to begin in 2019. An estimated 23 to 35 years will then be required to complete high-level waste (HLW) vitrification. However, vitrification of low-activity waste (LAW) may extend the WTP mission duration by decades more if supplemental LAW processing beyond the capacity of the present facility is not incorporated. The purpose of this independent review was to

292

Superfund record of decison (EPA Region 1): Fort Devens South Post impact area and area of contamination 41 groundwater and areas of contamination 25, 26, and 27, MA, July 5, 1996  

SciTech Connect (OSTI)

This Record of Decision (ROD) addresses AOCs 25 (Explosive Ordnance Disposal (EOD) Range), 26 (Zulu Ranges), an 27 (Hotel Range) and AOC 41 groundwater and a subset of the groundwater within the South Post Impact Area (SPIA). `No action` is the selected remedy for SPIA monitored-area groundwater, AOC 41 groundwater, and the surface water, sediment, and soils at the EOD, Zulu, and Hotel Ranges. Under this alternative, no formal remedial action will be taken and the site will be left `as is,` with no additional institutional controls, containment, removal, treatment, or other mitigating measures. Long-term groundwater monitoring will be conducted at the site under this `no action` ROD.

NONE

1996-11-01T23:59:59.000Z

293

Validation Analysis of the Shoal Groundwater Flow and Transport Model  

SciTech Connect (OSTI)

Environmental restoration at the Shoal underground nuclear test is following a process prescribed by a Federal Facility Agreement and Consent Order (FFACO) between the U.S. Department of Energy, the U.S. Department of Defense, and the State of Nevada. Characterization of the site included two stages of well drilling and testing in 1996 and 1999, and development and revision of numerical models of groundwater flow and radionuclide transport. Agreement on a contaminant boundary for the site and a corrective action plan was reached in 2006. Later that same year, three wells were installed for the purposes of model validation and site monitoring. The FFACO prescribes a five-year proof-of-concept period for demonstrating that the site groundwater model is capable of producing meaningful results with an acceptable level of uncertainty. The corrective action plan specifies a rigorous seven step validation process. The accepted groundwater model is evaluated using that process in light of the newly acquired data. The conceptual model of ground water flow for the Project Shoal Area considers groundwater flow through the fractured granite aquifer comprising the Sand Springs Range. Water enters the system by the infiltration of precipitation directly on the surface of the mountain range. Groundwater leaves the granite aquifer by flowing into alluvial deposits in the adjacent basins of Fourmile Flat and Fairview Valley. A groundwater divide is interpreted as coinciding with the western portion of the Sand Springs Range, west of the underground nuclear test, preventing flow from the test into Fourmile Flat. A very low conductivity shear zone east of the nuclear test roughly parallels the divide. The presence of these lateral boundaries, coupled with a regional discharge area to the northeast, is interpreted in the model as causing groundwater from the site to flow in a northeastward direction into Fairview Valley. Steady-state flow conditions are assumed given the absence of groundwater withdrawal activities in the area. The conceptual and numerical models were developed based upon regional hydrogeologic investigations conducted in the 1960s, site characterization investigations (including ten wells and various geophysical and geologic studies) at Shoal itself prior to and immediately after the test, and two site characterization campaigns in the 1990s for environmental restoration purposes (including eight wells and a year-long tracer test). The new wells are denoted MV-1, MV-2, and MV-3, and are located to the northnortheast of the nuclear test. The groundwater model was generally lacking data in the north-northeastern area; only HC-1 and the abandoned PM-2 wells existed in this area. The wells provide data on fracture orientation and frequency, water levels, hydraulic conductivity, and water chemistry for comparison with the groundwater model. A total of 12 real-number validation targets were available for the validation analysis, including five values of hydraulic head, three hydraulic conductivity measurements, three hydraulic gradient values, and one angle value for the lateral gradient in radians. In addition, the fracture dip and orientation data provide comparisons to the distributions used in the model and radiochemistry is available for comparison to model output. Goodness-of-fit analysis indicates that some of the model realizations correspond well with the newly acquired conductivity, head, and gradient data, while others do not. Other tests indicated that additional model realizations may be needed to test if the model input distributions need refinement to improve model performance. This approach (generating additional realizations) was not followed because it was realized that there was a temporal component to the data disconnect: the new head measurements are on the high side of the model distributions, but the heads at the original calibration locations themselves have also increased over time. This indicates that the steady-state assumption of the groundwater model is in error. To test the robustness of the model d

A. Hassan; J. Chapman

2008-11-01T23:59:59.000Z

294

Copyright Awwa Research Foundation 2006 Advanced Water Treatment Impacts onAdvanced Water Treatment Impacts on  

E-Print Network [OSTI]

, brackish groundwater, produced water, etc.produced water, etc. Advanced treatmentAdvanced treatment Water© Copyright Awwa Research Foundation 2006 Advanced Water Treatment Impacts onAdvanced Water Treatment Impacts on EnergyEnergy--Water LinkagesWater Linkages (The Water Utility Perspective)(The Water

Keller, Arturo A.

295

The Savannah River Site's Groundwater Monitoring Program  

SciTech Connect (OSTI)

The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During fourth quarter 1989 (October--December), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. An explanation of flagging criteria for the fourth quarter is presented in the Flagging Criteria section of this document. All analytical results from fourth quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

Not Available

1989-01-01T23:59:59.000Z

296

Groundwater Management Areas (Texas) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Management Areas (Texas) Management Areas (Texas) Groundwater Management Areas (Texas) < Back Eligibility Utility Fed. Government Commercial Investor-Owned Utility Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Texas Program Type Environmental Regulations Provider Texas Commission on Environmental Quality This legislation authorizes the Texas Commission on Environmental Quality and the Texas Water Development Board to establish Groundwater Management Areas to provide for the conservation, preservation, protection, recharging, and prevention of waste of groundwater and groundwater

297

Groundwater Conservation Districts (Texas) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Conservation Districts (Texas) Conservation Districts (Texas) Groundwater Conservation Districts (Texas) < Back Eligibility Utility Fed. Government Commercial Investor-Owned Utility Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Texas Program Type Environmental Regulations Provider Texas Commission on Environmental Quality Groundwater Conservation Districts, as created following procedures described in Water Code 36, are designed to provide for the conservation, preservation, protection, recharging, and prevention of waste of groundwater, and of groundwater reservoirs or their subdivisions, and to

298

Groundwater Cleanup Operational Changes Are Being Implemented...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

is based on EPA National Primary Drinking Water Regulations. The progress of groundwater remediation is reported each year in the SER. Operation metrics indicate that, although...

299

Montana Groundwater Information Center Webpage | Open Energy...  

Open Energy Info (EERE)

Center Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Groundwater Information Center Webpage Abstract Provides access to...

300

Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants  

SciTech Connect (OSTI)

The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. The CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by 2025. Other potential benefits of the demonstration include developing a passive technology for water treatment for trace metal and nutrient release reductions, using power plant by-products to improve coal mine land reclamation and carbon sequestration, developing wildlife habitat and green-space around production facilities, generating Total Maximum Daily Load (TMDL) credits for the use of process water, and producing wood products for use by the lumber and pulp and paper industry. Project activities conducted during the five year project period include: Assessing tree cultivation and other techniques used to sequester carbon; Project site assessment; Greenhouse studies to determine optimum plant species and by-product application; Designing, constructing, operating, monitoring, and evaluating the CCWESTRS system; and Reporting (ongoing). The ability of the system to sequester carbon will be the primary measure of effectiveness, measured by accessing survival and growth response of plants within the CCWESTRS. In addition, costs associated with design, construction, and monitoring will be evaluated and compared to projected benefits of other carbon sequestration technologies. The test plan involves the application of three levels each of two types of power plant by-products--three levels of FGD gypsum mulch, and three levels of ash pond irrigation water. This design produces nine treatment levels which are being tested with two species of hardwood trees (sweet gum and sycamore). The project is examining the effectiveness of applications of 0, 8-cm, and 15-cm thick gypsum mulch layers and 0, 13 cm, and 25 cm of coal fly ash water for irrigation. Each treatment combination is being replicated three times, resulting in a total of 54 treatment plots (3 FGD gypsum levels X 3 irrigation water levels x 2 tree species x 3 replicates). Survival and growth response of plant species in terms of sequestering carbon in plant material and soil will be the primary measure of effectiveness of each treatment. Additionally, the ability of the site soils and unsaturated zone subsurface m

P. Alan Mays; Bert R. Bock; Gregory A. Brodie; L. Suzanne Fisher; J. Devereux Joslin; Donald L. Kachelman; Jimmy J. Maddox; N. S. Nicholas; Larry E. Shelton; Nick Taylor; Mark H. Wolfe; Dennis H. Yankee; John Goodrich-Mahoney

2005-08-30T23:59:59.000Z

Note: This page contains sample records for the topic "groundwater treatment system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Treatment of Complete and Partial Obstruction of the Nasolacrimal System with Polyurethane Stents: Initial Experience  

SciTech Connect (OSTI)

Purpose: To present our experience in the treatment of nasolacrimal occlusion by means of polyurethane stents. Methods: Forty polyurethane stents were placed under fluoroscopic guidance in 35 consecutive patients with epiphora due to total or partial obstruction of the nasolacrimal system. The set designed by Song was used in all patients. The procedure was performed by introducing a guidewire through the superior punctum into the canaliculus and advancing it across the obstruction into the inferior meatus of the nasal cavity. After pulling out the guidewire, the stent was advanced in retrograde fashion and released into the sac and the nasolacrimal duct.Results: The technical success rate was 100%. The average time for the procedure was 25 min (range 10-60 min). Immediate complications were: mild pain (n= 5), severe pain (n= 1), minimal epistaxis (n= 7), and moderate epistaxis (n= 1). No major complications occurred. The last clinical control revealed complete resolution of epiphora in 35 eyes and partial resolution in four; one patient did not improve. Conclusion: This technique for treatment of obstruction of the nasolacrimal system is simple and safe, and may obviate the use of more invasive procedures.

Pulido-Duque, Juan M.; Reyes, Ricardo; Carreira, Jose M. [Vascular Interventional Radiology Unit, Hospital Nuestra Senora del Pino, c/Angel Guimera 93, 35005 Las Palmas de Gran Canaria (Spain); Vega, Francisco [Ophthalmology Service, Hospital Nuestra Senora del Pino, c/Angel Guimera 93, 35005 Las Palmas de Gran Canaria (Spain); Gorriz, Elias; Pardo, M. Dolores [Vascular Interventional Radiology Unit, Hospital Nuestra Senora del Pino, c/Angel Guimera 93, 35005 Las Palmas de Gran Canaria (Spain); Perez, Francisco [Ophthalmology Service, Hospital Nuestra Senora del Pino, c/Angel Guimera 93, 35005 Las Palmas de Gran Canaria (Spain); Maynar, Manuel [Vascular Interventional Radiology Unit, Hospital Nuestra Senora del Pino, c/Angel Guimera 93, 35005 Las Palmas de Gran Canaria (Spain)

1998-01-15T23:59:59.000Z

302

Portsmouth Gaseous Diffusion Plant- Quadrant I Groundwater Investigative (5-Unit) Area Plume  

Broader source: Energy.gov [DOE]

Groundwater Database Report - Portsmouth Gaseous Diffusion Plant - Quadrant I Groundwater Investigative (5-Unit) Area Plume

303

Pilot scale test of a produced water-treatment system for initial removal of organic compounds  

SciTech Connect (OSTI)

A pilot-scale test to remove polar and non-polar organics from produced water was performed at a disposal facility in Farmington NM. We used surfactant-modified zeolite (SMZ) adsorbent beds and a membrane bioreactor (MBR) in combination to reduce the organic carbon content of produced water prior to reverse osmosis (RO). Reduction of total influent organic carbon (TOC) to 5 mg/L or less is desirable for efficient RO system operation. Most water disposed at the facility is from coal-bed gas production, with oil production waters intermixed. Up to 20 gal/d of produced water was cycled through two SMZ adsorbent units to remove volatile organic compounds (BTEX, acetone) and semivolatile organic compounds (e.g., napthalene). Output water from the SMZ units was sent to the MBR for removal of the organic acid component of TOC. Removal of inorganic (Mn and Fe oxide) particulates by the SMZ system was observed. The SMZ columns removed up to 40% of the influent TOC (600 mg/L). BTEX concentrations were reduced from the initial input of 70 mg/L to 5 mg/L by the SMZ and to an average of 2 mg/L after the MBR. Removal rates of acetate (input 120-170 mg/L) and TOC (input up to 45 mg/L) were up to 100% and 92%, respectively. The water pH rose from 8.5 to 8.8 following organic acid removal in the MBR; this relatively high pH was likely responsible for observed scaling of the MBR internal membrane. Additional laboratory studies showed the scaling can be reduced by metered addition of acid to reduce the pH. Significantly, organic removal in the MBR was accomplished with a very low biomass concentration of 1 g/L throughout the field trial. An earlier engineering evaluation shows produced water treatment by the SMZ/MBR/RO system would cost from $0.13 to $0.20 per bbl at up to 40 gpm. Current estimated disposal costs for produced water are $1.75 to $4.91 per bbl when transportation costs are included, with even higher rates in some regions. Our results suggest that treatment by an SMZ/MBR/RO system may be a feasible alternative to current methods for produced water treatment and disposal.

Sullivan, Enid J [Los Alamos National Laboratory; Kwon, Soondong [UT-AUSTIN; Katz, Lynn [UT-AUSTIN; Kinney, Kerry [UT-AUSTIN

2008-01-01T23:59:59.000Z

304

The Impact of System Level Factors on Treatment Timeliness: Utilizing the Toyota Production System to Implement Direct Intake Scheduling in a Semi-rural Community Mental Health Clinic  

Science Journals Connector (OSTI)

This study examined the effect of using the Toyota Production System (TPS) to change intake procedures...F(1,160)?=?4.9; p?=?.03) from an average of 11 to 8days. The pattern of difference on treatment timeliness...

Addie Weaver PhD; Catherine G. Greeno PhD

2013-07-01T23:59:59.000Z

305

Microbial Community Dynamics of Lactate Enriched Hanford Groundwaters  

E-Print Network [OSTI]

Dynamics of Lactate Enriched Hanford Groundwaters Jenniferof Energy site at Hanford, WA, has been historicallyof lactate-enriched Hanford well H-100 groundwater sample.

Mosher, Jennifer J.

2010-01-01T23:59:59.000Z

306

Oak Ridge Removes Laboratory's Greatest Source of Groundwater...  

Broader source: Energy.gov (indexed) [DOE]

Removes Laboratory's Greatest Source of Groundwater Contamination Oak Ridge Removes Laboratory's Greatest Source of Groundwater Contamination May 1, 2012 - 12:00pm Addthis Workers...

307

Slick Rock Archived Soil & Groundwater Master Reports | Department...  

Office of Environmental Management (EM)

Soil & Groundwater Master Reports Slick Rock - Old North Continent Slick Rock - Union Carbide More Documents & Publications South Valley Archived Soil & Groundwater Master Reports...

308

DOE Responds to Advisory Board Recommendation on Groundwater...  

Office of Environmental Management (EM)

created a groundwater strategy document that described the potential for releases from waste disposal sites and storage areas. The document also prioritized known groundwater...

309

Rocky Flats Environmental Technology Site Archived Soil & Groundwater...  

Office of Environmental Management (EM)

Rocky Flats Environmental Technology Site Archived Soil & Groundwater Master Reports Rocky Flats Environmental Technology Site Archived Soil & Groundwater Master Reports Rocky...

310

Hanford Site Groundwater Monitoring for Fiscal Year 1998  

SciTech Connect (OSTI)

This report presents the results of groundwater and vadose-zone monitoring and remediation for fiscal year (FY) 1998 on the Word Site, Washington. Soil-vapor extraction in the 200-West Area removed 777 kg of carbon tetrachloride in FY 1998, for a total of 75,490 kg removed since remediation began in 1992. Spectral gamma logging and evaluation of historical gross gamma logs near tank farms and liquid-disposal sites in the 200 Areas provided information on movement of contaminants in the vadose zone. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1997 and June 1998. The most widespread radiological contaminant plumes in groundwater were tritium and iodine-129. Concentrations of technetium-99, uranium, strontium-90, and carbon-14 also exceeded drinking water standards in smaller plumes. Plutonium and cesium-137 exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in U.S. Department of Energy Order 5400.5 were exceeded for tritium, uranium, strontium-90, and plutonium in small plumes or single wells. One well completed in the basalt-confined aquifer beneath the 200-East Area exceeded the drinking water standard for technetium-99. Nitrate is the most extensive chemical contaminant. Carbon tetrachloride, chloroform, chromium, cis-l, Z-dichloroethylene, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Cyanide concentrations were elevated in one area but were below the maximum contaminant level. Tetrachloroethylene exceeded its maximum contaminant level in several wells in the 300 Area for the first time since the 1980s. Metals such as aluminum, cadmium, iron, manganese, and nickel exceeded their maximum contaminant levels in filtered samples from numerous wells; they are believed to represent natural components of groundwater. Resource Conservation and Recovery Act of 1976 groundwater monitoring continued at 25 waste management areas during FY 1998: 17 under detection programs and data indicate that they are not adversely affecting groundwater, 6 under interim-status groundwater-quality-assessment programs to assess possible contamination, and 2 under final-status corrective-action programs. Groundwater remediation in the 100 Areas continued to reduce the amount of strontium-90 (100-N) and chromium (100-K, D, and H) reaching the Columbia River. Two systems in the 200-West Area operated to prevent the spread of carbon tetrachloride and technetide uranium plumes. Groundwater monitoring continued at these sites and at other sites where there is no active remediation. A three-dimensional, numerical groundwater model was applied to simulate radionuclide movement from sources in the 200 Areas following site closure in 2050. Contaminants will continue to move toward the southeast and north (through Gable Gap), but the areas with levels exceeding drinking water standards will diminish.

