Powered by Deep Web Technologies
Note: This page contains sample records for the topic "groundwater operable unit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Aquifer testing data package for 1993 200-UP-1 Groundwater Operable Unit  

SciTech Connect (OSTI)

The following aquifer testing data supported 1993 Interim Remedial Measure field work for the U-1 and U-2 crib area near the uranium technetium and nitrate plumes beneath the U Plant Aggregate Area. The purpose of aquifer testing was to fill in hydraulic conductivity data gaps in the western portion of 200 West Area and help refine the hydrogeologic conceptual model. This data package reports data collected in accordance with the description of work released in 1993 by L.C. Swanson, entitled Description of Work for the 200-UP-1 Aquifer Testing Activity. These data are analyzed in the document Aquifer Test Analysis Results for 1993 200-UP-1 Groundwater Operable Unit. Slug tests were conducted at 7 existing wells, and pumping tests were conducted at 2 of those same existing wells.

Swanson, L.C.

1994-06-24T23:59:59.000Z

2

FEASIBILITY STUDY REPORT FOR THE 200-ZP-1 GROUNDWATER OPERABLE UNIT  

SciTech Connect (OSTI)

The Hanford Site, managed by the U.S. Department of Energy (DOE), encompasses approximately 1,517 km{sup 2} (586 mi{sup 2}) in the Columbia Basin of south-central Washington State. In 1989, the U.S. Environmental Protection Agency (EPA) placed the 100, 200, 300, and 1100 Areas of the Hanford Site on the 40 Code of Federal Regulations (CFR) 300, 'National Oil and Hazardous Substances Pollution Contingency Plan' National Contingency Plan [NCPD], Appendix B, 'National Priorities List' (NPL), pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). The 200 Areas NPL sites consist of the 200 West and 200 East Areas (Figure 1-1). The 200 Areas contain waste management facilities, inactive irradiated fuel reprocessing facilities, and the 200 North Area (formerly used for interim storage and staging of irradiated fuel). Several waste sites in the 600 Area, located near the 200 Areas, also are included in the 200 Areas NPL site. The 200 Areas NPL site is in a region referred to as the 'Central Plateau' and consists of approximately 700 waste sites, excluding sites assigned to the tank farm waste management areas (WMAs). The 200-ZP-1 Groundwater Operable Unit (OU) consists of the groundwater located under the northern portion of the 200 West Area. Waste sources that contributed to the 200-ZP-1 OU included cribs and trenches that received liquid and/or solid waste in the past from the Z Plant and T Plant aggregate areas, WMA-T, WMA-TX/TY, and the State-Approved Land Disposal Site (SALDS). This feasibility study (FS) for the 200-ZP-1 Groundwater OU was prepared in accordance with the requirements of CERCLA decision documents. These decision documents are part of the Administrative Record for the selection of remedial actions for each waste site and present the selected remedial actions that are chosen in accordance with CERCLA, as amended by the Superfund Amendments and Reauthorization Act of 1986, and to the extent practicable, the NCP. This FS conforms to the conditions set forth in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 2003) and amendments, signed by the Washington State Department of Ecology (Ecology), EPA, and DOE Richland Operations Office (RL). This also includes Tri-Party Agreement Milestone M-015-00C for completing all 200 Area non-tank farm OU pre-Record of Decision (ROD) documents on or before December 31, 2011. This FS supports the final remedy selection for the 200-ZP-1 OU, as described in the Remedial Investigation/Feasibility Study Work Plan for the 200-ZP-1 Groundwater Operable Unit (referred to as the 200-ZP-1 RI/FS work plan) (DOE/RL-2003-55), as agreed upon by RL and EPA. Tri-Party Agreement Milestone M-015-48B required Draft A of the 200-ZP-1 OU FS and proposed plan to be transmitted to EPA by September 30, 2007. As agreed to with EPA in the 200 Area Unit Managers Meeting Groundwater Operable Unit Status (FH-0503130), the baseline risk assessment (BRA) was delayed from inclusion in the remedial investigation (RI) report and is completed and documented in this FS. The Remedial Investigation Report for 200-ZP-1 Groundwater Operable Unit (referred to as the 200-ZP-1 RI report) (DOE/RL-2006-24) included an evaluation of human health and ecological risks and hazards. The RI report identified the radiological and chemical contaminants of potential concern (COPCs) that represent the primary risks to human health and the environment. The complete risk assessment in this FS incorporates additional analytical data from the unconfined aquifer that were obtained during or after preparation of the RI report, particularly for carbon tetrachloride and technetium-99. This FS also includes the initial results from an ongoing study of technetium-99 contamination near WMA-T, the sampling of new wells near the 216-W-LC laundry waste crib and T Plant, updated Hanford vadose zone fate and transport modeling, and groundwater particle-tracking analysis. The purpose of this FS is to develop and evaluate alternatives for remediation of

BYRNES ME

2008-07-18T23:59:59.000Z

3

Record of Decision for Tank Farm Soil and INTEC Groundwater, Operable Unit 3-14  

SciTech Connect (OSTI)

This decision document presents the selected remedy for Operable Unit (OU) 3-14 tank farm soil and groundwater at the Idaho Nuclear Technology and Engineering Center (INTEC), which is located on the Idaho National Laboratory (INL) Site. The tank farm was initially evaluated in the OU 3-13 Record of Decision (ROD), and it was determined that additional information was needed to make a final decision. Additional information has been obtained on the nature and extent of contamination in the tank farm and on the impact to groundwater. The selected remedy was chosen in accordance with the Comprehensive Environmental Response, Liability and Compensation Act of 1980 (CERCLA) (42 USC 9601 et seq.), as amended by the Superfund Amendments and Reauthorization Act of 1986 (Public Law 99-499) and the National Oil and Hazardous Substances Pollution Contingency Plan (40 CFR 300). The selected remedy is intended to be the final action for tank farm soil and groundwater at INTEC. The response action selected in this ROD is necessary to protect the public health, welfare, or the environment from actual or threatened releases of hazardous substances into the environment. Such a release or threat of release may present an imminent and substantial endangerment to public health, welfare, or the environment. The remedial actions selected in this ROD are designed to reduce the potential threats to human health and the environment to acceptable levels. In addition, DOE-ID, EPA, and DEQ (the Agencies) have determined that no action is necessary under CERCLA to protect public health, welfare, or the environment at 16 sites located outside the tank farm boundary. The purposes of the selected remedy are to (1) contain contaminated soil as the radionuclides decay in place, (2) isolate current and future workers and biological receptors from contact with contaminated soil, and (3) restore the portion of Snake River Plain Aquifer contaminated by INTEC releases to Idaho Ground Water Quality standards (same as maximum contaminant levels) by reducing water infiltration through strontium-90 contaminated perched water and interbeds. In addition, the remedy will prevent future drinking water wells from being drilled into the contaminated portion of the aquifer that is in and near the INTEC facility until such time as the water is restored to maximum contaminant levels or below.

L. S. Cahn

2007-05-16T23:59:59.000Z

4

LITERATURE SURVEY FOR GROUNDWATER TREATMENT OPTIONS FOR NITRATE IODINE-129 AND URANIUM 200-ZP-1 OPERABLE UNIT HANFORD SITE  

SciTech Connect (OSTI)

This literature review presents treatment options for nitrate, iodine-129, and uranium, which are present in groundwater at the 200-ZP-I Groundwater Operable Unit (OU) within the 200 West Area of the Hanford Site. The objective of this review is to determine available methods to treat or sequester these contaminants in place (i.e., in situ) or to pump-and-treat the groundwater aboveground (i.e., ex situ). This review has been conducted with emphasis on commercially available or field-tested technologies, but theoretical studies have, in some cases, been considered when no published field data exist. The initial scope of this literature review included only nitrate and iodine-I 29, but it was later expanded to include uranium. The focus of the literature review was weighted toward researching methods for treatment of nitrate and iodine-129 over uranium because of the relatively greater impact of those compounds identified at the 200-ZP-I OU.

BYRNES ME

2008-06-05T23:59:59.000Z

5

Sampling and analysis plan for the site characterization of the waste area Grouping 1 groundwater operable unit at Oak Ridge National Laboratory  

SciTech Connect (OSTI)

Waste Area Grouping (WAG) 1 at Oak Ridge National Laboratory (ORNL) includes all of the former ORNL radioisotope research, production, and maintenance facilities; former waste management areas; and some former administrative buildings. Site operations have contaminated groundwater, principally with radiological contamination. An extensive network of underground pipelines and utilities have contributed to the dispersal of contaminants to a known extent. In addition, karst geology, numerous spills, and pipeline leaks, together with the long and varied history of activities at specific facilities at ORNL, complicate contaminant migration-pathway analysis and source identification. To evaluate the extent of contamination, site characterization activity will include semiannual and annual groundwater sampling, as well as monthly water level measurements (both manual and continuous) at WAG 1. This sampling and analysis plan provides the methods and procedures to conduct site characterization for the Phase 1 Remedial Investigation of the WAG 1 Groundwater Operable Unit.

NONE

1994-11-01T23:59:59.000Z

6

Feasibility study for remedial action for the groundwater operable units at the chemical plant area and the ordnance works area, Weldon Spring, Missouri  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) and the U.S. Department of Army (DA) are conducting an evaluation to identify the appropriate response action to address groundwater contamination at the Weldon Spring Chemical Plant (WSCP) and the Weldon Spring Ordnance Works (WSOW), respectively. The two areas are located in St. Charles County, about 48 km (30 rni) west of St. Louis. The groundwater operable unit (GWOU) at the WSCP is one of four operable units being evaluated by DOE as part of the Weldon Spring Site Remedial Action Project (WSSRAP). The groundwater operable unit at the WSOW is being evaluated by the DA as Operable Unit 2 (OU2); soil and pipeline contamination are being managed under Operable Unit 1 (OU1). Remedial activities at the WSCP and the WSOW are being conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). Consistent with DOE policy, National Environmental Policy Act (NEPA) values have been incorporated into the CERCLA process. A remedial investigation/feasibility study (RI/FS) work plan summarizing initial site conditions and providing site hydrogeological and exposure models was published in August of 1995 (DOE 1995). The remedial investigation (RI) and baseline risk assessment (BRA) have also recently been completed. The RI (DOE and DA 1998b) discusses in detail the nature, extent, fate, and transport of groundwater and spring water contamination. The BRA (DOE and DA 1998a) is a combined baseline assessment of potential human health and ecological impacts and provides the estimated potential health risks and ecological impacts associated with groundwater and springwater contamination if no remedial action were taken. This feasibility study (FS) has been prepared to evaluate potential options for addressing groundwater contamination at the WSCP and the WSOW. A brief description of the history and environmental setting of the sites is presented in Section 1.1, key information relative to the nature and extent of contamination is presented in Section 1.2, and the results of the BRA are summarized in Section 1.3. The objective of this FS is discussed in Section 1.4, and preliminary remediation goals are identified in Section 1.5. The organization of the remaining chapters of this FS is outlined in Section 1.6.

NONE

1999-07-15T23:59:59.000Z

7

Remedial Investigation work plan for Bear Creek Valley Operable Unit 4 (shallow groundwater in Bear Creek Valley) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

To effectively evaluate the cumulative impact of releases from multiple sources of contamination, a structured approach has been adopted for Oak Ridge Reservation (ORR) based on studies of the groundwater and surface water separate from studies of the sources. Based on the realization of the complexity of the hydrogeologic regime of the ORR, together with the fact that there are numerous sources contributing to groundwater contamination within a geographical area, it was agreed that more timely investigations, at perhaps less cost, could be achieved by separating the sources of contamination from the groundwater and surface water for investigation and remediation. The result will be more immediate attention [Records of Decision (RODS) for interim measures or removal actions] for the source Operable Units (OUs) while longer-term remediation investigations continue for the hydrogeologic regime`s, which are labeled as integrator OUs. This Remedial Investigation work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to the unit. Taking advantage of the historical data base and ongoing monitoring activities and applying the observational approach to focus data gathering activities will allow the Feasibility Study to evaluate all probable or likely alternatives.

Not Available

1993-09-01T23:59:59.000Z

8

200-BP-5 operable unit treatability test report  

SciTech Connect (OSTI)

The 200-BP-5 Operable Unit was established in response to recommendations presented in the 200 East Groundwater Aggregate Area Management Study Report (AAMSR) (DOE-RL 1993a). Recognizing different approaches to remediation, the groundwater AAMSR recommended separating groundwater from source and vadose zone operable units and subdividing 200 East Area groundwater into two operable units. The division between the 200-BP-5 and 200-PO-1 Operable Units was based principally on source operable unit boundaries and distribution of groundwater plumes derived from either B Plant or Plutonium/Uranium Extraction (PUREX) Plant liquid waste disposal sites.

NONE

1996-04-01T23:59:59.000Z

9

ALLISON DVORAK CENTRAL VALLEY GROUNDWATER BANK OPERATIONS  

E-Print Network [OSTI]

i ALLISON DVORAK CENTRAL VALLEY GROUNDWATER BANK OPERATIONS: HYDROLOGY, GROUNDWATER OPERATING RULE affect California's SWP (State Water Project) and CVP (Central Valley Project) water supply deliveries-operation of groundwater storage, both north and south of the Delta, can increase long-term average project deliveries

Lund, Jay R.

10

RCRA Facility Investigation/Remedial Investigation Work Plan Addendum for the TNX Area Operable Unit Groundwater Radiological Characterization  

SciTech Connect (OSTI)

The purpose of this document is to present a sampling and analysis plan for the Water Table Aquifer for purposes of obtaining additional data for remedial decision-making with respect to radioactive contamination in the groundwater.

Brewer, K.

2002-06-17T23:59:59.000Z

11

New Pump and Treat Facility Remedial Action Work Plan for Test Area North (TAN) Final Groundwater Remediation, Operable Unit 1-07B  

SciTech Connect (OSTI)

This remedial action work plan identifies the approach and requirements for implementing the medical zone remedial action for Test Area North, Operable Unit 1-07B, at the Idaho National Engineering and Environmental Laboratory (INEEL). This plan details management approach for the construction and operation of the New Pump and Treat Facility. As identified in the remedial design/remedial action scope of work, a separate remedial design/remedial action work plan will be prepared for each remedial component of the Operable Unit 1-07B remedial action. This work plan was originally prepared as an early implementation of the final Phase C remediation. At that time, The Phase C implementation strategy was to use this document as the overall Phase C Work Plan and was to be revised to include the remedial actions for the other remedial zones (hotspot and distal zones). After the completion of Record of Decision Amendment: Technical Support Facility Injection Well (TSF-05) and Surrounding Groundwater Contamination (TSF-23) and Miscellaneous No Action Sites, Final Remedial Action, it was determined that each remedial zone would have it own stand-alone remedial action work plan. Revision 1 of this document converts this document to a stand-alone remedial action plan specific to the implementation of the New Pump and Treat Facility used for plume remediation within the medical zone of the OU 1-07B contaminated plume.

D. Vandel

2003-09-01T23:59:59.000Z

12

Spatial Analysis of Contaminants in 200 West Area Groundwater in Support of the 200-ZP-1 Operable Unit Pre-Conceptual Remedy Design  

SciTech Connect (OSTI)

This report documents a preliminary spatial and geostatistical analysis of the distribution of several contaminants of interest (COIs) in groundwater within the unconfined aquifer beneath the 200 West Area of the Hanford Site. The contaminant plumes of interest extend within the 200-ZP-1 and 200-UP-1 groundwater operable units. The COIs included in the PNNL study were carbon tetrachloride (CTET), technetium-99 (Tc-99), iodine-129 (I-129), chloroform, plutonium, uranium, trichloroethylene (TCE), and nitrate. The project included three tasks. Task 1 involved the development of a database that includes all relevant depth-discrete data on the distribution of COIs in the study area. The second task involved a spatial analysis of the three-dimensional (3D) distribution of data for the COIs in the study area. The main focus of the task was to determine if sufficient data are available for geostatistical mapping of the COIs in 3D. Task 3 involved the generation of numerical grids of the concentration of CTET, chloroform, and Tc-99.

Murray, Christopher J.; Bott, Yi-Ju

2008-12-30T23:59:59.000Z

13

Remedial investigation concept plan for the groundwater operable units at the chemical plant area and the ordnance works area, Weldon Spring, Missouri  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) and the U.S. Department of the Army (DA) are conducting cleanup activities at two properties--the DOE chemical plant area and the DA ordnance works area (the latter includes the training area)--located in the Weldon Spring area in St. Charles County, Missouri. These areas are on the National Priorities List (NPL), and cleanup activities at both areas are conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. DOE and DA are conducting a joint remedial investigation (RI) and baseline risk assessment (BRA) as part of the remedial investigation/feasibility study (RI/FS) for the groundwater operable units for the two areas. This joint effort will optimize further data collection and interpretation efforts and facilitate overall remedial decision making since the aquifer of concern is common to both areas. A Work Plan issued jointly in 1995 by DOE and the DA discusses the results of investigations completed at the time of preparation of the report. The investigations were necessary to provide an understanding of the groundwater system beneath the chemical plant area and the ordnance works area. The Work Plan also identifies additional data requirements for verification of the evaluation presented.

NONE

1999-07-15T23:59:59.000Z

14

Operable Unit 3-14, Tank Farm Soil and INTEC Groundwater Remedial Design/Remedial Action Scope of Work  

SciTech Connect (OSTI)

This Remedial Design/Remedial Action (RD/RA) Scope of Work pertains to OU 3-14 Idaho Nuclear Technology and Engineering Center and the Idaho National Laboratory and identifies the remediation strategy, project scope, schedule, and budget that implement the tank farm soil and groundwater remediation, in accordance with the May 2007 Record of Decision. Specifically, this RD/RA Scope of Work identifies and defines the remedial action approach and the plan for preparing the remedial design documents.

D. E. Shanklin

2007-07-25T23:59:59.000Z

15

Groundwater Cleanup Operational Changes Are Being Implemented...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

is based on EPA National Primary Drinking Water Regulations. The progress of groundwater remediation is reported each year in the SER. Operation metrics indicate that, although...

16

Portsmouth Gaseous Diffusion Plant- Quadrant I Groundwater Investigative (5-Unit) Area Plume  

Broader source: Energy.gov [DOE]

Groundwater Database Report - Portsmouth Gaseous Diffusion Plant - Quadrant I Groundwater Investigative (5-Unit) Area Plume

17

New Pump and Treat Facility Remedial Action Work Plan For Test Area North Final Groundwater Remediation, Operable Unit 1-07B  

SciTech Connect (OSTI)

This remedial action work plan identifies the approach and requirements for implementing the medial zone remedial action for Test Area North, Operable Unit 1-07B, at the Idaho National Laboratory. This plan details the management approach for the construction and operation of the New Pump and Treat Facility (NPTF). As identified in the remediatial design/remedial action scope of work, a separate remedial design/remedial action work plan will be prepared for each remedial component of the Operable Unit 1-07B remedial action.

Nelson, L. O.

2007-06-12T23:59:59.000Z

18

Superfund Record of Decision (EPA Region 10): East Multnomah County Groundwater Contamination, Operable Unit 1, Multnomah County, OR, December 31, 1996  

SciTech Connect (OSTI)

The East Multnomah County (EMC) project area refers to all areas in the EMC project area where the Troutdale Sandstone Aquifer (TSA) contains concentrations of halogenated volatile organic compounds at concentrations requiring remediation. The selected remedial action for the Troutdale Sandstone Aquifer (TSA) contaminant plume includes: treatment of extracted groundwater using air-stripping treatment technology; discharge of treated groundwater to Fairview Lake and the Columbia Slough directly or via Multnomah County storm water drainage ways; abandonment of six private Sand and Gravel Aquifer (SGA) water supply wells located within the area of the TSA contaminant plume and a provision to replace the abandoned wells with an alternative source of water; institutional controls to restrict groundwater use of the TSA and SGA to prevent exposure to contaminated groundwater and the spread of groundwater contamination during remediation; groundwater monitoring to assess compliance with performance criteria established for the remedy; and hydraulic containment of those areas of the TSA for which it may be technically impractical to restore to MCL cleanup levels within 20 years.

NONE

1998-01-01T23:59:59.000Z

19

Remedial investigation work plan for Bear Creek Valley Operable Unit 4 (shallow groundwater in Bear Creek Valley) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The enactment of the Resource Conservation and Recovery Act (RCRA) in 1976 and the Hazardous and Solid Waste Amendments (HSWA) to RCRA in 1984 created management requirements for hazardous waste fadities. The facilities within the Oak Ridge Reservation (ORR) were in the process of meeting the RCRA requirements when ORR was placed on the Comprehensive Environmental Response, Compensation, and Liability Act (CERCIA) National Priorities List (NPL) on November 21, 1989. Under RCRA, the actions typically follow the RCRA Facility Assessment (RIFA)/RCRA Facility Investigation (RFI)/Coffective Measures Study (CMS)/Corrective Measures Implementation process. Under CERCLA, the actions follow the Pre@ary Assessment/Site Investigation (PA/Sl) Remedial Investigation Feasibility Study (RI/FS)/Remedial Design/Remedial Action process. The development of this document will incorporate requirements under both RCRA and CERCIA into an RI Work Plan for the lint phase of characterization of Bear Creek Valley (BCV) Operable Unit (OU) 4.

Not Available

1992-12-01T23:59:59.000Z

20

New Groundwater Treatment Facility Begins Operation: Boost in Cleanup  

Broader source: Energy.gov (indexed) [DOE]

New Groundwater Treatment Facility Begins Operation: Boost in New Groundwater Treatment Facility Begins Operation: Boost in Cleanup Accelerated by Recovery Act Funding New Groundwater Treatment Facility Begins Operation: Boost in Cleanup Accelerated by Recovery Act Funding January 19, 2011 - 12:00pm Addthis Media Contacts Andre Armstrong, CH2M HILL (509)376-6773 Andre_L_Armstrong@rl.gov Geoff Tyree, DOE (509) 376-4171 Geoffrey.Tyree@rl.doe.gov RICHLAND, WASH. - The U.S. Department of Energy (DOE) is boosting its capacity for treating groundwater to remove chromium near the Columbia River by 40 percent with the recent completion of a new treatment facility. Contractor CH2M HILL Plateau Remediation Company (CH2M HILL) finished building and started operating the new 100-DX groundwater treatment facility in December. The facility is located near the D and DR Reactors on

Note: This page contains sample records for the topic "groundwater operable unit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Field Test Report: Preliminary Aquifer Test Characterization Results for Well 299-W15-225: Supporting Phase I of the 200-ZP-1 Groundwater Operable Unit Remedial Design  

SciTech Connect (OSTI)

This report examines the hydrologic test results for both local vertical profile characterization and large-scale hydrologic tests associated with a new extraction well (well 299-W15-225) that was constructed during FY2009 for inclusion within the future 200-West Area Groundwater Treatment System that is scheduled to go on-line at the end of FY2011. To facilitate the analysis of the large-scale hydrologic test performed at newly constructed extraction well 299-W15-225 (C7017; also referred to as EW-1 in some planning documents), the existing 200-ZP-1 interim pump-and-treat system was completely shut-down ~1 month before the performance of the large-scale hydrologic test. Specifically, this report 1) applies recently developed methods for removing barometric pressure fluctuations from well water-level measurements to enhance the detection of hydrologic test and pump-and-treat system effects at selected monitor wells, 2) analyzes the barometric-corrected well water-level responses for a preliminary determination of large-scale hydraulic properties, and 3) provides an assessment of the vertical distribution of hydraulic conductivity in the vicinity of newly constructed extraction well 299-W15-225. The hydrologic characterization approach presented in this report is expected to have universal application for meeting the characterization needs at other remedial action sites located within unconfined and confined aquifer systems.

Spane, Frank A.; Newcomer, Darrell R.

2009-09-23T23:59:59.000Z

22

Groundwater Cleanup Operational Changes Are Being Implemented at Fernald Preserve  

Broader source: Energy.gov [DOE]

Uranium contamination in the Great Miami Aquifer—at the Fernald Preserve, Ohio, Site—is being removed from the groundwater through a pump-and-treatment operation, which until this year, involved...

23

Groundwater Monitoring Report Project Shoal Area, Corrective Action Unit 447  

SciTech Connect (OSTI)

This report presents the 2007 groundwater monitoring results collected by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) at the Project Shoal Area (PSA) Corrective Action Unit (CAU) 447 located in Churchill County, Nevada. Responsibility for the environmental site restoration of the PSA was transferred from the DOE Office of Environmental Management (DOE-EM) to DOE-LM on October 1, 2006. Requirements for CAU 447, as specified in the Federal Facility Agreement and Consent Order (FFACO 2005) entered into by DOE, the U.S. Department of Defense (DOD), and the State of Nevada, includes groundwater monitoring in support of site closure. This is the first groundwater monitoring report prepared by DOE-LM for the PSA.

None

2008-01-01T23:59:59.000Z

24

Groundwater Protection Rules Coal Mining Operations (West Virginia) |  

Broader source: Energy.gov (indexed) [DOE]

Protection Rules Coal Mining Operations (West Virginia) Protection Rules Coal Mining Operations (West Virginia) Groundwater Protection Rules Coal Mining Operations (West Virginia) < Back Eligibility Utility Commercial Investor-Owned Utility Industrial Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Institutional Nonprofit Program Info State West Virginia Program Type Siting and Permitting Provider Department of Environmental Protection These rules establish a series of practices for the protection of groundwater which are to be followed by any person who conducts coal mining operations subject to the provisions of West Virginia Groundwater Protection Act and subject to regulation under the West Virginia Coal Mining and Reclamation Act and/or under West Virginia Water Pollution

25

Feasibility study report for the 200-BP-1 operable unit  

SciTech Connect (OSTI)

This feasibility study examines a range of alternatives and provides recommendations for selecting a preferred alternative for remediating contamination at the 200-BP-1 operable unit. The 200-BP-1 operable unit is located in the center of the Hanford Site along the northern boundary of the 200 East Area. The 241-BY Tank Farm is located immediately to the south of the operable unit. 200-BP-1 is a source operable unit with contaminated soils associated primarily with nine inactive cribs (known as the 216-B cribs). These cribs were used for disposal of low-level radioactive liquid waste from U Plant uranium recovery operations, and waste storage tank condensate from the adjacent 241-BY Tank Farm. The cribs used for disposal of U Plant waste were in operation from 1955--1965, and the cribs used for disposal of tank condensate were in operation from 1965--1975. In addition to the cribs, four unplanned releases of radioactive materials have occurred within the operable unit. Contaminated surface soils associated with the unplanned releases have been consolidated over the cribs and covered with clean soil to reduce contaminant migration and exposure. Discharge of wastes to the cribs has resulted in soil and groundwater contamination. The groundwater is being addressed as part of the 200 East Aggregate Area, groundwater operable unit. Contaminated soils at the site can be categorized by the types of contaminants, their distribution in the soil column, and the risk posed by the various potential exposure pathways. Below the clean soil cover, the near surface soils contain low-levels of contamination with cesium-137, radium-226, strontium-90, thorium-228, and uranium. The lifetime incremental cancer risk associated with these soils if they were exposed at the surface is 9{times}10{sup {minus}5}.

Not Available

1993-06-01T23:59:59.000Z

26

Groundwater Remediation Systems Quarterly Operations Report  

E-Print Network [OSTI]

.......................................... 5-1 6. OU III Carbon Tetrachloride Pump and Treat System ........................................ 6 for the Carbon Tetrachloride system was completed in 2010. ** EDB has only been detected in the influent at trace and Recirculate Tritium 4 Operate- 9 Standby- 7 100% NA 180 Industrial Park Recirculation/ In-Well (AS/Carbon) VOC

27

Groundwater Remediation Systems Quarterly Operations Report  

E-Print Network [OSTI]

.......................................... 5-1 6. OU III Carbon Tetrachloride Pump and Treat System ........................................ 6 = ethylene dibromide * System dismantlement for the Carbon Tetrachloride system was completed in 2010. ** EDB% NA 180 Industrial Park Recirculation/ In-Well (AS/Carbon) VOC 7 Operate- 14 Standby-

28

Groundwater Remediation Systems Quarterly Operations Report  

E-Print Network [OSTI]

.......................................... 5-1 6. OU III Carbon Tetrachloride Pump and Treat System........................................ 6 = ethylene dibromide * System dismantlement for the Carbon Tetrachloride system was completed in 2010. ** EDB Standby NA 180 Industrial Park Recirculation/ In-Well (AS/Carbon) VOC 7 Operate- 14 Standby- 1 100% 1 1063

29

Groundwater Remediation Systems Quarterly Operations Report  

E-Print Network [OSTI]

.......................................... 5-1 6. OU III Carbon Tetrachloride Pump and Treat System ........................................ 6 = ethylene dibromide * System dismantlement for the Carbon Tetrachloride system was completed in 2010. ** EDB Standby NA 180 Industrial Park Recirculation/ In-Well (AS/Carbon) VOC 7 Operate- 14 Standby- 1 Standby NA

30

Groundwater Remediation Systems Quarterly Operations Report  

E-Print Network [OSTI]

.......................................... 5-1 6. OU III Carbon Tetrachloride Pump and Treat System........................................ 6 = ethylene dibromide * System dismantlement for the Carbon Tetrachloride system was completed in 2010. ** EDB Standby NA 180 Industrial Park Recirculation/ In-Well (AS/Carbon) VOC 7 Operate- 14 Standby- 1 30% NA 1062

31

Waste Area Group 10, Operable Unit 10-08, Remedial Investigation/Feasibility Study Annual Status Report for Fiscal Year 2006  

SciTech Connect (OSTI)

This report provides a status of the progress made in Fiscal Year 2006 on tasks identified in the Waste Area Group 10, Operable Unit 10-08, Remedial Investigation/Feasibility Study Work Plan. Major accomplishments include: (1) groundwater sampling and review of the groundwater monitoring data, (2) installation of a Sitewide groundwater-level monitoring network, (3) update of the Groundwater Monitoring and Field Sampling Plan of Operable Unit 10-08, (4) re-evaluation of the risk at Site TSF-08, (5) progress on the Operable Unit 10-08 Sitewide Groundwater Model.

R. P. Wells

2007-05-09T23:59:59.000Z

32

GROUND-WATER CONTRIBUTION TO DOSE FROM PAST HANFORD OPERATIONS  

SciTech Connect (OSTI)

The Hanford Environmental Dose Reconstruction (HEOR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides originating in ground water on the Hanford Site could have reached the public have been identified: 1) through contaminated ground water migrating to the Columbia River; 2) through wells on or adjacent to the Hanford Site; 3) through wells that draw some or all of their water from the Columbia River (riparian wells); and 4) through atmospheric deposition resulting in the contamination of a small watershed that, in turn, results in contamination of a shallow well or spring. These four pathways make up the "ground-water pathway ," which is the subject of this study. The objective of the study was to assess the extent to which the groundwater pathway contributed to radiation doses that populations or individuals may have received from past operations at Hanford. The assessment presented in this report was performed by 1) reviewing the extensive ?literature on ground water and ground-water monitoring at Hanford and 2) performing simple calculations to estimate radionuclide concentrations in ground water and the Columbia River resulting from ground-water discharge. Radiation doses that would result from exposure to this ground water and surface water were calculated. The study conclusion is that the ground-water pathways did not contribute significantly to dose. Compared with background radiation in the TriCities {300 mrem/yr), estimated doses are small: 0.02 mrem/yr effective dose equivalent from discharge of contaminated ground water to the Columbia River; 1 mrem/yr effective dose equivalent from Hanford Site wells; 11 mrem/yr effective dose equivalent from riparian wells; and 1 mrem/yr effective dose equivalent from the watershed. Because the estimated doses are so small, the recommendation is that further work on the ground-water pathway be limited to tracking ongoing ground-water studies at the Hanford Site.

Freshley, M. D.; Thorne, P. D.

1992-01-01T23:59:59.000Z

33

Remedial System Performance Improvement for the 200-ZP-1_PW-1 Operable Units at Hanford  

Broader source: Energy.gov (indexed) [DOE]

Hanford Operations Review Report: Feasibility Study Strategies and Remedial System Performance Improvement for the 200- ZP-1/PW-1 Operable Units at Hanford Prepared for Office of Groundwater and Soil Remediation Office of Environmental Management February 9, 2007 i EXECUTIVE SUMMARY At the request of the U.S. Department of Energy, Headquarters' Office of Environmental Management, the Office of Groundwater and Soil Remediation (EM-22), performed a Remediation System Evaluation (RSE) of the 200-ZP-1/PW-1 groundwater pump and treat (P&T) system, as well as the vadose zone Soil Vapor Extraction (SVE) system at the Hanford

34

Ground-water contribution to dose from past Hanford Operations  

SciTech Connect (OSTI)

The Hanford Environmental Dose Reconstruction (HEDR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides migrating in ground water on the Hanford Site could have reached the public have been identified: (1) through contaminated ground water migrating to the Columbia River; (2) through wells on or adjacent to the Hanford Site; (3) through wells next to the Columbia River downstream of Hanford that draw some or all of their water from the river (riparian wells); and (4) through atmospheric deposition resulting in contamination of a small watershed that, in turn, results in contamination of a shallow well or spring by transport in the ground water. These four pathways make up the ground-water pathway,'' which is the subject of this study. Assessment of the ground-water pathway was performed by (1) reviewing the existing extensive literature on ground water and ground-water monitoring at Hanford and (2) performing calculations to estimate radionuclide concentrations where no monitoring data were collected. Radiation doses that would result from exposure to these radionuclides were calculated.

Freshley, M.D.; Thorne, P.D.

1992-08-01T23:59:59.000Z

35

Annual Summary Report Calendar Year 2000 for the 100-HR-3, 100-KR-4, and 100-NR-2 Operable Units and Pump-and-Treat Operations  

SciTech Connect (OSTI)

This annual progress and performance evaluation report discusses the groundwater remedial actions in the 100 Area, including the interim actions at the 100-HR-3 and 100-KR-4 Operable Units, and also discusses the expedited response action in the 100-NR-2 operable unit.

G. B. Mitchem

2001-08-22T23:59:59.000Z

36

Phase I remedial investigation report for the 300-FF-5 operable unit, Volume 1  

SciTech Connect (OSTI)

The focus of this remedial investigation (RI) is the 300-FF-5 operable unit, one of five operable units associated with the 300 Area aggregate of the U.S. Department of Energy`s (DOE`s) Hanford Site. The 300-FF-5 operable unit is a groundwater operable unit beneath the 300-FF-1, 300-FF-2, and 300-FF-3 source operable units. This operable unit was designated to include all contamination detected in the groundwater and sediments below the water table that emanates from the 300-FF-1, 300-FF-2, and 300-FF-3 operable units (DOE-RL 1990a). In November 1989, the U.S. Environmental Protection Agency (EPA) placed the 300 Area on the National Priorities List (NPL) contained within Appendix B of the National Oil and Hazardous Substance Pollution Contingency Plan (NCP, 53 FR 51391 et seq.). The EPA took this action pursuant to their authority under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA, 42 USC 9601 et seq.). The DOE Richland Operations Office (DOE-RL), the EPA and Washington Department of Ecology (Ecology) issued the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement), in May 1989 (Ecology et al. 1992, Rev. 2). This agreement, among other matters, governs all CERCLA efforts at the Hanford Site. In June 1990, a remedial investigation/feasibility study (RI/FS) workplan for the 300-FF-5 operable unit was issued pursuant to the Tri-Party Agreement.

NONE

1994-01-01T23:59:59.000Z

37

Modeling the Effects of Groundwater-fed Irrigation on Terrestrial Hydrology over the Conterminous United States  

SciTech Connect (OSTI)

Human alteration of the land surface hydrologic cycle is substantial. Recent studies suggest that local water management practices including groundwater pumping and irrigation could significantly alter the quantity and distribution of water in the terrestrial system, with potential impacts on weather and climate through land-atmosphere feedbacks. In this study, we incorporated a groundwater withdrawal scheme into the Community Land Model version 4 (CLM4). To simulate the impact of irrigation realistically, we calibrated the CLM4 simulated irrigation amount against observations from agriculture census at the county scale over the conterminous United States (CONUS). The water used for irrigation was then removed from the surface runoff and groundwater aquifer according to a ratio determined from the county-level agricultural census data. Based on the simulations, the impact of groundwater withdrawals for irrigation on land surface and subsurface fluxes were investigated. Our results suggest that the impacts of irrigation on latent heat flux and potential recharge when water is withdrawn from surface water alone or from both surface and groundwater are comparable and local to the irrigation areas. However, when water is withdrawn from groundwater for irrigation, greater effects on the subsurface water balance were found, leading to significant depletion of groundwater storage in regions with low recharge rate and high groundwater exploitation rate. Our results underscore the importance of local hydrologic feedbacks in governing hydrologic response to anthropogenic change in CLM4 and the need to more realistically simulate the two-way interactions among surface water, groundwater, and atmosphere to better understand the impacts of groundwater pumping on irrigation efficiency and climate.

Leng, Guoyong; Huang, Maoyi; Tang, Qiuhong; Gao, Huilin; Leung, Lai-Yung R.

2014-06-01T23:59:59.000Z

38

Feasibility study report for the 200-BP-1 operable unit. Revision 1  

SciTech Connect (OSTI)

This feasibility study (FS) examines a range of alternatives and provides recommendations for selecting a preferred altemative for remediating contamination at the 200-BP-1 operable unit. The 200-BP-1 operable unit is located in the center of the Hanford Site along the northern boundary of the 200 East Area. The 241-BY Tank Farm is located immediately to the south of the operable unit. 200-BP-1 is a source operable unit with contaminated soils associated primarily with nine inactive cribs (known as the 216-B cribs). These cribs were used for disposal of low-level radioactive liquid waste from U Plant uranium recovery operations, and waste storage tank condensate from the adjacent 241-BY Tank Farm. The cribs used for disposal of U Plant waste were in operation from 1955--1965, and the cribs used for disposal of tank condensate were in operation from 1965-1975. In addition to the cribs, four unplanned releases of radioactive materials have occurred within the operable unit. Contaminated surface soils associated with the unplanned releases have been consolidated over the cribs and covered with clean soil to reduce contaminant migration and exposure. Discharge of wastes to the cribs has resulted in soil and groundwater contamination. The groundwater is being addressed as part of the 200 East Aggregate Area groundwater operable unit. Contaminated soils at the site can be categorized by the types of contaminants, their distribution in the soil column, and the risk posed by the various potential exposure pathways. Below the clean soil cover, the near surface soils contain low-:levels of contamination with cesium-137, radium-226, strontium-90, thorium-228 and uranium. The lifetime incremental cancer risk associated with these soils if they were exposed at the surface is 9 {times} 10{sup 5}.

Not Available

1994-01-01T23:59:59.000Z

39

CANADA RUSSIA UNITED KINGDOM UNITED STATES Building / Launching / Operating first ever high definition,  

E-Print Network [OSTI]

1 CANADA · RUSSIA · UNITED KINGDOM · UNITED STATES 1 #12;2 Building / Launching / Operating first

40

Operable Unit III Area of Concern 32  

E-Print Network [OSTI]

, AOC 32 Building 452 Freon-11 Plume Remediation System Project Work Plan and Design Report Table Modeling Results E Sample Results for New Building 452 Groundwater Monitoring Wells #12;1 OU III, AOC 32 Building 96 area (AOC 26B). In accord ance with BN L's Groundwater Contin

Note: This page contains sample records for the topic "groundwater operable unit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Unit Operation Efficiency Improvement Through Motionless Mixing  

E-Print Network [OSTI]

instances, the power consumption associated with mix ing operations constitutes the major energy demand of a plant or factory. Generally speaking, most industrial mixing occurs in a tank with a motor driven shaft and a mixing blade or paddle assembly... 1/4 inch in diameter, to units many feet in diameter weighing tons. (Figs. 4 and 5). MECHANICAL AND MOTIONLESS MIXERS COMPARED Figure 6 shows a typical mechanical mixing system when materials A and Bare pumped to a mix tank, and the mixed pro...

King, L. T.

1984-01-01T23:59:59.000Z

42

Remedial investigation/feasibility study work plan for the 100-KR-4 operable unit, Hanford Site, Richland, Washington  

SciTech Connect (OSTI)

Four areas of the Hanford Site (the 100, 200, 300, and 1100 Areas) have been included on the US Environmental Protection Agency`s (EPA`s) National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). This work plan and the attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the CERCLA remedial investigation/feasibility study (RI/FS) for the 100-KR-4 operable unit. The 100-K Area consists of the 100-KR-4 groundwater operable unit and three source operable units. The 100-KR-4 operable unit includes all contamination found in the aquifer soils and water beneath the 100-K Area. Source operable units include facilities and unplanned release sites that are potential sources of contamination.

Not Available

1992-09-01T23:59:59.000Z

43

Superfund record of decision (EPA Region 5): Feed Materials Production Center, (USDOE), Operable Unit 1, Fernald, Hamilton and Butler Counties, OH, March 1, 1995. Final report  

SciTech Connect (OSTI)

The decision document presents the selected remedial action for Operable Unit 1 of the FEMP site in Hamilton and Butler Counties, Ohio. Operable Unit 1 consists of Waste Pits 1 through 6, the Burn Pit, the Clearwell, and associated environmental media (excluding groundwater).

NONE

1996-02-01T23:59:59.000Z

44

Savannah River Site - P-Area Groundwater Operable Unit | Department...  

Office of Environmental Management (EM)

SVOCs Present?: Yes VOC Name Concentration (ppb) Regulatory Driver Cleanup Requirement PCE 300 Yes 5 TCE 16,000 Yes 5 DCE 1,300 Yes 70 VC 10 Yes 2 Fuel Present? No Metals...

45

Savannah River Site - C-Area Groundwater Operable Unit | Department...  

Office of Environmental Management (EM)

Migration Under Control? No Current Human Exposure Acceptable? Yes Confirmed by Lead Regulator? Yes Confirmed by Lead Regulator? Yes Regulatory Decision Document Status?...

46

2008 Groundwater Monitoring Report Central Nevada Test Area, Corrective Action Unit 443  

SciTech Connect (OSTI)

This report presents the 2008 groundwater monitoring results collected by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) for the Central Nevada Test Area (CNTA) Subsurface Corrective Action Unit (CAU) 443. Responsibility for the environmental site restoration of the CNTA was transferred from the DOE Office of Environmental Management (DOE-EM) to DOE-LM on October 1, 2006. The environmental restoration process and corrective action strategy for CAU 443 are conducted in accordance with the Federal Facility Agreement and Consent Order (FFACO 2005) entered into by DOE, the U.S. Department of Defense, and the State of Nevada. The corrective action strategy for the site includes proof-of-concept monitoring in support of site closure. This report summarizes investigation activities associated with CAU 443 that were conducted at the site during fiscal year 2008. This is the second groundwater monitoring report prepared by DOE-LM for the CNTA.

None

2009-03-01T23:59:59.000Z

47

2008 Groundwater Monitoring Report Project Shoal Area, Corrective Action Unit 447  

SciTech Connect (OSTI)

This report presents the 2008 groundwater monitoring results collected by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) at the Project Shoal Area (PSA) Subsurface Corrective Action Unit (CAU) 447 located in Churchill County, Nevada. Responsibility for the environmental site restoration of the PSA was transferred from the DOE Office of Environmental Management to LM on October 1, 2006. The environmental restoration process and corrective action strategy for CAU 447 are conducted in accordance with the Federal Facility Agreement and Consent Order (FFACO 1996, as amended February 2008) entered into by DOE, the U.S. Department of Defense, and the State of Nevada. The corrective action strategy for the site includes proof of concept monitoring in support of site closure. This report summarizes investigation activities associated with CAU 447 that were conducted at the site during 2008. This is the second groundwater monitoring report prepared by LM for the PSA

None

2009-03-01T23:59:59.000Z

48

2010 Groundwater Monitoring Report Project Shoal Area, Corrective Action Unit 447  

SciTech Connect (OSTI)

This report presents the 2010 groundwater monitoring results collected by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) at the Project Shoal Area (PSA) Subsurface Corrective Action Unit (CAU) 447 in Churchill County, Nevada. Responsibility for the environmental site restoration of the PSA was transferred from the DOE Office of Environmental Management to LM on October 1, 2006. The environmental restoration process and corrective action strategy for CAU 447 are conducted in accordance with the Federal Facility Agreement and Consent Order (FFACO 1996, as amended March 2010) entered into by DOE, the U.S. Department of Defense, and the State of Nevada. The corrective action strategy for the site includes monitoring in support of site closure. This report summarizes the results from the groundwater monitoring program during fiscal year 2010.

None

2011-02-01T23:59:59.000Z

49

Impact of High Wind Power Penetration on Hydroelectric Unit Operations  

SciTech Connect (OSTI)

The Western Wind and Solar Integration Study (WWSIS) investigated the operational impacts of very high levels of variable generation penetration rates (up to 35% by energy) in the western United States. This work examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating unit patterns are examined for an aggregation of all hydro generators. The cost impacts of maintaining hydro unit flexibility are assessed and compared for a number of different modes of system operation.

Hodge, B. M.; Lew, D.; Milligan, M.

2011-01-01T23:59:59.000Z

50

Phase I and II feasibility study report for the 300-FF-5 operable unit  

SciTech Connect (OSTI)

The purpose of this Phase I/II feasibility study is to assemble and screen a list of alternatives for remediation of the 300-FF-5 operable site on the Hanford Reservation. This screening is based on information gathered in the Phase I Remedial Investigation (RI) and on currently available information on remediation technologies. The alternatives remaining after screening provide a range of response actions for remediation. In addition, key data needs are identified for collection during a Phase II RI (if necessary). This Phase I/II FS represents a primary document as defined by the Tri-Party Agreement, but will be followed by a Phase III FS that will further develop the alternatives and provide a detailed evaluation of them. The following remedial action objectives were identified for the 300-FF-5 operable unit: Limit current human exposure to contaminated groundwater in the unit; Limit discharge of contaminated groundwater to the Columbia River; Reduce contaminant concentrations in groundwater below acceptable levels by the year 2018.

NONE

1993-12-31T23:59:59.000Z

51

Groundwater Monitoring Report Central Nevada Test Area, Corrective Action Unit 443  

SciTech Connect (OSTI)

This report presents the 2007 groundwater monitoring results collected by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) for the Central Nevada Test Area (CNTA) Corrective Action Unit (CAU) 443. Responsibility for the environmental site restoration of the CNTA was transferred from the DOE Office of Environmental Management (DOE-EM) to DOE-LM on October 1, 2006. Requirements for CAU 443 are specified in the Federal Facility Agreement and Consent Order (FFACO 2005) entered into by DOE, the U.S. Department of Defense, and the State of Nevada and includes groundwater monitoring in support of site closure. This is the first groundwater monitoring report prepared by DOE-LM for the CNTA The CNTA is located north of U.S. Highway 6, approximately 30 miles north of Warm Springs in Nye County, Nevada (Figure 1). Three emplacement boreholes, UC-1, UC-3, and UC-4, were drilled at the CNTA for underground nuclear weapons testing. The initial underground nuclear test, Project Faultless, was conducted in borehole UC-1 at a depth of 3,199 feet (ft) (975 meters) below ground surface on January 19, 1968. The yield of the Project Faultless test was estimated to be 0.2 to 1 megaton (DOE 2004). The test resulted in a down-dropped fault block visible at land surface (Figure 2). No further testing was conducted at the CNTA, and the site was decommissioned as a testing facility in 1973.

None

2008-04-01T23:59:59.000Z

52

Improving Unit Operations-Test Station Performance  

E-Print Network [OSTI]

) usage. The basic concept evaluates the varying criterias affecting these elements and their direct impact on production/test station operating costs. Second consideration explores other methods available to enhance mechanical compatibility with operator...

Filak, J. J. Jr.