Hartman, M.J. [and others

1999-03-24T23:59:59.000Z

311

In situ bioremediation of petrol contaminated groundwater  

E-Print Network [OSTI]

) Bacterial Diversity and Aerobic Biodegradation Potential in a BTEX-Contaminated Aquifer Water Air Soil21/11/08 1 In situ bioremediation of petrol contaminated groundwater Guido Miguel Delgadillo EVS and facts · Likelihood of contamination · Benefits of in situ bioremediation So... Ask not what groundwater

Blouin-Demers, Gabriel

312

Fate of As, Se, and Hg in a Passive Integrated System for Treatment of Fossil Plant Wastewater  

SciTech Connect (OSTI)

TVA is collaborating with EPRI and DOE to demonstrate a passive treatment system for removing SCR-derived ammonia and trace elements from a coal-fired power plant wastewater stream. The components of the integrated system consist of trickling filters for ammonia oxidation, reaction cells containing zero-valent iron (ZVI) for trace contaminant removal, a settling basin for storage of iron hydroxide floc, and anaerobic vertical-flow wetlands for biological denitrification. The passive integrated treatment system will treat up to 0.25 million gallons per day (gpd) of flue gas desulfurization (FGD) pond effluent, with a configuration requiring only gravity flow to obviate the need for pumps. The design of the system will enable a comparative evaluation of two parallel treatment trains, with and without the ZVI extraction trench and settling/oxidation basin components. One of the main objectives is to gain a better understanding of the chemical transformations that species of trace elements such as arsenic, selenium, and mercury undergo as they are treated in passive treatment system components with differing environmental conditions. This progress report details the design criteria for the passive integrated system for treating fossil power plant wastewater as well as performance results from the first several months of operation. Engineering work on the project has been completed, and construction took place during the summer of 2005. Monitoring of the passive treatment system was initiated in October 2005 and continued until May 18 2006. The results to date indicate that the treatment system is effective in reducing levels of nitrogen compounds and trace metals. Concentrations of both ammonia and trace metals were lower than expected in the influent FGD water, and additions to increase these concentrations will be done in the future to further test the removal efficiency of the treatment system. In May 2006, the wetland cells were drained of FGD water, refilled with less toxic ash pond water, and replanted due to low survival rates from the first planting the previous summer. The goals of the TVA-EPRI-DOE collaboration include building a better understanding of the chemical transformations that trace elements such as arsenic, selenium, and mercury undergo as they are treated in a passive treatment system, and to evaluate the performance of a large-scale replicated passive treatment system to provide additional design criteria and economic factors.

Terry Yost; Paul Pier; Gregory Brodie

2007-12-31T23:59:59.000Z

313

Hanford Treats Record Amount of Groundwater  

Broader source: Energy.gov (indexed) [DOE]

September 13, 2011 September 13, 2011 Hanford Treats Record Amount of Groundwater RICHLAND, Wash. - Workers have treated more than 800 million gallons of groundwater at the Hanford Site so far this year, a record annual amount. Last year, workers with DOE contractor CH2M HILL Plateau Remediation Company treated 600 mil- lion gallons of groundwater at the site. "It's great to know the amount of treated groundwater is increasing. We are meeting our goals, which means we are protecting the Columbia River," said Bill Barrett, CH2M HILL director of pump and treat operations and maintenance. American Recovery and Reinvestment Act work to expand Hanford's capacity for treating contami- nated groundwater led to the 2011 record amount. The Recovery Act funded the installation of more

314

Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project  

SciTech Connect (OSTI)

Groundwater is monitored at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act of 1954; the Resource Conservation and Recovery Act of 1976; the Comprehensive Environmental Response, Compensation, and Liability Act of 1980; and Washington Administrative Code. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The U.S. Department of Energy manages these activities through the Hanford Groundwater Monitoring Project. This document is an integrated monitoring plan for the groundwater project. It documents well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; includes other, established monitoring plans by reference; and appends a master well/constituent/ frequency matrix for the entire site. The objectives of monitoring fall into three general categories: plume and trend tracking, treatment/ storage/disposal unit monitoring, and remediation performance monitoring. Criteria for selecting Atomic Energy Act of 1954 monitoring networks include locations of wells in relation to known plumes or contaminant sources, well depth and construction, historical data, proximity to the Columbia River, water supplies, or other areas of special interest, and well use for other programs. Constituent lists were chosen based on known plumes and waste histories, historical groundwater data, and, in some cases, statistical modeling. Sampling frequencies were based on regulatory requirements, variability of historical data, and proximity to key areas. For sitewide plumes, most wells are sampled every 3 years. Wells monitoring specific waste sites or in areas of high variability will be sampled more frequently.

Hartman, Mary J.; Dresel, P Evan; Lindberg, Jonathan W.; Newcomer, Darrell R.; Thornton, Edward C.

2000-10-18T23:59:59.000Z

315

Monitoring Plan for RCRA Groundwater Assessment at the 216-U-12 Crib  

SciTech Connect (OSTI)

This document contains a revised and updated monitoring plan for RCRA interim status groundwater assessment, site hydrogeology, and a conceptual model of the RCRA treatment, storage, and disposal unit. Monitoring under interim status is expected to continue until the 216-U-12 crib is incorporated as a chapter into the Hanford Facility RCRA Permit or administratively closed as proposed to EPA and Ecology.

Williams, Bruce A.; Chou, Charissa J.

2005-09-20T23:59:59.000Z

316

In Situ Bioremediation of Perchlorate-Contaminated Groundwater using a Multi-Objective Parallel Evolutionary Algorithm  

E-Print Network [OSTI]

horizontal flow treatment wells (HFTWs) with in situ biodegradation is an innovative approach with the potential to remediate perchlorate- contaminated groundwater. A model has been developed that combines in the natural environment. The perchlorate problem is exacerbated because remediation of perchlorate

Coello, Carlos A. Coello

317

Development of one-dimensional computational fluid dynamics code 'GFLOW' for groundwater flow and contaminant transport analysis  

SciTech Connect (OSTI)

Prediction of groundwater movement and contaminant transport in soil is an important problem in many branches of science and engineering. This includes groundwater hydrology, environmental engineering, soil science, agricultural engineering and also nuclear engineering. Specifically, in nuclear engineering it is applicable in the design of spent fuel storage pools and waste management sites in the nuclear power plants. Ground water modeling involves the simulation of flow and contaminant transport by groundwater flow. In the context of contaminated soil and groundwater system, numerical simulations are typically used to demonstrate compliance with regulatory standard. A one-dimensional Computational Fluid Dynamics code GFLOW had been developed based on the Finite Difference Method for simulating groundwater flow and contaminant transport through saturated and unsaturated soil. The code is validated with the analytical model and the benchmarking cases available in the literature. (authors)

Rahatgaonkar, P. S.; Datta, D.; Malhotra, P. K.; Ghadge, S. G. [Nuclear Power Corporation of India Ltd., R-2, Ent. Block, Nabhikiya Urja Bhavan, Anushakti Nagar, Mumbai - 400 094 (India)

2012-07-01T23:59:59.000Z

318

Groundwater Protection Act (West Virginia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Act (West Virginia) Act (West Virginia) Groundwater Protection Act (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Buying & Making Electricity Water Home Weatherization Program Info State West Virginia Program Type Siting and Permitting Provider Department of Environmental Protection The purposes of this Act are to: Maintain and protect the state's groundwater resources consistent with this article to protect the present and future beneficial uses of the

319

The Savannah River Site's Groundwater Monitoring Program, second quarter 1989  

SciTech Connect (OSTI)

The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During second quarter 1989 (April--June), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the second quarter is presented in the Flagging Criteria section of this document. All analytical results from second quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

Not Available

1989-01-01T23:59:59.000Z

320

Impacts on groundwater due to land application of sewage sludge  

SciTech Connect (OSTI)

The project was designed to demonstrate the potential benefits of utilizing sewage sludge as a soil conditioner and fertilizer on Sassafras sandy loam soil. Aerobically digested, liquid sewage sludge was applied to the soil at rates of 0, 22.4, and 44.8 Mg of dry solids/ha for three consecutive years between 1978 and 1981. Groundwater, soil, and crop contamination levels were monitored to establish the maximum sewage solids loading rate that could be applied without causing environmental deterioration. The results indicate that application of 22.4 Mg of dry solids/ha of sludge is the upper limit to ensure protection of the groundwater quality on the site studied. Application rates at or slightly below 22.4 Mg of dry solids/ha are sufficient for providing plant nutrients for the dent corn and rye cropping system utilized in the study.

Higgins, A.J.

1984-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "groundwater treatment system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Development of a regional groundwater flow model for the area of the Idaho National Engineering Laboratory, Eastern Snake River Plain Aquifer  

SciTech Connect (OSTI)

This report documents a study conducted to develop a regional groundwater flow model for the Eastern Snake River Plain Aquifer in the area of the Idaho National Engineering Laboratory. The model was developed to support Waste Area Group 10, Operable Unit 10-04 groundwater flow and transport studies. The products of this study are this report and a set of computational tools designed to numerically model the regional groundwater flow in the Eastern Snake River Plain aquifer. The objective of developing the current model was to create a tool for defining the regional groundwater flow at the INEL. The model was developed to (a) support future transport modeling for WAG 10-04 by providing the regional groundwater flow information needed for the WAG 10-04 risk assessment, (b) define the regional groundwater flow setting for modeling groundwater contaminant transport at the scale of the individual WAGs, (c) provide a tool for improving the understanding of the groundwater flow system below the INEL, and (d) consolidate the existing regional groundwater modeling information into one usable model. The current model is appropriate for defining the regional flow setting for flow submodels as well as hypothesis testing to better understand the regional groundwater flow in the area of the INEL. The scale of the submodels must be chosen based on accuracy required for the study.

McCarthy, J.M.; Arnett, R.C.; Neupauer, R.M. [and others

1995-03-01T23:59:59.000Z

322

Hanford Site Groundwater Monitoring for Fiscal Year 1999  

SciTech Connect (OSTI)

This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 1999 on the US. Department of Energy's Hanford Site, Washington. Water-level monitoring was performed to evaluate groundwater flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Measurements for site-wide maps were conducted in June in past years and are now measured in March to reflect conditions that are closer to average. Water levels over most of the Hanford Site continued to decline between June 1998 and March 1999. The most widespread radiological contaminant plumes in groundwater were tritium and iodine-129. Concentrations of carbon-14, strontium-90, technetium-99, and uranium also exceeded drinking water standards in smaller plumes. Cesium-137 and plutonium exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in US Department of Energy Order 5400.5 were exceeded for plutonium, strontium-90, tritium, and uranium in small plumes or single wells. Nitrate and carbon tetrachloride are the most extensive chemical contaminants. Chloroform, chromium, cis-1,2dichloroethylene, cyanide, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Metals such as aluminum, cadmium, iron, manganese, and nickel exceeded their maximum contaminant levels in filtered samples from numerous wells; however, in most cases, they are believed to represent natural components of groundwater. ''Resource Conservation and Recovery Act of 1976'' groundwater monitoring continued at 25 waste management areas during fiscal year 1999: 16 under detection programs and data indicate that they are not adversely affecting groundwater; 6 under interim status groundwater quality assessment programs to assess contamination; and 2 under final status corrective-action programs. Another site, the 120-D-1 ponds, was clean closed in fiscal year 1999, and monitoring is no longer required. Groundwater remediation in the 100 Areas continued with the goal of reducing the amount of chromium (100 K, D, and H) and strontium-90 (100 N) reaching the Columbia River. The objective of two remediation systems in the 200 West Area is to prevent the spread of carbon tetrachloride and technetium-99/uranium plumes. Groundwater monitoring continued at these sites and at other sites where there is no active remediation. Subsurface source characterization and vadose zone monitoring, soil-vapor monitoring, sediment sampling and characterization, and vadose zone remediation were conducted in fiscal year 1999. Baseline spectral gamma-ray logging at two single-shell tank farms was completed, and logging of zones at tank farms with the highest count rate was initiated. Spectral gamma-ray logging also occurred at specific retention facilities in the 200 East Area. These facilities are some of the most significant potential sources of remaining vadose zone contamination. Finally, remediation and monitoring of carbon tetradoride in the 200 West Area continued, with an additional 972 kilograms of carbon tetrachloride removed from the vadose zone in fiscal year 1999.

MJ Hartman; LF Morasch; WD Webber

2000-05-10T23:59:59.000Z

323

The Groundwater Performance Assessment Project Quality Assurance Plan  

SciTech Connect (OSTI)

This document provides the quality assurance guidelines that will be followed by the groundwater project.

Walker, Thomas G.

2005-01-26T23:59:59.000Z

324

Fukushima Nuclear Crisis Recovery: A Modular Water Treatment System Deployed in Seven Weeks - 12489  

SciTech Connect (OSTI)

On March 11, 2011, the magnitude 9.0 Great East Japan earthquake, Tohoku, hit off the Fukushima coast of Japan. This was one of the most powerful earthquakes in recorded history and the most powerful one known to have hit Japan. The ensuing tsunami devastated a huge area resulting in some 25,000 persons confirmed dead or missing. The perfect storm was complete when the tsunami then found the four reactor, Fukushima-Daiichi Nuclear Station directly in its destructive path. While recovery systems admirably survived the powerful earthquake, the seawater from the tsunami knocked the emergency cooling systems out and did extensive damage to the plant and site. Subsequent hydrogen generation caused explosions which extended this damage to a new level and further flooded the buildings with highly contaminated water. Some 2 million people were evacuated from a fifty mile radius of the area and evaluation and cleanup began. Teams were assembled in Tokyo the first week of April to lay out potential plans for the immediate treatment of some 63 million gallons (a number which later exceeded 110 million gallons) of highly contaminated water to avoid overflow from the buildings as well as supply the desperately needed clean cooling water for the reactors. A system had to be deployed with a very brief cold shake down and hot startup before the rainy season started in early June. Joined by team members Toshiba (oil removal system), AREVA (chemical precipitation system) and Hitachi-GE (RO system), Kurion (cesium removal system following the oil separator) proposed, designed, fabricated, delivered and started up a one of a kind treatment skid and over 100 metric tons of specially engineered and modified Ion Specific Media (ISM) customized for this very challenging seawater/oil application, all in seven weeks. After a very short cold shake down, the system went into operation on June 17, 2011 on actual waste waters far exceeding 1 million Bq/mL in cesium and many other isotopes. One must remember that, in addition to attempting to do isotope removal in the competition of seawater (as high as 18,000 ppm sodium due to concentration), some 350,000 gallons of turbine oil was dispersed into the flooded buildings as well. The proposed system consisted of a 4 guard vessel skid for the oil and debris, 4 skids containing 16 cesium towers in a lead-lag layout with removable vessels (sent to an interim storage facility), and a 4 polishing vessel skid for iodine removal and trace cesium levels. At a flow rate of at least 220 gallons per minute, the system has routinely removed over 99% of the cesium, the main component of the activity, since going on line. To date, some 50% of the original activity has been removed and stabilized and cold shutdown of the plant was announced on December 10, 2011. In March and April alone, 10 cubic feet of Engineered Herschelite was shipped to Seabrook Nuclear Power Plant, NPP, to support the April 1, 2011 outage cleanup; 400 cubic feet was shipped to Oak Ridge National Laboratory (ORNL) for strontium (Sr-90) ground water remediation; and 6000 cubic feet (100 metric tons, MT, or 220,400 pounds) was readied for the Fukushima Nuclear Power Station with an additional 100 MT on standby for replacement vessels. This experience and accelerated media production in the U.S. bore direct application to what was to soon be used in Fukushima. How such a sophisticated and totally unique system and huge amount of media could be deployable in such a challenging and changing matrix, and in only seven weeks, is outlined in this paper as well as the system and operation itself. As demonstrated herein, all ten major steps leading up to the readiness and acceptance of a modular emergency technology recovery system were met and in a very short period of time, thus utilizing three decades of experience to produce and deliver such a system literally in seven weeks: - EPRI - U.S. Testing and Experience Leading to Introduction to EPRI - Japan and Subsequently TEPCO Emergency Meetings - Three Mile Island (TMI) Media and Vitrification Experience

Denton, Mark S.; Mertz, Joshua L. [Kurion, Inc., P.O. Box 5901, Oak Ridge, Tennessee 37831 (United States); Bostick, William D. [Materials and Chemistry Laboratory, Inc. (MCL) ETTP, Building K-1006, 2010 Highway 58, Suite 1000, Oak Ridge, Tennessee 37830 (United States)

2012-07-01T23:59:59.000Z

325

Quantitative maps of groundwater resources in Africa  

Science Journals Connector (OSTI)

In Africa, groundwater is the major source of drinking water and its use for irrigation is forecast to increase substantially to combat growing food insecurity. Despite this, there is little quantitative information on groundwater resources in Africa, and groundwater storage is consequently omitted from assessments of freshwater availability. Here we present the first quantitative continent-wide maps of aquifer storage and potential borehole yields in Africa based on an extensive review of available maps, publications and data. We estimate total groundwater storage in Africa to be 0.66million km3 (0.361.75millionkm3). Not all of this groundwater storage is available for abstraction, but the estimated volume is more than 100 times estimates of annual renewable freshwater resources on Africa. Groundwater resources are unevenly distributed: the largest groundwater volumes are found in the large sedimentary aquifers in the North African countries Libya, Algeria, Egypt and Sudan. Nevertheless, for many African countries appropriately sited and constructed boreholes can support handpump abstraction (yields of 0.10.3ls?1), and contain sufficient storage to sustain abstraction through inter-annual variations in recharge. The maps show further that the potential for higher yielding boreholes (>5ls?1) is much more limited. Therefore, strategies for increasing irrigation or supplying water to rapidly urbanizing cities that are predicated on the widespread drilling of high yielding boreholes are likely to be unsuccessful. As groundwater is the largest and most widely distributed store of freshwater in Africa, the quantitative maps are intended to lead to more realistic assessments of water security and water stress, and to promote a more quantitative approach to mapping of groundwater resources at national and regional level.

A M MacDonald; H C Bonsor; B Dochartaigh; R G Taylor

2012-01-01T23:59:59.000Z

326

Basics of pump-and-treat ground-water remediation technology. Special report  

SciTech Connect (OSTI)

The pump-and-treat process, whereby contaminated ground water is pumped to the surface for treatment, is one of the most common ground-water remediation technologies used at hazardous waste sites. However, recent research has identified complex chemical and physical interactions between contaminants and the subsurface media which may impose limitations on the extraction part of the process. The report was developed to summarize the basic considerations necessary to determine when, where, and how pump-and-treat technology can be used effectively to remediate ground-water contamination.

Mercer, J.W.; Skipp, D.C.; Giffin, D.

1990-03-01T23:59:59.000Z

327

Burn site groundwater interim measures work plan.  

SciTech Connect (OSTI)

This Work Plan identifies and outlines interim measures to address nitrate contamination in groundwater at the Burn Site, Sandia National Laboratories/New Mexico. The New Mexico Environment Department has required implementation of interim measures for nitrate-contaminated groundwater at the Burn Site. The purpose of interim measures is to prevent human or environmental exposure to nitrate-contaminated groundwater originating from the Burn Site. This Work Plan details a summary of current information about the Burn Site, interim measures activities for stabilization, and project management responsibilities to accomplish this purpose.

Witt, Jonathan L. (North Wind, Inc., Idaho Falls, ID); Hall, Kevin A. (North Wind, Inc., Idaho Falls, ID)

2005-05-01T23:59:59.000Z

328

Groundwater flow model for the General Separations Area, Savannah River Site  

SciTech Connect (OSTI)

The Savannah River Site (SRS) is a Department of Energy (DOE) facility located near Aiken, South Carolina. Assessment of groundwater flow rates and directions, potential contaminant transport times, and concentration of potential contaminants is required to determine current and future environmental effects resulting from releases by these facilities. Proposed closure actions and/or remedial alternatives also need to be evaluated. Numerical groundwater flow and solute transport models are a means of assessing the environmental effects on the groundwater system. They provide a logical method of integrating all available data into a consistent framework for quantitative analysis. The results of groundwater models can be used directly for input to management decisions and design/construct issues or can provide input into risk assessment models for site evaluations. GeoTrans, Inc. was contracted by the Environmental Restoration Department of WSRC to develop a groundwater model of the entire General Separations Area (GSA). Of particular interest is the area surrounding the Mixed Waste Management Facility (MWMF) as shown in Figure 1.2. The model developed in this phase of the study will be used to assess groundwater flow issues for the entire GSA. The second phase of the study will address contaminant transport issues specific to the area surrounding the MWMF.

Not Available

1992-05-15T23:59:59.000Z

329

Treatment of Produced Waters Using a Surfactant Modified Zeolite/Vapor Phase Bioreactor System  

SciTech Connect (OSTI)

This report summarizes work performed on this project from October 2004 through March 2005. In previous work, a surfactant modified zeolite (SMZ) was shown to be an effective system for removing BTEX contaminants from produced water. Additional work on this project demonstrated that a compost-based biofilter could biodegrade the BTEX contaminants found in the SMZ regeneration waste gas stream. However, it was also determined that the BTEX concentrations in the waste gas stream varied significantly during the regeneration period and the initial BTEX concentrations were too high for the biofilter to handle effectively. A series of experiments were conducted to determine the feasibility of using a passive adsorption column placed upstream of the biofilter to attenuate the peak gas-phase VOC concentrations delivered to the biofilter during the SMZ regeneration process. In preparation for the field test of the SMZ/VPB treatment system in New Mexico, a pilot-scale SMZ system was also designed and constructed during this reporting period. Finally, a cost and feasibility analysis was also completed. To investigate the merits of the passive buffering system during SMZ regeneration, two adsorbents, SMZ and granular activated carbon (GAC) were investigated in flow-through laboratory-scale columns to determine their capacity to handle steady and unsteady VOC feed conditions. When subjected to a toluene-contaminated air stream, the column containing SMZ reduced the peak inlet 1000 ppmv toluene concentration to 630 ppmv at a 10 second contact time. This level of buffering was insufficient to ensure complete removal in the downstream biofilter and the contact time was longer than desired. For this reason, using SMZ as a passive buffering system for the gas phase contaminants was not pursued further. In contrast to the SMZ results, GAC was found to be an effective adsorbent to handle the peak contaminant concentrations that occur early during the SMZ regeneration process. At a one second residence time, the GAC bed reduced peak contaminant concentrations by 97%. After the initial peak, the inlet VOC concentration in the SMZ regeneration gas stream drops exponentially with time. During this period, the contaminants on the GAC subsequently desorbed at a nearly steady rate over the next 45 hours resulting in a relatively steady effluent concentration of approximately 25 ppm{sub v}. This lower concentration is readily degradable by a downstream vapor phase biofilter (VPB) and the steady nature of the feed stream will prevent the biomass in the VPB from enduring starvation conditions between SMZ regeneration cycles. Repetitive sorption and desorption cycles that would be expected in the field were also investigated. It was determined that although the GAC initially lost some VOC sorption capacity, the adsorption and desorption profiles stabilized after approximately 6 cycles indicating that a GAC bed should be suitable for continuous operation. In preparation for the pilot field testing of the SMZ/VPB system, design, ''in-house'' construction and testing of the field system were completed during this project period. The design of the SMZ system for the pilot test was based on previous investigations by the PI's in Wyoming, 2002 and on analyses of the produced water at the field site in New Mexico. The field tests are scheduled for summer, 2005. A cost survey, feasibility of application and cost analyses were completed to investigate the long term effectiveness of the SMZ/VPB system as a method of treating produced water for re-use. Several factors were investigated, including: current costs to treat and dispose of produced water, end-use water quality requirements, and state and federal permitting requirements.

Soondong Kwon; Elaine B. Darby; Li-Jung Chen; Lynn E. Katz; Kerry A. Kinney; R. S. Bowman; E. J. Sullivan

2005-03-11T23:59:59.000Z

330

Quarterly report of RCRA groundwater monitoring data for period January 1--March 31, 1995  

SciTech Connect (OSTI)

This quarterly report contains data received between January and March 1995, which are the cutoff dates for this reporting period. This report may contain not only data from the January through March quarter, but also data from earlier sampling events that were not previously reported. Nineteen Resource Conservation and Recovery Act of 1976 (RCRA) groundwater monitoring projects are conducted at the Hanford Site. These projects include treatment, storage, and disposal facilities for both solid and liquid waste. The groundwater monitoring programs described in this report comply with the interim-status federal (Title 40 Code of Federal Regulation [CFR] Part 265) and state (Washington Administrative Code [WAC] 173-303-400) regulations. The RCRA projects are monitored under one of three programs: background monitoring, indicator parameter evaluation, or groundwater quality assessment.

NONE

1995-07-01T23:59:59.000Z

331

Quarterly report of RCRA groundwater monitoring data for period January 1, 1993 through March 31, 1993  

SciTech Connect (OSTI)

Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs as defined in the Resource Conservation and Recovery Act of 1976 (RCRA); and Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities, as amended (40 Code of Federal Regulations [CFR] 265). Compliance with the 40 CFR 265 regulations is required by the Washington Administrative Code (WAC) 173-303. This report contains data from Hanford Site groundwater monitoring projects. This quarterly report contains data received between March 8 and May 24, 1993, which are the cutoff dates for this reporting period. This report may contain not only data from the January through March quarter but also data from earlier sampling events that were not previously reported.

Not Available

1993-07-01T23:59:59.000Z

332

Nevada National Security Site Integrated Groundwater Sampling Plan, Revision 0  

SciTech Connect (OSTI)

The purpose of the Nevada National Security Site (NNSS) Integrated Sampling Plan (referred to herein as the Plan) is to provide a comprehensive, integrated approach for collecting and analyzing groundwater samples to meet the needs and objectives of the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) Underground Test Area (UGTA) Activity. Implementation of this Plan will provide high-quality data required by the UGTA Activity for ensuring public protection in an efficient and cost-effective manner. The Plan is designed to ensure compliance with the UGTA Quality Assurance Plan (QAP). The Plans scope comprises sample collection and analysis requirements relevant to assessing the extent of groundwater contamination from underground nuclear testing. This Plan identifies locations to be sampled by corrective action unit (CAU) and location type, sampling frequencies, sample collection methodologies, and the constituents to be analyzed. In addition, the Plan defines data collection criteria such as well-purging requirements, detection levels, and accuracy requirements; identifies reporting and data management requirements; and provides a process to ensure coordination between NNSS groundwater sampling programs for sampling of interest to UGTA. This Plan does not address compliance with requirements for wells that supply the NNSS public water system or wells involved in a permitted activity.

Marutzky, Sam; Farnham, Irene

2014-10-01T23:59:59.000Z

333

Water Budget Analysis and Groundwater Inverse Modeling  

E-Print Network [OSTI]

the hydraulic conductivity field conditioned on the measurements of hydraulic conductivity and hydraulic head for saturated flow in randomly heterogeneous porous media. The groundwater modeling approach was found to be efficient in identifying the dominant...

Farid Marandi, Sayena

2012-07-16T23:59:59.000Z

334

The Savannah River Site's Groundwater Monitoring Program  

SciTech Connect (OSTI)

This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted in the first quarter of 1990. It includes the analytical data, field data, well activity data, and the other documentation for this program and provides a record of the program's activities and rationale and an official document of the analytical results. The groundwater monitoring program includes the following activities: installation, maintenance, and abandonment of monitoring wells, environmental soil borings, development of the sampling and analytical schedule, collection and analyses of groundwater samples, review of the analytical data and other data, maintenance of the databases containing groundwater monitoring data and related data, quality assurance (QA) evaluations of laboratory performance, and reports of results to waste-site facility custodians and to the Environmental Protection Section (EPS) of EPD.

Not Available

1990-10-18T23:59:59.000Z

335

California Groundwater Management Plans | Open Energy Information  

Open Energy Info (EERE)

search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: California Groundwater Management PlansLegal Published NA Year Signed or Took Effect 2014...

336

Nevada National Security Site Groundwater Program  

ScienceCinema (OSTI)

From 1951 to 1992, the Unites States government conducted 828 underground nuclear tests at the Nevada National Security Site. About one-third of these tests occurred near, below or within the water table - the very top portion of the groundwater layer where rock and soil are completely saturated with water. As a result, some groundwater was contaminated. The U.S. Department of Energy (DOE) began exploring the effects of groundwater contamination in the 1970s. Though contamination from underground testing has never been detected on public land, the DOE was committed to developing an advanced, reliable monitoring network that ensures the long-term protection of the public. An intensive groundwater investigation program was launched in 1989.

None

2014-10-28T23:59:59.000Z

337

Development of low level liquid waste treatment systems: April-September 1981  

SciTech Connect (OSTI)

The pilot plant reverse osmosis system was demonstrated to be effective in removing large percentages of cobalt-60, iodine-125, and a mixture of cesium-137, cobalt-60, and iodine-125 from two types of aqueous streams. The effectiveness of three membrane porosities, 0, 50, and 97% salt rejection, were explored with each isotope. The 97% salt rejection membrane was the most effective in each experiment. Removals as high as 97.5% of the cobalt, 92.9% of the iodine and 95.1% of the combined isotopes were achieved. The effect of possibly interfering factors on the adsorbence of cobalt-60 and iodine-129 on selected ion exchange resins were investigated. The factors thought to affect cobalt-60 adsorption were (OH/sup -/), (NH/sub 4//sup +/), and (SO/sub 3//sup =/). None of the seven factors investigated had any effect on iodine-129 adsorption. Cesium-137 was removed from a 4600-gal aqueous waste containing a large amount of sodium hydroxide by treatment with sodium tetraphenyl boron. The cesium concentration of the supernatant portion was reduced from 570 to 4 counts/min/ml.

Williams, M.K.; Colvin, C.M.; Bond, W.H.

1982-03-05T23:59:59.000Z

338

Decontamination and inspection plan for Phase 3 closure of the 300 area waste acid treatment system  

SciTech Connect (OSTI)

This decontamination and inspection plan (DIP) describes decontamination and verification activities in support of Phase 3 closure of the 300 Area Waste Acid Treatment System (WATS). Phase 3 is the third phase of three WATS closure phases. Phase 3 attains clean closure conditions for WATS portions of the 334 and 311 Tank Farms (TF) and the 333 and 303-F Buildings. This DIP also describes designation and management of waste and debris generated during Phase 3 closure activities. Information regarding Phase 1 and Phase 2 for decontamination and verification activities closure can be found in WHC-SD-ENV-AP-001 and HNF-1784, respectively. This DIP is provided as a supplement to the closure plan (DOE/RL-90-11). This DIP provides the documentation for Ecology concurrence with Phase 3 closure methods and activities. This DIP is intended to provide greater detail than is contained in the closure plan to satisfy Ecology Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-610 requirement that closure documents describe the methods for removing, transporting, storing, and disposing of all dangerous waste at the unit. The decontamination and verification activities described in this DIP are based on the closure plan and on agreements reached between Ecology and the U.S. Department of Energy, Richland Operations Office (DOE-RL) during Phase 3 closure activity workshops and/or project manager meetings (PMMs).

LUKE, S.N.

1999-02-01T23:59:59.000Z

339

E-Print Network 3.0 - artificial groundwater recharge Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the groundwater is usually called recharge. Recharge causes the local... groundwater level to rise which creates a gradient that causes groundwater to flow away from the...

340

Mixed Waste Management Facility Groundwater Monitoring Report  

SciTech Connect (OSTI)

During fourth quarter 1997, eleven constituents exceeded final Primary Drinking Water Standards (PDWS) in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility. No constituents exceeded final PDWS in samples from upgradient monitoring wells. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters.

Chase, J.

1998-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "groundwater treatment system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Fouling mitigation in coagulation microfiltration hybrid system for drinking water treatment.  

E-Print Network [OSTI]

??Coagulation combined with microfiltration has been receiving a great attention and has been evolving in recent years as an alternative for surface water treatment. There (more)

Sadreddini, Sara

2009-01-01T23:59:59.000Z

342

Geochemical characterization of geothermal systems in the Great...  

Open Energy Info (EERE)

insights into the possible contributions of geothermal systems to groundwater chemistry and development of mitigation strategies for attendant environmental issues....