53

Exhibit A: Modeling in Support of Two Unit Operating Configurations |  

Broader source: Energy.gov (indexed) [DOE]

Modeling in Support of Two Unit Operating Configurations Modeling in Support of Two Unit Operating Configurations Exhibit A: Modeling in Support of Two Unit Operating Configurations Docket No. EO-05-01: Tables showing modeling of emissions from units of the Mirant Potomac Power Plant. Exhibit A: Modeling in Support of Two Unit Operating Configurations More Documents & Publications Comments on Emergency Order to Resume Limited Operation at the Potomac River Generating Station, Alexandria, VA from the Chesapeake Climate Action Network. Comments on Department of Energy's Emergency Order To Resume Limited Operation at Mirant's Potomac River Generating Station and Proposed Mirant Compliance Plan Answer of Potomac Electric Power Company and PJM lnterconnection, L.L.C. to the October 6, 2005 motion filed by the Virginia Department of

54

Pilot-scale treatability test plan for the 100-HR-3 operable unit  

SciTech Connect (OSTI)

This document presents the treatability test plan for pilot-scale pump-and-treat testing at the 100-HR-3 Operable Unit. The test will be conducted in fulfillment of interim Milestone M-15-06E to begin pilot-scale pump-and-treat operations by August 1994. The scope of the test was determined based on the results of lab/bench-scale tests (WHC 1993a) conducted in fulfillment of Milestone M-15-06B. These milestones were established per agreement between the U.S. Department of Energy (DOE), the Washington State Department of Ecology and the U.S. Environmental Protection Agency (EPA), and documented on Hanford Federal of Ecology Facility Agreement and Consent Order Change Control Form M-15-93-02. This test plan discusses a pilot-scale pump-and-treat test for the chromium plume associated with the D Reactor portion of the 100-HR-3 Operable Unit. Data will be collected during the pilot test to assess the effectiveness, operating parameters, and resource needs of the ion exchange (IX) pump-and-treat system. The test will provide information to assess the ability to remove contaminants by extracting groundwater from wells and treating extracted groundwater using IX. Bench-scale tests were conducted previously in which chromium VI was identified as the primary contaminant of concern in the 100-D reactor plume. The DOWEX 21K{trademark} resin was recommended for pilot-scale testing of an IX pump-and-treat system. The bench-scale test demonstrated that the system could remove chromium VI from groundwater to concentrations less than 50 ppb. The test also identified process parameters to monitor during pilot-scale testing. Water will be re-injected into the plume using wells outside the zone of influence and upgradient of the extraction well.

Not Available

1994-08-01T23:59:59.000Z

55

Screening of Potential Remediation Methods for the 200-BP-5 Operable Unit at the Hanford Site  

SciTech Connect (OSTI)

A screening-level evaluation of potential remediation methods for application to the contaminants of concern (COC) in the 200-BP-5 Operable Unit at the Hanford Site was conducted based on the methods outlined in the Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA Interim Final (EPA 1988). The scope of this screening was to identify the most promising remediation methods for use in the more detailed analysis of remediation alternatives that will be conducted as part of the full feasibility study. The screening evaluation was conducted for the primary COC (potential major risk drivers) identified in the groundwater sampling and analysis plan for the operable unit (DOE/RL-2001-49, Rev. 1) with additions.

Truex, Michael J.; Dresel, P. EVAN; Nimmons, Michael J.; Johnson, Christian D.

2006-09-21T23:59:59.000Z

56

Effective Energy Conservation in the Operating Unit  

E-Print Network [OSTI]

can odcur. At that point, positive steps need to be takerl to rejuvenate the process. Suci, a step might weIll in clude a energy brainstorming session(s} where Ithe interaction between people can jar out some i~eas. that the unit coordinator has a...

Korich, R. D.

1982-01-01T23:59:59.000Z

57

Pilot-scale treatability test plan for the 200-BP-5 operable unit  

SciTech Connect (OSTI)

This document presents the treatability test plan for pilot-scale pump and treat testing at the 200-BP-5 Operable Unit. This treatability test plan has been prepared in response to an agreement between the U.S. Department of Energy (DOE), the U.S. Environmental Protection Agency (EPA), and the State of Washington Department of Ecology (Ecology), as documented in Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement, Ecology et al. 1989a) Change Control Form M-13-93-03 (Ecology et al. 1994) and a recent 200 NPL Agreement Change Control Form (Appendix A). The agreement also requires that, following completion of the activities described in this test plan, a 200-BP-5 Operable Unit Interim Remedial Measure (IRM) Proposed Plan be developed for use in preparing an Interim Action Record of Decision (ROD). The IRM Proposed Plan will be supported by the results of this treatability test plan, as well as by other 200-BP-5 Operable Unit activities (e.g., development of a qualitative risk assessment). Once issued, the Interim Action ROD will specify the interim action(s) for groundwater contamination at the 200-BP-5 Operable Unit. The treatability test approach is to conduct a pilot-scale pump and treat test for each of the two contaminant plumes associated with the 200-BP-5 Operable Unit. Primary contaminants of concern are {sup 99}Tc and {sup 60}Co for underwater affected by past discharges to the 216-BY Cribs, and {sup 90}Sr, {sup 239/240}Pu, and Cs for groundwater affected by past discharges to the 216-B-5 Reverse Well. The purpose of the pilot-scale treatability testing presented in this testplan is to provide the data basis for preparing an IRM Proposed Plan. To achieve this objective, treatability testing must: Assess the performance of groundwater pumping with respect to the ability to extract a significant amount of the primary contaminant mass present in the two contaminant plumes.

Not Available

1994-08-01T23:59:59.000Z

58

2009 Groundwater Monitoring Report Project Shoal Area, Corrective Action Unit 447  

SciTech Connect (OSTI)

This report presents the 2009 groundwater monitoring results collected by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) at the Project Shoal Area (PSA) Subsurface Corrective Action Unit (CAU) 447 in Churchill County, Nevada. Responsibility for the environmental site restoration of the PSA was transferred from the DOE Office of Environmental Management to LM on October 1, 2006. The environmental restoration process and corrective action strategy for CAU 447 are conducted in accordance with the Federal Facility Agreement and Consent Order (FFACO 1996, as amended February 2008) entered into by DOE, the U.S. Department of Defense, and the State of Nevada. The corrective action strategy for the site includes monitoring in support of site closure. This report summarizes investigation activities associated with CAU 447 that were conducted at the PSA during fiscal year 2009.

None

2010-03-01T23:59:59.000Z

59

Unit costs of waste management operations  

SciTech Connect (OSTI)

This report provides estimates of generic costs for the management, disposal, and surveillance of various waste types, from the time they are generated to the end of their institutional control. Costs include monitoring and surveillance costs required after waste disposal. Available data on costs for the treatment, storage, disposal, and transportation of spent nuclear fuel and high-level radioactive, low-level radioactive, transuranic radioactive, hazardous, mixed (low-level radioactive plus hazardous), and sanitary wastes are presented. The costs cover all major elements that contribute to the total system life-cycle (i.e., ``cradle to grave``) cost for each waste type. This total cost is the sum of fixed and variable cost components. Variable costs are affected by operating rates and throughput capacities and vary in direct proportion to changes in the level of activity. Fixed costs remain constant regardless of changes in the amount of waste, operating rates, or throughput capacities. Key factors that influence cost, such as the size and throughput capacity of facilities, are identified. In many cases, ranges of values for the key variables are presented. For some waste types, the planned or estimated costs for storage and disposal, projected to the year 2000, are presented as graphics.

Kisieleski, W.E.; Folga, S.M.; Gillette, J.L.; Buehring, W.A.

1994-04-01T23:59:59.000Z

60

Actual operating experience with a new NRU unit  

SciTech Connect (OSTI)

The Baker Gas Plant in the Oklahoma Panhandle is a turbo-expander plant combined with a nitrogen rejection unit (NRU). The NRU unit was installed to remove nitrogen and recover helium. Operating problems and solutions of the NRU are discussed.

McKenzie, D. [Williams Field Services, Houston, TX (United States); Brown, B.D. [ABB Randall Corp., Houston, TX (United States)

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "groundwater operable unit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Ground-water contribution to dose from past Hanford Operations. Hanford Environmental Dose Reconstruction Project  

SciTech Connect (OSTI)

The Hanford Environmental Dose Reconstruction (HEDR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides migrating in ground water on the Hanford Site could have reached the public have been identified: (1) through contaminated ground water migrating to the Columbia River; (2) through wells on or adjacent to the Hanford Site; (3) through wells next to the Columbia River downstream of Hanford that draw some or all of their water from the river (riparian wells); and (4) through atmospheric deposition resulting in contamination of a small watershed that, in turn, results in contamination of a shallow well or spring by transport in the ground water. These four pathways make up the ``ground-water pathway,`` which is the subject of this study. Assessment of the ground-water pathway was performed by (1) reviewing the existing extensive literature on ground water and ground-water monitoring at Hanford and (2) performing calculations to estimate radionuclide concentrations where no monitoring data were collected. Radiation doses that would result from exposure to these radionuclides were calculated.

Freshley, M.D.; Thorne, P.D.

1992-08-01T23:59:59.000Z

62

Borehole Data Package for Nine CY 2006 Polyphosphate Treatability Testing Wells, 300-FF-5 Operable Unit, Hanford Site, Washington  

SciTech Connect (OSTI)

Nine new CERCLA groundwater monitoring wells were installed in the 300-FF-5 Operable Unit in calendar year 2006 to fulfill commitments for the EM-20 funded polyphosphate treatability test. Nine new performance monitoring wells were drilled into the uppermost unconfined aquifer, to the Hanford formation - Ringold Formation contact boundary, and completed within the permeable Hanford fm. unit 1 gravel-dominated sequence. The overall objective of the polyphosphate treatability test is to evaluate the efficacy of using polyphosphate injections to treat 300 Area uranium contaminated groundwater in situ. The objective of this work was to install the performance monitoring network surrounding the existing treatability injection well C5000 (399-1-23) in support of the implementation of a field scale demonstration of the polyphosphate technology.

Williams, Bruce A.

2007-04-12T23:59:59.000Z

63

2009 Groundwater Monitoring Report Central Nevada Test Area, Corrective Action Unit 443  

SciTech Connect (OSTI)

This report presents the 2009 groundwater monitoring results collected by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) for the Central Nevada Test Area (CNTA) Subsurface Corrective Action Unit (CAU) 443. Responsibility for the environmental site restoration of CNTA was transferred from the DOE Office of Environmental Management to LM on October 1, 2006. The environmental restoration process and corrective action strategy for CAU 443 are conducted in accordance with the Federal Facility Agreement and Consent Order entered into by DOE, the U.S. Department of Defense, and the State of Nevada. The corrective action strategy for the site includes proof-of-concept monitoring in support of site closure. This report summarizes investigation activities associated with CAU 443 that were conducted at the site from October 2008 through December 2009. It also represents the first year of the enhanced monitoring network and begins the new 5-year proof-of-concept monitoring period that is intended to validate the compliance boundary

None

2010-09-01T23:59:59.000Z

64

Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Units 101 and 102: Central and Western Pahute Mesa, Nye County, Nevada, Revision 0  

SciTech Connect (OSTI)

This report documents the analysis of the available hydrologic data conducted in support of the development of a Corrective Action Unit (CAU) groundwater flow model for Central and Western Pahute Mesa: CAUs 101 and 102.

Drici, Warda

2004-02-01T23:59:59.000Z

65

Contaminant Transport Parameters for the Groundwater Flow and Contaminant Transport Model of Corrective Action Units 101 and 102: Central and Western Pahute Mesa, Nye County, Nevada, Revision 0  

SciTech Connect (OSTI)

This report documents the analysis of the available transport parameter data conducted in support of the development of a Corrective Action Unit (CAU) groundwater flow model for Central and Western Pahute Mesa: CAUs 101 and 102.

Drici, Warda

2003-08-01T23:59:59.000Z

66

Monticello Mill Tailings Site Operable Unit Ill Interim Remedial Action  

Office of Legacy Management (LM)

Site Site Operable Unit Ill Interim Remedial Action Mark Perfxmed Under DOE Contrici No. DE-AC13-96CJ873.35 for th3 U.S. De[:ar!menf of Energy app~oveJioi'ptiL#ic re1ease;dCinWlionis Unlimilra' This page intentionally left blank Monticello Mill Tailings Site Operable Unit I11 Interim Remedial Action Annual Status Report August 1999 Prepared for U.S. Department of Energy Albuquerque Operations Office Grand Junction Office Project Number MSG-035-0011-00-000 Document Number Q0017700 Work Performed Under DOE Contract Number DE-AC13-96GJ87335 Task Order Number MAC99-03 This page intentionally blank Document Number Q0017700 Acronyms Contents Page ACRONYMS .............................................................................................................................. V

67

Impact of High Wind Power Penetration on Hydroelectric Unit Operations: Preprint  

SciTech Connect (OSTI)

This paper examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating unit patterns are examined for an aggregation of all hydro generators.

Hodge, B. M.; Lew, D.; Milligan, M.

2011-10-01T23:59:59.000Z

68

Operating experience of Pyroflow boilers in a 250 MWe unit  

SciTech Connect (OSTI)

The Cedar Bay Cogeneration project is a 250 MWe unit owned and operated by US Generating Company. This plant has one turbine rated at 250 MWe net which is supplied by three Pyroflow CFB boilers that operate in parallel while supplying a paper mill with steam on an uninterruptible basis. Compared to similar size CFB boilers the Cedar Bay boilers have certain unique features. First, these are reheat boilers which must continue to supply process steam even when the steam turbine is down. Second, the SO{sub 2} control operates at a very low Ca/S molar ratio by optimizing the process conditions and flyash reinjection. Third, the NO{sub x} reduction process utilizes aqueous ammonia injection. This paper presents the operating data at full load in terms of boiler efficiency, and the ability to limit gaseous emissions with minimum limestone and ammonia usage. Unique features relating to the multiple boiler installation are also discussed.

Chelian, P.K.; Hyvarinen, K. [Pyropower Corp., San Diego, CA (United States)

1995-12-31T23:59:59.000Z

69

SCOPING SUMMARY FOR THE P-AREA OPERABLE UNIT  

SciTech Connect (OSTI)

This scoping summary supports development of the combined Remedial Investigation (RI)/Baseline Risk Assessment (BRA)/Feasibility Study (FS) for the P-Area Operable Unit (PAOU), or Combined document, which will be submitted on or before 09/28/2007. The objective of this Feasibility Study scoping summary meeting is to agree on the likely response actions to be evaluated and developed as alternatives in the combined document and agree on the uncertainties identified and whether they have been adequately managed.

Kupar, J; Sadika Baladi, S; Mark Amidon, M

2007-05-22T23:59:59.000Z

70

Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan  

SciTech Connect (OSTI)

The scope of the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) is to provide technical and integration support to Fluor Hanford, Inc., including operable unit investigations at 300-FF-5 and other groundwater operable units, strategic integration, technical integration and assessments, remediation decision support, and science and technology. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project).

Fix, N. J.

2008-02-20T23:59:59.000Z

71

Assessing the impacts of future demand for saline groundwater on commercial deployment of CCS in the United States  

SciTech Connect (OSTI)

This paper provides a preliminary assessment of the potential impact that future demand for groundwater might have on the commercial deployment of carbon dioxide capture and storage (CCS) technologies within the United States. A number of regions within the U.S. have populations, agriculture and industries that are particularly dependent upon groundwater. Moreover, some key freshwater aquifers are already over-utilized or depleted, and others are likely to be moving toward depletion as demand grows. The need to meet future water demands may lead some parts of the nation to consider supplementing existing supplies with lower quality groundwater resources, including brackish waters that are currently not considered sources of drinking water but which could provide supplemental water via desalination. In some areas, these same deep saline-filled geologic formations also represent possible candidate carbon dioxide (CO2) storage reservoirs. The analysis presented here suggests that future constraints on CCS deployment due to potential needs to supplement conventional water supplies by desalinating deeper and more brackish waters are likely to be necessary only in limited regions across the country, particularly in areas that are already experiencing water stress.

Davidson, Casie L.; Dooley, James J.; Dahowski, Robert T.

2009-04-20T23:59:59.000Z

72

Economic environment of coal mining operations in Appalachia, United States  

Science Journals Connector (OSTI)

Appalachia is a mountainous coal region, in the United States, where the small mining operation dominates. The large number of small coal operations makes the coal industry in that area very competitive, the industry concentration ratio being low. The vast majority of the small coal operations are contractors and nonunionized. There are various circumstances under which a large company will elect to supplement their coal production from their, usually larger, coal mines. The size of the coal mine is generally dictated by the size and location of the coal reserves. The optimum rate of coal extraction, and hence the life of the mine, is a factor of the size of the coal reserves and the contribution margin (coal price less variable cost). Large companies tend to have better safety records than smaller companies due to greater numbers of professional engineers and better management. Small mines have the advantage of closer supervision.

A.B. Szwilski

1987-01-01T23:59:59.000Z

73

Method and apparatus for operating an improved thermocline storage unit  

DOE Patents [OSTI]

A method and apparatus for operating a thermocline storage unit in which an insulated barrier member is provided substantially at the interface region between the hot and cold liquids in the storage tank. The barrier member physically and thermally separates the hot and cold liquids substantially preventing any diffusing or mixing between them and substantially preventing any heat transfer there between. The barrier member follows the rise and fall of the interface region between the liquids as the tank is charged and discharged. Two methods of maintaining it in the interface region are disclosed. With the structure and operation of the present invention and in particular the significant reduction in diffusing or mixing between the hot and cold liquids as well as the significant reduction in the thermal heat transfer between them, the performance of the storage tank is improved. More specifically, the stability of the interface region or thermocline is enhanced and the thickness of the thermocline is reduced producing a corresponding increase in the steepness of the temperature gradient across the thermocline and a more efficiently operating thermocline storage unit.

Copeland, R.J.

1982-09-30T23:59:59.000Z

74

Feasibility Study for Operable Unit 7-13/14  

SciTech Connect (OSTI)

The Subsurface Disposal Area is a radioactive waste landfill located within the Radioactive Waste Management Complex at the Idaho National Laboratory Site in southeastern Idaho. This Feasibility Study for Operable Unit 7-13/14 analyzes options for mitigating risks to human health and the environment associated with the landfill. Analysis is conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act, using nine evaluation criteria to develop detailed and comparative analysis of five assembled alternatives. Assembled alternatives are composed of discrete modules. Ultimately, decision-makers will select, recombine, and sum various modules into an optimized preferred alternative and final remedial decision.

K. Jean Holdren; Thomas E. Bechtold; Brian D. Preussner

2007-05-29T23:59:59.000Z

75

UNITED STATES ATOMIC ENERGY COMMISSION CHICAGO OPERATIONS OFFICE  

Office of Legacy Management (LM)

$$ ,_, . $$ ,_, . UNITED STATES ATOMIC ENERGY COMMISSION CHICAGO OPERATIONS OFFICE TELEPHONE 9600 SOUTH CASS AVENUE (312) 739-7711 ARCONNE. ILLINOIS 60439 ^,/" _. i ' > ;.:a c. JAN 17 1975 Martin B. Biles, Director Division of Operational Safety, HQ _ DISPOSAL OF SCRAP COPPER, CYCLOTRON DISMANTLING PROJECT, NUCLEAR RESEARCH CENTER, CARNEGIE-MELLON UNIVERSITY (CMU) Enclosed for your information is a copy of the October 28, 1974, letter from T. Morris (CMD) to J. Krupa (CH) with pages 1-4 and 8-16 of its attachment (the October 23, 1974, F. Bomba to T. Morris, memo- randum; pages 5-7 are economically omitted as they were not relevant to the subject of this letter) regarding disposal of 4 to 6 tons of copper. The enclosure contains a summary of data obtained from

76

Regional ground-water mixing and the origin of saline fluids: Midcontinent, United States  

SciTech Connect (OSTI)

Ground waters in three adjacent regional flow systems in the midcontinent exhibit extreme chemical and isotopic variations that delineate large-scale fluid flow and mixing processes and two distinct mechanisms for the generation of saline fluids. Systematic spatial variations of major ion concentrations, H, O, and Sr isotopic compositions, and ground-water migration pathways indicate that each flow system contains water of markedly different origin. Mixing of the three separate ground waters exerts a fundamental control on ground-water composition. The three ground waters are: (i) dilute meteoric water recharged in southern Missouri; (ii) saline Na-Ca-Cl water in southeastern Kansas of far-traveled meteoric origin that acquired its salinity by halite dissolution; and (iii) Na-Ca-Cl brines in north-central Oklahoma that may have originated as Paleozoic seawater. 45 refs., 4 figs., 1 tab.

Musgrove, M.; Banner, J.L. (Univ. of Texas, Austin (United States))

1993-03-26T23:59:59.000Z

77

Waste Area Group 10, Operable Unit 10-08, Annual Monitoring Status Report for Fiscal Year 2009  

SciTech Connect (OSTI)

This report documents the status of Fiscal Year 2009 groundwater monitoring performed in Waste Area Group 10 at the U.S. Department of Energy Idaho National Laboratory Site, as identified in the Groundwater Monitoring and Field Sampling Plan for Operable Unit 10-08. Twelve of the fourteen required wells were sampled, and all ten required intervals from the Westbay wells were sampled. Two wells were not sampled because they were in the process of being converted into multiple-sample-interval Westbay wells by the U.S. Geological Survey. Groundwater samples were analyzed for volatile organic compounds identified on the Contract Laboratory Program target analyte list as well as metals (filtered), anions, and radionuclides (i.e., I-129, tritium, Tc-99, gross alpha, gross beta, and Sr-90). No contaminant exceeded maximum contaminant levels in wells along the southern boundary of the Idaho National Laboratory Site or in guard wells. Iron was above its secondary maximum contaminant level of 300 ug/L in one well. The cause of the elevated iron concentration is uncertain. Lead was detected just below its action level. However, the zinc concentration was also elevated in these wells, and the source of the lead is probably galvanized riser pipe in the wells. Once the galvanized pipe is replaced, both lead and zinc concentrations should decline, as has been observed at other Waste Area Group 10 wells.

Howard Forsythe

2010-02-04T23:59:59.000Z

78

2012 Groundwater Monitoring Report Project Shoal Area Subsurface Corrective Action Unit 447  

SciTech Connect (OSTI)

The Project Shoal Area (PSA) in Nevada was the site of a 12-kiloton underground nuclear test in 1963. Although the surface of the site has been remediated, investigation of groundwater contamination resulting from the test is still in the corrective action process. Annual sampling and hydraulic head monitoring are conducted at the site as part of the subsurface corrective action strategy. Analytical results from the 2012 monitoring are consistent with those of the previous years, with tritium detected only in well HC-4. The tritium concentration in groundwater from well HC-4 remains far below the U.S. Environmental Protection Agency-established maximum contaminant level of 20,000 picocuries per liter. Concentrations of total uranium and gross alpha were also detected during this monitoring period, with uranium accounting for nearly all the gross alpha activity. The total uranium concentrations obtained from this monitoring period were consistent with previous results and reflect a slightly elevated natural uranium concentration, consistent with the mineralized geologic terrain. Isotopic ratios of uranium also indicate a natural source of uranium in groundwater, as opposed to a nuclear-test-related source. Water level trends obtained from the 2012 water level data were consistent with those of previous years. The corrective action strategy for the PSA is currently focused on revising the site conceptual model (SCM) and evaluating the adequacy of the current monitoring well network. Some aspects of the SCM are known; however, two major concerns are the uncertainty in the groundwater flow direction and the cause of rising water levels in site wells west of the shear zone. Water levels have been rising in the site wells west of the shear zone since the first hydrologic characterization wells were installed in 1996. While water levels in wells west of the shear zone continue to rise, the rate of increase is less than in previous years. The SCM will be revised, and an evaluation of the groundwater monitoring network will be conducted when water levels at the site have stabilized.

None

2013-03-01T23:59:59.000Z

79

Impact of High Wind Power Penetration on Hydroelectric Unit Operations in the WWSIS  

SciTech Connect (OSTI)

This report examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating patterns are examined both for an aggregation of all hydro generators and for select individual plants.

Hodge, B.-M.; Lew, D.; Milligan, M.

2011-07-01T23:59:59.000Z

80

UNITED STATES ATOMIC ENERGY COMMISSION Iew York Operation8 Office  

Office of Legacy Management (LM)

fi ' fi ' J/ui : ,I/ /J ii%/~it~ - ,,(,C, \,\J,iT/~l \ 11, ?' UNITED STATES ATOMIC ENERGY COMMISSION Iew York Operation8 Office Files (.Thrur V.L.Parsegian, Director, Division of Technical Advisers) Decenber 19, 1950 9; G.Strc&e, Division of Technical Advisers COLD-DRAWING OF TJRAXItZI RODS A BXIDGEPORT BRATS CO'Ei+A!R Symbol: TAtFGSrmam On 12/11/50, an exper%mnt was conducted at the Bridgmort Brass Company in whioh an attanpt m m made to cold-draw hot-foiled rods of uranium tich had been pickled to remove the oxi:!e coating. In addition, a few mpickled bars were drawn. It can be uoncluded from this erperimmt that we x-me unable tith the lubricants used to draw the pickled rods of uranium. This' appears to verify the necessity for an oxide film on the uranium to

Note: This page contains sample records for the topic "groundwater operable unit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

UNITED STATES ATOMIC ENERGY COMMISSION OAK RIDGE OPERATIONS  

Office of Legacy Management (LM)

AL, 3 AL, 3 UNITED STATES ATOMIC ENERGY COMMISSION OAK RIDGE OPERATIONS CINCINNATI AREA P. 0. BOX 39198, CINCINNATI 39, OHIO IN REPLY REFER TO: 0:OJT --r.LAal Cl E:c Mr. J. H. Noyes, Plant Manager National Lead Company of Ohio P. 0. Box 39158 Cincinnati 39, Ohio Subject: HOT TENSILE TESTS OF URANIUM - SOUTHERN RESEARCH INSTITUTE Dear Mr. Noyee: I / Reference is made to your letter of May 17, 1962, on the above subject. Approval is granted for the off-site movement of up to 300 pounds of normal uranium by the National Lead Company of Ohio to the Southern Research Institute, Birmingham, Alabama for testing purposes. Accountability for the material should be retained in SS Station NLO's records during the testing period. The Monthly Material Balance Re-

82

Monticello Mill Tailings Site Operable Unit III Ecological Risk  

Office of Legacy Management (LM)

Monticello Monticello Mill Tailings Site Operable Unit III Ecological Risk Assessment September 1998 Prepared by U.S. Department of Energy Grand JunctionOffice Grand Junction, Colorado Project Number MSG-035-0004-00-000 Document Number Q0002l 00 Work Performed Under DOE Contract Number DE-AC13-96GJ87335 Task Order Number MAC98-03 This page intentionally blank , ** 1 ( ( Document Number Q00021 00 Contents Contents Page Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ix Executive Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. xi 1.0 Introduction I-I 2.0 Problem Formulation : 2-1 2.1 Site Description 2-1 2.1.1 Physical Setting 2-1 2.1.2 Ecological Setting '.' 2-5 2.2 Ecological Contaminants of Concern 2-9 2.3 Contaminant Fate and Transport, Ecosystems Potentially at Risk, and Complete Exposure Pathways 2-11 i3.1

83

Groundwater Remediation and Modeling  

Science Journals Connector (OSTI)

Because of the author’s vantage point, this chapter is necessarily based on experience in ground-water remediation in the United States. Much of that...

Peter Shanahan

1995-01-01T23:59:59.000Z

84

Groundwater Model Validation for the Project Shoal Area, Corrective Action Unit 447  

SciTech Connect (OSTI)

Stoller has examined newly collected water level data in multiple wells at the Shoal site. On the basis of these data and information presented in the report, we are currently unable to confirm that the model is successfully validated. Most of our concerns regarding the model stem from two findings: (1) measured water level data do not provide clear evidence of a prevailing lateral flow direction; and (2) the groundwater flow system has been and continues to be in a transient state, which contrasts with assumed steady-state conditions in the model. The results of DRI's model validation efforts and observations made regarding water level behavior are discussed in the following sections. A summary of our conclusions and recommendations for a path forward are also provided in this letter report.

None

2008-05-19T23:59:59.000Z

85

Phase II Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 98: Frenchman Flat, Nye County, Nevada, Rev. No.: 0  

SciTech Connect (OSTI)

This report documents pertinent hydrologic data and data analyses as part of the Phase II Corrective Action Investigation (CAI) for Frenchman Flat (FF) Corrective Action Unit (CAU): CAU 98. The purpose of this data compilation and related analyses is to provide the primary reference to support the development of the Phase II FF CAU groundwater flow model.

John McCord

2004-12-01T23:59:59.000Z

86

Superfund record of decision (EPA Region 8): Ellsworth Air Force Base, Operable Unit 1, Rapid City, SD, May 10, 1996  

SciTech Connect (OSTI)

This ROD is for remedial action at OU-1. The selected alternative, source area soil and ground-water treatment, includes: Continued operation of the interim remedial action (IRA) which consisted of contaminated ground-water removal, soil vapor extraction (SVE), and treatment; Installation of additional SVE wells within the historical burn-pit area to be added to the existing IRA SVE system; Removal of contaminated ground water using additional ground-water wells and collection trenches to be added to the IRA ground-water recovery system; Treatment of ground water at the existing IRA treatment plant; and Institutional controls for the area.

NONE

1996-10-01T23:59:59.000Z

87

Clarification of Institutional Controls at the Rocky Flats Site Central Operable Unit and Implementation of the Soil Disturbance Review Plan - 13053  

SciTech Connect (OSTI)

Cleanup and closure of DOE's Rocky Flats Site in Colorado, which was placed on the CERCLA National Priority List in 1989, was accomplished under CERCLA, RCRA, and the Colorado Hazardous Waste Act (CHWA). The physical cleanup work was completed in late 2005 and all buildings and other structures that composed the Rocky Flats industrial complex were removed from the surface, but remnants remain in the subsurface. Other remaining features include two landfills closed in place with covers, four groundwater treatment systems, and surface water and groundwater monitoring systems. Under the 2006 Corrective Action Decision/Record of Decision for Rocky Flats Plant (US DOE) Peripheral Operable Unit and the Central Operable Unit (CAD/ROD), the response actions selected for the Central Operable Unit (OU) are institutional controls (ICs), physical controls, and continued monitoring and maintenance. The objectives of these ICs were to prevent unacceptable exposure to remaining subsurface contamination and to prevent contaminants from mobilizing to surface water and to prevent interfering with the proper functioning of the engineered components of the remedy. An amendment in 2011 of the 2006 CAD/ROD clarified the ICs to prevent misinterpretation that would prohibit work to manage and maintain the Central OU property. The 2011 amendment incorporated a protocol for a Soil Disturbance Review Plan for work subject to ICs that requires approval from the State and public notification by DOE prior to conducting approved soil-disturbing work. (authors)

DiSalvo, Rick [Stoller LMS Team, 11025 Dover St, Suite 1000, Westminster, CO 80021 (United States)] [Stoller LMS Team, 11025 Dover St, Suite 1000, Westminster, CO 80021 (United States); Surovchak, Scott [U.S. Department of Energy, Office of Legacy Management, 11025 Dover St, Suite 1000, Westminster, CO 80021 (United States)] [U.S. Department of Energy, Office of Legacy Management, 11025 Dover St, Suite 1000, Westminster, CO 80021 (United States); Spreng, Carl [Colorado Department of Public Health and Environment, 4300 Cherry Creek Dr. S, Denver, CO 80246-1530 (United States)] [Colorado Department of Public Health and Environment, 4300 Cherry Creek Dr. S, Denver, CO 80246-1530 (United States); Moritz, Vera [U.S. Environmental Protection Agency, Region 8, 1595 Wynkoop St., Denver, CO 80202-1129 (United States)] [U.S. Environmental Protection Agency, Region 8, 1595 Wynkoop St., Denver, CO 80202-1129 (United States)

2013-07-01T23:59:59.000Z

88

EIS-0195: Remedial Actions at Operable Unit 4, Fernald Environmental Management Project, Fernald, Ohio  

Broader source: Energy.gov [DOE]

This EIS evaluates the potential environmental impacts of a proposal to conduct remedial action at Operable Unit 4 at the Fernald Environmental Management Project.

89

?Framework for a Risk-Informed Groundwater Compliance Strategy for Corrective Action Unit 98: Frenchman Flat, Nevada National Security Site, Nye County, Nevada, Revision 1  

SciTech Connect (OSTI)

Note: This document was prepared before the NTS was renamed the Nevada National Security Site (August 23, 2010); thus, all references to the site herein remain NTS. Corrective Action Unit (CAU) 98, Frenchman Flat, at the Nevada Test Site (NTS) was the location of ten underground nuclear tests between 1965 and 1971. As a result, radionuclides were released in the subsurface in the vicinity of the test cavities. Corrective Action Unit 98 and other CAUs at the NTS and offsite locations are being investigated. The Frenchman Flat CAU is one of five Underground Test Area (UGTA) CAUs at the NTS that are being evaluated as potential sources of local or regional impact to groundwater resources. For UGTA sites, including Frenchman Flat, contamination in and around the test cavities will not be remediated because it is technologically infeasible due to the depth of the test cavities (150 to 2,000 feet [ft] below ground surface) and the volume of contaminated groundwater at widely dispersed locations on the NTS. Instead, the compliance strategy for these sites is to model contaminant flow and transport, estimate the maximum spatial extent and volume of contaminated groundwater (over a period of 1,000 years), maintain institutional controls, and restrict access to potentially contaminated groundwater at areas where contaminants could migrate beyond the NTS boundaries.

Sam Marutzky

2010-09-01T23:59:59.000Z

90

Practical Operation of Prep-Scale Gas Chromatographic Units  

Science Journals Connector (OSTI)

......given in Table I. The cost of a recycling unit is...nitrogen is used as carrier gas. For narrower columns it depends on the length of production cycles. Once a recycling unit is used, the carrier gas cost becomes negligible, and......

B. Roz; R. Bonmati; G. Hagenbach; P. Valentin; G. Guiochon

1976-08-01T23:59:59.000Z

91

INTEC Groundwater Monitoring Report 2006  

SciTech Connect (OSTI)

This report summarizes 2006 perched water and groundwater monitoring activities at the Idaho Nuclear Technology and Engineering Center (INTEC) located at the Idaho National Laboratory (INL). During 2006, groundwater samples were collected from a total of 22 Snake River Plain Aquifer (SRPA) monitoring wells, plus six aquifer wells sampled for the Idaho CERCLA Disposal Facility (ICDF) monitoring program. In addition, perched water samples were collected from 21 perched wells and 19 suction lysimeters. Groundwater and perched water samples were analyzed for a suite of radionuclides and inorganic constituents. Laboratory results in this report are compared to drinking water maximum contaminant levels (MCLs). Such comparison is for reference only and it should be noted that the Operable Unit 3-13 Record of Decision does not require that perched water comply with drinking water standards.

J. R. Forbes

2007-02-01T23:59:59.000Z

92

Exhibit D: Mirant Potomac River Schedule of Unit Operations: Supplement 4, January- March 2006  

Broader source: Energy.gov [DOE]

Docket No. EO-05-01: Exhibit D: Mirant Potomac River Schedule of Unit Operations in support of Supplement Number 4 to the Operating Plan of Mirant Potomac River, LLC

93

Exhibit D: Mirant Potomac River Schedule of Unit Operations: Supplement 3, January and February 2006  

Broader source: Energy.gov [DOE]

Docket No. EO-05-01: Exhibit D: Mirant Potomac River Schedule of Unit Operations, part of Supplement Number 3 to the Operating Plan of Mirant Potomac River, LLC

94

Exhibit D: Mirant Potomac River Schedule of Unit Operations: January- March 2006  

Broader source: Energy.gov [DOE]

Docket No. EO-05-01: Exhibit D: Mirant Potomac River Schedule of Unit Operations related to Supplement Number 4 of the Operating Plan of Mirant Potomac River, LLC

95

Treatment of produced water using chemical and biological unit operations.  

E-Print Network [OSTI]

??Water generated along with oil and gas during coal bed methane and oil shale operations is commonly known as produced water, formation water, or oilfield… (more)

Li, Liang

2010-01-01T23:59:59.000Z

96

Exhibit A: ENSR Modeling in Support of Individual Unit Operation...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Comments on Department of Energy's Emergency Order To Resume Limited Operation at Mirant's Potomac River Generating Station and Proposed Mirant...

97

Tool-Assisted Unit-Test Generation and Selection Based on Operational Abstractions  

E-Print Network [OSTI]

Tool-Assisted Unit-Test Generation and Selection Based on Operational Abstractions Tao Xie1 of Washington, Seattle, WA 98105 Abstract. Unit testing, a common step in software development, presents a chal- lenge. When produced manually, unit test suites are often insufficient to identify defects. The main

Xie, Tao

98

STOCHASTIC FLOW SEQUENCE GENERATION AND ASPINALL UNIT OPERATIONS  

E-Print Network [OSTI]

of the University of Colorado in partial fulfillment of the requirement for the degree of Master of Science by Professor Balaji Rajagopalan The Aspinall Unit is comprised of three reservoirs that lie on the western for the Colorado River Basin, paleo reconstructed flows dating back to the 1500's suggest that such events

99

EA-0821: Operation of the Glass Melter Thermal Treatment Unit at the U.S.  

Broader source: Energy.gov (indexed) [DOE]

1: Operation of the Glass Melter Thermal Treatment Unit at 1: Operation of the Glass Melter Thermal Treatment Unit at the U.S. Department of Energy's Mound Plant, Miamisburg, Ohio EA-0821: Operation of the Glass Melter Thermal Treatment Unit at the U.S. Department of Energy's Mound Plant, Miamisburg, Ohio SUMMARY This EA evaluates the environmental impacts of a proposal to use an existing glass melter thermal treatment unit (also known as a Penberthy Pyro-Converter joule-heated glass furnace) for the treatment of hazardous and mixed wastes (waste containing both hazardous and radioactive material at the U.S. Department of Energy's Mound Plant in Miamisburg, Ohio. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 26, 1995 EA-0821: Finding of No Significant Impact Operation of the Glass Melter Thermal Treatment Unit at the U.S. Department

100

UNITED STATES ENERGY RESEARCH AND DEVELOPMENT CHICAGO OPERATIONS OFFICE  

Office of Legacy Management (LM)

CHICAGO OPERATIONS OFFICE 9800 SOUTH CASS AVENUE ARGONNE, ILLINOIS 80439 TELEPHONE (312) 739-7711 ADMINISTRATION JUL 11977 Hal Hollister, Acting Director Division of Operational and Environmental Safety, HQ RESURVEY PROGRAM - BRUSH BERYLLIUM COMPANY A visit to the Brush Beryllium Company (presently called Brush Wellman), Cleveland, Ohio was made by Edward J. Jascewsky and members of the Argonne National Laboratory survey team on May 17, 1977. The group met with Martin Powers and Nate Bass, Vice Presidents of Brush Wellman. The purpose of the visit was to determine if any radiological survey was needed as a result of past Atomic Energy Commission (AEC) contract work. The work performed by Brush Beryllium involving radioactive materials was done at two locations in the Cleveland area. One site was located

Note: This page contains sample records for the topic "groundwater operable unit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

United States Army; Fort Gordon, Georgia, Range Control Operations  

Broader source: Energy.gov (indexed) [DOE]

DRAFT DRAFT Joint Standard Operating Procedures (JSOP) For Military Training at the Savannah River Site August 2011 U.S. Department of Energy, Savannah River Operations Office, Savannah River Site And U.S. Department Of The Army, Fort Gordon, Georgia DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. 2 Chapter 1 General, 1.1 Purpose, page 8 1.2 Scope, page 8 1.3 Explanation of abbreviation and terms, page 8 1.4 Applicability, page 8 1.5 Deviations and Amendments, page 8 Chapter 2 Responsibilities 2.1 DOE-Savannah River Point of Contact (DOE-SR POC), page 10 2.2 DOE-Assistant Manager for Integration and Planning (AMIP), page 10 2.3 SRNS Interface Management Office, page 10 2.4 Directorate of Plans, Training, Mobilization, and Security (DPTMS), Page 10

102

Design and Operation of Fan-Coil Units in Using River Water as Chilled Water  

E-Print Network [OSTI]

Based on the case research for China's first central air conditioning system utilizing natural cool river water as chilled water, this paper analyzes the technical design-and-innovation process and operating characteristics of Fan-Coil Units (FCUs...

Jiang, A.; Chen, H.; Ma, W.; Zhu, H.

2006-01-01T23:59:59.000Z

103

Blue Helmeted Dragons : explaining China's participation in United Nations peace operations  

E-Print Network [OSTI]

China's personnel contributions to United Nations peace operations has significantly increased in the first decade of the twenty-first century, however little academic or policy attention has been given to examining patterns ...

Lin-Greenberg, Erik

2009-01-01T23:59:59.000Z

104

Distribution-Based Clustering: Using Ecology To Refine the Operational Taxonomic Unit  

E-Print Network [OSTI]

16S rRNA sequencing, commonly used to survey microbial communities, begins by grouping individual reads into operational taxonomic units (OTUs). There are two major challenges in calling OTUs: identifying bacterial population ...

Preheim, Sarah Pacocha

105

Multi-unit Operations in Non-Nuclear Systems: Lessons Learned for Small Modular Reactors  

SciTech Connect (OSTI)

The nuclear-power community has reached the stage of proposing advanced reactor designs to support power generation for decades to come. Small modular reactors (SMRs) are one approach to meet these energy needs. While the power output of individual reactor modules is relatively small, they can be grouped to produce reactor sites with different outputs. Also, they can be designed to generate hydrogen, or to process heat. Many characteristics of SMRs are quite different from those of current plants and may be operated quite differently. One difference is that multiple units may be operated by a single crew (or a single operator) from one control room. The U.S. Nuclear Regulatory Commission (NRC) is examining the human factors engineering (HFE) aspects of SMRs to support licensing reviews. While we reviewed information on SMR designs to obtain information, the designs are not completed and all of the design and operational information is not yet available. Nor is there information on multi-unit operations as envisioned for SMRs available in operating experience. Thus, to gain a better understanding of multi-unit operations we sought the lesson learned from non-nuclear systems that have experience in multi-unit operations, specifically refineries, unmanned aerial vehicles and tele-intensive care units. In this paper we report the lessons learned from these systems and the implications for SMRs.

OHara J. M.; Higgins, J.; DAgostino, A.

2012-01-17T23:59:59.000Z

106

United States Government Department of Energy Idaho Operations Office  

Broader source: Energy.gov (indexed) [DOE]

1, 2011 1, 2011 Subject: 2011 National Environmental Policy Act Planning Summary (OS-ETSD-11-001) To: Scott Blake Harris, General Counsel DOE-HQ, GC-1IFORS In accordance with DOE Order 451.1 B, the Department of Energy, Idaho Operations Office (DOE-ID) is submitting its 2011 National Environmental Policy Act (NEPA) Planning Summary. The 2011 NEPA Planning Summary will be made available to the public as required by the Order. Estimated NEPA document costs are provided for actions that are well enough defined from a planning and budget perspective. If you have any questions concerning the attachment or the DOE-ID NEPA compliance program, please contact me or our NEPA Compli (208) 526-5053. ',Manager Attachment cc: C. M. Borgstrom, DOE-HQ, GC-54/FORS B. M. Angle, BBWI, MS-3428

107

United States Government Department of Energy Idaho Operations Office  

Broader source: Energy.gov (indexed) [DOE]

0, 2012 0, 2012 Subject: Fiscal Year 2012 National Environmental Policy Act Planning Summary (OS-ETSD-12-011) To: Timothy G. Lynch, Acting General Counsel DOE-HQ, GC-IIFORS In accordance with DOE Order 451.1 B, the Department of Energy, Idaho Operations Office (DOE-ID) is submitting its Fiscal Year (FY) 2012 National Environmental Policy Act (NEPA) Planning Summary. The FY 2012 NEPA Planning Summary will be made available to the public as required by the Order. Estimated NEPA document costs are provided for actions that are well enough defined from a planning and budget perspective. If you have any questions concerning the attachment or the DOE-ID NEPA compliance program, please contact me or our NEP A Compliance Officer, Jack Depperschmidt, at (208) 526-5053.

108

Feasibility study for remedial action for the Quarry Residuals Operable Unit at the Weldon Spring Site, Weldon Spring, Missouri  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) is conducting cleanup activities at the Weldon Spring site, which is located in St. Charles County, Missouri, about 48 km (30 mi) west of St. Louis (Figure 1.1). Cleanup of the Weldon Spring site consists of several integrated components. The quarry residuals operable unit (QROU) is one of four operable units being evaluated. In accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended, a remedial investigation/feasibility study (RI/FS) is being conducted to evaluate conditions and potential responses for the following areas and/or media that constitute the QROU: (1) the residual material (soil and sediment) remaining at the Weldon Spring quarry after removal of the bulk waste (about 11 million L [3 million gal] of uranium-contaminated ponded water was also addressed previous to bulk waste removal); (2) other media located in the surrounding vicinity of the quarry, including adjacent soil, surface water, and sediment in Femme Osage Slough and several creeks; and (3) quarry groundwater located primarily north of Femme Osage Slough. Potential impacts to the St. Charles County well field downgradient of the quarry area are also being addressed as part of QROU RI/FS evaluations. For remedial action sites, it is DOE policy to integrate values associated with the National Environmental Policy Act (NEPA) into the CERCLA decision-making process. The analyses contained herein address NEPA values as appropriate to the actions being considered for the QROU. A work plan summarizing initial site conditions and providing conceptual site hydrogeological and exposure models was published in January 1994. The RI and baseline risk assessment (BRA) reports have been completed. The RI discusses in detail the nature and extent and the fate and transport of contamination at the quarry area.

NONE

1998-03-01T23:59:59.000Z

109

A Hydrostratigraphic System for Modeling Groundwater Flow and Radionuclide Migration at the Corrective Action Unit Scale, Nevada Test Site and Surrounding Areas, Clark, Lincoln, and Nye Counties, Nevada  

SciTech Connect (OSTI)

Underground Test Area (UGTA) corrective action unit (CAU) groundwater flow and contaminant transport models of the Nevada Test Site (NTS) and vicinity are built upon hydrostratigraphic framework models (HFMs) that utilize the hydrostratigraphic unit (HSU) as the fundamental modeling component. The delineation and three-dimensional (3-D) modeling of HSUs within the highly complex geologic terrain that is the NTS requires a hydrostratigraphic system that is internally consistent, yet flexible enough to account for overlapping model areas, varied geologic terrain, and the development of multiple alternative HFMs. The UGTA CAU-scale hydrostratigraphic system builds on more than 50 years of geologic and hydrologic work in the NTS region. It includes 76 HSUs developed from nearly 300 stratigraphic units that span more than 570 million years of geologic time, and includes rock units as diverse as marine carbonate and siliciclastic rocks, granitic intrusives, rhyolitic lavas and ash-flow tuffs, and alluvial valley-fill deposits. The UGTA CAU-scale hydrostratigraphic system uses a geology-based approach and two-level classification scheme. The first, or lowest, level of the hydrostratigraphic system is the hydrogeologic unit (HGU). Rocks in a model area are first classified as one of ten HGUs based on the rock’s ability to transmit groundwater (i.e., nature of their porosity and permeability), which at the NTS is mainly a function of the rock’s primary lithology, type and degree of postdepositional alteration, and propensity to fracture. The second, or highest, level within the UGTA CAU-scale hydrostratigraphic system is the HSU, which is the fundamental mapping/modeling unit within UGTA CAU-scale HFMs. HSUs are 3-D bodies that are represented in the finite element mesh for the UGTA groundwater modeling process. HSUs are defined systematically by stratigraphically organizing HGUs of similar character into larger HSUs designations. The careful integration of stratigraphic information in the development of HSUs is important to assure individual HSUs are internally consistent, correlatable, and mappable throughout all the model areas.

Lance Prothro, Sigmund Drellack Jr., Jennifer Mercadante

2009-01-31T23:59:59.000Z

110

Contract for Operational Services (Rev 06/07/11) No: Unit: Date Page 1 Contract Manager  

E-Print Network [OSTI]

Contract for Operational Services (Rev 06/07/11) No: Unit: __________________________________________________________________________ Date Page 1 Contract Manager: CONTRACT for the SUPPLY of SERVICES (OPERATIONAL) between The Forestry to the Commission in accordance with and subject to the provisions of this Contract. 2 The Contract Commencement

111

Operable Unit 3-13, Group 7, SFE-20 Hot Waste Tank System Remedial Action Report  

SciTech Connect (OSTI)

This Remedial Action Report summarizes activities undertaken to remediate the Operable Unit 3-13, Group 7, SFE-20 Hot Waste Tank System at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory Site. The site addressed in this report was defined in the Operable Unit 3-13 Record of Decision and subsequent implementing documents. This report concludes that remediation requirements and cleanup goals established for the site have been accomplished and is hereafter considered a No Further Action site.

Lee Davison

2009-06-30T23:59:59.000Z

112

Operable Unit 3-13, Group 7, SFE-20 Hot Waste Tank System Remedial Action Request  

SciTech Connect (OSTI)

This Remedial Action Report summarizes activities undertaken to remediate the Operable Unit 3-13, Group 7, SFE-20 Hot Waste Tank System at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory Site. The site addressed in this report was defined in the Operable Unit 3-13 Record of Decision and subsequent implementing documents. This report concludes that remediation requirements and cleanup goals established for the site have been accomplished and is hereafter considered a No Further Action site.

L. Davison

2009-06-30T23:59:59.000Z

113

Phase 1 remedial investigation report for 200-BP-1 operable unit. Volume 1  

SciTech Connect (OSTI)

The US Department of Energy (DOE) Hanford Site, in Washington State is organized into numerically designated operational areas including the 100, 200, 300, 400, 600, and 1100 Areas. The US Environmental Protection Agency (EPA), in November 1989 included the 200 Areas of the Hanford Site on the National Priority List (NPL) under the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA). Inclusion on the NPL initiated the remedial investigation (RD process for the 200-BP-1 operable unit. These efforts are being addressed through the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1989) which was negotiated and approved by the DOE, the EPA, and the State of Washington Department of Ecology (Ecology) in May 1989. This agreement, known as the Tri-Party Agreement, governs all CERCLA efforts at Hanford. In March of 1990, the Department of Energy, Richland Operations (DOE-RL) issued a Remedial Investigation/Feasibility Study (RI/FS) work plan (DOE-RL 1990a) for the 200-BP-1 operable unit. The work plan initiated the first phase of site characterization activities associated with the 200-BP-1 operable unit. The purpose of the 200-BP-1 operable unit RI is to gather and develop the necessary information to adequately understand the risks to human health and the environment posed by the site and to support the development and analysis of remedial alternatives during the FS. The RI analysis will, in turn, be used by Tri-Party Agreement signatories to make a risk-management-based selection of remedies for the releases of hazardous substances that have occurred from the 200-BP-1 operable unit.

Not Available

1993-09-01T23:59:59.000Z

114

Covanta Begins Operating Nation's First Energy-from-Waste Unit under the EPA's New Source Performance Standards  

E-Print Network [OSTI]

Covanta Begins Operating Nation's First Energy-from-Waste Unit under the EPA's New Source in the development and operation of large scale Energy-from-Waste and renewable energy projects, today announced it has begun operating the first energy-from-waste unit built under the U.S. Environmental Protection

Columbia University

115

Limited field investigation report for the 100-DR-1 Operable Unit  

SciTech Connect (OSTI)

This limited field investigation (LFI) report summarizes the data collection and analysis activities conducted during the 100-DR-1 Source Operable Unite LFI and the associated qualitative risk assessment (QRA), and makes recommendations on the continued candidacy of high-priority sites for interim remedial measures (IRM). The results and recommendations presented in this report are generally independent of future land use scenarios. The 100-DR-1 Operable Unit is one of four operable units associated with the 100 D/DR Area at the Hanford Site. The 100-DR-1 Operable Unit encompasses approximately 1.5 km{sup 2} (0.59 mi{sup 2}) and is located immediately adjacent to the Columbia River shoreline. In general, it contains waste facilities associated with the original plant facilities constructed to support D Reactor facilities, as well as cooling water retention basin systems for both D and DR Reactors. The 100-DR-1 LFI began the investigative phase of the remedial investigation for a select number of high-priority sites. The LFI was performed to provide additional data needed to support selection, design and implementation of IRM, if needed. The LFI included data compilation, nonintrusive investigations, intrusive investigations, summarization of 100 Area aggregate studies, and data evaluation.

Not Available

1994-06-01T23:59:59.000Z

116

Hydrologic resources management program and underground test area operable unit fy 1997  

SciTech Connect (OSTI)

This report present the results of FY 1997 technical studies conducted by the Lawrence Livermore National Laboratory (LLNL) as part of the Hydrology and Radionuclide Migration Program (HRMP) and Underground Test Area Operable Unit (UGTA). The HRMP is sponsored by the US Department of Energy to assess the environmental (radiochemical and hydrologic) consequences of underground nuclear weapons testing at the Nevada Test Site.

Smith, D. F., LLNL

1998-05-01T23:59:59.000Z

117

Optimal Operation of a Wind Farm equipped with a Storage Unit  

E-Print Network [OSTI]

into another form of energy (kinetic energy or compressed air for example) and vice versa. This method has been is that the using cost of the storage device is not always a linear function of the energy stored or deliveredOptimal Operation of a Wind Farm equipped with a Storage Unit Paul Charton June 14, 2013 Keywords

Paris-Sud XI, Université de

118

OPERATIONAL GUIDANCE FOR BICYCLE-SPECIFIC TRAFFIC SIGNALS IN THE UNITED STATES: A REVIEW  

E-Print Network [OSTI]

OPERATIONAL GUIDANCE FOR BICYCLE-SPECIFIC TRAFFIC SIGNALS IN THE UNITED STATES: A REVIEW Interim ........................................................................................................... 2 2.1.1 Guide for the Development of Bicycle Facilities (AASHTO, 1999).....................................................................................3 2.1.3 Guide for the Development of Bicycle Facilities (AASHTO, 2012

Bertini, Robert L.

119

Impact of High Wind Power Penetrations on Hydroelectric Unit Operations in the WWSIS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High Wind Power High Wind Power Penetrations on Hydroelectric Unit Operations in the WWSIS Bri-Mathias Hodge, Debra Lew, and Michael Milligan Technical Report NREL/TP-5500-52251 July 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 The Impact of High Wind Power Penetrations on Hydroelectric Unit Operations in the WWSIS Bri-Mathias Hodge, Debra Lew, and Michael Milligan Prepared under Task No. WE110810 Technical Report NREL/TP-5500-52251 July 2011 NOTICE

120

Transient Inverse Calibration of Site-Wide Groundwater Model to Hanford Operational Impacts from 1943 to 1996--Alternative Conceptual Model Considering Interaction with Uppermost Basalt Confined Aquifer  

SciTech Connect (OSTI)

The baseline three-dimensional transient inverse model for the estimation of site-wide scale flow parameters, including their uncertainties, using data on the transient behavior of the unconfined aquifer system over the entire historical period of Hanford operations, has been modified to account for the effects of basalt intercommunication between the Hanford unconfined aquifer and the underlying upper basalt confined aquifer. Both the baseline and alternative conceptual models (ACM-1) considered only the groundwater flow component and corresponding observational data in the 3-Dl transient inverse calibration efforts. Subsequent efforts will examine both groundwater flow and transport. Comparisons of goodness of fit measures and parameter estimation results for the ACM-1 transient inverse calibrated model with those from previous site-wide groundwater modeling efforts illustrate that the new 3-D transient inverse model approach will strengthen the technical defensibility of the final model(s) and provide the ability to incorporate uncertainty in predictions related to both conceptual model and parameter uncertainty. These results, however, indicate that additional improvements are required to the conceptual model framework. An investigation was initiated at the end of this basalt inverse modeling effort to determine whether facies-based zonation would improve specific yield parameter estimation results (ACM-2). A description of the justification and methodology to develop this zonation is discussed.

Vermeul, Vincent R.; Cole, Charles R.; Bergeron, Marcel P.; Thorne, Paul D.; Wurstner, Signe K.

2001-08-29T23:59:59.000Z

Note: This page contains sample records for the topic "groundwater operable unit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Phase I Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nye County, Nevada, Revision 1  

SciTech Connect (OSTI)

This document presents a summary and framework of the available hydrologic data and other information directly relevant to the development of the Rainier Mesa/Shoshone Mountain (RMSM) Corrective Action Unit (CAU) 99 groundwater flow models. Where appropriate, data and information documented elsewhere are briefly summarized with reference to the complete documentation.

Nathan Bryant

2008-05-01T23:59:59.000Z

122

Phase I Contaminant Transport Parameters for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nye County, Nevada, Revision 1  

SciTech Connect (OSTI)

This document presents a summary and framework of available transport data and other information directly relevant to the development of the Rainier Mesa/Shoshone Mountain (RMSM) Corrective Action Unit (CAU) 99 groundwater transport model. Where appropriate, data and information documented elsewhere are briefly summarized with reference to the complete documentation.

Nathan Bryant

2008-05-01T23:59:59.000Z

123

RCRA facility investigation/corrective measures study work plan for the 200-UP-2 Operable Unit, Hanford Site, Richland, Washington  

SciTech Connect (OSTI)

The 200-UP-2 Operable Unit is one of two source operable units at the U Plant Aggregate Area at the Hanford Site. Source operable units include waste management units and unplanned release sites that are potential sources of radioactive and/or hazardous substance contamination. This work plan, while maintaining the title RFI/CMS, presents the background and direction for conducting a limited field investigation in the 200-UP-2 Operable Unit, which is the first part of the process leading to final remedy selection. This report discusses the background, prior recommendations, goals, organization, and quality assurance for the 200-UP-2 Operable Unit Work Plan. The discussion begins with a summary of the regulatory framework and the role of the work plan. The specific recommendations leading into the work plan are then addressed. Next, the goals and organization of the report are discussed. Finally, the quality assurance and supporting documentation are presented.

Not Available

1993-06-01T23:59:59.000Z

124

Optimizing Installation, Operation, and Maintenance at Offshore Wind Projects in the United States  

Broader source: Energy.gov [DOE]

For the United States to ensure that the substantial rollout of offshore wind energy projects envisioned by the DOE is carried out in an efficient and cost-effective manner, it is important to observe the current and emerging practices in the international offshore wind energy industry. In this manner, the United States can draw from the experience already gained around the world, combined with experience from the sizeable U.S. land-based wind industry, to develop a strong offshore wind sector. The work detailed in this report will support that learning curve by enabling optimization of the cost-effectiveness of installation, operation, and maintenance activities for offshore wind farms.

125

Monticello Mill Tailings Site Operable Unit I11 Remedial Investigation Addendum1  

Office of Legacy Management (LM)

Monticello Mill Tailings Site Monticello Mill Tailings Site Operable Unit I11 Remedial Investigation Addendum1 Focused Feasibility Study January 2004 Prepared by U.S. Department of Energy Grand Junction, Colorado Work performed under DOE Contract No. DE-AC1342GJ79491 DOE Task Order No. ST03-205 Document N u m b e r Q0029500 S i g t ~ a t u r e Page Signature Page Monticello Mill Tailings Site Operable Unit I11 Remedial Investigation Addendud Focused Feasibility Study January 2004 Submitted By: Arthur W. Kleinrath, Project Manager U.S. Department of Energy, Grand Junction, Colorado U.S. Department of Energyat Gmnd Junction MMTS OU 111 Remedial Investigation AddendutdFocuscd Feasibilily Study January 2004 Final iii This page intentionally left blank Document Number Q0029500 Contents U.S. Department of Energy at Grand Junction MMTS OU III Remedial Investigation Addendum/Focused Feasibility Study

126

In situ Groundwater Remediation Using Treatment Walls  

Science Journals Connector (OSTI)

Development of treatment wall technology for the clean up of contaminated ground-water resources has expanded in the past few...ex situ and other in situ ground-water remediation approaches is reduced operation a...

Radisav D. Vidic; Frederick G. Pohland

2002-01-01T23:59:59.000Z

127

Installation and Operation of Sorbathene Solvent Vapor Recovery Units to Recover and Recycle Volatile Organic Compounds at Operating Sites within the Dow Chemical Company  

E-Print Network [OSTI]

. Proprietary Dow research data is used in the selection of the optimum adsorbent mixture. The adsorption and desorption steps are batch processes that occur simultaneously in alternating twin beds to maintain steady state operation of the SORBATHENE unit...

Hall, T. L.; Larrinaga, L.

128

Remedial investigation/feasibility study work plan for the 100-BC-2 operable unit, Hanford Site, Richland, Washington  

SciTech Connect (OSTI)

This work plan and attached supporting project plans establish the operable unit setting and the objectives, procedures, tasks, and schedule for conducting the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) remedial investigation/feasibility study (RI/FS) for the 100-BC-2 operable unit in the 100 Area of the Hanford Site. The 100 Area is one of four areas at the Hanford Site that are on the US Environmental Protection Agency`s (EPA) National Priorities List under CERCLA. The 100-BC-2 operable unit is one of two source operable units in the 100-B/C Area (Figure ES-1). Source operable units are those that contain facilities and unplanned release sites that are potential sources of hazardous substance contamination. The 100-BC-2 source operable unit contains waste sites that were formerly in the 100-BC-2, 100-BC-3, and 100-BC-4 operable units. Because of their size and geographic location, the waste sites from these two operable units were added to 100-BC-2. This allows for a more efficient and effective investigation of the remaining 100-B/C Reactor area waste sites. The investigative approach to waste sites associated with the 100-BC-2 operable unit are listed in Table ES-1. The waste sites fall into three general categories: high priority liquid waste disposal sites, low priority liquid waste disposal sites, and solid waste burial grounds. Several sites have been identified as candidates for conducting an IRM. Two sites have been identified as warranting additional limited field sampling. The two sites are the 116-C-2A pluto crib, and the 116-C-2C sand filter.

Not Available

1993-05-01T23:59:59.000Z

129

Best management practices plan for the Lower East Fork Poplar Creek Operable Unit, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This plan was prepared in support of the Phase II Remedial Design Report (DOE/OR/01-1449&D1) and in accordance with requirements under CERCLA to present the plan for best management practices to be followed during the remediation. This document provides the Environmental Restoration Program with information about spill prevention and control, water quality monitoring, good housekeeping practices, sediment and erosion control measures, and inspections and environmental compliance practices to be used during Phase II of the remediation project for the Lower East Fork Poplar Creek Operable Unit.

NONE

1996-04-01T23:59:59.000Z

130

MTG process in a fluidized bed with catalyst circulation: Operation and simulation of an experimental unit  

SciTech Connect (OSTI)

The simulation of the MTG process has been studied in a fluidized bed with circulation of the catalyst (prepared based on a HZSM-5 zeolite). The simulation has been carried out by taking into account the activity distribution of the catalyst particles in the bed and by using experimentally determined kinetic models for the reaction at zero time on stream and for the catalyst deactivation. The results of the simulation have been proven in an experimental laboratory unit by operating in the range between 380 and 420 C, with different values of space time and of average residence time of the catalyst.

Ortega, J.M.; Gayubo, A.G.; Aguayo, A.T.; Olazar, M.; Bilbao, J. [Univ. del Pais Vasco, Bilbao (Spain). Dept. de Ingenieria Quimica] [Univ. del Pais Vasco, Bilbao (Spain). Dept. de Ingenieria Quimica

1998-11-01T23:59:59.000Z

131

Remedial Investigation Work Plan for Upper East Fork Poplar Creek Operable Unit 3 at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Environmental Restoration Program  

SciTech Connect (OSTI)

Upper East Fork Popular Creek Operable Unit 3 (UEFPC OU 3) is a source term OU composed of seven sites, and is located in the western portion of the Y-12 Plant. For the most part, the UEFPC OU 3 sites served unrelated purposes and are geographically removed from one another. The seven sites include the following: Building 81-10, the S-2 Site, Salvage Yard oil storage tanks, the Salvage Yard oil/solvent drum storage area, Tank Site 2063-U, the Salvage Yard drum deheader, and the Salvage Yard scrap metal storage area. All of these sites are contaminated with at least one or more hazardous and/or radioactive chemicals. All sites have had some previous investigation under the Y-12 Plant RCRA Program. The work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to each OU 3 site. The potential for release of contaminants to receptors through various media is addressed, and a sampling and analysis plan is presented to obtain objectives for the remedial investigation. Proposed sampling activities are contingent upon the screening level risk assessment, which includes shallow soil sampling, soil borings, monitoring well installation, groundwater sampling, and surface water sampling. Data from the site characterization activities will be used to meet the above objectives. A Field Sampling Investigation Plan, Health and Safety Plan, and Waste Management Plan are also included in this work plan.

Not Available

1993-08-01T23:59:59.000Z

132

Screening of Potential Remediation Methods for the 200-ZP-1 Operable Unit at the Hanford Site  

SciTech Connect (OSTI)

A screening-level evaluation of potential remediation methods for application to the contaminants of concern (COC) in the 200-ZP-1 Operable Unit at the Hanford Site was conducted based on the methods outlined in the Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA Interim Final. The scope of this screening was to identify the most promising remediation methods for use in the more detailed analysis of remediation alternatives that will be conducted as part of the full feasibility study. The screening evaluation was conducted for the primary COC (potential major risk drivers). COC with similar properties were grouped for the screening evaluation. The screening evaluation was conducted in two primary steps. The initial screening step evaluated potential remediation methods based on whether they can be effectively applied within the environmental setting of the 200-ZP-1 Operable Unit for the specified contaminants. In the second step, potential remediation methods were screened using scoping calculations to estimate the scale of infrastructure, overall quantities of reagents, and conceptual approach for applying the method for each defined grouping of COC. Based on these estimates, each method was screened with respect to effectiveness, implementability, and relative cost categories of the CERCLA feasibility study screening process defined in EPA guidance.

Truex, Michael J.; Nimmons, Michael J.; Johnson, Christian D.; Dresel, P EVAN.; Murray, Christopher J.

2006-08-07T23:59:59.000Z

133

Embedding damage detection algorithms in a wireless sensing unit for operational power  

Science Journals Connector (OSTI)

A low-cost wireless sensing unit is designed and fabricated for deployment as the building block of wireless structural health monitoring systems. Finite operational lives of portable power supplies, such as batteries, necessitate optimization of the wireless sensing unit design to attain overall energy efficiency. This is in conflict with the need for wireless radios that have far-reaching communication ranges that require significant amounts of power. As a result, a penalty is incurred by transmitting raw time-history records using scarce system resources such as battery power and bandwidth. Alternatively, a computational core that can accommodate local processing of data is designed and implemented in the wireless sensing unit. The role of the computational core is to perform interrogation tasks of collected raw time-history data and to transmit via the wireless channel the analysis results rather than time-history records. To illustrate the ability of the computational core to execute such embedded engineering analyses, a two-tiered time-series damage detection algorithm is implemented as an example. Using a lumped-mass laboratory structure, local execution of the embedded damage detection method is shown to save energy by avoiding utilization of the wireless channel to transmit raw time-history data.

Jerome Peter Lynch; Arvind Sundararajan; Kincho H Law; Anne S Kiremidjian; Ed Carryer

2004-01-01T23:59:59.000Z

134

A framework and methodology for enhancing operational requirements development : United States Coast Guard cutter project case study  

E-Print Network [OSTI]

Within any major United States Coast Guard cutter acquisition project, developing the operational requirements in the early phases of acquisition is difficult as the complexity of the system is not easily understood until ...

Schofield, Douglas M. (Douglas MacLean)

2010-01-01T23:59:59.000Z

135

Experience operating a thermal configuration without a deaerator at the 330 MW unit 3 of the Kashira GRÉS  

Science Journals Connector (OSTI)

The operating experience gained during introduction of a configuration without a deaerator at the 330 MW unit No. 3 of the Kashira GRÉS is analyzed. The basic advantages of this configuration are pointed out, ...

G. D. Avrutsky; V. D. Nikanorov; I. R. Kalinowskiy…

2012-11-01T23:59:59.000Z

136

First results of operating and monitoring an innovative design of a permeable reactive barrier for the remediation of chromate contaminated groundwater  

Science Journals Connector (OSTI)

An innovative setup of a permeable reactive barrier (PRB) was installed in Willisau, Switzerland to remediate chromate contaminated groundwater. Instead of a conventional continuous barrier, this PRB consists of cylinders installed in rows: a single row for lower expected CrVI-concentrations and an offset double row for higher expected CrVI-concentrations. The cylinders are filled with reactive grey cast-Fe shavings mixed with gravel to prevent extensive precipitation of secondary phases in the pore space. The treatment of the contaminants takes place both within the cylinders and in the dissolved FeII plume generated downstream of the barrier. Monitoring of the contamination situation over a period of 3 a provided evidence of the mobilization, transport and behavior of the contaminants in the aquifer. Groundwater and reactive material were sampled upstream, within and downstream of the barrier by a Multi-Port Sampling System (MPSS) that revealed the geochemical processes as a function of time and space. Comprehensive chemical analyses included sensitive parameters such as CrVI, FeII/FeIII, redox potential, dissolved O2 and pH. Several campaigns using multiple optical tracers revealed a rather complex hydrological regime at different scales, thereby complicating the barrier performance. Results from the large 3D hydrogeochemical dataset show that the double row of cylinders successfully treated the chromate contamination. Remediation by the single row was not effective enough due to insufficient lateral overlap of the cylinders and their FeII-plumes. The low amount of precipitated secondary phases observed in the pore space of the reactive material reduced the risk of clogging the system and suggested a favorable longevity of the barrier. Limiting factors for the long-term operation are inferred to be the availability and accessibility of FeII within the cylinders and the concentration within the generated FeII-plume.

Bettina Flury; Urs Eggenberger; Urs Mäder

2009-01-01T23:59:59.000Z

137

Groundwater Treatment at the Fernald Preserve: Status and Path Forward for the Water Treatment Facility - 12320  

SciTech Connect (OSTI)

Operating a water treatment facility at the Fernald Preserve in Cincinnati, Ohio-to support groundwater remediation and other wastewater treatment needs-has become increasingly unnecessary. The Fernald Preserve became a U.S. Department of Energy Office of Legacy Management (LM) site in November 2006, once most of the Comprehensive Environmental Response, Compensation, and Liability Act environmental remediation and site restoration had been completed. Groundwater remediation is anticipated to continue beyond 2020. A portion of the wastewater treatment facility that operated during the CERCLA cleanup continued to operate after the site was transferred to LM, to support the remaining groundwater remediation effort. The treatment facility handles the site's remaining water treatment needs (for groundwater, storm water, and wastewater) as necessary, to ensure that uranium discharge limits specified in the Operable Unit 5 Record of Decision are met. As anticipated, the need to treat groundwater to meet uranium discharge limits has greatly diminished over the last several years. Data indicate that the groundwater treatment facility is no longer needed to support the ongoing aquifer remediation effort. (authors)

Powel, J. [U.S. Department of Energy Office of Legacy Management, Harrison, Ohio (United States); Hertel, B.; Glassmeyer, C.; Broberg, K. [S.M. Stoller Corporation, Harrison, Ohio (United States)

2012-07-01T23:59:59.000Z

138

300-FF-1 operable unit remedial investigation phase II report: Physical separation of soils treatability study  

SciTech Connect (OSTI)

This report describes the approach and results of physical separations treatability tests conducted at the Hanford Site in the North Process Pond of the 300-FF-1 Operable Unit. Physical separation of soils was identified as a remediation alternative due to the potential to significantly reduce the amount of contaminated soils prior to disposal. Tests were conducted using a system developed at Hanford consisting of modified EPA equipment integrated with screens, hoppers, conveyors, tanks, and pumps from the Hanford Site. The treatability tests discussed in this report consisted of four parts, in which an estimated 84 tons of soil was processed: (1) a pre-test run to set up the system and adjust system parameters for soils to be processed; (2) a baseline run to establish the performance of the system - Test No. 1; (3) a final run in which the system was modified as a result of findings from the baseline run - Test No. 2; and (4) water treatment.

Not Available

1994-04-01T23:59:59.000Z

139

100-OL-1 Operable Unit Pilot Study: XRF Evaluation of Select Pre-Hanford Orchards  

SciTech Connect (OSTI)

Prior to the acquisition of land by the U.S. Department of War in February 1943 and the creation of the Hanford Site, the land along the Columbia River was home to over 1000 people. Farming and orchard operations by both homesteaders and commercial organizations were prevalent. Orchard activities and the associated application of lead arsenate pesticide ceased in 1943, when residents were moved from the Hanford Site at the beginning of the Manhattan Project. Today, the residues from historical application of lead arsenate pesticide persist in some locations on the Hanford Site. In 2012, the U.S. Department of Energy, U.S. Environmental Protection Agency, and Washington State Department of Ecology established the 100-OL-1 Operable Unit (OU) through the Hanford Federal Facility Agreement and Consent Order, known as the Tri-Party Agreement. The pre-Hanford orchard lands identified as the 100-OL-1 OU are located south of the Columbia River and east of the present-day Vernita Bridge, and extend southeast to the former Hanford townsite. The discontinuous orchard lands within 100-OL-1 OU are approximately 20 km2 (5000 ac). A pilot study was conducted to support the approval of the remedial investigation/feasibility study work plan to evaluate the 100-OL-1 OU. This pilot study evaluated the use of a field portable X-ray fluorescence (XRF) analyzer for evaluating lead and arsenic concentrations on the soil surface as an indicator of lead arsenate pesticide residues in the OU. The objectives of the pilot study included evaluating a field portable XRF analyzer as the analytical method for decision making, estimating the nature and extent of lead and arsenic in surface soils in four decision units, evaluating the results for the purpose of optimizing the sampling approach implemented in the remedial investigation, and collecting information to improve the cost estimate and planning the cultural resources review for sampling activities in the remedial investigation. Based on the results of the pilot study, the recommendations for the revision of the work plan are as follows: • characterize the surface soil using field portable XRF measurements with confirmatory inductively coupled plasma mass spectroscopy sampling for the remedial investigation • establish decision units of similar defined areas • establish a process for field investigation of soil concentrations exceeding the screening criteria at the border of the 100-OL-1 OU • define data quality objectives for the work plan using the results of the pilot study and refining the sampling approach for the remedial investigation.

Bunn, Amoret L.; Fritz, Brad G.; Pulsipher, Brent A.; Gorton, Alicia M.; Bisping, Lynn E.; Brandenberger, Jill M.; Pino, Christian; Martinez, Dominique M.; Rana, Komal; Wellman, Dawn M.

2014-11-20T23:59:59.000Z

140

Remedial design work plan for Lower East Fork Poplar Creek Operable Unit, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The Remedial Design Work Plan (RDWP) for Lower East Fork Poplar Creek (EFPC) Operable Unit (OU) in Oak Ridge, Tennessee. This remedial action fits into the overall Oak Ridge Reservation (ORR) cleanup strategy by addressing contaminated floodplain soil. The objective of this remedial action is to minimize the risk to human health and the environment from contaminated soil in the Lower EFPC floodplain pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Federal Facility Agreement (FFA) (1992). In accordance with the FFA, a remedial investigation (RI) (DOE 1994a) and a feasibility study (DOE 1994b) were conducted to assess contamination of the Lower EFPC and propose remediation alternatives. The remedial investigation determined that the principal contaminant is mercury, which originated from releases during Y-12 Plant operations, primarily between 1953 and 1963. The recommended alternative by the feasibility study was to excavate and dispose of floodplain soils contaminated with mercury above the remedial goal option. Following the remedial investigation/feasibility study, and also in accordance with the FFA, a proposed plan was prepared to more fully describe the proposed remedy.

NONE

1995-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "groundwater operable unit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Groundwater impact assessment report for the 100-D Ponds  

SciTech Connect (OSTI)

The 183-D Water Treatment Facility (WTF) discharges effluent to the 120-0-1 Ponds (100-D Ponds) located north of the 100-D Area perimeter fence. This report satisfies one of the requirements of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-17-00B as agreed by the US Department of Energy, Washington State Department of Ecology, and the US Environmental Protection Agency. Tri-Party Agreement Milestone M-17-00B includes a requirement to assess impacts to groundwater from disposal of the 183-D WTF effluent to the 100-D Ponds. In addition, the 100-D Ponds are a Resource Conservation and Recovery Act of 1976 treatment, storage, and disposal facility covered by the 100-D Ponds Closure Plan (DOE-RL 1993a). There is evidence of groundwater contamination, primarily nitrate, tritium, and chromium, in the unconfined aquifer beneath the 100-D Area and 100 Areas in general. The contaminant plumes are area wide and are a result of past-practice reactor and disposal operations in the 100-D Area currently being investigated as part of the 100-DR-1 and 100-HR-3 Operable Units (DOE-RL 1992b, 1992a). Based on current effluent conditions, continued operation of the 100-D Ponds will not adversely affect the groundwater quality in the 100-D Area. Monitoring wells near the pond have slightly higher alkaline pH values than wells in the rest of the area. Concentrations of known contaminants in these wells are lower than ambient 100-D Area groundwater conditions and exhibit a localized dilution effect associated with discharges to the pond. Hydraulic impact to the local groundwater system from these discharges is minor. The groundwater monitoring well network for the 100-D Ponds is adequate.

Alexander, D.J.

1993-07-01T23:59:59.000Z

142

Development of a regional groundwater flow model for the area of the Idaho National Engineering Laboratory, Eastern Snake River Plain Aquifer  

SciTech Connect (OSTI)

This report documents a study conducted to develop a regional groundwater flow model for the Eastern Snake River Plain Aquifer in the area of the Idaho National Engineering Laboratory. The model was developed to support Waste Area Group 10, Operable Unit 10-04 groundwater flow and transport studies. The products of this study are this report and a set of computational tools designed to numerically model the regional groundwater flow in the Eastern Snake River Plain aquifer. The objective of developing the current model was to create a tool for defining the regional groundwater flow at the INEL. The model was developed to (a) support future transport modeling for WAG 10-04 by providing the regional groundwater flow information needed for the WAG 10-04 risk assessment, (b) define the regional groundwater flow setting for modeling groundwater contaminant transport at the scale of the individual WAGs, (c) provide a tool for improving the understanding of the groundwater flow system below the INEL, and (d) consolidate the existing regional groundwater modeling information into one usable model. The current model is appropriate for defining the regional flow setting for flow submodels as well as hypothesis testing to better understand the regional groundwater flow in the area of the INEL. The scale of the submodels must be chosen based on accuracy required for the study.

McCarthy, J.M.; Arnett, R.C.; Neupauer, R.M. [and others

1995-03-01T23:59:59.000Z

143

Operation of the Wilsonville solvent-refined coal pilot plant: startup, calibration, and initial operation of the H-oil ebullated-bed hydrotreater unit. Technical evaluation  

SciTech Connect (OSTI)

This report presents initial operating data and analyses for the H-Oil Ebullated-Bed Hydrotreater (HTR) unit at the Wilsonville Solvent Refined Coal Pilot Plant in Wilsonville, Alabama. The focus of the report is on the initial period when the HTR unit operated with catalyst (May to June 1981). Additional data relates to the problems and adjustments during pre-operational testing (December 1980 to April 1981), solvent-SRC circulation testing (April to May 1981), and equipment repairs (July 1981). During the first two runs with catalyst (American Cyanamid HDS-1442B), the R1235 Reactor was operated at 756/sup 0/F and 825/sup 0/F. Equal amounts of hydrotreater solvent and deashed SRC were blended to make up the HTR unit feed. At these conditions, SRC conversion was 30 and 53%, respectively, and 82 and 88% of the sulfur was removed from the SRC feed. The total solvent yield was 26 and 39% of the SRC for the two temperatures, 756 and 825/sup 0/F, respectively. Most of the preasphaltenes were converted (less than 0.5% in the solid product). Hydrogen consumption was estimated to be 3 to 4% of the feed SRC. The quality of the HTR solvent was evaluated in short and long microautoclave tests (80% and 80 to 88% THF conversion, respectively) and the values obtained were consistently higher than those for SRC unit solvent. It was noted that the HTR unit solvent gave higher results by the long test than the short test, whereas the opposite is true for SRC unit solvent.

Not Available

1982-07-01T23:59:59.000Z

144

Superfund record of decision (EPA Region 6): Double Eagle Refinery Site, operable unit 2, Oklahoma City, OK, April 19, 1994  

SciTech Connect (OSTI)

The decision document presents the selected remedial action for the Double Eagle Refinery Site (DER site), in Oklahoma City, Oklahoma, for the Ground Water Operable Unit. Principal threat wastes include `pools` of dense non-aqueous phase liquids (DNAPLs) submerged beneath the ground water or in fractured bedrock. The Ground Water Operable Unit (GOU) addresses the principal threat at the site by monitoring the ground water to ensure that the contaminant levels are reduced with time due to natural attenuation, once the surface contamination is addressed, so that the surface contamination will no longer provide a source of contamination to the ground water.

NONE

1995-02-01T23:59:59.000Z

145

Explanation of Significant Differences for the Record of Decision for the Test Area North Operable Unit 1-10  

SciTech Connect (OSTI)

This Explanation of Significant Differences (ESD) applies to the remedial actions performed under the Final Record of Decision for Test Area North, Operable Unit 1-1 0, Idaho National Engineering and Environmental Laboratory (DOE-ID 1999) as amended by the Explanation of Significant Differences for the Record of Decision for the Test Area North Operable Unit 1-10 (DOE-ID 2003), the Record of Decision Amendment for the V-Tanks (TSF-09 and TSF-18) and Explanation of Significant Differences for the PM-2A Tanks (TSF-26) and TSF-06, Area IO, at Test Area North, Operable Unit 1-1 0 (DOE-ID 2004a), and the Explanation of Significant Differences for the Record of Decision for the Test Area North Operable Unit 1-10 (DOE-ID 2005). The U.S. Department of Energy (DOE) Idaho Operations Office; U.S. Environmental Protection Agency (EPA), Region 10; and the Idaho Department of Health and Welfare-now identified as the Idaho Department of Environmental Quality (DEQ)-signed the Record of Decision (ROD) in December 1999, the 2003 ESD in April 2003, the ROD Amendment/ESD in February 2004, and the 2005 ESD in January 2005. The EPA and DEQ support the need for this ESD.

D. L. Eaton

2007-01-18T23:59:59.000Z

146

TECHNICAL EVALUATION OF SOIL REMEDIATION ALTERNATIVES AT THE BUILDING 812 OPERABLE UNIT, LAWRENCE LIVERMORE NATIONAL LABORATORY SITE 300  

SciTech Connect (OSTI)

The Department of Energy Livermore Site Office requested a technical review of remedial alternatives proposed for the Building 812 Operable Unit, Site 300 at the Lawrence Livermore National Laboratory. The team visited the site and reviewed the alternatives proposed for soil remediation in the draft RI/FS and made the following observations and recommendations. Based on the current information available for the site, the team did not identify a single technology that would be cost effective and/or ecologically sound to remediate DU contamination at Building 812 to current remedial goals. Soil washing is not a viable alternative and should not be considered at the site unless final remediation levels can be negotiated to significantly higher levels. This recommendation is based on the results of soil washing treatability studies at Fernald and Ashtabula that suggest that the technology would only be effective to address final remediation levels higher than 50 pCi/g. The technical review team identified four areas of technical uncertainty that should be resolved before the final selection of a preferred remedial strategy is made. Areas of significant technical uncertainty that should be addressed include: (1) Better delineation of the spatial distribution of surface contamination and the vertical distribution of subsurface contamination in the area of the firing table and associated alluvial deposits; (2) Chemical and physical characterization of residual depleted uranium (DU) at the site; (3) Determination of actual contaminant concentrations in air particulates to support risk modeling; and (4) More realistic estimation of cost for remedial alternatives, including soil washing, that were derived primarily from vendor estimates. Instead of conducting the planned soil washing treatability study, the team recommends that the site consider a new phased approach that combines additional characterization approaches and technologies to address the technical uncertainty in the remedial decision making. The site should redo the risk calculations as the future use scenario has changed for the site. As a result, the existing model is based on very conservative assumptions that result in calculation of unreasonably low cleanup goals. Specifically, the review team proposes that LLNL consider: (1) Revising the industrial worker scenario to a reasonable maximum exposure (RME) for a site worker that performs a weekly walk down of the area for two hours for 25 years (or an alternative RME if the exposure scenario changes); (2) Revising the ESSI of 2 mg U per kg soil for the deer mouse to account for less than 0.05 of the total ingested uranium being adsorbed by the gut; (3) Revising bioaccumulation factors (BAFs) for vegetation and invertebrates that are based on 100 mg of soluble uranium per kg of soil, as the uranium concentration in the slope soil does not average 100 mg/kg and it is not all in a soluble form; and (4) Measuring actual contaminant concentrations in air particulates at the site and using the actual values to support risk calculations. The team recommends that the site continue a phased approach during remediation. The activities should focus on elimination of the principal threats to groundwater by excavating (1) source material from the firing table and alluvial deposits, and (2) soil hotspots from the surrounding slopes with concentrations of U-235 and U-238 that pose unacceptable risk. This phased approach allows the remediation path to be driven by the results of each phase. This reduces the possibility of costly 'surprises', such as failure of soil treatment, and reduces the impact of remediation on endangered habitat. Treatment of the excavated material with physical separation equipment may result in a decreased volume of soil for disposal if the DU is concentrated in the fine-grained fraction, which can then be disposed of in an offsite facility at a considerable cost savings. Based on existing data and a decision to implement the recommended phased approach, the cost of characterization, excavation and physical

Eddy-Dilek, C.; Miles, D.; Abitz, R.

2009-08-14T23:59:59.000Z

147

Hanford Exceeds Annual Goal for Cleaning up Groundwater near...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

River that are treating contaminated groundwater. Nuclear Chemical Operator Mike Fish monitors operations of a pump-and-treat system at the Hanford site. Nuclear Chemical...

148

Microsoft Word - Groundwater Discharge Permit  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

State Renews Groundwater Discharge Permit for WIPP CARLSBAD, N.M., September 11, 2008 - The New Mexico Environment Department (NMED) has renewed the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) groundwater discharge permit until 2013. The permit regulates the discharge of water from WIPP facilities and operations to lined ponds, which protect groundwater resources. The permit allows WIPP to discharge domestic wastewater, non-hazardous wastewater and storm water into 13 on-site, synthetically-lined ponds. The new permit also provides for increased daily discharge volumes to allow more flexibility in plant operations. "This permit is the result of a positive year-long effort with the New Mexico Groundwater Quality Bureau," said Jody Plum, DOE Carlsbad Field Office Permitting and

149

Hanford Site Groundwater Monitoring for Fiscal Year 2005  

SciTech Connect (OSTI)

This report is one of the major products and deliverables of the Groundwater Remediation and Closure Assessment Projects detailed work plan for FY 2006, and reflects the requirements of The Groundwater Performance Assessment Project Quality Assurance Plan (PNNL-15014). This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2005 on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes in groundwater are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. The largest portions of these plumes are migrating from the central Hanford Site to the southeast, toward the Columbia River. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the west-central part of the Hanford Site. Hexavalent chromium is present in plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath all but one of the reactor areas. Technetium-99 and uranium plumes exceeding standards are present in the 200 Areas. A uranium plume underlies the 300 Area. Minor contaminant plumes with concentrations greater than standards include carbon-14, cesium-137, cis-1,2-dichloroethene, cyanide, fluoride, plutonium, and trichloroethene. Monitoring for the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 is conducted in 11 groundwater operable units. The purpose of this monitoring is to define and track plumes and to monitor the effectiveness of interim remedial actions. Interim groundwater remediation in the 100 Areas continued with the goal of reducing the amount of chromium (100-K, 100-D, and 100-H) and strontium-90 (100-N) reaching the Columbia River. The objective of two interim remediation systems in the 200 West Area is to prevent the spread of carbon tetrachloride and technetium-99/uranium plumes. Resource Conservation and Recovery Act of 1976 groundwater monitoring continued at 25 waste management areas during fiscal year 2005: 15 under interim or final status detection programs and data indicate that they are not adversely affecting groundwater, 8 under interim status groundwater quality assessment programs to assess contamination, and 2 under final status corrective-action programs. During calendar year 2005, drillers completed 27 new monitoring wells, and decommissioned (filled with grout) 115 unneeded wells. Vadose zone monitoring, characterization, and remediation continued in fiscal year 2005. Remediation and associated monitoring continued at a soil-vapor extraction system in the 200 West Area, which removes gaseous carbon tetrachloride from the vadose zone. DOE uses geophysical methods to monitor potential movement of contamination beneath former waste sites.

Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

2006-02-28T23:59:59.000Z

150

Economic Assessment of Electric-Drive Vehicle Operation in California and the United States  

E-Print Network [OSTI]

ECONOMIC ASSESSMENT OF ELECTRIC-DRIVE VEHICLE OPERATION INECONOMIC ASSESSMENT OF ELECTRIC-DRIVE VEHICLE OPERATION INconsumers to switch to electric-drive vehicles, including a

Lidicker, Jeffrey R.; Lipman, Timothy E.; Shaheen, Susan A.

2010-01-01T23:59:59.000Z

151

Influence of Limestone Addition in a 10 kWth Chemical-Looping Combustion Unit Operated with Petcoke  

Science Journals Connector (OSTI)

Influence of Limestone Addition in a 10 kWth Chemical-Looping Combustion Unit Operated with Petcoke ... The fuel fed was a petcoke, and the gasifying agent was steam. ... (14) To date, continuous testing with ilmenite as an oxygen carrier has been performed with a Mexican petcoke,(15, 16) South African coal,(17) and Colombian bituminous coal. ...

Ana Cuadrat; Carl Linderholm; Alberto Abad; Anders Lyngfelt; Juan Adánez

2011-08-29T23:59:59.000Z

152

Remedial Design/Remedial Action Work Plan for Operable Units 6-05 and 10-04, Phase III  

SciTech Connect (OSTI)

The remedial design/remedial action for Operable Unit 6-05 (Waste Area Group 6) and Operable Unit 10-04 (Waste Area Group 10) - collectively called Operable Unit 10-04 has been divided into four phases. Phase I consists of developing and implementing institutional controls at Operable Unit 10-04 sites and developing and implementing Idaho National Laboratory-wide plans for both institutional controls and ecological monitoring. Phase II will remediate sites contaminated with trinitrotoluene and Royal Demolition Explosive. Phase III will remediate lead contamination at a gun range, and Phase IV will remediate hazards from unexploded ordnance. This Phase III remedial Design/Remedial Action Work Plan addresses the remediation of lead-contaminated soils found at the Security Training Facility (STF)-02 Gun Range located at the Idaho National Laboratory. Remediation of the STF-02 Gun Range will include excavating contaminated soils; physically separating copper and lead for recycling; returning separated soils below the remediation goal to the site; stabilizing contaminated soils, as required, and disposing of the separated soils that exceed the remediation goal; encapsulating and disposing of creosote-contaminated railroad ties and power poles; removing and disposing of the wooden building and asphalt pads found at the STF-02 Gun Range; sampling and analyzing soil to determine the excavation requirements; and when the remediation goals have been met, backfilling and contouring excavated areas and revegetating the affected area.

R. P. Wells

2006-09-19T23:59:59.000Z

153

Experience in operating and upgrading the No. 5 unit of the Novovoronezh nuclear power plant – practical base for developing a reliable source of nuclear energy  

Science Journals Connector (OSTI)

The No. 5 unit of the Novovoronezh nuclear power plant, starting commercial operations on September 26, 1980, is the first power-generating unit with a 1000 MW VVER in our country. The assimilation of its power g...

I. L. Vitkovskii

2011-03-01T23:59:59.000Z

154

A study of the operating conditions and power performance characteristics of power units upon increasing the cooling capacity of their chimney-type cooling towers  

Science Journals Connector (OSTI)

The operating conditions and power performance characteristics of the Armenian nuclear power station’s Unit 2 equipped with a ... 4.3 turbine and of the Razdan district power station’s units equipped with K-200- ...

A. K. Muradyan; D. T. Arshakyan

2007-11-01T23:59:59.000Z

155

Environmental Groundwater Monitoring Report  

Office of Legacy Management (LM)

-460 -460 Environmental Groundwater Monitoring Report Third Quarter, 1997 October 1997 Approved for public release; further dissemination unlimited. Environmental Restoration U.S. Department of Energy Nevada Operations Office This report has been reproduced directly from the best available copy. 1 - I : ~vailablk to DOE and DOE contractors from the. Office of Scientific - and Technical .Information, P.O. Box 62, Oak Ridge, TN 3783 1 ; prices available from (423) 576-840 1. Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22 16 1, telephone (703) 487-4650. RULISON SITE GROUNDWATER MONITORING REPORT THIRD QUARTER, 1997 DOE Nevada Operations Office Las Vegas, Nevada

156

300-FF-1 Operable Unit physical separation of soils pilot plant study  

SciTech Connect (OSTI)

Alternative Remedial Technologies, Inc. (ART) was selected in a competitive selection process to conduct a pilot study for the physical separation of soils in the North Process Pond of the 300 Area at the Hanford Site. In January 1994, ART mobilized its 15 tons-per-hour pilot plant to the site. The plant was initially staged in a commercial area to allow for pretest inspections and minor modifications. The plant was specifically designed for use as a physical separations unit and consisted of a feed hopper, wet screens, hydrocyclones, as well as settling and dewatering equipment. The plant was supported in the field with prescreening equipment, mobile generators, air compressors, and water storage tanks. The plant was moved into the surface contamination area on March 24, 1994. The testing was conducted during the period March 23, 1994 through April 13, 1994. Two soil types were treated during the testing: a natural soil contaminated with low levels of uranium, cesium, cobalt, and heavy metals, and a natural soil contaminated with a uranium carbonate material that was visually recognizable by the presence of a green sludge material in the soil matrix. The ``green`` material contained significantly higher levels of the same contaminants. Both source materials were treated by the plant in a manner that fed the material, produced clean gravel and sand fractions, and concentrated the contaminants in a sludge cake. Process water was recycled during the operations. The testing was extremely successful in that for both source waste streams, it was demonstrated that volume reductions of greater than 90% could be achieved while also meeting the test performance criteria. The volume reduction for the natural soils averaged a 93.8%, while the ``green`` soils showed a 91.4% volume reduction.

Freeman-Pollard, J.R.

1994-01-15T23:59:59.000Z

157

Phase 1 and 2 feasibility study report for the 300-FF-1 Operable Unit  

SciTech Connect (OSTI)

The 300-FF-1 Operable Unit (OU) feasibility study (FS) presented in this document completes the FS process only through the first two study phases: Phase I, Remedial Alternatives Development, and Phase II, Remedial Alternatives Screening in accordance with CERCIA guidance for performing Remedial Investigations and Feasibility Studies (RI/FS) (EPA 1988a). This Phase I/II study provides a generalized view of workable remedial technologies as applied to the site contamination problems as a whole. Phase III, Detailed Analysis of Alternatives, will be performed at a later date to further evaluate screened alternatives based on the nine criteria in the CERCLA RI/FS guidance. The purpose of this Phase I/II FS is to develop and screen a range of alternatives for remediation of contamination present in the vadose zone of the 300-FF-1 OU. The scope of work for this Phase I/II FS includes five primary tasks: 1. Review existing documents and their associated data from relevant investigations and studies; 2. Establish remedial action objectives (RAO) and general response actions (GRA); 3. Identify applicable or relevant and appropriate requirements (ARARS) pertinent to all general response actions (including waste disposal); 4. Develop remedial alternatives (Phase I) applicable to the 300-FF-1 OU including identification and screening of technologies and process options, and assembly of remedial alternatives from representative technology types; 5. Screen alternatives (Phase II) developed in Phase I for implementability, effectiveness, and cost to identify those alternatives which warrant advancement to the detailed analysis phase (Phase III) of the FS.

Not Available

1993-11-01T23:59:59.000Z

158

Ancillary Services in the United States: Independent System Operator (ISO) Perspective (Presentation)  

SciTech Connect (OSTI)

The presentation provides an overview of how increasing penetrations of variable renewable energy on the electricity grid are impacting ancillary services markets in the United States.

Cochran, J.