343

Effectiveness of Mechanical Aerationin Floating Aquatic Macrophyte-Based Wastewater Treatment Systems  

E-Print Network [OSTI]

Effectiveness of Mechanical Aerationin Floating Aquatic Macrophyte-Based Wastewater Treatment to evaluate its effect on wastewater treatment effi- ciency andplantgrowth. Light aeration (0.003 and0.021Lnr2 tanks. Heavy aeration (1.03 and 3.53 L nr2 min-1 ) raised wastewater dissolved oxygen(DO) concentrations

Florida, University of

344

Kids Clean Up 'Polluted' Groundwater at Festival | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Kids Clean Up 'Polluted' Groundwater at Festival Kids Clean Up 'Polluted' Groundwater at Festival Kids Clean Up 'Polluted' Groundwater at Festival May 30, 2013 - 12:00pm Addthis Fifth graders learn about cleaning up groundwater at the Children’s Water Festival. Fifth graders learn about cleaning up groundwater at the Children's Water Festival. Kids have fun cleaning up “polluted” groundwater at the Children’s Water Festival in Grand Junction, Colo. Kids have fun cleaning up "polluted" groundwater at the Children's Water Festival in Grand Junction, Colo. Fifth graders learn about cleaning up groundwater at the Children's Water Festival. Kids have fun cleaning up "polluted" groundwater at the Children's Water Festival in Grand Junction, Colo. GRAND JUNCTION, Colo. - Every spring, about 2,500 fifth graders in

345

Groundwater Report Goes Online, Interactive | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Groundwater Report Goes Online, Interactive Groundwater Report Goes Online, Interactive Groundwater Report Goes Online, Interactive September 30, 2013 - 12:00pm Addthis A screenshot of Hanford's online groundwater monitoring annual report. A screenshot of Hanford's online groundwater monitoring annual report. RICHLAND, Wash. - EM's Richland Operations Office (RL) has moved its 1,200-page annual report on groundwater monitoring to a fully online and interactive web application. The application allows users to access expert interpretation of groundwater conditions and trends for each of the Hanford site's 12 groundwater interest areas. Users can access the typical content of the paper-based report but can also explore all supporting data using an intuitive map-based interface. Groundwater monitoring is conducted to meet requirements of the DOE, U.S

346

Kids Clean Up 'Polluted' Groundwater at Festival | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Kids Clean Up 'Polluted' Groundwater at Festival Kids Clean Up 'Polluted' Groundwater at Festival Kids Clean Up 'Polluted' Groundwater at Festival May 30, 2013 - 12:00pm Addthis Fifth graders learn about cleaning up groundwater at the Children’s Water Festival. Fifth graders learn about cleaning up groundwater at the Children's Water Festival. Kids have fun cleaning up “polluted” groundwater at the Children’s Water Festival in Grand Junction, Colo. Kids have fun cleaning up "polluted" groundwater at the Children's Water Festival in Grand Junction, Colo. Fifth graders learn about cleaning up groundwater at the Children's Water Festival. Kids have fun cleaning up "polluted" groundwater at the Children's Water Festival in Grand Junction, Colo. GRAND JUNCTION, Colo. - Every spring, about 2,500 fifth graders in

347

Treatment of trichloroethene (TCE) with a fluidized-bed bioreactor  

SciTech Connect (OSTI)

Fluidized-bed bioreactors (FBBR`s) offer a promising alternative to existing treatment technologies for the treatment of water contaminated with chlorinated solvents. The objective of this research was to test a laboratory-scale FBBR for removal of trichloroethene (TCE) from groundwater and to study the FBBR kinetic behavior so that field-scale treatment systems could be designed. Phenol was selected as the growth substrate for biofilm-forming microorganisms enriched from activated-sludge because phenol induces enzymes capable of cometabolizing TCE and lesser chlorinated ethenes. The biofilm forming microorganisms were identified as Pseudomonas putida, a common soil bacterium. Experiments with a conventional, single-pass FBBR addressed TCE removal as effected by changes in TCE loading, phenol loading, and media type. In this study, TCE removal using quartz filter sand and garnet filter sand as the biofilm attachment media was measured. Removal ranged from 20 to 60% and was not affected by the media type. Also, removal was not affected by inlet TCE concentration over the range of 100 to 500 {micro}g/L provided the phenol loading was decreased with increasing TCE loading. The FBBR was capable of complete phenol removal at an inlet concentration of 20 to 25 mg/L and an empty-bed contact time of 2.7 minutes. However, the empty-bed contact time was insufficient to sustain greater than 40 to 50% removal of TCE in a nutrient-amended groundwater.

Foeller, J.R.; Segar, R.L. Jr. [Univ. of Missouri, Columbia, MO (United States). Dept. of Civil Engineering

1997-12-31T23:59:59.000Z

348

Polycyclic aromatic hydrocarbons (PAH) in top soil, leachate and groundwater from Ruseifa solid waste landfill, Jordan  

Science Journals Connector (OSTI)

The distribution profiles and pathways of polynuclear aromatic hydrocarbons in the surroundings of Ruseifa landfill area in Jordan were investigated for surface sediments, leachate, and groundwater. The total concentration of 16 polycyclic aromatic hydrocarbons (PAHs) in sediments ranged from 286 to 1704 ppm with an average value of 751 ppm. Meanwhile, concentrations of PAH in groundwater ranged between 7.1 and 12.6 ppm with an average value of 9.1 ppm. The PAH in leachate varied between 0.10 and 0.40 with an average value of 0.29 ppm. The overall PAH distribution profiles appeared to be similar for leachate and groundwater dominated by 2??3 rings system molecules. While, the sediments profile was dominated by 4??6 rings system molecules which indicated the loss of low molecular weight compounds of PAH and accumulation of higher molecular weight of PAH under prevailing semiarid and hot climatic conditions.

Anwar Jiries; Omar Rimawi; Jutta Lintelmann; Mufeed Batarseh

2005-01-01T23:59:59.000Z

349

40 CFR 265 interim-status ground-water monitoring plan for the 2101-M pond  

SciTech Connect (OSTI)

This report outlines a ground-water monitoring plan for the 2101-M pond, located in the southwestern part of the 200-East Area on the Hanford Site in south-central Washington State. It has been determined that hazardous materials may have been discharged to the pond. Installation of an interim-status ground-water monitoring system is required under the Resource Conservation and Recovery Act to determine if hazardous chemicals are moving out of the pond. This plan describes the location of new wells for the monitoring system, how the wells are to be completed, the data to be collected, and how those data can be used to determine the source and extent of any ground-water contamination from the 2101-M pond. Four new wells are planned, one upgradient and three downgradient. 35 refs., 12 figs., 9 tabs.

Chamness, M.A.; Luttrell, S.P.; Dudziak, S.

1989-03-01T23:59:59.000Z

350

Interim site characterization report and ground-water monitoring program for the Hanford site solid waste landfill  

SciTech Connect (OSTI)

Federal and state regulations governing the operation of landfills require utilization of ground-water monitoring systems to determine whether or not landfill operations impact ground water at the point of compliance (ground water beneath the perimeter of the facility). A detection-level ground-water monitoring system was designed, installed, and initiated at the Hanford Site Solid Waste Landfill (SWL). Chlorinated hydrocarbons were detected at the beginning of the ground-water monitoring program and continue to be detected more than 1 year later. The most probable source of the chlorinated hydrocarbons is washwater discharged to the SWL between 1985 and 1987. This is an interim report and includes data from the characterization work that was performed during well installation in 1987, such as field observations, sediment studies, and geophysical logging results, and data from analyses of ground-water samples collected in 1987 and 1988, such as field parameter measurements and chemical analyses. 38 refs., 27 figs., 8 tabs.

Fruland, R.M.; Hagan, R.A.; Cline, C.S.; Bates, D.J.; Evans, J.C.; Aaberg, R.L.

1989-07-01T23:59:59.000Z

351

Reclamation and groundwater remediation at a hydrocarbon site in Alaska  

SciTech Connect (OSTI)

As part of a joint hydrocarbon cleanup project between Unocal and Marathon, we have initiated the use of constructed wetlands for restoration of the 40-acre Poppy Lane gravel pit located near Kenai, Alaska. Gravel excavated from this site was used to construct roads and drilling pads in the 1960`-70`s. During this period it was also used as a refuse dump for waste from the Kenai gas field and from local residents. The bulk wastes were removed and pockets of oily sand were removed, treated and returned to a stockpile on the site. This left the site with residual pockets of hydrocarbon-impacted sand (<1000 TPH) plus traces of hydrocarbon contamination in the uppermost shallow groundwater flowing through the outwash gravels. The final part of the cleanup will be land restoration and bioremediation of the final traces of hydrocarbons, which are predominantly diesel-range. High resolution gas chromatography analysis indicated that common plants already growing on the site (willow, cottonwood, and alder) did not concentrate diesel-range petroleum hydrocarbons in their foliage when growing in soils containing these contaminants. As part of the planned restoration and shallow groundwater remediation, two 1/3 acre test plots were constructed to promote in-situ biodegradation processes. In spring 1995, the first test, a tree root-barrier plot, was planted with dormant cuttings of four native wetland tree and shrub species, which were planted to depths up to five feet. Alder and elderberry did not succeed under any conditions, nor did any species planted in standing water. For cottonwood and willow species, approximately one half of each rooted and survived. When the water table dropped the second year, the willow cuttings rooted deeper in the vadose zone, while cottonwood did not. As a result of these findings, a tree root-barrier wetland is not considered to be a viable option for groundwater treatment at Poppy Lane.

Ririe, G.T. [Unocal, Brea, CA (United States); Drake, L.D. [Univ. of Iowa, Iowa City, IA (United States); Olson, S.S. [Marathon Oil, Tyler, TX (United States)

1997-12-31T23:59:59.000Z

352

Dosimetric verification of radiotherapy treatment planning systems in Serbia: national audit  

Science Journals Connector (OSTI)

Before the audit, all three centers used algorithms type ( ... observed for lung tumor patients treated with higher energy beams. It was noticed that high energy lung treatment plans calculated by algorithms type...

Laza Rutonjski; Borislava Petrovi?; Milutin Baucal; Milan Teodorovi?

2012-09-01T23:59:59.000Z

353

Guideline for benchmarking thermal treatment systems for low-level mixed waste  

SciTech Connect (OSTI)

A process for benchmarking low-level mixed waste (LLMW) treatment technologies has been developed. When used in conjunction with the identification and preparation of surrogate waste mixtures, and with defined quality assurance and quality control procedures, the benchmarking process will effectively streamline the selection of treatment technologies being considered by the US Department of Energy (DOE) for LLMW cleanup and management. Following the quantitative template provided in the benchmarking process will greatly increase the technical information available for the decision-making process. The additional technical information will remove a large part of the uncertainty in the selection of treatment technologies. It is anticipated that the use of the benchmarking process will minimize technology development costs and overall treatment costs. In addition, the benchmarking process will enhance development of the most promising LLMW treatment processes and aid in transferring the technology to the private sector. To instill inherent quality, the benchmarking process is based on defined criteria and a structured evaluation format, which are independent of any specific conventional treatment or emerging process technology. Five categories of benchmarking criteria have been developed for the evaluation: operation/design; personnel health and safety; economics; product quality; and environmental quality. This benchmarking document gives specific guidance on what information should be included and how it should be presented. A standard format for reporting is included in Appendix A and B of this document. Special considerations for LLMW are presented and included in each of the benchmarking categories.

Hoffman, D.P.; Gibson, L.V. Jr.; Hermes, W.H. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States); Bastian, R.E. [Focus Environmental, Inc., Knoxville, TN (United States); Davis, W.T. [Tennessee Univ., Knoxville, TN (United States)

1994-01-01T23:59:59.000Z

354

Non-Incineration Treatment to Reduce Benzene and VOC Emissions from Green Sand Molding Systems  

SciTech Connect (OSTI)

Final report describing laboratory, pilot scale and production scale evaluation of advanced oxidation systems for emissions and cost reduction in metal casting green sand systems.

Fred S. Cannon; Robert C. Voigt

2002-06-28T23:59:59.000Z

355

Economies of size in municipal water treatment technologies: Texas lower Rio Grande Valley  

E-Print Network [OSTI]

advancements have improved the economic viability of reverse-osmosis (RO) desalination of brackish-groundwater as a potable water source. Brackish-groundwater may be an alternative water source that provides municipalities an opportunity to hedge against... droughts, political shortfalls, and protection from potential surface-water contamination. This research specifically focuses on investigating economies of size for conventional surface-water treatment and brackish-groundwater desalination by using results...

Boyer, Christopher Neil

2008-10-10T23:59:59.000Z

356

Followup of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process Systems Hazards Analysis Activity Review, March 2013  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HSS Independent Activity Report - HSS Independent Activity Report - Rev. 0 Report Number: HIAR-WTP-2013-03-18 Site: Hanford Site Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Follow-up of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity Review Dates of Activity : 03/18/13 - 03/21/13 Report Preparer: James O. Low Activity Description/Purpose: The Office of Health, Safety and Security (HSS) staff observed a limited portion of the restart of the Hazard Analysis (HA) for the Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) Melter Process (LMP) System. The primary purpose of this HSS field activity, on March 18-21, 2013, was to observe and understand the revised approach

357

Followup of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process Systems Hazards Analysis Activity Review, March 2013  

Broader source: Energy.gov (indexed) [DOE]

HSS Independent Activity Report - HSS Independent Activity Report - Rev. 0 Report Number: HIAR-WTP-2013-03-18 Site: Hanford Site Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Follow-up of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity Review Dates of Activity : 03/18/13 - 03/21/13 Report Preparer: James O. Low Activity Description/Purpose: The Office of Health, Safety and Security (HSS) staff observed a limited portion of the restart of the Hazard Analysis (HA) for the Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) Melter Process (LMP) System. The primary purpose of this HSS field activity, on March 18-21, 2013, was to observe and understand the revised approach

358

Influence of flooding on groundwater flow in central Cambodia  

Science Journals Connector (OSTI)

Cambodia is affected by flooding from the Mekong, Tonle Sap and Bassac ... paper is to highlight the effects of river flooding on groundwater flow using numerical simulation. A two-dimensional groundwater flow mo...

Raksmey May; Kenji Jinno; Atsushi Tsutsumi

2011-05-01T23:59:59.000Z

359

Rules and Regulations for Groundwater Quality (Rhode Island)  

Broader source: Energy.gov [DOE]

These regulations provide standards for groundwater quality in the state of Rhode Island. The rules are intended to protect and restore the quality of the state's groundwater resources for use as...

360

Demolition, Groundwater Cleanup Highlight Paducah's 2013 Accomplishments  

Broader source: Energy.gov (indexed) [DOE]

Demolition, Groundwater Cleanup Highlight Paducah's 2013 Demolition, Groundwater Cleanup Highlight Paducah's 2013 Accomplishments Demolition, Groundwater Cleanup Highlight Paducah's 2013 Accomplishments December 24, 2013 - 12:00pm Addthis A high-reach shear removes debris from the tallest structure of the C-340 complex at Paducah. Watch a video of this work here. The 120-foot-high Metals Plant was the tallest building at the Paducah site and encompassed about 1.5 million cubic feet, the volume of a football field roughly three stories tall. Demolition debris filled 28 rail cars and was shipped offsite for disposal. A high-reach shear removes debris from the tallest structure of the C-340 complex at Paducah. Watch a video of this work here. The 120-foot-high Metals Plant was the tallest building at the Paducah site and encompassed

Note: This page contains sample records for the topic "groundwater treatment system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Mercury Geochemical, Groundwater Geochemical, And Radiometric Geophysical  

Open Energy Info (EERE)

Geochemical, Groundwater Geochemical, And Radiometric Geophysical Geochemical, Groundwater Geochemical, And Radiometric Geophysical Signatures At Three Geothermal Prospects In Northern Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Mercury Geochemical, Groundwater Geochemical, And Radiometric Geophysical Signatures At Three Geothermal Prospects In Northern Nevada Details Activities (14) Areas (3) Regions (0) Abstract: Ground water sampling, desorbed mercury soil geochemical surveys and a radiometric geophysical survey was conducted in conjunction with geological mapping at three geothermal prospects in northern Nevada. Orientation sample lines from 610 m (2000 ft.) to 4575 m (15,000 ft.) in length were surveyed at right angles to known and suspected faults. Scintillometer readings (gamma radiation - total counts / second) were also

362

Chemical speciation of radionuclides migrating in groundwaters  

SciTech Connect (OSTI)

In order to more accurately predict the rates and mechanisms of radionuclide migration from low-level waste disposal facilities via groundwater transport, ongoing studies are being conducted at field sites at Chalk River Laboratories to identify and characterize the chemical speciation of mobile, long-lived radionuclides migrating in groundwaters. Large-volume water sampling techniques are being utilized to separate and concentrate radionuclides into particular, cationic, anionic, and nonionic chemical forms. Most radionuclides are migrating as soluble, anionic species that appear to be predominantly organoradionuclide complexes. Laboratory studies utilizing anion exchange chromatography have separated several anionically complexed radionuclides, e.g., {sup 60}Co and {sup 106}Ru, into a number of specific compounds or groups of compounds. Further identification of the anionic organoradionuclide complexes is planned utilizing high resolution mass spectrometry. Large-volume ultra-filtration experiments are characterizing the particulate forms of radionuclides being transported in these groundwaters.

Robertson, D.; Schilk, A.; Abel, K.; Lepel, E.; Thomas, C.; Pratt, S. [Pacific Northwest Lab., Richland, WA (United States); Cooper, E.; Hartwig, P.; Killey, R. [Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.