2013-05-01T23:59:59.000Z

159

Site characterization plan for groundwater in Waste Area Grouping 1 at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The Waste Area Grouping (WAG) 1 Groundwater Operable Unit (OU) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, is undergoing a site characterization to identify environmental contamination that may be present. This document, Site Characterization Report for Groundwater in Waste Area Grouping I at Oak Ridge National Laboratory, Oak Ridge, Tennessee, identifies areas of concern with respect to WAG 1 groundwater and presents the rationale, justification, and objectives for conducting this continuing site characterization. This report summarizes the operations that have taken place at each of the areas of concern in WAG 1, summarizes previous characterization studies that have been performed, presents interpretations of previously collected data and information, identifies contaminants of concern, and presents an action plan for further site investigations and early actions that will lead to identification of contaminant sources, their major groundwater pathways, and reduced off-site migration of contaminated groundwater to surface water. Site characterization Activities performed to date at WAG I have indicated that groundwater contamination, principally radiological contamination, is widespread. An extensive network of underground pipelines and utilities have contributed to the dispersal of contaminants to an unknown extent. The general absence of radiological contamination in surface water at the perimeter of WAG 1 is attributed to the presence of pipelines and underground waste storage tank sumps and dry wells distributed throughout WAG 1 which remove more than about 40 million gal of contaminated groundwater per year.

Lee, R.R.; Curtis, A.H.; Houlberg, L.M.; Purucker, S.T.; Singer, M.L.; Tardiff, M.F.; Wolf, D.A.

1994-07-01T23:59:59.000Z

160

Statistical analysis of operational reliability for electric pump units CN 60–180 of VVER-1000 reactors with root estimation methods  

Science Journals Connector (OSTI)

We consider the problem of processing statistical data obtained during the operation of pumping units CN 60–180 operating as standard equipment of the VVER-1000 reactors. Data for analysis was taken from the indu...

A. V. Antonov; V. A. Chepurko; N. G. Zyulyaeva…

2010-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "groundwater operable unit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

New Resin Improves Efficiency, Reduces Costs in Hanford Site Groundwater  

Broader source: Energy.gov (indexed) [DOE]

The new resin was installed at the 100-DX Groundwater Treatment Facility, where it operated over one year without a single resin change. The new resin was installed at the 100-DX Groundwater Treatment Facility, where it operated over one year without a single resin change. The new resin was installed at the 100-DX Groundwater Treatment Facility, where it operated over one year without a single resin change. An operator tests the resin at a 100K Area pump-andtreat system to determine how much hexavelent chromium contamination it has gathered from the groundwater. An operator tests the resin at a 100K Area pump-andtreat system to determine how much hexavelent chromium contamination it has gathered from the groundwater. ResinTech SIR-700 is being implemented at groundwater treatment systems along the Columbia River to increase efficiency and reduce costs. ResinTech SIR-700 is being implemented at groundwater treatment systems

162

TVA's Shawnee Fossil Plant Unit 6 sets new record for continuous operation  

SciTech Connect (OSTI)

Tennessee Valley Authority's Shawnee Fossil Plant Unit 6 recently set a new 1,093 day continuous run record. The 10 top practices at Shawnee for achieving high performance are discussed.

Peltier, R.

2008-02-15T23:59:59.000Z

163

United Technologies Corporation: Achieving Competitive Excellence (ACE): Operating System Case Study  

E-Print Network [OSTI]

United Technologies Corporation (abbreviated UTC, NYSE ticker symbol UTX) is a large, industrial conglomerate that designs, manufactures, and services a broad range of products, ranging from air conditioners and elevators ...

Roth, George

2010-11-30T23:59:59.000Z

164

United States Department of Energy Nevada Operations Office Environmental Compliance Handbook. Third edition  

SciTech Connect (OSTI)

The Environment, Safety & Health Division (ESHD) of the Nevada Operations Office has prepared this Environmental Compliance Handbook for all users of the Nevada Test Site (NTS) and other US Department of Energy, Nevada Operations Office (DOE/NV) facilities. The Handbook gives an overview of the important environmental laws and regulations that apply to the activities conducted by the Nevada Operations Office and other users of DOE/NV facilities in Nevada.

NONE

1998-03-01T23:59:59.000Z

165

Updated Conceptual Model for the 300 Area Uranium Groundwater Plume  

SciTech Connect (OSTI)

The 300 Area uranium groundwater plume in the 300-FF-5 Operable Unit is residual from past discharge of nuclear fuel fabrication wastes to a number of liquid (and solid) disposal sites. The source zones in the disposal sites were remediated by excavation and backfilled to grade, but sorbed uranium remains in deeper, unexcavated vadose zone sediments. In spite of source term removal, the groundwater plume has shown remarkable persistence, with concentrations exceeding the drinking water standard over an area of approximately 1 km2. The plume resides within a coupled vadose zone, groundwater, river zone system of immense complexity and scale. Interactions between geologic structure, the hydrologic system driven by the Columbia River, groundwater-river exchange points, and the geochemistry of uranium contribute to persistence of the plume. The U.S. Department of Energy (DOE) recently completed a Remedial Investigation/Feasibility Study (RI/FS) to document characterization of the 300 Area uranium plume and plan for beginning to implement proposed remedial actions. As part of the RI/FS document, a conceptual model was developed that integrates knowledge of the hydrogeologic and geochemical properties of the 300 Area and controlling processes to yield an understanding of how the system behaves and the variables that control it. Recent results from the Hanford Integrated Field Research Challenge site and the Subsurface Biogeochemistry Scientific Focus Area Project funded by the DOE Office of Science were used to update the conceptual model and provide an assessment of key factors controlling plume persistence.

Zachara, John M.; Freshley, Mark D.; Last, George V.; Peterson, Robert E.; Bjornstad, Bruce N.

2012-11-01T23:59:59.000Z

166

Groundwater Report Goes Online, Interactive | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Groundwater Report Goes Online, Interactive Groundwater Report Goes Online, Interactive Groundwater Report Goes Online, Interactive September 30, 2013 - 12:00pm Addthis A screenshot of Hanford's online groundwater monitoring annual report. A screenshot of Hanford's online groundwater monitoring annual report. RICHLAND, Wash. - EM's Richland Operations Office (RL) has moved its 1,200-page annual report on groundwater monitoring to a fully online and interactive web application. The application allows users to access expert interpretation of groundwater conditions and trends for each of the Hanford site's 12 groundwater interest areas. Users can access the typical content of the paper-based report but can also explore all supporting data using an intuitive map-based interface. Groundwater monitoring is conducted to meet requirements of the DOE, U.S

167

Superfund record of decision (EPA Region 1): Otis Air National Guard (USAF), Operable Unit 5, Falmouth, MA, September 30, 1998  

SciTech Connect (OSTI)

This decision document presents the Air Force Center for Environmental Excellence (AFCEE) selected remedial action decisions for contaminant source areas at the following Areas of Contamination (AOCs) at the Massachusetts Military Reservation (MMR) in Barnstable County on Cape Cod, Massachusetts: Fire Training Area No. 2 and Landfill No. 2 (FTA-2/LF-2); Petroleum Fuels Storage Area, Fuel Spill No. 10, and Fuel Spill No. 11 (PFSA/FS-10/FS-11); Storm Drainage Ditch No. 2, Fuel Spill No. 6, and Fuel Spill No. 8 (SD-2/FS-6/FS-8); Storm Drainage Ditch No. 2, Fire Training Area No. 3, and Coal Storage Yard No. 4 (SF-3/FTA-3/CY-4); Storm Drainage Ditch No. 4 (SD-4); and Storm Drainage Ditch No. 5 and Fuel Spill No. 5 (SD-5/FS-5). The selected remedy for AOC FTA-2/LF-2 is Biosparging with Ambient Air Monitoring. This remedial action is a source control action that addresses leaching of organic compounds to groundwater, the principal known threat at AOC FTA-2/LF-2. It consists of designing, constructing, and operating a biosparging treatment system, maintaining institutional controls, and five-year reviews of remedy protectiveness. The remedy reduces the release of contaminants from subsurface soils by treating subsurface soils to meet protective cleanup levels.

NONE

1999-03-01T23:59:59.000Z

168

Structure of Business Operations Departments, School and Other Unit Assignments FAS, Academic Services  

E-Print Network [OSTI]

School of Law School of Management Anesthesiology MacMillan Center School of Architecture Finance for Finance & Business Operations History of Medicine Ecology and Evolutionary Biology Envir Health & Safety

Haller, Gary L.

169

INDEPENDENT TECHNICAL REVIEW OF THE FOCUSED FEASIBILITY STUDY AND PROPOSED PLAN FOR DESIGNATED SOLID WASTE MANAGEMENT UNITS CONTRIBUTING TO THE SOUTHWEST GROUNDWATER PLUME AT THE PADUCAH GASEOUS DIFFUSION PLANT  

SciTech Connect (OSTI)

The U. S. Department of Energy (DOE) is currently developing a Proposed Plan (PP) for remediation of designated sources of chlorinated solvents that contribute contamination to the Southwest (SW) Groundwater Plume at the Paducah Gaseous Diffusion Plant (PGDP), in Paducah, KY. The principal contaminants in the SW Plume are trichloroethene (TCE) and other volatile organic compounds (VOCs); these industrial solvents were used and disposed in various facilities and locations at PGDP. In the SW plume area, residual TCE sources are primarily in the fine-grained sediments of the Upper Continental Recharge System (UCRS), a partially saturated zone that delivers contaminants downward into the coarse-grained Regional Gravel Aquifer (RGA). The RGA serves as the significant lateral groundwater transport pathway for the plume. In the SW Plume area, the four main contributing TCE source units are: (1) Solid Waste Management Unit (SWMU) 1 / Oil Landfarm; (2) C-720 Building TCE Northeast Spill Site (SWMU 211A); (3) C-720 Building TCE Southeast Spill Site (SWMU 211B); and (4) C-747 Contaminated Burial Yard (SWMU 4). The PP presents the Preferred Alternatives for remediation of VOCs in the UCRS at the Oil Landfarm and the C-720 Building spill sites. The basis for the PP is documented in a Focused Feasibility Study (FFS) (DOE, 2011) and a Site Investigation Report (SI) (DOE, 2007). The SW plume is currently within the boundaries of PGDP (i.e., does not extend off-site). Nonetheless, reasonable mitigation of the multiple contaminant sources contributing to the SW plume is one of the necessary components identified in the PGDP End State Vision (DOE, 2005). Because of the importance of the proposed actions DOE assembled an Independent Technical Review (ITR) team to provide input and assistance in finalizing the PP.

Looney, B.; Eddy-Dilek, C.; Amidon, M.; Rossabi, J.; Stewart, L.

2011-05-31T23:59:59.000Z

170

2. Unit Operation Dynamic simulation Unit operation  

E-Print Network [OSTI]

= 1.5 x 2.85 = 4.28 3.28 kg/cm2G . 2.4 2 Adiabatic efficiency Isentropic efficiency compressor . adiabatic efficiency mechanical efficiency adiabatic efficiency compressor . 2.4.3 Performance map process compressor pump performance curve performance area, performance map . turbine

Hong, Deog Ki

171

Probability of economic success for Netherlands dairy farmers moving operations to the United States  

E-Print Network [OSTI]

.S., California State University, Fresno Chair of Advisory Committee: Dr. James W. Richardson Dairy producers in the Netherlands are struggling to stay in business due to increased environmental legislation, population density, intensity of farming systems..., costs of production and quota restrictions. One option available to Netherlands dairy farmers is to liquidate the value of their assets, put the money into an international bank, and buy an established dairy farm in the United States. The primary...

Duncan, Anthony Ray

2005-02-17T23:59:59.000Z

172

United States Environmental Protection  

E-Print Network [OSTI]

quality in public water systems; remediation of contaminated sites, sediments and ground water; preventionUnited States Environmental Protection Agency Hydrogeologic Framework, Ground-Water Geochemistry/R-02/008 January 2002 Hydrogeologic Framework, Ground-Water Geochemistry, and Assessment of Nitrogen

173

Operator Trainer System for the Petrobras P-26 Semi-Submersible Oil and Gas Production Unit  

Science Journals Connector (OSTI)

Abstract Operator trainer systems aim to improve operator performance, by simulating scenarios such as emergency conditions, thus reducing accidents and increasing processes economical results. In this paper, we present PETROBRAS' Oil & Gas Production Process and Utilities Simulator Environment called AMBTREI (Training Environment) that mimics the actual Control Room of an E&P semi-submersible Platform at a very high fidelity level. This training environment was created utilizing Soteica's Operator Training System solution (S-OTS). The dynamic process model will be described as well as the Process Control Interface that was implemented. The software used will be explained in detail and the conclusions that have been reached in almost 2 years of use will be presented.

A.C. Pereira; A. Riera; G. Padilla; E. Musulin; N.J. Nakamura

2009-01-01T23:59:59.000Z

174

MTG fluidized bed reactor–regenerator unit with catalyst circulation: process simulation and operation of an experimental setup  

Science Journals Connector (OSTI)

Simulation of the MTG process carried out in a fluidized bed reactor–regenerator system with catalyst circulation is studied by using the kinetic results obtained in an experimental unit. Data considered covered a wide range of operating conditions including temperature, space time and average residence times in both reactor and regenerator. This simulation is based on the use of adequate kinetic equations for the main MTG reaction, for the catalyst deactivation and for catalyst regeneration. In addition, a third stage in the process allowing for coke equilibration, prior to its combustion, is also included. Catalyst loss due to attrition has also been taken into account. An objective function based on relative production rate is optimized by changing systematically the process parameters such as temperature, space time and catalyst activity. Results are also validated in the experimental unit and demonstrate the simplicity of the reactor–regenerator system with catalyst circulation and the versatility of this configuration for carrying out the MTG process.

Ana G. Gayubo; Jose M. Ortega; Andres T. Aguayo; Jose M. Arandes; Javier Bilbao

2000-01-01T23:59:59.000Z

175

Review of the Sodium Bearing Waste Treatment Project - Integrated Waste Treatment Unit Federal Operational Readiness Review  

Broader source: Energy.gov (indexed) [DOE]

Federal Operational Readiness Review June 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1.0 Purpose ................................................................................................................................................... 1 2.0 Background ............................................................................................................................................ 1 3.0 Scope ...................................................................................................................................................... 2 4.0 Results ................................................................................................................................................... 2

176

Unit Commitment of Generator Sets During Dynamic Positioning Operation Based on  

E-Print Network [OSTI]

Simulation Torstein I. Bø Tor Arne Johansen Eirik Mathiesen Center for Autonomous Marine Operations positioning system, diesel-electric propulsion is often used. At all time the vessel should be able decades diesel-electric propulsion has become industry standard for some types of vessels such as drilling

Johansen, Tor Arne

177

SWMU ASSESSMENT REPORT NUMBER: NAME: Northeast Groundwater Plume  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NUMBER: NAME: Northeast Groundwater Plume DATE: July 21 REGULATORY STATUS: AOC LOCATION: Inside and outside security fence east, northeast ofplant operations. See attached map for...

178

Operable Unit 3-13, Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) Waste Management Plan  

SciTech Connect (OSTI)

This Waste Management Plan describes waste management and waste minimization activities for Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) at the Idaho Nuclear Technology and Engineering Center located within the Idaho National Laboratory. The waste management activities described in this plan support the selected response action presented in the Final Record of Decision for Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. This plan identifies the waste streams that will be generated during implementation of the remedial action and presents plans for waste minimization, waste management strategies, and waste disposition.

G. L. Schwendiman

2006-07-01T23:59:59.000Z

179

Statement of Work for Direct Push Technology Characterization Borehole Installations During Fiscal Year 2006, 300-FF-5 Operable Unit  

SciTech Connect (OSTI)

This document specifies activities to be performed by FHI to fulfill Part II of the 300-FF-5 Operable Unit Limited Field Investigation. The scope includes driving up to 15 direct push technology boreholes to the water table for radiological geophysical logging of the vadose zone to define the vertical extent and concentration of process uranium waste in the subsurface. Drilling and sampling field activates will follow FHI waste management, risk assessment and QA process and procedures. The sampling and analysis of information recovered during this characterization will meet the Hanford Performance Assessment Project QAAP requirements.

Williams, Bruce A.

2005-11-29T23:59:59.000Z

180

Environmental Monitoring Plan United States Department of Energy Richland Operations Office. Revision 2  

SciTech Connect (OSTI)

This Environmental Monitoring Plan was prepared for the US Department of Energy`s (DOE`s) Richland Operations Office (RL) to implement the requirements of DOE Order 5400.1. According to the Order, each DOE site, facility, or activity that uses, generates, releases, or manages significant pollutants or hazardous materials shall prepare a written environmental monitoring plan covering two major activities: (1) effluent monitoring and (2) environmental surveillance. The plan is to contain information discussing the rationale and design criteria for the monitoring programs, sampling locations and schedules, quality assurance requirements, program implementation procedures, analytical procedures, and reporting requirements. The plan`s purpose is to assist DOE in the management of environmental activities at the Hanford Site and to help ensure that operations on the site are conducted in an environmentally safe and sound manner.

NONE

1997-11-10T23:59:59.000Z

Note: This page contains sample records for the topic "groundwater operable unit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Hanford Site Groundwater Monitoring for Fiscal Year 2003  

SciTech Connect (OSTI)

This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2003 (October 2002 through September 2003) on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes in groundwater are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. The largest portions of these plumes are migrating from the central Hanford Site to the southeast, toward the Columbia River. Concentrations of tritium, nitrate, and some other contaminants continued to exceed drinking water standards in groundwater discharging to the river in some locations. However, contaminant concentrations in river water remained low and were far below standards. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the central part of the Hanford Site. Hexavalent chromium is present in smaller plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath all but one of the reactor areas, and technetium-99 and uranium are present in the 200 Areas. Uranium exceeds standards in the 300 Area in the south part of the Hanford Site. Minor contaminant plumes with concentrations greater than standards include carbon-14, cesium-137, cis-1,2-dichloroethene, cyanide, fluoride, plutonium, and trichloroethene. Monitoring for the ''Comprehensive Environmental Response, Compensation, and Liability Act'' is conducted in 11 groundwater operable units. The purpose of this monitoring is to define and track plumes and to monitor the effectiveness of interim remedial actions. Interim groundwater remediation in the 100 Areas continued with the goal of reducing the amount of chromium (100-K, 100-D, and 100-H) and strontium-90 (100-N) reaching the Columbia River. The objective of two interim remediation systems in the 200 West Area is to prevent the spread of carbon tetrachloride and technetium-99/uranium plumes. ''Resource Conservation and Recovery Act'' groundwater monitoring continued at 24 waste management areas during fiscal year 2003: 15 under interim or final status detection programs and data indicate that they are not adversely affecting groundwater; 7 under interim status groundwater quality assessment programs to assess contamination; and 2 under final status corrective-action programs. During calendar year 2003, drillers completed seven new RCRA monitoring wells, nine wells for CERCLA, and two wells for research on chromate bioremediation. Vadose zone monitoring, characterization, and remediation continued in fiscal year 2003. Remediation and associated monitoring continued at a soil-vapor extraction system in the 200 West Area, which removes gaseous carbon tetrachloride from the vadose zone. Soil vapor also was sampled to locate carbon tetrachloride sites with the potential to impact groundwater in the future. DOE uses geophysical methods to monitor potential movement of contamination beneath single-shell tank farms. During fiscal year 2003, DOE monitored selected boreholes within each of the 12 single-shell tank farms. In general, the contaminated areas appeared to be stable over time. DOE drilled new boreholes at the T Tank Farm to characterize subsurface contamination near former leak sites. The System Assessment Capability is a set of computer modules simulating movement of contaminants from waste sites through the vadose zone and groundwater. In fiscal year 2003, it was updated with the addition of an atmospheric transport module and with newer versions of models including an updated groundwater flow and transport model.

Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

2004-04-12T23:59:59.000Z

182

Remedial investigation/feasibility study of the Clinch River/Poplar Creek operable unit. Volume 5  

SciTech Connect (OSTI)

This volume is in support of the findings of an investigation into contamination of the Clinch River and Poplar Creek near the Oak Ridge Reservation (for more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities there). It addresses the quality assurance objectives for measuring the data, presents selected historical data, contains data from several discrete water characterization studies, provides data supporting the sediment characterization, and contains data related to several biota characterization studies.

NONE

1996-03-01T23:59:59.000Z

183

Public Participation Plan for Waste Area Group 7 Operable Unit 7-13/14 at the Idaho National Laboratory Site  

SciTech Connect (OSTI)

This Public Participation Plan outlines activities being planned to: (1) brief the public on results of the remedial investigation and feasibility study, (2) discuss the proposed plan for remediation of Operable Unit 7-13/14 with the public, and (3) encourage public participation in the decision-making process. Operable Unit 7-13/14 is the Comprehensive Remedial Investigation/Feasibility Study for Waste Area Group 7. Analysis focuses on the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex at the Idaho National Laboratory (Site). This plan, a supplement to the Idaho National Laboratory Community Relations Plan (DOE-ID 2004), will be updated as necessary. The U.S. Department of Energy (DOE), Idaho Department of Environmental Quality (DEQ), and U.S. Environmental Protection Agency (EPA) will participate in the public involvement activities outlined in this plan. Collectively, DOE, DEQ, and EPA are referred to as the Agencies. Because history has shown that implementing the minimum required public involvement activities is not sufficient for high-visibility cleanup projects, this plan outlines additional opportunities the Agencies are providing to ensure that the public’s information needs are met and that the Agencies can use the public’s input for decisions regarding remediation activities.

B. G. Meagher

2007-07-17T23:59:59.000Z

184

Analysis of the operational reliability of a power-generating unit with a BN-600 reactor during the period 1980–1993  

Science Journals Connector (OSTI)

The high quality of the design and the additional improvements to separate units of the main equipment and systems at the initial stage of operation (first main circulation pump, steam generators, safety and c...

N. N. Oshkanov; A. G. Sheinkman; P. P. Govorov

1994-03-01T23:59:59.000Z

185

Mixed Waste Management Facility Groundwater Monitoring Report  

SciTech Connect (OSTI)

During fourth quarter 1997, eleven constituents exceeded final Primary Drinking Water Standards (PDWS) in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility. No constituents exceeded final PDWS in samples from upgradient monitoring wells. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters.

Chase, J.

1998-03-01T23:59:59.000Z

186

Phase II Contaminant Transport Parameters for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 98: Frenchman Flat, Nye County, Nevada, Rev. No.: 0  

SciTech Connect (OSTI)

This report documents pertinent transport data and data analyses as part of the Phase II Corrective Action Investigation (CAI) for Frenchman Flat (FF) Corrective Action Unit (CAU) 98. The purpose of this data compilation and related analyses is to provide the primary reference to support parameterization of the Phase II FF CAU transport model.

DeNovio, Nicole M.; Bryant, Nathan; King, Chrissi B.; Bhark, Eric; Drellack, Sigmund L.; Pickens, John F.; Farnham, Irene; Brooks, Keely M.; Reimus, Paul; Aly, Alaa

2005-04-01T23:59:59.000Z

187

New Resin Brings Efficiencies to Groundwater Treatment along Columbia River  

Broader source: Energy.gov (indexed) [DOE]

Resin Brings Efficiencies to Groundwater Treatment along Resin Brings Efficiencies to Groundwater Treatment along Columbia River at Hanford Site New Resin Brings Efficiencies to Groundwater Treatment along Columbia River at Hanford Site June 1, 2012 - 12:00pm Addthis Dean Neshem, a pump-and-treat operations and maintenance engineer, observes operations at one of the Hanford site's five groundwater treatment facilities. Based on technical recommendations from DOE, CH2M HILL engineers tested and compared multiple resins to determine the products capable of removing contaminants from the groundwater. Dean Neshem, a pump-and-treat operations and maintenance engineer, observes operations at one of the Hanford site's five groundwater treatment facilities. Based on technical recommendations from DOE, CH2M HILL engineers tested and compared multiple resins to determine the products

188

Hanford Treats Record Amount of Groundwater  

Broader source: Energy.gov (indexed) [DOE]

September 13, 2011 September 13, 2011 Hanford Treats Record Amount of Groundwater RICHLAND, Wash. - Workers have treated more than 800 million gallons of groundwater at the Hanford Site so far this year, a record annual amount. Last year, workers with DOE contractor CH2M HILL Plateau Remediation Company treated 600 mil- lion gallons of groundwater at the site. "It's great to know the amount of treated groundwater is increasing. We are meeting our goals, which means we are protecting the Columbia River," said Bill Barrett, CH2M HILL director of pump and treat operations and maintenance. American Recovery and Reinvestment Act work to expand Hanford's capacity for treating contami- nated groundwater led to the 2011 record amount. The Recovery Act funded the installation of more

189

Analysis of radiation exposure for naval units of Operation CROSSROADS. Volume 1. Basic report. Technical report  

SciTech Connect (OSTI)

External radiation doses are reconstructed for crews of support and target ships of Joint Task Force One at Operation CROSSROADS, 1946. Volume I describes the reconstruction methodology, which consists of modeling the radiation environment, to include the radioactivity of lagoon water, target ships, and support ship contamination; retracing ship paths through this environment; and calculating the doses to shipboard personnel. The USS RECLAIMER, a support ship, is selected as a representative ship to demonstrate this methodology. Doses for all other ships are summarized. Volume II (Appendix A) details the results for target ship personnel. Volume III (Appendix B) details the results for support ship personnel. Calculated doses for more than 36,000 personnel aboard support ships while at Bikini range from zero to 1.7 rem. Of those approximately 34,000 are less than 0.5 rem. From the models provided, doses due to target ship reboarding and doses accrued after departure from Bikini can be calculated, based on the individual circumstances of exposure.

Weitz, R.; Thomas, C.; Klemm, J.; Stuart, J.; Knowles, M.

1982-03-03T23:59:59.000Z

190

Air Permit Compliance for Hanford Waste Retrieval Operations Involving Multi-Unit Emissions  

SciTech Connect (OSTI)

Since 1970, approximately 38,000 suspect-transuranic and transuranic waste containers have been placed in retrievable storage on the Hanford Site in the 200 Areas burial grounds. Hanford's Waste Retrieval Project is retrieving these buried containers and processing them for safe storage and disposition. Container retrieval activities require an air emissions permit to account for potential emissions of radionuclides. The air permit covers the excavation activities as well as activities associated with assaying containers and installing filters in the retrieved transuranic containers lacking proper venting devices. Fluor Hanford, Inc. is required to track radioactive emissions resulting from the retrieval activities. Air, soil, and debris media contribute to the emissions and enabling assumptions allow for calculation of emissions. Each of these activities is limited to an allowed annual emission (per calendar year) and contributes to the overall total emissions allowed for waste retrieval operations. Tracking these emissions is required to ensure a permit exceedance does not occur. A tracking tool was developed to calculate potential emissions in real time sense. Logic evaluations are established within the tracking system to compare real time data against license limits to ensure values are not exceeded for either an individual activity or the total limit. Data input are based on field survey and workplace air monitoring activities. This tracking tool is used monthly and quarterly to verify compliance to the license limits. Use of this tool has allowed Fluor Hanford, Inc. to successfully retrieve a significant number of containers in a safe manner without any exceedance of emission limits. (authors)

Faulk, D.E.; Simmons, F.M. [Fluor Hanford, Inc., Richland, WA (United States)

2008-07-01T23:59:59.000Z

191

Evaluation and Screening of Remedial Technologies for Uranium at the 300-FF-5 Operable Unit, Hanford Site, Washington  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory (PNNL) is presently conducting a re-evaluation of remedies addressing persistent dissolved uranium concentrations in the upper aquifer under the 300 Area of the Hanford Site in southeastern Washington State. This work is being conducted as a Phase III feasibility study for the 300-FF-5 Operable Unit on behalf of the U.S. Department of Energy. As part of the feasibility study process, a comprehensive inventory of candidate remedial technologies was conducted by PNNL. This report documents the identification and screening of candidate technologies. The screening evaluation was conducted in accordance with guidance and processes specified by U.S. Environmental Protection Agency regulations associated with implementation of the Comprehensive Environmental Response, Compensation, and Liability Act process.

Nimmons, Michael J.

2007-08-01T23:59:59.000Z

192

Operation of a mineral-recovery unit on brine from the Salton Sea known geothermal resource area  

SciTech Connect (OSTI)

The Bureau of Mines operated a mineral recovery unit to recover metal values from post-flash geothermal brines from the Salton Sea known geothermal resource area as part of its research into the use of plentiful resources. The brine was available for metals recovery after its heat content had been used to generate electricity. The brine source was treated with lime to precipitate the contained iron, manganese, lead, and zinc before injection of the heat-depleted brine into the underground reservoir. Data are presented on the effects of process variables, such as rate and method of lime addition and air oxidation versus air exclusion. Variations in precipitation of metal values, composition of precipitates, effectiveness of slurry thickeners, and methods of treating the precipitates to recover metal values are discussed.

Schultze, L.E.; Bauer, D.J.

1982-01-01T23:59:59.000Z

193

The Hanford Story: Groundwater  

Broader source: Energy.gov [DOE]

This second chapter of The Hanford Story explains how more than 100 square miles of groundwater under the Hanford Site became contaminated and what workers are doing to restore groundwater to its highest beneficial use.

194

Three-Dimensional Groundwater Models of the 300 Area at the Hanford Site, Washington State  

SciTech Connect (OSTI)

Researchers at Pacific Northwest National Laboratory developed field-scale groundwater flow and transport simulations of the 300 Area to support the 300-FF-5 Operable Unit Phase III Feasibility Study. The 300 Area is located in the southeast portion of the U.S. Department of Energy’s Hanford Site in Washington State. Historical operations involving uranium fuel fabrication and research activities at the 300 Area have contaminated engineered liquid-waste disposal facilities, the underlying vadose zone, and the uppermost aquifer with uranium. The main objectives of this research were to develop numerical groundwater flow and transport models to help refine the site conceptual model, and to assist assessment of proposed alternative remediation technologies focused on the 300 Area uranium plume.

Williams, Mark D.; Rockhold, Mark L.; Thorne, Paul D.; Chen, Yousu

2008-09-01T23:59:59.000Z

195

Nevada National Security Site Groundwater Program  

ScienceCinema (OSTI)

From 1951 to 1992, the Unites States government conducted 828 underground nuclear tests at the Nevada National Security Site. About one-third of these tests occurred near, below or within the water table - the very top portion of the groundwater layer where rock and soil are completely saturated with water. As a result, some groundwater was contaminated. The U.S. Department of Energy (DOE) began exploring the effects of groundwater contamination in the 1970s. Though contamination from underground testing has never been detected on public land, the DOE was committed to developing an advanced, reliable monitoring network that ensures the long-term protection of the public. An intensive groundwater investigation program was launched in 1989.

None

2014-10-28T23:59:59.000Z

196

Groundwater Report Goes Online, Interactive | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Report Goes Online, Interactive Report Goes Online, Interactive Groundwater Report Goes Online, Interactive September 30, 2013 - 12:00pm Addthis A screenshot of Hanford's online groundwater monitoring annual report. A screenshot of Hanford's online groundwater monitoring annual report. RICHLAND, Wash. - EM's Richland Operations Office (RL) has moved its 1,200-page annual report on groundwater monitoring to a fully online and interactive web application. The application allows users to access expert interpretation of groundwater conditions and trends for each of the Hanford site's 12 groundwater interest areas. Users can access the typical content of the paper-based report but can also explore all supporting data using an intuitive map-based interface. Groundwater monitoring is conducted to meet requirements of the DOE, U.S

197

In-situ remediation system for groundwater and soils  

DOE Patents [OSTI]

The present invention relates to a system for in-situ remediation of contaminated groundwater and soil. In particular the present invention relates to stabilizing toxic metals in groundwater and soil. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

Corey, J.C.; Kaback, D.S.; Looney, B.B.

1991-01-01T23:59:59.000Z

198

UNIT NUMBER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 UNIT NAME C-611 Underaround Diesel Tank REGULATORY STATUS: AOC LOCATION: Immediately southeast of C-611 APPROXIMATE DIMENSIONS: 1000 gallon FUNCTION: Diesel storage OPERATIONAL...

199

UNIT NUMBER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 UNIT NAME C-746-Al REGULATORY STATUS: AOC LOCATION: Northwest corner of C-746-A APPROXIMATE DIMENSIONS: 4000 gallons FUNCTION: Underground storage tanks OPERATIONAL STATUS:...

200

UNIT NUMBER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 UNIT NAME C-611 Underaround Gasoline Tank REGULATORY STATUS: AOC LOCATION: Immediately east of C-61l APPROXIMATE DIMENSIONS: 50 ga on FUNCTION: Gasoline storage OPERATIONAL...

Note: This page contains sample records for the topic "groundwater operable unit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Amchitka Archived Soil & Groundwater Master Reports | Department...  

Office of Environmental Management (EM)

Archived Soil & Groundwater Master Reports Miscellaneous Archived Soil & Groundwater Master Reports Rocky Flats Environmental Technology Site Archived Soil & Groundwater Master...

202

Impact of IRAQI invasion on United States energy and economic security. Hearing before the Committee on Government Operations, House of Representatives, One Hundred First Congress, Second session  

SciTech Connect (OSTI)

This document contains the Hearing before the Committee on Government Operations, House of Representatives, One Hundred First Congress, Second Session, September 5, 1990 on the Impact of Iraqi Invasion on United States Energy and Economic Security. This hearing examines the long-term economic and energy security of the United States in relation to the Persian Gulf crisis and how to reduce our dangerous reliance on an unstable energy supply.

NONE

1997-12-31T23:59:59.000Z

203

Operable Unit 3-13, Group 3, Other Surface Soils Remediation Sets 4-6 (Phase II) Remedial Design/Remedial Action Work Plan  

SciTech Connect (OSTI)

This Remedial Design/Remedial Action Work Plan provides the framework for defining the remedial design requirements, preparing the design documentation, and defining the remedial actions for Waste Area Group 3, Operable Unit 3-13, Group 3, Other Surface Soils, Remediation Sets 4-6 (Phase II) located at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory. This plan details the design developed to support the remediation and disposal activities selected in the Final Operable Unit 3-13, Record of Decision.

D. E. Shanklin

2006-06-01T23:59:59.000Z

204

Post-Closure RCRA Groundwater Monitoring Plan for the 216-S-10 Pond and Ditch  

SciTech Connect (OSTI)

The purpose of this plan is to provide a post-closure groundwater monitoring program for the 216-S-10 Pond and Ditch (S-10) treatment, storage, and/or disposal (TSD) unit. The plan incorporates the sum of knowledge about the potential for groundwater contamination to originate from the S-10, including groundwater monitoring results, hydrogeology, and operational history. The S-10 has not received liquid waste since October 1991. The closure of S-10 has been coordinated with the 200-CS-1 source operable unit in accordance with the Tri-Party Agreement interim milestones M-20-39 and M-15-39C. The S-10 is closely situated among other waste sites of very similar operational histories. The proximity of the S-10 to the other facilities (216-S-17 pond, 216-S-11 Pond, 216-S-5,6 cribs, 216-S-16 ditch and pond, and 216-U-9 ditch) indicate that at least some observed groundwater contamination beneath and downgradient of S-10 could have originated from waste sites other than S-10. Hence, it may not be feasible to strictly discriminate between the contributions of each waste site to groundwater contamination beneath the S-10. A post-closure groundwater monitoring network is proposed that will include the drilling of three new wells to replace wells that have gone dry. When completed, the revised network will meet the intent for groundwater monitoring network under WAC 173-303-645, and enable an improved understanding of groundwater contamination at the S-10. Site-specific sampling constituents are based on the dangerous waste constituents of concern relating to RCRA TSD unit operations (TSD unit constituents) identified in the Part A Permit Application. Thus, a constituent is selected for monitoring if it is: A dangerous waste constituent identified in the Part A Permit Application, or A mobile decomposition product (i.e., nitrate from nitrite) of a Part A constituent, or A reliable indicator of the site-specific contaminants (i.e., specific conductance). Using these criteria, the following constituent list and sampling schedule is proposed: Constituent; Sampling Frequency Site-Specific Parameters; Hexavalent chromium (a); Semiannual Chloride; Semiannual Fluoride; Semiannual Nitrate; Semiannual Nitrite; Semiannual Specific conductance (field)(a); Semiannual Ancillary Parameters; Anions; Annual Alkalinity Annual Metals, (in addition to chromium); Annual pH (field) Semiannual Temperature (field); Semiannual Turbidity (field) Semiannual (a). These constituents will be subject to statistical tests after background is established. It will be necessary to install new monitoring wells and accumulate background data on the groundwater from those wells before statistical comparisons can be made. Until then, the constituents listed above will be evaluated by tracking and trending concentrations in all wells and comparing these results with the corresponding DWS or Hanford Site background concentration for each constituent. If a comparison value (background or DWS) for a constituent is exceeded, DOE will notify Ecology per WAC 173-303-645 (9) (g) requirements (within seven days or a time agreed to between DOE and Ecology).

Barnett, D BRENT.; Williams, Bruce A.; Chou, Charissa J.; Hartman, Mary J.

2006-03-17T23:59:59.000Z

205

Confirmatory Sampling and Analysis Plan for the Lower East Fork Poplar Creek operable unit, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

On December 21, 1989, the EPA placed the US Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) on the National Priorities List (NPL). On January 1, 1992, a Federal Facilities Agreement (FFA) between the DOE Field Office in Oak Ridge (DOE-OR), EPA Region IV, and the Tennessee Department of Environment and Conservation (TDEC) went into effect. This FFA establishes the procedural framework and schedule by which DOE-OR will develop, coordinate, implement and monitor environmental restoration activities on the ORR in accordance with applicable federal and state environmental regulations. The DOE-OR Environmental Restoration Program for the ORR addresses the remediation of areas both within and outside the ORR boundaries. This sampling and analysis plan focuses on confirming the cleanup of the stretch of EFPC flowing from Lake Reality at the Y-12 Plant through the City of Oak Ridge, to Poplar Creek on the ORR and its associated floodplain. Both EFPC and its floodplain have been contaminated by releases from the Y-12 Plant since the mid-1950s. Because the EFPC site-designated as an ORR operable unit (OU) under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) is included on the NPL, its remediation must follow the specific procedures mandated by CERCLA, as amended by the Superfund Amendments and Reauthorization Act in 1986.

NONE

1996-04-01T23:59:59.000Z

206

A Stochastic Unit-Commitment Model to Estimate the Costs of Changing Power Plant Operation under High Amounts of Intermittent Wind Power  

E-Print Network [OSTI]

) a market for district heating and process heat. Time series for the wind power production rely on timeA Stochastic Unit-Commitment Model to Estimate the Costs of Changing Power Plant Operation under High Amounts of Intermittent Wind Power Integration Meibom, P.1 , Brand, H.2 , Barth, R.2 and Weber, C

207

AMEC GEOMATRIX/ARA GROUNDWATER REMEDIAITON TRIP REPORT  

SciTech Connect (OSTI)

City of Rialto, Well No.3 Demonstration System Integration Project, and Baldwin Park Operable Unit, Baldwin Park, California. The groundwater remediation contractors are AMEC Geomatrix and ARA. The sites were visited on July 22, 2008. Fluor Hanford and the U.S. Department of Energy are currently looking at a variety of alternatives to capture carbon tetrachloride, nitrates, and other COCs from 200-ZP-l groundwater. A few of the more important objectives of our visits were to: (1) Evaluate the treatment systems being used by AMEC Geomatrix to address VOCs, perchlorate, NDMA, 1,4,-Dioxane, and 1,2,3 TCP in a drinking water source; (2) Evaluate how effective these treatment methods have been; (3) Determine the types of problems they have encountered with these treatment systems and how they addressed these problems; (4) Determine the types of secondary wastes being generated by the system; (5) Determine how clean of an operation these companies run; and (6) Determine if the site is worth being visited by DOE-RL at a later date.

SIMMONS SA

2008-08-07T23:59:59.000Z

208

Situ treatment of contaminated groundwater  

DOE Patents [OSTI]

A system for treating dissolved halogenated organic compounds in groundwater that relies upon electrolytically-generated hydrogen to chemically reduce the halogenated compounds in the presence of a suitable catalyst. A direct current is placed across at least a pair, or an array, of electrodes which are housed within groundwater wells so that hydrogen is generated at the cathode and oxygen at the anode. A pump is located within the well housing in which the cathode(s) is(are) located and draws in groundwater where it is hydrogenated via electrolysis, passes through a well-bore treatment unit, and then transported to the anode well(s) for reinjection into the ground. The well-bore treatment involves a permeable cylinder located in the well bore and containing a packed bed of catalyst material that facilitates the reductive dehalogenation of the halogenated organic compounds by hydrogen into environmentally benign species such as ethane and methane. Also, electro-osmatic transport of contaminants toward the cathode also contributes to contaminant mass removal. The only above ground equipment required are the transfer pipes and a direct circuit power supply for the electrodes. The electrode wells in an array may be used in pairs or one anode well may be used with a plurality of cathode wells. The DC current flow between electrode wells may be periodically reversed which controls the formation of mineral deposits in the alkaline cathode well-bore water, as well as to help rejuvenate the catalysis.

McNab, Jr., Walt W. (Concord, CA); Ruiz, Roberto (Tracy, CA); Pico, Tristan M. (Livermore, CA)

2001-01-01T23:59:59.000Z

209

Groundwater and Wells (Nebraska)  

Broader source: Energy.gov [DOE]

This section describes regulations relating to groundwater protection, water wells, and water withdrawals, and requires the registration of all water wells in the state.

210

Groundwater Protection 7 2012 SITE ENVIRONMENTAL REPORT7-1  

E-Print Network [OSTI]

is to ensure that plans for groundwater protection, management, monitor- ing, and restoration are fully defined operating permits, DOE Order 458.1, Radiation Protection of the Public and Environment, and DOE Order 436Groundwater Protection 7 2012 SITE ENVIRONMENTAL REPORT7-1 Brookhaven National Laboratory has

211

Groundwater Protection 7 2013 SITE ENVIRONMENTAL REPORT7-1  

E-Print Network [OSTI]

Protection Program is to ensure that plans for groundwater protection, management, monitor- ing in various New York State operating permits, DOE Order 458.1, Radiation Protection of the PublicGroundwater Protection 7 2013 SITE ENVIRONMENTAL REPORT7-1 Brookhaven National Laboratory has

212

Groundwater Protection 7 2011 Site environmental report7-1  

E-Print Network [OSTI]

is to ensure that plans for groundwater protection, management, monitor- ing, and restoration are fully defined operating permits, DOE Order 458.1, Radiation Protection of the Public and Environment, and DOE Order 436Groundwater Protection 7 2011 Site environmental report7-1 Brookhaven National Laboratory has

213

Groundwater Protection Group (GPG), Brookhaven National Laboratory, BNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EPD Home EPD Home Site Details GPG Home Groundwater Projects Surface Projects Land Use & Institutional Controls Mapping Administrative Record Contacts Reports Other Information Reactor Projects (HFBR & BGRR) Groundwater Protection Group The Groundwater Protection Group (formerly know as the Long Term Response Action (LTRA) Group) was formed in 2004 as part of the Environmental Protection Division. The GPG Group is responsible for the long-term surveillance, monitoring, maintenance, operating, reporting, and community involvement activities required to complete the CERCLA environmental cleanup activities at Brookhaven National Laboratory. Ongoing Projects: g-2 Record of Decision Groundwater Projects Surface Projects Land Use and Institutional Control Five Year Review

214

Experience in setting up and operating the units of the Inguri hydroelectric station in a synchronous capacitor regime  

Science Journals Connector (OSTI)

1. The experience of adjusting and testing the units of the Inguri hydrostation in a SC regime can be useful for...

A. Yu. Il'in; A. M. Smirnov; V. -K. Topuriya; G. Kh. Khubua

1988-07-01T23:59:59.000Z

215

Record of Decision Remedial Alternative Selection for the Gunsite 720 Rubble Pit Operable Unit: Final Action (631-16G)  

SciTech Connect (OSTI)

The Gunsite 720 Rubble Pit Unit is located within SRS and is approximately 305 meters west of South Carolina Highway 125.

Palmer, E. [Westinghouse Savannah River Company, AIKEN, SC (United States)

1997-01-01T23:59:59.000Z

216

ICDP Complex Groundwater Monitoring Plan REV 5  

SciTech Connect (OSTI)

This Groundwater Monitoring Plan, along with the Quality Assurance Project Plan for Waste Area Groups 1, 2, 3, 4, 5, 6, 7, 10, and Removal Actions, constitutes the sampling and analysis plan for groundwater and perched water monitoring at the Idaho CERCLA Disposal Facility (ICDF). A detection monitoring system was installed in the Snake River Plan Aquifer to comply with substantive requirements of "Releases from Solid Waste Management Units" of the Resource Conservation and Recovery Act. This detection monitoring wells constructed in the Snake River Plain Aquifer.

Cahn, L. S.

2007-08-09T23:59:59.000Z

217

Unconventional Groundwater System Proves Effective in Reducing  

Broader source: Energy.gov (indexed) [DOE]

Unconventional Groundwater System Proves Effective in Reducing Unconventional Groundwater System Proves Effective in Reducing Contamination at West Valley Demonstration Project Unconventional Groundwater System Proves Effective in Reducing Contamination at West Valley Demonstration Project July 22, 2013 - 12:00pm Addthis In the two years prior to the operation of the permeable treatment wall, pictured here, WVDP conducted extensive engineering and planning to ensure it would effectively remove strontium-90. In the two years prior to the operation of the permeable treatment wall, pictured here, WVDP conducted extensive engineering and planning to ensure it would effectively remove strontium-90. This 2009 photo shows a trenching machine, which is capable of cutting a continuous trench up to 30 feet deep and 3 feet wide. The machine was used in a pilot study to evaluate the effectiveness of zeolite placement as the trench was dug. This ensured a consistent depth and width for the zeolite placement along the entire length of the permeable treatment wall.

218

Superfund Record of Decision (EPA Region 10): East Multnomah County Ground Water Contamination, Operable Unit 2, Multnomah County, OR, December 31, 1996  

SciTech Connect (OSTI)

This document presents the selected remedial action for soil and shallow groundwater contamination within the Troutdale Gravel Aquifer (TGA) at the Cascade Corporation (Cascade) site, in Gresham, Oregon.

NONE

1998-01-01T23:59:59.000Z

219

X-701B Groundwater Remedy Portsmouth Ohio  

Broader source: Energy.gov (indexed) [DOE]

X-701B Groundwater Remediation X-701B Groundwater Remediation ETR Report Date: December 2008 ETR-20 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the X-701B Groundwater Remedy, Portsmouth, Ohio Why DOE-EM Did This Review The Department of Energy (DOE) Portsmouth Paducah Project Office (PPPO) has responsibility for remediation of the X-701B ground water plume with the key contaminant of trichloroethene (TCE). The remedy has been divided into four phases: Phase I- Initial Source Area Treatment, Phase II-Expanded Source Area Treatment, Phase III-Evaluation and Reporting, and Phase IV- Downgradient Remediation and Confirmation of Source Area Treatment. Phase II treatment has injected

220

Gas-turbine units of OAO Aviadvigatel’ designed for operation on synthesis gas obtained from gasification of coal  

Science Journals Connector (OSTI)

Problems that have to be solved for adapting a 16-MW gas-turbine unit used as part of a gas turbine-based power station for firing low-grade...

D. D. Sulimov

2010-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "groundwater operable unit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

United Technologies Corporation: Internal Audit Department (IAD) Case Study: A Case Study of the UTC ACE Operating System  

E-Print Network [OSTI]

This study of United Technologies Corporation's Internal Audit Department (IAD) examines how stability and change are important factors in how this department functions and improves. IAD is a leader in the adoption of ...

Roth, George

2008-08-11T23:59:59.000Z

222

First results from operation of the Adler thermal power station equipped with two PGU-180 combined-cycle power units  

Science Journals Connector (OSTI)

We present technical characteristics of the equipment used in the PGU-180 power units of the Adler thermal power station (a branch of OGK-2) commissioned in November 2012 after the entire power plant had succe...

Yu. A. Radin; S. N. Lenev; O. N. Nikandrov; D. V. Rudenko

2013-09-01T23:59:59.000Z

223

Hanford Treats Groundwater Ahead of Schedule  

Broader source: Energy.gov [DOE]

RICHLAND, Wash. – EM’s Richland Operations Office and contractor CH2M HILL Plateau Remediation Company (CH2M HILL) are ahead of schedule in meeting EM's annual goals for treating contaminated groundwater at the Hanford site in southeast Washington state.

224

A Deterministic Smart Market Model for Groundwater  

Science Journals Connector (OSTI)

Efficient management of water requires balancing environmental needs, externality considerations, and economic efficiency. Toward that end, this paper presents a deterministic linear program that could be used to operate a smart spot market for groundwater. ... Keywords: bidding/auctions, environment, games/group decisions, natural resources, water resources

John F. Raffensperger; Mark W. Milke; E. Grant Read

2009-11-01T23:59:59.000Z

225

Verification of Active and Passive Ground-Water Contamination Remediation Efforts  

Science Journals Connector (OSTI)

The verification of ground-water contamination remediation efforts requires thorough documentation of subsurface conditions ... comprehensive approach to the design and operation of remediation efforts with an em...

M. J. Barcelona

1995-01-01T23:59:59.000Z

226

Groundwater Resources Assessment under the Pressures of Humanity and  

Open Energy Info (EERE)

Groundwater Resources Assessment under the Pressures of Humanity and Groundwater Resources Assessment under the Pressures of Humanity and Climate Change (GRAPHIC) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Groundwater Resources Assessment under the Pressures of Humanity and Climate Change (GRAPHIC) Agency/Company /Organization: United Nations Educational Scientific and Cultural Organization Sector: Climate, Water Topics: Co-benefits assessment, Resource assessment Resource Type: Publications Website: unesdoc.unesco.org/images/0015/001507/150730e.pdf References: Groundwater Resources Assessment under the Pressures of Humanity and Climate Change (GRAPHIC)[1] "The GRAPHIC project seeks to improve our understanding of how groundwater contributes to the global water cycle and thus how it supports ecosystems

227

Experience in operating and reconstructing the turbine bearings of units of the Sayano-Shushenskoe hydroelectric station  

SciTech Connect (OSTI)

This article reviews some of the operations and maintenance experiences at the Sayano-Shushenskoe hydroelectric sstation in Russia. In particular, the experiences gained in the operation of the turbines and the reconstruction of the turbine bearings are noted. The compact layout of this facility did not permit the traditional babbitt bearing or rubber ring bearing with water lubrication. Instead, a rubber sugmented bearing with water lubrication was used. The design and construction of this bearing, as well as the operation and maintenance of this bearing, is discussed in this article. The operating experiences have shown that the component is highly reliable.

Nikitenko, G.I.

1994-10-01T23:59:59.000Z

228

DOEINVIl0845-51 DC-703 GROUNDWATER FLOW NEAR THE SHOAL SITE,  

Office of Legacy Management (LM)

DOEINVIl0845-51 DOEINVIl0845-51 DC-703 GROUNDWATER FLOW NEAR THE SHOAL SITE, SAND SPRINGS RANGE, NEVADA: IMPACT OF DENSITY-DRIVEN FLOW Prepared by Jenny Chapman, Todd Mihevc, and Alan McKay Submitted to Nevada Operations Office U.S. Department of Energy Las Vegas, Nevada September 1994 Publication #45130 This report was prepared as an account of work sponsored by the United States Government Neither the United States nor the United States Department of Energy, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, mark, manufacturer, or otherwise, does not necessarily

229

UNIT NUMBER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 C-750B Diesel UST UNIT NAME REGULATORY STATUS: AOC LOCATION: Southeast corner of C-750 APPROXIMATE DIMENSIONS: 10,000 gallon FUNCTION: Diesel storage OPERATIONAL STATUS: Removed...

230

UNIT NUMBER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 UNIT NAME C-633 PCB So111 Site REGULATORY STATUS CERCLA LOCATION C-633 Transformer area (Mac location 75) APPROXIMATE DIMENSIONS I Unknown FUNCTION Soill site OPERATIONAL STATUS...

231

Groundwater in the Great Plains  

E-Print Network [OSTI]

7 The importance of conservation 7 What is Groundwater? The Hydrologic Cycle 8 Groundwater flow patterns 9 Saturated and unsaturated zones 9 Aquifers 10 Sole source aquifers 10 Water wells 12 Groundwater Quality Contamination and pollution, measuring... The High Plains Aquifer 22 Population served by groundwater 23 Competing uses for a limited resource 23 Groundwater declines 24 Contamination and Health Issues Water Testing 26 Regulatory Standards, Treatment Options 27 Table of Contents 3 Public...

Jensen, R.

2003-01-01T23:59:59.000Z

232

Towards a methodology for the systematic analysis and design of efficient chemical processes: Part 1. From unit operations to elementary process functions  

Science Journals Connector (OSTI)

A successful intensification of a chemical process requires a holistic view of the process and a systematic debottlenecking, which is obtained by identifying and eliminating the main transport resistances that limit the overall process performance and thus can be considered as rate determining steps on the process level. In this paper, we will suggest a new approach that is not based on the classical unit operation concept, but on the analysis of the basic functional principles that are encountered in chemical processes. A review on the history of chemical engineering in general and more specifically on the development of the unit operation concept underlines the outstanding significance of this concept in chemical and process engineering. The unit operation concept is strongly linked with the idea of thinking in terms of apparatuses, using technology off the shelf. The use of such “ready solutions” is of course convenient in the analysis and design of chemical processes; however, it can also be a problem since it inherently reduces the possibilities of process intensification measures. Therefore, we break with the tradition of thinking in terms of “unit apparatuses” and suggest a new, more rigorous function-based approach that focuses on the underlying fundamental physical and chemical processes and fluxes. For this purpose, we decompose the chemical process into so-called functional modules that fulfill specific tasks in the course of the process. The functional modules itself can be further decomposed and represented by a linear combination of elementary process functions. These are basis vectors in thermodynamic state space. Within this theoretical framework we can individually examine possible process routes and identify resistances in individual process steps. This allows us to analyze and propose possible options for the intensification of the considered chemical process.

Hannsjörg Freund; Kai Sundmacher

2008-01-01T23:59:59.000Z

233

Experience in operating and reconstructing the turbine bearings of units of the Sayano-Shushenskoe hydroelectric station  

Science Journals Connector (OSTI)

The 15-year operating experience showed that the right choice of the design of the guide bearing was made. Today it can be considered among the most reliable components of the turbine. The existing opinion abo...

G. I. Nikitenko

1994-04-01T23:59:59.000Z

234

Shutdown and low-power operation at commercial nuclear power plants in the United States. Final report  

SciTech Connect (OSTI)

The report contains the results of the NRC Staff`s evaluation of shutdown and low-power operations at US commercial nuclear power plants. The report describes studies conducted by the staff in the following areas: Operating experience related to shutdown and low-power operations, probabilistic risk assessment of shutdown and low-power conditions and utility programs for planning and conducting activities during periods the plant is shut down. The report also documents evaluations of a number of technical issues regarding shutdown and low-power operations performed by the staff, including the principal findings and conclusions. Potential new regulatory requirements are discussed, as well as potential changes in NRC programs. A draft report was issued for comment in February 1992. This report is the final version and includes the responses to the comments along with the staff regulatory analysis of potential new requirements.

Not Available

1993-09-01T23:59:59.000Z

235

New Resin Improves Efficiency, Reduces Costs in Hanford Site Groundwater  

Broader source: Energy.gov (indexed) [DOE]

Resin Improves Efficiency, Reduces Costs in Hanford Site Resin Improves Efficiency, Reduces Costs in Hanford Site Groundwater Treatment New Resin Improves Efficiency, Reduces Costs in Hanford Site Groundwater Treatment March 1, 2012 - 12:00pm Addthis RICHLAND, Wash. - A new resin EM, the Richland Operations Office, and contractor CH2M HILL Plateau Remediation Company are using in contaminated groundwater treatment is expected to increase efficiency and reduce costs in the operation of pump-and-treat facilities along the Columbia River at the Hanford site. The higher performance resin, SIR-700, is expected to reduce DOE's estimated operation and maintenance costs over the lifetime of the 100-DX Groundwater Treatment Facility by approximately $20 million. In comparison to this expected cost savings, the construction cost for the treatment

236

Arsenic Removal from Groundwater Using Iron Electrocoagulation: Effect of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Arsenic Removal from Groundwater Using Iron Electrocoagulation: Effect of Arsenic Removal from Groundwater Using Iron Electrocoagulation: Effect of Charge Dosage Rate Title Arsenic Removal from Groundwater Using Iron Electrocoagulation: Effect of Charge Dosage Rate Publication Type Journal Article Refereed Designation Refereed LBNL Report Number LBNL-6221E Year of Publication 2013 Authors Amrose, Susan, Ashok J. Gadgil, Venkat Srinivasan, Kristin Kowolik, Marc Muller, Jessica Huang, and Robert Kostecki Journal Joournal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering Volume 48 Issue 9 Pagination 1019-1030 Date Published 04/2013 Keywords arsenic, bangladesh, Cambodia, dosage rate, electrocoagulation, india, water treatment Abstract We demonstrate that electrocoagulation (EC) using iron electrodes can reduce arsenic below 10 ÎĽg/L in synthetic Bangladesh groundwater and in real groundwater from Bangladesh and Cambodia while investigating the effect of operating parameters that are often overlooked, such as charge dosage rate. We measure arsenic removal performance

237

Design and operational considerations of United States commercial near-surface low-level radioactive waste disposal facilities  

SciTech Connect (OSTI)

In accordance with the Low-Level Radioactive Waste Policy Amendments Act of 1985, states are responsible for providing for disposal of commercially generated low-level radioactive waste (LLW) within their borders. LLW in the US is defined as all radioactive waste that is not classified as spent nuclear fuel, high-level radioactive waste, transuranic waste, or by-product material resulting from the extraction of uranium from ore. Commercial waste includes LLW generated by hospitals, universities, industry, pharmaceutical companies, and power utilities. LLW generated by the country`s defense operations is the responsibility of the Federal government and its agency, the Department of Energy. The commercial LLRW disposal sites discussed in this report are located near: Sheffield, Illinois (closed); Maxey Flats, Kentucky (closed); Beatty, Nevada (closed); West Valley, New York (closed); Barnwell, South Carolina (operating); Richland, Washington (operating); Ward Valley, California, (proposed); Sierra Blanca, Texas (proposed); Wake County, North Carolina (proposed); and Boyd County, Nebraska (proposed). While some comparisons between the sites described in this report are appropriate, this must be done with caution. In addition to differences in climate and geology between sites, LLW facilities in the past were not designed and operated to today`s standards. This report summarizes each site`s design and operational considerations for near-surface disposal of low-level radioactive waste. The report includes: a description of waste characteristics; design and operational features; post closure measures and plans; cost and duration of site characterization, construction, and operation; recent related R and D activities for LLW treatment and disposal; and the status of the LLW system in the US.

Birk, S.M.

1997-10-01T23:59:59.000Z

238

Superfund record of decision (EPA Region 1): Otis Air National Guard (USAF), Operable Unit 3, Falmouth, MA, September 30, 1998  

SciTech Connect (OSTI)

The Massachusetts Military Reservation (MMR) on Cape Cod, Massachusetts, lies within the boundaries of the towns of Falmouth, Mashpee, Sandwich, and Bourne. The Area of Contamination (AOC) known as Chemical Spill 3 United States Coast Guard (CS-3 (USCG)) is located on Lee Road, in the south central portion of the MMR. The Air Force Center for Environmental Excellence (AFCEE) Installation Restoration Program Office at Otis Air National Guard (ANG) Base, Massachusetts.

NONE

1999-03-01T23:59:59.000Z

239

Calendar year 1996 annual groundwater monitoring report for the Chestnut Ridge Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This annual monitoring report contains groundwater and surface water monitoring data obtained in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime) during calendar year (CY) 1996. The Chestnut Ridge Regime encompasses a section of Chestnut Ridge west of Scarboro Road and east of an unnamed drainage feature southwest of the US Department of Energy (DOE) Oak Ridge Y-12 Plant (unless otherwise noted, directions are in reference to the Y-12 Plant administrative grid). The Chestnut Ridge Regime contains several sites used for management of hazardous and nonhazardous wastes associated with plant operations. Groundwater and surface water quality monitoring associated with these waste management sites is performed under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). Included in this annual monitoring report are the groundwater monitoring data obtained in compliance with the Resource Conservation and Recovery Act (RCRA) Post-Closure Permit for the Chestnut Ridge Regime (post-closure permit) issued by the Tennessee Department of Environment and Conservation (TDEC) in June 1996. Besides the signed certification statement and the RCRA facility information summarized below, condition II.C.6 of the post-closure permit requires annual reporting of groundwater monitoring activities, inclusive of the analytical data and results of applicable data evaluations, performed at three RCRA hazardous waste treatment, storage, or disposal (TSD) units: the Chestnut Ridge Sediment Disposal Basin (Sediment Disposal Basin), the Chestnut Ridge Security Pits (Security Pits), and Kerr Hollow Quarry.

NONE

1997-02-01T23:59:59.000Z

240

Groundwater Sampling | Open Energy Information  

Open Energy Info (EERE)

Groundwater Sampling Groundwater Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Groundwater Sampling Details Activities (3) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Water Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Water composition and source of fluids. Determination of mixing ratios between different fluid end-members. Determination of fluid recharge rates and residence times. Thermal: Water temperature. Dictionary.png Groundwater Sampling: Groundwater sampling is done to characterize the chemical, thermal, or hydrological properties of subsurface aqueous systems. Groundwater sampling

Note: This page contains sample records for the topic "groundwater operable unit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Borehole Data Package for One CY 2005 CERCLA Well 699-S20-E10, 300-FF-5 Operable Unit, Hanford Site, Washington  

SciTech Connect (OSTI)

This report supplies the information obtained during drilling, characterization, and installation of the new groundwater monitoring well. This document also provides a compilation of hydrogeologic and well construction information obtained during drilling, well development, and sample collection/analysis activities.

Williams, Bruce A.; Bjornstad, Bruce N.; Lanigan, David C.; Keller, Jason M.; Rockhold, Mark L.

2006-03-29T23:59:59.000Z

242

Abstract--The seven Independent System Operators and Regional Transmission Organizations (ISO/RTOs) in the United  

E-Print Network [OSTI]

and its development. The two settlement energy market, ancillary services and reliability pricing market, energy market operation, outage coordination, transactions settlement, billing and collections, risk in recent years. This paper shows how PJM plays essential roles in managing and improving flow of energy

McCalley, James D.

243

Lead Groundwater Contamination of Groundwater in the Northeast ...  

E-Print Network [OSTI]

The detailed description of the migration of pollutants is fundamental for the groundwater monitoring and it ... historical data with a, groundwater contamination sampling for water quality analyses ... can be toxic to living organisms. Lead can ...

2001-03-12T23:59:59.000Z

244

Buying, Selling and Exporting Groundwater: Implications for Groundwater Conservation Districts  

E-Print Network [OSTI]

in a Sales/ Lease Agreement, by Sandra Burns. Regulation of Exportation of Underground Water, by Doug Caroom. Roberts County Transportation Permits, by C.E. Williams. Export Fees: A Groundwater District Limits and Uses, by Jace Houston. The report also... in Texas, by Ronald Kaiser. Groundwater Transactions: Buyers Perspective, by Russell Johnson. Purchasing Groundwater for Export: The Kinney County Proposal, by Lynn Sherman. Model Lease of Groundwater Rights, by Ned Meister. Protecting Your Land and Water...

Kaiser, Ronald; Lesikar, Bruce A.; Silvey, Valeen

245

Superfund record of decison (EPA Region 3): Aberdeen Proving Ground (Edgewood Area), J-field soil operable unit, Aberdeen Proving Ground, MD, September 27, 1996  

SciTech Connect (OSTI)

This Operable Unit (OU) consists of two main burn pits (the Northern Main Burn Pit and Southern Main Burn Pit). It also includes the Pushout Area, which consists of the O-ethyl-S-(2-iisoprop ylaminoethyl)methyl phosphonothiolate (VX) Burn Pit, the Mustard Burn Pit, and the Liquid Smoke Disposal Pit. This decision document addresses the actions to be taken toward remediating the principal threats provided by high levels of arsenic, lead, and PCBs at the J-Field SOU: (1) the removal of isolated hot spots of contamination from the SOU followed by (2) the construction of a Protective Soil Blanket (PSB) over the J-Field SOU.

NONE

1996-10-01T23:59:59.000Z

246

Cooling energy efficiency and classroom air environment of a school building operated by the heat recovery air conditioning unit  

Science Journals Connector (OSTI)

Abstract The recently-built school buildings have adopted novel heat recovery ventilator and air conditioning system. Heat recovery efficiency of the heat recovery facility and energy conservation ratio of the air conditioning unit were analytically modeled, taking the ventilation networks into account. Following that, school classroom displacement ventilation and its thermal stratification and indoor air quality indicated by the CO2 concentration have been numerically modeled concerning the effects of delivering ventilation flow rate and supplying air temperature. Numerical results indicate that the promotion of mechanical ventilation rate can simultaneously boost the dilution of indoor air pollutants and the non-uniformity of indoor thermal and pollutant distributions. Subsequent energy performance analysis demonstrates that classroom energy demands for ventilation and cooling could be reduced with the promotion of heat recovery efficiency of the ventilation facility, and the energy conservation ratio of the air conditioning unit decreases with the increasing temperatures of supplying air. Fitting correlations of heat recovery ventilation and cooling energy conservation have been presented.

Yang Wang; Fu-Yun Zhao; Jens Kuckelkorn; Di Liu; Li-Qun Liu; Xiao-Chuan Pan

2014-01-01T23:59:59.000Z

247

Characterization plan for the Oak Ridge National Laboratory Area-Wide Groundwater Program, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This characterization plan has been developed as part of the U.S. Department of Energy`s (DOE`s) investigation of the Groundwater Operable Unit (GWOU) at Oak Ridge National Laboratory (ORNL) located near Oak Ridge, Tennessee. The first iteration of the characterization plan is intended to serve as a strategy document to guide subsequent GWOU remedial investigations. The plan provides a rationale and organization for groundwater data acquisition, monitoring, and remedial actions to be performed during implementation of environmental restoration activities associated with the ORNL GWOU. It is important to note that the characterization plan for the ORNL GWOU is not a prototypical work plan. As such, remedial investigations will be conducted using annual work plans to manage the work activities, and task reports will be used to document the results of the investigations. Sampling and analysis results will be compiled and reported annually with a review of data relative to risk (screening level risk assessment review) for groundwater. This characterization plan outlines the overall strategy for the remedial investigations and defines tasks that are to be conducted during the initial phase of investigation. This plan is presented with the understanding that more specific addenda to the plan will follow.

Not Available

1994-08-01T23:59:59.000Z

248

Environmental, safety, and health plan for the remedial investigation of Waste Area Grouping 10, Operable Unit 3, at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program  

SciTech Connect (OSTI)

This document outlines the environmental, safety, and health (ES&H) approach to be followed for the remedial investigation of Waste Area Grouping (WAG) 10 at Oak at Ridge National Laboratory. This ES&H Plan addresses hazards associated with upcoming Operable Unit 3 field work activities and provides the program elements required to maintain minimal personnel exposures and to reduce the potential for environmental impacts during field operations. The hazards evaluation for WAG 10 is presented in Sect. 3. This section includes the potential radiological, chemical, and physical hazards that may be encountered. Previous sampling results suggest that the primary contaminants of concern will be radiological (cobalt-60, europium-154, americium-241, strontium-90, plutonium-238, plutonium-239, cesium-134, cesium-137, and curium-244). External and internal exposures to radioactive materials will be minimized through engineering controls (e.g., ventilation, containment, isolation) and administrative controls (e.g., procedures, training, postings, protective clothing).

Not Available

1993-10-01T23:59:59.000Z

249

Waste Isolation Pilot Plant Groundwater Protection Management Program Plan  

SciTech Connect (OSTI)

The DOE has mandated in DOE Order 5400.1 that its operations will be conducted in an environmentally safe manner. The Waste Isolation Pilot Plant (WIPP) will comply with DOE Order 5400.1 and will conduct its operations in a manner that ensures the safety of the environment and the public. This document outlines how the WIPP will protect and preserve groundwater within and surrounding the WIPP facility. Groundwater protection is just one aspect of the WIPP environmental protection effort. The WIPP groundwater surveillance program is designed to determine statistically if any changes are occurring in groundwater characteristics within and surrounding the WIPP facility. If a change is noted, the cause will be determined and appropriate corrective action initiated.

Not Available

1993-12-31T23:59:59.000Z

250

Review and evaluation of Transamerica Delaval, Inc. , diesel engine reliability and operability: Grand Gulf Nuclear Station Unit 1  

SciTech Connect (OSTI)

PNL and its consultants conclude that the TDI diesel engines at the GGNS have the needed operability and reliability to fulfill their intended (auxiliary) emergency power function for the first refueling cycle. This conclusion is reached with a number of understandings regarding limits to the engine requirements, NRC concurrence with MP and L findings/conclusions regarding items to be supplied to NRC, limitations on the engine Brake Mean Effective Pressure (BMEP), and MP and L's implementation of the modifications to their proposed surveillance and maintenance program.

Not Available

1984-07-01T23:59:59.000Z

251

Results of Phase I groundwater quality assessment for single-shell tank waste management areas T and TX-TY at the Hanford Site  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory (PNNL) conducted a Phase I, Resource Conservation and Recovery Act of 1976 (RCRA) groundwater quality assessment for the Richland Field Office of the U.S. Department of Energy (DOE-RL) under the requirements of the Federal Facility Compliance Agreement. The purpose of the investigation was to determine if the Single-Shell Tank Waste Management Areas (WMAs) T and TX-TY have impacted groundwater quality. Waste Management Areas T and TX-TY, located in the northern part of the 200 West Area of the Hanford Site, contain the 241-T, 241-TX, and 241-TY tank farms and ancillary waste systems. These two units are regulated under RCRA interim-status regulations (under 40 CFR 265.93) and were placed in assessment groundwater monitoring because of elevated specific conductance in downgradient wells. Anomalous concentrations of technetium-99, chromium, nitrate, iodine-129, and cobalt-60 also were observed in some downgradient wells. Phase I assessment, allowed under 40 CFR 265, provides the owner-operator of a facility with the opportunity to show that the observed contamination has a source other than the regulated unit. For this Phase I assessment, PNNL evaluated available information on groundwater chemistry and past waste management practices in the vicinity of WMAs T and TX-TY. Background contaminant concentrations in the vicinity of WMAs T and TX-TY are the result of several overlapping contaminant plumes resulting from past-practice waste disposal operations. This background has been used as baseline for determining potential WMA impacts on groundwater.

Hodges, F.N.

1998-01-01T23:59:59.000Z

252

Arrangement between the Office for Nuclear Regulation of Great Britain and the United States Department of Energy for the Exchange of Information and Co-operation in the Area of Nuclear Safety Matters  

Broader source: Energy.gov [DOE]

Arrangement between the Office for Nuclear Regulation of Great Britain and the United States Department of Energy for the Exchange of Information and Co-operation in the Area of Nuclear Safety Matters.

253

Waste Isolation Pilot Plant Groundwater Protection Management Program Plan  

SciTech Connect (OSTI)

The DOE established the Groundwater Monitoring Program (GMP) (WP 02-1) to monitor groundwater resources at WIPP. In the past, the GMP was conducted to establish background data of existing conditions of groundwater quality and quantity in the WIPP vicinity, and to develop and maintain a water quality database as required by regulation. Today the GMP is conducted consistent with 204.1.500 NMAC (New MexicoAdministrative Code), "Adoption of 40 CFR [Code of Federal Regulations] Part 264,"specifically 40 CFR §264.90 through §264.101. These sections of 20.4.1 NMAC provide guidance for detection monitoring of groundwater that is, or could be, affected by waste management activities at WIPP. Detection monitoring at WIPP is designed to detect contaminants in the groundwater long before the general population is exposed. Early detection will allow cleanup efforts to be accomplished before any exposure to the general population can occur. Title 40 CFR Part 264, Subpart F, stipulates minimum requirements of Resource Conservation and Recovery Act of 1976 (42 United States Code [U.S.C.] §6901 et seq.) (RCRA) groundwater monitoring programs including the number and location of monitoring wells; sampling and reporting schedules; analytical methods and accuracy requirements; monitoring parameters; and statistical treatment of monitoring data. This document outlines how WIPP intends to protect and preserve groundwater within the WIPP Land Withdrawal Area (WLWA). Groundwater protection is just one aspect of the WIPP environmental protection effort. An overview of the entire environmental protection effort can be found in DOE/WIPP 99-2194, Waste Isolation Pilot Plant Environmental Monitoring Plan. The WIPP GMP is designed to statistically determine if any changes are occurring in groundwater characteristics within and surrounding the WIPP facility. If a change is noted, the cause will then be determined and the appropriate corrective action(s) initiated.

Washington Regulatory and Environmental Services

2005-07-01T23:59:59.000Z

254

EM_GroundwaterSurveyRport_formatted.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

81006 81006 WILLOWSTICK TECHNOLOGIES LLC.: ELECTROMAGNETIC GROUNDWATER SURVEY: A demonstration of an Electromagnetic Groundwater Survey to Identify Flowpaths of Injected Water in the Shannon Sandstone, Naval Petroleum Reserve No. 3, Teapot Dome Field, Wyoming Final Report for the Period of July 26 - November 1, 2005 Date Completed: May 19, 2006 By Brian Black Prepared for the United States Department of Energy Office of Fossil Energy Work performed under Rocky Mountain Oilfield Testing Center (RMOTC) CRADA 2005-060 This document may contain protected CRADA information produced under CRADA no. 2005-060 and is not to be further disclosed for a period of 5 years from the date it was produced except as expressly provided for in the CRADA

255

Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit 1. Volume 5: Analysis of core damage frequency from seismic events during mid-loop operations  

SciTech Connect (OSTI)

In 1989 the US Nuclear Regulatory Commission (NRC) initiated an extensive program to examine carefully the potential risks during low-power and shutdown operations. The program included two parallel projects, one at Brookhaven National Laboratory studying a pressurized water reactor (Surry Unit 1) and the other at Sandia National Laboratories studying a boiling water reactor (Grand Gulf). Both the Brookhaven and Sandia projects have examined only accidents initiated by internal plant faults--so-called ``internal initiators.`` This project, which has explored the likelihood of seismic-initiated core damage accidents during refueling shutdown conditions, is complementary to the internal-initiator analyses at Brookhaven and Sandia. This report covers the seismic analysis at Surry Unit 1. All of the many systems modeling assumptions, component non-seismic failure rates, and human error rates that were used in the internal-initiator study at Surry have been adopted here, so that the results of the two studies can be as comparable as possible. Both the Brookhaven study and this study examine only two shutdown plant operating states (POSs) during refueling outages at Surry, called POS 6 and POS 10, which represent mid-loop operation before and after refueling, respectively. This analysis has been limited to work analogous to a level-1 seismic PRA, in which estimates have been developed for the core-damage frequency from seismic events during POSs 6 and 10. The results of the analysis are that the core-damage frequency of earthquake-initiated accidents during refueling outages in POS 6 and POS 10 is found to be low in absolute terms, less than 10{sup {minus}6}/year.

Budnitz, R.J. [Future Resources Associates, Inc., Berkeley, CA (United States); Davis, P.R. [PRD Consulting (United States); Ravindra, M.K.; Tong, W.H. [EQE International, Inc., Irvine, CA (United States)

1994-08-01T23:59:59.000Z

256

Evaluation of potential severe accidents during low power and shutdown operations at Grand Gulf, Unit 1: Evaluation of severe accident risks for plant operational state 5 during a refueling outage. Supporting MELCOR calculations, Volume 6, Part 2  

SciTech Connect (OSTI)

To gain a better understanding of the risk significance of low power and shutdown modes of operation, the Office of Nuclear Regulatory Research at the NRC established programs to investigate the likelihood and severity of postulated accidents that could occur during low power and shutdown (LP&S) modes of operation at commercial nuclear power plants. To investigate the likelihood of severe core damage accidents during off power conditions, probabilistic risk assessments (PRAs) were performed for two nuclear plants: Unit 1 of the Grand Gulf Nuclear Station, which is a BWR-6 Mark III boiling water reactor (BWR), and Unit 1 of the Surry Power Station, which is a three-loop, subatmospheric, pressurized water reactor (PWR). The analysis of the BWR was conducted at Sandia National Laboratories while the analysis of the PWR was performed at Brookhaven National Laboratory. This multi-volume report presents and discusses the results of the BWR analysis. The subject of this part presents the deterministic code calculations, performed with the MELCOR code, that were used to support the development and quantification of the PRA models. The background for the work documented in this report is summarized, including how deterministic codes are used in PRAS, why the MELCOR code is used, what the capabilities and features of MELCOR are, and how the code has been used by others in the past. Brief descriptions of the Grand Gulf plant and its configuration during LP&S operation and of the MELCOR input model developed for the Grand Gulf plant in its LP&S configuration are given.

Kmetyk, L.N.; Brown, T.D. [Sandia National Labs., Albuquerque, NM (United States)

1995-03-01T23:59:59.000Z

257

Groundwater Database | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Groundwater Database Groundwater Database Groundwater Database DOE has one of the largest ground water contamination problems and subsequent cleanup responsibilities for a single entity in the world, in terms of the sheer volume of affected groundwater, number of plumes, range of hydrogeologic settings, and diversity of contaminant types. The Groundwater Database was developed to provide a centralized location for information relating to groundwater flow, contamination, and remedial approaches across the DOE complex. The database provides DOE management and other interested parties with an easily accessible, high level understanding of the type of contamination, magnitude of contamination, and dynamics of groundwater systems at DOE sites. It also identifies remedial approaches, exit strategies, long-term stewardship requirements, regulatory

258

Remedial Design/Remedial Action Work Plan for Operable Units 6-05 and 10-04, Phase IV  

SciTech Connect (OSTI)

This Phase IV Remedial Design/Remedial Action Work Plan addresses the remediation of areas with the potential for UXO at the Idaho National Laboratory. These areas include portions of the Naval Proving Ground, the Arco High-Altitude Bombing Range, and the Twin Buttes Bombing Range. Five areas within the Naval Proving Ground that are known to contain UXO include the Naval Ordnance Disposal Area, the Mass Detonation Area, the Experimental Field Station, The Rail Car Explosion Area, and the Land Mine Fuze Burn Area. The Phase IV remedial action will be concentrated in these five areas. For other areas, such as the Arco High-Altitude Bombing Range and the Twin Buttes Bombing Range, ordnance has largely consisted of sand-filled practice bombs that do not pose an explosion risk. Ordnance encountered in these areas will be addressed under the Phase I Operations and Maintenance Plan that allows for the recovery and disposal of ordnance that poses an imminent risk to human health or the environment.

R. P. Wells

2006-11-14T23:59:59.000Z

259

Analysis of radiation exposure for naval units of Operation Crossroads. Volume 2. (Appendix A) target ships. Technical report  

SciTech Connect (OSTI)

External radiation doses are reconstructed for crews of support and target ships of Joint Task Force One at Operation CROSSROADS, 1946. Volume I describes the reconstruction methodology, which consists of modeling the radiation environment, to include the radioactivity of lagoon water, target ships, and support ship contamination; retracing ship paths through this environment; and calculating the doses to shipboard personnel. The USS RECLAIMER, a support ship, is selected as a representative ship to demonstrate this methodology. Doses for all other ships are summarized. Volume II (Appendix A) details the results for target ship personnel. Volume III (Appendix B) details the results for support ship personnel. Calculated doses for more than 36,000 personnel aboard support ships while at Bikini range from zero to 1.7 rem. Of those, approximately 34,000 are less than 0.5 rem. From the models provided, doses due to target ship reboarding and doses accrued after departure from Bikini can be calculated, based on the individual circumstances of exposure.

Weitz, R.; Thomas, C.; Klemm, J.; Stuart, J.; Knowles, M.

1982-03-03T23:59:59.000Z

260

Analysis of radiation exposure for naval units of Operation Crossroads. Volume 3. (Appendix B) support ships. Technical report  

SciTech Connect (OSTI)

External radiation doses are reconstructed for crews of support and target ships of Joint Task Force One at Operation CROSSROADS, 1946. Volume I describes the reconstruction methodology, which consists of modeling the radiation environment, to include the radioactivity of lagoon water, target ships, and support ship contamination; retracing ship paths through this environment; and calculating the doses to shipboard personnel. The USS RECLAIMER, a support ship, is selected as a representative ship to demonstrate this methodology. Doses for all other ships are summarized. Volume II (Appendix A) details the results for target ship personnel. Volume III (Appendix B) details the results for support ship personnel. Calculated doses for more than 36,000 personnel aboard support ships while at Bikini range from zero to 1.7 rem. Of those approximately 34,000 are less than 0.5 rem. From the models provided, doses due to target ship reboarding and doses accrued after departure from Bikini can be calculated, based on the individual circumstances of exposure.

Weitz, R.; Thomas, C.; Klemm, J.; Stuart, J.; Knowles, M.

1982-03-03T23:59:59.000Z

Note: This page contains sample records for the topic "groundwater operable unit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Hanford Site ground-water monitoring for 1994  

SciTech Connect (OSTI)

This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

Dresel, P.E.; Thorne, P.D.; Luttrell, S.P. [and others

1995-08-01T23:59:59.000Z

262

Annual report for RCRA groundwater monitoring projects at Hanford Site facilities for 1993  

SciTech Connect (OSTI)

This report presents the annual hydrogeologic evaluation of 20 Resource Conservation and Recovery Act of 1976 groundwater monitoring projects and 1 nonhazardous waste facility at the US Department of Energy`s Hanford Site. Most of the projects no longer receive dangerous waste; a few projects continue to receive dangerous waste constituents for treatment, storage, or disposal. The 20 RCRA projects comprise 30 waste management units. Ten of the units are monitored under groundwater quality assessment status because of elevated levels of indicator parameters. The impact of those units on groundwater quality, if any, is being investigated. If dangerous waste or waste constituents have entered groundwater, their concentration, distribution, and rate of migration are evaluated. Groundwater is monitored at the other 20 units to detect contamination, should it occur. This report provides an interpretation of groundwater data collected at the waste management units between October 1992 and September 1993. Recent groundwater quality is also described for the 100, 200, 300, and 600 Areas and for the entire Hanford Site. Widespread contaminants include nitrate, chromium, carbon tetrachloride, tritium, and other radionuclides.

Not Available

1994-02-01T23:59:59.000Z

263

Demonstration of On-site Innovative Technolegies: Case Studies in Soil and Groundwater Remediation  

Science Journals Connector (OSTI)

The United States Department of Defense is responsible for restoring a significant number of domestic military sites contaminated by soil and groundwater pollutants. With the end of the Cold War, the Departmen...

Daphne Kamely

1995-01-01T23:59:59.000Z

264

Case study of groundwater impact caused by underground mining  

SciTech Connect (OSTI)

An investigative methodology is presented to assist mining and regulatory personnel in determining the effect underground mining can have on local aquifers in the Appalachian coal region. The impact of underground mining on groundwater may be more extensive than first realized by the mining industry and regulatory agencies. The primary reason for this possible under-assessment of deep mining's influence on groundwater is the methods used to calculate groundwater movement. Since groundwater calculations are based on primary hydraulic conductivity, i.e. the conductivity through solid rock measured from rock core samples, erroneous results may be expected. In many cases, groundwater flow times and the corresponding areas of influence are much greater than those assumed since water is rapidly moved through fractured zones that commonly occur throughout Appalachia. A case study illustrating this phenomenon is drawn from underground mining operations in Pike County. A survey of 144 wells was conducted to determine if any loss of water supply and/or quality was found. This was correlated to the extent and time progression of underground mining operations. Other parameters qualified are water level fluctuations, groundwater quality, precipitation, seasonal effects, geology, and mine dewatering. The analysis includes a comprehensive compilation of a well inventory of domestic water supplies. The case study draws conclusions regarding cause and effect relationships.

Sloan, P.; Warner, R.C.

1984-12-01T23:59:59.000Z

265

Biological stability of groundwater  

SciTech Connect (OSTI)

Conventional (e.g., coagulation, flocculation, and filtration) or membrane filtration treatment trains were used to remove organic compounds from groundwater. For the conventional train with sand-anthracite columns, the assimilable organic carbon (AOC) of the groundwater was reduced from 349 {+-} 127 {micro}g/L C to 54 {+-} 51 {micro}g/L C. For the membrane filtration train, there was no statistical difference between the AOC of the raw water influent (388 {+-} 126 {micro}g C) and that of the membrane permeate (334 {+-} 156 {micro}g/L C), suggesting that this treatment produced biologically unstable water. Similar results were obtained using the heterotrophic growth response (HGR) method. Comparison of the biostability methods showed that HGR was positively correlated with AOC (r = 0.52; P < 0.0001; n = 156), indicating that AOC only partially explains the ability of heterotrophic bacteria to grow in water samples.

Noble, P.A. [Univ. of Maryland Biotechnology Inst., Baltimore, MD (United States). Center of Marine Biotechnology; Clark, D.L. [Irvine Ranch Water District, CA (United States); Olson, B.H. [Univ. of California, Irvine, CA (United States). School of Social Ecology, Environmental Analysis, and Design

1996-05-01T23:59:59.000Z

266

Questa Baseline and Pre-Mining Ground-Water Quality Investigation. 3. Historical Ground-Water  

E-Print Network [OSTI]

............................................................................................................................................................... 9 Mine history and ground-water development ....................................................................................................................................................... 11 Ground-water quality database.......................................................................................................................................................... 29 Compilation of complete database

267

Hanford Site groundwater monitoring for fiscal year 1996  

SciTech Connect (OSTI)

This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1996 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that affected groundwater quality on the site. Characterization and monitoring of the vadose zone during FY 1996 comprised primarily spectral gamma logging, soil-gas monitoring, and electrical resistivity tomography. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1995 and June 1996. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Smaller plumes of strontium-90, technetium-99, and plutonium also were present at levels above the U.S. Environmental Protection Agency or State of Washington interim drinking water standards. Uranium concentrations greater than the proposed drinking water standard were also observed. Nitrate, fluoride, chromium, carbon tetrachloride, chloroform, trichloroethylene, and cis-1,2-dichlomethylene were present in groundwater samples at levels above their U.S. Environmental Protection Agency or State of Washington maximum contaminant levels. The nitrate plume is the most extensive. Three-dimensional, numerical, groundwater models were applied to the Hanford Site to predict contaminant-flow paths and the impact of operational changes on site groundwater conditions. Other models were applied to assess the performance of three separate pump-and-treat systems.

Hartman, M.J.; Dresel, P.E.; Borghese, J.V. [eds.] [and others] [eds.; and others

1997-02-01T23:59:59.000Z

268

Remedial investigation/feasibility study of the Clinch River/Poplar Creek Operable Unit. Volume 5. Appendixes J, K, L, M, and N-other supporting information  

SciTech Connect (OSTI)

This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is Volume 5 of the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

NONE

1996-06-01T23:59:59.000Z

269

Safety Evaluation Report related to the operation of Watts Bar Nuclear Plant, Units 1 and 2 (Docket Numbers 50-390 and 50-391). Supplement Number 13  

SciTech Connect (OSTI)

This report supplements the Safety Evaluation Report (SER), NUREG-0847 (June 1982), Supplement No. 1 (September 1982), Supplement No. 2 (January 1984), Supplement No. 3 (January 1985), Supplement No. 4 (March 1985), Supplement No. 5 (November 1990), Supplement No. 6 (April 1991), Supplement No. 7 (September 1991), Supplement No. 8 (January 1992), Supplement No. 9 (June 1992), Supplement No. 10 (October 1992), Supplement No. 11 (April 1993), and Supplement No. 12 (October 1993), issued by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission with respect to the application filed by the Tennessee Valley Authority, as applicant and owner, for licenses to operate the Watts Bar Nuclear Plant, Units 1 and 2 (Docket Nos. 50-390 and 50-391). The facility is located in Rhea County, Tennessee, near the Watts Bar Dam on the Tennessee River. This supplement provides recent information regarding resolution of some of the outstanding and confirmatory items, and proposed license conditions identified in the SER. These issues relate to: Design criteria -- structures, components, equipment, and systems; Reactor; Instrumentation and controls; Electrical power systems; Auxiliary systems; Conduct of operations; Accident analysis; and Quality assurance.

Not Available

1994-04-01T23:59:59.000Z

270

Remedial investigation/feasibility study of the Clinch River/Poplar Creek operable unit. Volume 4. Information related to the feasibility study and ARARs. Appendixes G, H, I  

SciTech Connect (OSTI)

This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

NONE

1996-03-01T23:59:59.000Z

271

Classification of groundwater at the Nevada Test Site  

SciTech Connect (OSTI)

Groundwater occurring at the Nevada Test Site (NTS) has been classified according to the ``Guidelines for Ground-Water Classification Under the US Environmental Protection Agency (EPA) Ground-Water Protection Strategy`` (June 1988). All of the groundwater units at the NTS are Class II, groundwater currently (IIA) or potentially (IIB) a source of drinking water. The Classification Review Area (CRA) for the NTS is defined as the standard two-mile distance from the facility boundary recommended by EPA. The possibility of expanding the CRA was evaluated, but the two-mile distance encompasses the area expected to be impacted by contaminant transport during a 10-year period (EPA,s suggested limit), should a release occur. The CRA is very large as a consequence of the large size of the NTS and the decision to classify the entire site, not individual areas of activity. Because most activities are located many miles hydraulically upgradient of the NTS boundary, the CRA generally provides much more than the usual two-mile buffer required by EPA. The CRA is considered sufficiently large to allow confident determination of the use and value of groundwater and identification of potentially affected users. The size and complex hydrogeology of the NTS are inconsistent with the EPA guideline assumption of a high degree of hydrologic interconnection throughout the review area. To more realistically depict the site hydrogeology, the CRA is subdivided into eight groundwater units. Two main aquifer systems are recognized: the lower carbonate aquifer system and the Cenozoic aquifer system (consisting of aquifers in Quaternary valley fill and Tertiary volcanics). These aquifer systems are further divided geographically based on the location of low permeability boundaries.

Chapman, J.B.

1994-08-01T23:59:59.000Z

272

GROUNDWATER PROTECTION MANAGEMENT PROGRAM DESCRIPTION.  

SciTech Connect (OSTI)

THE DEPARTMENT OF ENERGY ORDER 5400.1, GENERAL ENVIRONMENTAL PROTECTION PROGRAM, REQUIRES THE DEVELOPMENT AND IMPLEMENTATION OF A GROUNDWATER PROTECTION PROGRAM. THE BNL GROUNDWATER PROTECTION MANAGEMENT PROGRAM DESCRIPTION PROVIDES AN OVERVIEW OF HOW THE LABORATORY ENSURES THAT PLANS FOR GROUNDWATER PROTECTION, MONITORING, AND RESTORATION ARE FULLY DEFINED, INTEGRATED, AND MANAGED IN A COST EFFECTIVE MANNER THAT IS CONSISTENT WITH FEDERAL, STATE, AND LOCAL REGULATIONS.

PAQUETTE,D.E.; BENNETT,D.B.; DORSCH,W.R.; GOODE,G.A.; LEE,R.J.; KLAUS,K.; HOWE,R.F.; GEIGER,K.

2002-05-31T23:59:59.000Z

273

Post-Closure Monitoring Report for Corrective Action Unit 339: Area 12 Fleet Operations Steam Cleaning Effluent Nevada Test Site, Nevada  

SciTech Connect (OSTI)

The Area 12 Fleet Operations Steam Cleaning Effluent site is located in the southeastern portion of the Area 12 Camp at the Nevada Test Site. This site is identified in the Federal Facility Agreement and Consent Order (1996) as Corrective Action Site (CAS) 12-19-01 and is the only CAS assigned to Corrective Action Unit (CAU) 339. Post-closure sampling and inspection of the site were completed on March 27, 2002. Post-closure monitoring activities were scheduled biennially (every two years) in the Post-Closure Monitoring Plan provided in the Closure Report for CAU 339: Area 12 Fleet Operations Steam Cleaning Effluent, Nevada Test Site (U.S. Department of Energy, Nevada Operations Office [DOEN], 1997). A baseline for the site was established by sampling in 1997. Based on the recommendations from the 1999 post-closure monitoring report (DOE/NV, 1999), samples were collected in 2000, earlier than originally proposed, because the 1999 sample results did not provide the expected decrease in total petroleum hydrocarbon (TPH) concentrations at the site. Sampling results from 2000 (DOE/NV, 2000) and 2001 (DOE/NV, 2001) revealed favorable conditions for natural degradation at the CAU 339 site, but because of differing sample methods and heterogeneity of the soil, data results from 2000 and later were not directly correlated with previous results. Post-closure monitoring activities for 2002 consisted of the following: (1) Soil sample collection from three undisturbed plots (Plots A, B, and C, Figure 2). (2) Sample analysis for TPH as oil and bio-characterization parameters (Comparative Enumeration Assay [CEA] and Standard Nutrient Panel [SNP]). (3) Site inspection to evaluate the condition of the fencing and signs. (4) Preparation and submittal of the Post-Closure Monitoring Report.

K. B. Campbell

2002-09-01T23:59:59.000Z

274

A pilot plant to treat chromium-contaminated groundwater  

SciTech Connect (OSTI)

The groundwater at a site in California is contaminated with hexavalent chromium. Different treatment options were tested. The options tested included: carbon adsorption, ion exchange, chemical treatment, reverse osmosis, and in-place fixation. Electrochemical treatment was the treatment of choice. Treatment operations were designed with turn down flexibility to allow operation at variable flow rates. Metal reduction is the first treatment step after collection of the groundwater and lowering of the pH to 3 in an on-line acid tank. Soluble ferrous ions are produced in an off-line electrochemical cell using sacrificial electrodes.

El-Shoubary, Y.; Speizer, N.; Seth, S.; Savoia, H. [Merck Mfg. Div., Somerset, NJ (United States)

1998-12-31T23:59:59.000Z

275

groundwater | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Groundwater Monitoring at NETL-Albany Contact NETL Key Staff Mission and Overview History Organization Awards & Recognition Education Site Enviromental Quality Visiting NETL Ground...

276

Audit of the Savannah River Site's Quality Control Program for Groundwater Sampling, IG-0405  

Broader source: Energy.gov (indexed) [DOE]

0, 1997 0, 1997 MEMORANDUM FOR: THE SECRETARY FROM: John C. Layton Inspector General SUBJECT: INFORMATION: Report on "Audit of the Savannah River Site's Quality Control Program for Groundwater Sampling" BACKGROUND The Savannah River Site's groundwater remediation program was managed by the Department of Energy's (Department) management and operating contractor for the site, Westinghouse Savannah River Company (Westinghouse). One component of the remediation

277

Questions about Groundwater Conservation Districts in Texas  

E-Print Network [OSTI]

Groundwater conservation districts (GCDs) are being created in many parts of Texas to allow local citizens to manage and protect their groundwater. This publication answers frequently asked questions about groundwater and GCDs....

Lesikar, Bruce J.; Silvy, Valeen

2008-09-22T23:59:59.000Z

278

Groundwater Discharge Permit and Registration (New Hampshire)  

Broader source: Energy.gov [DOE]

The Groundwater Discharge Permitting and Registration Program seeks to protect groundwater quality by establishing standards, criteria, and procedures for wastewater discharges. The program...

279

Anatomy of a Groundwater Uranium Plume  

Broader source: Energy.gov [DOE]

Groundwater containing legacy contaminants (pollutants that remain after their sources have been controlled) moves through aquifers in response to the hydraulic gradient. As the groundwater moves,...