1994-04-01T23:59:59.000Z

363

Structural redundancy of data from wastewater treatment systems. Determination of individual balance equations  

Science Journals Connector (OSTI)

Abstract Although data reconciliation is intensely applied in process engineering, almost none of its powerful methods are employed for validation of operational data from wastewater treatment plants. This is partly due to some prerequisites that are difficult to meet including steady state, known variances of process variables and absence of gross errors. However, an algorithm can be derived from the classical approaches to data reconciliation that allows to find a comprehensive set of equations describing redundancy in the data when measured and unmeasured variables (flows and concentrations) are defined. This is a precondition for methods of data validation based on individual mass balances such as CUSUM charts. The procedure can also be applied to verify the necessity of existing or additional measurements with respect to the improvement of the data's redundancy. Results are given for a large wastewater treatment plant. The introduction aims at establishing a link between methods known from data reconciliation in process engineering and their application in wastewater treatment.

A. Spindler

2014-01-01T23:59:59.000Z

364

Vapor port and groundwater sampling well  

DOE Patents [OSTI]

A method and apparatus has been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing.

Hubbell, Joel M. (Idaho Falls, ID); Wylie, Allan H. (Idaho Falls, ID)

1996-01-01T23:59:59.000Z

365

Groundwater Protection 7 2003 SITE ENVIRONMENTAL REPORT7-1  

E-Print Network [OSTI]

and to implement best management practices designed to protect groundwater. Examples include upgrading unGroundwater Protection 7 2003 SITE ENVIRONMENTAL REPORT7-1 7.1 THE BNL GROUNDWATER PROTECTION's program helps to fulfill the environmental monitoring requirements outlined in U.S. Department of Energy

Homes, Christopher C.

366

Method and apparatus for treating gaseous effluents from waste treatment systems  

DOE Patents [OSTI]

Effluents from a waste treatment operation are incinerated and oxidized by passing the gases through an inductively coupled plasmas arc torch. The effluents are transformed into plasma within the torch. At extremely high plasma temperatures, the effluents quickly oxidize. The process results in high temperature oxidation of the gases without addition of any mass flow for introduction of energy.

Flannery, Philip A. (Ramsey, MT); Kujawa, Stephan T. (Butte, MT)

2000-01-01T23:59:59.000Z

367

Study of Performance of Heat Pump Usage in Sewage Treatment and Fouling Impact on System  

E-Print Network [OSTI]

A heat pump using disposed sewage as a heat source to heat raw sewage is presented to solve the problem that sewage temperature is low in sewage biologic treatment in cold region. According to the status of one medicine factory in Harbin, China...

Song, Y.; Yao, Y.; Ma, Z.; Na, W.

2006-01-01T23:59:59.000Z

368

Groundwater Heat Pump with Pumping and Recharging in the Same Well in China  

E-Print Network [OSTI]

In China, a new-style groundwater heat pump emerged in 2000. In this system, the production well and the injection well is integrated into one well, which is divided into three parts by clapboards: a low pressure (production) space, a seals section...

Ni, L.; Jiang, Y.; Yao, Y.; Ma, Z.

2006-01-01T23:59:59.000Z

369

Interaction of Groundwater and Surface Water in the Williston and Powder River Structural Basins  

E-Print Network [OSTI]

Interaction of Groundwater and Surface Water in the Williston and Powder River Structural Basins Cretaceous aquifer systems in the Williston and Powder River structural basins is currently being assessed by the U.S. Geological Survey (USGS). The Williston basin is located in parts of North Dakota, South Dakota

Torgersen, Christian

370

A multiple-tracer approach to understanding regional groundwater flow in the Snake Valley area of the eastern Great Basin, USA  

Science Journals Connector (OSTI)

Abstract Groundwater in Snake Valley and surrounding basins in the eastern Great Basin province of the western United States is being targeted for large-scale groundwater extraction and export. Concern about declining groundwater levels and spring flows in western Utah as a result of the proposed groundwater withdrawals has led to efforts that have improved the understanding of this regional groundwater flow system. In this study, environmental tracers (?2H, ?18O, 3H, 14C, 3He, 4He, 20Ne, 40Ar, 84Kr, and 129Xe) and major ions from 142 sites were evaluated to investigate groundwater recharge and flow-path characteristics. With few exceptions, ?2H and ?18O show that most valley groundwater has similar ratios to mountain springs, indicating recharge is dominated by relatively high-altitude precipitation. The spatial distribution of 3H, terrigenic helium (4Heterr), and 3H/3He ages shows that modern groundwater (temperatures (NGTs) are generally 111C in Snake and southern Spring Valleys and >11C to the east of Snake Valley and indicate a hydraulic discontinuity between Snake and Tule Valleys across the northern Confusion Range. The combination of \\{NGTs\\} and 4Heterr shows that the majority of Snake Valley groundwater discharges as springs, evapotranspiration, and well withdrawals within Snake Valley rather than continuing northeastward to discharge at either Fish Springs or the Great Salt Lake Playa. The refined understanding of groundwater recharge and flow paths acquired from this multi-tracer investigation has broad implications for interbasin subsurface flow estimates and future groundwater development.

Philip M. Gardner; Victor M. Heilweil

2014-01-01T23:59:59.000Z

371

In-situ groundwater remediation by selective colloid mobilization  

DOE Patents [OSTI]

An in-situ groundwater remediation pump and treat technique effective for reclamation of aquifers that have been contaminated with a mixed, metal-containing waste, which promotes selective mobilization of metal oxide colloids with a cationic surfactant, preferably a quaternary alkylammonium surfactant, without significantly reducing formation permeability that often accompanies large-scale colloid dispersion, thus increasing the efficiency of the remediation effort by enhancing the capture of strongly sorbing contaminants associated with the oxide phases. The resulting suspension can be separated from the bulk solution with controlled pH adjustments to destabilize the oxide colloids, and a clear supernatant which results that can be recycled through the injection well without further waste treatment.

Seaman, John C. (New Ellenton, SC); Bertch, Paul M. (Aiken, SC)

1998-01-01T23:59:59.000Z

372

In-situ groundwater remediation by selective colloid mobilization  

DOE Patents [OSTI]

An in-situ groundwater remediation pump and treat technique is described which is effective for reclamation of aquifers that have been contaminated with a mixed, metal-containing waste, and which promotes selective mobilization of metal oxide colloids with a cationic surfactant, preferably a quaternary alkylammonium surfactant, without significantly reducing formation permeability that often accompanies large-scale colloid dispersion, thus increasing the efficiency of the remediation effort by enhancing the capture of strongly sorbing contaminants associated with the oxide phases. The resulting suspension can be separated from the bulk solution with controlled pH adjustments to destabilize the oxide colloids, and a clear supernatant which results that can be recycled through the injection well without further waste treatment. 3 figs.

Seaman, J.C.; Bertch, P.M.

1998-12-08T23:59:59.000Z

373

SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT  

SciTech Connect (OSTI)

This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

CRAWFORD TW

2008-07-17T23:59:59.000Z

374

An artificial neural network based groundwater flow and transport simulator  

SciTech Connect (OSTI)

Artificial neural networks are investigated as a tool for the simulation of contaminant loss and recovery in three-dimensional heterogeneous groundwater flow and contaminant transport modeling. These methods have useful applications in expert system development, knowledge base development and optimization of groundwater pollution remediation. The numerical model runs used to develop the artificial neural networks can be re-used to develop artificial neural networks to address alternative optimization problems or changed formulations of the constraints and or objective function under optimization. Artificial neural networks have been analyzed with the goal of estimating objectives which normally require the use of traditional flow and transport codes: such as contaminant recovery, contaminant loss (unrecovered) and remediation failure. The inputs to the artificial neutral networks are variable pumping withdrawal rates at fairly unconstrained 3-D locations. A forward-feed backwards error propagation artificial neural network architecture is used. The significance of the size of the training set, network architecture, and network weight optimization algorithm with respect to the estimation accuracy and objective are shown to be important. Finally, the quality of the weight optimization is studied via cross-validation techniques. This is demonstrated to be a useful method for judging training performance for strongly under-described systems.

Krom, T.D.; Rosbjerg, D.

1998-07-01T23:59:59.000Z

375

Uterine Artery Embolization Combined with Local Methotrexate and Systemic Methotrexate for Treatment of Cesarean Scar Pregnancy with Different Ultrasonographic Pattern  

SciTech Connect (OSTI)

Purpose: This study was designed to compare the effectiveness of systemic methotrexate (MTX) with uterine artery embolization (UAE) combined with local MTX for the treatment of cesarean scar pregnancy (CSP) with different ultrasonographic pattern, and to indicate the preferable therapy in CSP patients. Methods: The results of 21 CSP cases were reviewed. All subjects were initially administrated with systemic MTX (50 mg/m{sup 2} body surface area). UAE combined with local MTX was added to the patients who had failed systemic MTX. The transvaginal ultrasonography data were retrospectively assessed, and two different ultrasonographic patterns were found: surface implantation and deep implantation of amniotic sac. The management and its effectiveness for patients with the two ultrasonographic patterns were studied retrospectively. Ultrasound scan and serum {beta}-hCG were monitored during follow-up. Data were analyzed with the Student's t test. Results: Nine patients were successfully treated with systemic MTX. The remaining 12 cases were successfully treated with additional UAE combined with local MTX. According to the classification by Vial et al. of CSP on ultrasonography, most surface implanted CSPs (8/11, 72.7%) could be successfully treated with systemic MTX, whereas most deeply implanted CSPs (9/10, 90%) had failed systemic MTX but still could be successfully treated with additional UAE combined with local MTX. All patients recovered without severe side effects. Most patients with a future desire for reproduction achieved subsequent pregnancy. Conclusions: For CSP patients suitable for nonsurgical treatment, UAE combined with local MTX would be the superior option compared with systemic MTX in the cases with deep implantation of amniotic sac.

Lian Fan [The First Affiliated Hospital of Sun Yat-sen University, Department of Rheumatology and Clinical Immunology (China); Wang Yu, E-mail: wyfishking@hotmail.com; Chen Wei; Li Jiaping [The First Affiliated Hospital of Sun Yat-sen University, Department of Interventional Radiology (China); Zhan Zhongping; Ye Yujin [The First Affiliated Hospital of Sun Yat-sen University, Department of Rheumatology and Clinical Immunology (China); Zhu, Yunxiao [The First Affiliated Hospital of Sun Yat-sen University, Department of Ultrasonography (China); Huang Jia [The First Affiliated Hospital of Sun Yat-sen University, Department of Gynecology and Obstetrics (China); Xu Hanshi; Yang Xiuyan; Liang Liuqin [The First Affiliated Hospital of Sun Yat-sen University, Department of Rheumatology and Clinical Immunology (China); Yang Jianyong [The First Affiliated Hospital of Sun Yat-sen University, Department of Interventional Radiology (China)

2012-04-15T23:59:59.000Z

376

A capital cost comparison of commercial ground-source heat pump systems  

SciTech Connect (OSTI)

The report provides a capital cost comparison of commercial ground source heat pump systems. The study includes groundwater systems, ground-coupled systems and hybrid systems.

Rafferty, K.

1994-06-01T23:59:59.000Z

377

Determination of monitor unit check tolerances based on a comparison with measurement and treatment planning system data  

SciTech Connect (OSTI)

ABSTRACT: This work describes the experimental validation of treatment planning system monitor unit (MU) calculations against measurement for a range of scenarios. This, together with a comparison of treatment planning system MUs and an independent MU check method, allows the derivation of confidence intervals for the check process. Data were collected for open and 60 motorized wedge fields using an Elekta Synergy linac at 6 and 8 MV using homogeneous and heterogeneous phantoms. Masterplan (Version 4.0) pencil-beam and collapsed cone algorithms were used for the primary MU calculations with full inhomogeneity correction. Results show that both algorithms agree with measurement to acceptable tolerance levels in the majority of the cases studied. The confidence interval for the pencil-beam algorithm MU against an independent check was determined as + 1.6% to ?3.4%. This is modified to + 2.3% to ?2.5% when data collected with low-density heterogeneities are removed as this algorithm is not used clinically for these cases. The corresponding interval for the collapsed cone algorithm was + 1.2% to ?4.3%, indicating that an offset tolerance for the independent check is appropriate. Analysis of clinical conformal treatment plan data generated using the pencil-beam algorithm (1393 beams) returned 93% of beams within the independent check tolerance. Similarly, using the collapsed cone algorithm as the primary MU calculation, 77% (of 1434 beams) were within the confidence interval.

Curtis, Helen [Medical Physics Department, The James Cook University Hospital, Middlesbrough (United Kingdom); Richmond, Neil, E-mail: neil.richmond@stees.nhs.uk [Medical Physics Department, The James Cook University Hospital, Middlesbrough (United Kingdom); Burke, Kevin; Walker, Chris [Medical Physics Department, The James Cook University Hospital, Middlesbrough (United Kingdom)

2013-04-01T23:59:59.000Z

378

The Savannah River Site's groundwater monitoring program  

SciTech Connect (OSTI)

This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted by EPD/EMS in the first quarter of 1991. In includes the analytical data, field data, data review, quality control, and other documentation for this program, provides a record of the program's activities and rationale, and serves as an official document of the analytical results.

Not Available

1991-10-18T23:59:59.000Z

379

Hanford Treats Groundwater Ahead of Schedule  

Broader source: Energy.gov [DOE]

RICHLAND, Wash. EMs Richland Operations Office and contractor CH2M HILL Plateau Remediation Company (CH2M HILL) are ahead of schedule in meeting EM's annual goals for treating contaminated groundwater at the Hanford site in southeast Washington state.

380

PARAMETER ESTIMATION IN PETROLEUM AND GROUNDWATER MODELING  

E-Print Network [OSTI]

on grand challenge problems. In today's petroleum industry, reservoir simulators are routinely usedPARAMETER ESTIMATION IN PETROLEUM AND GROUNDWATER MODELING R.E. Ewing, M.S. Pilant, J.G. Wade in the model, the numerical discretization used, and the solution algorithms employed. Parameter identification

Ewing, Richard E.

Note: This page contains sample records for the topic "groundwater treatment system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

The Savannah River Site's Groundwater Monitoring Program  

SciTech Connect (OSTI)

This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted during the first quarter of 1992. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official document of the analytical results.

Not Available

1992-08-03T23:59:59.000Z

382

A Deterministic Smart Market Model for Groundwater  

Science Journals Connector (OSTI)

Efficient management of water requires balancing environmental needs, externality considerations, and economic efficiency. Toward that end, this paper presents a deterministic linear program that could be used to operate a smart spot market for groundwater. ... Keywords: bidding/auctions, environment, games/group decisions, natural resources, water resources

John F. Raffensperger; Mark W. Milke; E. Grant Read

2009-11-01T23:59:59.000Z

383

Groundwater level status report for 2009, Los Alamos National Laboratory  

SciTech Connect (OSTI)

The status of groundwater level monitoring at Los Alamos National Laboratory in 2009 is provided in this report. This report summarizes groundwater level data for 179 monitoring wells, including 55 regional aquifer wells (including 11 regional/intermediate wells), 26 intermediate wells, 98 alluvial wells, and 12 water supply wells. Pressure transducers were installed in 161 monitoring wells for continuous monitoring of groundwater levels. Time-series hydrographs of groundwater level data are presented along with pertinent construction and location information for each well. The report also summarizes the groundwater temperatures recorded in intermediate and regional aquifer monitoring wells.

Koch, Richard J.; Schmeer, Sarah

2010-03-01T23:59:59.000Z

384

Groundwater level status report for 2010, Los Alamos National Laboratory  

SciTech Connect (OSTI)

The status of groundwater level monitoring at Los Alamos National Laboratory in 2010 is provided in this report. This report summarizes groundwater level data for 194 monitoring wells, including 63 regional aquifer wells (including 10 regional/intermediate wells), 34 intermediate wells, 97 alluvial wells, and 12 water supply wells. Pressure transducers were installed in 162 monitoring wells for continuous monitoring of groundwater levels. Time-series hydrographs of groundwater level data are presented along with pertinent construction and location information for each well. The report also summarizes the groundwater temperatures recorded in intermediate and regional aquifer monitoring wells and seasonal responses to snowmelt runoff observed in intermediate wells.