280

Ground-water characterization field activities for 1995--1996 Laboratory for Energy-Related Health Research, University of California, Davis  

SciTech Connect (OSTI)

This report documents ground-water characterization field activities completed from August to December 1995 and in January 1996 at the Laboratory for Energy-Related Health Research (LEHR) in Davis, California. The ground water at LEHR is one of several operable units under investigation by Pacific Northwest National Laboratory for the US Department of Energy. The purpose of this work was to further characterize the hydrogeology beneath the LEHR site, with the primary focus on ground water. The objectives were to estimate hydraulic properties for the two uppermost saturated hydrogeologic units (i.e., HSU-1 and HSU-2), and to determine distributions of contaminants of concern in these units. Activities undertaken to accomplish these objectives include well installation, geophysical logging, well development, ground-water sampling, slug testing, Westbay ground-water monitoring system installation, continuous water-level monitoring, Hydropunch installation, and surveying. Ground-water samples were collected from 61 Hydropunch locations. Analytical results from these locations and the wells indicate high chloroform concentrations trending from west/southwest to east/northeast in the lower portion of HSU-1 and in the upper and middle portions of HSU-2. The chloroform appears to originate near Landfill 2. Tritium was not found above the MCL in any of the well or Hydropunch samples. Hexavalent chromium was found at four locations with concentrations above the MCL in HSU-1 and at one location in HSU-2. One well in HSU-1 had a total chromium concentration above the MCL. Nitrate-nitrogen above the MCL was found at several Hydropunch locations in both HSU-1 and HSU-2.

Liikala, T.L.; Lanigan, D.C.; Last, G.V. [and others

1996-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "groundwater operable unit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Groundwater Protection, Brookhaven National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Groundwater Groundwater placeholder DOE, BNL, elected officials, and community leaders mark the opening of the first off-site groundwater treatment system. From the outset, the Department of Energy (DOE) and the Brookhaven National Laboratory (BNL) considered the protection of human health to be the most important goal of the cleanup program. Because exposure to groundwater contamination had the greatest potential to impact human health, the focus was to ensure that local drinking water supplies were clean and safe. Early efforts concentrated on determining the locations of the contamination, installing treatment systems to clean up the groundwater, and remediating sources of contamination like landfills and underground tanks. DOE and the Lab are committed to protecting Long Island's sole-source aquifer, a vital natural resource.

282

Superfund record of decision (EPA Region 4): USDOE Oak Ridge Reservation, Lower Watts Bar Reservoir Operable Unit, Oak Ridge, TN, September 29, 1995  

SciTech Connect (OSTI)

The decision document presents the selected remedial action for the Lower Watts Bar Reservoir (LWBR) Operable Unit (OU). The selected remedy for the LWBR OU addresses the contamination of the Watts Bar Reservoir area from Tennessee River mile (TRM) 529.9 at Watts Bar Dam upstream to TRM 567.5 at the confluence of the Clinch and Tennessee Rivers. The response action was chosen from a full range of actions that could possibly address the two primary risks identified in the remedial investigation (RI). Risks to human health posed by LWBR include exposure to metals in deep sediment of the main river channel and to polychlorinated biphenyls (PCBs), chlordane, aldrin, arsenic, and mercury in fish tissue. The same response actions are applicable to reducing ecological risk in LWBR. The selected remedy uses existing institutional controls to reduce exposure to contaminated sediment; fish consumption advisories to reduce exposure to contaminants in fish tissue; and annual monitoring to detect changes in LWBR contaminant levels or mobility.

NONE

1996-02-01T23:59:59.000Z

283

Waste Management Plan for the Remedial Investigation of Waste Area Grouping 10, Operable Unit 3, at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program  

SciTech Connect (OSTI)

This Waste Management Plan (WMP) supplements the Remedial Investigation/Feasibility Study (RI/FS) Project WMP and defines the criteria and methods to be used for managing and characterizing waste generated during activities associated with the RI of 23 wells near the Old Hydrofracture Facility (OHF). These wells are within the Waste Area Grouping (WAG) 5 area of contamination (AOC) at Oak Ridge National Laboratory (ORNL). Field activities for the limited RI of Operable Unit (OU) 3 of WAG 10 will involve sampling and measurement of various environmental media (e.g., liquids and gases). Many of these activities will occur in areas known to be contaminated with radioactive materials or hazardous chemical substances, and it is anticipated that contaminated solid and liquid wastes and noncontaminated wastes will be generated as a result of these activities. On a project-wide basis, handling of these waste materials will be accomplished in accordance with the RI/FS Project WMP and the procedures referenced throughout the plan.

Not Available

1993-10-01T23:59:59.000Z

284

Remedial Investigation Work Plan for Chestnut Ridge Operable Unit 1 (Chestnut Ridge Security Pits) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This document outlines the activities necessary to conduct a Remedial Investigation (RI) of the Chestnut Ridge Security Pits (CRSP) at the Oak Ridge Y-12 Plant. The CRSP, also designated Chestnut Ridge Operable Unit (OU) 1, is one of four OUs along Chestnut Ridge on the Oak Ridge Reservation (ORR). The purpose of the RI is to collect data to (1) evaluate the nature and extent of known and suspected contaminants, (2) support an Ecological Risk Assessment (ERA) and a Human Health Risk Assessment (HHRA), (3) support the feasibility study in the development and analysis of remedial alternatives, and (4) ultimately, develop a Record of Decision (ROD) for the site. This chapter summarizes the regulatory background of environmental investigation on the ORR and the approach currently being followed and provides an overview of the RI to be conducted at the CRSP. Subsequent chapters provide details on site history, sampling activities, procedures and methods, quality assurance (QA), health and safety, and waste management related to the RI.

Not Available

1994-03-01T23:59:59.000Z

285

Remedial investigation/feasibility study Work Plan and addenda for Operable Unit 4-12: Central Facilities Area Landfills II and III at the Idaho National Engineering Laboratory  

SciTech Connect (OSTI)

This document is divided into two main sections -- the Work Plan and the addenda. The Work Plan describes the regulatory history and physical setting of Operable Unit 4-12, previous sampling activities, and data. It also identifies a preliminary conceptual model, preliminary remedial action alternatives, and preliminary applicable or relevant and appropriate requirements. In addition, the Work Plan discusses data gaps and data quality objectives for proposed remedial investigation activities. Also included are tasks identified for the remedial investigation/feasibility study (RI/FS) and a schedule of RI/FS activities. The addenda include details of the proposed field activities (Field Sampling Plan), anticipated quality assurance activities (Quality Assurance Project Plan), policies and procedures to protect RI/FS workers and the environment during field investigations (Health and Safety Plan), and policies, procedures, and activities that the Department of Energy will use to involve the public in the decision-making process concerning CFA Landfills II and III RI/FS activities (Community Relations Plan).

Keck, K.N.; Stormberg, G.J.; Porro, I.; Sondrup, A.J.; McCormick, S.H.

1993-07-01T23:59:59.000Z

286

Superfund Record of Decision (EPA Region 8): Ogden Defense Depot, Operable Unit 1, Weber County, UT. (Second remedial action), June 1992  

SciTech Connect (OSTI)

Since 1941, the 1,100-acre Ogden Defense Depot (DDOU) site, located in Ogden, Weber County, Utah, has been a key installation in the Department of Defense supply system. Operable Unit 1, which is located in the southwest part of the DDOU, is composed of the backfill material in the Plain City Canal, Burial Site 1, and Burial Site 3-B. Burial Site 1 was reported to have been used for the disposal of riot control agent (chloroacetophenone) and white smoke (hexachloroethane) containers in the 1940's. In the early 1960's, Burial Site 3-B was reportedly the burying ground for over 1,000 arctic-style rubber boots. The ROD addresses a final remedy for OU1 that will reduce the principal threats posed by contaminated soil and shallow ground water at the site. The primary contaminants of concern affecting the soil, debris, and ground water are VOCs, including TCE; other organics, including dioxins and pesticides; and metals, including arsenic and lead.

Not Available

1992-06-26T23:59:59.000Z

287

Hanford Site Creates One-Touch Wonder for Groundwater Treatment Systems |  

Broader source: Energy.gov (indexed) [DOE]

Creates One-Touch Wonder for Groundwater Treatment Creates One-Touch Wonder for Groundwater Treatment Systems Hanford Site Creates One-Touch Wonder for Groundwater Treatment Systems April 29, 2013 - 12:00pm Addthis The interior of a pump-and-treat system along the Columbia River at the Hanford Site. With the push of a button, workers can now power the site’s five systems along the river that are working to extract and treat contaminated groundwater. The interior of a pump-and-treat system along the Columbia River at the Hanford Site. With the push of a button, workers can now power the site's five systems along the river that are working to extract and treat contaminated groundwater. RICHLAND, Wash. - Engineers and operators supporting the Richland Operations Office at the Hanford site found a way to start and stop

288

Hanford Site Creates One-Touch Wonder for Groundwater Treatment Systems |  

Broader source: Energy.gov (indexed) [DOE]

Hanford Site Creates One-Touch Wonder for Groundwater Treatment Hanford Site Creates One-Touch Wonder for Groundwater Treatment Systems Hanford Site Creates One-Touch Wonder for Groundwater Treatment Systems April 29, 2013 - 12:00pm Addthis The interior of a pump-and-treat system along the Columbia River at the Hanford Site. With the push of a button, workers can now power the site’s five systems along the river that are working to extract and treat contaminated groundwater. The interior of a pump-and-treat system along the Columbia River at the Hanford Site. With the push of a button, workers can now power the site's five systems along the river that are working to extract and treat contaminated groundwater. RICHLAND, Wash. - Engineers and operators supporting the Richland Operations Office at the Hanford site found a way to start and stop

289

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration  

E-Print Network [OSTI]

, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL

Siefert, Chris

290

Post-Closure Monitoring Report for Corrective Action Unit 339: Area 12 Fleet Operations Steam Cleaning Discharge Area Nevada Test Site, Nevada  

SciTech Connect (OSTI)

The Area 12 Fleet Operations Steam Cleaning site is located in the southeast portion of the Area 12 Camp at the Nevada Test Site (Figure 1). This site is identified in the Federal Facility Agreement and Consent Order (FFACO, 1996) as Corrective Action Site (CAS) 12-19-01 and is the only CAS assigned to Corrective Action Unit (CAU) 339. Post-closure sampling and inspection of the site were completed on March 23, 2001. Because of questionable representativeness and precision of the results, the site was resampled on June 12, 2001. Post-closure monitoring activities were scheduled biennially (every two years) in the Post-Closure Monitoring Plan provided in the December 1997 Closure Report for CAU 339: Area 12 Fleet Operations Steam Cleaning Discharge Area, Nevada Test Site (U.S. Department of Energy, Nevada Operations Office [DOE/NV], 1997). If after six years the rate of degradation appears to be so slow that the greatest concentration of total petroleum hydrocarbons (TPH) present at the site would not decay within 30 years of the site closure, the site will be reevaluated with consideration to enriching the impacted soil at the site to enhance the degradation process. A baseline for the site was established by sampling in 1997. Based on the recommendations from the 1999 post-closure monitoring report, samples were collected in 2000, earlier than originally proposed, because the 1999 sample results did not provide the expected decrease in TPH concentrations at the site. Sampling results from 2000 revealed favorable conditions for natural degradation at the CAU 339 site, but because of differing sample methods and heterogeneity of the soil, the data results from 2000 were not directly correlated with previous results. Post-closure monitoring activities for 2001 consisted of the following: Soil sample collection from three undisturbed plots (Plots A, B, and C, Figure 2); Sample analysis for TPH as oil and bio-characterization parameters (Comparative Enumeration Assay [CEA] and Standard Nutrient Panel [SNP]); Site inspection to evaluate the condition of the fencing and signs; and Preparation and submittal of the Post-Closure Monitoring Report.

A. T. Urbon

2001-08-01T23:59:59.000Z

291

Total Petroleum Systems and Assessment Units (AU)  

E-Print Network [OSTI]

Total Petroleum Systems (TPS) and Assessment Units (AU) Field type Surface water Groundwater X X X X X X X X AU 00000003 Oil/ Gas X X X X X X X X Total X X X X X X X Total Petroleum Systems (TPS) and Assessment Units (AU) Field type Total undiscovered petroleum (MMBO or BCFG) Water per oil

Torgersen, Christian

292

IMPROVING THE EFFICIENCY OF AN EXISTING GROUNDWATER REMEDIATION SYSTEM  

E-Print Network [OSTI]

.9 kilowatt total) 14 #12;ENERGY IMPROVEMENT BENEFITS 15 #12;RETURN ON INVESTMENT: SOLAR PANELS 16 #12 of grid energy with solar panel arrays Long-term operations and maintenance costs were significantly.7 kilowatt total) 13 #12;GROUNDWATER SYSTEM ENERGY IMPROVEMENTS ­ Northern Solar Array: 56 panel system (10

Illinois at Urbana-Champaign, University of

293

Superfund record of decision (EPA Region 3): Tobyhanna Army Depot, operable unit 3, area of Concern (AOC) 37, building 10-c and area of concern (AOC) 38, building s-90, Monroe County, Tobyhanna, PA, July 12, 1996  

SciTech Connect (OSTI)

This decision document presents a determination that no further action is necessary to protect human health and the environment for Operable Unit No. 3 (OU3), Building 10-C and Building S-90 at the Tobyhanna Army Depot, Tobyhanna Monroe County, Pennsylvania (TYAD).

NONE

1996-08-01T23:59:59.000Z

294

Bioremediation of contaminated groundwater  

DOE Patents [OSTI]

Disclosed is an apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid (NF) is selected to simulated the growth and reproduction of indigenous subsurface microorganisms capable of degrading the contaminants; an oxygenated fluid (OF) is selected to create an aerobic environment with anaerobic pockets. NF is injected periodically while OF is injected continuously and both are extracted so that both are drawn across the plume. NF stimulates microbial colony growth; withholding it periodically forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is acceptable. NF can be methane and OF be air, for stimulating production of methanotrophs to break down chlorohydrocarbons, especially TCE and tetrachloroethylene.

Hazen, T.C.; Fliermans, C.B.

1994-01-01T23:59:59.000Z

295

Bioremediation of contaminated groundwater  

DOE Patents [OSTI]

An apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid is selected to stimulate the growth and reproduction of indigenous subsurface microorganisms that are capable of degrading the contaminants; an oxygenated fluid is selected to create a generally aerobic environment for these microorganisms to degrade the contaminants, leaving only pockets that are anaerobic. The nutrient fluid is injected periodically while the oxygenated fluid is injected continuously and both are extracted so that both are drawn across the plume. The nutrient fluid stimulates microbial colony growth; withholding it periodicially forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is reduced to an acceptable, preselected level. The nutrient fluid can be methane and the oxygenated fluid air for stimulating production of methanotrophs to break down chlorohydrocarbons, especially trichloroethylene (TCE) and tetrachloroethylene.

Hazen, Terry C. (Augusta, GA); Fliermans, Carl B. (Augusta, GA)

1995-01-01T23:59:59.000Z

296

JGI - Why Sequence Contaminated Groundwater?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contaminated Groundwater? Contaminated Groundwater? Because the majority of microorganisms in nature have never been cultured, little is known about their genetic properties, biochemical functions, and metabolic characteristics. Although the sequence of the microbial community "genome" can now be determined with high-throughput sequencing technology, the complexity and magnitude of most microbial communities make meaningful data acquisition and interpretation difficult. Thus, the sequence determination of a groundwater microbial community with manageable diversity and complexity (~20 phylotypes) is a timely challenge. The samples for this project come from the Natural and Accelerated Bioremediation Research (NABIR) Field Research Center (FRC), Well FW-010. The overall objective is to provide a fundamental and comprehensive

297

Managing Texas Groundwater Resources through Groundwater Conservation Districts  

E-Print Network [OSTI]

This publication gives an overview of Texas water law and the regulations governing groundwater conservation districts. The powers and responsibilities of districts are summarized. Color maps show the coverage of existing conservation and special...

Fipps, Guy

2002-03-01T23:59:59.000Z

298

Nuclear Operations Application to Environmental Restoration at Corrective Action Unit 547, Miscellaneous Contaminated Waste Sites, at the Nevada National Security Site  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office has responsibility for environmental restoration at the Nevada National Security Site (formerly the Nevada Test Site). This includes remediation at locations where past testing activities have resulted in the release of plutonium to the environment. One of the current remediation efforts involves a site where an underground subcritical nuclear safety test was conducted in 1964. The underground test was vented through a steel pipe to the surface in a closed system where gas samples were obtained. The piping downstream of the gas-sampling apparatus was routed belowground to a location where it was allowed to vent into an existing radioactively contaminated borehole. The length of the pipe above the ground surface is approximately 200 meters. This pipe remained in place until remediation efforts began in 2007, at which time internal plutonium contamination was discovered. Following this discovery, an assessment was conducted to determine the quantity of plutonium present in the pipe. This site has been identified as Corrective Action Unit (CAU) 547, Miscellaneous Contaminated Waste Sites. The quantity of plutonium identified at CAU 547 exceeded the Hazard Category 3 threshold but was below the Hazard Category 2 threshold specified in DOE Standard DOE-STD-1027-92. This CAU, therefore, was initially categorized as a Hazard Category 3 environmental restoration site. A contaminated facility or site that is initially categorized as Hazard Category 3, however, may be downgraded to below Hazard Category 3 if it can be demonstrated through further analysis that the form of the material and the energy available for release support reducing the hazard category. This is an important consideration when performing hazard categorization of environmental restoration sites because energy sources available for release of material are generally fewer at an environmental restoration site than at an operating facility and environmental restoration activities may result in the complete removal of source material.

Kevin Cabble (NSO), Mark Krauss and Patrick Matthews (N-I)

2011-03-03T23:59:59.000Z

299

Hanford Site ground-water monitoring for 1993  

SciTech Connect (OSTI)

This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

Dresel, P.E.; Luttrell, S.P.; Evans, J.C. [and others

1994-09-01T23:59:59.000Z

300

Five-year summary and evaluation of operations and performance of the Utica aquifer and North Lake Basin Wetlands restoration project in 2004-2009.  

SciTech Connect (OSTI)

This document reviews the performance of the groundwater (and wetlands) restoration program implemented by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) at the former CCC/USDA grain storage facility in Utica, Nebraska, during the first five years (2004-2009) of this initiative. The report summarizes treatment system operational data and regulatory compliance monitoring results for the site during this period, together with the results of the targeted groundwater sampling and analysis for volatile organic compounds (VOCs) conducted in early 2010 (following completion of the fifth year of systems operation), to assess the initial five years of progress of the Utica remediation effort. On the basis of the 2003 groundwater sampling results, a remedial system employing 4 extraction wells (GWEX1-GWEX4), with groundwater treatment by spray irrigation and conventional air stripping, was implemented with the concurrence of the CCC/USDA and the agencies (Table 1.1). The principal components of the system are shown in Figure 1.3 and are briefly described in Section 1.2. Operation of well GWEX4 and the associated air stripper began on October 29, 2004, and routine operation of wells GWEX1-GWEX3 and the spray irrigation treatment units began on November 22, 2004.

LaFreniere, L. M. (Environmental Science Division) [Environmental Science Division

2011-09-13T23:59:59.000Z

Note: This page contains sample records for the topic "groundwater operable unit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Groundwater Conservation Districts: Success Stories  

E-Print Network [OSTI]

Demand for water is increasing, so our aquifers must be conserved and protected. The Groundwater Conservation Districts in Texas are carrying out a number of successful programs in the areas of education and public awareness, technical assistance...

Porter, Dana; Persyn, Russell A.; Enciso, Juan

1999-09-06T23:59:59.000Z

302

 Illinois Groundwater Protection Act (Illinois)  

Broader source: Energy.gov [DOE]

It is the policy of the State of Illinois to restore, protect, and enhance the groundwaters of the State, as a natural and public resource. The State recognizes the essential and pervasive role of...

303

Mixed Waste Management Facility (MWMF) groundwater monitoring report. Second quarter 1993  

SciTech Connect (OSTI)

Groundwater monitoring continued at the Savannah River Plant. During second quarter 1993, nine constituents exceeded final Primary Drinking Water Standards in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility, the Old Burial Ground, the E-Area Vaults, and the proposed Hazardous Waste/Mixed Waste Disposal Vaults. As in previous quarters, tritium and trichloroethylene were the most widespread constituents. Chloroethene (vinyl chloride), dichloromethane (methylene chloride), 1,1-dichloroethylene, gross alpha, lead, nonvolatile beta, or tetrachloroethylene also exceeded standards in one or more wells. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters.

Not Available

1993-09-01T23:59:59.000Z

304

Y-12 Groundwater Protection Program Groundwater and Surface Water Sampling and Analysis Plan For Calendar Year 2009  

SciTech Connect (OSTI)

This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2009 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2009 will be in accordance with DOE Order 540.1 requirements and the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2009 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation. Modifications to the CY 2009 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan. The following sections of this report provide details regarding the CY 2009 groundwater and surface water monitoring activities. Section 2 describes the monitoring locations in each regime and the processes used to select the sampling locations. A description of the field measurements and laboratory analytes is provided in Section 3; sample collection methods and procedures are described in Section 4; and Section 5 lists the documents cited for more detailed operational and technical information.

Elvado Environmental LLC

2008-12-01T23:59:59.000Z

305

Strategic Plan for Groundwater Monitoring at the Waste Isolation Pilot Plant  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WIPP-03-3230 WIPP-03-3230 Strategic Plan for Groundwater Monitoring at the Waste Isolation Pilot Plant February 2003 United States Department of Energy Waste Isolation Pilot Plant Carlsbad Field Office Carlsbad, New Mexico DOE/WIPP 03-3230 ii DOE/WIPP 03-3230 iii Table of Contents EXECUTIVE SUMMARY ....................................................................................... viii 1. Introduction.................................................................................................... 1 1.1 Overview .................................................................................................. 1 1.2 Historical Perspective .............................................................................. 1 1.2.1 Evolution of the Groundwater-Monitoring Well Network

306

Mixed Waste Management Facility FSS Well Data Groundwater Monitoring Report. Fourth Quarter 1994 and 1994 summary  

SciTech Connect (OSTI)

During fourth quarter 1994, ten constituents exceeded final Primary Drinking Water Standards (PDWS) in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility, the Old Burial Ground, the E-Area Vaults, the proposed Hazardous Waste/Mixed Waste Disposal Vaults, and the F-Area Sewage Sludge Application Site. No constituent exceeded final PDWS in samples from the upgradient monitoring wells. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters.

Chase, J.A.

1995-03-01T23:59:59.000Z

307

Mixed Waste Management Facility groundwater monitoring report, First quarter 1994  

SciTech Connect (OSTI)

During first quarter 1994, nine constituents exceeded final Primary Drinking Water Standards in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility, the Old Burial Ground, the E-Area Vaults, the proposed Hazardous Waste/Mixed Waste Disposal Vaults, and the F-Area Sewage Sludge Application Site. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents. Chloroethene (vinyl chloride), copper, 1,1-dichloroethylene, lead, mercury, nonvolatile beta, or tetrachloroethylene also exceeded standards in one or more wells. Elevated constituents were found in numerous Aquifer Zone IIB{sub 2} (Water Table) and Aquifer Zone IIB{sub 1}, (Barnwell/McBean) wells and in one Aquifer Unit IIA (Congaree) well. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters.

Not Available

1994-06-01T23:59:59.000Z

308

Groundwater maps of the Hanford Site, June 1993  

SciTech Connect (OSTI)

The Groundwater Maps of the Hanford Site, June 1993 is an update of the series of reports that document the configuration of the uppermost unconfined aquifer beneath the Hanford Site. This report series presents the semiannual water level measurements taken at site groundwater monitoring wells each June and December and the groundwater maps derived from these measurements. These reports document the changes in the groundwater level at Hanford as the site has transitioned from nuclear material production to environmental restoration and remediation. In addition, these reports provide water level data to support the various site characterization and groundwater monitoring programs currently in progress on the Hanford Site. Groundwater Maps of the Hanford Site are prepared for the US Department of Energy, Office of Environmental Restoration and Waste Management, by the Hanford Site Operations and Engineering Contractor, Westinghouse Hanford Company (WHC). This document fulfills reporting requirements specified in WHC (1993), Section 8.0 {open_quotes}Water Quality{close_quotes} and also described in the Environmental Monitoring Plan for the Hanford Site (DOE-RL 1991). Maps depicting the water table beneath the Hanford Site south of the Columbia River are presented in this report. Appendix A lists the well identification number, depth to water, casing elevating and the water level elevation for each well measured during June 1993. A summary discussion of the data is included with a well index map, the depth to water map and the contoured map of the water table surface for the Hanford Site and each of the three operational areas (the 100, 200, and 300-1100 Areas).

Kasza, G.L.; Hartman, M.J.; Jordan, W.A.; Weekes, D.C.

1994-02-01T23:59:59.000Z

309

Thermal Removal Of Tritium From Concrete And Soil To Reduce Groundwater Impacts  

SciTech Connect (OSTI)

Legacy heavy-water moderator operations at the Savannah River Site (SRS) have resulted in the contamination of equipment pads, building slabs, and surrounding soil with tritium. At the time of discovery the tritium had impacted the shallow (< 3-m) groundwater at the facility. While tritium was present in the groundwater, characterization efforts determined that a significant source remained in a concrete slab at the surface and within the associated vadose zone soils. To prevent continued long-term impacts to the shallow groundwater a CERCLA non-time critical removal action for these source materials was conducted to reduce the leaching of tritium from the vadose zone soils and concrete slabs. In order to minimize transportation and disposal costs, an on-site thermal treatment process was designed, tested, and implemented. The on-site treatment consisted of thermal detritiation of the concrete rubble and soil. During this process concrete rubble was heated to a temperature of 815 deg C (1,500 deg F) resulting in the dehydration and removal of water bound tritium. During heating, tritium contaminated soil was used to provide thermal insulation during which it's temperature exceeded 100 deg C (212 deg F), causing drying and removal of tritium. The thermal treatment process volatiles the water bound tritium and releases it to the atmosphere. The released tritium was considered insignificant based upon Clean Air Act Compliance Package (CAP88) analysis and did not exceed exposure thresholds. A treatability study evaluated the effectiveness of this thermal configuration and viability as a decontamination method for tritium in concrete and soil materials. Post treatment sampling confirmed the effectiveness at reducing tritium to acceptable waste site specific levels. With American Recovery and Reinvestment Act (ARRA) funding three additional treatment cells were assembled utilizing commercial heating equipment and common construction materials. This provided a total of four units to batch treat concrete rubble and soil. Post treatment sampling verified that the activity in the treated soil and concrete met the treatment standards for each medium which allowed the treated concrete rubble and soil to be disposed of on site as backfill. During testing and operations a total of 1,261-m{sup 3} (1,650-yd{sup 3}) of contaminated concrete and soils were treated with an actual incurred cost of $3,980,000. This represents a unit treatment cost of $3,156/m{sup 3} ($2,412/yd{sup 3}). In 2011 the project was recognized with an e-Star Sustainability Award by DOE's Office of Environmental Management.

Jackson, Dennis G.; Blount, Gerald C.; Wells, Leslie H.; Cardoso-Neto, Joao E.; Kmetz, Thomas F.; Reed, Misty L.

2012-12-04T23:59:59.000Z

310

Slug Test Characterization Results for Multi-Test/Depth Intervals Conducted During the Drilling of CERCLA Operable Unit OU ZP-1 Wells 299-W10-33 and 299-W11-48  

SciTech Connect (OSTI)

Slug-test results obtained from single and multiple, stress-level slug tests conducted during drilling and borehole advancement provide detailed hydraulic conductivity information at two Hanford Site Operable Unit (OU) ZP-1 test well locations. The individual test/depth intervals were generally sited to provide hydraulic-property information within the upper ~10 m of the unconfined aquifer (i.e., Ringold Formation, Unit 5). These characterization results complement previous and ongoing drill-and-test characterization programs at surrounding 200-West and -East Area locations (see Figure S.1).

Newcomer, Darrell R.

2007-09-30T23:59:59.000Z

311

Bikini Atoll groundwater development  

SciTech Connect (OSTI)

Nuclear weapons testing during the 1950's has left the soil and ground water on Bikini Atoll contaminated with cesium-137, and to a lesser extent, strontium-90. Plans currently are underway for the clean-up and resettlement of the atoll by removal of approximately the upper 30 cm of soil. Any large-scale resettlement program must include provisions for water supply. This will be achieved principally by catchment and storage of rain water, however, since rainfall in Bikini is highly seasonal and droughts occur frequently, ground water development must also be considered. The quantity of potable ground water that can be developed is limited by its salinity and radiological quality. The few ground water samples available from Bikini, which have been collected from only about the top meter of the groundwater body, indicate that small bodies of potable ground water exist on Bikini and Eneu, the two principal living islands, but that cesium and strontium in the Bikioni ground water exceed drinking water standards. In order to make a reasonable estimate of the ground water development potential for the atoll, some 40 test boreholes will be drilled during July/August 1985, and a program of water quality monitoring initiated. This paper will describe preliminary results of the drilling and monitoring work.

Peterson, F.L.

1985-01-01T23:59:59.000Z

312

Evaluation of potential severe accidents during low power and shutdown operations at Grand Gulf, Unit 1. Volume 2, Part 1C: Analysis of core damage frequency from internal events for plant operational State 5 during a refueling outage, Main report (Sections 11--14)  

SciTech Connect (OSTI)

This document contains the accident sequence analysis of internally initiated events for Grand Gulf, Unit 1 as it operates in the Low Power and Shutdown Plant Operational State 5 during a refueling outage. The report documents the methodology used during the analysis, describes the results from the application of the methodology, and compares the results with the results from two full power analyses performed on Grand Gulf.

Whitehead, D. [Sandia National Labs., Albuquerque, NM (United States); Darby, J. [Science and Engineering Associates, Inc., Albuquerque, NM (United States); Yakle, J. [Science Applications International Corp., Albuquerque, NM (United States)] [and others

1994-06-01T23:59:59.000Z

313

A franchising of retail operations : the case of the United States Postal Service building a retail network for the 21st century  

E-Print Network [OSTI]

This thesis is about the effects of changing customer preferences on the United States Postal Service's retail network and offers a process for wider adoption of its current retail partnership program. The Contract Postal ...

Sigmon, Kelly M. (Kelly Marie Berg)

2010-01-01T23:59:59.000Z

314

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration  

E-Print Network [OSTI]

, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL ­ Supply chains and logistics ­ Systems of systems (e.g., the nuclear fuel cycle, fleet management) #12

Langerhans, Brian

315

An integrated computer-based training simulator for the operative personnel of the 800-MW power-generating unit at the Perm District Power Station  

Science Journals Connector (OSTI)

The integrated computer-based training simulator for an 800-MW power-generating unit is described. Its capacities for training the personnel of the boiler-turbine and chemical departments are shown.

N. Yu. Pevneva; V. N. Piskov; A. N. Zenkov

2007-07-01T23:59:59.000Z

316

Alluvial Groundwater -- Upgradient -- 92-05&  

Office of Legacy Management (LM)

09 09 This page intentionally left blank Alluvial Groundwater -- Upgradient -- 92-05 a,b ______________________________________________________________ Analyte Unit 10/30/00 04/11/01 07/20/01 10/10/01 ______________________________________________________________ Field Measurements Alkalinity mg/L -- 270 321 303 Conductivity c ÎĽmhos/cm 1520 1250 1366 1350 DO c mg/L -- 7.7 -- -- ORP c mV 84 71 -- 38 pH c s.u. 7.05 7.66 6.42 6.99 Temperature c C 9.4 7.7 9.7 10 Turbidity c NTU 42.6 4.05 60.3 70.5 Common Ions Ca mg/L 266 214 206 207

317

Quarterly report of RCRA groundwater monitoring data for period October 1 through December 31, 1994  

SciTech Connect (OSTI)

Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs as defined in the Resource Conservation and Recovery Act of 1976 (RCRA); and {open_quotes}Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities{close_quotes} (Title 40 Code of Federal Regulations [CFR] Part 265), as amended. Compliance with the 40 CFR 265 regulations is required by the Washington Administrative Code (WAC) 173-303. This report contains data from Hanford Site groundwater monitoring projects. The location of each facility is shown. Westinghouse Hanford Company (WHC) manages the RCRA groundwater monitoring projects for federal facilities on the Hanford Site. Performing project management, preparing groundwater monitoring plans, well network design and installation, specifying groundwater data needs, performing quality control (QC) oversight, data management, and preparing project sampling schedules are all parts of this responsibility. Pacific Northwest Laboratory (PNL) administers the contract for analytical services and provides groundwater sampling services to WHC for the RCRA groundwater monitoring program. This quarterly report contains data received between October and December 1994, which are the cutoff dates for this reporting period. This report may contain not only data from the October through December quarter, but also data from earlier sampling events that were not previously reported.

NONE

1995-04-01T23:59:59.000Z

318

Laboratory Evaluation of In Situ Chemical Oxidation for Groundwater Remediation, Test Area North, Operable Unit 1-07B, Idaho National Engineering and Environmental Laboratory, Volume Three - Appendix F  

SciTech Connect (OSTI)

This appendix supports the results and discussion of the laboratory work performed to evaluate the feasibility of in situ chemical oxidation for Idaho National Environmental and Engineering Laboratory's (INEEL) Test Area North (TAN) which is contained in ORNL/TM-13711/V1. This volume contains Appendix F. Appendix F is essentially a photocopy of the ORNL researchers' laboratory notebooks from the Environmental Sciences Division (ESD) and the Radioactive Materials Analytical Laboratory (RMAL).

Cline, S.R.; Denton, D.L.; Giaquinto, J.M.; McCracken, M.K.; Starr, R.C.

1999-04-01T23:59:59.000Z

319

Technology Survey to Support Revision to the Remedial Investigation/Feasibility Study Work Plan for the 200­-SW­-2 Operable Unit at the U.S. Department of Energy’s Hanford Site  

SciTech Connect (OSTI)

A survey of technologies was conducted to provide information for a Data Quality Objectives process being conducted to support revision of the Remedial Investigation/Feasibility Study Work Plan for the 200-SW-2 Operable Unit. The technology survey considered remediation and characterization technologies. This effort was conducted to address, in part, comments on the previous version of the Remedial Investigation/Feasibility Study Work Plan for the 200-SW-2 Operable Unit as documented in 200­SW­1 and 200­SW­2 Collaborative Workshops?Agreement, Completion Matrix, and Supporting Documentation. By providing a thorough survey of remediation and characterization options, this report is intended to enable the subsequent data quality objectives and work plan revision processes to consider the full range of potential alternatives for planning of the Remedial Investigation/Feasibility Study activities.

Truex, Michael J.; Johnson, Christian D.; Nimmons, Michael J.

2007-09-25T23:59:59.000Z

320

Evaluation of potential severe accidents during low power and shutdown operations at Grand Gulf, Unit 1: Analysis of core damage frequency from internal events for Plant Operational State 5 during a refueling outage. Volume 2, Part 3: Internal Events Appendices I and J  

SciTech Connect (OSTI)

This report provides supporting documentation for various tasks associated with the performance of the probablistic risk assessment for Plant Operational State 5 during a refueling outage at Grand Gulf, Unit 1 as documented in Volume 2, Part 1 of NUREG/CR-6143.

Yakle, J. [Science Applications International Corp., Albuquerque, NM (United States); Darby, J. [Science and Engineering Associates, Inc., Albuquerque, NM (United States); Whitehead, D.; Staple, B. [Sandia National Labs., Albuquerque, NM (United States)

1994-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "groundwater operable unit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Remedial investigation report on Chestnut Ridge Operable Unit 2 (filled coal ash pond/Upper McCoy Branch) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 2: Appendixes  

SciTech Connect (OSTI)

This report comprises appendices A--J which support the Y-12 Plant`s remedial action report involving Chestnut Ridge Operable Unit 2 (filled coal ash pond/Upper McCoy Branch). The appendices cover the following: Sampling fish from McCoy Branch; well and piezometer logs; ecological effects of contaminants in McCoy Branch 1989-1990; heavy metal bioaccumulation data; microbes in polluted sediments; and baseline human health risk assessment data.

Not Available

1994-08-01T23:59:59.000Z

322

Long-Term Surveillance - Operations and Maintenance (LTS-O&M) |  

Broader source: Energy.gov (indexed) [DOE]

Long-Term Surveillance - Operations and Maintenance Long-Term Surveillance - Operations and Maintenance (LTS-O&M) Long-Term Surveillance - Operations and Maintenance (LTS-O&M) Long-Term Surveillance – Operations and Maintenance (LTS-O&M) DOE established the Environmental Sciences Laboratory (ESL) in Grand Junction, Colorado, in 1991 to support its programs. ESL scientists perform applied research and laboratory-scale demonstrations of soil and groundwater remediation and treatment technologies. Capabilities Installation, monitoring, and operation of permeable reactive barriers Research of permeable reactive barriers and treatment cells Performance assessment and optimization of groundwater remediation systems Groundwater characterization Coupled hydrogeochemical modeling for groundwater remediation

323

Soil & Groundwater Remediation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Soil & Groundwater Soil & Groundwater Remediation Soil & Groundwater Remediation Soil & Groundwater Remediation The U.S. Department of Energy (DOE) manages the largest groundwater and soil remediation effort in the world. The inventory at the DOE sites includes 6.5 trillion liters of contaminated groundwater, an amount equal to about four times the daily U.S. water consumption, and 40 million cubic meters of soil and debris contaminated with radionuclides, metals, and organics. The Office of Groundwater and Soil Remediation is working with DOE site managers around the country regarding specific technical issues. At the large sites such as Hanford, Savannah River, and Oak Ridge, the Office of Groundwater and Soil Remediation has conducted research and demonstration projects to test new technologies and remediation

324

Superfund Record of Decision (EPA Region 7): Oronogo-Duenweg Mining Belt Site, Operable Unit 4, Jasper County, MO, July 29, 1998  

SciTech Connect (OSTI)

The US Environmental Protection Agency (EPA) has prepared this decision document to present the selected remedial action for ground water at the Oronogo/Duenweg Mining Belt Site located in Jasper County, Missouri. This selected remedy deals with providing safe drinking water supplies to residents currently consuming ground water contaminated with metals. The major components of selected remedy are: Support to Public Water Supply District No. 3 in the Oronogo/Duenweg Designated Area (DA); Extension of existing public water lines in the Oronogo/Duenweg DA; Extension of existing public water lines in the Irons Gates Extension DA; Installation of point-of-use treatment units to homes not accessible to public water; A maintenance program for the point-of-use treatment units; A monitoring program for threatened homes and the point-of-use treatment units; and Institutional controls to regulate future uses of the contaminated shallow aquifer.

NONE

1998-09-01T23:59:59.000Z

325

Miamisburg Environmental Management Project Archived Soil & Groundwate...  

Office of Environmental Management (EM)

VOCs Miamisburg Environmental Management Project - Tritium More Documents & Publications Rocky Flats Environmental Technology Site Archived Soil & Groundwater Master Reports...

326

Nuclear reactors in the United States  

Science Journals Connector (OSTI)

Nuclear reactors in the United States ... A chart listing the operating and planned nuclear reactors in the United States. ... Nuclear / Radiochemistry ...

Hubert N. Alyea

1956-01-01T23:59:59.000Z

327

Unit Energy Europe AG | Open Energy Information  

Open Energy Info (EERE)

Hydro, Wind energy Product: Unit Energy develops and operates wind parks and hydroelectric power plants all across Europe. References: Unit Energy Europe AG1 This article...

328

AUTOMATING GROUNDWATER SAMPLING AT HANFORD  

SciTech Connect (OSTI)

Until this past October, Fluor Hanford managed Hanford's integrated groundwater program for the U.S. Department of Energy (DOE). With the new contract awards at the Site, however, the CH2M HILL Plateau Remediation Company (CHPRC) has assumed responsibility for the groundwater-monitoring programs at the 586-square-mile reservation in southeastern Washington State. These programs are regulated by the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). The purpose of monitoring is to track existing groundwater contamination from past practices, as well as other potential contamination that might originate from RCRA treatment, storage, and disposal (TSD) facilities. An integral part of the groundwater-monitoring program involves taking samples of the groundwater and measuring the water levels in wells scattered across the site. More than 1,200 wells are sampled each year. Historically, field personnel or 'samplers' have been issued pre-printed forms that have information about the well(s) for a particular sampling evolution. This information is taken from the Hanford Well Information System (HWIS) and the Hanford Environmental Information System (HEIS)--official electronic databases. The samplers used these hardcopy forms to document the groundwater samples and well water-levels. After recording the entries in the field, the samplers turned the forms in at the end of the day and the collected information was posted onto a spreadsheet that was then printed and included in a log book. The log book was then used to make manual entries of the new information into the software application(s) for the HEIS and HWIS databases. This is a pilot project for automating this tedious process by providing an electronic tool for automating water-level measurements and groundwater field-sampling activities. The automation will eliminate the manual forms and associated data entry, improve the accuracy of the information recorded, and enhance the efficiency and sampling capacity of field personnel. The goal of the effort is to eliminate 100 percent of the manual input to the database(s) and replace the management of paperwork by the field and clerical personnel with an almost entirely electronic process. These activities will include the following: scheduling the activities of the field teams, electronically recording water-level measurements, electronically logging and filing Groundwater Sampling Reports (GSR), and transferring field forms into the site-wide Integrated Document Management System (IDMS).

CONNELL CW; HILDEBRAND RD; CONLEY SF; CUNNINGHAM DE

2009-01-16T23:59:59.000Z

329

Microbial Activity during Biodegradation and its Effects on Groundwater Velocity in a Contaminated Aquifer  

E-Print Network [OSTI]

, toluene, ethylbenzene, and xylene isomers (BTEX) (Yerushalmi et al., 1999; Landmeyer and Bradley 2003). Such passive methods rely on the ambient groundwater velocity to deliver contaminants to the reactive zone. Biostimulation techniques operate... Microbial Activity during Biodegradation and its Effects on Groundwater Velocity in a Contaminated Aquifer by Copyright 2008 Peter Curtis Schillig B.S. (Dept. Hons), Ohio University, 2005 Submitted to the Department...

Schillig, Peter C.

2008-03-26T23:59:59.000Z

330

Groundwater Remediation Strategy Using Global Optimization Algorithms  

E-Print Network [OSTI]

. DOI: 10.1061/ ASCE 0733-9496 2002 128:6 431 CE Database keywords: Ground water; Remedial action; Algorithms; Ground-water management. Introduction The contamination of groundwater is a widespread problemGroundwater Remediation Strategy Using Global Optimization Algorithms Shreedhar Maskey1 ; Andreja

Neumaier, Arnold

331

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration  

E-Print Network [OSTI]

, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL Sandia National Laboratories CSRI Student Seminar July 2008 #12;Motivation · Graph algorithms perform extremely well on multithreaded architectures like the Cray MTA-2. ­ Won IC graph benchmarking contest

Devine, Karen

332

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy s National Nuclear Security Administration  

E-Print Network [OSTI]

, for the United States Department of Energy s National Nuclear Security Administration under contract DE-AC04-94AL Department of Energy s National Nuclear Security Administration under contract DE-AC04-94AL85000. Hypergraph on FErari ­ Optimization of FFC generated code ­ Equivalent to optimizing matrix-vector product code ­ Graph

Wolf, Michael M.

333

ince 1992, the United States has been involved in the establishment and op-eration of a science and technology center in Russia--the International Sci-  

E-Print Network [OSTI]

and technology center in Russia--the International Sci- ence and Technology Center (ISTC)--and a similar center..." This agreement was initialed in May of 1992, with the United States, Russia, the European Union, and Japan to create a science center in Ukraine distinct from the one being established in Russia. Ratification

334

Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit-1: Analysis of core damage frequency from internal events during mid-loop operations. Appendix I, Volume 2, Part 5  

SciTech Connect (OSTI)

Traditionally, probabilistic risk assessments (PRA) of severe accidents in nuclear power plants have considered initiating events potentially occurring only during full power operation. Some previous screening analyses that were performed for other modes of operation suggested that risks during those modes were small relative to full power operation. However, more recent studies and operational experience have implied that accidents during low power and shutdown could be significant contributors to risk. During 1989, the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the potential risks during low power and shutdown operations. The program includes two parallel projects being performed by Brookhaven National Lab. (BNL) and Sandia National Labs. (SNL). Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the plants to be studied. The objectives of the program are to assess the risks of severe accidents initiated during plant operational states other than full power operation and to compare the estimated core damage frequencies, important accident sequences and other qualitative and quantitative results with those accidents initiated during full power operation as assessed in NUREG-1150. The objective of this volume of the report is to document the approach utilized in the level-1 internal events PRA for the Surry plant, and discuss the results obtained. A phased approach was used in the level-1 program. In phase 1, which was completed in Fall 1991, a coarse screening analysis examining accidents initiated by internal events (including internal fire and flood) was performed for all plant operational states (POSs). The objective of the phase 1 study was to identify potential vulnerable plant configurations, to characterize (on a high, medium, or low basis) the potential core damage accident scenarios, and to provide a foundation for a detailed phase 2 analysis.

Chu, T.L.; Musicki, Z.; Kohut, P.; Yang, J.; Bozoki, G.; Hsu, C.J.; Diamond, D.J. [Brookhaven National Lab., Upton, NY (United States); Bley, D.; Johnson, D. [PLG Inc., Newport Beach, CA (United States); Holmes, B. [AEA Technology, Dorset (United Kingdom)] [and others

1994-06-01T23:59:59.000Z

335

Removing High Explosives from Groundwater  

Broader source: Energy.gov [DOE]

LOS ALAMOS, N.M. – In an initiative supported by EM, Los Alamos National Laboratory’s Corrective Actions Program is addressing high explosive contamination in surface water and groundwater at a location this summer in the forests surrounding the laboratory.

336

Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit 1: Analysis of core damage frequency from internal events during mid-loop operations, Appendices A--D. Volume 2, Part 2  

SciTech Connect (OSTI)

During 1989, the Nuclear Regulatory Commission (NRC) initiated an extensive program to carefully examine the Potential risks during low Power and shutdown operations. The program includes two parallel projects being performed by Brookhaven National Laboratory (BNL) and Sandia National Laboratories (SNL). Two plants, Surry (pressurized water reactor) and Grand Gulf (boiling water reactor), were selected as the Plants to be studied. The objectives of the program are to assess the risks of severe accidents initiated during plant operational states other than full power operation and to compare the estimated core damage frequencies, important accident sequences and other qualitative and quantitative results with those accidents initiated during full power operation as assessed in NUREG-1150. The objective of this report is to document the approach utilized in the Surry plant and discuss the results obtained. A parallel report for the Grand Gulf plant is prepared by SNL. This study shows that the core-damage frequency during mid-loop operation at the Surry plant is comparable to that of power operation. We recognize that there is very large uncertainty in the human error probabilities in this study. This study identified that only a few procedures are available for mitigating accidents that may occur during shutdown. Procedures written specifically for shutdown accidents would be useful. This document, Volume 2, Pt. 2 provides appendices A through D of this report.

Chu, T.L.; Musicki, Z.; Kohut, P. [Brookhaven National Lab., Upton, NY (United States)] [and others

1994-06-01T23:59:59.000Z

337

Unit environmental transport assessment of contaminants from Hanford`s past-practice waste sites. Hanford Remedial Action Environmental Impact Statement  

SciTech Connect (OSTI)

The US Department of Energy, Richland Operations Office (DOE-RL) contracted Pacific Northwest Laboratory (PNL) to provide support to Advanced Sciences, Incorporated (ASI) in implementing tile regional no-action risk assessment in the Hanford Remedial Action Environmental Impact Statement. Researchers at PNL were charged with developing unit concentrations for soil, groundwater, surface water, and air at multiple locations within an 80-km radius from the center of tile Hanford installation. Using the Multimedia Environmental Pollutant Assessment System (MEPAS), PNL simulated (1) a unit release of one ci for each radionuclide and one kg for each chemical from contaminated soils and ponded sites, (2) transport of the contaminants in and through various environmental media and (3) exposure/risk of four exposure scenarios, outlined by the Hanford Site Baseline Remedial Action Methodology. These four scenarios include residential, recreational, industrial, and agricultural exposures. Spacially and temporally distributed environmental concentrations based on unit releases of radionuclides and chemicals were supported to ASI in support of the HRA-EIS. Risk for the four exposure scenarios, based on unit environment concentrations in air, water, and soil. were also supplied to ASI. This report outlines the procedure that was used to implement the unit transport portion of the HRA-EIS baseline risk assessment. Deliverables include unit groundwater, surface water, air, and soil concentrations at multiple locations within an 80-km radius from the center of the Hanford installation.