Koch, Richard J.; Schmeer, Sarah

2011-03-01T23:59:59.000Z

385

Process system evaluation-consolidated letters. Volume 1. Alternatives for the off-gas treatment system for the low-level waste vitrification process  

SciTech Connect (OSTI)

This report provides an evaluation of alternatives for treating off-gas from the low-level waste (LLW) melter. The study used expertise obtained from the commercial nonradioactive off-gas treatment industry. It was assumed that contact maintenance is possible, although the subsequent risk to maintenance personnel was qualitatively considered in selecting equipment. Some adaptations to the alternatives described may be required, depending on the extent of contact maintenance that can be achieved. This evaluation identified key issues for the off-gas system design. To provide background information, technology reviews were assembled for various classifications of off-gas treatment equipment, including off-gas cooling, particulate control, acid gas control, mist elimination, NO{sub x} reduction, and SO{sub 2} removal. An order-of-magnitude cost estimate for one of the off-gas systems considered is provided using both the off-gas characteristics associated with the Joule-heated and combustion-fired melters. The key issues identified and a description of the preferred off-gas system options are provided below. Five candidate treatment systems were evaluated. All of the systems are appropriate for the different melting/feed preparations currently being considered. The lowest technical risk is achieved using option 1, which is similar to designs for high-level waste (HLW) vitrification in the Hanford Waste Vitrification Project (HWVP) and the West Valley. Demonstration Project. Option 1 uses a film cooler, submerged bed scrubber (SBS), and high-efficiency mist eliminator (HEME) prior to NO{sub x} reduction and high-efficiency particulate air (HEPA) filtration. However, several advantages were identified for option 2, which uses high-temperature filtration. Based on the evaluation, option 2 was identified as the preferred alternative. The characteristics of this option are described below.

Peurrung, L.M.; Deforest, T.J; Richards, J.R.

1996-03-01T23:59:59.000Z

386

Integrated Water Treatment System (IWTS) Process Flow Diagram Mass Balance Calculations for K West Basin  

SciTech Connect (OSTI)

The purpose of this calculation is to develop the rational for the material balances that are documented in the KW Basin water system Level 1 process flow diagrams.

REED, A.V.

2000-02-28T23:59:59.000Z

387

LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in  

Broader source: Energy.gov (indexed) [DOE]

Conducts Groundwater and Soil Investigation at Riverton, Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in Response to 2010 Flood LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in Response to 2010 Flood October 16, 2012 - 10:50am Addthis LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in Response to 2010 Flood LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in Response to 2010 Flood LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in Response to 2010 Flood LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in Response to 2010 Flood What does this project do? Goal 1. Protect human health and the environment A team representing two Federal agencies-U.S. Department of Energy (DOE) Office of Legacy Management and U.S. Geological Survey-is evaluating

388

Groundwater Report Goes Online, Interactive | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Report Goes Online, Interactive Report Goes Online, Interactive Groundwater Report Goes Online, Interactive September 30, 2013 - 12:00pm Addthis A screenshot of Hanford's online groundwater monitoring annual report. A screenshot of Hanford's online groundwater monitoring annual report. RICHLAND, Wash. - EM's Richland Operations Office (RL) has moved its 1,200-page annual report on groundwater monitoring to a fully online and interactive web application. The application allows users to access expert interpretation of groundwater conditions and trends for each of the Hanford site's 12 groundwater interest areas. Users can access the typical content of the paper-based report but can also explore all supporting data using an intuitive map-based interface. Groundwater monitoring is conducted to meet requirements of the DOE, U.S

389

Efficiencies and Optimization of Weak Base Anion Ion-Exchange Resin for Groundwater Hexavalent Chromium Removal at Hanford  

SciTech Connect (OSTI)

The U.S. Department of Energys (DOEs) contractor, CH2M HILL Plateau Remediation Company, has successfully converted a series of groundwater treatment facilities to use a new treatment resin that is delivering more than $3 million in annual cost savings and efficiency in treating groundwater contamination at the DOE Hanford Site in southeastern Washington State. During the production era, the nuclear reactors at the Hanford Site required a continuous supply of high-quality cooling water during operations. Cooling water consumption ranged from about 151,417 to 378,541 L/min (40,000 to 100,000 gal/min) per reactor, depending on specific operating conditions. Water from the Columbia River was filtered and treated chemically prior to use as cooling water, including the addition of sodium dichromate as a corrosion inhibitor. Hexavalent chromium was the primary component of the sodium dichromate and was introduced into the groundwater at the Hanford Site as a result of planned and unplanned discharges from the reactors starting in 1944. Groundwater contamination by hexavalent chromium and other contaminants related to nuclear reactor operations resulted in the need for groundwater remedial actions within the Hanford Site reactor areas. Beginning in 1995, groundwater treatment methods were evaluated, leading to the use of pump-and-treat facilities with ion exchange using Dowex 21K, a regenerable, strong-base anion exchange resin. This required regeneration of the resin, which was performed offsite. In 2008, DOE recognized that regulatory agreements would require significant expansion for the groundwater chromium treatment capacity. As a result, CH2M HILL performed testing at the Hanford Site in 2009 and 2010 to demonstrate resin performance in the specific groundwater chemistry at different waste sites. The testing demonstrated that a weak-base anion, single-use resin, specifically ResinTech SIR-700 , was effective at removing chromium, had a significantly higher capacity, could be disposed of efficiently onsite, and would eliminate the complexities and programmatic risks from sampling, packaging, transportation, and return of resin for regeneration.

Nesham, Dean O. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Ivarson, Kristine A. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Hanson, James P. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Miller, Charles W. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Meyers, P. [USDOE, Richland Operations Office, WA (United States); Jaschke, Naomi M. [USDOE, Richland Operations Office, WA (United States)

2014-02-03T23:59:59.000Z

390

Prediction of groundwater inrush into coal mines from aquifers underlying the coal seams in China: application of vulnerability index method to Zhangcun Coal Mine, China  

Science Journals Connector (OSTI)

Groundwater inrush is a geohazard that can significantly impact safe operations of the coal mines in China. Its occurrence is controlled ... network (ANN) and geographic information system (GIS). The detailed pro...

Qiang Wu; Wanfang Zhou; Jinhua Wang; Shuhan Xie

2009-05-01T23:59:59.000Z

391

Pilot demonstration of concentrated solar-powered desalination of subsurface agricultural drainage water and other brackish groundwater sources  

Science Journals Connector (OSTI)

Abstract The energywater nexus is addressed with the experimental demonstration of a solar-powered desalination process system. This system was designed for high-recovery treatment of subsurface agricultural drainage water as a reuse strategy as well as other brackish groundwater sources. These water sources may exhibit wide fluctuations in salinity and makeup and pose a high risk for operational troubles due to high scaling potential. A first-of-its-kind open-cycle vapor-absorption heat pump is coupled with a multiple-effect distillation train and a large parabolic trough solar thermal concentrator. Without the heat pump, the distillation operation showed a minimum thermal energy consumption of 261.87kWhth/m3. With the heat pump, the thermal energy consumption was reduced by more than 49% to 133.2kWhth/m3. This reduction in thermal energy requirement directly translates into a 49% reduction in solar array area required to power a process with the same freshwater production rate as a system without an integrated heat pump. An optimized design was modeled and the thermal energy performance of a commercial system is projected at 34.9kWhth/m3 using a 10-effect MED operating at 85% recovery.

Matthew D. Stuber; Christopher Sullivan; Spencer A. Kirk; Jennifer A. Farrand; Philip V. Schillaci; Brian D. Fojtasek; Aaron H. Mandell

2015-01-01T23:59:59.000Z

392

Evaluation of the Efficacy of Combined Continuous Arterial Infusion and Systemic Chemotherapy for the Treatment of Advanced Pancreatic Carcinoma  

SciTech Connect (OSTI)

Purpose. To evaluate the effects of combined continuous transcatheter arterial infusion (CTAI) and systemic chemotherapy in patients with advanced pancreatic carcinoma. Methods. CTAI was performed in 17 patients with stage IV pancreatic cancer with (n = 11) or without (n = 6) liver metastasis. The reservoir was transcutaneously implanted with the help of angiography. The inferior pancreatic artery (IPA) was embolized to achieve delivery of the pancreatic blood supply through only the celiac artery. The systemic administration of gemcitabine was combined with the infusion of 5-fluorouracil via the reservoir. Treatment effects were evaluated based on the primary tumor size, liver metastasis, and survival time and factors such as tumor size, tumor location, and stage of pancreatic carcinoma; the embolized arteries were analyzed with respect to treatment effects and prognosis. Results. A catheter was fixed in the gastroduodenal artery and splenic artery in 10 and 7 patients, respectively. Complete peripancreatic arterial occlusion was successful in 10 patients. CT showed a decrease in tumor size in 6 of 17 (35%) patients and a decrease in liver metastases in 6 of 11 (55%) patients. The survival time ranged from 4 to 18 months (mean {+-} SD, 8.8 {+-} 1.5 months). Complete embolization of arteries surrounding the pancreas was achieved in 10 patients; they manifested superior treatment effects and prognoses (p < 0.05). Conclusion. In patients with advanced pancreatic cancer, long-term CTAI with systemic chemotherapy appeared to be effective not only against the primary tumor but also against liver metastases. Patients with successfully occluded peripancreatic arteries tended to survive longer.

Ikeda, O., E-mail: osamu-3643ik@do9.enjoy.ne.jp; Kusunoki, S.; Kudoh, K. [Kumamoto University Graduate School of Medical and Pharmaceutical Sciences, Department of Diagnostic Radiology (Japan); Takamori, H.; Tsuji, T.; Kanemitsu, K. [Kumamoto University Graduate School of Medical and Pharmaceutical Sciences, Department of Gastroenterological Surgery (Japan); Yamashita, Y. [Kumamoto University Graduate School of Medical and Pharmaceutical Sciences, Department of Diagnostic Radiology (Japan)

2006-06-15T23:59:59.000Z

393

Biogas production and feasibility of energy recovery systems for anaerobic treatment of wool-scouring effluent  

Science Journals Connector (OSTI)

The technical and economic feasibility of anaerobic digestion to produce biogas at a small wool-scouring facility in the United States was examined. The facility will process 90,800kg (200,000 pounds) of greasy wool per year at maximum capacity. Biochemical methane potential experiments showed that anaerobic biodegradation of organic constituents in wool-scouring effluent (WSE) ranged from 17 to 75% on a chemical oxygen demand (COD) basis and produced 0.100.39L methane per gram of WSE COD added. Microbial inhibition was observed when initial WSE concentrations exceeded 1000mg COD/L. A laboratory-scale continuous reactor operated at organic loading rates of 100200mg COD/L/day produced biogas with an average methane content of 75% and provided 7278% removal of total WSECOD. Life cycle costing predicted that the best alternative for energy recovery at a small wool-scouring facility was to offset natural gas used to heat water for wool-scouring with biogas. Economic feasibility should increase with increasing COD removal, increasing natural gas price, and increasing cost to discharge to the municipal wastewater treatment works. The key anaerobic treatment design challenge will be to maximize WSE organic loading rates while minimizing microbial inhibition.

Erika J. Schoen; David M. Bagley

2012-01-01T23:59:59.000Z

394

Case report of a near medical event in stereotactic radiotherapy due to improper units of measure from a treatment planning system  

SciTech Connect (OSTI)

Purpose: The authors hereby notify the Radiation Oncology community of a potentially lethal error due to improper implementation of linear units of measure in a treatment planning system. The authors report an incident in which a patient was nearly mistreated during a stereotactic radiotherapy procedure due to inappropriate reporting of stereotactic coordinates by the radiation therapy treatment planning system in units of centimeter rather than in millimeter. The authors suggest a method to detect such errors during treatment planning so they are caught and corrected prior to the patient positioning for treatment on the treatment machine. Methods: Using pretreatment imaging, the authors found that stereotactic coordinates are reported with improper linear units by a treatment planning system. The authors have implemented a redundant, independent method of stereotactic coordinate calculation. Results: Implementation of a double check of stereotactic coordinates via redundant, independent calculation is simple and accurate. Use of this technique will avoid any future error in stereotactic treatment coordinates due to improper linear units, transcription, or other similar errors. Conclusions: The authors recommend an independent double check of stereotactic treatment coordinates during the treatment planning process in order to avoid potential mistreatment of patients.

Gladstone, D. J.; Li, S.; Jarvis, L. A.; Hartford, A. C. [Division of Radiation Oncology, Department of Medicine, Dartmouth-Hitchcock Medical Center, Norris Cotton Cancer Center, Lebanon, New Hampshire 03756 (United States); Division of Radiation Oncology, Department of Medicine, Dartmouth-Hitchcock Medical Center, Norris Cotton Cancer Center, Lebanon, New Hampshire 03756 and Department of Radiation Oncology, Temple University Hospital, Philadelphia, Pennsylvania 19104 (United States); Division of Radiation Oncology, Department of Medicine, Dartmouth-Hitchcock Medical Center, Norris Cotton Cancer Center, Lebanon, New Hampshire 03756 (United States)

2011-07-15T23:59:59.000Z

395

On-Site Wastewater Treatment Systems: Conventional Septic Tank/Drain Field (Spanish)  

E-Print Network [OSTI]

Conventional septic tanks have been the most commonly used technology for treating wastewater. This publication explains the advantages, disadvantages, maintenance steps and estimated costs of septic tank/drain field systems....

Lesikar, Bruce J.

1999-08-12T23:59:59.000Z

396

On-Site Wastewater Treatment Systems: Conventional Septic Tank/Drain Field  

E-Print Network [OSTI]

Conventional septic systems have traditionally been the most commonly used technology for treating wastewater. This publication explains the advantages and disadvantages of conventional septic tank/drain fields, as well as estimated costs...

Lesikar, Bruce J.

1999-09-06T23:59:59.000Z

397

Water treatment process and system for metals removal using Saccharomyces cerevisiae  

DOE Patents [OSTI]

A process and a system for removal of metals from ground water or from soil by bioreducing or bioaccumulating the metals using metal tolerant microorganisms Saccharomyces cerevisiae. Saccharomyces cerevisiae is tolerant to the metals, able to bioreduce the metals to the less toxic state and to accumulate them. The process and the system is useful for removal or substantial reduction of levels of chromium, molybdenum, cobalt, zinc, nickel, calcium, strontium, mercury and copper in water.

Krauter, Paula A. W. (Livermore, CA); Krauter, Gordon W. (Livermore, CA)

2002-01-01T23:59:59.000Z

398

Superfund Record of Decision (EPA Region 10): East Multnomah County Groundwater Contamination, Operable Unit 1, Multnomah County, OR, December 31, 1996  

SciTech Connect (OSTI)

The East Multnomah County (EMC) project area refers to all areas in the EMC project area where the Troutdale Sandstone Aquifer (TSA) contains concentrations of halogenated volatile organic compounds at concentrations requiring remediation. The selected remedial action for the Troutdale Sandstone Aquifer (TSA) contaminant plume includes: treatment of extracted groundwater using air-stripping treatment technology; discharge of treated groundwater to Fairview Lake and the Columbia Slough directly or via Multnomah County storm water drainage ways; abandonment of six private Sand and Gravel Aquifer (SGA) water supply wells located within the area of the TSA contaminant plume and a provision to replace the abandoned wells with an alternative source of water; institutional controls to restrict groundwater use of the TSA and SGA to prevent exposure to contaminated groundwater and the spread of groundwater contamination during remediation; groundwater monitoring to assess compliance with performance criteria established for the remedy; and hydraulic containment of those areas of the TSA for which it may be technically impractical to restore to MCL cleanup levels within 20 years.

NONE

1998-01-01T23:59:59.000Z

399

An assessment of remediation measures and effects on groundwater quality at the Oneida County Sanitary Landfill  

SciTech Connect (OSTI)

The Oneida County Sanitary Landfill has operated from 1979 to the present. The four existing landfill cells were constructed based on standards that existed at their time of development from 1979 to 1995. The landfill was initially permitted as a natural attenuation landfill with a silt soil base liner and top cover. Groundwater sampling at the site showed that many constituents exceeded Wisconsin Administrative Code Chapter NR 140 (NR 140) standards throughout the 1980s. Measures that were implemented to remediate landfill impacts on groundwater quality included installation of a leachate/gas extraction system in 1990 and construction of a composite final cover over completed cells in 1994. In 1994, an Environmental Contamination Assessment (ECA) was conducted in accordance with NR 140 to evaluate landfill performance, groundwater quality trends, and future monitoring/remediation measures. Since implementation of the gas/leachate extraction system, there has been a reduction in detected volatile organic compounds in leachate, gas, gas condensate, and groundwater quality samples. Continued monitoring is necessary to evaluate remediation measures.

McGuire, P.; Otterson, S. [Rust Environment & Infrastructure, Sheboygan, WI (United States); Welhouse, G. [Environmental Compliance Consultants, Oshkosh, WI (United States)] [and others

1995-12-31T23:59:59.000Z

400

Groundwater monitoring program evaluation For A/M Area, Savannah River Site  

SciTech Connect (OSTI)

This investigation was undertaken with the primary purpose of assessing the groundwater monitoring program within the A/M Area to identify ways in which the monitoring program could be improved. The task was difficult due to the large number of wells located within the A/M Area and the huge database of analytical data. It was recognized early in this investigation that one of the key tasks was to develop a way to gain access to the groundwater databases so that recommendations could be made. To achieve this, geographic information systems (GIS) technology was used to extract pertinent groundwater quality information from the Geochemical Information Management System (GIMS) groundwater database and display the extracted information spatially. GIS technology was also used to determine the location of well screen and annular material zones within the A/M Area hydrostratigraphy and to identify wells that may breach confining units. Recommendations developed from this study address: (1) wells that may not be providing reliable data but continue to be routinely sampled (2) wells that may be inappropriately located but continue to be routinely sampled and (3) further work that should be undertaken, including well development, evaluation of wells that may be breaching confining units, and development of an automated link to GIMS using GIS so that GIMS data can easily be accessed and displayed geographically.

Hiergesell, R.A.; Bollinger, J.S.

1996-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "groundwater treatment system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

One System Integrated Project Team: Retrieval And Delivery Of The Hanford Tank Wastes For Vitrification In The Waste Treatment Plant  

SciTech Connect (OSTI)

The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank wastes and for building and operating the WTP. The tank wastes are the result of Hanford's nearly fifty (50) years of plutonium production. In the intervening years, waste characteristics have been increasingly better understood. However, waste characteristics that are uncertain and will remain as such represent a significant technical challenge in terms of retrieval, transport, and treatment, as well as for design and construction ofWTP. What also is clear is that the longer the waste remains in the tanks, the greater the risk to the environment and the people of the Pacific Northwest. The goal of both projects - tank operations and waste treatment - is to diminish the risks posed by the waste in the tanks at the earliest possible date. About two hundred (200) WTP and TOC employees comprise the IPT. Individual work groups within One System include Technical, Project Integration & Controls, Front-End Design & Project Definition, Commissioning, Nuclear Safety & Engineering Systems Integration, and Environmental Safety and Health and Quality Assurance (ESH&QA). Additional functions and team members will be added as the WTP approaches the operational phase. The team has undertaken several initiatives since its formation to collaborate on issues: (1) alternate scenarios for delivery of wastes from the tank farms to WTP; (2) improvements in managing Interface Control Documents; (3) coordination on various technical issues, including the Defense Nuclear Facilities Nuclear Safety Board's Recommendation 2010-2; (4) deployment of the SmartPlant? Foundation-configuration Management System; and (5) preparation of the joint contract deliverable of the Operational Readiness Support Plan.

Harp, Benton J. [Department of Energy, Office of River Protection, Richland, Washington (United States); Kacich, Richard M. [Bechtel National, Inc., Richland, WA (United States); Skwarek, Raymond J. [Washington River Protection Solutions LLC, Richland, WA (United States)

2012-12-20T23:59:59.000Z

402

Purge water management system  

DOE Patents [OSTI]

A purge water management system is described for effectively eliminating the production of purge water when obtaining a groundwater sample from a monitoring well. In its preferred embodiment, the purge water management system comprises an expandable container, a transportation system, and a return system. The purge water management system is connected to a wellhead sampling configuration, typically permanently installed at the well site. A pump, positioned with the monitoring well, pumps groundwater through the transportation system into the expandable container, which expands in direct proportion with volume of groundwater introduced, usually three or four well volumes, yet prevents the groundwater from coming into contact with the oxygen in the air. After this quantity of groundwater has been removed from the well, a sample is taken from a sampling port, after which the groundwater in the expandable container can be returned to the monitoring well through the return system. The purge water management system prevents the purge water from coming in contact with the outside environment, especially oxygen, which might cause the constituents of the groundwater to oxidize. Therefore, by introducing the purge water back into the monitoring well, the necessity of dealing with the purge water as a hazardous waste under the Resource Conservation and Recovery Act is eliminated.

Cardoso-Neto, J.E.; Williams, D.W.

1995-01-01T23:59:59.000Z

403

Coliform Bacteria and Nitrogen Fixation in Pulp and Paper Mill Effluent Treatment Systems  

Science Journals Connector (OSTI)

...performance of activated-sludge biotreatment systems...also cause rising sludge in the secondary...entrapment of N2 gas bubbles, resulting in biosolid...occur in activated-sludge aeration tanks or...samples onto 1/5-strength Trypticase soy agar...

Francis Gauthier; Josh D. Neufeld; Brian T. Driscoll; Frederick S. Archibald

2000-12-01T23:59:59.000Z

404

Livestock waste treatment systems for environmental quality, food safety, and sustainability.  

E-Print Network [OSTI]

to the sustainability of agricultural systems by: (i) utilizing crop residues and other feeds which were not used and otherwise would be lost, and; (iii) for the poorest regions of the world, providing traction for cultivation, supply for energy production or home construction (dried cowpat). However, the price of goods produce

Paris-Sud XI, Université de

405

Groundwater Monitoring at NETL-Albany  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About NETL About NETL Groundwater Monitoring at NETL-Albany GEO Probe Ground Water Testing Program NETL is committed to the safety and health of its employees and of nearby residents and to protecting the environment. As part of a DOE environmental protection program, NETL initiated a ground water monitoring program in 2001 with the Oregon Department of Environmental Quality (DEQ) to evaluate the groundwater flowing beneath the Albany, OR facility. Ground water monitoring wells were installed at that time, and periodic samples were taken. In March 2005, a newly-installed monitoring well on NETL's property indicated elevated ground water levels of a chemical commonly used as a degreaser or solvent until the late 1970's, trichloroethene (TCE). TCE is of concern because prolonged exposure may cause health problems, and it has been identified as a probable human carcinogen (cancer-causing substance).

406

EM_GroundwaterSurveyRport_formatted.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

81006 81006 WILLOWSTICK TECHNOLOGIES LLC.: ELECTROMAGNETIC GROUNDWATER SURVEY: A demonstration of an Electromagnetic Groundwater Survey to Identify Flowpaths of Injected Water in the Shannon Sandstone, Naval Petroleum Reserve No. 3, Teapot Dome Field, Wyoming Final Report for the Period of July 26 - November 1, 2005 Date Completed: May 19, 2006 By Brian Black Prepared for the United States Department of Energy Office of Fossil Energy Work performed under Rocky Mountain Oilfield Testing Center (RMOTC) CRADA 2005-060 This document may contain protected CRADA information produced under CRADA no. 2005-060 and is not to be further disclosed for a period of 5 years from the date it was produced except as expressly provided for in the CRADA

407

Modular, multi-level groundwater sampler  

DOE Patents [OSTI]

Apparatus for taking a multiple of samples of groundwater or pressure measurements from a well simultaneously. The apparatus comprises a series of chambers arranged in an axial array, each of which is dimensioned to fit into a perforated well casing and leave a small gap between the well casing and the exterior of the chamber. Seals at each end of the container define the limits to the axial portion of the well to be sampled. A submersible pump in each chamber pumps the groundwater that passes through the well casing perforations into the gap from the gap to the surface for analysis. The power lines and hoses for the chambers farther down the array pass through each chamber above them in the array. The seals are solid, water-proof, non-reactive, resilient disks supported to engage the inside surface of the well casing. Because of the modular design, the apparatus provides flexibility for use in a variety of well configurations.

Nichols, Ralph L. (812 Plantation Point Dr., N. Augusta, SC 29841); Widdowson, Mark A. (4204 Havana Ct., Columbia, SC 29206); Mullinex, Harry (10 Cardross La., Columbia, SC 29209); Orne, William H. (12 Martha Ct., Sumter, SC 29150); Looney, Brian B. (1135 Ridgemont Dr., Aiken, SC 29803)

1994-01-01T23:59:59.000Z

408

Monitoring Precursor 16S rRNAs ofAcinetobacter spp. in Activated Sludge Wastewater Treatment Systems  

Science Journals Connector (OSTI)

...Sanitary District, Northeast Wastewater Treatment Plant (UCSD, NEWWTP), and...gallons/day) of municipal wastewater. The treatment plant reduces the average influent...community structure of wastewater treatment plants: a comparison of old...

Daniel B. Oerther; Jakob Pernthaler; Andreas Schramm; Rudolf Amann; Lutgarde Raskin

2000-05-01T23:59:59.000Z

409

Groundwater recharge estimates using a soil-water-balance model for the Powder River and Williston structural basins  

E-Print Network [OSTI]

Groundwater recharge estimates using a soil-water-balance model for the Powder River and Williston for the lower Tertiary and Upper Cretaceous aquifer system in the Powder River and Williston structural basins in the Williston structural basin will require trillions of gallons of water from this aquifer system over the next

Torgersen, Christian

410

Oak Ridge EM Program Collaborates with Regulators on Groundwater Strategy |  

Broader source: Energy.gov (indexed) [DOE]

Collaborates with Regulators on Groundwater Collaborates with Regulators on Groundwater Strategy Oak Ridge EM Program Collaborates with Regulators on Groundwater Strategy June 26, 2013 - 12:00pm Addthis EM uses data collected at monitoring wells to determine groundwater migration patterns and potential risks. EM uses data collected at monitoring wells to determine groundwater migration patterns and potential risks. OAK RIDGE, Tenn. - The Oak Ridge EM program has joined state and federal regulators in a series of workshops to address contaminated groundwater on the Oak Ridge Reservation. The U.S. Environmental Protection Agency and Tennessee Department of Environment and Conservation are working with Oak Ridge's EM program and other organizations interested in the site's environmental cleanup and quality. Those entities include URS | CH2M Oak Ridge, Oak Ridge's prime

411

Oak Ridge Removes Laboratory's Greatest Source of Groundwater  

Broader source: Energy.gov (indexed) [DOE]

Oak Ridge Removes Laboratory's Greatest Source of Groundwater Oak Ridge Removes Laboratory's Greatest Source of Groundwater Contamination Oak Ridge Removes Laboratory's Greatest Source of Groundwater Contamination May 1, 2012 - 12:00pm Addthis Workers remove the 4,000-gallon Tank W-1A, which was ORNL’s greatest source of groundwater contamination. Workers remove the 4,000-gallon Tank W-1A, which was ORNL's greatest source of groundwater contamination. Workers load boxes containing contaminated soil that surrounded Tank W-1A. Workers load boxes containing contaminated soil that surrounded Tank W-1A. The 6,500-pound Tank W-1A is shipped away from ORNL. The 6,500-pound Tank W-1A is shipped away from ORNL. Workers remove the 4,000-gallon Tank W-1A, which was ORNL's greatest source of groundwater contamination. Workers load boxes containing contaminated soil that surrounded Tank W-1A.

412

Guidelines for the Protection of Surface and Groundwater Resources During  

Open Energy Info (EERE)

Guidelines for the Protection of Surface and Groundwater Resources During Guidelines for the Protection of Surface and Groundwater Resources During Exploration Drilling Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Guidelines for the Protection of Surface and Groundwater Resources During Exploration Drilling Author Government of Western Australia Organization Department of Mines and Petroleum Published N/A, 2002 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Guidelines for the Protection of Surface and Groundwater Resources During Exploration Drilling Citation Government of Western Australia (Department of Mines and Petroleum). 2002. Guidelines for the Protection of Surface and Groundwater Resources During Exploration Drilling. N\A: N/A. Retrieved from "http://en.openei.org/w/index.php?title=Guidelines_for_the_Protection_of_Surface_and_Groundwater_Resources_During_Exploration_Drilling&oldid=686528"

413

Oak Ridge Removes Laboratory's Greatest Source of Groundwater  

Broader source: Energy.gov (indexed) [DOE]

Oak Ridge Removes Laboratory's Greatest Source of Groundwater Oak Ridge Removes Laboratory's Greatest Source of Groundwater Contamination Oak Ridge Removes Laboratory's Greatest Source of Groundwater Contamination May 1, 2012 - 12:00pm Addthis Workers remove the 4,000-gallon Tank W-1A, which was ORNL’s greatest source of groundwater contamination. Workers remove the 4,000-gallon Tank W-1A, which was ORNL's greatest source of groundwater contamination. Workers load boxes containing contaminated soil that surrounded Tank W-1A. Workers load boxes containing contaminated soil that surrounded Tank W-1A. The 6,500-pound Tank W-1A is shipped away from ORNL. The 6,500-pound Tank W-1A is shipped away from ORNL. Workers remove the 4,000-gallon Tank W-1A, which was ORNL's greatest source of groundwater contamination. Workers load boxes containing contaminated soil that surrounded Tank W-1A.

414

Oak Ridge EM Program Collaborates with Regulators on Groundwater Strategy |  

Broader source: Energy.gov (indexed) [DOE]

Oak Ridge EM Program Collaborates with Regulators on Groundwater Oak Ridge EM Program Collaborates with Regulators on Groundwater Strategy Oak Ridge EM Program Collaborates with Regulators on Groundwater Strategy June 26, 2013 - 12:00pm Addthis EM uses data collected at monitoring wells to determine groundwater migration patterns and potential risks. EM uses data collected at monitoring wells to determine groundwater migration patterns and potential risks. OAK RIDGE, Tenn. - The Oak Ridge EM program has joined state and federal regulators in a series of workshops to address contaminated groundwater on the Oak Ridge Reservation. The U.S. Environmental Protection Agency and Tennessee Department of Environment and Conservation are working with Oak Ridge's EM program and other organizations interested in the site's environmental cleanup and

415

News Release: DOE to Conduct Additional Groundwater Tests at Riverton  

Broader source: Energy.gov (indexed) [DOE]

to Conduct Additional Groundwater Tests at to Conduct Additional Groundwater Tests at Riverton UMTRCA Site News Release: DOE to Conduct Additional Groundwater Tests at Riverton UMTRCA Site July 30, 2012 - 11:08am Addthis News Contact: Contractor, Judy Miller, S.M. Stoller Corporation Public Affairs (970) 248-6363 jmiller@lm.doe.gov Tests will indicate progress of current groundwater remediation strategy The U.S. Department of Energy will conduct additional characterization work at the Riverton, WY, Uranium Mill Tailings Radiation Control Act (UMTRCA) Site this summer, including extensive groundwater and soil sampling. The Department will use the sampling results to update the site conceptual model and to develop a revised groundwater flow and transport model to more accurately simulate natural flushing processes.

416

Effect of faulting on ground-water movement in the Death Valley region, Nevada and California  

SciTech Connect (OSTI)

This study characterizes the hydrogeologic system of the Death Valley region, an area covering approximately 100,000 square kilometers. The study also characterizes the effects of faults on ground-water movement in the Death Valley region by synthesizing crustal stress, fracture mechanics,a nd structural geologic data. The geologic conditions are typical of the Basin and Range Province; a variety of sedimentary and igneous intrusive and extrusive rocks have been subjected to both compressional and extensional deformation. Faulting and associated fracturing is pervasive and greatly affects ground-water flow patterns. Faults may become preferred conduits or barriers to flow depending on whether they are in relative tension, compression, or shear and other factors such as the degree of dislocations of geologic units caused by faulting, the rock types involved, the fault zone materials, and the depth below the surface. The current crustal stress field was combined with fault orientations to predict potential effects of faults on the regional ground-water flow regime. Numerous examples of fault-controlled ground-water flow exist within the study area. Hydrologic data provided an independent method for checking some of the assumptions concerning preferential flow paths. 97 refs., 20 figs., 5 tabs.

Faunt, C.C.

1997-12-31T23:59:59.000Z

417

Groundwater favorability map using GIS multicriteria data analysis on crystalline terrain, So Paulo State, Brazil  

Science Journals Connector (OSTI)

Summary This paper presents the groundwater favorability mapping on a fractured terrain in the eastern portion of So Paulo State, Brazil. Remote sensing, airborne geophysical data, photogeologic interpretation, geologic and geomorphologic maps and geographic information system (GIS) techniques have been used. The results of cross-tabulation between these maps and well yield data allowed groundwater prospective parameters in a fractured-bedrock aquifer. These prospective parameters are the base for the favorability analysis whose principle is based on the knowledge-driven method. The multicriteria analysis (weighted linear combination) was carried out to give a groundwater favorability map, because the prospective parameters have different weights of importance and different classes of each parameter. The groundwater favorability map was tested by cross-tabulation with new well yield data and spring occurrence. The wells with the highest values of productivity, as well as all the springs occurrence are situated in the excellent and good favorability mapped areas. It shows good coherence between the prospective parameters and the well yield and the importance of GIS techniques for definition of target areas for detail study and wells location.

Vanessa Madrucci; Fabio Taioli; Carlos Csar de Arajo

2008-01-01T23:59:59.000Z

418

Groundwater modeling of the proposed new production reactor site, Savannah River Site, South Carolina  

SciTech Connect (OSTI)

This report addresses groundwater modeling performed to support the Environmental Impact Statement (EIS) that is being prepared by the Department of Energy (DOE). The EIS pertains to construction and operation of a new production reactor (NPR) that is under consideration for the Savannah River Site (SRS). Three primary issues are addressed by the modeling analysis: (1) groundwater availability, (2) changes in vertical hydraulic gradients as a result of groundwater pumpage, and (3) migration of potential contaminants from the NPR site. The modeling indicates that the maximum pumpage to be used, 1000 gpm, will induce only minor drawdown across SRS. Pumpage of this magnitude will have a limited effect on the upward gradient from the Cretaceous into the Tertiary near Upper Three Runs Creek. Potentiometric surface maps generated from modeled results indicate that horizontal flow in the water table is either towards Four Mile Creek to the north or to Pen Branch on the south. Particle tracking analysis indicates that the primary flow paths are vertical into the Lower Tertiary Zone, with very little lateral migration. Total travel times from the NPR site to the edge of the model (approximately 3 miles) is on the order of 50 years. The flow direction of water in the Lower Tertiary Zone is relatively well defined due to the regional extent of the flow system. The Pen Branch Fault does not influence contaminant migration for this particular site because it is in the opposite direction of Lower Tertiary Zone groundwater flow. 20 refs., 27 figs., 2 tabs.