Whelan, G.; Buck, J.W.; Castleton, K.J. [and others

1995-06-01T23:59:59.000Z

338

Summary - X-701B Groundwater Remedy, Portsmouth, Ohio  

Broader source: Energy.gov (indexed) [DOE]

X-701B Groundwater Remediation ETR Report Date: December 2008 ETR-20 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the X-701B Groundwater Remedy, Portsmouth, Ohio Why DOE-EM Did This Review The Department of Energy (DOE) Portsmouth Paducah Project Office (PPPO) has responsibility for remediation of the X-701B ground water plume with the key contaminant of trichloroethene (TCE). The remedy has been divided into four phases: Phase I- Initial Source Area Treatment, Phase II-Expanded Source Area Treatment, Phase III-Evaluation and Reporting, and Phase IV- Downgradient Remediation and Confirmation of Source Area Treatment. Phase II treatment has injected catalyzed hydrogen peroxide without meeting the

339

United States  

Broader source: Energy.gov (indexed) [DOE]

Bangor Hydro-Electric Company Bangor Hydro-Electric Company OE Docket No. PP-89-1 Amendment to Presidential Permit Order No. PP-89-1 December 30,2005 PRESIDENTIAL PERMIT AMENDMENT Bangor Hydro-Electric Company Order No. PP-89-1 I. BACKGROUND The Department of Energy (DOE) has responsibility for implementing Executive Order (E.O.) 10485, as amended by E.O. 12038, which requires the issuance of a Presidential permit by DOE before electric trans~nission facilities may be constructed, operated, maintained, or connected at the borders of the United States. DOE may issue such a permit if it determines that the permit is in the public interest and after obtaining favorable recommendations from the U.S. Departments of State and Defense. On December 16, 1988, Bangor Hydro-Electric Company (BHE) applied to DOE

340

ADVANTAGES OF INVESTIGATING CHEMICAL AND RADIOLOGICAL CONSTITUENTS SIMULTANEOUSLY IN SOIL AND GROUNDWATER  

SciTech Connect (OSTI)

At some sites both chemical and radiological investigation of soil and groundwater is required for overall site characterization. While the planning and execution of investigation activities is usually completed to fulfill regulatory (i.e., United States Environmental Protection Agency or United States Nuclear Regulatory Commission) requirements, coordination of chemical and radiological investigation programs may provide an opportunity for reducing the duration of investigation activities and reducing overall project costs. There are several similarities in the chemical and radiological investigation processes that one can take advantage of in program design and execution to efficiently plan and execute chemical and radiological investigations simultaneously. At sites where both chemical and radiological constituents are being investigated in soil and groundwater, various steps can be taken during the investigation processes to combine chemical and radiological investigation and characterization activities. With proper planning, investigating chemical and radiological constituents simultaneously in soil and groundwater can reduce the project schedule and provide cost savings for overall characterization of the site.

Downey, H.; Shephard, E.; Walter, N.

2003-02-27T23:59:59.000Z

Note: This page contains sample records for the topic "groundwater operable unit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

API unit  

Science Journals Connector (OSTI)

API unit [An arbitrary unit of the American Petroleum Institute for measuring natural radioactivity; used in certain well logging methods] ? API-Einheit f

2014-08-01T23:59:59.000Z

342

Indoor air environment and night cooling energy efficiency of a southern German passive public school building operated by the heat recovery air conditioning unit  

Science Journals Connector (OSTI)

Abstract The recently built school building has adopted a novel heat recovery air conditioning system. Heat recovery efficiency of the heat recovery facility and energy conservation ratio of the air conditioning unit were analytically modeled, taking the ventilation networks into account. Following that, school classroom displacement ventilation and its thermal stratification have been numerically investigated concerning the effects of the heat flow flux of passive cooling within the ceiling concrete in the classroom due to night ventilation in summer which could result in cooling energy storage. Numerical results indicate that the promotion of passive cooling can simultaneously decrease the volume averaged indoor temperatures and the non-uniformity of indoor thermal distributions. Subsequent energy performance analysis demonstrates that classroom energy demands for ventilation and cooling could be reduced with the promotion of heat recovery efficiency of the ventilation facility, and the energy conservation ratio of the air-cooling unit decreases with the increasing temperatures of exhaust air and the heat flux value for passive cooling within the classroom ceiling concrete. Fitting correlations of heat recovery ventilation and cooling energy conservation have been presented.

Yang Wang; Fu-Yun Zhao; Jens Kuckelkorn; Xiao-Hong Li; Han-Qing Wang

2014-01-01T23:59:59.000Z

343

Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2010  

SciTech Connect (OSTI)

This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2010 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2010 will be in accordance with requirements of DOE Order 540.1A and the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2010 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation. Modifications to the CY 2010 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan. The following sections of this report provide details regarding the CY 2010 groundwater and surface water monitoring activities. Section 2 describes the monitoring locations in each regime and the processes used to select the sampling locations. A description of the field measurements and laboratory analytes is provided in Section 3. Sample collection methods and procedures are described in Section 4, and Section 5 lists the documents cited for more detailed operational and technical information. The narrative sections of the report reference several appendices. Figures (maps and diagrams) and tables (excluding data summary tables presented in the narrative sections) are in Appendix A and Appendix B, respectively. Groundwater Monitoring Schedules (when issued throughout CY 2010) will be inserted in Appendix C, and addenda to this plan (if issued) will be inserted in Appendix D. Laboratory requirements (bottle lists, holding times, etc.) are provided in Appendix E, and an approved Waste Management Plan is provided in Appendix F.

Elvado Environmental LLC

2009-09-01T23:59:59.000Z

344

Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2011  

SciTech Connect (OSTI)

This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2011 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2011 will be in accordance with requirements of DOE Order 540.1A and the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2011 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge along the boundary of the Oak Ridge Reservation. Modifications to the CY 2011 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan. The following sections of this report provide details regarding the CY 2011 groundwater and surface water monitoring activities. Section 2 describes the monitoring locations in each regime and the processes used to select the sampling locations. A description of the field measurements and laboratory analytes is provided in Section 3. Sample collection methods and procedures are described in Section 4, and Section 5 lists the documents cited for more detailed operational and technical information. The narrative sections of the report reference several appendices. Figures (maps and diagrams) and tables (excluding data summary tables presented in the narrative sections) are in Appendix A and Appendix B, respectively. Groundwater Monitoring Schedules (when issued throughout CY 2011) will be inserted in Appendix C, and addenda to this plan (if issued) will be inserted in Appendix D. Laboratory requirements (bottle lists, holding times, etc.) are provided in Appendix E, and an approved Waste Management Plan is provided in Appendix F.

Elvado Environmental LLC

2010-12-01T23:59:59.000Z

345

Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2012  

SciTech Connect (OSTI)

This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2012 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2012 is in accordance with the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring will be performed in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge along the boundary of the Oak Ridge Reservation. Modifications to the CY 2012 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. Each modification to the monitoring program will be approved by the Y-12 GWPP manager and documented as an addendum to this sampling and analysis plan. The following sections of this report provide details regarding the CY 2012 groundwater and surface water monitoring activities. Section 2 describes the monitoring locations in each regime and the processes used to select the sampling locations. A description of the field measurements and laboratory analytes is provided in Section 3. Sample collection methods and procedures are described in Section 4, and Section 5 lists the documents cited for more detailed operational and technical information. The narrative sections of the report reference several appendices. Figures (maps and diagrams) and tables (excluding a data summary table presented in Section 4) are in Appendix A and Appendix B, respectively. Groundwater Monitoring Schedules (when issued throughout CY 2012) will be inserted in Appendix C, and addenda to this plan (if issued) will be inserted in Appendix D. Laboratory requirements (bottle lists, holding times, etc.) are provided in Appendix E, and an approved Waste Management Plan is provided in Appendix F.

Elvado Environmental, LLC

2011-09-01T23:59:59.000Z

346

Monitoring Plan for RCRA Groundwater Assessment at the 216-U-12 Crib  

SciTech Connect (OSTI)

This document contains a revised and updated monitoring plan for RCRA interim status groundwater assessment, site hydrogeology, and a conceptual model of the RCRA treatment, storage, and disposal unit. Monitoring under interim status is expected to continue until the 216-U-12 crib is incorporated as a chapter into the Hanford Facility RCRA Permit or administratively closed as proposed to EPA and Ecology.

Williams, Bruce A.; Chou, Charissa J.

2005-09-20T23:59:59.000Z

347

Physical Property Analysis and Report for Sediments at 100-BC-5 Operable Unit, Boreholes C7505, C7506, C7507, and C7665  

SciTech Connect (OSTI)

Between October 14, 2009 and February 22, 2010 sediment samples were received from 100-BC Decision Unit for geochemical studies. This is an analytical data report for sediments received from CHPRC at the 100 BC 5 OU. The analyses for this project were performed at the 325 building located in the 300 Area of the Hanford Site. The analyses were performed according to Pacific Northwest National Laboratory (PNNL) approved procedures and/or nationally recognized test procedures. The data sets include the sample identification numbers, analytical results, estimated quantification limits (EQL), and quality control data. The preparatory and analytical quality control requirements, calibration requirements, acceptance criteria, and failure actions are defined in the on-line QA plan 'Conducting Analytical Work in Support of Regulatory Programs' (CAW). This QA plan implements the Hanford Analytical Services Quality Assurance Requirements Documents (HASQARD) for PNNL.

Lindberg, Michael J.

2010-09-28T23:59:59.000Z

348

Waste Isolation Pilot Plant Groundwater Protection Management Program Plan  

SciTech Connect (OSTI)

U.S. Department of Energy (DOE) Order 5400.1, General Environmental Protection Program, requires each DOE site to prepare a Groundwater Protection Management Program Plan. This document fulfills the requirement for the Waste Isolation Pilot Plant (WIPP). This document was prepared by the Hydrology Section of the Westinghouse TRU Solutions LLC (WTS) Environmental Compliance Department, and it is the responsibility of this group to review the plan annually and update it every three years. This document is not, nor is it intended to be, an implementing document that sets forth specific details on carrying out field projects or operational policy. Rather, it is intended to give the reader insight to the groundwater protection philosophy at WIPP.

Washington TRU Solutions

2002-09-24T23:59:59.000Z

349

Recovery Act Supports Construction of Site's Largest Groundwater Treatment Facility  

Broader source: Energy.gov (indexed) [DOE]

June 7, 2011 June 7, 2011 Recovery Act Supports Construction of Site's Largest Groundwater Treatment Facility RICHLAND, Wash. - Construction of the largest ground- water treatment facility at the Hanford Site - a major American Recovery and Reinvestment Act project - is on schedule and more than 70 percent complete. Recovery Act workers with DOE contractor CH2M HILL Plateau Remediation Company are on pace to finish con- struction of the 200 West Groundwater Treatment Facil- ity this year. Funding for the project comes from the $1.6 billion the Richland Operations Office received from the Recovery Act. The 52,000-square-foot facility will pump contaminated water from the ground, remove contaminants with a combination of treatment technologies, and return clean water to the aquifer. The system will have the capacity to

350

Results Of Routine Strip Effluent Hold Tank And Decontaminated Salt Solution Hold Tank Samples From Modular Caustic-Side Solvent Extraction Unit During Macrobatch 5 Operations  

SciTech Connect (OSTI)

Strip Effluent Hold Tank (SEHT) and Decontaminated Salt Solution Hold Tank (DSSHT) samples from several of the ''microbatches'' of Integrated Salt Disposition Project (ISDP) Salt Batch (''Macrobatch'') 5 have been analyzed for {sup 238}Pu, {sup 90}Sr, {sup 137}Cs, and by Inductively Coupled Plasma Emission Spectroscopy (ICPES). The results indicate good decontamination performance within process design expectations. While the data set is sparse, the results of this set and the previous set of results for Macrobatch 4 samples indicate generally consistent operations. The DSSHT samples show continued presence of titanium, likely from leaching of the monosodium titanate in the Actinide Removal process (ARP).

Peters, T. B.; Fondeur, F. F.

2013-04-30T23:59:59.000Z

351

Hanford Site Groundwater Monitoring for Fiscal Year 1998  

SciTech Connect (OSTI)

This report presents the results of groundwater and vadose-zone monitoring and remediation for fiscal year (FY) 1998 on the Word Site, Washington. Soil-vapor extraction in the 200-West Area removed 777 kg of carbon tetrachloride in FY 1998, for a total of 75,490 kg removed since remediation began in 1992. Spectral gamma logging and evaluation of historical gross gamma logs near tank farms and liquid-disposal sites in the 200 Areas provided information on movement of contaminants in the vadose zone. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1997 and June 1998. The most widespread radiological contaminant plumes in groundwater were tritium and iodine-129. Concentrations of technetium-99, uranium, strontium-90, and carbon-14 also exceeded drinking water standards in smaller plumes. Plutonium and cesium-137 exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in U.S. Department of Energy Order 5400.5 were exceeded for tritium, uranium, strontium-90, and plutonium in small plumes or single wells. One well completed in the basalt-confined aquifer beneath the 200-East Area exceeded the drinking water standard for technetium-99. Nitrate is the most extensive chemical contaminant. Carbon tetrachloride, chloroform, chromium, cis-l, Z-dichloroethylene, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Cyanide concentrations were elevated in one area but were below the maximum contaminant level. Tetrachloroethylene exceeded its maximum contaminant level in several wells in the 300 Area for the first time since the 1980s. Metals such as aluminum, cadmium, iron, manganese, and nickel exceeded their maximum contaminant levels in filtered samples from numerous wells; they are believed to represent natural components of groundwater. Resource Conservation and Recovery Act of 1976 groundwater monitoring continued at 25 waste management areas during FY 1998: 17 under detection programs and data indicate that they are not adversely affecting groundwater, 6 under interim-status groundwater-quality-assessment programs to assess possible contamination, and 2 under final-status corrective-action programs. Groundwater remediation in the 100 Areas continued to reduce the amount of strontium-90 (100-N) and chromium (100-K, D, and H) reaching the Columbia River. Two systems in the 200-West Area operated to prevent the spread of carbon tetrachloride and technetide uranium plumes. Groundwater monitoring continued at these sites and at other sites where there is no active remediation. A three-dimensional, numerical groundwater model was applied to simulate radionuclide movement from sources in the 200 Areas following site closure in 2050. Contaminants will continue to move toward the southeast and north (through Gable Gap), but the areas with levels exceeding drinking water standards will diminish.

Hartman, M.J. [and others

1999-03-24T23:59:59.000Z

352

Nevada National Security Site Integrated Groundwater Sampling Plan, Revision 0  

SciTech Connect (OSTI)

The purpose of the Nevada National Security Site (NNSS) Integrated Sampling Plan (referred to herein as the Plan) is to provide a comprehensive, integrated approach for collecting and analyzing groundwater samples to meet the needs and objectives of the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) Underground Test Area (UGTA) Activity. Implementation of this Plan will provide high-quality data required by the UGTA Activity for ensuring public protection in an efficient and cost-effective manner. The Plan is designed to ensure compliance with the UGTA Quality Assurance Plan (QAP). The Plan’s scope comprises sample collection and analysis requirements relevant to assessing the extent of groundwater contamination from underground nuclear testing. This Plan identifies locations to be sampled by corrective action unit (CAU) and location type, sampling frequencies, sample collection methodologies, and the constituents to be analyzed. In addition, the Plan defines data collection criteria such as well-purging requirements, detection levels, and accuracy requirements; identifies reporting and data management requirements; and provides a process to ensure coordination between NNSS groundwater sampling programs for sampling of interest to UGTA. This Plan does not address compliance with requirements for wells that supply the NNSS public water system or wells involved in a permitted activity.

Marutzky, Sam; Farnham, Irene

2014-10-01T23:59:59.000Z

353

Groundwater Management Areas (Texas) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Management Areas (Texas) Management Areas (Texas) Groundwater Management Areas (Texas) < Back Eligibility Utility Fed. Government Commercial Investor-Owned Utility Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Texas Program Type Environmental Regulations Provider Texas Commission on Environmental Quality This legislation authorizes the Texas Commission on Environmental Quality and the Texas Water Development Board to establish Groundwater Management Areas to provide for the conservation, preservation, protection, recharging, and prevention of waste of groundwater and groundwater

354

Groundwater Conservation Districts (Texas) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Conservation Districts (Texas) Conservation Districts (Texas) Groundwater Conservation Districts (Texas) < Back Eligibility Utility Fed. Government Commercial Investor-Owned Utility Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Texas Program Type Environmental Regulations Provider Texas Commission on Environmental Quality Groundwater Conservation Districts, as created following procedures described in Water Code 36, are designed to provide for the conservation, preservation, protection, recharging, and prevention of waste of groundwater, and of groundwater reservoirs or their subdivisions, and to

355

Metropolitan Groundwater Plans (Minnesota) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Groundwater Plans (Minnesota) Groundwater Plans (Minnesota) Metropolitan Groundwater Plans (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Minnesota Program Type Environmental Regulations This section gives metropolitan counties the authority to prepare and adopt groundwater plans, or to grant this responsibility to soil and water

356

Montana Groundwater Information Center Webpage | Open Energy...  

Open Energy Info (EERE)

Center Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Groundwater Information Center Webpage Abstract Provides access to...

357

Groundwater Availability Within the Salton Sea Basin Final Report  

SciTech Connect (OSTI)

It is widely recognized that increasing demands for water in Southern California are being affected by actions to reduce and redirect the amount of water imported from the Colorado River. In the Imperial Valley region, for example, import reductions will not only affect agricultural users but also could produce significant collateral impacts on the level and quality of water in the Salton Sea, its regional ecology, or even the long term air quality in the greater basin. The notion of using groundwater in the Imperial Valley as an additional source for agricultural or domestic needs, energy production, or Salton Sea restoration efforts, so as to offset reductions in imported water, is not a new concept. Even though it has been discussed recently (e.g., LLNL, 2002), the idea goes back, in part, to several studies performed by the US Department of Interior and other agencies that have indicated that there may be substantial, usable amounts of groundwater in some portions of the Imperial Valley. It has been estimated, for example, that between 1.1 and 3 billion acre-feet (AF) of groundwater lie within the extended, deep basin underlying the valley and Salton Sea region, even though much of it may be unrecoverable or too poor in its quality (Imperial County, 1997). This is a significant volume with respect to the total annual precipitation volume received in California, whose average is close to 200 million (or 0.2 billion) AF per year (DWR, 1998), and especially with respect to the total annual precipitation received in the Salton Sea watershed itself, which we estimate (Appendix A) to be approximately 2.5 million acre feet (MAF) per year. Clearly, a thorough appraisal of the groundwater resources in the Imperial Valley and Salton Sea region--i.e., an assessment of their overall physical availability--will be needed to determine how they can be used and managed to suit new or redirected demands in the region. Development of an improved or updated groundwater assessment in the Salton Sea Basin is the subject of the project described in this report. Much of the project work was done in cooperation with the US Bureau of Reclamation, Lower Colorado Region Office ('Reclamation'), which manages the Salton Sea Restoration project for the US Department of the Interior, and complements other recent assessment efforts (e.g., Imperial County, 1995). In this context, the notion of groundwater availability is defined by four separate, but interrelated concepts or components: (1) Volume and Capacity--This refers to the volume of groundwater available in storage in (or the related storage capacity of) the sediments and geologic media that comprise a groundwater basin. The volume of groundwater in a basin will vary in time as a function of recharge, well production, and land subsidence. (2) Producibility--This refers to the ease or difficulty of extracting groundwater in a basin from wells. Groundwater producibility will be affected by well depth and the formation permeability surrounding the open intervals in wells. (3) Quality--This refers to the extent that water produced from wells is potable or otherwise suitable for domestic or other uses. It may also refer to the chemical compositions of groundwater that are unrelated to potability or suitability issues. Groundwater quality will be affected by its residence time and flow pathway in the formation and will also be influenced by the quality of its original source before entering the groundwater regime. (4) Renewability and Recharge--This refers to the extent that groundwater is recharged to the basin as part of the natural hydrologic cycle or other artificial means. Groundwater renewability is normally a function of recharge derived from precipitation (and thus a function of regional climate), but may also be affected in local areas by irrigation, leaking canals, aquifer storage and recovery operations, and so forth. Along with the other factors, renewability will strongly affect how much water can be safely produced from a basin from one year to the next. In this report, we specificall

Tompson, A; Demir, Z; Moran, J; Mason, D; Wagoner, J; Kollet, S; Mansoor, K; McKereghan, P

2008-01-11T23:59:59.000Z

358

Superfund record of decision (EPA Region 1): Fort Devens Sudbury Training Annex, source control operable unit, Middlesex County, MA, September 29, 1995  

SciTech Connect (OSTI)

This Record of Decision (ROD) document presents the selected source control (SC) remedial action at areas of contamination (AOCs) A7 and A9 at the Fort Devens Sudbury Training Annex (Annex), Middlesex County, Massachusetts. The major components of the selected remedy for AOCs A7 and A9 include: Excavation and off-site treatment and disposal of laboratory waste at AOC A7; Excavation of contaminated soil from AOC A9 and consolidation at AOC A7; Consolidation of contaminated soil and solid waste at AOC A7 to within the limits of the landfill cap; Construction of a Resource Conservation and Recovery Act (RCRA) Subtitle C landfill cap at AOC A7; Environmental monitoring and operation and maintenance (O&M) at AOC A7; Institutional controls at AOC A7 to limit future site use and to restrict site access; and Five-year reviews at AOC A7.

NONE

1996-03-01T23:59:59.000Z

359

Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project  

SciTech Connect (OSTI)

Groundwater is monitored at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act of 1954; the Resource Conservation and Recovery Act of 1976; the Comprehensive Environmental Response, Compensation, and Liability Act of 1980; and Washington Administrative Code. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The U.S. Department of Energy manages these activities through the Hanford Groundwater Monitoring Project. This document is an integrated monitoring plan for the groundwater project. It documents well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; includes other, established monitoring plans by reference; and appends a master well/constituent/ frequency matrix for the entire site. The objectives of monitoring fall into three general categories: plume and trend tracking, treatment/ storage/disposal unit monitoring, and remediation performance monitoring. Criteria for selecting Atomic Energy Act of 1954 monitoring networks include locations of wells in relation to known plumes or contaminant sources, well depth and construction, historical data, proximity to the Columbia River, water supplies, or other areas of special interest, and well use for other programs. Constituent lists were chosen based on known plumes and waste histories, historical groundwater data, and, in some cases, statistical modeling. Sampling frequencies were based on regulatory requirements, variability of historical data, and proximity to key areas. For sitewide plumes, most wells are sampled every 3 years. Wells monitoring specific waste sites or in areas of high variability will be sampled more frequently.

Hartman, Mary J.; Dresel, P Evan; Lindberg, Jonathan W.; Newcomer, Darrell R.; Thornton, Edward C.

2000-10-18T23:59:59.000Z

360

Evaluation of potential severe accidents during low power and shutdown operations at Surry, Unit 1: Analysis of core damage frequency from internal floods during mid-loop operations. Volume 4  

SciTech Connect (OSTI)

The major objective of the Surry internal flood analysis was to provide an improved understanding of the core damage scenarios arising from internal flood-related events. The mean core damage frequency of the Surry plant due to internal flood events during mid-loop operations is 4.8E-06 per year, and the 5th and 95th percentiles are 2.2E-07 and 1.8E-05 per year, respectively. Some limited sensitivity calculations were performed on three plant improvement options. The most significant result involves modifications of intake-level structure on the canal, which reduced core damage frequency contribution from floods in mid-loop by about 75%.

Kohut, P. [Brookhaven National Lab., Upton, NY (United States)

1994-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "groundwater operable unit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Microbial Community Dynamics of Lactate Enriched Hanford Groundwaters  

E-Print Network [OSTI]

Dynamics of Lactate Enriched Hanford Groundwaters Jenniferof Energy site at Hanford, WA, has been historicallyof lactate-enriched Hanford well H-100 groundwater sample.

Mosher, Jennifer J.

2010-01-01T23:59:59.000Z

362

Oak Ridge Removes Laboratory's Greatest Source of Groundwater...  

Broader source: Energy.gov (indexed) [DOE]

Removes Laboratory's Greatest Source of Groundwater Contamination Oak Ridge Removes Laboratory's Greatest Source of Groundwater Contamination May 1, 2012 - 12:00pm Addthis Workers...

363

Slick Rock Archived Soil & Groundwater Master Reports | Department...  

Office of Environmental Management (EM)

Soil & Groundwater Master Reports Slick Rock - Old North Continent Slick Rock - Union Carbide More Documents & Publications South Valley Archived Soil & Groundwater Master Reports...

364

DOE Responds to Advisory Board Recommendation on Groundwater...  

Office of Environmental Management (EM)

created a groundwater strategy document that described the potential for releases from waste disposal sites and storage areas. The document also prioritized known groundwater...

365

Rocky Flats Environmental Technology Site Archived Soil & Groundwater...  

Office of Environmental Management (EM)

Rocky Flats Environmental Technology Site Archived Soil & Groundwater Master Reports Rocky Flats Environmental Technology Site Archived Soil & Groundwater Master Reports Rocky...

366

Groundwater quality assessment plan for single-shell waste management area B-BX-BY at the Hanford Site  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory conducted a first determination groundwater quality assessment at the Hanford Site. This work was performed for the US Department of Energy, Richland Operations Office, in accordance with the Federal Facility Compliance Agreement during the time period 1996--1998. The purpose of the assessment was to determine if waste from the Single-Shell Tank (SST) Waste Management Area (WMA) B-BX-BY had entered the groundwater at levels above the drinking water standards (DWS). The resulting assessment report documented evidence demonstrating that waste from the WMA has, most likely, impacted groundwater quality. Based on 40 CFR 265.93 [d] paragraph (7), the owner-operator must continue to make the minimum required determinations of contaminant level and of rate/extent of migrations on a quarterly basis until final facility closure. These continued determinations are required because the groundwater quality assessment was implemented prior to final closure of the facility.

SM Narbutovskih

2000-03-31T23:59:59.000Z

367

Interim site characterization report and ground-water monitoring program for the Hanford site solid waste landfill  

SciTech Connect (OSTI)

Federal and state regulations governing the operation of landfills require utilization of ground-water monitoring systems to determine whether or not landfill operations impact ground water at the point of compliance (ground water beneath the perimeter of the facility). A detection-level ground-water monitoring system was designed, installed, and initiated at the Hanford Site Solid Waste Landfill (SWL). Chlorinated hydrocarbons were detected at the beginning of the ground-water monitoring program and continue to be detected more than 1 year later. The most probable source of the chlorinated hydrocarbons is washwater discharged to the SWL between 1985 and 1987. This is an interim report and includes data from the characterization work that was performed during well installation in 1987, such as field observations, sediment studies, and geophysical logging results, and data from analyses of ground-water samples collected in 1987 and 1988, such as field parameter measurements and chemical analyses. 38 refs., 27 figs., 8 tabs.

Fruland, R.M.; Hagan, R.A.; Cline, C.S.; Bates, D.J.; Evans, J.C.; Aaberg, R.L.

1989-07-01T23:59:59.000Z

368

1999 Annual Mixed Waste Management Facility Groundwater Correction - Action Report (Volumes I, II, and III)  

SciTech Connect (OSTI)

This Corrective Action Report (CAR) for the Mixed Waste Management Facility (MWMF) is being prepared to comply with the Resource Conservation and Recovery Act (RCRA) Permit Number SC1 890 008 989, dated October 31, 1999. This CAR compiles and presents all groundwater sampling and monitoring activities that are conducted at the MWMF. As set forth in previous agreements with South Carolina Department of Health and Environmental Control (SCDHEC), all groundwater associated with the Burial Ground Complex (BGC) (comprised of the MWMF, Low-Level Radioactive Waste Disposal Facility, and Old Radioactive Waste Burial Ground) will be addressed under this RCRA Permit. This CAR is the first to be written for the MWMF and presents monitoring activities and results as an outcome of Interim Status and limited Permitted Status activities. All 1999 groundwater monitoring activities were conducted while the MWMF was operated during Interim Status. Changes to the groundwater monitoring program were made upon receipt of the RCRA Permit, where feasible. During 1999, 152 single-screened and six multi-screened groundwater monitoring wells at the BGC monitored groundwater quality in the uppermost aquifer as required by the South Carolina Hazardous Waste Management Regulations (SCHWMR), settlement agreements 87-52-SW and 91-51-SW, and RCRA Permit SC1 890 008 989. However, overall compliance with the recently issued RCRA Permit could not be implemented until the year 2000 due to the effective date of the RCRA Permit and scheduling of groundwater monitoring activities. Changes have been made to the groundwater monitoring network to meet Permit requirements for all 2000 sampling events.

Chase, J.

2000-06-14T23:59:59.000Z

369

Groundwater abstraction—construction, operation and maintenance: an international overview  

Science Journals Connector (OSTI)

...proliferation of materials on the market, which are used throughout...though they are now driven by diesel engines, rather than animal...centrifugal pumps driven by diesel or electric engines are in common...electric motors or by electric, diesel or petrol engines mounted at...

R. F. Stoner; W. Bakiewicz

370

Polices for Controlling Groundwater Pollution from Concentrated Animal Feeding Operations  

E-Print Network [OSTI]

the economics of swine ma- nure storage and management.Conservation Service, Ma- nure Management Technologythe least cost dairy ma- nure application pattern for

Wang, Jingjing

2012-01-01T23:59:59.000Z

371

UNIT NUMBER:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

193 UNIT NUMBER: 197 UNIT NAME: CONCRETE RUBBLE PILE (30) REGULATORY STATUS: AOC LOCATION: Outside plant security fence, north of the plant on Big Bayou Creek on private property....

372

UNIT NUMBER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 UNIT NUMBER UNIT NAME Rubble oile 41 REGULATORY STATUS: AOC LOCATION: Butler Lake Dam, West end of Butler Lake top 20 ft wide, 10 ft APPROXIMATE DIMENSIONS: 200 ft long, base 30...

373

Flow and Storage in Groundwater Systems  

Science Journals Connector (OSTI)

...groundwater removed from storage today was recharged...result of water pumped from wells that...Herrera, Eds., Seawater Intrusion in Coastal...conductivity, specific storage, and thickness...groundwater removed from storage today was recharged...result of water pumped from wells that...

William M. Alley; Richard W. Healy; James W. LaBaugh; Thomas E. Reilly

2002-06-14T23:59:59.000Z

374

In situ bioremediation of petrol contaminated groundwater  

E-Print Network [OSTI]

) Bacterial Diversity and Aerobic Biodegradation Potential in a BTEX-Contaminated Aquifer Water Air Soil21/11/08 1 In situ bioremediation of petrol contaminated groundwater Guido Miguel Delgadillo EVS and facts · Likelihood of contamination · Benefits of in situ bioremediation So... Ask not what groundwater

Blouin-Demers, Gabriel

375

Addendum to the Closure Report for Corrective Action Unit 339: Area 12 Fleet Operations Steam Cleaning Discharge Area, Nevada Test Site, Revision 0  

SciTech Connect (OSTI)

This document constitutes an addendum to the Closure Report for CAU 339: Area 12 Fleet Operations Steam Cleaning Discharge Area Nevada Test Site, December 1997 as described in the document Supplemental Investigation Report for FFACO Use Restrictions, Nevada Test Site, Nevada (SIR) dated November 2008. The SIR document was approved by NDEP on December 5, 2008. The approval of the SIR document constituted approval of each of the recommended UR removals. In conformance with the SIR document, this addendum consists of: • This page that refers the reader to the SIR document for additional information • The cover, title, and signature pages of the SIR document • The NDEP approval letter • The corresponding section of the SIR document This addendum provides the documentation justifying the cancellation of the UR for CAS 12-19-01, A12 Fleet Ops Steam Cleaning Efflu. This UR was established as part of a Federal Facility Agreement and Consent Order (FFACO) corrective action and is based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996). Since this UR was established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, this UR was reevaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006). This re-evaluation consisted of comparing the original data (used to define the need for the UR) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove the UR because contamination is not present at the site above the risk-based FALs. Requirements for inspecting and maintaining this UR will be canceled, and the postings and signage at this site will be removed. Fencing and posting may be present at this site that are unrelated to the FFACO UR such as for radiological control purposes as required by the NV/YMP Radiological Control Manual (NNSA/NSO, 2004). This modification will not affect or modify any non-FFACO requirements for fencing, posting, or monitoring at this site.

Grant Evenson

2009-05-01T23:59:59.000Z

376

Remediation of Groundwater Contaminated with Organics and Radionuclides - An Innovative Approach Eases Traditional Hurdles  

SciTech Connect (OSTI)

Traditional approaches to the remediation of contaminated groundwater, such as pump-and-treat, have been used for many years for the treatment of groundwater contaminated with various organics. However the treatment of groundwater contaminated with organics and radionuclides has been considerably more challenging. Safety and Ecology Corporation (SEC) was recently faced with these challenges while designing a remediation system for the remediation of TCE-contaminated groundwater and soil at the RMI Extrusion Plant in Ashtabula, OH. Under contract with RMI Environmental Services (RMIES), SEC teamed with Regenesis, Inc. to design, implement, and execute a bioremediation system to remove TCE and associated organics from groundwater and soil that was also contaminated with uranium and technetium. The SEC-Regenesis system involved the injection of Hydrogen Release Compound (HRC), a natural attenuation accelerant that has been patented, designed, and produced by Regenesis, to stimulate the reductive dechlorination and remediation of chlorinated organics in subsurface environments. The compound was injected using direct-push Geoprobe rods over a specially designed grid system through the zone of contaminated groundwater. The innovative approach eliminated the need to extract contaminated groundwater and bypassed the restrictive limitations listed above. The system has been in operation for roughly six months and has begun to show considerable success at dechlorinating and remediating the TCE plume and in reducing the radionuclides into insoluble precipitants. The paper will provide an overview of the design, installation, and initial operation phase of the project, focusing on how traditional design challenges of remediating radiologically contaminated groundwater were overcome. The following topics will be specifically covered: a description of the mechanics of the HRC technology; an assessment of the applicability of the HRC technology to contaminated groundwater plumes and other potential remediation opportunities; a discussion of how the implementation of the HRC technology eased permitting issues and other challenges of remediating groundwater contaminated with radionuclides and organics; an overview of the remedial design and installation of the design including the inputs required to design the remediation system; a summary of results achieved to date and a forecast of future results; and a discussion of future needs and lessons learned.

Scott, J.; Case, N.; Coltman, K.

2003-02-25T23:59:59.000Z

377

Report for Batch Leach Analyses on Sediments at 100-HR-3 Operable Unit, Boreholes C7620, C7621, C7622, C7623, C7626, C7627, C7628, C7629, C7630, and C7866.  

SciTech Connect (OSTI)

This is a data report for sediment samples analyzed for CHPRC. Between November 4, 2010 and April 25, 2011 sediment samples were received from 100-HR-3 Operable Unit for geochemical studies. The analyses for this project were performed at the 331 building located in the 300 Area of the Hanford Site. The analyses were performed according to Pacific Northwest National Laboratory (PNNL) approved procedures and/or nationally recognized test procedures. The data sets include the sample identification numbers, analytical results, estimated quantification limits (EQL), and quality control data. The preparatory and analytical quality control requirements, calibration requirements, acceptance criteria, and failure actions are defined in the on-line QA plan 'Conducting Analytical Work in Support of Regulatory Programs' (CAW). This QA plan implements the Hanford Analytical Services Quality Assurance Requirements Documents (HASQARD) for PNNL.

Lindberg, Michael J.

2011-06-01T23:59:59.000Z

378

Final Environmental Impact Statement Waste Management Activities for Groundwater Protection Savannah River Plant Aiken, South Carolina  

Broader source: Energy.gov (indexed) [DOE]

I I I Y DoE/Els-o120 Final Environmental Impact Statement Waste Management Activities for Groundwater Protection Savannah River Plant Aiken, South Carolina Volume 2 Q ~<$c'% ~ v ~ g ;:: # +4 -~ STATES O* December 1987 United States Department of Energy -- TABLE OF CONTENTS Appendix A GEOLOGY AND SUBSURFACE HYDROLOGY . . . . . . . . . . . . . . . A.1 Geology and Seismology . . . . . . . . . . . . . . . . . A.1.l Regional Geologic Setting . . . . . . . . . . . . A.1.1.1 Tectonic Provinces . . . . . . . . . . . A.I.1.2 Stratigraphy . . . . . . . . . . . . . . A.1.1.3 Geomorphology . . . . . . . . . . . . . . A.1.2 Seismology and Geologic Hazards . . . . . . . . . A.1.2.1 Geologic Structures and Seismicity . . . A.1.2.2 Seismic Events and Liquefaction Potentill . . . . . . . . . . . . . . . . A.2 Groundwater Resources . . . . . . . . . . . . . . . . . . A.2.1 Hydrostratigraphy . . . . . . . . . . . . . . . . A.2.2 Groundwater Hydrology . . . . . . . . . . . . . . A.2.2.1 Hydrologic Properties

379

Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. First quarter 1995  

SciTech Connect (OSTI)

During first quarter 1995, samples from AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility (Met Lab HWMF) were analyzed for selected heavy metals, field measurements, radionuclides, volatile organic compounds, and other constituents. Six parameters exceeded standards during the quarter. As in previous quarters, tetrachloroethylene and trichloroethylene exceeded final Primary Drinking Water Standards (PDWS). Total organic halogens exceeded its Savannah River Site (SRS) Flag 2 criterion during first quarter 1995 as in fourth quarter 1994. Aluminum, iron, and manganese, which were not analyzed for during fourth quarter 1994, exceeded the Flag 2 criteria in at least two wells each during first quarter 1995. Groundwater flow direction and rate in the M-Area Aquifer Zone were similar to previous quarters. Conditions affecting the determination of groundwater flow directions and rates in the Upper Lost Lake Aquifer Zone, Lower Lost Lake Aquifer Zone, and the Middle Sand Aquifer Zone of the Crouch Branch Confining Unit were also similar to previous quarters.

NONE

1995-06-01T23:59:59.000Z

380

UNIT NUMBER:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

10 feet wide by 30 feet long FUNCTION: Provide cooling water for computer systems and HVAC systems various plant buildings. OPERATIONAL STATUS: Active DATES OPERATED: 1953 to...

Note: This page contains sample records for the topic "groundwater operable unit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Recovering the spatial distribution of a groundwater contaminant at a prior time: The forward collocation method  

Science Journals Connector (OSTI)

We study the backward parabolic problem related to the convection-diffusion operator Au:=u"t-(D(x)u"x)"x+(c(x)u)"x when the diffusion coefficient D(x) may be discontinuous. The forward collocation method (FC-method) is used for numerical solution of ... Keywords: Backward parabolic problem, FC-method, Groundwater contaminant, Transmission

Burhan Pekta?

2009-08-01T23:59:59.000Z

382

Prediction of groundwater inrush into coal mines from aquifers underlying the coal seams in China: application of vulnerability index method to Zhangcun Coal Mine, China  

Science Journals Connector (OSTI)

Groundwater inrush is a geohazard that can significantly impact safe operations of the coal mines in China. Its occurrence is controlled ... network (ANN) and geographic information system (GIS). The detailed pro...

Qiang Wu; Wanfang Zhou; Jinhua Wang; Shuhan Xie

2009-05-01T23:59:59.000Z

383

Naturally occurring arsenic in the groundwater at the Kansas City Plant  

SciTech Connect (OSTI)

This report describes an investigation concerning the presence of arsenic in concentrations exceeding 0.4 mg/L in the groundwater under the Department of Energy's Kansas City Plant (KCP). The study consisted of four distinct phases: a thorough review of the technical literature, a historical survey of arsenic use at the facility, a laboratory study of existing techniques for determining arsenic speciation, and a field program including water, soil, and sediment sampling. The historical survey and literature review demonstrated that plant activities had not released significant quantities of arsenic to the environment but that similar occurrences of arsenic in alluvial groundwater are widespread in the midwestern United States. Laboratory studies showed that a chromatographic separation technique was necessary to accurately determine arsenic speciation for the KCP groundwater samples. Field studies revealed that naturally occurring reducing conditions prevalent in the subsurface are responsible for dissolving arsenic previously sorbed by iron oxides. Indeed, the data demonstrated that the bulk arsenic concentration of site subsoils and sediments is {approximately}7 mg/kg, whereas the arsenic content of iron oxide subsamples is as high as 84 mg/kg. Literature showed that similar concentrations of arsenic in sediments occur naturally and are capable of producing the levels of arsenic found in groundwater monitoring wells at the KCP. The study concludes, therefore, that the arsenic present in the KCP groundwater is the result of natural phenomena. 44 refs., 8 figs., 14 tabs.

Korte, N.E.

1990-12-01T23:59:59.000Z

384

Remedial investigation/feasibility study of the Clinch River/Poplar Creek Operable Unit. Volume 2. Appendixes A, B, C, and D-Biota and representative concentrations of contaminants  

SciTech Connect (OSTI)

This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is Volume 2 of the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

NONE

1996-06-01T23:59:59.000Z

385

Remedial investigation/feasibility study of the Clinch River/Poplar Creek Operable Unit. Volume 4. Appendixes G, H, and I and information related to the feasibility study and ARARs  

SciTech Connect (OSTI)

This report presents the findings of an investigation into contamination of the Clinch River and Poplar Creek near the U.S. Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) in eastern Tennessee. For more than 50 years, various hazardous and radioactive substances have been released to the environment as a result of operations and waste management activities at the ORR. In 1989, the ORR was placed on the National Priorities List (NPL), established and maintained under the federal Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Under CERCLA, NPL sites must be investigated to determine the nature and extent of contamination at the site, assess the risk to human health and the environment posed by the site, and, if necessary, identify feasible remedial alternatives that could be used to clean the site and reduce risk. To facilitate the overall environmental restoration effort at the ORR, CERCLA activities are being implemented individually as distinct operable units (OUs). This document is Volume 4 of the combined Remedial Investigation and Feasibility Study Report for the Clinch River/Poplar Creek OU.

NONE

1996-06-01T23:59:59.000Z

386

The Groundwater Performance Assessment Project Quality Assurance Plan  

SciTech Connect (OSTI)

This document provides the quality assurance guidelines that will be followed by the groundwater project.

Walker, Thomas G.

2005-01-26T23:59:59.000Z

387

Crane Operation Training  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

remove power from the crane and inform the facility management or CAMD safety. Place a lockout tag on the remote control unit. All CAMD crane operations are conducted using the...

388

Quantitative maps of groundwater resources in Africa  

Science Journals Connector (OSTI)

In Africa, groundwater is the major source of drinking water and its use for irrigation is forecast to increase substantially to combat growing food insecurity. Despite this, there is little quantitative information on groundwater resources in Africa, and groundwater storage is consequently omitted from assessments of freshwater availability. Here we present the first quantitative continent-wide maps of aquifer storage and potential borehole yields in Africa based on an extensive review of available maps, publications and data. We estimate total groundwater storage in Africa to be 0.66 million km3 (0.36–1.75 million km3). Not all of this groundwater storage is available for abstraction, but the estimated volume is more than 100 times estimates of annual renewable freshwater resources on Africa. Groundwater resources are unevenly distributed: the largest groundwater volumes are found in the large sedimentary aquifers in the North African countries Libya, Algeria, Egypt and Sudan. Nevertheless, for many African countries appropriately sited and constructed boreholes can support handpump abstraction (yields of 0.1–0.3 l s?1), and contain sufficient storage to sustain abstraction through inter-annual variations in recharge. The maps show further that the potential for higher yielding boreholes ( > 5 l s?1) is much more limited. Therefore, strategies for increasing irrigation or supplying water to rapidly urbanizing cities that are predicated on the widespread drilling of high yielding boreholes are likely to be unsuccessful. As groundwater is the largest and most widely distributed store of freshwater in Africa, the quantitative maps are intended to lead to more realistic assessments of water security and water stress, and to promote a more quantitative approach to mapping of groundwater resources at national and regional level.

A M MacDonald; H C Bonsor; B É Ó Dochartaigh; R G Taylor

2012-01-01T23:59:59.000Z

389

Recovery Act Supports Construction of Site's Largest Groundwater Treatment  

Broader source: Energy.gov (indexed) [DOE]

Supports Construction of Site's Largest Groundwater Supports Construction of Site's Largest Groundwater Treatment Facility Recovery Act Supports Construction of Site's Largest Groundwater Treatment Facility Construction of the largest groundwater treatment facility at the Hanford Site – a major American Recovery and Reinvestment Act project – is on schedule and more than 70 percent complete. Recovery Act workers with DOE contractor CH2M HILL Plateau Remediation Company are on pace to finish construction of the 200 West Groundwater Treatment Facility this year. Recovery Act Supports Construction of Site's Largest Groundwater Treatment Facility More Documents & Publications Hanford Treats Record Amount of Groundwater Recovery Act Invests in Cleanup, Preservation of Hanford Site Locomotives,

390

Groundwater Protection Act (Iowa) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Groundwater Protection Act (Iowa) Groundwater Protection Act (Iowa) Groundwater Protection Act (Iowa) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Buying & Making Electricity Home Weatherization Water Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Iowa Program Type Environmental Regulations Provider Iowa Department of Natural Resources The Commissioner of the Iowa Department of Natural Resources is required to

391

Groundwater Data Package for Hanford Assessments  

SciTech Connect (OSTI)

This report presents data and interpreted information that supports the groundwater module of the System Assessment Capability (SAC) used in Hanford Assessments. The objective of the groundwater module is to predict movement of radioactive and chemical contaminants through the aquifer to the Columbia River or other potential discharge locations. This data package is being revised as part of the deliverables under the Characterization of Systems Project (#49139) aimed at providing documentation for assessments being conducted under the Hanford Assessments Project (#47042). Both of these projects are components of the Groundwater Remediation and Closure Assessments Projects, managed by the Management and Integration Project (#47043).

Thorne, Paul D.; Bergeron, Marcel P.; Williams, Mark D.; Freedman, Vicky L.

2006-01-31T23:59:59.000Z

392

Burn site groundwater interim measures work plan.  

SciTech Connect (OSTI)

This Work Plan identifies and outlines interim measures to address nitrate contamination in groundwater at the Burn Site, Sandia National Laboratories/New Mexico. The New Mexico Environment Department has required implementation of interim measures for nitrate-contaminated groundwater at the Burn Site. The purpose of interim measures is to prevent human or environmental exposure to nitrate-contaminated groundwater originating from the Burn Site. This Work Plan details a summary of current information about the Burn Site, interim measures activities for stabilization, and project management responsibilities to accomplish this purpose.

Witt, Jonathan L. (North Wind, Inc., Idaho Falls, ID); Hall, Kevin A. (North Wind, Inc., Idaho Falls, ID)

2005-05-01T23:59:59.000Z

393

UNIT NUMBER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

174 10 12 92 UNIT NAME: C-745-K Low Level Storage Area REGULATORY STAU: -AOC LOCATION: Inside Security Fence , South of C-333 Cascade Building. APPROXIMATE...

394

UNIT NUMBER:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 KOW Toluene SDill Area UNIT NAME: REGULATORY STATUS: AOC LOCATION: Southwest of plant site APPROXIMATE DIMENSIONS: 200 feet wide by 800 feet ong FUNCTION: Storage of Toluene...

395

FISHERY STATISTICS UNITED STATES  

E-Print Network [OSTI]

FISHERY STATISTICS OF THE UNITED STATES 1973 STATISTICAL DIGEST NO. 67 Prepared by STATISTICS a review of the fishery statistics for the year 1973 . These statistics include data on the volume and value of landings of fishery products, employment 1n the fish- eries, quantity of gear operated, number

396

FISHERY STATISTICS UNITED STATES  

E-Print Network [OSTI]

FISHERY STATISTICS OF THE UNITED STATES 1971 STATISTICAL DIGEST NO. 65 Prepared by STATISTICS ry statistics for the year 1971 . These statistics include data on the volume and value of landings of fishery products, employment in the fishe ries, quantity of gear operated, number of fishing craft e

397

Groundwater monitoring program evaluation For A/M Area, Savannah River Site  

SciTech Connect (OSTI)

This investigation was undertaken with the primary purpose of assessing the groundwater monitoring program within the A/M Area to identify ways in which the monitoring program could be improved. The task was difficult due to the large number of wells located within the A/M Area and the huge database of analytical data. It was recognized early in this investigation that one of the key tasks was to develop a way to gain access to the groundwater databases so that recommendations could be made. To achieve this, geographic information systems (GIS) technology was used to extract pertinent groundwater quality information from the Geochemical Information Management System (GIMS) groundwater database and display the extracted information spatially. GIS technology was also used to determine the location of well screen and annular material zones within the A/M Area hydrostratigraphy and to identify wells that may breach confining units. Recommendations developed from this study address: (1) wells that may not be providing reliable data but continue to be routinely sampled (2) wells that may be inappropriately located but continue to be routinely sampled and (3) further work that should be undertaken, including well development, evaluation of wells that may be breaching confining units, and development of an automated link to GIMS using GIS so that GIMS data can easily be accessed and displayed geographically.