Looney, B.B.; Haselow, J.S.; Andersen, P.F.; Spalding, C.P.; Davis, D.H.

1990-01-05T23:59:59.000Z

419

Hanford Site Groundwater Monitoring for Fiscal Year 2006  

SciTech Connect (OSTI)

This report presents the results of groundwater monitoring for FY 2006 on DOE's Hanford Site. Results of groundwater remediation, vadose zone monitoring, and characterization are summarized. DOE monitors groundwater at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act (AEA), the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), and Washington Administrative Code (WAC).

Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

2007-03-01T23:59:59.000Z

420

Ground-water sample collection and analysis plan for the ground-water surveillance project  

SciTech Connect (OSTI)

The Pacific Northwest Laboratory performs ground-water sampling activities at the US Department of Energy`s (DOE`s) Hanford Site in support of DOE`s environmental surveillance responsibilities. The purpose of this document is to translate DOE`s General Environmental Protection Program (DOE Order 5400.1) into a comprehensive ground-water sample collection and analysis plan for the Hanford Site. This sample collection and analysis plan sets forth the environmental surveillance objectives applicable to ground water, identifies the strategy for selecting sample collection locations, and lists the analyses to be performed to meet those objectives.

Bryce, R.W.; Evans, J.C.; Olsen, K.B.

1991-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "groundwater treatment system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Ground-water sample collection and analysis plan for the ground-water surveillance project  

SciTech Connect (OSTI)

The Pacific Northwest Laboratory performs ground-water sampling activities at the US Department of Energy's (DOE's) Hanford Site in support of DOE's environmental surveillance responsibilities. The purpose of this document is to translate DOE's General Environmental Protection Program (DOE Order 5400.1) into a comprehensive ground-water sample collection and analysis plan for the Hanford Site. This sample collection and analysis plan sets forth the environmental surveillance objectives applicable to ground water, identifies the strategy for selecting sample collection locations, and lists the analyses to be performed to meet those objectives.

Bryce, R.W.; Evans, J.C.; Olsen, K.B.

1991-12-01T23:59:59.000Z

422

User's manual of a supporting system for treatment planning in boron neutron capture therapy. JAERI computational dosimetry system  

E-Print Network [OSTI]

A boron neutron capture therapy (BNCT) with epithermal neutron beam is expected to treat effectively for malignant tumor that is located deeply in the brain. It is indispensable to estimate preliminarily the irradiation dose in the brain of a patient in order to perform the epithermal neutron beam BNCT. Thus, the JAERI Computational Dosimetry System (JCDS), which can calculate the dose distributions in the brain, has been developed. JCDS is a software that creates a 3-dimensional head model of a patient by using CT and MRI images and that generates a input data file automatically for calculation neutron flux and gamma-ray dose distribution in the brain by the Monte Carlo code: MCNP, and that displays the dose distribution on the head model for dosimetry by using the MCNP calculation results. JCDS has any advantages as follows; By treating CT data and MRI data which are medical images, a detail three-dimensional model of patient's head is able to be made easily. The three-dimensional head image is editable to ...

Kumada, H

2002-01-01T23:59:59.000Z

423

ShowFlow: A practical interface for groundwater modeling  

SciTech Connect (OSTI)

ShowFlow was created to provide a user-friendly, intuitive environment for researchers and students who use computer modeling software. What traditionally has been a workplace available only to those familiar with command-line based computer systems is now within reach of almost anyone interested in the subject of modeling. In the case of this edition of ShowFlow, the user can easily experiment with simulations using the steady state gaussian plume groundwater pollutant transport model SSGPLUME, though ShowFlow can be rewritten to provide a similar interface for any computer model. Included in this thesis is all the source code for both the ShowFlow application for Microsoft{reg sign} Windows{trademark} and the SSGPLUME model, a User's Guide, and a Developer's Guide for converting ShowFlow to run other model programs. 18 refs., 13 figs.

Tauxe, J.D.

1990-12-01T23:59:59.000Z

424

Groundwater Protection Group (GPG), Brookhaven National Laboratory, BNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EPD Home EPD Home Site Details GPG Home Groundwater Projects Surface Projects Land Use & Institutional Controls Mapping Administrative Record Contacts Reports Other Information Reactor Projects (HFBR & BGRR) Groundwater Protection Group The Groundwater Protection Group (formerly know as the Long Term Response Action (LTRA) Group) was formed in 2004 as part of the Environmental Protection Division. The GPG Group is responsible for the long-term surveillance, monitoring, maintenance, operating, reporting, and community involvement activities required to complete the CERCLA environmental cleanup activities at Brookhaven National Laboratory. Ongoing Projects: g-2 Record of Decision Groundwater Projects Surface Projects Land Use and Institutional Control Five Year Review

425

Groundwater and Leachate Monitoring and Sampling at ERDF, CY 2010  

SciTech Connect (OSTI)

The purpose of this annual monitoring report is to evaluate the conditions of and identify trends for groundwater beneath the ERDF and report leachate results in fulfillment of the requirements specified in the ERDF ROD2 and the ERDF Amended ROD (EPA 1999). The overall objective of the groundwater monitoring program is to determine whether ERDF has impacted the groundwater. This objective is complicated by the fact that the ERDF is situated downgradient of the numerous groundwater contamination plumes originating from the 200 West Area.

Weiss, R. L.; Lawrence, B. L.

2011-06-09T23:59:59.000Z

426

SWMU ASSESSMENT REPORT NUMBER: NAME: Northeast Groundwater Plume  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NUMBER: NAME: Northeast Groundwater Plume DATE: July 21 REGULATORY STATUS: AOC LOCATION: Inside and outside security fence east, northeast ofplant operations. See attached map for...

427

SciTech Connect: Conjunctive Surface and Groundwater Management...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conjunctive Surface and Groundwater Management in Utah: Implications for Oil Shale and Oil Sands Development Citation Details In-Document Search Title: Conjunctive Surface and...

428

In-Ground Heating Removes Groundwater Contamination at EM's Paducah...  

Office of Environmental Management (EM)

status that maximized productivity while reducing costs through automation, said Kelly Layne, groundwater project manager for the company. "Specifically, our site...

429

Page Previous Reports-1 Previous Hanford Site Groundwater Monitoring...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

information and procedures. Hanford Site Groundwater Monitoring Report for 2012, DOERL-2013-22: http:www.hanford.govc.cfmsgrpGWRep12start.htm Hanford Site...

430

Central Plateau Groundwater and Deep Vadose Zone Strategy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of interest to the Council? * Examples of groundwater and vadose zone integration - Deep Vadose Zone treatability testing leading to evaluation of measures to protect...

431

Oxidative Dissolution of UO2 in a Simulated Groundwater Containing...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Groundwater Containing Synthetic Nanocrystalline Mackinawite. Abstract: The long-term success of in situ reductive immobilization of uranium (U) depends on the stability of...

432

Novel Remediation Schemes for Groundwater and Urban Runoff.  

E-Print Network [OSTI]

?? Anthropogenic environmental contamination is having a profound effect on ground and surface water bodies. Contaminants, such as, chlorinated solvents in groundwater and heavy metals (more)

Olson, Pamela Renee

2011-01-01T23:59:59.000Z

433

Nevada National Security Site Groundwater Program Welcomes Peer...  

Office of Environmental Management (EM)

the computer modeling approach developed to better understand how historic underground nuclear testing in Yucca Flat affected the groundwater. In early April, five peer...

434

Waste treatment capacity of raft hydroponic lettuce production in an integrated fish culture system and the contribution of lettuce to treatment capacity  

E-Print Network [OSTI]

at two densities 5.6 kg/M3 (132 fish) and 9.4 kg/M3 (220 fish); each replicated three times. Feed was supplied at 0.93% of mean body weight in both treatments and increased weekly at approximately 1 g/fish/day. Ammonium, nitrite, nitrate, pH, lettuce...

Gloger, Kelly C

2012-06-07T23:59:59.000Z

435

Management Alert - The 2020 Vision One System Proposal for Commissioning and Startup of the Waste Treatment and Immobilization Plant, IG-0871  

Broader source: Energy.gov (indexed) [DOE]

The 2020 Vision One System Proposal The 2020 Vision One System Proposal for Commissioning and Startup of the Waste Treatment and Immobilization Plant DOE/IG-0871 October 2012 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 October 3, 2012 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Management Alert on "The 2020 Vision One System Proposal for Commissioning and Startup of the Waste Treatment and Immobilization Plant" IMMEDIATE CONCERN The Department of Energy is considering a proposal known at the 2020 Vision One System (2020 Vision) that would implement a phased approach to commissioning the $12.2 billion Waste Treatment and Immobilization Plant (WTP). As part of the phased approach, the Low-

436

Clean option: Berkeley Pit water treatment and resource recovery strategy  

SciTech Connect (OSTI)

The US Department of Energy (DOE), Office of Technology Development, established the Resource Recovery Project (RRP) in 1992 as a five-year effort to evaluate and demonstrate multiple technologies for recovering water, metals, and other industrial resources from contaminated surface and groundwater. Natural water resources located throughout the DOE complex and the and western states have been rendered unusable because of contamination from heavy metals. The Berkeley Pit, a large, inactive, open pit copper mine located in Butte, Montana, along with its associated groundwater system, has been selected by the RRP for use as a feedstock for a test bed facility located there. The test bed facility provides the infrastructure needed to evaluate promising technologies at the pilot plant scale. Data obtained from testing these technologies was used to assess their applicability for similar mine drainage water applications throughout the western states and at DOE. The objective of the Clean Option project is to develop strategies that provides a comprehensive and integrated approach to resource recovery using the Berkeley Pit water as a feedstock. The strategies not only consider the immediate problem of resource recovery from the contaminated water, but also manage the subsequent treatment of all resulting process streams. The strategies also employ the philosophy of waste minimization to optimize reduction of the waste volume requiring disposal, and the recovery and reuse of processing materials.

Gerber, M.A.; Orth, R.J.; Elmore, M.R.; Monzyk, B.F.

1995-09-01T23:59:59.000Z

437

Assessment of Groundwater Contamination, In Situ Treatment, and Disposal of Treatment  

E-Print Network [OSTI]

August 2005 Prepared by Texas Bureau of Economic Geology, University of Texas, Austin Texas 12301 ..................................................................................................... 13 2.2.5 Uranium

Scanlon, Bridget R.

438

Regional ground-water mixing and the origin of saline fluids: Midcontinent, United States  

SciTech Connect (OSTI)

Ground waters in three adjacent regional flow systems in the midcontinent exhibit extreme chemical and isotopic variations that delineate large-scale fluid flow and mixing processes and two distinct mechanisms for the generation of saline fluids. Systematic spatial variations of major ion concentrations, H, O, and Sr isotopic compositions, and ground-water migration pathways indicate that each flow system contains water of markedly different origin. Mixing of the three separate ground waters exerts a fundamental control on ground-water composition. The three ground waters are: (i) dilute meteoric water recharged in southern Missouri; (ii) saline Na-Ca-Cl water in southeastern Kansas of far-traveled meteoric origin that acquired its salinity by halite dissolution; and (iii) Na-Ca-Cl brines in north-central Oklahoma that may have originated as Paleozoic seawater. 45 refs., 4 figs., 1 tab.

Musgrove, M.; Banner, J.L. (Univ. of Texas, Austin (United States))

1993-03-26T23:59:59.000Z

439

E-Print Network 3.0 - arsenic-affected groundwater areas Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

flow and contaminant transport in this area. The groundwater flow model... -SCALE WATER RESOURCES MANAGEMENT WITHIN THE FRAMEWORK OF GLOWA-DANUBE - PART A: THE GROUNDWATER MODEL...

440

E-Print Network 3.0 - automating groundwater sampling Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

GROUNDWATER MANAGEMENT... summary of selected case studies is presented below. BACKGROUND A typical groundwater sampling event... . Automation through the use of sensors...

Note: This page contains sample records for the topic "groundwater treatment system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Probabilistic estimation and prediction of groundwater recharge in a semi-arid environment  

E-Print Network [OSTI]

Quantifying and characterizing groundwater recharge are critical for water resources management. Unfortunately, low recharge rates are difficult to resolve in dry environments, where groundwater is often most important. ...

Ng, Gene-Hua Crystal

2009-01-01T23:59:59.000Z

442

E-Print Network 3.0 - altered groundwater chemistry Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

groundwater chemistry Search Powered by Explorit Topic List Advanced Search Sample search results for: altered groundwater chemistry Page: << < 1 2 3 4 5 > >> 1 Seawater intrusion...

443

K-1435 Wastewater Treatment System for the Toxic Substances Control Act Incinerator Wastewater at the East Tennessee Technology Park, Oak Ridge, TN  

SciTech Connect (OSTI)

This paper discusses the design and performance of a wastewater treatment system installed to support the operation of a hazardous waste incinerator. The Oak Ridge Toxic Substances Control Act Incinerator (TSCAI), located at the East Tennessee Technology Park (ETTP), is designed and permitted to treat Resource ConservatioN and Recovery Act (RCRA) wastes including characteristic and listed wastes and polychlorinated biphenyl (PCB)-contaminated mixed waste. the incinerator process generates acidic gases and particulates which consist of salts, metals, and radionuclides. These off-gases from the incinerator are treated with a wet off-gas scrubber system. The recirculated water is continuously purged (below down), resulting in a wastewater to be treated. Additional water sources are also collected on the site for treatment, including storm water that infiltrates into diked areas and fire water from the incinerator's suppression system. To meet regulatory requirements for discharge, a wastewater treatment system (WWTS) was designed, constructed, and operated to treat these water sources. The WWTS was designed to provide for periodic fluctuation of contaminant concentrations due to various feed streams to the incinverator. Blow down consists of total suspended solids (TSS) and total dissolved solids (TDS), encompassing metals, radionuclide contamination and trace organics. The system design flow rate range is 35 to 75 gallons per minute (gpm). The system is designed with redundancy to minimize time off-line and to reduce impacts to the TSCAI operations. A novel treatment system uses several unit operations, including chemical feed systems, two-stage chemical reaction treatment, microfiltration, sludge storage and dewatering, neutralization, granular activated carbon, effluent neutralization, and a complete programmable logic controller (PLC) and human-machine interface (HMI) control system. To meet the space requirements and to provide portability of the WWTS to other applications, the system was installed in three, over-the-road semi trailers, and interconnected with piping and power. Trailers were oriented on a small site footprint to facilitate ease of installation. A remote sump pump skid was provided to convey water from two holding sumps adjacent to the treatment process. An accumulation tank and pump were also provided to receive miscellaneous wastewaters for treatment if they meet the waste acceptance criteria. The paper includes details of the technology used in the design, the requirements for compliance, and the initial performance demonstration and jar testing results. The WWTS successfully allowed for highly efficient, high-volume treatment with compliant discharge to off-site surface water.

Swientoniewski M.D.

2008-02-24T23:59:59.000Z

444

Y-12 Groundwater Protection Program Groundwater Monitoring Data Compendium, Revision 1  

SciTech Connect (OSTI)

This document is a compendium of water quality and hydrologic characterization data obtained through December 2005 from the network of groundwater monitoring wells and surface water sampling stations (including springs and building sumps) at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee that have been sampled since January 2003. The primary objectives of this document, hereafter referenced as the Y-12 Groundwater Protection Program (GWPP) Compendium, are to: (1) Serve as a single-source reference for monitoring data that meet the requirements of the Y-12 GWPP, as defined in the Y-12 GWPP Management Plan (BWXT Y-12 L.L.C. [BWXT] 2004); (2) Maintain a detailed analysis and evaluation of the monitoring data for each applicable well, spring, and surface water sampling station, with a focus on results for the primary inorganic, organic, and radiological contaminants in groundwater and surface water at Y-12; and (3) Ensure retention of ''institutional knowledge'' obtained over the long-term (>20-year) history of groundwater and surface water monitoring at Y-12 and the related sources of groundwater and surface water contamination. To achieve these goals, the Y-12 GWPP Compendium brings together salient hydrologic, geologic, geochemical, water-quality, and environmental compliance information that is otherwise disseminated throughout numerous technical documents and reports prepared in support of completed and ongoing environmental contamination assessment, remediation, and monitoring activities performed at Y-12. The following subsections provide background information regarding the overall scope and format of the Y-12 GWPP Compendium and the planned approach for distribution and revision (i.e., administration) of this ''living'' document.

<