Hiergesell, R.A.; Bollinger, J.S.

1996-12-01T23:59:59.000Z

398

Microsoft Word - TOC&Units.doc  

Office of Legacy Management (LM)

Table of Contents May 2005 Table of Contents May 2005 2004 Site Environmental Report i Table of Contents List of Figures.................................................................................................................. iv List of Tables................................................................................................................... iii List of Acronyms...............................................................................................................v Units (Abbreviations) and Conversion Table ........................................................................ vii ES 1.0 Executive Summary ES-1 ES 1.1 Liquid Pathway Highlights...................................................................................ES-2 ES 1.1.1 Groundwater Pathway.........................................................................ES-2

399

A multiple-tracer approach to understanding regional groundwater flow in the Snake Valley area of the eastern Great Basin, USA  

Science Journals Connector (OSTI)

Abstract Groundwater in Snake Valley and surrounding basins in the eastern Great Basin province of the western United States is being targeted for large-scale groundwater extraction and export. Concern about declining groundwater levels and spring flows in western Utah as a result of the proposed groundwater withdrawals has led to efforts that have improved the understanding of this regional groundwater flow system. In this study, environmental tracers (?2H, ?18O, 3H, 14C, 3He, 4He, 20Ne, 40Ar, 84Kr, and 129Xe) and major ions from 142 sites were evaluated to investigate groundwater recharge and flow-path characteristics. With few exceptions, ?2H and ?18O show that most valley groundwater has similar ratios to mountain springs, indicating recharge is dominated by relatively high-altitude precipitation. The spatial distribution of 3H, terrigenic helium (4Heterr), and 3H/3He ages shows that modern groundwater (temperatures (NGTs) are generally 1–11 °C in Snake and southern Spring Valleys and >11 °C to the east of Snake Valley and indicate a hydraulic discontinuity between Snake and Tule Valleys across the northern Confusion Range. The combination of \\{NGTs\\} and 4Heterr shows that the majority of Snake Valley groundwater discharges as springs, evapotranspiration, and well withdrawals within Snake Valley rather than continuing northeastward to discharge at either Fish Springs or the Great Salt Lake Playa. The refined understanding of groundwater recharge and flow paths acquired from this multi-tracer investigation has broad implications for interbasin subsurface flow estimates and future groundwater development.

Philip M. Gardner; Victor M. Heilweil

2014-01-01T23:59:59.000Z

400

Unit Operations Characterization Using Historical Manufacturing Performance  

Science Journals Connector (OSTI)

This is equivalent to the use of three components (severity, occurrence, and detection) to estimate the overall risk in failure modes and effects analysis (FMEA). ... Stamatis, D. H. Failure Mode and Effect Analysis: FMEA from Theory to Execution, 2nd ed.; ASQ Quality Press: Milwaukee, WI, 2003. ...

Jerry D. Mitchell; Kumar Abhinava; Kristi L. Griffiths; Bernard McGarvey; Kevin D. Seibert; Shanthi Sethuraman

2008-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "groundwater operable unit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

UNIT OPERATION Separator, 3 phase separator, tank.  

E-Print Network [OSTI]

EQUIPMENT. . Centrifugal compressor, expander, reciprocating compressor centrifugal pump . -Centrifugal compressor expander Inlet output connection , power source volume head . motor Inlet outlet connection , power source , , piston . -Pump Centrifugal compressor ,choke flow

Hong, Deog Ki

402

Water Budget Analysis and Groundwater Inverse Modeling  

E-Print Network [OSTI]

the hydraulic conductivity field conditioned on the measurements of hydraulic conductivity and hydraulic head for saturated flow in randomly heterogeneous porous media. The groundwater modeling approach was found to be efficient in identifying the dominant...

Farid Marandi, Sayena

2012-07-16T23:59:59.000Z

403

The Savannah River Site's Groundwater Monitoring Program  

SciTech Connect (OSTI)

This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted in the first quarter of 1990. It includes the analytical data, field data, well activity data, and the other documentation for this program and provides a record of the program's activities and rationale and an official document of the analytical results. The groundwater monitoring program includes the following activities: installation, maintenance, and abandonment of monitoring wells, environmental soil borings, development of the sampling and analytical schedule, collection and analyses of groundwater samples, review of the analytical data and other data, maintenance of the databases containing groundwater monitoring data and related data, quality assurance (QA) evaluations of laboratory performance, and reports of results to waste-site facility custodians and to the Environmental Protection Section (EPS) of EPD.

Not Available

1990-10-18T23:59:59.000Z

404

California Groundwater Management Plans | Open Energy Information  

Open Energy Info (EERE)

search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: California Groundwater Management PlansLegal Published NA Year Signed or Took Effect 2014...

405

GIS Techniques for Mapping Groundwater Contamination Risk  

Science Journals Connector (OSTI)

The groundwater contamination risk map of a samplealluvial area was produced by using the IlwisGeographical Information System (GIS) to construct andto overlay thematic maps. The risk map has beenderived from the...

Daniela Ducci

1999-11-01T23:59:59.000Z

406

Quarterly report of RCRA groundwater monitoring data for period January 1, 1993 through March 31, 1993  

SciTech Connect (OSTI)

Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs as defined in the Resource Conservation and Recovery Act of 1976 (RCRA); and Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities, as amended (40 Code of Federal Regulations [CFR] 265). Compliance with the 40 CFR 265 regulations is required by the Washington Administrative Code (WAC) 173-303. This report contains data from Hanford Site groundwater monitoring projects. This quarterly report contains data received between March 8 and May 24, 1993, which are the cutoff dates for this reporting period. This report may contain not only data from the January through March quarter but also data from earlier sampling events that were not previously reported.

Not Available

1993-07-01T23:59:59.000Z

407

E-Print Network 3.0 - artificial groundwater recharge Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the groundwater is usually called recharge. Recharge causes the local... groundwater level to rise which creates a gradient that causes groundwater to flow away from the...

408

United States Department of Energy  

Energy Savers [EERE]

United States Department of Energy Office of Hearings and Appeals In the Matter of: Washington State ) Fleet Operations ) ) Filing Date: November 13, 2013 ) Case No.: EXA-13-0001...

409

Analysis of perchlorate in groundwater by electrospray ionization mass spectrometry/mass spectrometry  

SciTech Connect (OSTI)

An electrospray ionization mass spectrometry/mass spectrometry (ESI/MS/MS) method was developed to measure part-per-billion ({micro}g/L) concentrations of perchlorate in groundwater. Selective and sensitive perchlorate detection was achieved by operating the mass spectrometer in the negative ionization mode and by using MS/MS to monitor the CIO{sub 4}{sup {minus}} to ClO{sub 3}{sup {minus}} transition. The method of standard additions was used to address the considerable signal suppression caused by anions that are typically present in groundwater, such as bicarbonate and sulfate. ESI-MS/MS analysis was rapid, accurate, reproducible, and provided a detection limit of 0.5 {micro}g/L perchlorate in groundwater. Accuracy and precision of the ESI/MS/MS method were assessed by analyzing performance evaluation samples in a groundwater matrix and by comparing ion chromatography (IC) and ESI/MS/MS results for local groundwater samples. Results for the performance evaluation samples differed from the certified values by 4--13%, and precision ranged from 3 to 10% (relative standard deviation). The IC and ESI/MS/MS results were statistically indistinguishable for perchlorate concentrations above the detection limits of both methods.

Koester, C.J.; Beller, H.R.; Halden, R.U.

2000-05-01T23:59:59.000Z

410

Mixed Waste Management Facility (MWMF) groundwater monitoring report. Fourth quarter 1993 and 1993 summary  

SciTech Connect (OSTI)

During fourth quarter 1993, 10 constituents exceeded final Primary Drinking Water Standards in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility, the Old Burial Ground, the E-Area Vaults, and the proposed Hazardous Waste/Mixed Waste Disposal Vaults. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents. Carbon tetrachloride, chloroform, chloroethane (vinyl chloride), 1,1-dichloroethylene, dichloromethane (methylene chloride), lead, mercury, or tetrachloroethylene also exceeded standards in one or more wells. Elevated constituents were found in numerous Aquifer Zone 2B{sub 2} (Water Table) and Aquifer Zone 2B{sub 1}, (Barnwell/McBean) wells and in two Aquifer Unit 2A (Congaree) wells. The groundwater flow direction and rates in the three hydrostratigraphic units were similar to those of previous quarters.

Butler, C.T.

1994-03-01T23:59:59.000Z

411

Mixed Waste Management Facility (MWMF) groundwater monitoring report: Third quarter 1993  

SciTech Connect (OSTI)

During third quarter 1993, eight constituents exceeded final Primary Drinking Water Standards in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility, the Old Burial Ground, the E-Area Vaults, and the proposed Hazardous Waste/Mixed Waste Disposal Vaults. As in previous quarters, tritium and trichloroethylene were the most widespread constituents Chloroethene (vinyl chloride), 1,1-dichloroethylene, dichloromethane (methylene chloride), lead, mercury, or tetrachloroethylene also exceeded standards in one or more wells. The elevated constituents were found in Aquifer Zone IIB{sub 2} (Water Table) and Aquifer Zone IIB{sub 1} (Barnwell/McBean) wells. No elevated constituents were exhibited in Aquifer Unit IIA (Congaree) wells. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters.

Not Available

1993-12-01T23:59:59.000Z

412

Mixed Waste Management Facility (MWMF) groundwater monitoring report. First quarter 1993  

SciTech Connect (OSTI)

During first quarter 1993, eight constituents exceeded final Primary Drinking Water Standards in groundwater samples from downgradient monitoring wells at the Mixed Waste anagement Facility, the Old Burial Ground, the E-Area Vaults, and the proposed Hazardous Waste/Mixed Waste Disposal Vaults (HWMWDV). As in previous quarters, tritium and trichloroethylene were the most widespread constituents. Tetrachloroethylene, chloroethene, 1,1-dichloroethylene, gross alpha, lead, or nonvolatile beta levels also exceeded standards in one or more wells. The elevated constituents were found primarily in Aquifer Zone IIB{sub 2} (Water Table) and Aquifer Zone IIB{sub 1}, (Barnwell/McBean) wells. However, several Aquifer Unit IIA (Congaree) wells also contained elevated constituent levels. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to previous quarters.

Not Available

1993-06-01T23:59:59.000Z

413

Mixed waste management facility groundwater monitoring report. Fourth quarter 1995 and 1995 summary  

SciTech Connect (OSTI)

During fourth quarter 1995, seven constituents exceeded final Primary Drinking Water Standards (PDWS) in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility. No constituents exceeded final PDWS in samples from the upgradient monitoring wells. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents. Chloroethene, gross alpha, lead, mercury, and tetrachloroethylene also exceeded final PDWS in one or more wells. Elevated constituents were found in numerous Aquifer Zone IIB{sub 2} (Water Table) and Aquifer Zone IIB{sub 1} (Barnwell/McBean) wells and in three Aquifer Unit IIA (Congaree) wells. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters.

NONE

1996-03-01T23:59:59.000Z

414

Chasing water: Diverging farmers' strategies to cope with the groundwater crisis in the coastal Chaouia region in Morocco  

E-Print Network [OSTI]

policies, whose efficiency will depend on farmers' strategies. The different strategies adopted by farmers1 Chasing water: Diverging farmers' strategies to cope with the groundwater crisis in the coastal, Meknes, France 4 National School for Agronomic Education (ENFA), Rural Dynamics Research Unit, Toulouse

Paris-Sud XI, Université de

415

.JETEQUIPMENT &TOOLS OPERATOR'S MANUAL  

E-Print Network [OSTI]

.JETEQUIPMENT &TOOLS OPERATOR'S MANUAL JDP-14J/14M/17M/14JF/14 MF/17MF DRILL PRESS Stock No. .JET-6000 FAX[253] 939-8001 #12;OPERATINGINSTRUCTIONS Before operating the unit, please read this manual workpiece. 7. MAINTAIN TOOLS WITH CARE. Keep tools sharp and clean for the best and safest performance

Kleinfeld, David

416

Kids Clean Up 'Polluted' Groundwater at Festival | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Kids Clean Up 'Polluted' Groundwater at Festival Kids Clean Up 'Polluted' Groundwater at Festival Kids Clean Up 'Polluted' Groundwater at Festival May 30, 2013 - 12:00pm Addthis Fifth graders learn about cleaning up groundwater at the Children’s Water Festival. Fifth graders learn about cleaning up groundwater at the Children's Water Festival. Kids have fun cleaning up “polluted” groundwater at the Children’s Water Festival in Grand Junction, Colo. Kids have fun cleaning up "polluted" groundwater at the Children's Water Festival in Grand Junction, Colo. Fifth graders learn about cleaning up groundwater at the Children's Water Festival. Kids have fun cleaning up "polluted" groundwater at the Children's Water Festival in Grand Junction, Colo. GRAND JUNCTION, Colo. - Every spring, about 2,500 fifth graders in

417

Kids Clean Up 'Polluted' Groundwater at Festival | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Kids Clean Up 'Polluted' Groundwater at Festival Kids Clean Up 'Polluted' Groundwater at Festival Kids Clean Up 'Polluted' Groundwater at Festival May 30, 2013 - 12:00pm Addthis Fifth graders learn about cleaning up groundwater at the Children’s Water Festival. Fifth graders learn about cleaning up groundwater at the Children's Water Festival. Kids have fun cleaning up “polluted” groundwater at the Children’s Water Festival in Grand Junction, Colo. Kids have fun cleaning up "polluted" groundwater at the Children's Water Festival in Grand Junction, Colo. Fifth graders learn about cleaning up groundwater at the Children's Water Festival. Kids have fun cleaning up "polluted" groundwater at the Children's Water Festival in Grand Junction, Colo. GRAND JUNCTION, Colo. - Every spring, about 2,500 fifth graders in

418

Groundwater Cleanup Progresses at Paducah Site | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Cleanup Progresses at Paducah Site Cleanup Progresses at Paducah Site Groundwater Cleanup Progresses at Paducah Site October 30, 2013 - 12:00pm Addthis Workers drill holes for installation of electrodes as part of a heating system to help clean up contamination. Workers drill holes for installation of electrodes as part of a heating system to help clean up contamination. A crane lifts the carbon treatment system into place. This technology treats vapor pumped to the surface by the belowground heating system. A crane lifts the carbon treatment system into place. This technology treats vapor pumped to the surface by the belowground heating system. The belowground heating system operates in front of the C-400 Cleaning Building. The belowground heating system operates in front of the C-400 Cleaning

419

United States  

Office of Legacy Management (LM)

- I - I United States Department of Energy D lSCk Al M E R "This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency

420

UNIT NUMBER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 UNIT NAME C-333 North Side PCB Soil Contamination REGULATORY STATUS: AOC LOCATION: North side of C-333 Building APPROXIMATE OIMENSIONS: 150 ft by 100 ft FUNCTION: Dust Palliative...

Note: This page contains sample records for the topic "groundwater operable unit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

UNIT NUMBER:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 KPDES Outfall Ditch 017 Flume- Soil Backfill UNIT NAME: - REGULATORY STATUS: AOC LOCATION: South of plant on the west side of the access road APPROXIMATE DIMENSIONS: 30 feet wide...

422

UNIT NUMBER:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 C-617-A Sanitarv Waterline- Soil Backfill UNIT NAME: - REGULATORY STATUS: AOC LOCATION: Between southeast corner of C-531 Switchyard and C-617-A Water Treatment Facility. 4 feet...

423

UNIT NUMBER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 UNIT NAME C-720 Inactive TCE Oegreaser REGULATORY STATUS: AOC LOCATION: C-720 Building APPROXIMATE DIMENSIONS: Approx. 10 ft by 10 ft by 20 f1: deep FUNCTION: Used for cleaning...

424

UNIT NUMBER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 UNIT NAME Rubble Dile 46 REGULATORY STATUS: AOC LOCATION: 2000 ft southwest of curve on Kentucky Highway 473- near east end of Mitchell Lake APPROXIMATE DIMENSIONS: About 100 ft...

425

UNIT NUMBER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 UNIT NAME Rubble oile 45 REGULATORY STATUS AOC LOCATION: West end of Mitche Lake APPROXIMATE DIMENSIONS: 2000 ft long, ft thick 4 ft wide FUNCTION: Control erosion on face of dam...

426

UNIT NUMBER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 UNIT NAME Rubble Dile 43 REGULATORY STATUS: AOC LOCATION: West end of Happy Ho ow Lake APPROXIMATE DIMENSIONS: 200 ft long by 4 ft wide -concrete 4-6 in thickness FUNCTION:...

427

UNIT NUMBER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 UNIT NAME C-740 TCE Soill Site REGULATORY STATUS: AOC LOCATION: Northwest corner C-740 concrete pad area) APPROXIMATE DIMENSIONS: 5 ft by 5 ft spill FUNCTION: Drum storage area...

428

UNIT NUMBER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 C-I00 South Side Berms UNIT NAME REGULATORY STATUS: AOC LOCATION: South Side C-IOO APPROXIMATE DIMENSIONS: 2 berms approximately 200 ft long by SO ft wide eac FUNCTION:...

429

UNIT NUMBER:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 UNIT NAME: C-331 PCB Soil Contamination -West Side REGULATORY STATUS: AOC LOCATION: West side C-331 building APPROXIMATE DIMENSIONS: 100 feet wide by 420 feet long FUNCTION: Dust...

430

Bedrock Groundwaters -- Upgradient -- 92-06a,b  

Office of Legacy Management (LM)

09 09 This page intentionally left blank Bedrock Groundwaters -- Upgradient -- 92-06 a,b ____________________________________________ Analyte Unit 10/30/00 10/10/01 ____________________________________________ Field Measurements Alkalinity mg/L 189 182 Conductivity c ÎĽmhos/cm 560 560 DO c mg/L 1.4 -- ORP c mV -51 -46 pH c s.u. 7.24 7.52 Temperature c C 11.3 11.6 Turbidity c NTU 0.84 4.3 Common Ions Ca mg/L 72.8 69.3 Chloride mg/L 2.15 2.44 Fluoride ÎĽg/L 124 242 Hardness mg/L 225 214 K mg/L 1.98 1.81

431

Characterization of 200-UP-1 Aquifer Sediments and Results of Sorption-Desorption Tests Using Spiked Uncontaminated Groundwater  

SciTech Connect (OSTI)

Core characterization showed only 4 out of 13 core liner samples were intact samples and that the others were slough material. The intact samples showed typical Ringold Unit E characteristics such as being dominated by gravel and sand. Moderately reducing conditions are inferred in some core from borehole C4299. This reducing condition was caused by the hard tool process used to drill the wells. One core showed significant presence of ferric iron oxide/clay coatings on the gravels. There were no highly contaminated sediments found in the cores from the three new boreholes in UP-1 operable unit, especially for uranium. The presence of slough and ''flour'' caused by hard tooling is a serious challenge to obtaining field relevant sediments for use in geochemical experiments to determine the adsorption-desorption tendencies of redox sensitive elements such as uranium. The adsorption of COCs on intact Ringold Formation sediments and Fe/clay coatings showed that most of the anionic contaminants [Tc(VII), Se(VI), U(VI), Cr(VI), and I(-I)] did not adsorbed very well compared to cationic [Np(V), Sr(II), and Cs(I)] radionuclides. The high hydrous iron oxide content in Fe/clay coatings caused the highest Kd values for U and Np, suggesting these hydrous oxides are the key solid adsorbent in the sediments. Enhanced adsorption behavior for Tc, and Cr and perhaps Se on the sediments was considered an ?artifact? result caused by the induced reducing conditions from the hard tool drilling. Additional U(VI) adsorption Kd studies were performed on Ringold Formation sediments to develop more robust Kd data base for U. The <2 mm size separates of three UP-1 sediments showed a linear U(VI) adsorption isotherm up 1 ppm of total U(VI) concentration in solution. The additional U(VI) Kds obtained from varying carbonate concentration indicated that U(VI) adsorption was strongly influenced by the concentration of carbonate in solution. U(VI) adsorption decreased with increasing concentrations of carbonate up to a point. Then as carbonate and calcium concentrations in the groundwater reach values that exceed the solubility limit for the mineral calcite there is a slight increase in U(VI) Kd likely caused by uranium co-precipitation with the fresh calcite. If remediation of the UP-1 groundwater plume is required, such as pump and treat, it is recommended that the aquifer be treated with chemicals to increase pH and alkalinity and decrease dissolved calcium and magnesium [so that the precipitation of calcite is prevented]. Alternative methods to immobilize the uranium in place might be more effective than trying to remove the uranium by pump and treat. Unfortunately, no aquifer sediments were obtained that contained enough Hanford generated uranium to perform quantitative desorption tests germane to the UP-1 plume remediation issue. Recommended Kd values that should be used for risk predictions for the UP-1 groundwater plume traveling through the lithologies within the aquifer present at the UP-1 (and by proxy ZP-1) operable units were provided. The recommended values Kd values are chosen to include some conservatism (lower values are emphasized from the available range) as is standard risk assessment practice. In general, desorption Kd values for aged contaminated sediments can be larger than Kd values determined in short-term laboratory experiments. To accommodate the potential for desorption hysteresis and other complications, a second suite of uranium desorption Kd values were provided to be used to estimate removal of uranium by pump and treat techniques.

Um, Wooyong; Serne, R JEFFREY.; Bjornstad, Bruce N.; Schaef, Herbert T.; Brown, Christopher F.; Legore, Virginia L.; Geiszler, Keith N.; Baum, Steven R.; Valenta, Michelle M.; Kutnyakov, Igor V.; Vickerman, Tanya S.; Lindberg, Michael J.

2005-11-16T23:59:59.000Z

432

UNIT NUMBER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

OPERATED SITEPROCESS DESCRIPTION: A 5000-gal stainless steel tank with associated pumps and piping. The tank is located in a stainless steel lined concrete conta1nment area....

433

United States Government  

Broader source: Energy.gov (indexed) [DOE]

')/06 MON 14:28 FAX 423 241 3897 OIG ')/06 MON 14:28 FAX 423 241 3897 OIG --- HQ 1o001 ,O " F 1325.8 (08-93) United States Government Department of Energy memorandum DATE: April 10, 2006 Audit Report No.: OAS-L-06-11 REPLY TO ATTN OF: IG-32 (A05ID043) SUBJECT: Audit of "Contract Transition Activities at the Idaho Operations Office" TO: Manager, Idaho Operations Office INTRODUCTION AND OBJECTIVE The Department of Energy's Idaho Operations Office has ongoing missions focused primarily in the areas of nuclear energy and environmental cleanup. From October 1, 1999 to February 1, 2005, Bechtel BWXT Idaho, LLC (Bechtel) managed facility operations for both of these missions. In Fiscal Year 2005, two separate contracts began in order to add focus and clarity to each respective mission. First, the Idaho National

434

Optimized groundwater containment using linear programming  

SciTech Connect (OSTI)

Groundwater extraction systems are typically installed to contain contaminant plumes. These systems are expensive to install and maintain. A traditional approach to designing such a wellfield is to use a series of trial-and-error simulations to test the effects of various well locations and pump rates. However, optimal locations and pump rates of extraction wells are difficult to determine when the objectives of the potential pumping scheme and the site hydrogeology are considered. This paper describes a case study of an application of linear programming theory to determine optimal well placement and pump rates. Calculations were conducted by using ModMan to link a calibrated MODFLOW flow model with LINDO, a linear programming package. Past activities at the site under study included disposal of contaminants in pits. Several groundwater plumes have been identified, and others may be present. The area of concern is bordered on three sides by a wetland, which receives a portion of its input water budget as groundwater discharge from the disposal area. The objective function of the optimization was to minimize the rate of groundwater extraction while preventing discharge to the marsh across a user-specified boundary. In this manner, the optimization routine selects well locations and pump rates to produce a groundwater divide along this boundary.

Quinn, J.J.; Johnson, R.L.; Durham, L.A.

1998-07-01T23:59:59.000Z

435

Variable pressure operation: An assessment  

SciTech Connect (OSTI)

This report summarizes the benefits, drawbacks, and technical issues of variable pressure operation (VPO) retrofit. Under VPO, turbine throttle pressure is reduced at low loads. This operating mode offers several significant advantages for units that cycle or operate at low loads for extended periods. Information used in the report was assembled from published sources, from major equipment manufacturers, and from utilities operating units under VPO in the US, Europe and Japan. The report also contains statistics of VPO use in this country and abroad. Design features of new units using VPO in Europe and Japan are presented to identify potential directions for future US designs incorporating VPO.

Kimel, E.; Kemeny, P.; Bierman, E.; Lagomarsino, J.; Clarke, D. (Burns and Roe, Inc., Oradell, NJ (USA))

1990-03-01T23:59:59.000Z

436

Remedial Investigation Report on Bear Creek Valley Operable Unit 2 (Rust Spoil Area, Spoil Area 1, and SY-200 Yard) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1, Main text  

SciTech Connect (OSTI)

This report on the BCV OU 2 at the Y-12 Plant, was prepared in accordance with requirements under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) for reporting the results of a site characterization for public review. It provides the Environmental Restoration Program with information about the results of the 1993 investigation. It includes information on risk assessments that have evaluated impacts to human health and the environment. Field activities included collection of subsurface soil samples, groundwater and surface water samples, and sediments and seep at the Rust Spoil Area (RSA), SY-200 Yard, and SA-1.

NONE

1995-01-01T23:59:59.000Z

437

H-Area Seepage Basins Groundwater Monitoring Report: Volume 1, Third and Fourth quarters 1994  

SciTech Connect (OSTI)

Isoconcentration/isocactivity maps included in this report indicate both the concentration/activity and extent of the primary contaminants in each of the three hydrostratigraphic units during the second half of 1994. Geologic cross sections indicate both the extent and depth of contamination of the primary contaminants in all of the hydrostratigraphic units during the second half of 1994. Water-level maps indicate that the groundwater flow rates and directions at the H-Area Seepage Basins have remained relatively constant since the basins ceased to be active in 1988.

Chase, J.A.

1994-03-01T23:59:59.000Z

438

Hydraulic Containment of TCE Contaminated Groundwater at the DOE Portsmouth Gaseous Diffusion Plant  

SciTech Connect (OSTI)

This paper will describe the progress of a groundwater remedial action at the Portsmouth Gaseous Diffusion Plant (PORTS), a Department of Energy (DOE) facility that enriched uranium from the early 1950's until 2000. The X-749 southern boundary hydraulic containment system, combining a four-well extraction system with a previously constructed subsurface barrier wall, has been employed at PORTS. The hydraulic containment project has been implemented as part of containment and remediation of the X-749/X-120 area trichloroethylene (TCE) contaminant. The X-749/X-120 groundwater contaminant plume is located in the south central section (Quadrant I) of the PORTS facility. The plume is associated with the former X-120 Goodyear Training Facility and a landfill known as the X-749 Contaminated Materials Disposal Facility. The principal contaminants of concern are chlorinated solvents (primarily TCE) and technetium-99 (Tc-99). A subsurface barrier wall (X-749 South Barrier Wall) was completed in 1994 at the PORTS southern reservation boundary as an interim remedial measure to slow the advancement of the leading edge of the contaminated groundwater plume or to prevent the plume from migrating off DOE property. Remedial measures identified by Ohio Environmental Protection Agency (Ohio EPA) included installation of a barrier wall around the eastern and southern portions of the X-749 landfill to provide source control and installation of a phyto-remediation system to help contain groundwater flow and remove volatile organic compounds. Previous remedial measures that were implemented as elements of 'closures' on the X-749 landfill included a multimedia cap, barrier walls, and a groundwater collection system. Despite these measures, the X-749/X-120 groundwater plume has migrated beyond the southern DOE property boundary. Current TCE concentrations in off-site groundwater monitoring wells are below the preliminary remediation goal and drinking water maximum contaminant level for TCE of 5 {mu}g/kg, but continue to increase. Hydraulic containment was selected as the method for controlling the plume at the southern DOE property boundary. Recent borings and pumping tests indicate that approximately a 400-foot section of the existing subsurface barrier wall near the DOE property boundary may been improperly keyed into the Sunbury Shale bedrock which underlies the unconsolidated uppermost Gallia sand and gravel aquifer (Gallia). This gap is reported to be as much as 4 vertical feet. In addition, the X-749 groundwater plume is migrating around the western end of the X-749 South Barrier Wall. Four groundwater extraction wells were installed at the DOE property boundary to provide hydraulic control of the plume currently flowing under and around the existing subsurface barrier wall. Placement of the new extraction wells was based on groundwater modeling and data collected from pumping tests in the area. The extracted groundwater is being sent to the on-site X-622 Groundwater Treatment Facility via subsurface piping. The hydraulic containment system began operation in June 2007. The preliminary water elevations from monitoring wells in the vicinity of two of the four extraction wells demonstrate a significant decrease in groundwater potentiometric head in the southern boundary area. The current extraction rates should be adequate to contain the leading edge of the contaminant plume. Monitoring wells in the area will continue to be sampled on a quarterly basis. (authors)

Lewis, A.C.; Rieske, D.P.G.; Baird, D.R.P.E. [CDM, Piketon, OH (United States)

2008-07-01T23:59:59.000Z

439

l UNITED STATES GOVERNMENT  

Office of Legacy Management (LM)

UNITED STATES GOVERNMENT UNITED STATES GOVERNMENT lb 15 SUBJECT: THORFJM PROCURENENT PMF'N:TBU Jesse C. Johnson, Gtnager of IRaw Materials Operations3s.Office 3 R. W. Cook, Director of Production ~',LL:::+ I--- DATE: MAR ! 9 1951 The following list of suppliers of thorium and the amounts of materials procured from them by the Mew York Operations Office during calendar year 1950 is being supplied in accordance with Mr. Spelmanls telephone request of March 19. Thorium Lannett Bleachery iinde Air Products Co. Lindsey Light & Chemical Co. lliscellaneous NY0 Liscensing Division Rare Earths, Inc. Wolff-Alport Total - (kilograms) 179 38,2;2 -3 4,210 /vyeoi 4 -q- 2 : i ' \ iti 1 i 0 ;;\I:' --' I F 10 i;;;?/ \ --' L & ;:I :,- :,j( EZi 5 1 :' -I I ri _ I ' R i; .- . )- .i

440

United States Government  

Broader source: Energy.gov (indexed) [DOE]

.2/06 WED 17:02 FAX 423 241 3897 OIG .2/06 WED 17:02 FAX 423 241 3897 OIG -** HQ . 001 United States Government Department of Energy Department of Energy memorandum DATE: February 9, 2006 Audit Report Number: OAS-L-06-07 REPLY TO ATTN OF; IG-32 (A050R014) SUBJECT: Audit of "The Department's Management of United States Enrichment Corporation Site Services" TO: Manager, Portsmouth/Paducah Project Office INTRODUCTTON AND OBJECTIVE The Paducah Gaseous Diffusion Plant (Paducah), located in western Kentucky, was constructed by the Department of Energy (Department) in the early 1950s to enrich uranium for use in various military and commercial applications. The Department operated the plant until the Energy Policy Act of 1992 created the United States Enrichment Corporation (USEC) as a Government-owned

Note: This page contains sample records for the topic "groundwater operable unit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

United States  

Office of Legacy Management (LM)

Office of Research and EPA 600/R-941209 Environmental Protection Development January 1993 Agency Washington, DC 20460 Offsite Environmental 57,,7 Monitoring Report Radiation Monitoring Around United States Nuclear Test Areas, Calendar Year 1992 UNITED STATES ENVIRONMENTAL PROTECTION AGENCY OFFICE OF RESEARCH AND DEVELOPMENT ENVIRONMENTAL MONITORING SYSTEMS LABORATORY-LAS VEGAS P.O. BOX 93478 LAS VEGAS. NEVADA 891 93-3478 702/798-2100 Dear Reader: Since 1954, the U.S. Environmental Protection Agency (EPA) and its predecessor the U.S, Public Health Service (PHs) has conducted radiological monitoring in the offsite areas around United States nuclear test areas. The primary objective of this monitoring has been the protection of the health and safety of

442

United States  

Broader source: Energy.gov (indexed) [DOE]

BP Energy Company BP Energy Company OE Docket No. EA- 3 14 Order Authorizing Electricity Exports to Mexico Order No. EA-3 14 February 22,2007 BP Energy Company Order No. EA-314 I. BACKGROUND Exports of electricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(Q of the Department of Energy Organization Act (42 U.S.C. 7 15 l(b), 7172(f)) and require authorization under section 202(e) of the Federal Power Act (FPA) (16 U.S.C.S24a(e)) . On May 22,2006, BP Energy Company (BP Energy) applied to DOE for an authorization to transmit electric energy from the United States to Mexico as a power marketer. BP Energy proposes to purchase surplus electric energy from electric utilities and other suppliers within the United States and to export that energy to ~Mexico. The cnergy

443

Effect of faulting on ground-water movement in the Death Valley region, Nevada and California  

SciTech Connect (OSTI)

This study characterizes the hydrogeologic system of the Death Valley region, an area covering approximately 100,000 square kilometers. The study also characterizes the effects of faults on ground-water movement in the Death Valley region by synthesizing crustal stress, fracture mechanics,a nd structural geologic data. The geologic conditions are typical of the Basin and Range Province; a variety of sedimentary and igneous intrusive and extrusive rocks have been subjected to both compressional and extensional deformation. Faulting and associated fracturing is pervasive and greatly affects ground-water flow patterns. Faults may become preferred conduits or barriers to flow depending on whether they are in relative tension, compression, or shear and other factors such as the degree of dislocations of geologic units caused by faulting, the rock types involved, the fault zone materials, and the depth below the surface. The current crustal stress field was combined with fault orientations to predict potential effects of faults on the regional ground-water flow regime. Numerous examples of fault-controlled ground-water flow exist within the study area. Hydrologic data provided an independent method for checking some of the assumptions concerning preferential flow paths. 97 refs., 20 figs., 5 tabs.

Faunt, C.C.

1997-12-31T23:59:59.000Z

444

Nevada Test Site 2002 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site  

SciTech Connect (OSTI)

This report is a compilation of the calendar year 2002 groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). Wells Ue5PW-1, Ue5PW-2, and Ue5PW-3 were sampled semiannually for the required analytes: pH, specific conductance, major cations/anions, metals, tritium, total organic carbon (TOC), and total organic halogen (TOX). Results from all samples collected in 2002 were within established criteria. These data indicate that there has been no measurable impact to the uppermost aquifer from the Resource Conservation and Recovery Act(RCRA) regulated unit within the RWMS-5 and confirm that the detections of TOC and TOX in 2000 were false positives. Contamination indicator data are presented in control chart and tabular form with investigation levels (ILs) indicated. Gross water chemistry data are presented in graphical and tabular form. There were no major changes noted in the monitored groundwater elevation. There continues to be an extremely small gradient to the northeast with an average flow velocity of less than one foot per year. Other information in the report includes, the Cumulative Chronology for Area 5 RWMS Groundwater Monitoring Program, a brief description of the site hydrogeology, and the groundwater sampling procedure.

Y. E. Townsend

2003-02-01T23:59:59.000Z

445

Nevada Test Site 2001 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site  

SciTech Connect (OSTI)

This report is a compilation of the calendar year 2001 groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). Contamination indicator data are presented in control chart and tabular form with investigation levels (ILs) indicated. Gross water chemistry data are presented in graphical and tabular form. Other information in the report includes, the Cumulative Chronology for Area 5 RWMS Groundwater Monitoring Program, a brief description of the site hydrogeology, and the groundwater sampling procedure. Wells Ue5PW-1, Ue5PW-2, and Ue5PW-3 were sampled semiannually for the required analytes: pH, specific conductance, major cations/anions, metals, tritium, total organic carbon (TOC), and total organic halogen (TOX). Due to detections of TOC and TOX in some samples collected in 2000, a plan, as approved by the Nevada Division of Environmental Protection (NDEP), was executed to collect an increased number and type of samples in 2001. Results from all samples collected in 2001 were below ILs. These data indicate that there has been no measurable impact to the uppermost aquifer from the Resource Conservation and Recovery Act (RCRA) regulated unit within the Area 5 RWMS and confirm that the detections of TOC and TOX in 2000 were false positives. There were no major changes noted in the monitored groundwater elevation. There continues to be an extremely small gradient to the northeast with an average flow velocity of less than one foot per year.

Y. E. Townsend

2002-02-01T23:59:59.000Z

446

2003 Data Report: Groundwater Monitoring Program, Area 5 Radioactive Waste Management Site, Nevada Test Site  

SciTech Connect (OSTI)

This report is a compilation of the calendar year 2003 groundwater sampling results from the Area 5 Radioactive Waste Management Site, Nevada Test Site. Wells Ue5PW-1, Ue5PW-2, and Ue5PW-3 were sampled semi-annually for the required analytes: pH, specific conductance, total organic carbon (TOC), total organic halides (TOX), tritium, and major cations/anions. Results from all samples collected in 2003 were within established criteria. These data indicate that there has been no measurable impact to the uppermost aquifer from the Resource Conservation and Recovery Act (RCRA) regulated unit within the Area 5 Radioactive Waste Management Site and confirm that any previous detections of TOC and TOX were false positives. Contamination indicator data are presented in control chart and tabular form with investigation levels indicated. Gross water chemistry data are presented in graphical and tabular form. There were no major changes noted in the monitored groundwater elevations. There continues to be an extremely small gradient to the northeast with an average flow velocity of less than one foot per year. Other information in the report includes a Cumulative Chronology for the Area 5 Radioactive Waste Management Site Groundwater Monitoring Program, a brief description of the site hydrogeology, and the current groundwater sampling procedure.

Bechtel Nevada

2004-02-01T23:59:59.000Z

447

Method to Remove Uranium/Vanadium Contamination from Groundwater  

DOE Patents [OSTI]

A process for removing uranium/vanadium-based contaminants from groundwater using a primary in-ground treatment media and a pretreatment media that chemically adjusts the groundwater contaminant to provide for optimum treatment by the primary treatment media.

Metzler, Donald R.; Morrison Stanley

2004-07-27T23:59:59.000Z

448

Influence of flooding on groundwater flow in central Cambodia  

Science Journals Connector (OSTI)

Cambodia is affected by flooding from the Mekong, Tonle Sap and Bassac ... paper is to highlight the effects of river flooding on groundwater flow using numerical simulation. A two-dimensional groundwater flow mo...

Raksmey May; Kenji Jinno; Atsushi Tsutsumi

2011-05-01T23:59:59.000Z

449

Heat Transport in Groundwater Systems--Finite Element Model  

E-Print Network [OSTI]

into groundwater aquifers for long term energy storage. Analytical solutions are available that predict water temperatures as hot water is injected into a groundwater aquifer, but little field and laboratory data are available to verify these models. The objectives...

Grubaugh, E. K.; Reddell, D. L.

450

Rules and Regulations for Groundwater Quality (Rhode Island)  

Broader source: Energy.gov [DOE]

These regulations provide standards for groundwater quality in the state of Rhode Island. The rules are intended to protect and restore the quality of the state's groundwater resources for use as...

451

Groundwater maps of the Hanford Site, December 1993  

SciTech Connect (OSTI)

This report is an update to the series of reports that document the configuration of the uppermost unconfined aquifer beneath the Hanford Site. This series presents the latest results of the semiannual water level measurement program and the water table maps generated from these measurements. The reports document the changes in the groundwater level at the Hanford Site during the transition from nuclear material production to environmental restoration and remediation. In addition, these reports provide water level data to support the various site characterization and groundwater monitoring programs currently in progress on the Hanford Site. The three major operations areas (the 100, 200 and 300/1100 Areas) where wastes were discharged to the soil are covered in this update. The water level measurements from the wells in these areas are portrayed on a set of maps to illustrate the hydrologic conditions and are also tabulated in an appendix. A summary discussion of the data is included with the well index map, the depth to water map, and the contoured map of the water table surface for each of the three areas.

Kasza, G.L.; Hartman, M.J.; Jordan, W.A.; Borghese, J.V.

1994-07-01T23:59:59.000Z

452

Chemical and isotopic data for groundwater in southern Nevada  

SciTech Connect (OSTI)

This document presents a compilation of chemical and isotopic data for groundwater samples analyzed by Lawrence Livermore National Laboratory (LLNL) in support of the Hydrology and Radionuclide Migration Program (HRMP) and the Underground Test Area Program (UGTA) for the U.S. Department of Energy, Nevada Operations Office. Included are data for 107 samples collected from wells and springs located on and around the Nevada Test Site (NTS), within an area approximately bounded by latitudes 36{sup o} to 38{sup o}15'N and longitudes 115{sup o} to 117{sup o}15'W. The samples were collected during the time period 1992 to early 1997. The data represents one of the largest internally consistent geochemical data sets to be gathered for groundwater in southern Nevada. This database is available in electronic or hardcopy formats to interested parties upon request. In addition to the LLNL data we have included a table of selected isotopic data summarized from a larger database compiled by GeoTrans, Inc. (1994). This data is included for comparative purposes as a means of placing the LLNL data in the context of other data for the same geographic region.

Rose, T. P., LLNL

1997-07-01T23:59:59.000Z

453

Demolition, Groundwater Cleanup Highlight Paducah's 2013 Accomplishments  

Broader source: Energy.gov (indexed) [DOE]

Demolition, Groundwater Cleanup Highlight Paducah's 2013 Demolition, Groundwater Cleanup Highlight Paducah's 2013 Accomplishments Demolition, Groundwater Cleanup Highlight Paducah's 2013 Accomplishments December 24, 2013 - 12:00pm Addthis A high-reach shear removes debris from the tallest structure of the C-340 complex at Paducah. Watch a video of this work here. The 120-foot-high Metals Plant was the tallest building at the Paducah site and encompassed about 1.5 million cubic feet, the volume of a football field roughly three stories tall. Demolition debris filled 28 rail cars and was shipped offsite for disposal. A high-reach shear removes debris from the tallest structure of the C-340 complex at Paducah. Watch a video of this work here. The 120-foot-high Metals Plant was the tallest building at the Paducah site and encompassed

454

Mercury Geochemical, Groundwater Geochemical, And Radiometric Geophysical  

Open Energy Info (EERE)

Geochemical, Groundwater Geochemical, And Radiometric Geophysical Geochemical, Groundwater Geochemical, And Radiometric Geophysical Signatures At Three Geothermal Prospects In Northern Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Mercury Geochemical, Groundwater Geochemical, And Radiometric Geophysical Signatures At Three Geothermal Prospects In Northern Nevada Details Activities (14) Areas (3) Regions (0) Abstract: Ground water sampling, desorbed mercury soil geochemical surveys and a radiometric geophysical survey was conducted in conjunction with geological mapping at three geothermal prospects in northern Nevada. Orientation sample lines from 610 m (2000 ft.) to 4575 m (15,000 ft.) in length were surveyed at right angles to known and suspected faults. Scintillometer readings (gamma radiation - total counts / second) were also

455

Chemical speciation of radionuclides migrating in groundwaters  

SciTech Connect (OSTI)

In order to more accurately predict the rates and mechanisms of radionuclide migration from low-level waste disposal facilities via groundwater transport, ongoing studies are being conducted at field sites at Chalk River Laboratories to identify and characterize the chemical speciation of mobile, long-lived radionuclides migrating in groundwaters. Large-volume water sampling techniques are being utilized to separate and concentrate radionuclides into particular, cationic, anionic, and nonionic chemical forms. Most radionuclides are migrating as soluble, anionic species that appear to be predominantly organoradionuclide complexes. Laboratory studies utilizing anion exchange chromatography have separated several anionically complexed radionuclides, e.g., {sup 60}Co and {sup 106}Ru, into a number of specific compounds or groups of compounds. Further identification of the anionic organoradionuclide complexes is planned utilizing high resolution mass spectrometry. Large-volume ultra-filtration experiments are characterizing the particulate forms of radionuclides being transported in these groundwaters.

Robertson, D.; Schilk, A.; Abel, K.; Lepel, E.; Thomas, C.; Pratt, S. [Pacific Northwest Lab., Richland, WA (United States); Cooper, E.; Hartwig, P.; Killey, R. [Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.

1994-04-01T23:59:59.000Z

456

Ion exchange technology in the remediation of uranium contaminated groundwater at Fernald  

SciTech Connect (OSTI)

Using pump and treat methodology, uranium contaminated groundwater is being removed from the Great Miami Aquifer at the Fernald Environmental Management Project (FEMP) per the FEMP Record of Decision (ROD) that defines groundwater cleanup. Standard extraction wells pump about 3900 gallons-per-minute (gpm) from the aquifer through five ion exchange treatment systems. The largest treatment system k the Advanced Wastewater Treatment (AWWT) Expansion System with a capacity of 1800 gpm, which consists of three trains of two vessels. The trains operate in parallel treating 600 gpm each, The two vessels in each train operate in series, one in lead and one in lag. Treated groundwater is either reinfected back into the aquifer to speed up the aquifer cleanup processor discharged to the Great Miami River. The uranium regulatory ROD limit for discharge to the river is 20 parts per billion (ppb), and the FEMP uranium administrative action level for reinfection is 10 ppb. Spent (i.e., a resin that no longer adsorbs uranium) ion exchange resins must either be replaced or regenerated. The regeneration of spent ion exchange resins is considerably more cost effective than their replacement. Therefore, a project was undertaken to learn how best to regenerate the resins in the groundwater vessels. At the outset of this project, considerable uncertainty existed as to whether a spent resin could be regenerated successfully enough so that it performed as well as new resin relative to achieving very low uranium concentrations in the effluent. A second major uncertain y was whether the operational lifetime of a regenerated resin would be similar to that of a new resin with respect to uranium loading capacity and effluent concentration behavior. The project was successful in that a method for regenerating resins has been developed that is operationally efficient, that results in regenerated resins yielding uranium concentrations much lower than regulatory limits, and that results in regenerated resins with operational lifetimes comparable to new resins.

Chris Sutton; Cathy Glassmeyer; Steve Bozich

2000-09-29T23:59:59.000Z

457

UNIT NUMBER C-7S0A Gasoline UST UNIT NAME REGULATORY STATUS:...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 UNIT NUMBER C-7S0A Gasoline UST UNIT NAME REGULATORY STATUS: AOC LOCATION: Southeast corner C-750 APPROXIMATE DIMENSIONS: 10,000 gallon FUNCTION: Gasoline storage OPERATIONAL...

458

Annual report of groundwater monitoring at Centralia, Kansas, in 2009.  

SciTech Connect (OSTI)

In September 2005, periodic sampling of groundwater was initiated by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) in the vicinity of a grain storage facility formerly operated by the CCC/USDA at Centralia, Kansas. The sampling at Centralia is being performed on behalf of the CCC/USDA by Argonne National Laboratory, in accord with a monitoring program approved by the Kansas Department of Health and Environment (KDHE). The objective is to monitor levels of carbon tetrachloride contamination identified in the groundwater at Centralia (Argonne 2003, 2004, 2005a). Under the KDHE-approved monitoring plan (Argonne 2005b), the groundwater was sampled twice yearly from September 2005 until September 2007 for analyses for volatile organic compounds (VOCs), as well as measurement of selected geochemical parameters to aid in the evaluation of possible natural contaminant degradation (reductive dechlorination) processes in the subsurface environment. The results from the two-year sampling program demonstrated the presence of carbon tetrachloride contamination at levels exceeding the KDHE Tier 2 risk-based screening level (RBSL) of 5 {micro}g/L for this compound in a localized groundwater plume that has shown little movement. The relative concentrations of chloroform, the primary degradation product of carbon tetrachloride, suggested that some degree of reductive dechlorination or natural biodegradation was taking place in situ at the fo